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Introduction

Real physical world problems frequently involve non-linear constraints over real
numbers, uncertain data and badly defined parameters. This kind of problems can
be expressed in terms of numerical Constraints Satisfaction Problems (CSP) [1].

Usually, quantifiers (∀, ∃) arise in certain situations of uncertainty in the pa-
rameters of CSP. For example, universal quantification, models situations where
some parameters are unknown and the mathematical model has to hold for every
possible choice of these parameters. On the other hand, existential quantification
models situations where some parameters can be chosen by the designer. When
this quantification appears on a CSP, it can be expressed in terms of numerical
Quantified Constraints Satisfaction Problems (QCSP).

The importance of solving QCSP lies on the fact that many physical problems,
for example in control engineering [2–5], electrical engineering [6], mechanical en-
gineering [7, 8], biology [9] and various others [10, 11], can be expressed under this
paradigm.

Up to now, Cylindrical Algebraic Decomposition [12–14], for which a practical
implementation exists [15], has been the most extended method to solve this type
of problems. However, this technique is only well suited for small or middle-size
problems because of its computational complexity. Moreover, it often generates
huge output consisting on highly complicated algebraic expressions which are not
useful for many applications and it does not provide partial information before
computing the total result.

Methods that appear lately [16, 17] try to avoid some of these problems re-
stricting oneself to approximate instead of exact solutions, using solvers based on
numerical methods. However, these algorithms are also restricted to very special
cases (e. g. quantified variables only occur once, only one quantifier, etc.). Recently,
some of these deficiencies have been partially removed by Ratschan [18–20] but, a
lot of work remains to be done before obtaining an efficient and general method. It
is important to remark the important contribution on the mathematical foundations
of the problem recently done by Shary in [21].

This paper describes a new reliable an efficient method, based on Modal Interval
Analysis [22, 23], Set Inversion techniques [24], for the characterization of solution
sets defined by numerical Quantified Constraints Satisfaction Problems (QCSP).

1. Problem Statement

A Quantified Constraint (QC) is an algebraic expression over the reals which
contains quantifiers (∃, ∀), predicate symbols (e. g., =, <, ≤), function symbols
(e. g., +, –, ×, sin, exp), rational constants and variables x = {x1, . . . , xn} ranging
over reals domains D = {D1, . . . , Dn}.
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An example of a QC is the following one,

∀x ∈ R x4 + px2 + qx + r ≥ 0, (1)

where x is a universally (∀) quantified variable and p and r are free variable.
As defined in [21], a numerical constraint satisfaction problem, is a triple CSP =

(x,D,C(x)) defined by

(i) a set of numeric variables x = {x1, . . . , xn},
(ii) a set of domains D = {D1, . . . , Dn} where Di, a set of numeric values, is the

domain associated with the variable xi.

(iii) a set of constraints C(x) = {C1(x), . . . , Cm(x)} where a constraint Ci(x) is de-
termined by any numeric relation (equation, inequality, inclusion, etc.) link-
ing a set of variables under consideration.

A solution to a numeric constraint satisfaction problem CSP = (x,D,C(x))
is an instantiation of the variables of x for which both inclusion in the associated
domains and all the constraints of C(x) are satisfied. All the solutions of a constraint
satisfaction problem thus constitute the set

Σ = {x ∈ D | C(x) is satisfied}. (2)

Now suppose that the constraints C(x) depend on some parameters p1, p2, . . . , pl

about which we only know that they belong to some intervals P1, P2, . . . , Pl. More-
over, these parameters have an associated quantifier Q ∈ {∀,∃}. Taking into ac-
count the dual character of interval uncertainty, the most general definition of the
set of solutions to such Quantified Constraint Satisfaction problem QCSP should
have the form

Σ = {x ∈ D | Q1(pσ1 , Pσ1) . . . Ql(pσl
, Pσl

)C(x)}, (3)

where

• Qi are logical quantifiers ∀ or ∃ (in this paper, only the case of universal
quantifiers preceding the existential ones will be dealt),

• {p1, p2, . . . , pl} is the set of parameters of the constraints system considered,

• {P1, P2, . . . , Pl} is a set of intervals containing the possible values of these
parameters, and

• σi ∈ Σl is a permutation of the numbers 1, . . . , l.

The sets of the form (3) will be referred to as quantified solutions sets to the
numerical quantified constraints satisfaction problem QCSP = (x,D,C(x)).

2. Methodology

2.1. Set Inversion. One way of solving a CSP is through the characterization of
its solution set by means of the Set Inversion (SI) approach.

Let CSP be a constraint satisfaction problem CSP = (x,D,C(x)). Set inversion
aims at characterizing the set Σ of all x such that C is satisfied.
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Remark. All constraints are considered under the form C(x) := f(x) = y, where
f a continuous function from Rn to Rm.

Given a box X (cartesian product of intervals), an algorithm which does set
inversion is based on a branch-and-bound technique and the 3 followings set of
rules.

Rule 1: ∀(x,X)C(x) ⇔ X ⊆ Σ.

This logic formula, used to prove that a box X is contained in the solution set,
is equivalent to the following interval computation and interval inclusions

Out
(
f(X)

)
⊆ Y ,

where f(X) are the ranges of the function components over the interval vector X
and Out(f(X)) are outer approximations of f(X)

Rule 2: ∀(x,X)¬C(x) ⇔ X ⊆ Σ.

Figure 1. Solution set: 1 – solution,
2 – non-solution, 3 – undefined

This logic formula, used to prove
that a box X does not belongs to the
solution set, is easily proved by means of
the following interval computation and
interval inclusions

Out
(
f(X)

)
⊆ Y .

Finally, if Rule 1 and 2 are not ac-
complished the position of the box X is
undefined

Rule 3: Otherwise, X is undefined.

Figure 1 shows a two dimensional example of the three possible situations cor-
responding to the 3 rules.

Then the algorithm which does set inversion is as follows

Algorithm SI (In: C,X, ε, Out: Inn(Σ), Out(Σ))

1. if With (X) ≤ ε then X is undefined
2. else if Rule 1 is satisfied then X is solution
3. else if Rule 2 is satisfied then X is non solution
4. else Branch(X,X1,X2)
5. SI(C,X1, ε)
6. SI(C,X2, ε)

where

• ε: SI stops the branching procedure over X when this precision is reached,

• Inn(Σ): Inner approximation of the solution set,

• Out(Σ): Outer approximation of the solution set.
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2.2. Quantified Set Inversion via Modal Interval Analysis. Classical Set
Inversion is well suited characterizing solution sets of the form (2). The problem
arises when the sets are of the form (3). Then, a new algorithm for the character-
ization of quantified solution sets is needed. This algorithm will be referred to as
Quantified Set Inversion (QSI).

Let us consider the case when the constraints are under the form C(x) := f(x) S
0, with f a continuous function from Rn to R.

The main difference between the classical Set Inversion Algorithm and the quan-
tified one lies on the used set of rules. For the proposed algorithm the following
rules will be used:

Rule 1: ∀(x,X)∀(pU ,PU )∃(pE ,PE)C(x) ⇔ X ⊆ Σ.

This logic formula, used to prove that a box X belongs to the solution set, can
not be easily proved by means of classical interval computations. For this reason,
Modal Interval Analysis is proposed (MIA). MIA is a powerful mathematical tool
which allows the evaluation of quantified interval formulas by means of interval
computations. Concretely, to evaluate the set of logic formulas, the *-semantic
theorem given by MIA is used to reduce equivalently the logical formula to the
interval inclusion

Out(f∗(X,PU ,PE)) ⊆ Z,

where X,PU are proper intervals, PE improper one, Out(f∗(X,PU ,PE)) is an
outer approximation of the the *-semantic extension of the continuous function f
and Z = [0, 0], Z = [−∞, 0] or Z = [0,∞] depending on if the constraints are under
the form C(x) := f(x) = 0, C(x) := f(x) < 0 or C(x) := f(x) > 0, respectively.

In order to obtain the second rule, used to prove that a box X does not belongs
to the solution set, the following implication is used:

Rule 2: ¬(∀(pU ,PU )∃(pE ,PE)∃(x,X) C(x)) ⇒ X ⊆ Σ.

This logical formula is, analogously, equivalent to the following interval exclu-
sion:

Inn
(
f∗(X,PU ,PE)

)
* Z,

where PU is a proper interval, X, PE improper ones, Inn(f∗(X,PU ,PE)) is an
inner approximation of the the *-semantic extension of the continuous function f .
and Z = [0, 0], Z = [−∞, 0] or Z = [0,∞] depending on if the constraints are under
the form C(x) := f(x) = 0, C(x) := f(x) < 0 or C(x) := f(x) > 0, respectively.

Finally, if none of these rules are accomplished, the box X is undefined.

Rule 3: otherwise, X is undefined.

Computing the semantic extension of a continuous function f by means of any
of their interpretable rational extensions provokes an overestimation of the interval
evaluation, due to the multi-occurrences of variable, when the rational computations
is not optimal. An algorithm, based on results of Modal Interval Analysis and
branch-and-bound techniques which allows to efficiently compute an inner and an
outer approximation of f∗ has been recently built.
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When the constraints are under the form C(x) := f(x) S 0, with f a continuous
function from Rn to Rm and each variable existentially quantified appears in only a
component function, the problem is reduced to m different problems, one for each
component function.

3. Example

Given the intervals T1, . . . , Tm, Y1, . . . , Ym, to find the inner estimation of the
sets:

ΣE =
{
p ∈ R2 | ∃(t1, T ′

1)∃(y1, Y
′
1) · · · ∃(tn, T ′

n)∃(yn, Y ′
n)

(p1e
−p2t1 = y1, . . . , p1e

−p2tn = yn)
}
,

ΣU =
{
p ∈ R2 | ∀(t1, T ′

1)∃(y1, Y
′
1) · · · ∀(tn, T ′

n)∃(yn, Y ′
n)

(p1e
−p2t1 = y1, . . . , p1e

−p2tn = yn)
}
.

We have
ΣE = ΣE1 ∩ . . . ∩ ΣEn

, ΣU = ΣU1 ∩ . . . ∩ ΣUn
,

where

ΣEi
:=

{
p ∈ R2 | ∃(ti, T ′

i )∃(yi, Y
′
i )p1e

−p2ti = yi

}
,

ΣUi
:=

{
p ∈ R2 | ∀(ti, T ′

i )∃(yi, Y
′
i )p1e

−p2ti = yi

}
with i = 1, . . . , n.

3.1. Characterizing ΣE. The logic formula which fulfils the points belonging to
the solution set ΣEi is

∀(p1, P
′
1)∀(p2, P

′
2)∃(ti, T ′

i )∃(yi, Y
′
i ) p1e

−p2ti − yi = 0

which is equivalent to the following inclusion test

Out(f∗i (P1, P2, Ti, Yi)) ⊆ [0, 0],

with P1 and P2 proper intervals and Ti and Yi improper ones.
The logic formula which fulfils the points not belonging to the solution set ΣEi

is
¬(∃(p1, P

′
1)∃(p2, P

′
2)∃(ti, T ′

i )∃(yi, Y
′
i ) p1e

−p2ti − yi = 0)

which is implied by the following exclusion test

Inn(f∗i (P1, P2, Ti, Yi)) * [0, 0],

with P1, P2, Ti and Yi improper intervals.
Then, ΣE = ΣE1 ∩ · · · ∩ ΣEn

.
In less than 4 seconds on a Pentium III 1 GHz, for n = 2, an ε = 0.05 and

the following interval domains: X = (P1, P2) = ([−1, 4], [−1, 1]), Y ′
1 = [1.3, 3.3],

Y ′
2 = [0.3, 2.3], T ′

1 = [2, 3] and T ′
2 = [3.5, 4], QSI generates the paving represented

in figure 2, where the darker region corresponds to the solution set ΣE , the grey
region corresponds to the non solution set ΣE and the white region is undefined.
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Figure 2. ΣE paving Figure 3. ΣU paving

3.2. Characterizing ΣU . The logic formula which fulfil the points belonging to
the solution set ΣUi is

∀(p1, P
′
1)∀(p2, P

′
2)∀(ti, T ′

i )∃(yi, Yi) p1e
−p2ti − yi = 0

which is equivalent to the following inclusion test

Out(f∗i (P1, P2, Ti, Yi)) ⊂ [0, 0], (4)

where P1, P2 and Ti are proper intervals and Yi is improper.
The logic formula which fulfil the points not belonging to the solution set ΣUi

is
¬(∀(ti, T ′

i )∃(yi, Y
′
i )∃(p1, P

′
1)∃(p2, P

′
2) p1e

−p2ti − yi = 0)

which is implied by the following exclusion test

Inn(f∗i (P1, P2, Ti, Yi)) * [0, 0]

with P1, P2 and Yi improper intervals and Ti proper.
Then, ΣU = ΣU1 ∩ · · · ∩ ΣUm

.
In less than 3 seconds on a Pentium III 1GHz, for n = 2, an ε = 0.05 and the

same interval domains used for the previous example, QSI generates the paving
represented in figure 3, where the darker region corresponds to the solution set ΣU ,
the grey region corresponds to the non solution set ΣU and the white region is
undefined.

4. Future Work

4.1. Reducing the complexity via Constraint Propagation. In order to
reduce the complexity of the set inversion algorithm due to the branching, a nar-
rowing operator (a contractor) for quantified constraints will be provided. This
contractor, based on constraint propagation techniques and Modal Interval Analy-
sis, allows the contraction of an initial box X to another one X ′ such that X ′ still
contains the solution set Σ.

The basic idea consists on decomposing the set of constraints into their primitive
constraints and by means of Modal Interval Arithmetic to compute local approx-
imations of the solution space for a given primitive constraint. These evaluation
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provokes domain reduction over X which are propagated through the whole set of
constraints by a propagation engine.

4.2. Application on parameter identification. An application on parameter
identification and its comparison with the classical interval approach used in [25] is
under study.
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