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Example of Babus̆ka, Práger and Vitásek
in interval computations

Gregory G. Men’shikov∗

Abstract. Taking the well-known example by Babus̆ka, Práger and Vitásek (“BPV exam-
ple”), we show that the interval computations themselves (even their validating version)
do not guarantee high quality of the computational work yet, and the stability of the
“core” algorithm plays a crucial role. If such an algorithm is not suitable, then the whole
procedure is fallable.

As for “BPV example”, we, first, use it to show troubles emerging in traditional
computations apart from the absence of the guaranteed information about the error. Then,
we apply validated interval computations to the “BPV example”, but the accuracy of
results still remains low.

Trying to procede in the interval manner without taking any care of the validation,
shows that the quality of the results is not improved. On the other hand, we may lose the
information about the accuracy, the latter may prove really interesting in the results.

Finally we make an decisive break by using the intersection of separate enclosures of
the result under computation or a family of such results. At the same time, we can see
how the validation achieved by analytical menas may make the results of calculations more
precise.

1. The point execution of the example

Let us consider the example of recurrent computation

In =
1
e

∫ 1

0

xnex dx, n = 0, 1, . . . (1)

from the book [1]. It is clear that I0 = 1− e−1. To express In from In−1 [2], we,
integrating by parts, obtain the following recursive equality:

In = 1− nIn−1. (2)

Computing I1, I2, . . . in accordance to the above formula on a real computer (when
the computation are subject to rounding, etc.) produces after n ≈ 10÷15 the result
which is evedently wrong (negative), since the values In must be nonnegative. The
analysis of of the phenomenon was fulfilled in the book [2], and its main reason
turns out the subtraction of neighbouring compute values.

2. The interval (validated) execution of the example

Let us rerun the same example, in interval-validating manner at this time. Mak-
ing use of the Second Theorem on compositions [2], we rewrite the right part of the
recursive relation in enclosures, which leads to the inclusion:
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In ∈ 1− n[In−1], n = 0, 1, . . . (3)

In the above, [In−1] means an interval enclosure for In−1 found by computer.
Hence, it is possible to use the right-hand part as [In]. Then, taking in account

the majorization [1] (i. e., the auxiliary extention of the enclosure), we obtain the
futher modification of the relation (3):

[In] = 1− n[In−1], n = 0, 1, . . . (4)

Its execution has been performed an interval assembler described in [2, § 17–18]
while the corresponding code of the algorithm is presented in the Table 212.1 from
the book [3].

The results of several steps of computations are in columns 1, 2, 3 of Table 1.
If n grows, the width of the enclosure increases even in an accelerating manner.

Finally, at n = 9 it may be stated that further computation is senseless since
drastical decreasing of the accuracy: the ratio of the width [In] (denoted as w(In))
to In has the value near 0.1. Due to this, the value of w([I15]) is large.

Table 1

n [In] w([In]) [In]int modif w([In])int modif

0 .6321203 4.77E−07 .6321203 4.77E−07
.6321208 .6321208

1 .3678789 1.01E−06 .3678789 1.01E−06
.36788 .36788

2 .2642398 2.56E−06 .2642398 2.56E−06
.2642424 .2642424

· · · · · · · · · · · · · · ·
9 −.1697655 5.29E−01 9.090908E−02 9.09E−03

.3596304 .1
· · · · · · · · · · · · · · ·
15 −941 903 1.91E+06 5.822351E−02 3.62E−03

965 832.4 6.250001E−02

Thus, interval-validated computation allows one to check the accuracy perma-
nently. This property is absent in the usual, traditional computations, but the
interval validated result may have abnormally large width, the enclosure being
thus of low practical value.

3. The interval (non-validated) execution of the example

Table 2

n [In]

0 .6321205
1 .3678795
2 .2642411

· · · · · ·
14 −797.5973
15 −11964.96

It may appear that the successful interval execution of the
example does not give an essential narrowing of the width of
the enclosure. This execution can also have a low accuracy.
The results of interval execution of the same example are
shown in Table 2. As before, the same program is used from
Table 1. To make the results non-validated ones, we remove
a majorization procedure from the computation. Specifically,
we set the constant C of the majorization equal to zero [2].

Therefore, we obtain degenerated intervals. Naturally, the same effect (in a quality
but without fail in a quantity) is produced by the point execution.
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4. The interval-validated modification of the example

By interval analogue of the recursive formula (4), we have computed enclosures
and confirmed computational instability of the process.

On the other hand, theoretical reasoning in the book [2] proves the boundness
of {In}: the inequality is obtained:

1
n + 1

< In−1 <
1
n

. (5)

The corresponding close intervals
[ 1
n + 2

, 1
n+1

]
present one more system of enclo-

sures. Using them, it is possible to stop cathastrophic raise of the width. Indeed,
the non-empty intersection of the interval enclosures is the interval enclosure too.
Thanks to this fact, we denote

[In] =
(
1− n[In−1]

)
∩
[

1
n + 2

,
1

n + 1

]
(6)

instead of (3a).
It seems (in the ideal model of interval computing [3]),

w([In]) ≤ w

([
1

n + 2
,

1
n + 1

])
=

1
n + 1

− 1
n + 2

=
1

(n + 1)(n + 2)
. (7)

Hence, we arrive at w(In) → 0.
Moreover, the relative width is infinitely small too:

w([In])
|In|

≤ w([In])
(n + 1)

≤ 1
(n + 2)

→ 0. (8)

Making use of the modified interval algorithmics, let us carry out one more
series of numerical experiments. Their program is formed on the basis of the above-
mentioned one. Also, we run the computations for the same n as in the preceding
section.

The results are contained in the columns 1, 4, 5 of Table 1, and this time the
width does not increase. Moreover, it tends to relatively small values.

Thus, modifying the interval approach enables us not only to inquire into the
accuracy issues, but to control the accuracy as well.

Probably, it is possible to obtain even more precise two-sided inequality for In.
The relations of this type are suitable as a basis for further modifications of the
algorithm for finding In.

5. The BPV example as the diverging iterative process

Sometimes, it may prove that checking out has confirmed that the point is of
bad quality of the outer algorithm by point or interval execution, either validated
or not.

Let us consider the BPV example as an iterative process, which correlates to
the subjects of the book [1]. Here, a divergence takes place. Note that from the
numerical stability viewpoint the other way is impossible.
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Conclusion

Our text is primarily intended for those who are interested in the scientific com-
putations, specifically, in their accuracy, and who teaches the interval computation
in high schools.
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