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Validated constraint solving — practicalities,
pitfalls, and new developments

R. Baker Kearfott*

Abstract. Many constraint propagation techniques iterate through the constraints in a
straightforward manner, but can fail because they do not take account of the coupling
between the constraints. However, some methods of taking account of this coupling are
local in nature, and fail if the initial search region is too large. We put into perspective
newer methods, based on linear relaxations, that can often replace brute-force search by
solution of a large, sparse linear program.

Robustness has been recognized as important in geometric computations and elsewhere
for at least a decade, and more and more developers are including validation in the design
of their systems. We provide citations to our work to-date in developing validated versions
of linear relaxations.

This work is in the form of a brief review and prospectus for future development. We
give various simple examples to illustrate our points.

Introduction

A very general problem, specific instances of which are important throughout
CAD, as well as computing in general and operations research, is the general global
optimization problem

minimize ¢(z)

subject to ¢;(z) =0, i=1,...,my,
gi(x) <0, i=1,...,maq,
where ¢:x — R and ¢;,¢9;: ® — R, and where  C R" (1)

is the hyperrectangle (box) defined by
z;, < xi; < T, 1 < j < mg,i;between 1 andn,

where the z;, and T;, are constant bounds.

If ¢ is constant or absent, problem (1) becomes a general constraint problem; if, in
addition my = mg3 = 0, problem (1) becomes a nonlinear system of equations.

In general, and indeed, for many specific instances, it is theoretically impossible
to avoid exponential time when solving problem 1; see [16]. However, a plethora of
techniques that work well for a number of instances of interest have been developed
(although none of these are universally practical). Particularly prominent is a set
of techniques where the variables and, possibly, some of the parameters defining
the objective ¢ and the constraints ¢; and g; are only approximately known ini-
tially; in such cases, we can use the relationships among the constraints and the
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objective to compute tighter bounds on the variables x;. Calling this general idea
subdefinite computations, Narin’yani and his group developed it starting in the early
1980’s [17]; an example implementation of these ideas is UNICALC [1] of Semenov
et al. This paradigm also lends itself naturally, with directed roundings, to vali-
dated computation, that is, to computation in which the results are valid not just
approximately, but with the certainty of a mathematical proof.

Large numbers of researchers have developed various tools and corresponding
theories for filtering the bounds on the x; through the constraints to obtain nar-
rower bounds, a process often described as constraint propagation, a burgeoning
field of artificial intelligence. A succinct description of the general constraint prop-
agation framework appears in [2]. Benhamou (ibid.) attributes the introduction of
interval constraints (equivalent to subdefinite computations) within this constraint
propagation framework to Cleary [4]. In the notation of [2], such interval constraint
propagation depends upon narrowing operators Ne¢(x), where x is a box and C is
the set of constraints'. Application of N returns a narrower box &, where points
in « that are infeasible with respect to the constraints C have been eliminated?
The constraint propagation community has defined various consistency conditions,
based on how N eliminates portions of @, and individual advances in the field often
are in the form of new consistency conditions that can eliminate portions of @ that
other conditions cannot.

In this paper, we focus on three consistency conditions in common use, to which
we refer as follows:

1) basic constraint propagation,
2) interval Newton narrowing,

3) linear relaxations

Although there are other conditions (such as those found in [22] or many other
places), these three represent what is included in our own work, and also are repre-
sentative of three schools which have only recently begun to merge. Basic constraint
propagation is a fundamental narrowing process in the constraint propagation com-
munity, while interval Newton narrowing has been the predominant process used
by those in the interval analysis community doing global optimization®. Linear re-
laxations, developed within the global optimization community at large, although
very successful at solving practical problems such as those in [21] and [5], have only
recently been recognized within the interval analysis community.

In the remainder of this paper, we will give illustrative examples of these three
techniques, highlighting their deficiencies and citing literature where appropriate.

1Here, C represents the constraints ¢, g, bound constraints of problem (1),and possibly con-
straints based on setting the gradient of the Lagrange function to zero, in the case that ¢ is present
and non-constant.

2In the global optimization context where ¢ is present, in addition to eliminating portions of
x based on feasibility, we may extend the interpretation of N to include elimination of portions
of @ if a lower bound for ¢ over the feasible portion of @ is less than a known upper bound on the
global optimum.

3Bounds on the objective ¢ are also used extensively within this school, but mainly in a
rudimentary way to reject boxes, and not to narrow boxes in the sense of a narrowing operator.
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1. Basic Constraint Propagation

Our own first examination of basic constraint propagation appears in [8], where
we call it “substitution-iteration.” Following our ideas in [8], basic constraint prop-
agation can be thought of as a nonlinear version of Gauss—Seidel iteration. That
is, we are given initial bounds for the variables, and solve for a variable within a
constraint. Plugging in the bounds for the other variables may then give narrower
bounds on that variable. If so, then we solve for the other variables in constraints
in which the narrowed variable occurs, and repeat the process with these other
variables. We continue this until no more variables can be significantly narrowed.

Example 1. Take the constraint system
c1(r) = 23 — 29, co(x) =23 — 2wy, w € [-1,1], x9€[-1,1].

Selecting x5 in ¢, we obtain xy = 23/2. Plugging z; = [—1,1] into 2% /2, we
obtain x5 € [0,0.5], a significant narrowing. We now solve ¢ for x; to obtain
x1 = r3/2. Plugging the narrower value of xo into x3/2, we obtain x; € [0,0.125],
obtaining a narrower value of x;. We can now use the first equation again to
obtain an even narrower value for xo. After only for iterations of this process
(using INTLAB [20]), we obtain intervals for z; and x2 containing 21 =0, 29 =0
and with widths less than 10716,

Just as in the classical linear Gauss—Seidel method, this process will only con-
verge if an ordering of the constraints and variables can be found such that the
corresponding Jacobi matrix is diagonally dominant.

Example 2. Take the constraint system
ci(z) =23 + a1 — 9, ca(x) = —211 — 29, T € [-.5,.5], X € [—.25,.25].

In Example 2, there is a unique feasible point (i.e. a point at which the con-
straints are consistent) within the initial bounds at 1 = 0, x5 = 0. However, solv-
ing ¢y for z9 as in Example 1 gives x5 = (m? +21). There is interval overestimation
when we plug x1 = [—.5,.5] into 22 + 21 and use naive interval arithmetic, but that
is not the only issue here, as we’ll see as we follow through the computations; we’ll
use the exact range of (23 + 1) for x1 € [—.5,.5], that is, 2o € [—.625,.625], which
is no improvement. Similarly, if we solve for x5 in the second equation, we obtain
that the range of —2x; over x; € [—.5,.5] is x2 € [—1, 1], not an improvement. The
only remaining alternatives for improvement are to solve for x; in ¢; or ca. Solving
for 21 in g gives no improvement, but solving for ;1 in ¢; (using the cubic equation)
and plugging in x5 € [—.25,.25] gives 1 € [—.237,.237], an improvement. Now,
solving for x5 in co gives 9 = —2x1 € [—.474,.474], not a narrowing. Thus, the
process becomes stationary at xy € [—.237,.237], x5 € [—.25,.25]. At this point, a
constraint propagation procedure employing only this basic technique would bisect
x, to increase the number of boxes, a potentially expensive procedure.

The difficulty in Example 2 is that there is no ordering of the variables and
constraints for which the resulting Jacobi matrix at the solution x = (0,0) is di-
agonally dominant. In such cases, a process that somehow decouples the system
would be superior to basic constraint propagation. One such procedure is interval
Newton methods.
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2. Interval Newton Narrowing

Interval Newton methods are ubiquitous throughout the interval analysis litera-
ture. An good reference for the theory is [18]; in our own work, we have introduced
and summarized interval Newton methods in [10]. At their most basic, interval
Newton methods work on systems of n equations in n unkowns*. Systems with
both equality and inequality constraints and optimization problems can be han-
dled by forming the Lagrange multiplier system (or more generally, the Fritz—John
equations).

An interval Newton operator is an operator of the form v = N(F, x, &), where
v is an interval vector that bounds the solution set to

Av = —F (i), 2)

where A is some Lipschitz matrix for F' or a slope matrix® for F centered at #. (For
example A can consist of element-wise interval extensions of the Jacobi matrix of
F over x.) Generally, the bounds v are obtained by first preconditioning (2) by
multiplying A and —F by a preconditioner matrix Y, where Y serves to partially
decouple the equations (and make the resulting matrix YA more like the identity
matrix).

In Example 2 above,

| al(x) 3+ 21 — X0
F(z) = ( ca(x) ) < —2x1 — T3 ’
and an element-wise interval extension of the Jacobi matrix of F' over the initial ©
is
, [1,1.75] -1
F'(z) € ( 9 1)

If the inverse of the midpoint matrix for F’(x) is used as a preconditioner matrix,
then, if & = (0,0)7, the preconditioned system becomes

[0.8888,1.1112] [0.0000, 0.0000] ( vy ) B ( 0 )
[—0.2223,0.2223]  [0.9999,1.0001] ) \ v2 /  \ 0 )~
and, using the interval Gauss—Seidel method, new bounds for v are

<(9).

that is, we obtain the solution sharply.

However, for some systems, multiplying by Y can result in significant overesti-
mation due to interval dependency. We give a simple example of such a system in

4However, using appropriate preconditioning, interval with practical use can be devised for
rectangular systems (both overdetermined and underdetermined). See, for example [9, Ch. 3] for
an example of such preconditioners.

5See, for example, [18] for the definitions of Lipschitz matrix and slope matrix.
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[15]. There, we show that such problems can sometimes be handled by precondi-
tioning the system symbolically®.

Nonetheless, there are significant practical problems that cannot be handled
even with interval Newton narrowing with symbolic preconditioning in combination
with basic constraint propagation. We have found this to be particularly true in
practice for systems of equations arising from applying Lagrange multipliers (or the
Fritz—John conditions) to constrained optimization problems; we gave a practical
example of this in [14, 13], and have studied it more thoroughly in [12]. Here, we
present a simplified example of a pure constraint problem.

Example 3. Take the constraint system
(@) =a2f—x2, q(z)=22—21, 21€[0,1], a2€][0,1].

One can easily verify that basic constraint propagation is unsuccessful on this
problem. Although this particular system has a unique solution at x; = 0, o = 0,
since this is an inequality-constrained problem, it is possible to have a solution set
with non-empty measure. To obtain lower and upper bounds on this solution set,
we may solve the corresponding constrained optimization problems with objective
functions min 1, max x;, minzs and maxx, and with the additional constraints
—x1 <0, 1 < .5, —x2 <0, zog < .5. Considering the problem with minz;, the
Fritz—John equations (as in [9, (5.7), p. 197]) can be written as

ug — Ul — U2 + us + 21‘11}1
Uy — Uqg + U5 — V1
up(z2 — 1)
—U2x1
usxry =0. (3)
—U4T2
Us5T
SC% — X2
u0+u1—|—u2+u3+u4+u5+v% -1

The Jacobi matrix for this system is

20 0 -1 -1

[N}
8

1 10 0 2
0 0 0 1 0 0 -1 1 -1

—U1 Uq 0 To — X1 0 0 0 0 0

“uy 0 0 0 =2, 0 0 0 0

_OF 0 0 0 02 0 0 0
Oz Ou Ov 0 —uy 0 0 0 0 —25 0 0
0 wus 0 0 0 0 0 2 0

25, —1 0 O 0 0 0 0 0

0 0 1 11 1 11 2m

Interestingly, since linear combinations of entries in any column are single-use ex-
pressions, there is no overestimation in either naive evaluation of the interval Jacobi

6To do symbolic arithmetic on functions, we compute within a vector space of the coefficients
for a basis for the space of functions in question. In [15], we used Taylor polynomials with
remainder terms, and we used the COSY system [3] for the actual implementation.
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matrix or in preconditioning the resulting interval matrix. If we do not know bounds
on the Lagrange multipliers u;, 0 < i < 5 and v; beforehand, then we may choose
them to be the natural values u; € [0,1], 0 < ¢ < 5, v; € [—1,1]. The resulting
interval Jacobi matrix is

[—2,2] 0 1 -1 ~1 1 0 0 [0,2

0 0 0 1 0 0o -1 1 -1
[~1,00 [ 0,1] 0 [-1,1] 0 0 0 0
[—1,0] 0 0 0 [-1,0] 0 0 0 0
[ 0,1] 0 0 0 0 [0,1] 0 0 o |,

0 [-1,0] 0 0 0 0 [-1,0] 0O 0

0 [01 0 0 0 0 0 [0,1] 0
0,21 -1 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 [-1,1]

which contains many singular matrices. Thus, an interval Newton method using
this system will not, in general succeed”. In fact, at the solution z; = 0, 23 = 0,
the Fritz—John system (3) becomes

Ug — U] — U + U3
U — Ug + U5 — V1
0
0
0
0
0
u0+u1—|—uQ+U3—|—U4+u5v%—1

I
cCoocococoococoo

which is underdetermined; thus, the Jacobi matrix at the solution itself must be
singular, and an interval Newton method cannot hope to narrow all coordinates,
unless we fix one or more of the multipliers at their lower or upper bounds®.

3. Linear Relaxations

Problems as illustrated above in Example 3 have led us to consider linear relaz-
ations, a technique by which a global optimization problem is approximated by a
linear program (LP). The solution to this linear program, obtained approximately
by a state-of-the-art LP solver, then gives a lower bound to the solution to the
original global optimization problem. This lower bound can then be used to ad-
vantage in the constraint propagation scheme. For example, optimization problems
could be formulated as we described above below Example 3, and sharper lower
and upper bounds could then be obtained.

Various researchers use linear relaxations to great advantage in solving practical
problems. One example of this is in the commercial global optimization software
BARON, whose underlying ideas are explained in [21]. However, such software has

"However, conceivably, some of the coordinates could possibly be narrowed with the linear
programming preconditioners of [9, Chapter 3].

8 Actually, this is a possibility that can be investigated, although there may be too many
possible values of the u’s and v’s for this to be practical, if there are many constraints.
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not included validation until recently. Two years ago, Neumaier and Shcherbina
[19], as well as Jansson [7] exhibited a simple technique, based on the duality gap,
by which a rigorous lower bound to the minimum of an LP can be obtained from
approximate values of the dual variables. This enables linear relaxations to be used
in a validated context.

We explain our implementation of linear relaxations in [13] and [6], while we
conduct various numerical experiments within our GlobSol environment (see [11]
for a summary of GlobSol) in [12].

For Example 3 above, we may follow loosely our procedure in [13] to produce
linear relaxations. A corresponding linear program for computing a lower bound
on w1, using a single underestimator for the convex function xy = 2%, can be as
follows:

minimize x1

subject to xo < x1 (the overestimator),
x9 > .125 4+ .5(x; — .25), (4)
29 < x1 (the original constraint),
x1 € 10,1], z9 € [0,1].

(Here, we have relaxed the constraints directly, for simplicity. In [13] and [6], we
illustrate how the expressions can be parsed and relaxed automatically.) The exact
minimum to this linear program is z; = 0, and the solution point is ;1 = 0, 2 = 0,
the solution to the original constraint problem. If we replace the objective in (4)
by —x1, we obtain an upper bound of 1 for z1, not an improvement If we replace
the objective by x4, we obtain 0 for the lower bound on x5, but we similarly obtain
0.5 for the upper bound on x5, an improvement. We thus obtain

[0,1] [0,1]
< ([0, .5]) - ([0, 1])’

a significant narrowing in the second coordinate. Basic constraint propagation now
converges.

This illustrates that linear underestimators are capable of making headway on
problems, even pure constraint problems, for which both basic constraint propa-
gation and interval Newton methods alone do not do well. This is especially true
if there is much implicit dependency in the constraints, and the constraints are
approximately linear. However, this is not always the case. For example, certain
problems can be treated with basic constraint propagation or with interval Newton
methods, but linear relaxations are inefficient. See [12] for further information and
results on various test problems.

Summary and conclusions

Through simple examples, we have illustrated deficiencies in two techniques
widely used in the past in validated constraint propagation, and we have advocated
linear relaxations, a technique widely used in the non-validated global optimization
community but not examined seriously until recently for validated constraint solv-
ing. Linear relaxations are not a panacea, but complement well other techniques
used in the validated constraint solving community.
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