
INTERVAL MATHEMATICS AND INTERVAL CONSTRAINT PROGRAMMING

ICCM-2004 WORKSHOPS P. 289–302

A reliable curve tracing method

Dominique Michelucci, Dominique Faudot∗

Introduction

Curve tracing is a problem encountered in CAD during the calculation of in-
tersection between surfaces or the resolution of systems of equations by homotopy
or in linear programming with the interior method. The curve is defined by n− 1
independent equations of n real variables f(x) = 0 with f = (f1, . . . , fn) and
x = (x1, . . . , xn). Here only algebraic equations are considered. The curve is thus
smooth almost everywhere. Tracing is classically done by two methods:

M1: By piecewise linear approximation. For any simplex of Rn there is only
one affine function li = (x1, . . . , xn) which takes the same values as the function
fi = (x1, . . . , xn) at the n + 1 vertices (the hypersurface in Rn which equation
is fi = (x1, . . . , xn) = 0) the zero level set of which is a hyperplane inside the
simplex. The intersection between the n − 1 hyperplanes l1(x1, . . . , xn) = . . . =
ln−1(x1, . . . , xn) = 0 defines a line, which approaches the curve inside the simplex
when this line cuts the simplex. Knowing a cut simplex, one gradually follows then
the curve, from one simplex to another.

M2: By prediction and correction. Let a be a known regular point of the curve
and t a vector tangent to the curve in a. The method predicts at first that a point
pk = a + kt/‖t‖ is close to the curve and corrects this point by some variant of the
Newton method. In practice, the step of progression k is given empirically. Possible
heuristics are: one gives k a priori. If the Newton’s method converges in few stages
and if the tangent at the new point is not too distant from t, then k was probably
correct; otherwise one starts again with smaller k. We can however jump from a
branch of f(x) = 0 to another one. One secures oneself then by using small values
for k. This article proposes a reliable method to choose the step k.

An alternative of the second method considers the osculatory circle of the curve
at the point a to control the step k; this allows a better prediction but does not
guarantee absolutely against the risk to jump from a branch to another as opposed
to [7, 3].

Example. Let us consider the equation in R2 c1(x, y)c2(x, y) = 0 where c1 and
c2 are two circle equations. For a point a on c1, the osculatory circle will be c1 and
one will deduce from them a step k and a point pk = a + kt/‖t‖ independently of
c2. It is thus enough to place c2 judiciously (for example p ∈ c2, c2 tangent with
the line ap, through points a and p, and c1 ∩ c2 = ∅, so that the correction step
converges towards a point of c2 rather than of c1.

∗LE2I, Informatique, Université de Bourgogne, BP 47870, 21078 Dijon Cedex, FRANCE.
Emails: michelucci@u-bourgogne.fr; faudot@u-bourgogne.fr

290 D. Michelucci, D. Faudot

1. Notations and conventions

1.1. Compatible norms, upperbounds. One uses the sup norm for the vectors
‖x‖ = max

(
|x1|, . . . , |xn|

)
, xt is the transpose of x. The norm of the matrices ‖M‖

is sup ‖xM‖ for ‖x‖ = 1 and is here equal to maxn
j=1

∑n
i=1 |Mi,j | where Mi,j is the

element of line i column j. In other words, the norm of M is the greatest value
obtained by making in each column the sum of the absolute values. One will need
to compute an upper bound of the norm of a product of two matrices. One can
certainly carry out the product of two matrices but the following upper bound (U1)
requires only the product of a vector by a matrix

‖AB‖ ≤ ‖aB̂‖, where aj =
n∑

i=1

|Aij | and B̂ij = |Bij | (1)

e.g.∥∥∥∥(
−1 2

3 −4

) (
−5 −6

7 −8

) ∥∥∥∥ ≤ ∥∥∥∥(
|−1|+ |3| |2|+ |−4|

)(|−5| |−6|
|7| |−8|

)∥∥∥∥.

An upper bound (U2) of ‖AB‖ even faster and cruder is

‖AB‖ ≤ ‖A‖ · ‖B‖. (2)

One will need an upper bound of the sum of two matrices. One can carry out the
calculation of the sum but another upper bound is possible ‖A + B‖ ≤ ‖A‖+ ‖B‖.

The ball(a,R) is the set of points x such that ‖x− a‖ ≤ r. Such a ball is
in fact an hypercube of center a and half side r. The Jacobian of f(x) = 0 with

x = (x1, . . . , xn) and f = (f1, . . . , fm) is the matrix
∂f

∂x
. Let α be a multi index, |α|

is a notation for α1 + . . . + αn,
(k

α

)
for

k!
α1! . . . αn!

with k ∈ N , xα for xα1
1 . . . xαn

n ,

∂kf

∂xα
for

∂kf

∂xα1
1 . . . ∂xαn

n
with k = |α|.

Other authors use a dual convention and write Mx for the product of a vector
x by a matrix M , i. e. this dual convention regards x as a vector column. It thus
uses the dual norm of ours ‖M‖ = sup‖x‖=1 ‖Mx‖ = maxn

i=1

∑n
j=1 |Mij |. In the

same way, this convention considers a jacobian, which is the transpose of ours.

1.2. Naive Arithmetic of Intervals (IA). Naive IA [6] calculates on intervals
[v0, v1] where v0 ≤ v1 are two standard floating-point numbers. We are using the
usual rules of IA. The IA has for principal interest to give perfectly reliable results,
contrarily to floating-point arithmetic (FPA). It does not modify the theoretical
effectiveness of the methods: the elementary arithmetic operations on intervals are
carried out in constant time.

But IA over-estimates the width of the intervals and does not permit the com-
parison of two values with overlapping intervals. The IA is today performed by
software and is approximately 4 times slower than the standard FPA. One can
however hope that it will be soon available on all the arithmetic processors.

A reliable curve tracing method 291

IA is used in two very distinct ways:

– the intervals are sharp, at least initially. The intervals are then used only to
control the rounding errors of floating point arithmetic.

– the intervals are broad, even initially. The IA is then a tool for numerical
analysis by intervals. The amplitude of the intervals grows quickly during
calculations. We will use IA according to this second mode in section 6 and
elsewhere according to the first mode. An alternative was also proposed by
[2] using affine IA.

2. The principle of our method

The curve is defined by f(x) = 0 with x = (x1, . . . , xn) and

f(x) =
(
f1(x), . . . , fn−1(x)

)
= (0, . . . , 0).

The known point is a = (a1, . . . , an), a is a regular point: the rank (n−1) of
∂f

∂x
(a)

is maximal. The tangent in a is t = (t1 . . . tn) in other words t
∂f

∂x
(a) = 0. One

supposes moreover that ‖t‖ = max
(
|t1| . . . |tn|

)
= 1. To use the fixed-point theory,

it is first assumed that each point of the curve f(x) = 0 is solution of a system of
n unknown equations and n unknown variables.

Let sk(x) =
(
f(x), fn(x, k)

)
, where fn(x, k) = 0 is an additional equation,

parameterized by the real k, k being such that fn(a, 0) = 0 and measures the
progression along the curve. A natural choice for the additional equation fn(x, k) =
0 is fn(x, k) = (x− a− kt) · tt = t1(x1 − a1 − kt1) + . . . + tn(xn − an − ktn) = 0.

In other words, a is seen as the point of intersection between the curve f(x) = 0
and the hyperplane passing through a and normal with t; this hyperplane will be
translated by a vector kt to traverse the curve, close to a. The jacobian of the

system sk(x) = 0, independent of k, is s′ = s′k =
∂sk

∂x
=

(∂f

∂x
, t′

)
.

For a given value of k, the corresponding point of the curve, solution of sk(x) = 0
will be calculated by the quasi Newton iteration x(1) = a + kt, x(n+1) = QNkx(n)

where the quasi Newton function QN(x) is defined by QNk(x) = x−sk(x)
[
s′(a)

]−1

(note QNk(a) = a+kt). One could thus start from x(1) = a instead of x(1) = a+kt.
The larger k the better, for advancing quickly along the curve; but it is also

needed that the convergence of the correction step is guaranteed and fast. According
to the fixed-point theory, the iteration x(n+1) = QN(xn) starting from the initial
point x(1) converges if one can find a neighborhood (actually a ball) B containing
x(1) and satisfying the conditions C1 and C2 defined below.

C1. The contractivity condition: QN is contracting in the ball B, i. e. for any
couple of items x, y in B, ‖QN(x)−QN(y)‖ ≤ c‖x− y‖ where c < 1 is the factor
of contraction. One will even impose c ≤ 1/2 to ensure that QN converges quickly:
with each iteration, the distance to the solution is divided by at least 2. Since
‖QN(x)−QN(y)‖ = ‖QN(x)−QN(x+ (y−x))‖ ≤ ‖y − x‖maxz∈B(QN ′(z)) one
will impose that

292 D. Michelucci, D. Faudot

max
x∈B

(
‖QN ′(z)‖

)
=

∥∥QN ′(B)
∥∥ ≤ 1/2 (3)

(contractivity condition CC).

C2. Stability condition: the image of the ball B by QN QN(B) is such that
QN(B) ⊂ B. We will use in fact a condition stronger than C2, and thus sufficient
to guarantee C2, and which is more easily computable. Let us suppose that r is
known such that the ball B(a, r) satisfies the condition of contractivity C1. Then
a sufficient condition to satisfy C2 is ‖QNk(a)− a‖ ≤ r/2.

Sufficient condition (SC). Indeed by assumption x ∈ B = ball(a,R) ⇒ ‖x− a‖
≤ R and ‖QN ′(B)‖ ≤ 1/2 and ‖QNk(a)− a‖ ≤ R/2. Then

‖QNk(x)−a‖ ≤ ‖QNk(x)−QNk(a)‖+‖QNk(a)−a‖ ≤ 1
2
‖x−a‖+ R

2
≤ R

2
+

R

2
= R

that implies x ∈ B. However, the SC is equivalent to k ≤ R/2.

Really, by assumption ‖QNk(a)− a‖ ≤ R

2
. But QNk(a) = a + kt. Then

‖QNk(a)− a‖ = ‖kt‖ = |k| · ‖t‖ = |k| ≤ R

2
.

It is thus very simple to find k knowing R. It is enough to take k = R/2. This
choice is probably not optimal but this very simple value is guaranteed. The entire
problem is thus reduced to find R, such that in the ball B(a,R) the CC (3) is

guaranteed. QN ′(x) is the jacobian of QN(x): QN ′
k =

∂QN

∂x
= Id−s′(x)(s′(a)))−1

is independent of k and will be denoted by QN ′. Defining σ = x−a = (σ1, . . . , σn)
the jacobian of QNk is

QN ′(a + σ) = Id− s′(a + σ)
(
s′(a)

)−1 = s′(a)
(
s′(a)

)−1 − s′(a + σ)
(
s′(a)

)−1

= −
(
s′(a + σ)− s′(a)

)(
s′(a)

)−1

= −



∂f1

∂x1
(a+σ)− ∂f1

∂x1
(a) . . .

∂fn−1

∂x1
(a+σ)− ∂fn−1

∂x1
(a) 0

∂f1

∂x2
(a+σ)− ∂f1

∂x2
(a) . . .

∂fn−1

∂x2
(a+σ)− ∂fn−1

∂x2
(a) 0

. 0
∂f1

∂xn
(a+σ)− ∂f1

∂xn
(a) . . .

∂fn−1

∂xn
(a+σ)− ∂fn−1

∂xn
(a) 0


(s′(a))−1= −KM.

The CC also ensures that in the ball B(a,R) for given k, the system sk(x) = 0 has
at most one solution.

3. The naive method

The naive method calculates QN ′(a + σ) symbolically either by using the Tay-

lor’s formula, or by developing
∂fi

∂xj
(a + σ)− ∂fi

∂xj
(a) naively. Then it multiplies K

A reliable curve tracing method 293

by M , then it deduces for each column a polynomial in r ≥ ‖σ‖ which is an upper
bound of the sum of the absolute values of the elements in this column. The largest
upper bound is an upper bound of the norm of the matrix QN ′(a + σ). These n
polynomials pi(r) are null at 0, and increase with r: it is easy by dichotomy to

find ri such that pi(ri) =
1
2
: R = minn

i=1(ri). The course of the naive method is
illustrated on the following example.

3.1. Example:

n = 3, f(x) = (x3
1 − x3

2 + 3x1x
2
2 − 3x2

1x2 − x3, x
2
2 + x2

3 − 1) = (0, 0), (4)

a = (1, 1, 0); t = (1, 0, 0).

The auxiliary equation is f3(x, k) = x1 − 1− k. The jacobian of sk is

s′(k) =

 3x2
1 + 3x2

2 − 6x1x2 0 1
−3x2

1 − 3x2
2 + 6x1x2 2x2 0

−1 2x3 0

 . (5)

The inverse matrix of

s′(a) =

 0 0 1
0 2 0

−1 0 0

 is s′(a)−1 =

 0 0 −1
0 0.5 0
1 0 0

 .

3.2. Naive method on Example 3.1:

QN ′(a + σ) = −

 3σ2
1 + 3σ2

2 − 6σ1σ2 0 1
−3σ2

1 − 3σ2
2 + 6σ1σ2 2σ2 0

0 2σ3 0

 M

= −

 0 0 −3σ2
1 − 3σ2

2 + 6σ1σ2

0 σ2 3σ2
1 + 3σ2

2 − 6σ1σ2

0 σ3 0

 ,

∥∥QN ′(a + σ)
∥∥ ≤

∥∥∥∥∥∥
 0 0 |−3|r2 + |−3|r2 + |6|r2

0 r |3|r2 + |3|r2 + |−6|r2

0 r 0

∥∥∥∥∥∥ ,

where ‖σ‖ = max
(
|σ1|, |σ2|, |σ3|

)
≤ r and

∥∥QN ′(a + σ)
∥∥ ≤ ∥∥(0, 2r, 24r2)

∥∥.
In practice, a is not exactly on the curve, and M is not exactly the inverse

of s′(a). If floating intervals are used, calculations yield, very naturally, upper
bounding polynomials. The constant term will not be exactly null, but a small
number such as 10−9 or 10−6. This is not awkward, and allows on the contrary
to take into account and to control very naturally the numerical inaccuracy. The
most important is that the upper bounding polynomials are almost null at 0.

The main disadvantage of the naive method is its cost: its use, implicit or

explicit, of the Taylor development requires the calculation of all the terms
∂|α|fi(a)

∂xα

They are numerous, even when the terms fi are sparse. This method is inspired
by [1].

294 D. Michelucci, D. Faudot

4. Solution using Interval Arithmetic

Let p(σ) be one of the n(n− 1) polynomials
∂fi

∂xj
(a + σ)− ∂fi

∂xj
(a) of the matrix

K. We want to find an interval around p(σ) using [p−1 , p+
1]σ1 + . . . + [p−n , p+

n]σn

where p−i and p+
i are lower and upper bounds of

∂p

∂xi

(
x ∈ ball(a, r)

)
. We can use

other range methods but it is necessary that ‖σ‖ = 0 ⇒ p(σ) = 0. The intervals

[p−i , p+
i] for

∂p

∂xi
(x ∈ ball(a, r)) may be evaluated by a classical IA, for instance the

naive one or an affine one if the r value is known. The computation of r gives a
value of R, called v(r) because it is depending on r.

Suppose in Example 3.1 that r = 1, i. e.

x ∈ B = ball(a, 1) = ([0, 2], [0, 2], [−1, 1]).

Intervals around
∂f1

∂x1
(B):

∂f1

∂x1
(x) = 3x2

1 + 3x2
2 − 6x1x2 and

∂f1

∂x1
(a) = 0,

∂2f1

∂x2
1

(x) = 6x1 + 6x2 ⇒
∂2f1

∂x2
1

(B) ∈ [−12, 12];

∂2f1

∂x1x2
(x) = −6x1 + 6x2 ⇒

∂2f1

∂x1x2
(B) ∈ [−12, 12];

∂2f1

∂x1x3
(x) = 0 ⇒ ∂2f1

∂x1x3
(B) ∈ [0, 0].

Thus
∂f1

∂x1
(B) ∈ 0 + [−12, 12]σ1 + [−12, 12]σ2. Similarly for other derivatives. Fi-

nally, we obtain

QN ′(a + σ) = −

 [−12, 12]σ1 + [−12, 12]σ2 0 0
[−12, 12]σ1 + [−12, 12]σ2 [2, 2]σ2 0

0 [2, 2]σ3 0

 M

=

 0 0 [−12, 12]σ1 + [−12, 12]σ2

0 [1, 1]σ2 [−12, 12]σ1 + [−12, 12]σ2

0 [1, 1]σ3 0

 , (6)

∥∥QN ′(a + σ)
∥∥ ≤

∥∥∥∥∥∥
 0 0 24r

0 r 24r
0 r 0

∥∥∥∥∥∥ =
∥∥(0, 2r, 48r)

∥∥. (7)

The n computed polynomials in r have degree 1 and their constant term is
ideally null. Taking into account the numerical inaccuracy can make them non
null, but they remain of low magnitude, say 10−6. To find the value of r where
such a polynomial is equal to 1/2 is trivial.

By studying the ball (a, r = 1) we find v(1) = 1/96 = 0.0104166. As v(1) is
much smaller than 1, the value of r, one can think that one may find it beneficial

A reliable curve tracing method 295

to reduce the radius r of the studied ball; this will reduce the width of the intervals

of
∂2fi

∂xj∂xk
(B) thus will decrease the (upper bound of the) norm of QN ′ and will

make it possible to upper bound v(r).

Thus, if one starts again calculation with r = 0.25, one finds v(0.25) =
1
24

=

0.04166. While trying with r = 0.1, one would find v(0.1) =
1

2 · 4.8
= 0.104166.

Since this value of v(r) goes out of the studied ball, of radius r = 0.1, this value
is not safe, but however we can deduce that the value of R = r = 0.1 is indeed
correct.

The bounds of
∂fi

∂x1
for each function fi require the evaluation by the IA of

1
2
n(n+1) functions, that is to say O(n3) functions to evaluate to bound the elements

of K. Note that a derivative cannot have more monomials than the initial function.
When the intervals of the elements of K are calculated, several ways of upper
bounding ‖KM‖ and thus of calculating R, are possible.

We can calculate products KM . It costs O(n3) products between elements
of the matrices K and M, each product costing O(n) floating point operations,
which makes O(n4) floating point operations for the product by M (this estimate
is pessimistic since K is often sparse).

One can speed up this part, if a more pessimistic value v(r) is accepted, by
using U1 (6), or even U2 (7). This is detailed in the following section. Calculating
v(1) with U1 (6):

∥∥QN ′(a + σ)
∥∥ =

∥∥∥∥∥∥
 [−12, 12]σ1 + [−12, 12]σ2 0 0

[−12, 12]σ1 + [−12, 12]σ2 [2, 2]σ2 0
0 [2, 2]σ3 0

 M

∥∥∥∥∥∥ (8)

≤

∥∥∥∥∥∥(24σ1 + 24σ2, 2σ2 + 2σ3, 0)

 |0| |0| | − 1|
|0| |0.5| |0|
|1| |0| |0|

∥∥∥∥∥∥
=

∥∥(0, 2r, 48r)
∥∥ = 48r. (9)

Finally, we get R = 1/96; nothing is lost. The cost is O(n3) functions to
evaluate. The cost to go from equation (8) to (9) is O(n2) operations, the product
with M costs O(n3) operations.

Choosing r: v(r) is a decreasing function of x ∈ R+: v(0) = ∞ and v(r) is
decreasing with r. We want r such that R = min(r, v(r)) is maximum. In other
words, one wants r such that r = v(r): it is inevitably the sought optimum R.
The simplest is to use the dichotomy. We know r0 such that v(r0) > r0: r0 = 0 is
correct. One searches then r1 such that v(r1) ≤ r1:

r1 := 1; while (v(r1) < r1) do {r0 := r1; r1 := 2r1}.

To determine the interval containing R, rather than to start from [0, 1], one
could also start from intervals found in the preceding prediction. Then we use
dichotomy inside [r0, r1] until knowing r0 with a sufficient relative precision, for
example r

(n)
1 − r

(n)
0 < r

(n)
1 /10, we choose R = r

(n)
0 . A logarithmic number of

evaluations of v(r) is necessary to determine R.

296 D. Michelucci, D. Faudot

5. Quadratic systems

5.1. The interest. f is quadratic when the total degree of all the monomials of
fi is at most 2. This case is interesting because:

1. Any algebraic system can be reduced to a quadratic system, with the help
of the addition of a logarithmic number (using repeated squaring) of variables and
equations. For example, a monomial x3

1x2 will be replaced by the monomial y1y2

where y1 and y2 are two auxiliary variables, and by the two quadratic equations
y1 − x2

1 = 0 and y2 − x1x2 = 0.

2. In a quadratic system f(x) = 0 all
∂fi

∂xj
(x) are constant polynomials, possibly

null, and thus independent of the point a: they are calculable once and for all. The
matrix K is calculable once and for all, just as an upper bound of ‖K‖. More
precisely

Kij =
∂fj

∂xi
(a + σ)− ∂fj

∂xi
(a) =

n∑
k=1

∂2fj

∂xi∂xk
σk ⇒ ‖K‖ ≤ r‖(l1 . . . ln)‖ = r × l(f)

where r ≥ ‖σ‖ and

li =
n∑

j=1

n∑
k=1

∣∣∣∣ ∂2fj

∂xj∂xk

∣∣∣∣ =
n∑

j=1

∣∣∣∣∂2fi

∂x2
j

∣∣∣∣ + 2
n∑

1≤j<k≤n

∣∣∣∣ ∂2fi

∂xjxk

∣∣∣∣.
li is the “complexity” of fi and is 0 when fi(x) is first degree. l(f) = maxn

i=1(li) is
the complexity of f . The smallest is l, the largest is R. When l is null (in the case
of a linear system for example), R is infinite.

5.2. Computation of R. At least three ways of calculating R are possible:
1. If one applies the crudest U2, ‖QN ′‖ ≤ ‖K‖ · ‖M‖ with ‖K‖ ≤ l(f) × r

then ‖QN ′‖ ≤ 1
2
⇐ l(f)r‖M‖ ≤ 1

2
⇔ r ≤ R =

1
2‖M‖l(f)

and one obtains R

very quickly. The computing time of ‖M‖ is O(n2) and is negligible in front of the
calculation of M itself, which is O(n3), l(f) is a constant, calculated once and for
all, in O(n3)1.

2. If upper bound (6) is applied, it is necessary to multiply the vector

(l1r l1r . . . ln−1r 0)

by M̂ which is equivalent to multiply

(l1 l1 . . . ln−1 0)

by M̂ . O(n2) floating-point operations are required. The obtained value of R is at
least as good as with upper bound (7) and is often better.

3. Lastly, KM can explicitly be calculated. In the worst case, each term of K
(except the last column, which is null) is a linear combination of all σi and the prod-
uct KM requires O(n4) floating point operations. In practice, K is often sparse.
This method gives a value of R at least as good as with U1 (6), generally much
better. This method is the slowest of the three. These three ways of calculating R
also apply when IA is used. The costs are identical.

1when l(f) is zero, R is infinite.

A reliable curve tracing method 297

5.3. Example:

n = 2; f(x) = (x2
1 + x2

2 + x2
3 − 3, x2

1 + x2
2 + x2

3 − 2x1 − 2x2),

f ′(x) =

 2x1 2x1 − 2
2x2 2x2 − 2
2x3 2x3

 and

 2σ1 2σ1 0
2σ2 2σ2 0
2σ3 2σ3 0

 .

Then

‖K‖ =
∥∥(
|2σ1|+ |2σ2|+ |2σ3|, |2σ1|+ |2σ2|+ |2σ3|, 0

)∥∥ ⇒
‖K‖ ≤

∥∥(
6r, 6r, 0

)∥∥ = 6r where (6, 6, 0) = (l1, l2, 0).

Suppose that a = (1, 1, 1) then t = (1,−1, 0),

s′(a) =

 2 0 1
2 0 −1
2 2 0

 , M =

 0.25 0.25 0
−0.25 −0.25 0.5

0.5 −0.5 0

 .

First upper bound:

r ≤ R =
1

2‖M‖l(f)
=

1
2 · 1 · 6

= 0.083333.

Second upper bound:

‖QN ′‖ ≤ r
∥∥(l1, l2, 0)M̂

∥∥ =
∥∥(6r, 6r, 0)M̂

∥∥
= ‖(3r, 3r, 3r)‖ = 3r; 3r ≤ 1

2
⇔ r ≤ R =

1
2 · 3

= 0.166667.

Third upper bound:

‖QN ′‖ ≤ ‖KM‖ =

 2σ1 2σ1 0
2σ2 2σ2 0
2σ3 2σ3 0

 ≤

∥∥∥∥∥∥
 0 0 0

0 0 0
0 0 0

∥∥∥∥∥∥ = 0r,

0r ≤ 1
2
⇔ r ≤ R = ∞.

Ideally (without rounding errors due to floating point arithmetic), the method
detects that the curve is a straight line, i.e. R is infinite. In practice, with the use
of IA to control the rounding errors, ‖KM‖ will be found not null but very small,
for instance [0, 10−6]r which will give finally R = [5 · 10−5,∞] and R = 5 · 10−5.

6. Singular or quasi-singular points

The preceding method no longer applies in the presence of a singular point, or
of a quasi singular point, i. e. when the value found for R causes an underflow of
the floating-point arithmetic. How to solve, or avoid, this kind of problem?

The simplest solution is to consider the piecewise linear approximation (PLA)
of the curve for given parameter µ (i.e µ is the length of the sides of simplices
partitioning Rn as the real curve). The algebraic formulation is just a shortcut, a

298 D. Michelucci, D. Faudot

convenience to describe, in fact, its piecewise linear approximation. This principle
may be extended from a system of equations to a C.S.G. tree (a binary tree, which
nodes are boolean operations). The PLA (of a CSG tree or of a curve) has many
good properties:

1. The PLA is mathematically well defined.

2. The topology of the PLA is simple: no singular points.

3. PLA is calculable, and even quickly calculable.

4. The topology of the PLA may differ from that of the algebraic curve, but it
has the topology of an infinitesimal perturbation- and desingularized – of this
one.

5. Geometrically the PLA is close to the algebraic curve: it is close with a
precision of µ.

6. The PLA is piecewise linear: one can resort to exact rational arithmetic, to
ensure reliability and consistency of the built boundary representation (for
example lazy rational arithmetic).

7. The PLA is a priori enough for the needs of CAD/CAM.

8. The calculation of the PLA can be made perfectly reliable.

Conceptually, the M1 method is thus sufficient to advance in a reliable way
along the curve. However, if µ is chosen small to approach closely the curve, M1
becomes terribly slow, even in areas where the curve is very close to a line. Thus,
the presented method M2 remains interesting: it makes possible to advance quickly
in the calm areas. It is only in presence of a singularity or of quasi singularity,
when R is not significantly larger than µ that one resorts to the M1 method.

7. Taking into account rounding errors

Up to now it was supposed that a was exactly on the curve, i. e. f(a) = 0,
M = s′(a)−1. In fact with the numerical inaccuracy inherent to floating –point
arithmetic, a is only very close to the curve, and M is only close to s′(a)−1. More-
over the floating values calculated for f(a), s(a), s′(a) and so on, are approxima-
tions. There are three possible strategies (S1, S2, or S3).

S1: This casual approach is unaware of the problem completely and uses only
the usual floating-point arithmetic, hoping that all will occur well. It is probable
because the contractivity condition imposed for QN is strong. In this strategy, the
terms ideally null either are not calculated (which avoids a possible contradiction
between practice and theory), or are calculated but regarded as null because they
are too small, in short are ignored. In this strategy, the singularities or quasi
singularities on the curve are detected only when R is not sufficiently tall in front
of µ.

S2: The paranoiac approach considers that a, t, M , s(a) and s(x), s′(a), s′(x) are
intervals, which contain the exact value. The theory of the reliable preceding curve
tracing is not modified. This approach is simple and systematic; calculation by

A reliable curve tracing method 299

intervals guarantees the results to 100%; certainly the terms ideally null generally
cease being it, and there is no problem when they remain sufficiently small, and
make it possible to control the effect of the rounding errors. If ever they become too
large (for example 0 = r = ‖σ‖ that makes it possible to detect simply a singularity
or quasi singularity on the curve. Disadvantage: to ensure that the interval of a
contains the good value, one needs an additional test, which ensures us that an
interval for a contains one zero (simple) of an algebraic system: there already
exist such tests, which are provided by Krawckwicz–Moore operators or Segupta–
Hansel operators. Another disadvantage is that the IA over-estimates their width
largely, so that the convergent iterative methods converge much more slowly, or
even diverge. It is possible to find functions f such that f(x) converges for any x in
some domain D, but f(D) diverges when it is calculated by intervals (subdividing
D is a solution). It may be the same when calculating QNk(x(i)). One can think
that this problem will not arise, but a rigorous argument would be preferable.

S3: To consider that a, M , t are specific values (i. e. non-intervals), and are
approximations of the correct values, and to modify consequently the theory of the
curve tracing: knowing a point a near to the curve, to calculate how much one can
advance in a reliable way along the curve. This approach is certainly most painful,
the least generalizable, the least systematic, but it has the advantage of employing
iteration QN on points and not on intervals, and of avoiding the suspicion. The
following approach is developed:

The point a is not exactly on the curve. M is a matrix not exactly equal to
s′(a)−1 is not exactly such that tf ′(a) = 0. ‖t‖ = 1 remains true nevertheless (‖t‖
is the max norm). CC (3) is written now ‖QN ′(a + σ)‖ ≤ 1

2
. ‖QN ′(a + σ)‖ =

Id−s′(a+σ)M (where M ≈ s′(a)−1) = M−1M−s′(a+σ)M = (s′(a+σ)+E)M−
s′(a+σ)M (where M−1 = s′(a+σ)+E) = (s′(a)−s′(x)+E)M = KM+EM where
K is the usual matrix and EM = Id− s′(a)M . ‖QN ′(a + σ)‖ = ‖KM + EM‖ ≤
‖KM‖+ ‖EM‖ = ‖KM‖+ ‖Id− s′(a)M‖.

However, ‖Id− s′(a)M‖ is indeed upper bounded by a floating value up(‖Id−
s′(a)M‖) (where “up” is the upper bound) calculating Id− s′(a)M with naive IA.

To guarantee ‖QN ′(a + σ)‖ ≤ 1/2, ‖KM + EM‖ ≤ 1
2

is thus enough: If R is such

that ‖σ‖ ≤ R ⇒ ‖KM‖ ≤ 1
2

then to take account of the rounding errors, it is

enough to take ‖σ‖ ≤ R′ = R − up(‖Id − s′(a)M‖). Of course ‖Id − s′(a)M‖ is
generally negligible.

Note: it would be also possible to get an upper bound of ‖KM + Id − s′(a)M‖
directly (with IA) and without using an upper bound of ‖KM + Id − s′(a)M‖ ≤
‖KM‖+ ‖Id− s′(a)M‖.

Let us treat now the SC. By being unaware of the rounding errors, one saw that

SC is enough to ensure QN(B) ⊂ B and is equivalent to k ≤ R

2
. One takes again

the reasoning in the no ideal case. It is shown at first that QN(B) ⊂ B always
ensures SC by replacing R by R′.

300 D. Michelucci, D. Faudot

Suppose that x ∈ B = ball(a,R′) and ‖QN ′(B)‖ ≤ 1
2

and ‖QNk(a)− a‖ ≤ R′

2
.

Then∥∥QN(x)− a
∥∥ ≤ ∥∥QNk(x)−QNk(a)

∥∥ +
∥∥QNk(a)− a

∥∥ ≤ 1
2
‖x− a‖+

R′

2
;

∥∥QNk(x)− a
∥∥ ≤ R′

2
+

R′

2
= R′ ⇒ x ∈ B.

We want ‖QNk(a)− a‖ ≤ R′

2
. Let H be the first n− 1 rows of M , V the last row.

Then

QNk(a) = a− s(a)M = a− (f(a), −kttt)
(

H
V

)
= a− f(a)H + ktttV ;∥∥QNk(a)− a

∥∥ =
∥∥−f(a)H + (kttt)V

∥∥ ≤ ∥∥f(a)H
∥∥ + k‖tttV ‖,∥∥QNk(a)− a

∥∥ ≤ R′

2
⇐ k ≤ R′/2− ‖f(a)H‖

‖tttV ‖
.

We can effectively upper bound ‖tttV ‖ with up(‖tttV ‖) and ‖f(a)H‖ with
up(‖f(a)H‖) by calculating these expressions using IA. We obtain finally the fol-

lowing reliable value for k: k ≤ R′/2− up(‖f(a)H‖)
up(‖tttV ‖)

. In the ideal case (f(a) = 0,

ts′(a) = 0, M = s′(a)−1) the term ‖f(a)H‖ is zero and ‖tttV ‖ is equal to 1.
Really,

Id = s′(a)M = (f ′(a), tt)
(

H
V

)
= f ′(a)H + ttV.

Otherwise tf ′(a) = 0. Then tId = tf ′(a)H + tttV and ‖t‖ = 1. Then ‖tttV ‖ = 12.
Obviously, it is interesting that the floating values for a, t and M are as close

as possible to the ideal values. If the approximations are too bad, one obtains very
small values of k, or even negative values, which means that we cannot advance in
a reliable way any more, and that it is necessary to resort to the M1 method.

8. Distance from a point to the curve

A related question is as follows. Let p be a point. We want to evaluate the
distance between p and the curve. A solution resorts to affine arithmetic of intervals.
Let us suppose that we know a radius r of a hypercube around p (a good value
for r can be found by dichotomy as we saw before). We calculate f(p + rε) where
ε = (ε1, . . . , εn) by affine arithmetic intervals and we obtain n− 1 linear equations
0 = f(p + rε) = εA + ∆ where A is a n× (n + 1) matrix whose elements are sharp
intervals and ∆ a vector of n thick intervals. εA + ∆ = 0 is the equation of a thick
line, the thickness being given by the width of the intervals in the vector ∆. The
vector ε with smallest Euclidean norm satisfying εA + ∆ = 0 is −∆(AtA)−1At.
The interval point on the thick line and closest to p is thus p = −∆(AtA)−1At.

2Note: V = 1/(ttt).

A reliable curve tracing method 301

Left: An arc of curve, and a containing thick line. The center of the square is p and the
half side r. The affine IA makes it possible to calculate the thick line. Right: Finding the
point on the line x = (q1 + λµ1, q2 + λµ2, q3 + λµ3) which is of minimal norm. The lines
represent |x1|, |x2|, |x3|

8.1. Example: n = 3, f(x, y, z) = (x2 + y2 − 4, z), p = (1.4, 1.4, 0), r = 0.1.
Then

f(p + rε) = (ε1, ε2, ε3)

 0.28 0
0.28 0
0 0.1

 +
(
[−0.08,−0.06], [0, 0]

)
= (0, 0). (10)

The point p + ε closest to p (with Euclidean distance) is given by (ε1, ε2, ε3) =
−∆(AtA)−1At = ([−0.08,−0.06], [0, 0])(AAt)−1At.

Skipping tedious computations, the point of the curve nearest to p (in Euclidean
distance) is in the box ([1.4071, 1.4071], [1.4071, 1.4071], [0, 0]) which indeed con-
tains the exact solution (

√
2,
√

2, 0). These intervals prove that p is distant by more
than 0.01515 from the curve but less than 0.02021. Here the method could obtain
one lower bound (not null) distance to the curve. In the general case, the obtained
lower bound can be null. It suffices that f(p), calculated by intervals, contains
zero, or in an equivalent way that p is inside the thick line. The preceding method
extends naturally to calculation of the distance between one point and a surface, a
hypersurface, and so on, and of the distance between a point p and another simple
point zero of an algebraic system.

Which is the distance between p and the curve, for the max norm? The thick
line is expressed in the form x = q + λµ where q is a thick point, λ ∈ R is the
parameter, along the line, and µ the directing thick line vector. The sought distance
is then d = min ‖x‖ = min(max(|q1 +λµ1|, . . . , |qn +λµn|)) where x = q +λµ is the
only unknown. Each |qi+λµi| gives two lines y−(qi+λµi) = 0 and y+(qi+λµi) = 0
in the plane (λ, y). The sought value of d is the coordinate y of the lowest point
(i. e. of minimal y coordinate) of the convex described by y − (qi + λµi) ≥ 0 and
y +(qi +λµi) ≥ 0. It is a linear programming problem in 2d. There is a traditional
algorithm in O(n) to find this point. The thickness of the point q is easily taken
into account: one considers initially min(|qi|), then max(|qi|) to find one lower and
upper bounds of d.

This method is generalizable to the distance (always according to the norm
max) between one point and one surface (it is still a linear programming problem),
or a hypersurface.

302 D. Michelucci, D. Faudot

Conclusion

This paper has proposed a reliable prediction correction method for curve trac-
ing. Several ways of computing a safe step parameter were presented, and compared
on simple examples. A related question, computing a range of the distance between
a point and a curve/surface/hyper surface, was also treated.

Finally, the methods presented here are compatible with all kinds of IA: the
naive one, the centered one (to compute a range for f

(
xc±

ω

2

)
, the latter computes

f(xc) and f ′
(
xc±

ω

2

)
with the naive IA), the interval affine arithmetic of Figueiredo

and Stolfi [2], or the “Bernstein IA” used by Hu et al. [4], Garlof [5] (and others).
The presented method detects when the current points approaches a singularity
(or a almost quasi singularity, i. e. a singularity up to the finite accuracy of the
computer). In such a case, one may resort to another method, for instance PLA.

References

[1] Dedieu J.P., Yakoubsohn J.C. Two seminumerical algorithms for solving polynomial
systems / Technical report. – Labo “Approximation et Optimisation”, Univ. Paul
Sabatier, Toulouse, France, 1994.

[2] de Figueiredo L.H., Stolfi J. Adaptive enumeration of implicit surfaces with affine
arithmetic // Computer Graphics Forum. – 1996. – Vol. 15(5). – P. 287–296.

[3] Faux I.D., Pratt J.M. Computational geometry for design and manufacture. – Chich-
ester: Ellis Horwood, 1979.

[4] Chun-Yi Hu, Takashi Maekawa, Patrikalakis N.M., Xiuzi Ye. Robust interval algorithm
for surface intersections // Computer-aided Design. – 1997. – Vol. 29(9). – P. 617–627.

[5] Garloff J., Graf B. Solving strict polynomial inequalities by Bernstein expansion //
The Use of Symbolic Methods in Control System Analysis and Design / N. Munro,
Ed. – London: The Institution of Electrical Engineers (IEE), 1999. – P. 339–352.

[6] Baker R. Kearfott Rigorous Global Search: Continuous Problems. – Dordrecht: Kluwer
Academic Publisher, 1996.

[7] Luo R.C., Ma Y., Mac D.F. Allister Tracing tangential surface-surface intersections //
Symposium on Solid Modeling Foundations and CAD/CAM Applications. – 1995. –
P. 255–262.

[8] Neumaier A. Interval Methods for Systems of Equations Encyclopedia of Mathematics
and its Applications. 37. – Cambridge: Cambridge Univ. Press, 1990.

[9] Taubin G. An accurate algorithm for rasterizing algebraic curves // Proc. of the Second
Symposium on Solid Modeling and Applications (SMA’93). – 1993. – P. 221–230.

