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Preface 

At the core of many engineering problems is the solution of sets of equa­
tions and inequalities, and the optimization of cost functions. Unfortunately, 
except in special cases, such as when a set of equations is linear in its un­
knowns or when a convex cost function has to be minimized under convex 
constraints, the results obtained by conventional numerical methods are only 
local and cannot be guaranteed. This means, for example, that the actual 
global minimum of a cost function may not be reached, or that some global 
minimizers of this cost function may escape detection. By contrast, interval 
analysis makes it possible to obtain guaranteed approximations of the set of 
all the actual solutions of the problem being considered. This, together with 
the lack of books presenting interval techniques in such a way that they could 
become part of any engineering numerical tool kit, motivated the writing of 
this book. 

The adventure started in 1991 with the preparation by Luc Jaulin of his 
PhD thesis, under Eric Walter's supervision. It continued with their joint 
supervision of Olivier Didrit's and Michel Kieffer's PhD theses. More than 
two years ago, when we presented our book project to Springer, we naively 
thought that redaction would be a simple matter, given what had already 
been achieved ... Actually, this book is the result of fierce negotiations between 
its authors about what should be said, and how! At times, we feared that 
we might never end up with an actual book, but we feel that the result was 
worth the struggle. 

There were at least two ideas on which we easily agreed, though. First, 
the book should be as simple and understandable as possible, which is why 
there are so many illustrations and examples. Secondly, readers willing to 
experiment with interval analysis on their own applications should be given 
the power to do so. 

Many people contributed to our conversion to interval analysis, and it is 
impossible to quote all of them, but we would like at least to thank Vladik 
Kreinovich for all the energy that he puts into the Interval Computations 
WEB site and for all that we learned there. 

Special thanks are due to Michel Petitot for his help in exploring the mys­
teries of ADA and the Stewart-Gough platform, to Dominique Meizel for in­
troducing us to robot localization and tracking, to Olaf Kniippel and Siegfried 



VI 

M. Rump for making PROFIL/BIAS and INTLAB available, to Isabelle Braems, 
Martine Ceberio, Ramon Moore, Stefan Ratschan and Nathalie Revol for 
their constructive remarks when reading earlier versions of the manuscript, 
and to our editorial assistant Oliver Jackson, whose friendly enquiries were 
instrumental in the release of this book this millennium. 

We would also like to express our gratitude to Guy Demoment, head of 
the Labomtoire des Signaux et Systemes and to Jean-Louis Ferrier, head of 
the Labomtoire d'I ngenierie des Syst(;mes A utomatises for their support and 
the way they managed to shield us from the perturbations of the outside 
world. 

The French Centre National de la Recherche Scientifique provided us with 
ideal working conditions, and partial support by INTAS is also gratefully 
acknowledged. 
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Notation 

The following tables describe the main typographic conventions and symbols 
to be used. 

Punctual quantities 

x 

x* 

i; 

x 

o 
1 

X 

o,onxm 
I,In 

Im(s) 

Re(s) 

punctual scalar 

actual value of an uncertain variable x 

prior value of an uncertain variable x 

posterior value of an uncertain variable x 

punctual column vector 

punctual row vector 

vector of zeros 

vector of ones 

punctual matrix 

matrix of zeros, (n x m) matrix of zeros 

identity matrix, (n x n) identity matrix 

imaginary part of s 

real part of s 



XIV Notation 

Sets 

o empty set 

§ set 

N set of all positive integers 

Z set of all integers 

lR set of all real numbers 

lllR set of all interval real numbers 

C set of all complex numbers 

C- set of all complex numbers 

with a strictly negative real part 

lffi set of all Boolean numbers 

lllffi set of all interval Boolean numbers 

8§ boundary of § 

[§] interval hull of § 

§ outer approximation of § 

£:& inner approximation of § 

1: list, stack, queue, tree or graph 

Intervals 

[x] = [;f,Y] 

[x] = [~,x] 

[X] = [X,X] 
[Xi] = ([X])i 

[Xij] = ([X])ij 
lb( [xl) 

ub([xl) 

w ([xl) 

mid([x]) 

interval scalar 

interval vector (or box) 

interval matrix 

ith entry of [x] 

entry of [X] at ith row and jth column 

lower bound of [x] 
upper bound of [x] 
width of [x] 

centre of [x] 



Other symbols 

Functions 

equal by definition 

assignment operator 

universal quantifier (Jar all) 

existential quantifier (there exists) 

logical complementation 

logical AND 

logical OR 

Cartesian product of A and lB 

{x I (x E A) !\ (x It' lB)} 

interval union of A and lB, equal to [A U lB] 

Notation xv 

Functions are denoted with the same typographical convention as the ele­
ments of their image spaces, thus [f] (.) is a scalar interval function and [f] (.) 
a vector interval function. 

If f(.) is a once-differentiable function from lRnx to lRny , then its Jacobian 
matrix at x is 

8fny (x) ... 8fny (x) 
8Xl 8xnx 

If f (.) is a once-differentiable function from lRnx to lR, then its gradient at x 
is 

( 
!!L(x) ) 8Xl 

gf(x) " 'aJ (x) . 

8xnx 

If f (.) is twice differentiable, then its Hessian matrix at x is the (symmetric) 
Jacobian matrix associated with its gradient, i.e., 



XVI Notation 

Algorithms 

Algorithms are described in a pseudo-code allowing the usual mathematical 
notation. The most important arguments are listed after the NAME of the 
algorithm as input arguments (in:), output arguments (out:) or input-output 
arguments (inout:). To facilitate reading, we take the liberty to omit some 
of them, such as inclusion functions, gradients, Hessian matrices. .. Blocks 
of statements are indicated by indentation. Any return statement causes an 
immediate return from the current algorithm. Return statements at the end 
of the algorithms are implicit. 

For details about the implementation of these algorithms, see Chapter 11, 
where C++ code is set in Typewriter. 
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1. Introduction 

This book is about guaranteed numerical methods for approximating sets, 
and their application to engineering. Guaranteed means here that outer (and 
sometimes inner) approximations of the sets of interest are obtained, which 
can, at least in principle, be made as precise as desired. It thus becomes 
possible to achieve tasks often thought to be out of the reach of numerical 
methods, such as finding all solutions of sets of non-linear equations and 
inequalities or all global optimizers of possibly multi-modal criteria. 

The figure on the cover illustrates this idea. It describes a question mark 
defined by a series of inequalities connected by logical operators. The prior 
space of interest has been partitioned into three sets of rectangles (two­
dimensional versions of what we shall call boxes). The first one, in red, con­
sists of rectangles proved to belong to the question mark. The second one, in 
blue, is made of rectangles proved to have an empty intersection with it. The 
last one, in yellow, contains rectangles for which nothing could be proved. 
The surface of the yellow region could easily be decreased, at the cost of 
more intensive computation. 

The main tool to be used is interval analysis, based upon the very simple 
idea of enclosing real numbers in intervals and real vectors in boxes. This first 
made it possible to obtain guaranteed results on computers by direct transpo­
sition to interval variables of classical numerical algorithms usually operating 
on floating-point numbers. More recently, interval analysis also allowed the 
derivation of algorithms specifically dedicated to dealing with sets, with no 
real counterpart. This made it possible to use numerical methods to prove 
mathematical statements about sets. Algorithms based on interval analysis 
thus compete with those based on computer algebra, with the advantage that 
they can deal with more general classes of problems and that even steps that 
can only be solved numerically (such as finding the roots of a high-degree 
polynomial equation) can nevertheless be solved in a guaranteed way. Note 
that the usual numerical methods based on Monte-Carlo sampling or on sys­
tematic gridding could not be used to prove even such simple properties as 
the emptiness or disconnected nature of a set. 

L. Jaulin et al., Applied Interval Analysis
© Springer-Verlag London 2001



4 1. Introduction 

1.1 What Are the Key Concepts? 

Some of the problems treated are still deemed unsolvable by many, so why 
would interval analysis allow one to solve them? A short answer, to be sub­
stantiated by this book, is that interval analysis allows guaranteed conclusions 
to be reached about the properties of boxes in search space after a finite num­
ber of operations, although the vectors in each of these boxes are not even 
denumerable. This is achieved by wrapping the sets of interest into boxes or 
unions of boxes upon which computations can be conducted more easily than 
upon the original sets. 

Consider a box [xl of lRn , a function f from lRn to lR and a subset § of 
lRn defined by a series of constraints connected by logical operators such as 
AND or OR. The question mark on the cover is a two-dimensional example of 
such a set §. Interval analysis makes it possible to implement three essential 
operations. The first one is computing an interval that contains the image 
of [xl by f. The key to this operation, which is a direct consequence of the 
properties of interval calculus, is the notion of inclusion function. The second 
operation is testing whether [xl belongs to §, or more precisely whether [xl c § 

or whether [xl n § = 0. For this purpose, the notion of inclusion test will be 
introduced. The third operation is the contraction of [xl with respect to §, 

i.e., the replacement of [xl by a smaller box [z], such that [xl n § = [zl n §. 

If [zl turns out to be empty and § defines the feasibility set for the solution 
of some problem, then [xl can be eliminated from the list of boxes that may 
contain this solution. 

When no conclusion can be reached about a given box, this box can 
be bisected into subboxes, and each of these can be studied in turn. This 
corresponds to branch-and-bound (or branch-and-prune) algorithms, whose 
main drawback is their exponential complexity in the number of interval 
variables. Contractors can be employed to decrease (sometimes eliminate) 
the need for splitting boxes into subboxes, thereby playing an essential role 
in the struggle against the curse of dimensionality. 

These concepts and operations are at the core of the main algorithms to be 
considered, and any other mathematical theory that would allow their imple­
mentation could be substituted for interval analysis. Ellipsoids, for instance, 
have also been used for guaranteed computation on sets. Interval analysis, 
however, can be employed over a much wider class of functions f and con­
straints defining §. Moreover, this can be done in such a way that rounding 
errors due to the inaccurate representation of real numbers on computers are 
taken into account to guarantee the results provided. 

1.2 How Did the Story Start? 

Moore completed his doctorate on the use of intervals to analyze and con­
trol numerical errors in computers in 1962. In 1966, he published his first 
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book Interval Analysis (Moore, 1966), which remains a reference to this day. 
During the same period, Hansen studied interval manipulation in linear al­
gebra (Hansen, 1965), and a group of German researchers including Alefeld, 
Krawczyk and Nickel developed many aspects of computer implementation 
(Nickel, 1966). Interval analysis is thus a child of many fathers. 

During the first twenty years, the spreading of the interval methodology 
remained relatively confined to the periphery of the initial seeds, notably in 
Germany within Karlsruhe University (Kulisch and Miranker, 1981). Among 
the new adepts who brought important advances, one may quote Neumaier 
(1985) on the solution of sets of linear and non-linear equations, and Ratschek 
and Rokne (1984) and Kearfott (1989a) on optimization. 

During the 1990s, interval analysis has recruited a larger community. It 
now has its own journal Interval Computations, created in 1991 and renamed 
Reliable Computing in 1995, and several regular international conferences. 
References to thousands of papers can be found at the WEB site 

http://liinwww.ira.uka.de/bibliography/ 
?query=interval&case=off&partial=on 

The reader is also advised to visit the very active site 

http://www.cs.utep.edu/interval-comp/main.html 

entirely dedicated to interval analysis. 

1.3 What About Complexity? 

Interval algorithms will always take longer than their real counterparts when 
such counterparts exist. Sometimes, it is necessary to split intervals into 
subintervals that may require vast quantities of memory to be stored, which 
soon leads to the curse of dimensionality. The increase factors in time and 
memory required vary considerably from one application to another. The ex­
amples treated in Chapters 6 to 8 should convince the reader that complexity 
is not prohibitive for quite a number of problems of practical interest. These 
problems have been treated over a period of about a decade, on a variety of 
personal computers, and by programs written in PASCAL, ADA and C++. 
We did not find it worthwhile to process all of them again for the sole bene­
fit of giving unified computing times, and chose instead to indicate times as 
measured on the computers operating when the examples were treated. The 
reader may thus rest assured that the times indicated are pessimistic - and 
sometimes very pessimistic - upper bounds of what can be achieved with 
present-day personal computers. 
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1.4 How is the Book Organized? 

Part II is devoted to basic tools. Every effort has been made to present 
them as simply as possible, in a concrete and readily applicable way. Some 
of the techniques reported appear in book format for the first time. Chap­
ter 2 recalls a few simple notions of set theory that form the foundations 
of the methodology. It then presents the main concepts of interval analy­
sis, including the very important notions of inclusion functions and inclusion 
tests. Chapter 3 is about subpavings, i.e., sets of non-overlapping boxes to 
be used to approximate compact sets. The few notions of topology needed to 
quantify the distance between subpavings and compact sets are recalled. The 
representation of a useful class of subpavings by binary trees is explained, 
and computation on subpavings is applied to two operations of fundamen­
tal importance, namely set inversion and direct image evaluation. Chapter 4 
presents contractors, i. e., operators used to decrease the sizes of the domains 
on which variables may be allowed to vary if they are to satisfy a given set 
of constraints. Contractors have already been mentioned as playing a fun­
damental role in the struggle against the curse of dimensionality. Chapter 5 
describes problem solvers. Contractors alone cannot solve all problems of 
interest and one must sometimes resort to the bisection of boxes to get bet­
ter approximations of solution sets by subpavings. The problems considered 
include solving sets of non-linear equations or inequalities, and optimizing 
multi-modal and minimax criteria. 

The ability of the tools of Part II to solve non-trivial engineering prob­
lems is demonstrated in Part III. Sufficient details are provided on each topic 
to allow readers with other applications in mind to grasp its significance. 
Chapter 6 is about estimation, i.e., the use of experimental data to derive in­
formation on the numerical value of some uncertain variables, which may be 
assumed constant (parameter identification) or time-varying (state estima­
tion or parameter tracking). Estimation is performed either by optimizing a 
cost function (this is the case, for instance, of least-square estimation), or by 
looking for all values of the vector of uncertain quantities of interest that are 
consistent with the data up to prior bounds on the acceptable errors. In both 
cases, interval analysis allows guaranteed results to be obtained. Chapter 7 
deals with two basic problems of robust control. The first one is the analysis 
of the robustness of a given control system to uncertainty in the model of 
the process to be controlled. The second one, more complicated, is the design 
of a controller achieving a satisfactory level of performance in the presence 
of uncertainty. Chapter 8 addresses three difficult problems of robotics. The 
first one is the evaluation of all possible configurations of a parallel robot, 
known as a Stewart-Gough platform, given the lengths of its limbs, a now 
classical benchmark in computer algebra. The second problem is the plan­
ning of a collision-free path in an environment cluttered with obstacles. The 
last one is the localization and tracking of a vehicle from on-board distance 
measurements in a partially known environment. 
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An in-depth treatment of implementation issues in Part IV facilitates the 
understanding and use of freely available software that makes interval com­
putation about as simple as computation with floating-point numbers. Chap­
ter 9 presents automatic differentiation, a numerical tool that can be used 
to obtain guaranteed estimates of the derivatives of functions with respect 
to their arguments, as needed by some of the algorithms described earlier. 
Chapter 10 describes the facilities offered by the IEEE-754 standard for bi­
nary floating-point arithmetic, adhered to by most present-day computers, 
and its limitations. Pointers to readily available software dedicated to inter­
val computation are also provided. In Chapter 11, readers are given the basic 
information needed to build their own C++ interval libraries or to use the 
PROFIL/BIAS library. The implementation of the main algorithms described 
in the book and their application to illustrative examples is considered in 
detail through exercises. The source code corresponding to the solutions of 
all these exercises can be downloaded from the WEB site 

http://www.lss.supelec.fr/books/intervals 



Part II 

Tools 



2. Interval Analysis 

2.1 Introduction 

Before using interval analysis as a basic tool in the following chapters, we shall 
now introduce its main concepts. Section 2.2 recalls fundamental notions on 
set operators, set functions and set calculus. Section 2.3 then presents basic 
notions of interval analysis. Section 2.4 is dedicated to the important notion 
of inclusion function. Finally, Section 2.5 deals with the extension to intervals 
of logical tests that are almost invariably present in the algorithms of interest 
to us. 

2.2 Operations on Sets 

Interval computation is a special case of computation on sets, and set theory 
provides the foundations for interval analysis. The reader interested only in 
interval computation may skip this section and go directly to Section 2.3. 

The operations on sets fall into two categories. The first one, considered 
in Section 2.2.1, consists of operations that have a meaning only in a set­
theoretic context (such as union, intersection, Cartesian product ... ). The 
second one, considered in Section 2.2.2, consists of the extension to sets of 
operations that are already defined for numbers (or vectors). 

2.2.1 Purely set-theoretic operations 

Consider two sets X and Y. Their intersection is 

X n Y £ {x I x E X and x E Y}, (2.1) 

and their union is 

Xu Y £ {x I x E X or x E Y}. (2.2) 

X deprived of Y is defined by 

X \ Y £ {x I x E X and x t/:- Y}. (2.3) 

The Cartesian product of X and Y is 

L. Jaulin et al., Applied Interval Analysis
© Springer-Verlag London 2001
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x X Y ~ {(x, y) I x E X and y E Y}. (2.4) 

If Z = X x Y, then the projection of a subset Zl of Z onto X (with respect 
to Y) is defined as 

pro}" (ZI) ~ {x E X I 3y E Y such that (x, y) E Zl}. 

These operations are illustrated by Figure 2.1. 

Y 
XuY 

XxV 

Fig. 2.1. Operations on sets 

The inclusion of X in Y is defined by 

X c Y -i=? \Ix E X, x E Y, 

and the equality of X and Y by 

X = Y -i=? X C Y and Y c X. 

2.2.2 Extended operations 

(2.5) 

(2.6) 

Consider two sets X and Y and a function f : X ---+ Y. If Xl C X, the direct 
image of Xl by f is 

f (XI) ~ {f(x) I x E XI}. 

If Y 1 C Y, the reciprocal image of Y 1 by f is 

f- 1 (Y1 ) ~ {x E X I f(x) E Y1}. 

If 0 denotes the empty set, then the previous definitions imply that 

(2.7) 

(2.8) 
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1 (0) = r l (0) = 0. (2.9) 

It is trivial to show that if Xl and X2 are subsets of X and if Y 1 and Y 2 
are subsets of Y, then 

1 (Xl n X2 ) c 1 (Xl) n 1 (X2 ) , 

1 (Xl U X2 ) = 1 (Xl) U 1 (X2 ) , 

r l (Yl n Y2 ) = r l (Yl ) n r l (Y2 ) , 

1-1 (Yl U Y2) = 1-1 (Yl) UrI (Y2) , 
1 (r l (Y)) C Y, 

1-1 (j (X)) =:> X, 

Xl C X2 =? 1 (XI) C 1 (X2 ) , 

Yl C Y2 =? r l (Yl ) C r l (Y2 ) , 

Xc Y l X Y2 =? Xc projY1 (X) x projY2 (X). 

(2.10) 

In the same manner, it is possible to extend operations on numbers (or vec­
tors) to operations on sets. Denote by P(X) the power set of X, i.e., the set 
of all subsets of X. Let ° be a binary operator from X x Y to Z. It can be 
extended as a set operator as follows: 

Xl 0 Yl ~ {Xl 0 Yl I Xl E Xl, Yl E YI}, (2.11) 

where ° is now an operator from P (X x Y) to P (Z). For instance, if Xl and 
Y 1 are subsets of ]Rn, then 

Xl + Y l = {x + y I x E Xl, Y E Y l }, 

Xl - Y l = {x - y I x E Xl, Y E Y l }. 

(2.12) 

(2.13) 

Note that the set Xl - Xl = {X - y I x E Xl, Y E Xl} should not be confused 
with the set {x - x I x E Xl} = {o}. 

When the operator ° applies to an element Xl of X together with a subset 
Yl of Y, Xl is cast into the singleton {xI}, so 

Xl 0 Yl ~ {Xl}O Yl = {Xl 0Yl I Yl E Yl }. (2.14) 

For instance, if []) is the disk of ]R2 with centre c and radius 4, then 3 * []) is 
the disk of]R2 with centre 3c and radius 12. If Y l is also a singleton {Yl}, 
then 

Xl 0 Yl = {Xl} ° {Yl} = {Xl ° Yl}, (2.15) 

and the usual rules of ° for punctual arguments apply. 

2.2.3 Properties of set operators 

Some properties of operators acting on numbers extend to their set counter­
parts. Consider, as an illustration, a set X equipped with the binary opera­
tor o. Assume that X is closed with respect to ° (i.e., if X and Y belong to X, 
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then x 0 y belongs to X). Assume also that 0 has been extended to P(X) as 
described in the previous section. Some properties true for (X, 0) remain true 
for (P(X),o). For instance, if 0 is commutative for X, it is also commutative 
for P(X), i.e., 

(\lx1 EX, \lx2 E X, Xl 0 x2 = x2 0 Xl) 

=} (\!Xl E P(X), \lX2 E P(X),X1 oX2 = X2 o XI) . 

If 0 is associative for X, it is also associative for P(X), i.e., 

(\I(X1,X2,X3) EX3,X10(X20X3) = (X10X2)OX3) 

(2.16) 

=} (\I (X1,X2,X3) E (p(X))3,X10(X20X3) = (X1 0X2)OX3). 

(2.17) 

If 0 admits a unit element (denoted by 0) in X, then it also admits a unit 
element in P(X), which is the singleton {O}. 

On the other hand, some properties true for (X, 0) may become false 
for (P(X),o). For instance, if each element X of (X,o) admits a symmetric 
element this is no longer true in (P(X),o). We only have 

(\lx1 EX, :..JY1 E X I Xl 0 Y1 = 0) 

=} (\!Xl E P(X), :..JY1 E P(X) I Xl 0 Y 1 OJ 0). (2.18) 

Thus, if (X,o) is a group, (P(X),o) is only a monoid. 
It is not our purpose here to give an exhaustive view of the extensions of 

operators on numbers to sets, but just to stress that special care should be 
exercised when dealing with set arithmetic. For instance, if Xl is a subset of 
a group (X, +), an expression such as 

(2.19) 

should not be interpreted as 

(2.20) 

but as 

(2.21 ) 

see (2.13). To avoid such confusions, the use of algebraic manipulations on 
sets will be limited as much as possible in this book. 

The following theorem will have important consequences in the context 
of interval computation. 

Theorem 2.1 Consider the function 

X(I) x ... x X(n) ----+ Y 
f: 

(X1, ... ,Xn ) I-+y 
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for which a formal expression involving operators and functions is available. 
Let IF(Xl"" ,Xn) be a function from P(X(l)) x ... x P(X(n)) to P(1l). As­
sume that IF (X 1, ... , Xn) has the same formal expression as f (X 1, ... , Xn). 
Then 

(2.22) 

where 

f(X l , ... ,Xn) = {f (Xl, ... ,Xn ) I Xl E Xl, ... ,Xn E X n }. 

Moreover, if each Xi occurs at most once in the formal expression of f, then 

(2.23) 

• 
A proof of Theorem 2.1 in the case where all functions involved in the 

formal expression of f are continuous and where the sets Xi are closed inter­
vals may be found in Moore (1979). The extension to more general sets (as 
presented in Theorem 2.1) is a direct consequence of the propagation theo­
rem (Jaulin, Kieffer, Braems and Walter, 2001), the principle of which will 
be recalled in Section 6.4.4, page 174. 

In general, unfortunately, IF(Xl , ... , Xn) is only an outer approximation of 
f(X l , ... ,Xn), because of multiple occurrences of variables in the formal ex­
pression of f. Set computation is thus pessimistic, because of the dependency 
effect illustrated by the following example. 

Example 2.1 Consider the function f: JR?2 ----+ JR?, f (Xl,X2) = Xl + X2 - Xl. 
Then 

and 

f(X l , X2) = {Xl + X2 - Xl I Xl E Xl, X2 E X2} 

= {X2 I X2 E X 2 } = X 2 , 

IF(Xl' X2) = Xl + X2 - Xl 

= {Xl + X2 - X3 I Xl E Xl, X2 E X2, X3 E Xd· 

(2.24) 

(2.25) 

It is clear that f(X l , X2) C IF(Xl' X2)' The dependency between Xl and X3 

(Tl = X3) has been forgotten in (2.25), thus adding one degree of freedom in 
the elaboration of the set IF(Xl' X2); hence the pessimism. • 

Note that multiple occurrences of variables associated to singletons do 
not cause pessimism. 

2.2.4 Wrappers 

Consider a set X and a set [X of subsets of X. [X is a set of wrappers for X 
if X and each singleton of X belong to [X and if [X is closed by intersection 
(i.e., if Xl E [X and X2 E [X, then Xl n X2 E [X). The empty set 0 must 
thus belong to [X, unless X is a singleton. 



16 2. Interval Analysis 

Example 2.2 A set of wrappers for X = {a, b, c, d} is 

lIX = {0, a, b, c, {a, b} , { a, d} , {a, b, c, d} } . (2.26) 

• 
Let Xl be a subset of Xi the smallest wrapper [Xl] of Xl is the smallest 
element of lIX containing Xl: 

(2.27) 

Example 2.3 The set P(X) of all subsets of X is a set of wrappers for X. If 
Xl is a subset of X, then [Xl] = Xl. • 

Example 2.4 When X = m;.n, the set lIX of all convex sets of m;.n is a set of 
wrappers for X. [Xl] is then the convex hull of Xl. • 

In practice, wrappers should be simple enough to allow the computation 
of outer approximations of sets. The wrappers to be considered in this book 
are intervals of m;., axis-aligned boxes of m;.n, subsets of the Boolean set {true, 
false} and unions of intervals or boxes. Other types of wrapper could be 
used, such as parallelotopes, zonotopes, convex sets or unions of such sets. 
Although they are not closed with respect to intersection, ellipsoids can also 
be used (Milanese et al., 1996). 

Let 0 be a binary operator from X x Y to Z. Let lIX, lIY and lIZ be sets 
of wrappers for X, Y and Z. The operator 0 can be extended to these sets of 
wrappers as follows. If Xl E lIX and Y 1 E lIY, then 

(2.28) 

where the wrapping operator [.] on the right-hand side is defined as in (2.27). 
Because of the definition of Xl 0 Y l given in (2.11), 

(2.29) 

Consider two sets X and Y, a function f : X ----+ Y, and two sets of wrappers 
lIX and lIY for X and Y respectively. If Xl E lIX, then f can be extended to 
wrappers as 

(2.30) 

Again, 

[f] (XI) ~ f (XI) . (2.31 ) 

Consider three sets X, Y, Z, their sets of wrappers lIX, lIY, lIZ and three 
functions f : X ----+ Y, g : Y ----+ Z, h = go f (where 0 denotes the composition 
operator). Then, g(f (Xl)) = h (XI), but one can only write that 

(2.32) 

This is known as the wrapping effect, illustrated by Figure 2.2 when the 
wrappers are convex sets of m;.2. 
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(a) (c) 

\ 
(b) 

Fig. 2.2. Wrapping effect when the wrappers are the convex sets of ]R2; (a) Xl is 
convex and thus a wrapper; (b) f (Xl), in dark grey, is not convex; its convex hull is 
the wrapper [f] (Xl); (c) since f (Xl) c [f] (Xl), we have g (f (Xl)) c g ([f] (Xl)) c 
[g] ([f] (Xl)); therefore, [g] ([f] (Xl)) is a convex set that contains the convex hull 
[h] (Xl) of g (f (Xl)); the undesirable points of [g] ([f] (Xl)) that are outside [h] (Xl) 
are a direct consequence of the wrapping effect 

As the dependency effect, the wrapping effect introduces pessimism when 
computing with wrappers. Some properties that held true for set computation 
are thus no longer true for computation with wrappers. This is the case for 
Theorem 2.1; when wrappers are used, the inclusion property (2.22) is still 
satisfied, but does not necessarily transform into the equality (2.23) when 
each input variable occurs at most once in the formal expression of f. 

Remark 2.1 In this book, computation will be with wrappers and not with 
generic sets. When this creates no ambiguity, Xl [<>]Y I will be shortened into 
Xl <>Y I . • 

2.3 Interval Analysis 

In interval analysis, the wrappers to be used are intervals when dealing with 
lR and axis-aligned boxes when dealing with lRn. Using the concepts of set 
computation recalled in Section 2.2, we shall now present interval computa­
tion. 
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2.3.1 Intervals 

An interval real [x] is a connected subset of 1Ft Even when the interval is not 
closed, we shall keep to the notation [x]. When no confusion may arise, [x] 
will often merely be called an interval. Whether the empty set 0 should be 
considered as an interval is still a subject of discussion. We choose to answer 
positively, if only to ensure that the set of intervals is closed with respect 
to intersection, and also because 0 represents the absence of solution of a 
problem. The lower bound Ib([x]) of an interval [x], also denoted by x., is 
defined as 

x. = Ib([x]) ~ sup{a E JR;. U {-oo, oo} I \Ix E [x], a:::;; x}. (2.33) 

Its upper bound ub([x]), also denoted by x, is defined as 

x = ub([x] ~ inf{b E JR;. U { -oo,oo} I \Ix E [x], x :::;; b}. (2.34) 

Thus, x. is the largest number on the left of [x] and x is the smallest number on 
its right. For instance if [x] = ]-3,7] then x. = -3 and x = 7; if [x] =]-00, oo[ 
then x. = -00 and x = 00. The width of any non-empty interval [x] is 

w([x]) ~ x-x., (2.35) 

so w(]3, ooD = 00. The midpoint (or centre) of any bounded and non-empty 
interval [x] is defined as 

. '" x. +x illld([x]) = -2-' (2.36) 

The set-theoretic operations of Section 2.2.1 can be applied to intervals. The 
intersection of two intervals [x] and [yl, defined by 

[x] n [y] ~ {z E JR;.I Z E [x] and Z E [y]}, (2.37) 

is always an interval. This is not the case for their union 

[x] U [y] ~ {z E JR;. I Z E [x] or Z E [y]}. (2.38) 

To make the set of intervals closed with respect to union, define the interval 
hull of a subset X of JR;. as the smallest interval [X] that contains it. This is 
consistent with (2.27). For instance, the interval hull of ]2,3] U [5,7] is the 
interval ]2, 7]. Define the interval union of [x] and [yl, denoted by [x] U [yl, as 
the interval hull of [x] u [yl, i.e., 

[x] U [y] ~ [[x] U [y]] . (2.39) 

In the same manner, 

[x] [\] [y] = [[x] \ [ylJ = [{x E [x] I x ~ [y]}]. (2.40) 

For instance, [0,5[ [\]]3,4[= [0, 5[ and [0,5[ [\]]3,5[= [0,3]. The Cartesian 
product of two intervals is not an interval but a box of JR;.2; it thus corresponds 
to an external operation, to be treated in Section 2.3.4. 
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2.3.2 Interval computation 

The four classical operations of real arithmetic, namely addition (+), subtrac­
tion ( - ), multiplication (*) and division U) can be extended to intervals. For 
any such binary operator, denoted by 0, performing the operation associated 
with 0 on the intervals [x] and [y] means computing 

[x] 0 [y] = [{xoy E Jl{ I x E [xl,y E [y]}], 

which is a direct consequence of (2.28). For instance 

(]1, 2.2] * [0, 2[) + ]1,3] = [0, 4.4[ + ]1,3] = ]1,7.4[, 

1/[-2, 2[ = ] - 00,00[, 

[3,4]/[0,0] = 0. 

(2.41 ) 

(2.42) 

(2.43) 

(2.44) 

The rule (2.41) was first presented in the context of bounded and closed inter­
vals by Moore (1959) and then extended to open-ended unbounded intervals 
(Hanson, 1968; Kahan, 1968; Davis, 1987). 

Remark 2.2 The result of (2.44) is based on a mathematical interpretation 
of the interval [0,0]. We shall see in Chapter 10 that two types of zero are dis­
tinguished in the floating-point representation to be used when implementing 
interval computation, which sometimes allow different results. • 

Remark 2.3 Definition (2.41) differs from that given for sets in (2.11) be­
cause it is required that 0 returns an interval and not a possibly non-connected 
subset of Jl{. Because of wrapping, we should have written [x] [0] [y] instead 
of [x] 0 [y] but, as for generic wrappers, we shall keep to the simpler notation 
[x] 0 [y]. Note that (2.41) and (2.11) match when 0 is continuous, as the set 
{x 0 Y E Jl{ I x E [x], Y E [yl} is then an interval. • 

Remark 2.4 The operator 0 defined for intervals can also be extended to 
unions of intervals (also called discontinuous intervals) (Hyvonen, 1992). 
For instance, one may write 

1/[-2,2[=]- 00, -1/2[ U [1/2,00[, (2.45) 

instead of]-oo, oo[ as in (2.43). The computation on unions of intervals may, 
however, lead to an explosion of the number of subintervals to be handled and 
will no longer be considered in this book. • 

As already mentioned for generic sets, the properties of the basic operators 
for intervals differ from their properties in Jl{. For instance, [x]- [x] is generally 
not equal to [0,0]. This is because [x]- [x] = {x - y I x E [x], Y E [xl}, rather 
than {x - x I x E [xl}. The subtraction thus does not take the dependency of 
the two occurrences of [x] into account. Addition and multiplication remain 
associative and commutative, but multiplication is no longer distributive with 
respect to addition. Instead, 

[x] * ([y] + [z]) C [x] * [y] + [x] * [zl, (2.46) 
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a property known as subdistributivity, which is a direct consequence of the 
dependency effect, as [x] appears only once on the left-hand side but twice 
on the right-hand side. As a result, it is recommended to factorize expanded 
forms as much as possible. 

Elementary functions such as exp, tan, sin, cos. .. extend to intervals as 
indicated by (2.30). If f is a function from l!{ to l!{, then its interval counterpart 
[f] satisfies 

[f] ([xl) = [{f(x) I x E [x]}]. (2.47) 

For any continuous elementary function, [f] ([xl) is thus equal to the image 
set f([xl). For instance, 

[arctan]( [0,00 [) = [0, 'if /2 [, 

[sqr]([-l, 3[) = [0,9[, 

[exp] ([0,1 [) = [exp(O), exp(l) [= [1, e[, 

[sqrt]([4,25]) = [sqrt(4), sqrt(25)] = [2,5], 

[sqrt]([-25, -4]) = 0, 

[sqrt]([-50, 1]) = [sqrt] ([0, 1]) = [0,1]' 

[In]([ -50,1 [) = ]-00, 0[. 

2.3.3 Closed intervals 

(2.48) 

This section presents rules for computing on subsets of l!{ in the special case 
where the wrappers are closed intervals of l!{. Denote by Ill!{ the set of all such 
closed intervals. Since l!{ and 0 are both open and closed, they both belong 
to Ill!{, and any element of Ill!{ can be written in one of the following forms: 
[a, b], ] - 00, a], [a, 00[, ] - 00, oo[ or 0, where a and b are real numbers such 
that a ~ b. Any [x] of Ill!{ can be specified in a unique way by its lower bound 
;r and its upper bound x. For simplicity, we shall often write [x] = [;r, x], 
even if bounds may be infinite. Thus, [0,00] should be interpreted as [0,00[. 
Note the dual nature of closed intervals, which may be viewed as sets (on 
which standard set operations apply), and as couples of elements of l!{ on 
which an arithmetic can be built. Couples of the form [00,00]' [-00, -00] and 
[a, b] with a > b do not correspond to intervals (see modal interval arithmetic 
(Gardenes et al., 1985), however, where the notation [a, b] with a> b receives 
a meaning). When ;r and x are equal, the interval [x] is said to be punctual 
(or degenerate). Any real number could thus be represented as a punctual 
interval and vice versa. 

The operations of Section 2.3.2 can be redefined, in the context of closed 
intervals, as operations on their bounds: the bounds of the result of an interval 
operation are expressed as functions of the bounds of its interval arguments. 
The remainder of this section is devoted to illustrating how this can be done. 
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The interval union of two non-empty closed intervals [x] and [y], defined 
by (2.39), satisfies 

\f[x] E ][lR?, \fry] E ][lR?, [x] U [y] = [min{x., u.}, max{x, y}] . (2.49) 

The intersection of two non-empty closed intervals [x] and [y], defined by 
(2.37), satisfies 

[x] n [y] = [max{x., u.}, min {x, y}] if max{x., u.} ::::; min {x, V}, 
= 0 otherwise. 

If a is a real number and [x] a non-empty interval, then the interval 

a[x] ~ {ax I x E [xl} 

is given by 

a[x] = [ax., ax] if a ~ 0 

= [ax, ax.] if a < O. 

For non-empty closed intervals, 

[x] + [y] = [x. + u., x + V], 
[x] - [y] = [x. - y, x - u.], 

[x] * [y] = [min{x.u., x.y, xu., xy},max{x.u.,x.Y, xu., xy}]. 

(2.50) 

(2.51 ) 

(2.52) 

(2.53) 

The product of two intervals will be denoted indifferently by [x] * [y], or [x][y]. 
For division, (2.41) leads to 

and 

l/[y] = 0 if [y] = [0,0], 

= [l/y, l/u.] if 0 ~ [y], 

= [l/y,oo[ ifu.=Oandy>O, 

= ]-00, Ill{] if u. < 0 and y = 0, 

=]-oo,oo[ ifu.<Oandy>O, 

[x]/[y] = [x] * (l/[y]). 

(2.54) 

(2.55) 

Of course, when applied to punctual intervals [x] and [y], the previous rules 
simplify into the usual rules of real arithmetic, which is why interval arith­
metic can claim to be an extension of the latter. 

Elementary interval functions can also be expressed in terms of bounds. 
For instance, for any non-empty [x], 

[exp]([x]) = [exp(x.) , exp(x)]. (2.56) 

For non-monotonic functions, the situation is more complicated. For example, 
[sin] ([0, 7T]) = [0,1] differs from the interval [sin(O), sin(7T)] = [0,0]. Specific 
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Table 2.1. Algorithm for the interval evaluation of the sine function 

Algorithm sin(in: [xl; out: [rD 

1 if 3k E Z I 2k7r - 7r/2 E [xl then r. = -1; 

2 else r. = min(sin~,sinx); 

3 if 3k E Z I 2k7r + 7r /2 E [xl then r = 1; 

4 else r = max(sin~,sinx). 

algorithms must therefore be built. An algorithm for the sine function is given 
by Table 2.1. 

Figure 2.3 illustrates the computation of sin([2.6, 7.2]) = [-1, O. 7937]. 
Inclusion functions for other trigonometric functions are obtained in the same 
way or by expressing them as functions of the sine function. The hyperbolic 
functions receive a similar treatment. 

Fig. 2.3. Computation of sin([xD 

Remark 2.5 Most often, an operation or the evaluation of a function with 
an empty interval argument should yield an empty result. Obvious exceptions 
to this rule are for the union operator U and interval union operator U, as 
[x] U 0 = [x] and [x] U 0 = [x] • 

As already mentioned, the arithmetical rules for intervals differ from those 
for real numbers. For instance, x2 - x = (x - ~)2 - i whereas [X]2 - [x] differs 
from ([x] - ~)2 - i, as illustrated by the following example. 

Example 2.5 At [x] = [-1,3], 

[x]2 - [x] = [-1,3]2 - [-1,3] = [0,9] + [-3,1] = [-3,10]' (2.57) 
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The first result is a pessimistic approximation of the image set of x2 - x at 
[-1,3]' whereas the second one is equal to this image set (see Theorem 2.1) .• 

One is therefore well advised to transform expressions in such a way as to 
reduce the number of occurrences of each variable as much as possible, which 
is sometimes easier said than done. 

Since computation on closed intervals reduces to computation on their 
bounds, traditional interval software considers only closed intervals (except 
packages such as INC++ or PROLOG 4, which also support open and half­
open intervals, at the cost of a much more complex implementation). 

2.3.4 Interval vectors 

An interval real vector [x] is a subset of lRn that can be defined as the Carte­
sian product of n closed intervals. When there is no ambiguity, [x] will simply 
be called an interval vector, or a box. It will be written as 

[x] = [Xl] x [X2] X ... X [xn], with [Xi] = [±i' Xi] for i = 1, ... , n. (2.59) 

Itsith interval component [Xi] is the projection of [x] onto the ith axis. The 
empty set of lRn should thus be written as 0 x ... x 0 because all of its 
interval components are empty. Expressions such as 

[x] = 0 x [0,1] (2.60) 

are therefore prohibited, because [0, 1] is not the projection of [x] onto the 
second axis. This guarantees the uniqueness of notation of a given box. The 
set of all n-dimensional boxes will be denoted by IIlRn. Non-empty boxes 
are n-dimensional axis-aligned parallelepipeds. Figure 2.4 illustrates the case 
n = 2, with [x] = [Xl] X [X2]' 

Fig. 2.4. A box [xl of lIlR2 

X -2 

[x] 

Many of the notions introduced in Section 2.3.2 for intervals extend with­
out difficulty to boxes. For instance, a box will be said to be punctual if all 
its interval components are. Any box with at least one punctual component 
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has a zero volume, so a box with a zero volume may not be punctual. The 
lower bound lb([x]) of a box [x] is the punctual vector consisting of the lower 
bounds of its interval components: 

K = lb([x]) ~ (lb( [Xl])' lb( [X2])' ... , lb( [Xn])) T = (~l' ~2' ... , ~n) T . 

Similarly, the upper bound ub([x]) of [x] is the punctual vector 

x = ub([x]) ~ (Ub([XI])' ub([x2])"" , ub([xn]))T = (Xl, X2,'" , Xn)T . 

The width of [x] = ([Xl], [X2],"" [xn])T is 

If [x] is bounded and non-empty, then its midpoint (or centre) is 

mid([x]) ~ (mid([xI])' ... , mid([xn]))T. 

(2.61 ) 

(2.62) 

The interval hull of a subset A of lRn is the smallest box of lllRn that contains 
A, denoted by [A]. 

The intersection of the boxes [x] and [y] of lllRn satisfies 

(2.63) 

provided that [x] n [y] is non-empty. Applying this rule for the intersection 
of [1,3] x [-1,2] and [2,4] x [3,7] would lead to [2,3] x 0, which is actually 
correct but inconsistent with the convention that [2,3] should then be the 
projection of the result onto the first axis. 

Most often the union of two boxes [x] and [y] is not a box. A favourable 
case is when there exists a unique i E {I, ... , n} such that [Xj] = [Yj] for all 
j -=J i and [Xi] n [Yi] -=J 0, because then [x] u [y] = ([Xl],"" [Xi-I], [Xi] U 
[Yi], [Xi+l],"" [xn])T. This seemingly unlikely event turns out to be fre­
quently encountered with some of the algorithms to be considered in this 
book. In all other cases, the interval hull [[x] U [ylJ of the union of [x] and [y] 
can be computed as 

(2.64) 

a process that extends to any number of boxes, some of which may be the 
empty set. We also have 

(2.65) 

and 

x E [y] {o} Xl E [YI] and ... and Xn E [Yn]. (2.66) 

Classical operations for interval vectors are direct extensions of the same 
operations for punctual vectors. For instance, if [x] and [y] are boxes of lllRn, 
and if Q is a real number, then 
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a[x] £ (a[XI]) X ... X (a[Xn]) , 

[X]T * [y] £ [Xl] * [YI] + ... + [Xn] * [Yn], (2.67) 

[x] + [y] £ ([Xl] + [YI]) X ... X ([Xn] + [Yn]) . 

These definitions are consistent with the more general set operation of (2.11), 
page 13. 

2.3.5 Interval matrices 

Let m;.mxn be the set of all matrices with real coefficients, m rows and n 
columns. An (m X n)-dimensional interval matrix is a subset of m;.mxn that 
can be defined as the Cartesian product of mn closed intervals. The interval 
matrix [A] will be written indifferently in any of the following forms: 

[A] = (
[all] [al n ] ) 

[~ml] ... [~mn] 
= [all] X [aI2] X ... x [amn ] = ([aij])lo(io(m,lo(jo(n' (2.68) 

where [aij] = [!.l:ij' aij] is the projection of [A] onto the (i,j)th axis. This con­
vention makes unique the representation of the empty matrix. For instance, 

[A] = (: [0~1]) (2.69) 

is not allowed because the projection of the matrix represented by the Carte­
sian product 0 x [0,1] x 0 x 0 onto the (1, 2)-axis is empty and not equal to 
[0,1]. The set of all m x n interval matrices is denoted by [m;.mxn. An interval 
matrix is said to be punctual if all its entries are punctual. The lower bound 
lb([A]) of an interval matrix [A] is the punctual matrix made up with the 
lower bounds of its interval components: 

A = lb([A]) £ 

Similarly, its upper bound ub([A]) is the punctual matrix 

A~ ub(IA]) ~ C, ... :J 
Its width w([A]) is 

(2.70) 

(2.71 ) 
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(2.72) 

If [A] E lIlRmxn is bounded and non-empty, then its midpoint (or centre) is 
given by 

mid([A]) = (mid([aij]))l(i(m,l(j(n' 

For [A] and [B] in lIlRmxn and C in lRmxn , 

[A] c [B] -i=? [aij] C [bij] for 1 ~ i ~ m, 1 ~ j ~ n, 

C E [B] -i=? Cij E [bij] for 1 ~i ~ m, 1 ~ j ~ n. 

(2.73) 

(2.74) 

(2.75) 

The interval hull of a set A of matrices of lRnxm is the smallest element of 
lIlRnxm that contains A. 

If [A] and [B] are intervals, interval vectors or interval matrices of appro­
priate dimensions and if <:> is a binary operator, then 

[A] <:> [B] = [{A<:>B I A E [A] and BE [B]}]. (2.76) 

For instance, if [A] and [B] are in lIlRnxn , [x] is in lIlRn and a is in lR, then 

alA] = (a[a11]) x ... x (a [ann]) , 

[A] + [B] = ([aij] + [bij ])l(i(n,l(j(n' 

[A] * [B] = (L~=l[aik] * [bkj])l(i(n,l(j(n' 

[A] * [x] = (L]=l[aij] * [Xj]) . . 
1~2~n 

(2.77) 

As with intervals, the product of two interval matrices will be denoted 
indifferently by [A] * [B], or [A][B]. Some classical properties of matrices 
in a punctual context are no longer true. For instance, product is no longer 
associative 

([A][B]) [C] =1= [AJ( [B][C]) , (2.78) 

or commutative with respect to scalars 

[aJ([A][x]) =1= [A] ([a][x]). (2.79) 

Part of these specificities can be explained by the wrapping effect, as illus­
trated by the following example where it is shown that 

A[x] =:J {Ax I x E [xl}. 

Example 2.6 Take 

Then 

A=(~~)' [x] = ([-1,0]). 
[1,2] 

A [x] = ([0,2]) 
[1,2] , 

(2.80) 

(2.81 ) 

(2.82) 
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which implies that (0,2) T belongs to A [x], whereas it does not belong to the 
actual value set lffi = {Ax I x E [xl}, as Figure 2.5 makes clear. • 

1 2 X 1 

Fig. 2.5. Pessimism introduced by the wrapping effect 

Of course, linear algebra also involves more sophisticated operations such 
as matrix inversion and the computation of eigenvalues and eigenvectors, 
which raise difficulties that go beyond this introductory chapter. See Neu­
maier (1990) for more details. 

2.4 Inclusion Functions 

2.4.1 Definitions 

Consider a function f from ~n to ~m. The interval function [f] from lI~n to 
lI~m is an inclusion function for f if 

If [x] E lI~n, f ([xl) c [f]([xl). (2.83) 

The interval function [f] ([xl) = ~m, for all [x] E lI~n, is an example of 
a (not very useful) inclusion function for all functions f from ~n to ~m. 
One of the purposes of interval analysis is to provide, for a large class of 
functions f, inclusion functions that can be evaluated reasonably quickly 
and such that [f] ([xl) is not too large. The function f may, for instance, 
be polynomial (Malan et al., 1992; Garloff, 2000), or given by an algorithm 
(Moore, 1979). It may even be defined as the solution of a set of differential 
equations (Lohner, 1987; Berz and Makino, 1998; Kuhn, 1998). 

To illustrate the notion of inclusion function, consider a function f from 
~2 to ~2, with variables Xl and X2 that vary within [Xl] and [X2]' The image 
set f([xl) may have any shape. It may be non-convex (i.e., there are points 
of f([xl) such that the line segment connecting them is not in f([x])) , or 
even disconnected (i. e., f( [xl) is a union of disjoint sets) if f is discontinuous. 
Whatever the shape of f([xl), an inclusion function [f] of f makes it possible 
to compute a box [f]([xl) guaranteed to contain it (Figure 2.6). 
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[xl 

~2 ...... . 

~1 

Fig. 2.6. Images of a box by a vector function f and two of its inclusion functions 
[f] and [f]*; [f]* is minimal 

Actually, as suggested by Figure 2.6, [f]([xl) may offer a very pessimistic 
vision of f([xl). But remarkable properties of f, such as the positivity of 
some of its components, may be preserved by [fl. Given that it is far easier 
to manipulate boxes than generic sets, this is a very interesting standpoint 
for the observation of a vector function. 

An inclusion function [f] for f is thin if, for any punctual interval vector 
[x] = x, [f] (x) = f(x). It is convergent if, for any sequence of boxes [x] (k), 

lim w([x] (k)) = 0 =} lim w([f]( [x] (k)) = O. 
k-->oo k-->oo 

(2.84) 

This property is illustrated by Figure 2.7. Note that if [f] is convergent, it is 
necessarily thin. The convergence of inclusion functions is required for proving 
the convergence of interval solvers such as those presented in Chapter 5. The 
inclusion function [f] is minimal if for any [x], [f] ([xl) is the smallest box 
that contains f ([xl). The minimal inclusion function for f is unique and will 
be denoted by [f]* (see Figure 2.6). 

f 

Yl 

Fig. 2.7. A convergent inclusion function 
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X2 

f 

Fig. 2.8. A convergent inclusion function that is not inclusion monotonic 

[f] is inclusion monotonic if 

[x] C [y] =? [f]([xl) c [f]([yl). (2.85) 

It is trivial to check that a minimal inclusion function is inclusion monotonic 
but not necessarily convergent (because f may be discontinuous). A conver­
gent inclusion function may not be inclusion monotonic (see Figure 2.8). 

Consider a function f from l!{n to l!{m, and let [fj], j = 1, ... , Tn, be Tn 

inclusion functions from Ill!{n to Ill!{ associated with the coordinate functions 
iJ of f. An inclusion function for f is then given by 

[f] ([xl) = [h] ([xl) x ... x [fm] ([xl). (2.86) 

[f] is convergent (thin, minimal, inclusion monotonic, respectively) if all its 
coordinate functions [fi] ([xl) are convergent (thin, minimal, inclusion mono­
tonic, respectively). The construction of inclusion functions for f can therefore 
be cast into that of inclusion functions for each of its coordinate functions. 
This is why we shall focus attention on getting inclusion functions for real­
valued functions. 

2.4.2 Natural inclusion functions 

The first idea that comes to mind in order to build an inclusion function for 
f : l!{n ---+ l!{ is to perform two optimizations to compute the infimum and 
supremum of f when each Xi is constrained to belong to [Xi]. At least in princi­
ple, one should thus get the smallest interval containing f([Xl]' [X2], ... , [Xnl) , 
denoted by [f]*([Xl], [X2], ... , [xnl). However, these optimization problems 
turn out to be far from trivial in general. 

An alternative and much more tractable approach uses the following the­
orem, which is a direct consequence of Theorem 2.1, page 14. 
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Theorem 2.2 Consider a function 

f: m;.n ----+ m;., 

(Xl, ... , X n ) f--+ f(xl,"" x n ), 
(2.87) 

expressed as a finite composition of the operators +, -, *, / and elementary 
functions (sin, cos, exp, sqr. .. ). An inclusion monotonic and thin inclusion 
function [f] : lIm;.n ----+ lim;. for f is obtained by replacing each real variable 
Xi by an interval variable [Xi] and each operator or function by its interval 
counterpart. This function is called the natural inclusion function of f. If 
f involves only continuous operators and continuous elementary functions, 
then [f] is convergent. If, moreover, each of the variables (Xl"'" x n ) occurs 
at most once in the formal expression of f then [f] is minimal. • 

Remark 2.6 Contrary to set computation, it is not sufficient that each input 
variable Xi appears at most once for the natural inclusion function to be 
minimal. Because of the wrapping effect, it is also required that all functions 
and operators involved in the expression of f be continuous. Consider, for 
instance, the continuous function f(x) = (sign(x))2, where sign(x) is equal 
to 1 if X ~ 0 and to -1 otherwise. Its natural inclusion function [f] satisfies 
[f]([-I,I]) = [-1,1]2 = [0,1]. Although X occurs only once zn the formal 
expression of f(x), [f] is not minimal as f([-I, 1]) = 1. • 

Natural inclusion functions are not minimal in general, because of the 
dependency and wrapping effects. The accuracy of the resulting interval 
strongly depends on the expression of f, as illustrated by the three following 
examples. The first one presents a function of one variable to allow a graph­
ical illustration. The next one involves a function of two variables. The last 
one shows how to deal with transcendental functions. 

Example 2.7 Consider the following four formal expressions of the same 
function f (x): 

h(x) = x(x + 1), 

h(x) = x * x + x, 

h(x) = x 2 + x, 

f4(x) = (x + ~)2 -~. 
2 4 

Evaluate their natural inclusion functions for [x] = [-1,1]: 

[h] ([x]) = [x] ([x] + 1) = [-2,2] , 

[h] ([x]) = [x] * [x] + [x] = [-2,2], 

[h] ([x]) = [X]2 + [x] = [-1,2], 

(2.88) 

(2.89) 

(2.90) 

(2.91) 

(2.92) 

(2.93) 

(2.94) 
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[f 4] ([Xl) = ([X] + ~) 2 - ~ = [- ~, 2] . (2.95) 

The accuracy of the interval result thus depends on the formal expression of 
f (see Figure 2.9). Since [x] occurs only once in f4 and f4 is continuous, [f4] 
is minimal. Thus [f4] ([xl) = f([xl) = [-i, 2]. • 

4 

3 

2 

-2 

-1 

-2 

/ 

[x] 

[f1] ([xl) 
[h] ([xl) 

[12] ([xl) 
[fl] ([xl) 

Fig. 2.9. Four natural inclusion functions for the same function 

Example 2.8 Consider the real function f : ~2 ----+ ~ defined by 

Xl - X2 
f(Xl,X2) = , withxIE[-1,2]andx2E[3,5]. (2.96) 

Xl + X2 

The natural inclusion function [f]l for f is obtained by replacing each real 
variable by an interval variable, and each real operation by its interval coun­
terpart: 

(2.97) 

so 
[-1,2]- [3,5] [-6, -1] 

[fh([-1,2]'[3,5l) = [-1,2]+[3,5] = [2,7] 

1 1 1 
= [-6, -1] * [7'"2] = [-3, -7]' (2.98) 

A second interval extension [f]2 can similarly be obtained after rewriting f 
in such a way that Xl and X2 each appear only once: 
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(2.99) 

Then 
2 2 

[fb([-l, 2], [3,5]) = 1 - 1 + [-1,2]/[3,5] = 1 - 1 + [-1/3,2/3] 

2 
= 1 - [/ /] = 1 - [6/5,3] 2 3,5 3 

= [-2, -1/5]. (2.100) 

[fh and [fb are both interval extensions of f· [fb is more accurate than 
[fh, which suffers from the dependency effect. The interval computed by [fb 
is minimal, and thus equal to the image set f([-l, 2], [3,5]). • 

Example 2.9 Consider the real function f defined by 

with Xl E [0,1] and X2 E [7f / 4, 47f /3]. Its natural inclusion function is 

so 

[f] ([0, 1], [7f / 4, 47f /3]) = In( exp( [0,1]) + sin( [7f / 4, 47f /3])) 

= In([l, e] + [-v3/2, 1]) 

= In([l - v3/2, e + 1]) 

= [In(l - v3/2), In( e + 1)] 

C [-2.0101,1.3133]. 

(2.101 ) 

(2.102) 

(2.103) 

Since each variable appears only once, and since all the functions and oper­
ators involved in the formal expression of f are continuous, the penultimate 
interval is the exact image set f([O, 1], [7f/4, 47f/3]). Note that the minimum 
and maximum values taken by f have thus been computed without perform­
ing a single optimization, although f is not monotonic. The last interval is 
a guaranteed numerical estimate of the previous one, obtained by outward 
rounding, see Chapter 10. • 

The use of natural inclusion functions is not always to be recommended, 
however. Their efficiency depends strongly on the number of occurrences 
of each variable, which is often difficult to reduce. An important field of 
investigation of interval analysis has thus been to propose other types of 
inclusion function that would provide less pessimistic results (Ratschek and 
Rokne, 1984), as shown in Sections 2.4.3 to 2.4.5. 
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2.4.3 Centred inclusion functions 

Let f : lRn ---+ lR be a scalar function of a vector x = (Xl, ... , xn ) T. Assume 
that f is differentiable over the box [x], and denote mid([xl) by m. The 
mean-value theorem then implies that 

\Ix E [x] ,3z E [x] I f (x) = f (m) + gT (z) (x - m), (2.104) 

where g is the gradient of f, i.e., a column vector with entries gi = af laxi, 
i = 1, ... ,n. Thus, 

\Ix E [x] ,f (x) E f (m) + [gT] ([xl) (x - m), (2.105) 

where [g T] is an inclusion function for g T, so 

f ([xl) C;; f (m) + [gT] ([xl) ([x] - m) . (2.106) 

Therefore, the interval function 

[fel ([xl) ~ f (m) + [gT] ([xl) ([x] - m) (2.107) 

is an inclusion function for f, which we shall call the centred inclusion func­
tion. To illustrate the interest of this function in the one-dimensional case, 
consider the function [tel (x) from lR to ITlR defined by 

[fel (x) ~ f (m) + [i] ([xl) (x - m) (2.108) 

for any given [x]. This function can be viewed as affine in x with an uncertain 
slope belonging to [l] ([xl). The graph of [fel (x) can thus be represented by a 
cone with centre (m, f(m)) as illustrated by Figure 2.10 for decreasing widths 
of [x]. The smaller w([xl) is, the better the cone approximates the function. 
The figure illustrates the fact that 

w([fc] ([xl)) ---+ 1 
w(f([x])) 

(2.109) 

when the width of [x] tends to 0, which is not the case in general for a natural 
inclusion function. 

y y 

[xl x [xl x 

Fig. 2.10. Interpretation of the centred inclusion function 
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When the width of [xJ is small, the effect of the pessimism possibly result­
ing from the interval evaluation of [g]([x]) is reduced by the scalar product 
with [xJ - m, which is a small interval centred on zero. 

2.4.4 Mixed centred inclusion functions 

The centred inclusion function for a function f from lRn to lR can be noticeably 
improved at the cost of a slightly more complicated formulation (Hansen, 
1968). Recall that, for a function cp from lR to lR, 

cp(X) E cp(m) + cp' ([X]) ([xJ - m), (2.110) 

where m = mid([x]). The main idea to get a mixed centred inclusion function 
is to apply (2.110) n times, considering each variable of f in turn. The case 
n = 3 will be treated first, to simplify exposition. Consider f(X1, X2, X3) as a 
function of X3 only and take m3 = mid([x3]); (2.110) then implies that 

(2.111) 

Consider now f(X1, X2, m3) as a function of X2 only and take m2 = mid([x2]); 
(2.110) then yields 

f(X1' X2, m3) E f(X1, m2, m3) + 92(X1, [X2], m3) * ([X2J - m2)' (2.112) 

Finally, consider f(x1,m2,m3) as a function of Xl and take m1 = mid([x1]); 
(2.110) then leads to 

f(X1, m2, m3) E f(m1, m2, m3) + 91 ([Xl], m2, m3) * ([X1J - mI). (2.113) 

Combine these three equations to get 

Thus 

f(X1' X2, X3) E f(m1, m2, m3) + 91([X1], m2, m3) * ([X1J - m1) 

+ 92(X1, [X2], m3) * ([X2J - m2) 

+ 93(X1, X2, [X3]) * ([X3J - m3)' (2.114) 

f([X1], [X2], [X3]) c f(m1, m2, m3) + 91([X1], m2, m3) * ([X1J - m1) 

+ 92([X1], [X2], m3) * ([X2J - m2) 

(2.115) 

This expression can be generalized for a function f of n variables. With 
x = (Xl"'" xn)T and m = mid([x]), one gets 

n 

i=l 

(2.116) 

and the right-hand side of (2.116) defines the mixed centred inclusion func­
tion. The main difference with (2.107) lies in the arguments of the gradient. In 



2.4 Inclusion Functions 35 

(2.116), interval and punctual arguments are mixed, which allows pessimism 
to be decreased, as 

[g](mid([x]), [x]) C [g]([x]). (2.117) 

2.4.5 Taylor inclusion functions 

Iterating the reasoning that led to the centred inclusion function, one may 
think of using Taylor series expansion to approximate a function f from lRn 

to lR at a higher order. This leads to the Taylor inclusion function. Consider 
a second-order expansion as an illustration: 

1 
[fh([x]) = f(m) + gT(m)([x] - m) + 2([x] - m)T [H]([x]) ([x] - m), 

(2.118) 

where m = mid ( [x]), g is again the gradient of f and [H] ( [x]) is the interval 
Hessian matrix. The entry [H]ij of [H] is an inclusion function of 

{
EPf/OX; ifj=i (i=l, ... ,n), 

hij = 202 f /OXiXj if j <i (i = 1, ... , n), 

o otherwise. 

(2.119) 

A symmetric form of the Hessian matrix (h ij = 02 f / OXiXj for all i and j) 
could also be used, but the resulting increase in the number of interval 
components in [H]([x]) would then lead to an increase in the pessimism of 
[fh. Pessimism can be reduced by replacing [H]([x]) by a mixed expression 
[H](mid([x]), [x]), as was done for the gradient in the mixed centred form of 
Section 2.4.4. 

When f has only one variable, the nth-order Taylor inclusion function is 
given by 

[fh([x]) = f(m) + f'(m)([x] - m) + ... + r-1(m) ([X~ - m\~-l 
n -1 . 

+ [r]([x]) ([x] - m)n (2.120) 
n! 

Evaluation of the Taylor inclusion function of order n thus requires compu­
tation of the derivatives of f up to nth order, which may entail cumbersome 
manipulations. 

2.4.6 Comparison 

Under mild technical conditions (Moore, 1979), the natural, centred and Tay­
lor inclusion functions are convergent. Roughly speaking, the convergence rate 
of a convergent inclusion function is the largest Q such that 

=3tJ I w([f]([x]))-w(f([x])) ~ tJw([x])a (2.121 ) 
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when w([x]) tends to O. When an inclusion function is minimal, its conver­
gence rate is infinite. The convergence rate of a natural inclusion function is 
at least linear (0; ~ 1), whereas the convergence rate of a centred form is at 
least quadratic (0; ~ 2). The convergence rate of a Taylor inclusion function 
is also at least quadratic for any order n ~ 2. Quadratic convergence looks of 
course more interesting than linear convergence, but it should be remembered 
that it only means that more accurate results will be obtained in the case 
of infinitesimal boxes. Nothing similar can be said on the behaviour of these 
inclusion functions for boxes of a more realistic size. When the box involved 
is large, the natural inclusion function is generally more satisfactory than the 
centred inclusion function, whereas the latter performs better when the box 
is small, with the mixed version superior to the standard version. 

No approach to building an inclusion function can claim to be uniformly 
the best, and a compromise between complexity and efficiency must often be 
struck. One may also use several inclusion functions and take the intersection 
of their image sets to get a better approximation of the image set of the 
original function. 

Example 2.10 Consider the function f defined by 

f(x) = x 2 + sin(x), 

and the intervals 

[x] = [21f 41f] and [ 1 = [991f 10l7r]. 
3 ' 3 Y 100' 100 

(2.122) 

(2.123) 

We shall compare the approximations of f([x]) and f([y]) obtained when us­
ing the natural, centred, Taylor of order two and minimal inclusion functions, 
which will be respectively denoted by [f]n, [fle, [fh, and [f]*. See also Exer­
cise 11.10, page 318. The first three of these functions are given by 

[fln([x]) = [xl 2 + sin([x]), 

[fle([x]) = f(1f) + ([x] - 1f)[!']([x]), 

[fh([x]) = f(1f) + ([x] - 1f)!'(1f) + ([xl; 1f)2 [f"l([x]), 

with 

!,(x) = 2x + cos(x) and f"(x) = 2 - sin(x). 

(2.124) 

(2.125) 

(2.126) 

(2.127) 

The minimal inclusion function is trivial to evaluate after noticing that f is 
increasing over [xl (and thus over [yl c [xl). So 

[fl*([x]) = [ :£2 + sin(:£), x2 + sin(x)]. (2.128) 

The results obtained by evaluating each of these inclusion functions over [xl 
and [y] are indicated in Table 2.2, where L1([f]([x])) stands for the value of 
w([f]([x])) - w(f([x])). 
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Table 2.2. Comparing inclusion functions 

[x] = [2;, 4;] [y] = [99" lOb] 
100' 100 

[f] [f]([x]) .1 ( [f]([ X])) [J]([y]) .1([J] ([y])) 
[J]n [3.52046, 18.41199] 3.46410 [9.64178, 10.09940] 0.12564 

[J]c [1.62022, 18.11899] 5.07134 [9.70163, 10.03758] 0.00397 

[Jh [4.33706, 16.97362] 1.20913 [9.70362, 10.03659] 0.00099 

[J]* [5.25251, 16.67994] 0 [9.70461, 10.03658] 0 

The numerical values are given with an accuracy of 10-5 . It turns out that 
the natural inclusion function remains competitive for the larger interval [xl, 
which is an additional incentive to use it, besides its simplicity. The centred 
and Taylor inclusion functions are more efficient than the natural inclusion 
function for the smaller interval [y]. The Taylor inclusion function brings a 
noticeable improvement compared to the natural and centred inclusion func­
tions, even for the larger interval. Finally, this example reminds us that it 
may be useful to check whether the function considered is monotonic, in which 
case obtaining a minimal form is trivial. Unfortunately, the expressions en­
countered in engineering applications are seldom as cooperative as the one 
considered here, which limits the practical interest of this remark. • 

Example 2.11 Consider now a vector function f from ~2 to ~2, defined by 

h(Xl, X2) = xi + Xl exp(X2) - X~, 

h(Xl, X2) = xi - Xl exp(X2) + X~, 
(2.129) 

where Xl and X2 belong to [Xl] and [X2] respectively. The natural inclusion 
function [f]n for f is given by 

[f]n,l ([x]) = [Xl]2 + [Xl] exp ([X2]) - [X2]2, 

[f]n.2([x]) = [Xl]2 - [Xl] exp ([X2l) + [X2]2. 

The centred inclusion function [f]c is given by 

[f]c([x]) = f(mid([x])) + [Jf]([x]) * ([x] - mid([x])). 

(2.130) 

(2.131 ) 

(2.132) 

All the arguments of the interval Jacobian matrix [J f] are intervals and the i th 
row of [Jf] ([xl) is given by [gTJ ([xl), with gi the gradient of the ith component 
off (see (2.107) page 33): 

[Jf]([X]) = (2[Xl] + exp ([X2]) -2[X2] + [Xl] exp ([X2])) . (2.133) 
2[Xl] - exp ([X2]) 2[X2] - [Xl] exp ([X2]) 

The mixed centred inclusion function [f]m is given by 

[f]m([x]) = f(mid([x])) + [Jf](mid([x]), [x]) * ([x]- mid([x])), (2.134) 
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where [JfJ now depends on a mixture of punctual and interval arguments 

pfJ(mid([xl), [xl) 

= (2[XIJ +exp(mid([x2])) -2[X2J + [XIJeXP ([X2])). 
2[XIJ - exp (mid([x2])) 2[X2J - [XIJ exp ([X2]) 

(2.135) 

As expected, (2.135) contains less interval arguments than (2.133). Table 2.3 
compares the efficiency of the natural, centred and mixed centred inclusion 
functions on two boxes [xJ and [yJ. The definition of L1 is as in Example 2.10. 
The conclusions are similar to those of the scalar case: for the larger box 
[x], the natural inclusion function is more satisfactory, whereas the centred 
inclusion function performs better for the smaller box [yl, with the mixed 
version superior to the non-mixed one. • 

Table 2.3. Comparison of vector inclusion functions 

[Xl] = [0.5,1.5] ; [X2] = [1.5,2.5] [YI] = [0.9,1.1] ; [Y2] = [1.9,2.1] 

[f] [f]([x]) L1[[f] ([x])] [f]([y]) L1 [[f] ([y])] 

[fI]n [-3.75916,18.2737] 7.67904 [2.41730, 6.58279] 1.60000 

[h]n [-15.7737,6.25916] 11.67904 [-4.56279, -0.39730] 2.40001 

[fIle [-10.8391,19.6172] 16.10248 [2.83416,5.94395] 0.54430 

[h]e [-15.6172,10.8391] 16.10248 [-3.54395, -1.23416] 0.54431 

[fIlm [-8.44234,17.2205] 11.30902 [2.91187, 5.86624] 0.38888 

[h]m [-13.2205,8.44234] 11.30902 [-3.46624, -1.31187] 0.38889 

[fIl' [-0.08008,14.27374] 0 [3.21730,5.78279] 0 

[hl' [-9.77374,0.58008] 0 [-3.36279, -1.59731] 0 

2.5 Inclusion Tests 

Inclusions tests can be used to prove that all the points in a given box satisfy 
a given property, or to prove that none of them does. These tests involve 
interval Booleans, which will be presented first. 

2.5.1 Interval Booleans 

Set computation as defined in Section 2.2 can be used for the Boolean set 

lffi ~ {false, true}, (2.136) 

but there is no need to use wrappers for outer approximating the Boolean 
sets to be handled, since lffi is finite. There will thus be no wrapping effect, but 
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the dependency effect will still be present. A Boolean number is an element 
of lffi. By extension 1 , an interval Boolean is a subset of lffi. Thus, the set of all 
interval Booleans is 

lllffi = {0, 0, 1, [0, I]}, (2.137) 

where 0 stands for impossible, ° for false, 1 for true, and [0, 1] for indetermi­
nate. Operations on interval Booleans are easily defined in the framework of 
set computation: 

[a] V [b] = {a V b I a E [aJ, b E [b]}, 
[a]/\ [b] = {a /\ b I a E [aJ ,b E [b]}, 

, [a] = {,a I a E [a]}, 
[a] n [b] = {max(g".I2),min(a,b)}, 

[aJ U [bJ = {min(g".I2),max(a,b)}, 

(2.138) 

where /\ and V respectively stand for the AND and OR operators and where, 
is the complementation operator, such that,O = 1 and ,1 = 0. For instance, 

([0,1] V 1) /\ ([0, IJ/\ 1) = 1/\ [0, IJ = [0,1]. 

If [a] E lllffi, then 

0/\ [aJ = 0; 1/\ [a] = [aJ; [aJ/\ [aJ = [a] ; 

° V [aJ = [aJ; 1 V [aJ = 1; [aJ V [aJ = [a]. 

(2.139) 

(2.140) 

(2.141 ) 

The dependency effect is still present when the complementation operator is 
used. For instance, 

[aJ c ([a]/\ [b]) V ([aJ/\, [b]), (2.142) 

and the values of the two sides of (2.142) differ for a = ° (or 1) and [bJ = [0,1], 
whereas a = (a /\ b) V (a /\ ,b). 

Any function f3 from lffin to lffi will be called a Boolean function. The notion 
of inclusion function developed for real functions readily extends to Boolean 
functions. [f3] : lllffin ---+ lllffi is an inclusion function for f3 if 

The natural inclusion function [f3J of f3 is obtained by replacing all arguments 
and operators of f3 by their interval counterparts. [f3J ([b1] , ... , [bn ]) is minimal 
if 

1 For any set equipped with a partial ordering (13, (), one can always define the 
set ][§, of the pairs [a, b] such that a E 13, b E 13 and a ( b. The elements of][§ will 
be called intervals. 13 may for instance stand for ]Rn, for the set of all Boolean 
numbers lffi or for the set of all compact sets. In the last case, the partial ordering 
is c. 
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As with real functions, whenever the expression (3 (b l , ... ,bn ) is non-decreas­
ing with respect to all its variables, the minimal inclusion function is given 
by 

(2.145) 

Note that this is a frequently encountered situation. It is the case, for 
instance, when the complementation operator is not used, i.e., when (3 is a 
polynomial. There are nevertheless many Boolean expressions that are not 
monotonic, such as the exclusive or 

(2.146) 

Even when a Boolean expression is not monotonic, it is always possible, 
at least in principle, to evaluate a minimal inclusion function for it, be­
cause each of the interval Booleans may take four values at most. Con­
sider, for example, (3([b l ], [b2 l) , with (3(b l , b2 ) = (b l /\ b2 ) V (b l /\ -,b2 ), 

for [b l ] = 1 and [b 2 ] = [0, 1]. The natural interval extension of (3 yields 
[(3] (1, [0, 1 l) = (1 /\ [0, 1 l) V (1 /\ -, [0, 1 l) = [0,1]. A minimal evaluation is ob­
tained by writing (3(1, [0,1]) = (3(1,0) U (3(1,1) = 1. Of course, this approach 
leads to a combinatorial explosion when the number of variables increases, 
which can sometimes be avoided by manipulating the Boolean expressions, 
for instance with the help of Karnaugh tables or by taking advantage of 
well-known simplification rules to reduce the number of occurrences of the 
Boolean variables. 

2.5.2 Tests 

A test is a function t from m;.n to lffi. An inclusion test for t is a function [t] 
from lIm;.n to liB such that for any [x] E lIm;.n, 

([t] ([xl) = 1) =? (\ix E [x] , t(x) = 1), 

([t] ([xl) = 0) =? (\ix E [x] , t(x) = 0). 
(2.147) 

An inclusion test [t] is thin if [t] (x) = t(x) for any x E m;.n. It is minimal if 

\i [x] E lIm;.n, [t] ([xl) = {t(x) I x E [xl}. 

A minimal test is necessarily thin. 

Example 2.12 Consider the test 

m;.2 ---+ {O, I} 
t: T 

(Xl, X2) ---+ (Xl + X2 ~ 5), 

which means that 

( ) _ { 1 if Xl + X2 ~ 5, 
t x - ° if Xl + X2 > 5. 

(2.148) 

(2.149) 

(2.150) 
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The minimal inclusion test [t] associated with t is given by 

{
I if Xl + X2 ~ 5, 

[t] ([xl) = 0 if;]21 +;]22 > 5, 

[0,1] otherwise, 

which can be written more concisely as 

It is minimal and thin. 

(2.151) 

(2.152) 

• 
Any Boolean operator on real numbers, such as (~, ~, <, >, integer, odd, 

even, prime ... ) can be similarly extended to intervals. For instance, 

([a, b] ~ [c, dl) = 1 

([a, b] ~ [c, dl) = 0 

if b ~ c, 

if a> d, 

([a, b] ~ [c, dl) = [0,1] if neither b ~ c nor a > d. 

(2.153) 

The Boolean comparison operator = cannot be extended in this way, because 
it has already been given a bivalued meaning by set theory: 

([a, bl = [c, dl) = 1 if a = c and b = d, 

= 0 otherwise. 
(2.154) 

With the help of interval analysis and the notion of inclusion function, it is 
easy to build an inclusion test for any test that can be put in the form 

t (x) = fJ(h (x), ... , tn (x)), (2.155) 

with 

tdx) {o} Udx) ~ 0), i = 1, ... ,n, (2.156) 

and fJ : Jan ---+ Ja a Boolean expression. This inclusion test is given by 

[t] ([xl) = [fJl ([t1l ([xl) , ... , [tnl ([xl)), (2.157) 

with 

[til ([xl) {o} ([fi] ([xl) ~ 0), i = 1, ... , n, (2.158) 

and [fJ] some inclusion function for fJ. Note that even if the tests [til ([xl) are 
all minimal and if [fJl is minimal too, the dependency effect is still lurking, 
so pessimism can still be introduced. For instance, the test t (x) = (x ~ 7) V 
(x ~ 6) admits the inclusion test [t] ([xl) = ([x] ~ 7) V ([x] ~ 6). Despite the 
fact that [t] ([xl) consists of two minimal inclusion tests and a polynomial and 
thus increasing expression fJ(b 1 , b2 ) = b1 V b2 , this inclusion test is pessimistic. 
For instance for [xl = [5,8], 

[t] ([xl) = ([5, 8] ~ 7) V ([5, 8] ~ 6) = [0,1] V [0,1] = [0,1]' 

whereas t([xl) = {t(x) I x E [5,8]} = 1. 

(2.159) 
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2.5.3 Inclusion tests for sets 

Let fA be a set of ]Rn; an inclusion test [tAl for fA is an inclusion test for the 
test tA(X) {o} (x E fA), i.e., [tAl satisfies 

[tAl ([xl) = 1 =} (\;Ix E [xl, tA(X) = 1) {o} ([xl c fA), 

[tAl ([xl) = 0 =} (\;Ix E [xl, tA(X) = 0) {o} ([xl n fA = 0). 
(2.160) 

When [tAl ([xl) = [0,1], nothing can be concluded as to the inclusion of [xl 
in fA. 

The notion of inclusion test for sets will simplify the presentation of al­
gorithms in future chapters. 

Previous definitions can be adapted to inclusion tests for sets: 

[tAl ([xl) is inclusion monotonic iff ([xl C [yl) =} ([tAl ([xl) c [tAl ([y])) 

[tAl is minimal iff \;I [xl E ll]Rn, [tAl ([xl) = tA ([xl) 

[tAl is thin iff \;Ix E ]Rn, [tAl (x) -=f. [0, 1l 

The inclusion test [tAl will be said to be more accurate than the inclusion 
test [t~l iff 

(2.161 ) 

The following properties can be used to build inclusion tests for sets de­
fined from elementary set operations such as union, intersection or comple­
mentation. If [tAl ([xl) and [tml ([xl) are thin inclusion tests for the sets fA and 
lffi, define 

[tAnml ([xl) ~ ([tAl n [tml) ([xl) = [tAl ([xl) n [tml ([xl), 

[tAuml ([xl) ~ ([tAl U [tml) ([xl) = [tAl ([xl) U [tml ([xl), 

[t~A]([Xl) ~,[tAl ([xl) = 1 - [tAl ([xl). 

(2.162) 

[tAnml , [tAuml and [t~Al are then thin inclusion tests for the sets fA n lffi, fA u lffi 
and ,fA ~ {x E ]Rn I x rt fA}, respectively. 

2.6 Conclusions 

Computation on sets should in general be viewed as an idealization, because 
generic sets cannot be represented and handled exactly by a computer. This 
is why the notion of set of wrappers was introduced. Wrappers are simple 
sets easily manipulated by computers, to be used to approximate more com­
plicated sets. 

Interval analysis uses intervals and boxes as wrappers, which makes it 
possible to compute outer approximations of ranges of functions. When eval­
uated for interval arguments, inclusion functions yield outer approximations 
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of the actual image sets of interest. Interval computation is thus usually 
pessimistic. This pessimism is due to the dependency and wrapping effects. 
The dependency effect, already present when computing on sets, takes place 
when variables occur several times in the formal expression of the function 
to be evaluated. The wrapping effect is due to the fact that generic sets are 
contained in intervals or boxes. 

Pessimism may be reduced by transforming the formal expression of func­
tions in order to decrease the number of occurrences of the variables or by us­
ing more sophisticated inclusion functions than the natural inclusion function 
obtained by replacing each operator and elementary function by its interval 
counterpart. 

Intervals and boxes alone cannot describe all sets of interest with sufficient 
accuracy. The next chapter will show how this can be done by using unions 
of intervals or of boxes. 



3. Subpavings 

3.1 Introduction 

As we have seen in the previous chapter, intervals and boxes form an attrac­
tive class of wrappers, easily manipulated. These wrappers, however, are not 
by themselves general enough satisfactorily to describe all types of sets of 
interest to us, which are of course not restricted to intervals and boxes and 
include, for instance, unions of disconnected subsets. 

The policy to be followed is based upon covering the set of interest X 
with subsets of Jl{n that are easy to represent and manipulate. The class of 
these subsets could be that of ellipsoids, boxes, polytopes, zonotopes, etc. 
(see Schweppe, 1968; Fogel and Huang, 1982; Milanese and Belforte, 1982; 
Walter and Piet-Lahanier, 1989; Milanese et al., 1996; Kuhn, 1998, and the 
references therein). Important properties of X can be proved by using such 
a covering. If, for instance, the covering is empty, then X is empty too. In 
this book, X will be covered with sets of non-overlapping boxes of Jl{n, or 
subpavings. We shall also bracket X between inner and outer approximations 
(Jaulin and Walter, 1993a, 1993c; Jaulin, 1994). Two subpavings ~ and X 
will then be computed, such that 

~cXcX. (3.1) 

The knowledge of the pair [~, Xl provides valuable information about X. For 
instance, vol(~) ::::; vol(X) ::::; vol (X) , if X is empty then X is empty too, and 
if ~ is non-empty then X is non-empty too. It may even be possible to prove 
that X is connected or disconnected. For instance, if ~ and X both consist of 
two disconnected subsets: ~ = ~l U~2 with ~l n~2 = 0 and X = Xl UX2 with 
Xl nX2 = 0, and if moreover ~l C Xl and ~2 C X 2 then X is not connected. 
This type of information could not be obtained from a representation of X 
by a cloud of points, obtained, for example, by a Monte-Carlo method or by 
systematic gridding. 

Section 3.2 recalls the notion of distance between sets to be used for the 
evaluation of the quality of the approximation of a set by another one. Sec­
tion 3.3 introduces the approximation of sets by subpavings and explains how 
these objects can be implemented. Finally, Section 3.4 presents algorithms 
evaluating the direct and inverse images of a compact set by a given function. 

L. Jaulin et al., Applied Interval Analysis
© Springer-Verlag London 2001
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3.2 Set Topology 

3.2.1 Distances between compact sets 

Let C (Jl{n) be the set of all compact sets of Jl{n. To quantify the quality of 
a given representation of a compact set, a measure of the distance between 
it. and lffi of C (Jl{n) will be needed. Recall that compact sets of Jl{n are closed 
and bounded subsets of Jl{n. Equip Jl{n with the distance 

Loo(x,y)£ max IYi-Xil. 
iE{1, ... ,n} 

(3.2) 

The unit balllU £ [-1, 1rn of (Jl{n, Loo) is then a hypercube with width two. 
The proximity of A to lffi is 

h~(A,lffi) £inf{rEJl{+ I AClffi+rlU}. (3.3) 

Figure 3.1 illustrates this notion; to get h?oo (A, lffi) one inflates lffi until it 
contains A and to get h?oo (lffi, A) one inflates A until it contains lffi. Note that 
h?oo may also be applied to non-compact sets, in which case their proximity 
may be infinite. 

h~flffi,A) 

Fig. 3.1. The Hausdorff distance h:yo (A, JEl) is equal to max {h?x (A, JEl) ,h~ (JEl, A)} 

The Hausdorff distance (Berger, 1979) between A and lffi is given by 

hoa (A, lffi) £ max {h~ (A, lffi) ,h~ (lffi, A)} . (3.4) 

It is a distance for C (Jl{n) as the following three requirements are satisfied 
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( i) separability 

(ii) symmetry 

hoo (A, lffi) = 0 =} A = lffi, 

hoo (A, lffi) = hoo (lffi, A) , 

(iii) triangular inequality hoo (A, q ~ hoo (A, lffi) + hoo (lffi, q . 
(3.5) 

Consider a compact set A and a point a far from A. The set Al = A U 
{a} is also hoo-far from A. On the other hand, the set obtained by drilling 
small holes into A remains hoo-close to A. This illustrates the coarseness 
of the characterization of the differences between compact sets provided by 
the Hausdorff distance. A finer characterization will be needed to analyze the 
convergence properties of the algorithm SIVIA to be presented in Section 3.4.1. 

Define the complementary Hausdorff semi-distance 17,00 between A and lffi 
of C (JRn) as 

hoo(A, lffi) ~ hoo (JRn\A, JRn\lffi) 

= max {h~ (JRn\A, JRn\lffi) ,h~ (JRn\lffi, JRn\A)} 

= max {h~ (A, lffi) ,h~ (lffi, A)} , (3.6) 

where JRn\A is the complementary set of A in JRn and where h~ (A, lffi) ~ 
h~ (JRn\A, JRn\lffi). Figure 3.2 illustrates this definition. h~ (A, lffi) is obtained 
by deflating lffi until it is contained in A; h~ (lffi, A) is obtained by deflating 
A until it is contained in lffi. For the situation represented by Figure 3.2, 
hoo(A,lffi) is equal to h~ (A,lffi) , as h~ (A,lffi) is larger than h~ (lffi,A). The 
operator hoo is a semi-distance on C (JRn), because it does not satisfy the 
separability requirement to be a distance since hoo(A, lffi) = 0 whenever A 
and lffi are singletons. 

Fig. 3.2. The complementary Hausdorff semi-distance is equal 
to max {h~ (A,]E) , h~ (]E, A)} 
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As hoo, the complementary Hausdorff semi-distance hoo fails to give a fine 
characterization of the differences between compact sets; if the compact set 
obtained by drilling a single small hole in A is not h'oo-close to A, the compact 
set obtained by adding to A a finite numbers of vectors far from A remains 
hoo-close to A. 

Based on hoo and hoo, a new distance can be defined (Jaulin and Walter, 
1993c), which avoids the defects of each of them: 

(3.7) 

Example 3.1 Consider three compact subsets of IT{ given by X = [1,7], Y = 

[1,7] U [9 - c, 9] and Z = [1,5] U [5 + c, 7] where c is a positive number tending 
to zero. Then 

hoo(X, Y) = 2; hoo(X, Y) = c/2; moo (X, Y) = max(2, c/2) = 2, (3.8) 

hoo(X, Z) = c/2; hoo(X, Z) = 2; moo(X, Z) = max(c/2, 2) = 2, (3.9) 

hoo(Y, Z) = 2; hoo(Y, Z) = 2; moo(Y, Z) = max(2, 2) = 2. (3.10) 

The Hausdorff distance hoo does not capture the difference between X and 
Z, and the complementary Hausdorff semi-distance hoo does not capture the 
difference between X and Y, but moo captures both. • 

3.2.2 Enclosure of compact sets between subpavings 

A subpaving of a box [x] c IT{n is a union of non-overlapping subboxes of [x] 
with non-zero width. Two boxes in the same subpaving may have a non-empty 
intersection if they have a boundary in common, but their interiors must have 
an empty intersection. Subpavings can be employed to approximate compact 
sets in a guaranteed way. Computation on subpavings allows approximate 
computation on these compact sets, and forms the basic ingredient of the 
parameter and state estimation algorithms to be presented in Chapter 6. 

When a subpaving IF' of [x] covers [x], it is a paving of [x]. The accumu­
lation set of a subpaving IF' is the limit of the subset of IT{n formed by the 
union of all boxes of IF' with width lower that c when c tends to zero. Since 
subpavings only contain boxes with non-zero width, the accumulation set of 
a finite subpaving is necessarily empty. 

Let (C (IT{n) , c, moo) be the set of all compact sets of IT{n equipped with 
the partial ordering C and the distance moo. The set of finite subpavings 
is dense from outside in (C(IT{n),c,moo ), i.e., for any compact set X we 
can find a subpaving X containing X and as moo-close to X as desired. It 
may be impossible, however, to find a subpaving ~ contained in X. Consider, 
for instance, a segment of a line of IT{2. It can be approximated as closely 
as desired by a subpaving of IT{2 from the outside but not from the inside. 
To avoid this, we sometimes restrict consideration to the (large) class of 
full compact sets, i.e., of compact sets that are equal to the closure of their 
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interiors. Figure 3.3 gives an example of a compact set that is not full. Denote 
by Cf (lRn) the set of all full compact sets of lRn. The set of all finite subpavings 
of lRn is dense from inside and from outside in (Cf (lRn) , c, moo) (Jaulin and 
Walter, 1993c). Thus, for any full compact set X, it is possible to find two 
finite subpavings ~ and X as moo-close to X as desired and such that ~ c 
X c X. The set of compact sets 

(3.11) 

is then a neighbourhood of X, the diameter moo (~, X) of which can be made 
as small as desired (J aulin, 1994). 

(a) (b) (c) 

Fig. 3.3. (a): a compact set A; (b): its interior lBl; (c): the closure IC of lBl; since A 
and IC differ, A is not full 

3.3 Regular Subpavings 

We shall first introduce some additional notation before defining subpavings 
more precisely and explaining how the useful class of regular subpavings 
can be represented in a computer. We shall then present a few elementary 
algorithms for the manipulation of regular subpavings. 

Consider the box 

[x] = [J2I,XI] x ... x [J2n,xn] = [Xl] X ... x [Xn] , (3.12) 

and take the index j of its first component of maximum width, i.e., 

j = min{ i I U! ([Xi]) = U! ([x]) }. (3.13) 

Define the boxes L [x] and R [x] as follows: 

L[x] £ [J2I,XI] x ... x [J2j' (J2j +Xj) /2] x ... x [J2n ,xn ], 

R[x] £ [J2I,Xl] x ... x [(J2j +Xj) /2,xj] x··· x [J2n ,xn ]. 
(3.14) 

For instance, if [x] = [1,2] x [2,4] x [1,3]' we get U! ([xl) = 2, j = 2, L [x] = 

[1,2] x [2,3] x [1,3] and R [x] = [1,2] x [3,4] x [1,3]. L [x] is the left child of 
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[x] and R [x] is the right child of [x]. Land R may be viewed as operators 
from lIlRn to lIlRn. The generation of these two children from [xl is called 
bisection of [x]. The two boxes L [x] and R [xl are siblings. Reunification is 
the operation of merging two siblings L [x] and R [xl into their parent [xl. 
This will be denoted by [x] := (L [x] I R [xl). 

3.3.1 Pavings and subpavings 

A subpaving of [x] is regular if each of its boxes can be obtained from 
[x] by a finite succession of bisections and selections. Regular subpavings 
(Jaulin, 1994; Sam-Haroud and Faltings, 1996), also called n-trees (Samet, 
1990), are a class of subsets of lRn easily manipulated with a computer 
as we shall see. Non-regular subpavings will also be used, but operations 
such as intersecting two subpavings will then become computationally much 
more demanding. Both types of subpavings share the ability to approxi­
mate full compact subsets of lRn as precisely as desired (see also Lozano­
Perez, 1981; Pruski, 1996; Pruski and Rohmer, 1997). 

8 

4 

o 
o 4 8 

Fig. 3.4. Regular paving of a box; the boxes in grey form a regular subpaving 

The set of all the regular subpavings of [x] will be denoted by RSP ([xl). 
Figure 3.4 presents a regular paving IF' of the box [x] = [0,8] x [0,8]. The grey 
boxes form a regular subpaving QI of [x] = [0,8] x [0,8]. From any regular 
subpaving (or paving) QI E RSP ([xl), define LQI E RSP (L[x]) as the regular 
subpaving that contains all the boxes of QI also included in L [x]. Similarly, 
define RQI E RSP (R[x]) as the regular subpaving that contains all the boxes 
of QI also included in R [x]. LQI and RQI are respectively the left and right 
children of Q1. If, for instance, QI is defined as in Figure 3.4, then 
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LQ = LL [x] = [0,4] X [0,4] 

RQ = LRR [x] U LLRRR [x] U LLRRRR [x] (3.15) 

= [4,6] X [4,8] U [6,7] X [4,6] U [6,7] X [6,7]. 

The box from which Q was derived by a succession of bisections and selections 
of boxes is the root of Q. Thus, root(Q) = [x], and root(LQ) = L [x] . 

Remark 3.1 The subpaving Q has a dual nature. It may be seen as a subset 
of JR.2, and we may write [0,1]2 C Q C JR.2. Q may also be viewed as a finite 
list of boxes 

{LL[x], LRR[x] , LLRRR[x] , LLRRRR[x]} 

= {[O, 4] X [0,4]; [4,6] X [4,8]; [6,7] X [4,6]; [6,7] x [6, 7]}. 
(3.16) 

The notation Q will be used when the subpaving is considered as a set, and 
the notation Q will be used instead when the subpaving is viewed as a list of 
boxes. • 

Figure 3.5 illustrates the bracketing of the set 

§= {(x,y) I X 2 +y2 E [1,2]} (3.17) 

between subpavings with an increasing accuracy from left to right. The frame 
corresponds to the box [-2,2] x [-2,2]. The subpaving L1§ in grey contains 
the boundary of § whereas the subpaving £il in white is inside §. Thus 

£il c § C §, with § £ £il U L1§. (3.18) 

Fig. 3.5. Bracketing of a set between two subpavings; precision increases from left 
to right 

3.3.2 Representing a regular subpaving as a binary tree 

In a computer, a regular subpaving may be represented as a binary tree. A 
binary tree contains a finite set of nodes. This set may be empty, may contain 
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a single node, the root of the tree, or may contain two binary trees with an 
empty intersection, namely the left and right subtrees. Thus, the subpaving 
Q of Figure 3.4 is described by the binary tree of Figure 3.6, where 1 means 
that the corresponding node belongs to the subpaving. On this figure, A is 
the root of the tree. Band C are respectively its left and right children. They 
are siblings as they have the same parent node A. A has a left subtree and a 
right subtree; the right subtree of B is empty. A, Band C are nodes because 
they have at least one non-empty subtree. Finally, as D has no subtree, it is 
a degenerate node or leaf. 

D 
1 

A 

o 
1 0 

Fig. 3.6. Tree associated with the regular subpaving of Figure 3.4 

The binary tree associated with a subpaving may be built from the list of 
its boxes. The growth of its branches is defined by how the initial box [xoJ, 
which corresponds to the root of the tree, is bisected. Any non-degenerate 
node stands for a box that has been bisected. Any leaf indicates that the box 
it stands for belongs to the subpaving. For instance, the branch in bold on 
Figure 3.6 corresponds to the box LRR [xo] = [4,6] x [4,8]. The depth of a 
box is the number of bisections necessary to get it from the root box. Thus, 
the depth of the box [4,6] x [4,8] is three. 

A tree (or the corresponding subpaving) is minimal if it has no sibling 
leaves. Any non-minimal tree representative of a subpaving can be made 
minimal by discarding all sibling leaves so that their parents become leaves. 
This amounts to merging sibling boxes of the subpaving into single boxes. 

Since the notions of binary tree and of regular subpaving are equivalent, 
the terminology of trees will also be employed for regular subpavings. In what 
follows, the representation of regular subpavings by binary trees will be used, 
because of the natural recursiveness of this data structure. 

3.3.3 Basic operations on regular subpavings 

The four basic operations to be considered are reuniting sibling subpavings, 
taking the union or the intersection of subpavings, and testing whether a box 
is included in a subpaving. All of them are facilitated by the use of binary 
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trees. For non-regular subpavings, they would be significantly more compli­
cated. The computer implementation of regular subpavings is considered in 
Section 11.12, page 336. 

Reuniting sibling subpavings: Consider a box [x] and two regular 
subpavings X E RSP (L[xl) and Y E RSP (R[xl). These subpavings have 
the same parent box [x]. The reunited subpaving Z £ (X IY) E RSP([xl) is 
computed as follows: 

Algorithm REUNITE(in: X, Y; out: Z) 

1 if X = L[x] and Y = R[x], then Z := [x] ; 

2 else if X = 0 and Y = 0, then Z := 0; 

3 else LZ := X and RZ := Y. 

When a binary tree representation is employed, each of the instructions in 
REUNITE is trivial to implement. For instance, the instructions LZ := X and 
RZ := Y amount to grafting the two trees X and Y to a node to form the 
tree Z (see Figure 3.7, case (ii)). Note that the number #Z of boxes in the 
subpaving Z is not necessarily equal to #X+#Y. If, for instance, [x] = [0,2]2, 
X = [0,1] x [0,2] and Y = [1,2] x [0,2], then X = L[x] and Y = R[x]. Thus 
#Z = 1 whereas #X + #Y = 2 (case (i) on Figure 3.7). In what follows, 
REUNITE(X, Y) will simply be written (X IY). Note that reunification may 
be viewed as the inverse operation of applying Land R, since 

Z = (X I Y) ¢? X = LZ and Y = RZ. (3.19) 

0 0 • (i) 

• • 
0 0 

• ~ 
X Y 

Fig. 3.7. Reuniting sibling subpavings; (i) sibling leaves, (ii) sibling subpavings 

Intersecting subpavings: if X E RSP ([xl) and Y E RSP ([xl) , then 
Z = X n Y is also a subpaving of RSP ([xl). It contains only the nodes 
shared by the binary trees representing X and Y, and can be computed by 
the following recursive algorithm: 
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Algorithm INTER(in: X, Y, [x]; out: Z) 

1 if X = 0 or Y = 0 then Z := 0; 

2 else if X = [x] then Z := Y; 

3 else if Y = [x] then Z := X; 

4 else Z := (INTER(LX, LY, L[xl) I INTER(RX, RY, R[xl)). 

Taking the union of sub pavings: if X E RSP ([xl) and Y E RSP ([xl), 
then Z = XuY also belongs to RSP ([xl). Z is computed by putting together 
all nodes of the two binary trees representing X and Y. Again, this can be 
done recursively: 

Algorithm UNloN(in: X, Y, [x]; out: Z) 

1 if X = 0 or Y = [x] then Z := Y; 

2 else if Y = 0 or X = [x] then Z := X; 

3 else Z := (UNION(LX, LY, L[xl) I UNION(RX, RY, R[x])). 

Testing whether a box [z] is included in a subpaving X of 
RSP ([xl) . This test is straightforward in four cases. It holds true if [z] is 
empty, or if X is reduced to a single box [x] and [z] C [x]. It holds false if 
X is empty and [z] is not, or if [z] is not in the root box of X. These basic 
tests will first be applied to the root of the tree representing the subpaving. 
If none of the four simple cases is satisfied, these basic tests are recursively 
applied on the left and right subtrees. The following algorithm summarizes 
the process: 

Algorithm INsIDE(in: [z] ,X; out: t) 

1 if [z] = 0 or if (X is a box [x] and [z] C [xl) then t := 1; 

2 else if X = 0 then t:= 0; 

3 else t := (INSIDE([z] n L [x] ,LX) U INSIDE([z] n R [x] ,RX)). 

When [z] C X, 1 is returned, when [z] n X = 0, 0 is returned and when [z] 
overlaps the boundary of X, [0, 1] is returned. 

Remark 3.2 Many other algorithms operating on subpavings would be inter­
esting to consider. For instance, the computation of the neighbours of a given 
box in a subpaving may be performed by Samet's algorithm (Samet, 1982). 
This algorithm could be very useful to study whether a subpaving is connected, 
as required in the context of path planning (see Section 8.3, page 234). • 

3.4 Implementation of Set Computation 

We shall now see how two important basic blocks of set computation can be 
implemented in an approximate but guaranteed way, based on the notions of 
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inclusion function and inclusion test presented in Chapter 2, and using regular 
subpavings as the basic class of objects to represent sets. The implementation 
of more ambitious set algorithms is deferred to the next chapters. 

The first basic block to be considered is the computation of the reciprocal 
image 

x = f- 1 (Y) , (3.20) 

of a regular subpaving Y of m;.m by a function f : m;.n ---+ m;.m. We shall call 
this operation set inversion. A method to compute two subpavings ~ and X 
of m;.n such that 

~cXcX (3.21 ) 

is proposed in Section 3.4.1. 
The second basic block to be considered is the computation of the direct 

image 

Y = f(X), (3.22) 

of a subpaving X of m;.n by a function f. We shall call this operation image 
evaluation. An algorithm that computes an outer subpaving Y for Y is pro­
posed in Section 3.4.2. It will turn out that image evaluation is more difficult 
than set inversion. Moreover, up to now, no method to compute an inner 
approximation X of Y seems to be available, except via set inversion. This 
is why it may be advisable to recast image evaluation into the framework of 
set inversion when f is invertible. 

3.4.1 Set inversion 

Let f be a possibly non-linear function from m;.n to m;.m and let Y be a subset 
of m;.m (for instance, a subpaving). Set inversion is the characterization of 

X = {x E m;.n I f(x) E Y} = f-1(y). (3.23) 

For any Y c m;.m and for any function f admitting a convergent inclusion 
function [f] (.), two regular subpavings ~ and X such that 

~cXcX (3.24) 

can be obtained with the algorithm SIVIA (Set Inverter Via Interval Analysis, 
Jaulin and Walter, 1993a and 1993c), to be described now. 

SIVIA requires a (possibly very large) search box [x] (0) to which X is 
guaranteed to belong. To facilitate presentation, Figure 3.8 describes the 
basic steps of SIVIA, assuming that Y is a regular subpaving. The general 
procedure is easily derived from this simplified example. Four cases may be 
encountered. 

1. If [f] ([xl) has a non-empty intersection with Y, but is not entirely in 
Y, then [x] may contain a part of the solution set (Figure 3.8a); [x] is said to 
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be undetermined. If it has a width greater than a prespecified precision pa­
rameter c, then it should be bisected (this implies the growth of two offspring 
from [xl) and the test should be recursively applied to these newly generated 
boxes. 

2. If [fl ([xl) has an empty intersection with Y, then [xl does not belong 
to X and can be cut off from the solution tree (Figure 3.8b). 

3. If [f] ([xl) is entirely in Y, then [xl belongs to the solution subpaving 
X, and is stored in ~ and X (Figure 3.8c). 

4. The last case is depicted on Figure 3.8d. If the box considered is un­
determined, but its width is lower than c, then it is deemed small enough to 
be stored in the outer approximation X of X. 

Table 3.1. Version of SIVIA based on an inclusion function 

Algorithm SIvIA(in: f, Y, [xl, c; inout: ~, X) 
1 

2 

3 

4 

5 

if [fl ([xl) n Y = 0 return; 
if [fl ([xl) c Y then 
{~ := ~ U [xl; X := X U [xl; return;}; 

if w ([xl) < c then {X := X U [xl; return;}; 
SIVIA(f, Y, L [xl, c,~, X); SIVIA(f, Y, R [xl, c,~, X). 

/ / Figure 3.8b 

/ / Figure 3.8c 
/ / Figure 3.8d 
/ / Figure 3.8a 

SIVIA is a recursive algorithm summarized by Table 3.1, where the sub­
pavings ~ and X have been initialized as empty. 

The subpaving L1X ~ X \ ~ consisting of all boxes of X that are not in ~ 
is called the uncertainty layer. It is a regular subpaving, all boxes of which 
have a width smaller that c. 

Theorem 3.1 (Jaulin and Walter, 1993c) If f- 1 is moo-continuous around 
V, then when c tends to zero 

(i) 

(ii) X 

(iii) ~ 

:J ----+X, 

-S X (if X is full), 

(3.25) 

where ~ and -S respectively mean the hoo-convergence from without and 
within and where ax denotes the boundary of the compact set X. • 

Provided that X is full, this theorem means that, the pair [~, Xl defines 
a neighbourhood of X with a diameter that can be chosen arbitrarily small. 
SIVIA terminates after less than 

(w([~(O)) +l)n 
bisections and the computing time increases exponentially with the dimension 
of x (Jaulin and Walter, 1993a). When one is only interested in computing 
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Outer subpaving X x - space y - space 

[f] (.) 

(a) 

[f] (.) 
(b) 

Fig. 3.8. Four situations encountered by SIVIA; in the second column, the set in 
light grey is the set X = r-l(y) to be characterized; (a) the box [xo] to be checked 
is undetermined and will be bisected; (b) the box [f]([XI]) does not intersect Y and 
[Xl] is rejected; (c) the box [f] ([ X2]) is entirely in Y and [X2] is stored in ~ and X; 
(d) the box [X3] is undetermined but deemed too small to be bisected, it is stored 
in X but not in ~ 

a given characteristic of X such as its interval hull [X] or its volume, only 
the recursivity stack takes a significant place in the memory. This place is 
extraordinarily small, as it can be proved (Jaulin and Walter, 1993a) that 

#stack ~ n (log2 (w ([xl (0))) -log2 (E) + 1). (3.26) 

For instance, for n = 100, w ([x] (0)) = 104 and E = 10-1°, (3.26) implies 
that #stack ~ 100 (lOg2 (104 ) -log2 (10- 10 ) + 1) = 4751. 
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The algorithm can be generalized to the case where the search space, 
which was assumed here to be a box [x] (0), is replaced by a more general 
subpaving (Kieffer, 1999; ?). 

Table 3.2. Version of SIVIA based on an inclusion test 

Algorithm SIvIA(in: t, [xl, E; inout: {i;, X) 
1 if [tl ([xl) = 0 return; 

2 if [tl ([xl) = 1 then {{i;:= {i; U [xl; X:= X U [xl; return;}; 

3 if w ([xl) < E then {X:= xu [xl; return;}; 

4 SIVIA(t, L [xl, E, {i;, X); SIVIA(t, R [xl, E, {i;, X). 

SIVIA can also be presented with an inclusion test [t] (.) taking its values 
in {a, 1, [0, In in place of [f] and W, as indicated in Table 3.2. Both algorithms 
are initialized in the same way. 

x 2 

4~~--~~--~--~~--~-' 

2 

Fig. 3.9. Subpaving obtained with SIVIA for Example 3.2 

Example 3.2 Let X be the set of all xs in Jl{2 that satisfy 

{ 
exp (xI) + exp (X2) E [10,11]' 

exp (2X1) + exp (2X2) E [62,72]. 

Characterizing X is a set-inversion problem, as 

X = f- 1 ([la, 11] x [62,72]), 

(3.27) 

(3.28) 
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with 

f (x) = ( exp (xI) + exp (X2) ) 
exp (2X1) + exp (2X2) . 

(3.29) 

For [x] (0) = [0,4] x [0,4] and EO = 0.01, SIVIA yields the regular subpaving X 
described by Figure 3.9 in less than 2 s on a PENTIUM 133. • 

By using some of the contractors to be presented in Chapter 4, it may be 
possible to improve the quality of the description of a set obtained with SIVIA 

for a given number of bisections. The price to be paid is that the resulting 
subpaving may no longer be regular. 

3.4.2 Image evaluation 

Computing the direct image of a subpaving by a function is more complicated 
than computing a reciprocal image, because interval analysis does not directly 
provide any inclusion test for the point test t(y) = (y E f (X)). Note that even 
this point test is very difficult to evaluate in general, contrary to the point 
test t (x) = (x E f- 1 (Y)) involved in set inversion. Indeed, to test whether 
x E f- 1 (Y), it suffices to compute f (x) and to test whether the result belongs 
to Y. On the other hand, to test whether y E f (X), one must study whether 
the set of equations f (x) = y admits at least one solution under the constraint 
x E X, which is usually far from simple. 

-

(b) minced subpaving 

( c) image boxes (d) image subpaving 

Fig. 3.10. The three steps of IlVIAGESP. (a) ----> (b): mincing; (b) ----> (c): evaluation; 
(c) ----> (d): regularization 
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Assume that f is continuous and that a convergent inclusion function [f] 
for f is available. The algorithm to be presented generates a regular sub­
paving V that contains the image 1{ of a regular subpaving X by f (see also 
Kieffer et al., 1998, ?). The set 1{ is included in the box [f] ([X]), i.e., in the 
image by the inclusion function [f] of the smallest box containing X. The 
algorithm proceeds in three steps, namely mincing, evaluation, and regular­
ization (Figure 3.10). As with SIVIA, the precision of the outer approximation 
will be governed by the real c > 0 to be chosen by the user. During mincing, 
a non-minimal regular subpaving Xc is built, such that the width of each of 
its boxes is less than c. During evaluation, a box [f] ([xl) is computed for 
each box [x] of Xc, and all the resulting boxes are stored into a list U. During 
regularization, a regular subpaving V is computed that contains the union 1U 
of all the boxes of U. This regularization can be viewed as a call of SIVIA to 
invert 1U by the identity function, taking advantage of the fact that f (X) c 1U 
is equivalent to f (X) c Id- 1 (1U). 

The resulting algorithm is described in Table 3.3. 

Table 3.3. Algorithm for image evaluation based on subpavings 

Algorithm IlVIAGESp(in: f,X, 10; out: Y) 
1 Xc;:= mince(X, E); 
2 U:= 0; I I U is a list and 1U is the set of the boxes in U 
3 for each [x] E X E , add [f] ([xl) to the list U; 
4 SIVIA(y E 1U, [f] ([Xl),E,.'l(,Y). II SIVIA of'l'able 3.2 

The complexity and convergence properties of IMAGESp have been studied 
in Kieffer (1999). 

Remark 3.3 As only the outer approximation 1{ is returned by IMAGESp, 
one may of course use a simplified version of SIVIA without the computation 
of an inner approximation J:(. • 

Remark 3.4 Since 1U is not a subpaving, implementation is not trivial, see 
Section 11.12.3, page 342, for details. • 

Theorem 3.2 (Jaulin, 2000b; ?) Iff admits a convergent inclusion function 
[f], then the sets V and 1U evaluated by IMAGESp([f] ,X, c) satisfy the following 
properties: 

(i) f(X) c V, 
(ii) hoo (1U, f (X)) :::;; max[x]EXs w ([f] ([xl)), 

(iii) hoo (1U, f (X)) ---+ 0 when c ---+ 0, 

(iv) hoo (V, f (X)) ---+ 0 when c ---+ O. 

• 
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Example 3.3 Consider the regular subpaving )h of Figure 3.11 a. This sub­
paving covers the set 

(3.30) 

IMAGESp is used to compute an outer approximation of the image of)h by 
the function 

(3.31 ) 

Mincing generates the regular subpaving)hE of Figure 3.11b. Note that al­
though XE and X represent exactly the same set (XE = X), they do not con­
tain the same lists of boxes (X E i=- X) since the number of boxes in )hE is 
larger than that of)h, see Remark 3.1. The evaluation step generates a list y 
of boxes and the union of these boxes contains f()hE) (Figure 3.11c). Finally, 
regularization yields the regular subpaving 11 of Figure 3.11d. • 

0···· . . 

(0 ~) ___ ..... ____ ... ____ ... ____ ... _ .. __ ... ____ .. ___ ..... ____ l .. ____ ... ____ ... ____ .. _ .. _______ ... ____ ... ____ ... ____ .. 

(c) (d) 

Fig. 3.11. Principle of IMAGESP; (a) initial subpaving, (b) minced subpaving, (c) 
evaluated set, (d) regularized subpaving containing the evaluated set; all frames 
correspond to the box [-3,3] x [-3,3] 

The next example combines the use of SIVIA and IMAGESp. 

Example 3.4 This example is divided into three parts. The first one is the 
characterization of the set 

(3.32) 
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3 

0 
(a): Xl 

-3 
-3 0 3 

5 

0 
(b): f(X l ) 

-5 
-5 0 5 10 

5 

o r---___ ___ 
-1 -

(c): f (f(XI)) 

o 5 

Fig. 3.12. Inverse and direct image evaluations 

This set-inversion problem is solved by SIVIA in the search box [X] I = [-3,3] x 
[-3,3] for c = 0.1. The resulting subpaving Xl is represented on Figure 3. 12a. 
The second part consists in the evaluation of an outer approximation of the 
image X 2 of Xl by the function 

( ) _((XI-1)2_1+X2) 
f Xl, X2 - 2 2' 

-Xl + (X2 - 1) 

With c = 0.1, IMAGESp yields the subpaving X2 depicted on Figure 3. 12b. 
The last part is the characterization of the image of X2 by the inverse of 
f (.), i.e., of X3 = {f- l (X2) }. The function f (.) is not invertible (in the 
common sense) in 1l~2. Thus, an explicit form of f- l (.) is not available for 
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the whole search domain and the problem is treated as a set inversion prob­
lem. SIVIA is thus used in the search box [xb = [-5,5] x [-5,5], again for 
EO = 0.1. The outer subpaving X3 is represented on Figure 3.12c. We have 
Xl C f- 1 (f (Xl)) C X3 . The initial setX1 is clearly present inX3 . The result 
is slightly fatter, due to error accumulation during inverse and direct image 
evaluation. Additional parts have appeared because f (.) is only invertible in 
a set-theoretic sense. • 

3.5 Conclusions 

The notion of subpaving introduced in this chapter makes it possible to ob­
tain, store and manipulate inner and outer approximations of compact sets. 
Subpavings will form a useful class of objects on which computations will 
be performed in what follows. Two basic algorithms have been presented to 
perform direct and inverse evaluation of functions on subpavings. The prob­
lem of getting an inner approximation for image sets is still open when the 
function is not invertible, because of the impossibility of casting the problem 
in the framework of set inversion. 

Regular subpavings are simpler to store and manipulate than generic sub­
pavings, but form an expensive representation of sets in terms of memory 
space. They are thus adapted to low-dimensional problems. For sets of higher 
dimension, the requirement of regularity of the subpavings may be relaxed 
to allow the use of contractors, presented in the next chapter. 



4. Contractors 

4.1 Introduction 

Consider nx variables Xi E Jl{, 'i E {I, ... , nx}, linked by nf relations (or 
constraints) of the form 

( 4.1) 

Each variable Xi is known to belong to a doma'in Xi. For simplicity, these 
domains will be intervals, denoted by [XiJ, but unions of intervals could be 
considered as well. Define the vector x as 

( 4.2) 

and the prior domain for x as 

( 4.3) 

Let f be the function whose coordinate functions are the iJs. Equation 4.1 can 
then be written in vector form as f(x) = O. This corresponds to a constraint 
satisfaction problem (CSP) H, which can be formulated as 

H : (f(x) = 0, x E [xl) . ( 4.4) 

The solut'ion set of H is defined as 

§ = {x E [xJ I f(x) = O}. ( 4.5) 

Such CSPs may involve equality and inequality constraints. For instance, the 
set of constraints 

{
Xl + sin(x2) ::::; 0, 

Xl - X2 = 3, 
( 4.6) 

can be cast into the CSP framework by introducing a slack variable X3 to get 
the set of constraints: 

{
Xl + sin(x2) + X3 = 0, 

Xl - X2 - 3 = 0, 
(4.7) 

where the domains for the variables are [X3J = [0,00[, [XIJ = Jl{, [X2J = Jl{ 

and the coordinate functions fj are h(x) = Xl + sin(x2) + X3 and h(x) = 

L. Jaulin et al., Applied Interval Analysis
© Springer-Verlag London 2001
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Xl - X2 - 3. Characterizing the solution set § is NP-hard in general, which 
means that no algorithm with a complexity polynomial in the number of 
variables is available to obtain an accurate approximation of § in the worst 
case. 

Originally, CSPs were defined for discrete domains, i.e., the values taken 
by the XiS belonged to finite sets (Clowes, 1971; Waltz, 1975; Mackworth, 
1977a, 1977b; Freuder, 1978; Mackworth and Freuder, 1985; Dechter and 
Dechter, 1987). Later, CSPs were extended to continuous domains (subsets 
of lR or intervals) (Cleary, 1987; Davis, 1987; Hyvonen, 1992; Lhomme, 1993; 
Benhamou et al., 1994; Haroud et al., 1995; Sam-Haroud, 1995; Sam-Haroud 
and Faltings, 1996; Deville et al., 1997; van Hentenryck et al., 1998; Lottaz 
et al., 1998). Most of the algorithms presented in these papers use consistency 
techniques such as those described below to find an outer approximation of 
the set § of all solutions of H. The main advantage of these techniques is that 
they yield a guaranteed enclosure of § with a complexity that can be kept 
polynomial in time and space. 

Contracting H means replacing [x] by a smaller domain [x'] such that the 
solution set remains unchanged, i.e., § C [x'] C [x]. There exists an optimal 
contraction of H, which corresponds to replacing [x] by the smallest box that 
contains §. A contractor for H is any operator that can be used to contract 
it. In order to keep the time and space complexity polynomial, contractors 
will not be allowed to bisect domains. A contractor will be denoted by C, with 
a subscript indicating the principle on which it is based. The contractors to 
be presented in this chapter are enumerated in Table 4.1. 

Table 4.1. Contractors to be presented 

Contractor Based on Section 

CGE(Ap - b = 0, [AJ, [pJ, [bl) Gauss elimination 4.2.2 

CGs(Ap - b = 0, [AJ, [pJ, [bl) Gauss-Seidel algorithm 4.2.3 

CK(f(x) = 0, [xl) Krawczyk method 4.2.3 

Ctr(f(x) = 0, [xl) forward-backward 4.2.4 
propagation 

CLP (Ap - b = 0, [AJ, [pJ, [bl) linear programming 4.2.5 

CGsp(Ap - b = 0, [AJ, [pJ, [bl) Gauss-Seidel 4.3.2 
with preconditioning 

CGEP(Ap - b = 0, [AJ, [pJ, [bl) Gauss elimination 4.3.2 
with preconditioning 

CN (f(x) = 0, [xl) Newton with preconditioning 4.3.3 

CII (f(x) = 0, [xl) parallel linearization 4.3.4 
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Remark 4.1 It is sometimes convenient to distinguish several types of do­
mains for uncertain quantities, such as [A], [b] and [p] in Table 4.1, instead 
of pooling all of them in a single box [x] . • 

The basic contractors are CGE , CGS, CK , Cli and CLP, to be presented 
in Section 4.2. These contractors are efficient on specific classes of problems 
only. Section 4.3 presents some tools to transform a CSP so that basic con­
tractors become more widely applicable. Incorporating the transformation in 
the contraction procedure will yield new contractors (CGSP , CGEP , CN and 
CII ), able to deal with a much larger class of problems. In Section 4.4, all 
available contractors are made to collaborate in order to increase their effi­
ciency. Section 4.5 presents the notion of contractor for sets. This notion does 
not bring anything new from a methodological viewpoint, but allows one to 
deal easily with contractors independently of the type of the constraints that 
define the set of interest. In the next chapter we shall see how contractors can 
be used to get efficient solvers to deal with various optimization problems, 
and with the resolution of systems of equations and inequalities. 

4.2 Basic Contractors 

In this section, some basic contractors will be presented. Some of them are 
interval counterparts of classical point algorithms such as the Gauss elimina­
tion, Gauss-Seidel and Newton algorithms. Others use constraint propaga­
tion. Each of them is efficient only for specific CSPs, but a suitable combi­
nation of these contractors, possibly supplemented with some formal trans­
formation or preconditioning, makes them efficient for a much larger class 
of CSPs, as we shall see in Section 4.3. To prove useful, it suffices that a 
contractor extends the class of CSPs that can be handled efficiently, even if 
there are still some CSPs for which it turns out to fail. 

Section 4.2.1 presents the notion of finite subsolvers used in Section 4.2.2 
to build contractors by intervalization. Section 4.2.3 presents contractors ob­
tained by intervalization of fixed-point methods. A contractor based on con­
straint propagation will be described in Section 4.2.4. The last basic contrac­
tor, to be presented in Section 4.2.5, takes advantage of linear programming 
techniques. 

4.2.1 Finite subsolvers 

Roughly speaking, a finite subsolver of the CSP H : (f(x) = 0, x E [xl) is a 
finite algorithm to compute the values of some variables Xi when some other 
variables Xj are known. Figure 4.1 illustrates a finite subsolver ¢ computing 
Xs and Xg from Xl, X2, X3 and X4. The formal definition of a subsolver will 
require the definition of a subvector of a given vector. 
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Fig. 4.1. Subsolver computing Xs and Xg when Xl, X2, X3 and X4 are known 

Definition 4.1 The vector u = (UI, ... , unJ T is a subvector of x = 

(Xl, ... , XnJ T, if there exists a subset I = {h, ... , inJ of {I, ... , n x } such 
that u = (XiI"'" ) T. I is then called the index set of u, and we shall 
write u = XI. • 

Definition 4.2 Consider I = {iI, ... , } and J = {jl, ... , jn1'}' two index 
sets such that In J = 0, and two subvectors u = XI and v = XJ of the same 
vector x. A finite subsolver associated with H is a finite set-valued algorithm 
1> : u f--+ 1>( u) such that the following implication holds true: 

f(x) = 0 =} v E 1>(u). (4.8) 

The components of u are called the inputs of 1> and those of v are called its 
outputs. In the situation represented in Figure 4.1, the inputs are Xl,X2,X3, 
and X4, and the outputs are Xs and Xg. • 

Often, 1>(u) is a singleton, and the membership relation on the right-hand 
side of (4.8) can be understood as the equation v = 1>( u). The following 
example shows that defining 1> as a set-valued function can be useful and 
illustrates the concept of subsolver. 

Example 4.1 Consider the CSP 

(
XIX2- X3=0 

H: X2 - sin(x4) = 0 

[Xl] = [X2] =] - 00,0]' 

(4.9) 

Many subsolvers of H can be obtained by elementary algebraic computation. 
Five of them are: 
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<Pa(in: XI,X2; out: X3) {X3:= XIX2}, 

<Pb(in: XI,X3; out: X2) {X2:= X3/XI if Xl i=- 0, m;. otherwise}, 

<Pc (in: X4; out: X2) {X2 := sin(x4)}' 

<Pd(in: XI,X3,X4; out: X2) {X2:= <Pb(XI,X3) n <Pc(X4)}, 

1>e(in: X3,X4; out: XI,X2) {X2:= sin(x4), 

Xl := X3/X2 if X2 i=- 0, m;. otherwise}. 
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(4.10) 

Note that <Pd may yield the empty set when Xl, x3 and X4 are inconsistent with 
H. This is not necessarily the case as some inconsistent values for Xl, x3 and 
X4 are such that <Pd(XI,X3,X4) i=- 0. For instance, Xl = X4 = 0 and X3 = 1 
are inconsistent (because XIX2 - X3 i=- 0), but <Pd(O, 1, 0) = m;. n {O} = O. • 

Example 4.2 Consider the CSP 

(
AP - b = 0 ) 

H: p E m;.np, b E [b], A E [A] , 
(4.11) 

where A is a square matrix. The set of all variables of H is 

(4.12) 

A possible subs olver is 

<pj(in: A,p; out: b) {b:= Ap}, (4.13) 

where the input subvector consists of the coefficients of A and p and where 
the output sub vector is b. Another subsolver is 

<pg(in: A, b; out: p) {code of a linear solver}. (4.14) 

The linear solver may, for instance, use Gauss elimination, which will be 
presented in the section. • 

4.2.2 Intervalization of finite subsolvers 

In this section, we show how the knowledge of an interval counterpart of a 
finite subsolver of H : (f(x) = 0, x E [x]) makes it possible to contract H. 
Let 1> be a finite subsolver of H with input vector u and output vector v. An 
inclusion function [1>] of 1>, is a function [1>] from llm;.n" to llm;.n1' such that for 
all boxes [u] of llm;.n", 

1>([u]) c [1>] ([u]), where 1>([u]) £ U 1>(u). (4.15) 
uE[u] 

This definition is a slight extension of that of Chapter 2, to take into account 
the fact that 1>(u) may not be a singleton. For instance, an intervalization of 
the subsolver 1>e (X3, X4) of Example 4.1 is given by 
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[¢e] (in: [X3] , [X4] ; out: [Xl]' [X2]) 

{ [X2]:= sin([x4]); 

[Xl] := [X3] / [X2] if 0 ~ [X2] ; 
[Xl] := lR otherwise}. 

( 4.16) 

Theorem 4.1 Consider a CSP H : (f(x) = 0, x E [xl) and one of its finite 
subsolvers ¢ with input vector u = XI and output vector v = X:J. If [¢] 
is an inclusion function of ¢, then a contraction of H can be performed by 
replacing each domain [Xj],j E .:J by the domain [Xj] n [ePj] ([ul). • 

Proof. Let § be the solution set of H. 

(4.5) 
x E § {o} x E [x] and f(x) = 0 

(~) x E [x] and f(x) = 0 and v E ¢(u) 

(4J5) X E [x] and f(x) = 0 and [v] c [¢] ([u] ). 

The replacement thus does not modify the solution set. 

( 4.17) 

• 
Remark 4.2 The resulting contractor may of course leave the box [x] un­
changed, in which case it will have failed to produce any useful result. • 

Example 4.3 Consider again the situation described in Example 4.1 with 
the subsolver ¢e' Theorem 4·1 and (4.16) yield 

[X2] = ]-00,0] n sin(lR) = [-1,0], 

[Xl] = ]-00,0] n lR =] - 00,0]. 

• 
Intervalization of Gauss elimination. An important class of CSPs for 
which intervalization of finite subsolvers can be employed is that of square 
linear systems of interval equations. The problem is to compute a box con­
taining the solution set of the CSP 

H. , . (A E [AJ, bE [bJ, p E [P]) 
Ap - b = 0 

( 4.18) 

with 

A= ( 4.19) 

The variables of H form the vector 

(4.20) 
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Remark 4.3 Even if the expression linear interval equations is classical in 
the interval community, the relations between the variables are bilinear, since 
the entries of A and p belong to x. We shall keep to the classical expression 
linear interval equations to be consistent with the literature, but shall talk 
of linear CSPs only when all the relations between the variables involved are 
linear. This is the case if the domain [AJ is a punctual matrix, which implies 
that the vector of all variables boils down to x = (PI, ... , Pn", bI , ... , bn,') T 
and thus that the products of variables disappear. • 

The classical Gauss elimination procedure can be used as a finite subsolver 
for (4.18). It makes it possible to compute p when the vector 

(4.21 ) 

is known. A simple implementation of this procedure is given in Table 4.2, 
but more efficient implementations could be considered. An inclusion function 
for this finite subsolver is given in Table 4.3. For the intervalization of ¢, the 
natural inclusion function was used. One may of course also use the centred 
form or any other type of inclusion function. 

Table 4.2. Gauss elimination 

Algorithm ¢(in: all, al2, ... ,anpnp ' bI , ... ,bnp ; out: PI, ... ,Pnp ) 

1 for i := 1 to up - 1 

2 if aii := 0, then (PI, .. . ,Pnp) := ]Rnp; return; 

3 for j := i + 1 to up 

4 O!j := aji/aii; bj := bj - O!j * bi ; 

5 for k := i + 1 to up 

6 ajk := ajk - O!j * aik; 

7 for i := up down to 1 

8 Pi := (b i - L?~i+I aij * pj) /aii. 

From Theorem 4.1, the operator 

CGE([AJ, [bJ,[p]) f-> ([AJ, [bJ,[pJ n [¢J ([AJ, [pJ, [b])) , ( 4.22) 

where [¢J (.) is given by Table 4.3 and GE stands for Gauss elimination, is 
a contractor for H. Because the condition 0 E [aiiJ is frequently satisfied for 
some i, CGE often fails to contract (4.18). CGE is efficient, for instance, when 
the interval matrix [AJ is close to the identity matrix. 

Note that the domain [bJ for b can be contracted by using the subsolver 

¢(A,p) = Ap. (4.23) 
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Table 4.3. Intervalization of Gauss elimination 

Algorithm [¢] (in: [all], [a12], ... , [anpnp ] , [b1], ... , [bnp ]; 
out: [Pl] , ... , [Pnp]) 

1 for i := 1 to np - 1 
2 if 0 E [aii] 
3 ([Pl], ... , [Pnp]) := lR'.np ; return; 

4 for j := i + 1 to np 

5 [aj] := [aji] / [aii]; [b j ] := [b j ] - [aj] * [bi ] ; 
6 for k := i + 1 to np 

7 [ajk] := [ajk]- raj] * [aik]; 
8 for i := np down to 1 

9 [pi] := ([bi ] - L:7=i+l [aij] * [pj]) / [aii] . 

Example 4.4 For 

( 
[4,5] [-1,1] [1.5,2,5]) 

[A] = [-0.5,0.5] [-7, -5] [1,2] , 

[-1.5, -0.5] [-0.7, -0.5] [2,3] 

[b] = (~~:~~) and [p] = (~=:::~) , 
[3,4] [-00,00] 

CGE([A], [b],[pl) yields: 

( 
[-1.81928,1.16873] ) 

[p] = [-0.414071,1.72523] . 

[0.700233,3.42076] 

(4.24) 

( 4.25) 

This example is treated in Exercise 11.25, page 333. It can be checked that if 
CGE is run again, the domain for p is not contracted any more. CGE is said 
to be idempotent. A contractor associated with the subsolver (4.23) would 
make it possible to contract [b], which might allow a new contraction of [p] 
by CGE. • 

4.2.3 Fixed-point methods 

A fixed-point subsolver for the CSP H : (f(x) = 0, x E [xl) is an algorithm 'lj; 
such that 

f(x) = 0 {o} x = 'lj;(x). ( 4.26) 

If the sequence 
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converges to a point Xoo for a given initial value Xo, then Xoo is a solution of 
f(x) = O. For instance, since for any a i=- 0 

x = a (x 2 - 2) + x -i=? x 2 - 2 = 0, 

a fixed-point subsolver for the CSP (x 2 - 2 = 0, x E m;.) is 

IjJ (x) = a (x2 - 2) + x. 

(4.28) 

(4.29) 

A fixed-point subsolver provides an iterative procedure that may converge 
towards one of the solutions of f(x) = O. For instance, when 7l,f = nx , a 
possible fixed-point subsolver for H is 

'¢(x) = x - Mf(x), (4.30) 

where M is any given invertible matrix, which may depend on x. 

Theorem 4.2 Let '¢ : m;.n, ---+ m;.n, be a fixed-point subs olver for H, and 
['¢] : [m;.n, ---+ [m;.n, be an inclusion function for '¢. A contractor for H is 
obtained by replacing [x] in H by 

[x]n['¢] ([x]). (4.31 ) 

This contractor will be called the fixed-point contractor associated with '¢. • 

Proof. Let § be the solution set of H. For any x E §, 

f(x) = 0 and x E [x] 
(4.26) 

-i=? x E [x] and x = '¢(x) 

=} x E [xl and x E ,¢([x]) 

=} x E [xl n ['¢]([x]). 

Therefore, § C [x] n ['¢]([x]). • 
To illustrate the approach, three fixed-point contractors are now pre­

sented, namely the interval Gauss-Seidel, Krawczyk and interval Newton 
contractors. 

Gauss-Seidel contractor. Consider again the CSP 

H. , . (A E [AJ, bE [bJ, p E [P]) 
Ap - b = 0 

( 4.32) 

where the matrix A is assumed to be square. A can be decomposed as the 
sum of a diagonal matrix and a matrix with zeros on its diagonal: 

A = diag (A) + extdiag (A). (4.33) 

Now, Ap - b = 0 is equivalent to 

diag (A) p + extdiag (A) p = b. (4.34) 
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Provided that diag(A) is invertible (i.e., A has no zero entry on its diagonal), 
this equation can be rewritten as 

p = (diag (A)) -1 (b - extdiag(A) p). ( 4.35) 

A fixed-point subsolver for H is thus 

(A) ( A ) 'lj; b = b . 

p (diag(A))-l(b- extdiag(A)p) 

( 4.36) 

An inclusion function for 'lj; is 

(
[A]) ( [A] ) 

['lj;] [b] = [b] . 

[p] (diag ([A]))-l ([b] - extdiag([A]) [p]) 

( 4.37) 

From Theorem 4.2, a contractor is given by 

(
[A]) ( [A] ) CGs: [b] f--+ [b] . 
[p] [p] n (diag ([A]))-l ([b]- extdiag([A]) [p]) 

( 4.38) 

CGS is the Gauss-Seidel contractor. As CGE , it is efficient, for example, when 
[A] is close to the identity matrix. 

Example 4.5 Consider again the situation of Example 4.4, where 

( 
[4,5] [-1,1] [1.5,2,5]) 

[A] = [-0.5,0.5] [-7,-5] [1,2] , 

[-1.5, -0.5] [-0.7, -0.5] [2,3] 

( 4.39) 

(
[3,4]) ([-10,10]) 

[b] = [0,2] and [p] = [-10,10] . 

[3,4] [-10, 10] 

(4.40) 

Then 

(
[0,2,0,25] [0,0] [0,0]) 

(diag ([A]))-l = [0,0] [-0.2, -0.1429] [0,0] 

[0,0] [0,0] [0.3333,0.5] 

(4.41 ) 

and 
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( 
[0,0] [-1,1] [1.5,2,5]) 

extdiag([A]) = [-0.5,0.5] [0,0] [1,2] . 

[-1.5, -0.5] [-0.7, -0.5] [0,0] 

( 4.42) 

CGS : ([A], [b], [p l) yields 

( 
[-8,9.75] ) 

[p] = [-5.4001,5.0001] . 

[-9.5,10] 

( 4.43) 

Table 4.4. Iterations of the Gauss-Seidel contractor 

k [PI] (k) [P2] (k) [P3] (k) 
0 [-10,10] [-10,10] [-10,10] 

1 [-8,9.75] [-5.40001,5.00001] [-9.5,10] 

2 [-6.85001,8.28751] [-5.17501,4.97501] [-6.39001,10] 

5 [-5.66909,5.24052] [-3.03602,4.03031] [-4.65079,7.84124] 

10 [-3.82831,3.40254] [-1.86306, 2.85556] [-2.27608,5.79364] 

20 [- 2.48786, 2.03998] [-0.994123,2.00077] [-0.775045,4.29151] 

100 [- 2.08452, 1.63673] [-0.736983,1.74357] [-0.321329,3.83781] 

Let us iterate contraction by CGs . The results obtained for some values of k 
are given in Table 4.4, where [p] (k) is the box obtained for [p] at iteration k. 
For this example, the results obtained are less accurate than those obtained by 
CGE in Example 4.4, page 72, but this is not always the case. This example 
is treated in Exercise 11.26, page 335. • 

Krawczyk contractor. Consider the CSP 1i : (f(x) = 0, x E [xl), where 
nf = nx and f is assumed to be differentiable. Since, for any invertible matrix 
M, f(x) = 0 -i=? x - Mf(x) = x, the function 'ljJ(x) = x - Mf(x) is a fixed­
point subsolver for 1i. The centred inclusion function for 'ljJ is 

['ljJ]([xl) = 'ljJ(xo) + [J"p]([x]) * ([x] - xo), (4.44) 

where [J"p] is an inclusion function for the Jacobian matrix of 'ljJ and 
Xo = mid([x]) (recall that mid([xl) denotes the centre of [xl). From The­
orem 4.2, the following fixed-point contractor is obtained, classically called 
the Krawczyk contractor (Neumaier, 1990): 

CK : [x] f---+ [x] n ('ljJ(xo) + [J"p] ([xl) * ([x] - xo)). ( 4.45) 

Replace 'ljJ(x) by x - Mf(x) in (4.45) to get 

CK : [x] f---+ [x] n (xo-Mf (xo) + (I - M[Jf]([x])) * ([x] - xo)), (4.46) 
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where I is the identity matrix and [J f] is an inclusion function for the Jacobian 
matrix of f. The matrix M is often taken to be the inverse J f 1 (xO) of the 
Jacobian matrix of f, computed at Xo. It can be viewed as a preconditioning 
matrix (see Section 4.3.2, page 84). An algorithm implementing CK is shown 
in Table 4.5. 

Table 4.5. Krawczyk contractor 

Algorithm CK(in: f; inout: [xl) 

1 Xo:= mid([x]); 

2 M:= J;:-l(XO); 
3 [J..p]:= I - M[Jf]([x]); 

4 [r]:= xo-Mf(xo) + [J..p] * ([x]- xo); 
5 [xl:= [xl n [rl· 

Example 4.6 Consider the CSP H : (f(x) = 0, x E [xl), described by 

H has a unique solution x = (0,0) T. The Jacobian matrix for f is 

(
2X1 

Jf = 
-2 

-4 ) 
2X2 + 4 ' 

and the preconditioning matrix M is given by 

-1 (-0.525 M = Jf (0,0.1) = 
-0.25 

The Krawczyk contractor yields: 

CK ([xl) ( [-0.0555,0.0455]) 
[-0.005,0.005] , 

( 
[-0.00258,0.00255]) , 

CK (CK ([xl)) 
[-0.00128,0.00127] 

CK(CK(CK([Xl))) = ([-0.00000818,0.00000817]). 
[-0.00000329,0.00000329] 

(4.4 7) 

( 4.48) 

( 4.49) 

(4.50) 

which converges to the unique solution. This example is treated in Exer­
cise 11.27, page 335. • 
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Newton contractor. Consider again the CSP 1i : (f(x) = 0, x E [xl), 
where nf = nx and the fixed-point subsolver given by 'ljJ(x) = x - Mf(x), 
see (4.30). If f(x) is affine, say f(x) = Ax + b, then the fixed-point sub­
solver becomes 'ljJ(x) = x - M(Ax + b). For M = A -I, the sequence xk+1 = 

'ljJ(Xk) converges towards the solution x* = -A -lb in one step. Now, 
if f is non-linear but differentiable, it can be approximated by its first­
order Taylor expansion to get an approximate fixed-point subsolver 'ljJ(x) = 

x - J f 1 (x) * f(x). The sequence (4.27) then leads to the Newton method. 
The inclusion function 

['ljJ]([xl) = [x] - [Jfr l ([xl) * [f]([xl) (4.51 ) 

yields the Newton contractor (see Theorem 4.2) 

CN: [x] f-> [x] n ([x]- [Jfr l ([xl) * [f]([xl)) . ( 4.52) 

Other inclusion functions, such as the centred form, could of course be used. 
Classically, a more efficient version of this contractor is used, as presented in 
Section 4.3.3, page 86. 

4.2.4 Forward-backward propagation 

The forward-backward contractor C 1 T (Benhamou et al., 1999; J aulin, 2000b) 
is based on constraint propagation (Waltz, 1975; Cleary, 1987; Davis, 1987). 
This contractor makes it possible to contract the domains of the CSP 1i : 
(f(x) = 0, x E [xl) by taking into account anyone of the nf constraints in 
isolation, say fi (Xl, ... ,XnJ = o. Note that nf is no longer necessarily equal 
to nx . The next example illustrates how a given constraint can be used to 
contract domains. 

Example 4.7 Consider the constraint X3 = XIX2 and the box [x] = [1,4] x 
[1,4] x [8,40]. This constraint can be rewritten in three ways: 

Xl = X3/X2, 

X2 = X3/Xl, (4.53) 

Each of these equations has been obtained by isolating one of the variables in 
the initial constraint. Three finite subsolvers are thus obtained: 

¢l(in: X2,X3; out: xI) {Xl:= X3/X2 ifx2 # 0, Jl{ otherwise}, 

¢2(in: Xl,X3; out: X2) {X2:= X3/Xl if Xl # 0, Jl{ otherwise}, 

¢3(in: Xl,X2; out: X3) {X3:= XIX2}. 

(4.54) 

An intervalization of these finite subsolvers leads to the following contractions 
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([X3] / [X2]) n [Xl] 

([X3] / [Xl]) n [X2] 

([Xl] * [X2]) n [X3] 

[8,40] 
-[ -] n [1,4] = [2,4], 

1,4 
[2,4], 

([1,4] * [1,4]) n [8,40] = [8,16]. 

The new domain is thus [2,4] x [2,4] x [8,16]. 

(4.55) 

• 
Assume that each constraint has the form fi (Xl, ... ,XnJ = 0, where fi 

can be decomposed into a sequence of operations involving elementary op­
erators and functions such as +, -, *, /, sin, cos ... It is then possible to de­
compose this constraint into primitive constraints (Lhomme, 1993). Roughly 
speaking, a primitive constraint is a constraint involving a single operator 
(such as +, -, * or /) or a single function (such as sin, cos or exp). For in­
stance the constraint Xl exp(X2) + sin(x3) = 0 can be decomposed into the 
following set of primitive constraints 

1 
al = exp (X2) , 

a2 = Xlal, 

a3 = sin (X3) , 

a2 + a3 = O. 

( 4.56) 

The domains associated with all intermediate variables (here aI, a2 and a3) 
are ]-00,00[. A method for contracting H with respect to the constraint 
Xl exp(X2) + sin(x3) = 0 is to contract each of the primitive constraints 
in (4.56) until the contractors become inefficient. This is the principle of 
constraint propagation (Waltz, 1975), initially employed without the help of 
interval analysis. 

Forward-backward propagation selects the primitive constraints to be 
used for contractions in an optimal order in the sense of the size of the 
domains finally obtained (Benhamou et al., 1999). This is illustrated by the 
following example. 

Example 4.8 Consider the equation 

f(x) = 0 (4.57) 

where 

( 4.58) 

The domains for the variables Xl, x2 and X3 are denoted by [Xl] , [X2] and [X3]' 
To obtain an algorithm contracting these domains, first write an algorithm 
that computes y = f(x), by a finite sequence of elementary operations, such 
as the one suggested by (4.56) 

al := exp (X2) ; 

a2 := Xlal; 

a3 := sin (X3) ; 

Y := a2 + a3· 

(4.59) 
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Then write an interval counterpart to this algorithm: 

1 [01] := exp ([X2]); 

2 [02] := [Xl] * [01]; 

3 [03] := sin ([X3]) ; 
(4.60) 

4 [y] := [02] + [03]. 

Since f(x) = 0, the domain for y should be taken equal to the singleton {O}. 
One can thus add the step 

5 [y]:= [y] n {O}. (4.61 ) 

If [y] as computed at Step 5 turns out to be empty, then we know that the CSP 
has no solution. Else, [y] is replaced by {O}. Finally, a backward propagation 
is performed, updating the domains associated with all the variables to get 

6 [02] := ([y] - [03]) n [02]; I I see Step 4 
7 [03] := ([y] - [02]) n [03]; I I see Step 4 
8 [X3] := sin-1([a3]) n [X3]; II see Step 3 

(4.62) 
9 [01] := ([a2]/[X1]) n [a1]; I I see Step 2 

10 [Xl] := ([a2]/[a1]) n [Xl]; I I see Step 2 

11 [X2] := log([a1]) n [X2]. I I see Step 1 

At Step 8, sin-1([a3]) n [X3] returns the smallest interval containing {X3 E 
[X3] I sin(x3) E [a3]}. The associated contractor is given in Table 4·6. • 

Table 4.6. Forward-backward contractor 

Algorithm CU(inout: [x]) 

1 [al]:= exp ([X2]) ; 
2 [a2]:= [Xl] * [al]; 
3 [a3]:= sin ([X3]) ; 
4 [y]:= [a2] + [a3]; 
5 [y]:= [y] n {O}; 
6 [a2]:= ([y]- [a3]) n [a2]; 
7 [a3]:= ([y]- [a2]) n [a3]; 
8 [X3]:= sin- l ([a3]) n [X3]; 
9 [al]:= ([a2]/[xl]) n [all; 

10 [Xl]:= ([a2]/[al]) n [Xl]; 
11 [X2]:= log([al]) n [X2]. 
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An example of the design of a forward-backward contractor for a function 
defined by an algorithm containing loops will be presented in Section 6.4.3, 
page 171, in the context of state estimation. The next example illustrates the 
performances of Ct r on a linear esp. See also Exercise 1l.11, page 318. 

Example 4.9 Consider the CSP 

(

Xl + 2X2 - X3 = 0 ) 
1i: Xl - X2 - X4 = 0 . 

[x] E [-10,10] x [-10,10] x [-1,1] x [-1,1] 

Using C H, the constraint Xl + 2X2 - X3 = 0 yields 

[Xl] = [-10, 10]' 

[X2] = [_121, 121], 

[X3] = [-1,1], 

and the constraint Xl - X2 - X4 = 0 yields 

[X2] = [_121, 121], 

[X4] = [-1,1]. 

(4.63) 

(4.64) 

( 4.65) 

( 4.66) 

( 4.67) 

( 4.68) 

(4.69) 

Iterating this procedure, one would like the sequence of boxes [x](k) to con­
verge towards the smallest possible domain. Unfortunately, this is not so. The 
results of the contractions for some values of the iteration counter k are pre­
sented in Table 4.7. 

Table 4.7. Iterations of the forward-backward contractor 

k [Xl] (k) [X2] (k) [X3] (k) [X4] (k) 
0 [-10,10] [-10,10] [-1,1] [-1,1] 

1 [-6.5,6.5] [-5.5,5.5] [-1,1] [-1,1] 

2 [-4.75,4.75] [-3.75,3.75] [-1,1] [-1,1] 

5 [-3.21875,3.21875] [-2.21875,2.21875] [-1,1] [-1,1] 

10 [-3.00684, 3.00684] [-2.00684,2.00684] [-1,1] [-1,1] 

00 [-3,3] [-2,2] [-1,1] [-1,1] 

C t r comes to a deadlock. A possible way out is to bisect the search box into 
two boxes: 

{ 
[x](l) = [-10,0] x [-10,10] x [-1,1] x [-1,1]' 

[x] (2) = [0,10] x [-10,10] x [-1,1] x [-1,1], 
(4.70) 
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and to apply ell to each of these boxes in turn. For [x](I) one gets 

k [Xl] (k) [X2] (k) [X3] (k) [X4] (k) 

° [-10,0] [-10,10] [-1,1] [-1,1] 

1 [-1.5,0] [-0.5,1] [-1,1] [-1,1] 
(4.71) 

00 [-1.5,0] [-0.5,1] [-1,1] [-1,1] 

and for [x] (2) 

k [Xl] (k) [X2] (k) [X3] (k) [X4] (k) 

° [0,10] [-10,10] [-1,1] [-1,1] 

1 [0,1.5] [-1,0.5] [-1,1] [-1,1] 
(4.72) 

00 [0,1.5] [-1,0.5] [-1,1] [-1,1] 

The reunification of the domains obtained for [x] (1) and [x] (2) provides the 
domain 

[x] = [-1.5,1.5] x [-1,1] x [-1,1] x [-1,1], (4.73) 

which corresponds to the optimal contraction of'H (Jaulin, 2000b), i.e., [x] 
is the interval hull of the solution set. • 

Remark 4.4 On the CSP (4.32), ell applied for each equation of the system 
Ap = b leads to the same contraction for [p] as eGS, but it has the advantage 
over eGS of also providing contractions for [A] and [b]. • 

4.2.5 Linear programming approach 

Consider again the problem of contracting the domains of the CSP 

(
AP - b = 0 ) 

'H: A E [A] , b E [b] , p E [p] , 
(4.74) 

where now A is not necessarily square. Finding the smallest box [p] that 
contains all the vectors p consistent with 'H is known to be NP-hard in the 
general case (Rohn, 1994). We shall consider two special cases for which this 
problem can be transformed into 2np linear programming problems, so that 
efficient linear programming techniques can be used. The resulting contractor 
will be denoted byeLP . 

Case 1: All components of p are assumed to be positive (p > 0). The vector 
p E [p] is then consistent with 'H if and only if 

==JA E [A] , ==Jb E [b] I Ap - b = 0 

B ==JA E [A] I Ap E [b] 

B ==JA E [A] I Ap ? hand Ap ~ b. 
(4.75) 
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Now, since p > 0, the following equivalences hold true 

(::3A E [A] I Ap ~ h) ¢? Ap ~ h, 
(::3A E [A] I Ap ~ b) ¢? Ap ~ b. 

(4.76) 

( 4.77) 

Remark 4.5 If at least one component of p is not positive, the last two 
equivalences are no longer true. For instance, assume that A is scalar and 
equal to the real number a, and take (4.76) with [a] = [-4, -1], 1.2 = 4 and p = 

-2. The proposition (::3a E [-4, -1]1 ap ~ 1.2) is true (take a = -3), whereas 
the proposition (ap ~ 1.2) is false (-I * - 2 ~ 4 is false). • 

Therefore, p E [p], where [Pi] C lR+ (i = 1, ... , np), is consistent with H if 
and only if 

Ap ~ hand Ap ~ b. (4.78) 

The smallest box [q] containing all the vectors p that are consistent with H 
can therefore be computed by solving the following 2np linear programming 
problems: 

(4.79) 

where opt is alternatively min and max to obtain the coordinates of.90 and 
q. 

Case 2: The domain [A] is assumed to be punctual (i.e., A = A). The 
vector p E [p] is consistent with H if and only if there exists b E [b] such 
that Ap - b = 0, i.e., 

::3b E [b] I Ap - b = ° ¢? Ap E [b] ¢? Ap ~ hand Ap ~b. (4.80) 

The smallest box [q] containing all the vectors p that are consistent with H 
can therefore be computed by solving the following 2np linear programming 
problems: 

(4.81 ) 

where opt is again alternatively min and max. 

4.3 External Approximation 

Contractors based on the basic contractors of Section 4.2 and able to contract 
a much larger class of CSPs will now be presented. 
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4.3.1 Principle 

A subvector p of x is consistent with 1i : (f(x) = 0, x E [xl) if p can be 
supplemented with another subvector to form a solution vector x (i.e., x E §). 
Let 1i1 and 1i2 be two CSPs and x be the vector of all variables of 1i1. 

We shall write 1i1 =} 1i2, if 

• all the variables of 1i1 are also variables of 1i2 and 
• if x is a solution vector of 1i1 then it is consistent with 1i2 . 

The notation 1i1 =} 1i2 indicates that the CSP 1i2 can be deduced from the 
CSP 1i1 (for instance by introducing additional variables taking the values 
of some expressions in constraints of 1iI). We shall say that 1i2 is an external 
approximation of 1i I, because the solution set of 1i2 is guaranteed to contain 
that of 1i1 . 

Example 4.10 Consider the three CSPs 

(
3XI - exp(xI) = 0) , 1i1 : 
Xl E [0,2] 

(
3XI - X2 = a ) 

1i2 : X2 - exp(xI) = a , 
Xl E [0,2]' X2 E [-(X), +00] 

1i3 · . 
. (3XI - exp(l) - exp(e)(XI -1) = 0) 

Xl E [0,2], e E [0,2] 

(4.82) 

Check that 1i1 =} 1i2 and 1i1 =} 1i3. The fact that 1i1 =} 1i3 is a direct 
consequence of the mean-value theorem, which implies that for any Xl E [0,2], 
there exists e E [0,2] such that exp(xd = exp(l) + exp(e)(XI - 1). • 

Contracting the domains of a CSP 1i via an external approximation con­
sists of three steps: 

• finding an external approximation 1i1 of 1i for which basic subsolvers are 
efficient, 

• contracting 1i1 
• updating the domains for 1i. 

The approach will first be illustrated through two classical methods, namely 
the preconditioning of linear interval systems in Section 4.3.2 and the interval 
Newton iteration (or Newton contractor) in Section 4.3.3, before presenting 
some alternative approaches in Sections 4.3.4 and 4.3.5. 
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4.3.2 Preconditioning 

Consider the CSP H : (Ap - b = 0, A E [A] ,p E [p] , b E [b]), and assume 
that [A] is such that the Gauss-Seidel contractor presented in Section 4.2.3, 
page 73, and the Gauss elimination contractor presented in Section 4.2.2, 
page 70, are not efficient. If Ao is some invertible matrix in [AJ, then 

( 

( i) A' = Ao 1 A ) 
Ap-b=O (ii) bl=Aolb 

(p E [p], A E [A], bE [b]) =} (iii) A'p - b ' = 0 . 

(iv) p E [p],A E [A], bE [b] 

(4.83) 

A basic contraction over the constraints (i) and (ii) provides domains [A'] 
and [b'] for A' and b'. Provided that w([A]) is small enough and that Ao 
is well conditioned, the interval matrix [A'] is close to the identity matrix. 
Contractors such as CGS or CGE are then likely to be efficient on the constraint 
(iii). This is illustrated by the contractor CGSP (GSP for Gauss-Seidel with 
preconditioning) of Table 4.8. 

Table 4.8. Gauss-Seidel contractor with preconditioning 

Algorithm CGsp(inout: [A] , [p], [b]) 

1 Ao:= mid([A]); 

2 [A']:= AOl [A] ; 

3 [b' ]:= AOl [b] ; 

4 CGS(A'p - b ' = 0, [A'], [p], [b']); 

5 [b]:= Ao [b'] n [b] ; 

6 [A]:= Ao[A'] n [A]. 

Remark 4.6 If CGE was used at Step 4 instead of CGS, the contractor of 
Table 4.8 would become CGEP (GEP for Gauss elimination with precondi­
tioning). • 

Example 4.11 Consider again the situation of Example 4.4, page 72, where 

( 
[4,5] [-1,1] [1.5,2.5]) 

[A] = [-0.5,0.5] [-7,-5] [1,2] 

[-1.5, -0.5] [-0.7, -0.5] [2,3] 
and [b] = (~~: ~j) , 

[3,4] 

(4.84) 

but assume that 
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[p] = (~=~~: ~~~) . 
[-10,10] 

( 4.85) 

At Step 2, [AI] = (mid ([AJ))-l * [A] is given by 

( 
[0.81909,1.18092] [-0.21869,0.21869] [-0.18092,0.18092]) 

[-0.14248,0.14248] [0.79556,1.20445] [-0.14248,0.14248] , 

[-0.23659,0.23659] [-0.15110,0.15110] [0.76342,1.23659] 

and at Step 3, 

( 
[-0.0755468,0.302187]) 

[hi] = (mid ([AJ)) -1 * [h] = [-0.0231942,0.437376] . 

[1.24056,1.74951] 

CGs(A/p - hi = 0, [AI], [p], [hiD finally yields 

(
[-4.97088,5.24758]) 

[p] = [-3.611,4.13162] . 

[-3.4532,7.3698] 

Table 4.9. Iterations of Gauss-Seidel contractor with preconditioning 

k [PI] (k) [P2] (k) [P3] (k) 
0 [-10,10] [-10,10] [-10,10] 

1 [-4.97088,5.24758] [-3.61101,4.13162] [-3.45313,7.36981] 

2 [-2.82313,3.09983] [- 2.28883, 2.80945] [-0.818916,4.73559] 

5 [-1.26437, 1.54107] [-0.939061, 1.45968] [0.474056,3.14881] 

10 [-1.10986, 1.38656] [-0.813738, 1.33436] [0.573876, 2.98711] 

20 [-1.10698, 1.38368] [-0.811386, 1.33201] [0.575741,2.98409] 

( 4.86) 

( 4.87) 

( 4.88) 

The results of Table 4.9 are obtained by iterating the application of CGSP . 

They are better than those obtained without preconditioning in Example 4.5, 
page 74. This example is treated in Exercise 11.28, page 336. • 

Example 4.12 If now [p] is given, as in Example 4.4, by 

(
[-00,00]) 

[p] = [-00,00] , 

[-00,00] 

( 4.89) 
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CGSP cannot contract [pl. On the other hand, by replacing CGS by CGE in 
Step 4 of Table 4·8, one obtains the contractor C GEP , which contracts [p] zn 
one iteration into 

( 
[-l.10698, l.38367] ) 

[p] = [-0.785241, l.33201] . 

[0.758351,2.98409] 

(4.90) 

This result is slightly better than that obtained by CGS in Example 4.4. No 
further contraction can be performed on [p] by iterating CGE . The results 
obtained by CGEP in one interation for this example are better than those 
obtained by C GSP in 20 iterations (see Table 4.9). On the other hand, for 
many examples, CGEP is unable to contract [p] whereas CGSP is efficient. • 

4.3.3 Newton contractor 

This contractor applies to the CSP 

H: (f(x) = O,X E [xl), (4.91) 

with nf = nx (Moore, 1979; Hansen, 1992a). It is not a direct intervalization 
of the Newton fixed-point method, but can be interpreted as an improved 
version of the contractor presented in Section 4.2.3. It is very efficient when 
f is smooth over the domains of the CSP and when these domains are small. 
Let Xo be any vector in [x] (its centre, for instance), then a componentwise 
application of the mean-value theorem to (4.91) yields, with obvious notation, 

( f(XO) + Jf(el" .enf)(x - xo) = 0) 
x E [x], el E [x] ... en, E [x] 

(4.92) 

This yields the contractor of Table 4.10, denoted by CN (for Newton contrac­
tor). 

Remark 4.7 The order in which the constraints are written, which was ar­
bitrary in (4.92), is significant in the implementation ofCN . • 

Remark 4.8 From a geometrical point of view, the principle of this con­
tractor is to enclose the graph of each coordinate function fi (x) over [x] 
between two hyperplanes and to solve the associated interval linear system. 
This can be viewed as a linearization where non-linearity is transformed into 
uncertainty. • 
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Table 4.10. Newton contractor 

Algorithm CN (in: f; inout: [xl) 

1 Xo:= mid([xl); 

2 [A]:= [Jr] ([xl); 

3 [p]:= [x] - Xo; 

4 CGSP (Ap + f(xo) = 0, A E [A] ,p E [p]); 

5 [x]:= [x] n ([p] + xo) . 

4.3.4 Parallel linearization 

In Section 4.3.3, the number nf of constraints was assumed to be equal to the 
dimension nx of x. Assume now that nf and nx may differ. The contractor to 
be presented handles all the constraints simultaneously, using a parallel lin­
earization approach (Kolev, 1998; Jaulin, 200lb). The principle is to enclose 
each Ii (x) over [xl between two parallel hyperplanes (contrary to the interval 
Newton method, where these hyperplanes are not parallel). The function f is 
then bracketed over [xl according to 

Ax + Q ~ f (x) ~ Ax + b. (4.93) 

This bracketing can again be found by using the mean-value theorem, pro­
vided that f is differentiable. Assume that Xo is a point in [x], for instance 
its centre. Then there exists e E [xl such that 

f(x) = f(xo) + Jf(e)(X - xo) 

-i=? f(x) = f(xo) + Jf(XO)(X - xo) + Jf(e)(X - xo) - Jf(XO)(X - xo) 

-i=? f(x) = Jf(XO)X + f(xo) - Jf(XO)XO + (Jf(e) - Jf(XO))(x - xo). 

Equivalently, one may write f(x) = Ax + b, with 

A = Jf(XO) 

and 

b = f(xo) - Jf(XO)XO + (Jf(e) - Jf(XO)) (x - xo). 

(4.94) 

(4.95) 

( 4.96) 

Based on (4.94), an external approximation of 'H : (f(x) = 0, x E [xl) is thus 

[
AX+b=O 1 
A = Jf(XO) 

b = f(xo) - Axo + (Jf(e) - A) (x - XO) . 

x E [xl,e E [xl 

( 4.97) 

The resulting contractor by parallel linearization is denoted by CII' An imple­
mentation of CII is given in Table 4.11. The contractor CLP called at Step 4 by 
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Table 4.11. Contractor by parallel linearization 

Algorithm CII (in: f; inout: [pl) 
1 Xo:= mid([xl); 
2 A:= Jf(xo); 

3 [b]:= f(xo) - Axo + ([Jf] ([xl) - A) ([x] - xo); 
4 CLP(Ax-b=D,XE[x],bE[bl). 

CII performs a contraction of the domain for x via linear programming (see 
Section 4.2.5, Case 2). 

To quantify the quality of the linear bracketing (4.93), let us compute the 
ratio w ([bl) /w ([xl), where [b] is the box computed at Step 3 of CII' This 
ratio is given by 

w ([bl) 
w ([xl) 

w (([JfJ ([xl) - Jf (xo)) * ([x] - xo)) 
w ([xl) 

(4.98) 

so w ([bl) /w ([xl) tends to 0 with w ([xl), which means that the bracketing 
becomes more and more accurate when [x] converges to a point. Figure 4.2 
illustrates the parallel linearization ax + [b] = ~x + [i, 1] of a function f over 
[x] = [-2,2]. 

f(x) 

-2 .. ' -1 o 1 2 x 

Fig. 4.2. Parallel linearization in the scalar case 

4.3.5 Using formal transformations 

Algebraic manipulation of the existing constraints makes it possible to build 
a CSP HI that is an external approximation of H : (f (x) = 0, x E [xl), 
i.e., such that H =? HI. Except in the polynomial case (Marti and Rue­
her, 1995; Benhamou and Granvilliers, 1997), no general formal method seems 
to have been developed to build such external approximations, but it is good 
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practice to design HI in such a way that it involves few variables to facilitate 
processing by bisection if it turns out to be needed. The idea is illustrated in 
the following example. 

1 

o 

o 

[x] (0) 

0.5 
(a) 

1 

, , 

1 

o 
[x](l) 

Fig. 4.3. The CSP of Example 4.13 has an empty solution set; (a) contractors 
such as CII, CN or CH fail to contract [x](O); (b) a formal transformation makes it 
possible to bypass the deadlock 

Example 4.13 Consider the CSP 

H: 

Xl - X2 = 0 

xi + x~ -1 = 0 

X2 - sin( 7TXI) = 0 

Xl - sin(7Tx2) = 0 

X2 - xi = 0 

Xl E [0,1]' X2 E [0, 1] 

(4.99) 

Contractors based on linearization, such as CII or CN are not efficient on H 
because the domains are too large. C 1 r is not efficient either, because each 
of the five constraints is consistent with the box [x](O) = [0,1] x [0,1] (see 
Figure 4.3a). Now, by summing the first two constraints, one gets the new 
constraint xi + x~ - 1 + Xl - X2 = O. Therefore, the CSP 

( ( 1)2 ( 1)2 3 ) Xl + - + X2 - - - - = 0 H . 2 2 2 
1· Xl E [0,1]' X2 E [0, 1] . 

( 4.100) 

satisfies H =? HI. Constraint propagation can be used to contract [Xl] and 
[X2] in HI. The primitive constraints associated with the constraint of HI are 
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1 
= Xl + 2' 

1 
= X2 - 2' 

ai, 
a~, 
3 
2' 

They are used to contract the domains for Xl, X2, a1, a2, a3 and a4 as detailled 
below 

a1 = Xl + ~ and Xl E [0, 1] 

a2 = X2 - ~ and X2 E [0, 1] 

a3 =ai anda1 E [~,~l 

=? a1 E [~, ~l ' 
=? a2 E [- ~, ~ 1 ' 
=? a3 E [~, ~ 1 ' 

a4=a§ anda2E [-~,~l =?a4E [O,~l, 

a3 = ~ - a4, a4 E [0, ~l and a3 E [~,~] =? a3 E [~, ~l ' 
a4 = ~ - a3, a3 E [~,~] and a4 E [O,~] =? a4 E [0, ~l ' 
a~ = a4, a2 E [-~, ~l and a4 E [0, ~l =? a2 E [-~, ~l ' 
ar = a3, a1 E [~, ~l and a3 E [~, ~l 

X2 = a2 + ~ and a2 E [- ~, ~ 1 
Xl = a1 - ~ and a1 E [II, VI] 

=? a1 E [II, VI] , 
=? X2 E [0,1]' 

, [Is 1 (3 1] =? Xl E V 4 - 2' V 2 - 2 . 

No more contraction can be performed. The resulting contracted box is 

[x](l) = [~ - ~,VI - ~] x [0,1] 

The contraction is optimal, as illustrated by the box [x](l), in dark grey in 
Figure 4.3b. This is because Xl and X2 occur only once in the constraint of 
H 1. The contracted domain [x] (1) can then be transmitted back to H to bypass 
the deadlock. The first constraint of H makes it possible to contract [x] (1) 
down to [x](2) and the second constraint to contract [x](2) down to [x](3), 
see Figure 4.3b. Few more iterations are necessary to get empty intervals .• 

4.4 Collaboration Between Contractors 

4.4.1 Principle 

Several contractors for esps of the form H : (f(x) = 0, x E [xl) have been 
presented. None of them can claim to be universally better than the others. 
What is important is their complementarity. A good contractor is one that 
is able to contract the esp, especially when the others are not. Among the 
contractors presented up to now, CGE , CN , CGSP and CII are efficient only if 
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the size of [xl is small, whereas Cl r is more efficient if [xl is large. CGE, CGSP 
and CLP consider constraints only of the form Ap = b, whereas CII , C 1 rand 
CN can deal with much more general non-linear constraints. 

In this section, the available contractors will be made to collaborate in 
order to build a more efficient contractor, inheriting the qualities of its con­
stituents. Any new contractor with desirable features can be appended to the 
resulting contractor. 

The basic idea is taken from interval constraint propagation (ICP), an ex­
tension to intervals of constraint propagation as initially developed by Waltz 
(1975), which is akin to a relaxation method. This extension was indepen­
dently proposed by Cleary (1987) and Davis (1987). The idea is to contract 
the domains of the variables of the CSP by using all the available contrac­
tors successively. The order in which the contractors are selected forms the 
strategy (Montanari and Rossi, 1991). 

Let us first recall some definitions (Benhamou and Granvilliers, 1997). A 
contractor C satisfies 

\f[x], C ([xl) c [xl ( contractance ), 
(4.101) 

\f[x], [xl n § c C([x]) (correctness), 

where § is the solution set of H. Moreover, a contractor is monotonic if 

[xl C [Yl =? C([xl) C C([y]). ( 4.102) 

All the contractors presented in this chapter are monotonic (Granvilliers, 
1998). A contractor C is idempotent if 

Co C([x]) ~ C(C ([xl)) = C ([xl) . ( 4.103) 

A fixed point of a contractor C is a box [xl that satisfies 

C([xl) = [xl· (4.104) 

If Cl and C2 are monotonic, then the contractor Cl ,2 ~ Cl 0 C2 ([xl)) is also 
monotonic. Even if Cl and C2 are idempotent, Cl ,2 may not be idempotent. 
A store is a set of contractors and a strategy is a sequence of contractors 
belonging to the store. Consider, for instance, a store .c consisting of four 
contractors Cl , C2 , C3 and C4 : 

A cyclic strategy associated with .c corresponds to the sequence 

S = {Cl,C2,C3,C4,Cl,C2,C3,C4,Cl,C2,C3,C4 ... }. ( 4.105) 

A strategy S is fair if, for any k ~ 1 and any contractor C in the store, there 
exists kl ~ k such that C is at rank kl . 

The contractor C= of Table 4.12 corresponds to the application of all the 
contractors of the list .c according to the strategy S. For a store of monotonic 
contractors and a fair strategy, it is trivial to prove that C= is monotonic and 
idempotent. 
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Table 4.12. Contractor combining all the contractors of the store f: according to 
a strategy S 

Algorithm C= (inout: [xl) 

1 k=O;[x](O)=[x]; 
2 repeat 

3 k := k + 1; 

4 choose the contractor C in f: according to the strategy S; 

5 [x](k) := C ([x](k - 1)); 
6 until [x] (k) is a fixed point of all contractors in f:; 

7 [x]:= [x](k). 

Theorem 4.3 The algorithm Coo([x]) converges to the largest box [z] in­
cluded in [x] such that \lC in L, C([z]) = [z], provided that all sets (or con­
straints) involved are closed. • 

Proof. Denote by [x](k) the box at iteration k. Let us first prove that Coo ([x]) 
contains [z]. Since [z] C [x] (0) and since all contractors of the store are 
monotonic, 

[z] C [x](k) =? C ([z]) C C ([x](k)) =? [z] C [x](k + 1), (4.106) 

for any contractor C of L, then [z] C [x](oo) = Coo ([x]). Let us now prove that 
Coo([x]) = [z]. For all C in L, since the strategy is fair, C (Coo ([x])) = Coo ([x]), 
i.e., Coo ([x]) is a fixed point of all contractors in L. Therefore [z] = Coo ([x]) .• 

This result has been established by Montanari and Rossi (1991) for CSPs 
with finite domains, see also Arsouze et al. (2000). Here, it has been extended 
to continuous domains. It shows that the result obtained by Coo is indepen­
dent of the strategy used, provided that it is fair. In our implementation, 
a cyclic strategy has been chosen because it is simple to implement as it 
does not require any bookkeeping on dynamical structures involving the use 
of pointers. More efficient strategies can be found in Montanari and Rossi 
(1991). In practice, the loop in the algorithm of Table 4.12 is stopped when 
the contractions are deemed too small. 

The algorithm of Table 4.12 will now be illustrated on an example where 
all constraints have been chosen linear to facilitate calculation by hand. For 
simplicity, the store contains only contractors based on forward-backward 
propagation. There are only two variables to allow a visual presentation of 
the contractions and to illustrate the deadlock effect. 

Example 4.14 Consider the two following CSPs, both to be contracted with 
respect to their two equality constraints with C 1 r. 
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(

Xl + X2 : 0 ) 
Xl - 2X2 - 0 

111 : 
Xl E [-10,10] 

X2 E [-10,10] 

(

Xl + X2 = 0 ) 
Xl - X2 = 0 

and 112 : . 
Xl E [-10,10] 

X2 E [-10,10] 

(4.107) 

The store contains two contractors, namely Cli applied to the first equation 
(contractor CI ) and C 11 applied to the second equation (contractor C2 ). A 
cyclic strategy is chosen. For 111 , Coo converges to the solution x = 0 (Fig­
ure 4.4a), but Coo fails to contract 112. The reason for this failure is that 
the box [-10,10] x [-10,10] is consistent with each constraint taken indepen­
dently. For a visual interpretation of this deadlock, consider the sets associ­
ated with the two constraints of 112 : 

lEI = {(Xl,X2) I Xl + X2 = O}, 

1E2 = {(Xl,X2) I Xl - X2 = O}. 
( 4.108) 

Cl ([xl) returns the smallest box that contains lEI n [x]. But since lEI intersects 
all faces of [x] (see Figure 4.4b), this smallest box is [x] itself (i.e., Cl([x]) = 
[xl). The situation is similar with 1E2' i.e., C2([x]) = [x]. As illustrated by 
Figure 4.4a, the deadlock cannot occur with 111. Note that the contractors 
Cl , C2 and Coo are all idempotent for 111 and 112. The composition Cl 0 C2 is 
idempotent for 112 but not for 111 . • 

-10 

10 

-10 

(a) 

[x] 

-10 

10 

-10 

(b) 

[x] 

Fig. 4.4. Interpretation of forward-backward propagation; (a) C= contracts [xl 
down to the singleton 0; (b) the contractor is at a deadlock, i. e., C1 ([xl) = [xl and 
C2([Xl) = [xl 

Remark 4.9 Example 4.14 suggests three conjectures that are true if nx = 
2 but false if nx ~ 3. The first one is that if lEI or 1E2 in Figure 4.4b is 
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moved, the deadlock disappears, and thus that the failure of C 1 T is atypical. 
The second conjecture is that if C 1 r fails in the linear case, then the centre 
of [xl is a solution of H (see Figure 4.4b). The last conjecture is that if the 
constraints are monotonous with respect to all the variables with the same type 
of monotonicity, then Cli cannot fail (see Figure 4.5). Figure 4.6 provides 
a counterexample to these three conjectures, by showing a situation with two 
linear constraints with the same type of monotonicity, with an empty solution 
set and for which C 1 r fails. The two constraints are represented by the two 
parallel planes. Both planes touch all faces of [xl and thus C1 r cannot contract 
[xl· • 

Fig. 4.5. With ell) the box [xl will converge to the box [r], which is the smallest 
one consistent with the two constraints 

[xl 

Fig. 4.6. Counterexample to three conjectures of Remark 4.9 
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4.4.2 Contractors and inclusion functions 

Contractors may employ inclusion functions. These inclusion functions are 
not necessarily minimal, so contractors may be used to improve their accu­
racy. The complexity of the resulting contractors remains polynomial. This 
idea is the foundation of box-consistency, developed in the context of con­
straint propagation (Benhamou et al., 1999). Using contractors to improve 
inclusion functions is especially helpful when dealing with high-dimensional 
problems (typically more than ten variables), and when there are multiple 
occurrences of variables in the formal expression of the function f. 

An upper bound y for 

j = max f(x), 
xE[x] 

( 4.109) 

where f : lRn ---+ lR, can be computed by the algorithm UUB (for upper upper 
bound) of Table 4.13. UUB uses a contractor C for contracting the CSP 

H : (J(x) = y, x E [x], Y E [1[, yJ) , (4.110) 

where [1[, y] is an interval guaranteed to contain j, initially equal to [f] ([xl). 
The complexity of the computation can be kept polynomial provided that C 
has polynomial complexity. 

Table 4.13. Computing an upper bound for an inclusion function with a contractor 

Algorithm UUB(in: j, [x]; out: y) 

1 repeat 

2 [1£, Y] := [f] ([xl); / / where [f] is a classical inclusion function 

3 1£:= j(mid([x])); 

4 ([x], [yl) := C (J(x) = y, x E[X], Y E [1£, Y]); 
5 until the improvement on y and y is deemed too small. 

The interval computed at Step 2 of UUB contains j, as defined by (4.109). 
At Step 3, 1[ is necessarily a lower bound for j, but this statement could 
be made more efficient by using a local maximization algorithm, such as a 
punctual Newton method. The contractor of Step 4 eliminates parts of [x] 
that contain x such that f(x) < 1[. 

Example 4.15 Let us search for an upper bound of the function f(x) 
x 2 -1x over the interval [x] = [0,4]. With the natural inclusion function, at 
Step 2, UUB yields 

2 33 
[f] ([xl) = [x] - 2[x] = [0,16]- 2[0,4] = [-6,16]. (4.111) 

The pessimism due to the two occurrences of x in the formal expression of 
f can be illustrated by decomposing the constraint f(x) = x 2 - 1x into the 
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primitive constraints a = x 2 and y = a - ~x. In the (x, a) space (i.e., in 
the (x, x 2 ) space), the relation y = -~x + a corresponds to the orthogonal 
projection of the point (x, a) onto a straight line with direction vector v = 

(_~,I)T. As illustrated by Figure 4.7a, [f]([x]) = [-6,16] is much larger 
than f([x]) = [-0.5625,12]' because it includes the projections of the pairs 
(x = 4, x 2 = 0) and (x = 0, x 2 = 16), which are unfeasible. The role of UUB 
is to enclose the unknown upper bound J = 12 for f([x]) inside a smaller 
interval. At Step 3, UUB computes J!.. = f(mid([xl)) = f(2) = 4 - 3 = 1. At 
this stage, the best available enclosure for J is [1,16]. At Step 4, UUB calls 
a contractor for the CSP 

2 3 
(x -"2x = y,x E [0,4],y E [1,16]). (4.112) 

Assume for simplicity that the only available contractor is C 1 T' Contracting 
the domains of the CSP (4.112) corresponds to the following operations 

[x] = [0,4], 

[a] = [X]2 = [0,16], 

[y] = ([a] - ~ [xl) n [1,16] = [1,16], 

[a] = ([y] + ~ [xl) n [a] = ([1,16] + [0,6]) n [0,16] = [1,16]' 

[x] = vfal n [0,4] = [1,4]. 

(4.113) 

This is summarized by Figure 4. 7b. The box [1,4] x [1,16] containing the pair 
(x, x 2 ) is represented in grey. During the second iteration of the loop, a better 
lower bound for J is obtained as J!.. = f (mid ([xl)) = f(2.5) = 2.5. The best 
known enclosure for 1 is now [2.5,16]. Figures 4.7c and 4.7d describe the 
results of the second and third iterations of the loop. The procedure converges 
to the actual value 1 = 12. • 

Table 4.14. Inclusion function evaluation with a contractor 

Algorithm IFEC(in: j, [xl; out: [y,yj) 
1 'Il. := - UUB( - j, [xl); 
2 y:= UUB(j, [xl). 

The same algorithm can also be used to compute a lower bound y for the 
lower bound of f ([x]). It suffices to compute - UUB( - f, [x]). An fIi.clusion 
function [f] for f can thus be obtained by running the algorithm IFEC pre­
sented in Table 4.14. Employing this algorithm for the evaluation of inclusion 
functions used by a contractor preserves the polynomial complexity of this 
contractor . 
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Fig. 4.7. Contracting procedure to compute an upper bound for f([x]); as the scales 
on the two axes differ, orthogonal projection does not actually correspond to the 
directions indicated in dotted lines, which should only be interpreted symbolically 

4.5 Contractors for Sets 

4.5.1 Definitions 

Fig. 4.8. Contractor for sets 
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The operator C§p : [Jl{np ---+ [Jl{np is a contractor for a set §p of Jl{np if it 
satisfies 

( contractance), 

( correctness) , 
(4.114) 

as illustrated by Figure 4.8. Even if the notions of contractors for sets and for 
CSPs defining these sets can be considered as equivalent, contractors for sets 
will often be preferred in later chapters. They simplify the presentation of 
algorithms and make it possible to avoid the use of the terminology of CSPs. 

Properties of contractors for sets are presented in Table 4.15. 

Table 4.15. Properties of contractors for sets 

CSp is monotonic iff [p] C [q] =? Csp([p]) C Csp([q]) 

Csp is minimal iff V[p] E lI]Rnp, Csp ([p]) = [[p] n §p] 

Csp is thin iff Vp E ]Rnp, Csp (p) = {p} n §p 

Csp is idempotent iff V[p] E lI]Rnp, Csp (Csp ([p])) = Csp ([p]) 

Csp is more contracting than Cs , iff V[p] E lI]Rnp, Csp ([p]) C Cs ., ([p]) 

Let C§l and C§2 be two monotonic contractors for §pl and §2p' and define 
p p 

It is trivial to show that the following properties hold true: 

(i) §~ C §~ =? C§?, is also a contractor for §~, 

( i i) C§t, n C§?, is a contractor for §~ n §~, 
(iii) C§t, U C§?, is a contractor for §~ U §~. 

(4.115) 

(4.116) 

(4.117) 

The property (i) will be used to contract domains for optimization problems 
and (iii) is useful to develop contractors for problems involving a disjunction 
of constraints (i. e., the Boolean operator OR is involved). 

Example 4.16 Consider an inclusion test [t§p] for the set §p. A contractor 
C§p for §p is given by 

C§p ([p]) = 0 if [t§r,] ([p]) = 0, 

C§p ([p]) = [p] otherwise. 

This contractor is thin if and only if [t§p] is thin. 

(4.118) 

• 
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4.5.2 Sets defined by equality and inequality constraints 

The contractor Coo developed in Section 4.4 for CSPs of the form 1i : (f(x) = 
0, x E [xl) can be used to build efficient contractors for more general classes 
of sets. Consider, for instance, a set §p defined by equality and inequality 
constraints: 

§p = {p E ]Rnp I g(p) ~ 0, h(p) = O}, (4.119) 

where g and h are non-linear vector functions and the inequality is to be 
understood component-wise. Set 

x = , [x] = [p] x [v] and f(x) = , (p) (g(P) +v) 
v h(p) 

( 4.120) 

where v is a vector of slack variables with domain [v] = [0, oo[ x ... x [0,00[. 
Since 

(

g(P)+v=o ) ( ) f x - 0 h - 0 g(p) ~ 0 
( 

( ) - ) ¢? (p) - ¢? h(p) = 0 ,(4.121) 
x E [x] P E [p] [ ] pEp 

v E [O,oo[x ... x [O,oo[ 

a contractor C for the CSP 1i : (f(x) = 0, x E [xl) can be used as a contractor 
for the set §p using the algorithm described in Table 4.16. Step 1 defines the 
CSP associated with the set §p, Step 2 contracts the domain for the extended 
box [x] and Step 3 computes the projection of [x] onto the p-space. 

Table 4.16. Contractor for a set defined by equality and inequality constraints 

Algorithm CSp (in: g, h; inout: [p]) 
1 x := (p, v); [xl := [p] x [0, oo[xn,,; f(x) := (g(p) + v, h(p)); 
2 [xl:= C ([xl); 
3 [pl:= projlRnp [xl· / / projection of [xl onto p-space 

4.5.3 Improving contractors using local search 

Consider a set §p with a non-zero volume, a contractor Csp for §p and a box [p] 
to be contracted as illustrated by Figure 4.9a. Some known feasible points are 
represented by black dots and [r] denotes the smallest box containing them. 
The only parts of [p] that may be eliminated by contraction are those in [p] 
and outside [r]. Let [q] be a box with a face in common with [p] and touching 
[r] as indicated in Figure 4.9a. A contraction of [q] can be extended to [p] as 
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shown in Figure 4.9b. This technique can be employed in C§p to make it more 
efficient. Moreover, the fact that [p] and [r] are almost equal can be used as 
a stopping criterion for the contractor. To be efficient, local searches should 
inflate [r] as much as possible; see Section 5.4, page 111, for more details. 

[p] 
[p] [q] 

(a) (b) 

Fig. 4.9. Feasible points make it possible to improve the efficiency of contractors 

4.6 Conclusions 

This chapter has presented the important notion of contractor, used to down­
size the search box without losing any of the solutions of the problem of in­
terest. Contractors are basic ingredients of the solvers to be presented in the 
next chapter. As illustrated by Figure 4.10, solvers use inclusion functions 
and interval computation only through contractors. Note that even if many 
contractors are based on inclusion functions, some contractors use other types 
of tools. This is the case, for instance, for the contractors developed in the 
context of constraint propagation over continuous domains. The notion of 
contractor generalizes that of inclusion test presented in Chapter 2, in the 
sense that an inclusion test applied to a box [x] can be seen as a special 
contractor that returns either [x] itself or the empty set. As shown in Sec­
tion 4.4.2, contractors may also be helpful to improve the quality of inclusion 
functions. This is represented by the upward arrow of Figure 4.10. 

Contractors are requested to have a polynomial complexity in time and 
space, and thus not allowed to bisect domains. As a result, they may reach 
deadlocks, as illustrated by Example 4.14. Bisection will be a way out of 
such deadlocks. The idea is to split the box [x] into two subboxes, and to 
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Fig. 4.10. Solvers call contractors, contractors use inclusion functions that require 
interval computation; the accuracy of the inclusion functions can be improved by 
using contractors 

attempt contraction on each of them. When the dimension of [xl is large, this 
should be a last resort, because a bisection in one direction is often followed 
by bisections in the others, and the complexity then becomes exponential. 
For instance, in dimension 20, a bisection in each direction of a single box 
generates more than one million boxes. 

Recent results have shown that if a limitation is set on the number of 
components of x allowed to be bisected, it is possible to keep the complexity 
of the contractor polynomial. The corresponding methods are based for in­
stance on 3-B-consistency (Lhomme and Rueher, 1997) or on box-consistency 
(Benhamou et al., 1999). A result that seems even more promising is the al­
gorithm based on (3-2)-consistency (Sam-Haroud, 1995; Lottaz, 2000), which 
provides a polynomial contractor that is optimal for a huge class of CSPs, 
in the sense that it generates the smallest box that contains the solution 
set. It suffices that the CSP involves constraints that are at most ternary 
(this can be achieved by decomposing the CSP into primitive constraints) 
and that these constraints satisfy some row-convexity conditions. Unfortu­
nately, even if this contractor is polynomial, it requires computation with 
five-dimensional subpavings, which turns out to be extremely difficult with 
present-day computers. 

The contractors presented in this chapter will be important ingredients 
of the solvers to be presented in the next. 
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5.1 Introduction 

Chapter 4 presented contractors that make it possible to contain a compact 
set § defined by non-linear equations and inequalities in a box. Although 
the results are guaranteed, the accuracy with which § is characterized is not 
under control. On the other hand, bisection allows accuracy to be controlled, 
but causes exponential complexity. Bisection should therefore be avoided as 
much as possible when the number of variables is high, in an attempt to 
escape the curse of dimensionality. This is why, in our opinion, when many 
variables are involved bisection should be used as a last resort, only when all 
available contractors have failed. A decision may then have to be taken as to 
which variable domains should be bisected. 

All the solvers proposed in this chapter partition the search box into a 
union of boxes (the paving). The paving is generally built by the solver itself. 
On each box of this paving, contractors, inclusion tests and local optimization 
procedures are called. All of these procedures have a polynomial complexity. 
The results returned by the solvers depend only on the results obtained for 
each box of the paving. The precision of the solver is controlled by coefficients 
specifying, for example, the width E of the smallest boxes of the paving, or 
the accuracy in the localization of a global optimum. For a given problem, 
the accumulation set of a solver is the set where boxes with width less than E 

accumulate when E tends to zero. The computing time of the solver increases 
quickly with the dimension and size of this accumulation set. 

To illustrate the methodology followed to obtain efficient solvers, several 
problems will be considered. Section 5.2 is about solving systems of non­
linear equations where the number of equations is equal to the number of 
variables. The characterization of a set defined by non-linear inequalities will 
be performed in Section 5.3 by bracketing this set between two subpavings. 
Section 5.4 addresses the problem of finding the smallest box containing a 
set defined by non-linear inequalities. Section 5.5 deals with the minimization 
of a cost function under equality and inequality constraints. The approach is 
then extended in Section 5.6 to the difficult problem of minimax optimization. 
Section 5.7 presents a method for characterizing level sets of a cost function. 

L. Jaulin et al., Applied Interval Analysis
© Springer-Verlag London 2001
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5.2 Solving Square Systems of Non-linear Equations 

Consider n variables linked by n equations: 

{ 
j,(x" X';" . ,xn ) ~ n, 

fn(Xl' X2,···, xn) - 0, 

(5.1 ) 

or equivalently, in vector form, 

f(x) = o. (5.2) 

The problem to be solved is to characterize the set §x of all the vectors x 
that satisfy f(x) = 0 and belong to a (possibly very large) search box [xl. 
The recursive algorithm of Table 5.1 computes a subpaving that contains 
§x. We called this algorithm SIVIAX because the search space corresponds 
to the entire vector x whereas in Section 5.3 the algorithm SIVIAP will deal 
with a subvector p of x. £ is initialized as the empty list and E is a small 
positive real number. The union of all the boxes in the list £ returned by 
SIVIAX contains §x. C§x used at Step 1 is a contractor for §x, i. e., it satisfies 
C§J[x]) n §x = [xl n §x (see Section 4.5). Chapter 4 suggested a number of 
such contractors. 

Table 5.1. Algorithm SIVIAX for solving a set of non-linear equations 

Algorithm SIvIAX(in: [x], CSx' c; inout: £) 
1 [x]:= C,d[x]); 
2 if ([x] = 0) then return; 
3 if (w([x]) < c) then 
4 £ := £ u {[xl}; return; 
5 bisect [x] into [Xl] and [X2]; 
6 SIVIAX([Xll,Csx,c,L); SIVIAX([X2],Csx,c,L). 

Remark 5.1 For some applications, it is useful to test whether there exists 
a unique solution off(x) = 0 in a given box [xl of £. IfCN([x]), CNP([x]) or 
CK([x]) is strictly inside [x], then there exists a unique solution of f(x) = 0 
in [xl (Hansen, 1992b). • 

To bisect [xl into two boxes at Step 5, one may cut it at its centre, 
perpendicularly to one of its edges of maximum length. But, as we shall see 
now, when the problem is ill conditioned, such a bisection may be inefficient 
and one should find a more suitable criterion to select the direction along 
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which the bisection should be conducted (Ratschek and Rokne, 1995; Ratz 
and Csendes, 1995). 

Define the ith symmetry segment and the ith symmetry (hyper) plane of 
[x] as follows: 

segmi([x]) ~ Tnl x 

planei([x]) ~ [Xl] x 

x Tni-l x [Xi] x Tni+l X 

x [Xi-I] x Tni x [Xi+l] X 

where Tnk = mid([xk]). Note that segmi([x]) and planei([x]) are orthogonal. 
These definitions are illustrated by Figure 5.1, where n = 3. 

Fig. 5.1. Three-dimensional cube with its three symmetry planes and its three 
symmetry segments 

Figures 5.2 to 5.4 show that the efficiency of bisection may strongly de­
pend on the choice of the plane along which this bisection is performed. In 
these pictures, the inclusion function [f] for f is minimal, but this is not re­
quired. Figure 5.2 illustrates a situation where f is ill conditioned and where 
the box [x] is assumed small enough to allow a linear approximation of the 
behaviour of f over [x]. The symmetry segments of [x] as well as their images 
are represented with thin lines. A bisection along plane I ([x]), as in Figure 5.3, 
marginally improves the description of the behaviour of f over [x], contrary 
to a bisection along plane2([x]), as in Figure 5.4, which is much more effi­
cient. It then seems rather natural to bisect [x] along the symmetry plane 
orthogonal to the symmetry segment along which f is the most sensitive, by 
choosing the index i that maximizes 

JLI(i) = max w (fj (segmi ([xl))). 
jE{I, ... ,n} 

(5.3) 
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This criterion can be approximated by 

1

0f 1 fL2(i) = jE0,a.~n} W([Xi]) OX~ (mid ([xl)) , (5.4) 

which is much easier to compute. If the efficiency of the bisection of [x] into 
[Xl] and [X2] is quantified by 

vol([f] ([xl)) 
(5.5) 

then the bisection of Figure 5.3 is about half as efficient as that of Figure 5.4. 
Once the direction i of bisection has been chosen, it may be more inter­

esting to translate the bisection plane by cutting along 

planei(a, [x]) = [Xl] x ... x [Xi-I] 

x (ax.i + (1 - a):1\) x [Xi+l] x ... X [xn], (5.6) 

where a E ]0, 1[, with a = 0.5 corresponding to a symmetry plane. This is 
illustrated by Figures 5.5 to 5.7. In Figure 5.5 four horizontal and vertical 
segments of [xl are represented with thin lines, as well as their images by f. 
The criterion (5.4) suggests that the bisection should be performed for i = 2. 
For a = 0.5, one obtains the situation depicted in Figure 5.6. The bisection 
of Figure 5.7, which corresponds to a = 0.2, leads to better efficiency in 
the sense of (5.5). A suitable choice for a generally reduces the number of 
bisections performed by SIVIAX but the improvement is significant only when 
the problem is very ill conditioned. For simplicity, in this book, we shall only 
consider bisections along symmetry planes. 

5.3 Characterizing Sets Defined by Inequalities 

Consider the set of non-linear inequalities 

{ 
gl(PI,P2,'" ,PnJ E [YI], 

gng (PI, P2:, ... ,Pnp) ~ [y~g], 
i.e., in vector form, 

g(p) E [y], 

(5.7) 

(5.8) 

where p is assumed to belong to the prior search box [pl. The problem to be 
treated in this section is the characterization of the set 

§p ~ {p E [p] I g(p) E [y]} = g-l([y]) n [pl. (5.9) 

Denote by x the vector obtained by appending y to p, and by [x] the box 
[p] x [y]. For some applications, it is also of interest to characterize §x and 
§y defined by 
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[xl 

ill f 

Fig. 5.2. Situation where f is ill conditioned 

f 

Fig. 5.3. Inefficient bisection 

f 

Fig. 5.4. Efficient bisection 
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[x] [f]([x]) 

[Ii f 

Fig. 5.5. Situation where f is ill conditioned 

f 

Fig. 5.6. Bisection at the centre (a = 0.5) 

f 

Fig. 5.7. A more efficient bisection (a = 0.2) 
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§x ~ {x = (~) I y = g(p), Y E [y], P E [P]} , (5.10) 

§y ~ {g(p) I p E [p], g(p) E [y]} = g([p]) n [y]. (5.11) 

Note that §p is the orthogonal projection of §x onto the p-space and that §y 

is its orthogonal projection onto the y-space, as illustrated by Figure 5.8. 

y r- g(p) 

§y 
[x] 

'~ 

... ~ -

[y]~ 

~§p ~[pl p 

Fig. 5.8. Feasible sets §,x) §,y and §,p 

Outer approximations for §p, §y and §x and an inner approximation for 
§p can be obtained with arbitrary precision by using the recursive algorithm 
SIVIAPY given in Table 5.2. 

Table 5.2. Algorithm SIVIAPY 

Algorithm SIvIAPY(in: [x],Csx,c; inout: £.) 

1 [x]:= CSx([x]); 

2 if ([x] = 0) then return; 

3 ([p], [y]) := [x]; 
4 if (w([x]) <c) then 

5 £. := £. U {[xl}; return; 

6 bisect ([p]) into [PI] and [P2]; 

7 [XI]:= ([PI], [y]); [X2] := ([P2], [y]); 
8 SIVIAPY([XI], CSx' c,£); SIVIAPY([X2], CSx' c,£). 

In contrast to the algorithm SIVIAX of Section 5.2, where a single type 
of box is considered, SIVIAPY distinguishes [p] and [y], in order to allow the 
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characterization of §p, §y and §x. £ is initialized as the empty list. After 
completion of SIVIAPY, £ can be written as 

(5.12) 

or equivalently as 

(5.13) 

At Step 1, C§x is a contractor for the set §x (see Section 4.5, page 97). 
From the list £ generated by SIVIAPY, outer approximations §p, §y and §x 

for §p, §y and §x can be obtained by 

(5.14) 

k=l, ... ,k k=l, ... ,k k=l, ... ,k 

and an inner approximation for §p is obtained as 

~p = U {[Pk] I [g]([Pk]) C [y]}, (5.15) 

k=l, ... ,k 

where [g] is an inclusion function for g. Various strategies can be considered 
for the bisection of [p] at Step 6. When the problem is well conditioned, for 
simplicity, bisection is along a principal plane of [p], i.e., along a symmetry 
plane orthogonal to one of the edges of maximum length. Otherwise, bisection 
is performed perpendicularly to the direction i that maximizes 

. max W([Pi]) ~(mid([p])) . l
ag I 

JE{1,oo.,ng} UPi 
(5.16) 

The subpaving §p generated by SIVIAPY in the p-space accumulates on 
the set §p, which generically has a dimension equal to np. This means that 
when the dimension of p is large (typically greater than four) and when high 
accuracy is required for the characterization of §p, no computer will be able 
to complete SIVIAPY in a reasonable time. When one is interested in §p 

only and not in §y and §x, the dimension of the accumulation subpaving can 
be reduced to np - 1. It suffices to store the current box [p] in ~p when the 
condition [g]([Pk]) C [y] is satisfied, and to remove it from the list of the boxes 
still to be bisected. The corresponding recursive algorithm SIVIAP, given in 
Table 5.3, is similar to the SIVIA algorithm of Section 3.4.1, page 55. The 
main difference is that SIVIAP uses contractors for §p. The two subpavings 
~p and §p are initialized as the empty set. 

At Step 1, SIVIAP uses a contractor C§p for §p. We shall assume that C§p 
is either the contractor 

C~p : {'::" ~ { [0
p

] if [g] ~~~I; n [y] = 0 

otherwise 

(5.17) 
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or a more efficient contractor, which may for instance include c2 in its store 
Gp 

(see Section 4.4, page 90). If CSp has contracted [p] to 0, then [p] is eliminated 
at Step 2. At Steps 3 and 4, if [p] is proved to be inside §p, then it is stored 
in ~p and §p. Steps 5 to 8 are similar to steps of SIVIAX (page 104). After 
completion of SIVIAP, we have 

Table 5.3. Algorithm SIVIAP 

Algorithm SIvIAP(in: [p],CsP,g, [y] ,E; inout: ~p,§p) 
1 [p]:= C§p([p]); 
2 if ([p] = 0) then return; 
3 if [g]([p]) C [y] 
4 ~p := ~p U [p]; §p := §p u [p]; return; 
5 if (w([p]) < E) then 
6 §p := §p U [p]; return; 
7 bisect ([p]) into [Pl] and [P2]; 
8 SIVIAP([Pl],CSp,g, [y] ,E,~p,§p); SIVIAP([P2],CsP ,g, [y] ,E,~p,§p). 

(5.18) 

Example 5.1 Consider again the problem of Example 3.2, page 58, which 
is the characterization of the set of vectors p that satisfy 

{ 
exp (pI) + exp (P2) E [10,11]' 

exp (2pI) + exp (2p2) E [62,72]. 
(5.19) 

For [p] = [0,4] x [0, 4], and c = 0.001, SIVIAP generates a subpaving similar to 
that of Figure 3.9, page 58, in 3.8 s on a PENTIUM 133. With the same value 
of c, SIVIA as presented in Chapter 3 would take 6 s. The improvement brought 
by SIVIAP increases with np and decreases when the size of §p increases. • 

The following section deals with the problem of finding the smallest box 
that contains §p. 

5.4 Interval Hull of a Set Defined by Inequalities 

Characterizing a (full) compact set §p may turn out to be too costly when 
the dimension of p is high and when §p is large, because the paving of all the 
boxes generated by SIVIA or SIVIAP accumulates on the boundary of §p. In 
the hope of computing less if less if asked for, consider now the problem of 
finding the interval hull [§p] of §p (the smallest box that contains it) instead 
of requesting a detailed characterization of §p. 
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This simplified characterization is important for many practical problems 
such as parameter estimation, where the interval components of the interval 
hull correspond to the parameter uncertainty intervals (see Chapter 6). 

5.4.1 First approach 

A first approach to solving this problem in a non-linear context is to decom­
pose it into the 2np optimization problems 

(5.20) 

Optimization may be based on signomial programming (Milanese and Vicino, 
1991) or on interval analysis (Jaulin, 1994). For each of the optimization 
problems in (5.20), the paving generated by an interval technique for global 
optimization (such as the one to be presented in Section 5.5) accumulates 
on 8§p n 8 [§p], i.e., on the part of the boundary of §p that belongs to the 
boundary of the interval hull of §p. This is a drastic simplification compared 
to SIVIAP, which accumulates on the boundary of §p; see Figure 5.9. 

Fig. 5.9. The part of the boundary of §p that also belongs to the boundary of [§p] 

is indicated by black dots 

Example 5.2 Consider the problem (Jaulin, 1994) of characterizing the set 

§p = {(Pl,P2) E [0,5]2 I Vt E [0,1]' It2 + 2t + 1 - PleP2t l ~ I}. 

The subpavings obtained when performing the four optimizations of (5.20) 
are presented in Figure 5.1Ga. Compare with Figure 5.1Gb, which presents 
the subpavings generated by SIVIAP when solving the same example. • 



5.4 Interval Hull of a Set Defined by Inequalities 113 

(a) (b) 

Fig. 5.10. Pavings generated when processing Example 5.2; (a) when evaluating 
the interval hull; (b) when using SIVIAP; the number of bisections is much smaller 
in (a) than in (b) 

5.4.2 Second approach 

A second approach based on interval analysis is to use the algorithm HULL 
(Jaulin, 2000a), which brackets [§p] between two boxes [Pin] and [Pout], as 
follows: 

(5.21) 

The only assumptions are that a contractor is available for §p, that it is pos­
sible to check whether a given point P belongs to §p and that a (possibly very 
large) box [p] containing §p is available. Instead of solving 2np optimization 
problems, HULL generates two sequences of boxes [Pin](k) and [Pout](k) and 
a sequence of subpavings lL (k) that satisfy 

(5.22) 

The principle of HULL is illustrated by Figure 5.1l. As suggested in Re­
mar k 3.1, page 51, lL (k) will be denoted by £ (k) when it is considered as a 
list of boxes. 

HULL empties £ (k) by increasing [Pin](k) as much as possible and 
[Pout](k) as little as possible, while satisfying the three conditions (5.22). The 
basic transformations employed to perform this task are described below. Af­
ter each transformation, k is increased by l. For simplicity, the dependency 
of [Pin], [Pout] and £ in k will be omitted. 

1. Inner inflation: If a point p E §p is found outside [Pin] by any local 
search (this is the case of the point represented by the black dot in 
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(a) (b) 

" 

(c) (d) 

(e) (f) 

Fig. 5.11. Principle of HULL; (a) initial configuration, (b) inner inflation, (c) am­
putation, (d) contraction, (e) outer inflation, (f) bisection 



5.4 Interval Hull of a Set Defined by Inequalities 115 

Figure 5.lIa), then set [Pin] := [Pin] U {P} and [Pout] := [Pout] U {P}. 
Recall that the interval-union operator U computes the smallest box that 
contains the union of its arguments, i.e., Au lffi = [A U lffi]. Inner inflation 
is illustrated by Figure 5.lIb. 

2. Amputation: For any given [p]listed in .c, set [p] := [[p] \ [Pin]], where 

[P]\[Pin] ~ {p E [p]1 P ~ [Pin]}. (5.23) 

If, for instance, [p] C [Pin] then [P]\[Pin] = 0 and the amputation 
amounts to removing [p] from .c. Note that the amputation is inefficient 
if [p] contains a corner of [Pin], since the box [[P]\[Pin]] is then equal to 
[pl. In Figure 5.lIc, the amputation has been efficient only for two boxes 
of .c. 

3. Contraction: For any given [p]listed in.c, set [p] := CSp([p]), where CSp 
is the available contractor for §p. See Figure 5.lId for an illustration. 

4. Outer inflation: If the width of a box [p]listed in .c is smaller than E or 
if only a very small part of [p] is outside [Pout] (i.e., h?oo ([p], [Pout]) < E), 
then remove [p] from.c and set [Pout] := [Pout] U [pl. The small grey box 
at the top of Figure 5.lIe is deemed too small for a bisection to be 
considered; [Pout] has thus been inflated in order to enclose it, even if [p] 
does not intersect §p. 

5. Bisection: If the width of a box [p] listed in .c is larger than E, then 
it is bisected into two subboxes [PI] and [P2]. In .c, [p] is then replaced 
by these two subboxes. Since bisection makes the complexity of HULL 

exponential with respect to n p , it should only be performed as a last 
resort. This is illustrated on Figure 5.11£. 

It is trivial to show that the three properties (5.22) remain satisfied after each 
transformation. For simplicity we have chosen a first-in-first-out structure 
for the list .c, even if other structures might be more suitable. The algorithm 
HULL is summarized in Table 5.4. 
The following properties hold true (Jaulin, 2000a): 

==Jk > 0 such that lL (k) = 0, 

[Pin](k) C [§p] C [Pout](k), 

(5.24) 

(5.25) 

where k is the value of k after completion of HULL. This means that HULL 

terminates and provides a guaranteed bracketing of [§p]. The analysis of the 
convergence of [Pin] (k) and [Pout] (k) towards [§p] when E tends to 0 remains 
to be carried out. 

Example 5.3 For the problem of Example 5.1, HULL finds in 0.055 s on a 
PENTIUM 133 the smallest box enclosing §p, with an accuracy of six digits. 
Figure 5.12 illustrates the technique. During the first iteration, at Steps 4, 5 
and 6, HULL succeeds in scanning only the leftmost connected component of 
§p. It is thus able to inflate [Pin] and [Pout] so that they are almost equal to the 
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Table 5.4. Algorithm for characterizing the interval hull of a set defined by non­
linear inequalities 

1 [Pin]:= 0; [Pout] := 0; L := {[p]}; 
2 repeat 

3 pop first box out of L into [p]; 

4 with a local seach, initialized at mid([p]) , 

search for feasible points p outside [Pin] 

5 for each p, 
6 [Pin] := [Pin] U {P}; [Pout] := [Pout] U {P}; (inner inflation); 
7 [p] := [[P]\[Pin]]; (amputation) 
8 if [p] # 0; [p] := CSp ([p]); (contraction) 
9 if [p] # 0; 

10 if (w ([p]) < E) or (h?x ([p], [Pout]) < E) 
11 [Pout] := [Pout] U [p]; (outer inflation) 
12 else 

13 bisect [p] and put the resulting boxes at the end of L; 
14 until L = 0. 

interval hull of the left component of§p (see Figure 5.12a). The local search 
of Step 4 is performed by the algorithm CROSS, shown at page 152 (Jaulin, 
2000a). At Step 7, [p] cannot be amputated, but at Step 8, CSp contracts [p] 
directly to the solution box [§p]. At this stage, HULL cannot conclude that 
[p] is equal to [§p]. This is why [p] is bisected into two subboxes. L now 
contains the two boxes represented in Figure 5.12b. Note that the conditions 
(5.22) are satisfied. Then HULL takes the left box, fails in its local search and 
contracts it at Step 8 until it becomes almost equal to [Pin] and [Pout]. Since 
at Step 1 0, h~ ([p], [Pout]) < E, [Pout] is slightly inflated. Then HULL goes 
to Step 2. Again the conditions (5.22) are satisfied. HULL takes the last box 
of L and succeeds in scanning the rightmost connected component of §p. The 
boxes [Pin] and [Pout] are thus inflated and become almost equal to [§p]. At 
Step 11, [Pout] is slightly inflated by [p] and HULL terminates because L is 
empty. • 

Remark 5.2 When the volume of§p is too small and §p is elongated, it may 
become very difficult to find feasible points that allow an inner inflation. As a 
result, HULL may bisect boxes that are inside [§p]. To avoid this effect, which 
slows down the algorithm, one could use the main feature of the approach of 
Section 5.4.1, which bisects only boxes with a part outside [§p]. Thus, at each 
iteration HULL should compute the smallest box [Pext] that contains [Pout] 
and the boxes of L. It will then bisect only boxes of L that touch the boundary 
of [Pext]. • 
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----------------- ------------

4 4 
[p] : 

[Pin] ~ 

[Pout] 
[p] 

0 0 
0 4 0 4 

(a) (b) 

Fig. 5.12. (a) [p] is contracted into the grey box; local search scans the left con­
nected component of §p only; (b) after bisection, HULL becomes able to scan the 
right connected component of §p; when HULL terminates, [pin]and [Pout] are indis­
tinguishable 

5.5 Global Optimization 

The problem to be considered now is the minimization of a cost function c(p) 
over a compact set §;;o c ]Rnp: 

min c (p). 
pES;;" 

(5.26) 

For unconstrained minimization, §;;o will be taken as a possibly very large 
box [p] of ]Rnp. For constrained minimization, the definition of §;;o will also 
involve equality or inequality constraints. For instance, §;;o may be defined 
as 

§~ £ {p E ]Rnp I h(p) ~ 0 and p E [pl}. (5.27) 

The global minimum will b~ denoted by c, and the set of all the corre­
sponding global minimizers by §p. It is always possible to transform a max­
imization problem into a minimization problem, for instance by multiplying 
c (p) by -1. The most efficient ~nterval-based optimization algorithms com­

bine the use of contractors for §p and classical local se~rch with branching 

algorithms. We shall explain how to get a contractor for §p, before describing 
a branching algorithm that performs the minimization. 

The tools deve!9ped in Chapter 4 cannot be applied directly to build a 
contractor C§ for §p, because the set of all global minimizers is usually not 

p 

described by non-linear equations or inequalities. Now, if c is an upper bound 
for the global minimum c (for instance obtained by local minimization), then 

(5.28) 

where 
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with 

IP' (c) ~ {p E ]Rnp I c(p) ~ C}. 

Thus, the contractor for §p (c) defined by 

CSp(e) = CS;x,' n CP(e) 

(5.29) 

(5.30) 

(5.31 ) 

is also a contractor for §p, see (4.115) and (4.117), page 98. This contractor 
is not thin in general, and its efficiency strongly depends on the value of C. 
Note that if c is the smallest c such that §p(c) -=f. 0 then §p(C) = §p(c) = §p. 

Remark 5.3 Additi5!nal information could be used to increase the efficiency 
of the contractor for §p. If, for instance, the cost function c to be minimized is 
twice differentiable with respect to p and the minimization is unconstrained, 
then the set 

contains §p. A better contractor for §p is 

C~s ~ Cs (e) n C iOJ • 
[! [! 

(5.32) 

(5.33) 

• 
Table 5.5 presents the branching algorithm OPTIMIZE that performs the 

minimization. Q is a working list of boxes ordered by increasing value of the 
associated lower bound for the cost. OPTIMIZE fills a list £ of boxes. Upon 
completion of the algorithm, the set lL associated with this list contains all 
the global minimizers of the cost function c (.) over §~, and the interval [CJ 
contains the global minimum c. [c](.) is an inclusion function for the cost 
function c(.). The box of Q selected at Step 3 is the one associated with the 
smallest lower bound of the cost, which corresponds to selecting the most 
promising box. At Step 4, some unspecified local minimization procedure 
GODOWN is used to decrease the upper bound c. The real number c > 0 is 
the width beyond which boxes listed in Q will not be bisected. The interval 
[CJ bracketing the global minimum is computed at Steps 15 and 16 by interval 
evaluation of c over all the boxes of L-

As an illustration, consider the situation of Figure 5.13a. An upper bound 
Cl is available for c, but the contractor CSp(Cl) leaves [p] unchanged. A local 
search can then provide a smaller upper bound C2 for c (Figure 5.13b). The 
contractor CSp (C2) can now be used to contract [p] with an increa~d efficiency, 

as shown in Figure 5.13c. Since CSp (C2) is also a contractor for §p, no global 
solution of the minimization problem can be lost. 
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Table 5.5. Algorithm for reliable minimization 

Algorithm OPTIMIzE(in: [p] ,c(.), 10; out [CJ, £) 
1 Q:= {([p] , oo)}; c:= 00; [CJ := 0; £ := 0; 

2 repeat 

3 pop first box out of Q into [p]; 

4 c:=GoDowN(mid([p]),c(.)); 

5 remove from Q any pair ([Pi] , cd such that Ci > c; 

6 [p] := CSp ([p]); 

7 if [p] # 0 then 

8 if (w([p]) < E) then 

9 put ([p],lb([c]([p]))) into £; 

10 else 

11 bisect [p] into [PI] and [P2]; 
12 put ([PI] ,lb ([c] ([PI]))) and ([P2] , lb ([c] ([P2]))) into Q; 

13 until Q = 0; 

14 remove from £ any pair ([Pi] , Ci) such that Ci > c; 

15 for all [p] in £, [CJ := [CJ u [c]([p]); 

16 [CJ:= [CJ n ]-00, c]. 

(a) (b) (c) 

Fig. 5.13. OPTIMIZE algorithm; (a) initial configuration, (b) local minimization, 
(c) contraction 

Remark 5.4 Experiments (Ratschek and Rokne, 1995; Ratz and Csendes, 
1995) have shown that an efficient choice for the bisection is to cut along 
p1anei ([p]), a symmetry plane such that 

w ([ :;J ([p])) * w ([Pi]) ~ w ([ :~] ([p])) * w ([Pj]) , 

\j j E {I, ... ,dim p} . 

• 
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5.5.1 The Moore-Skelboe algorithm 

A simplified version of OPTIMIZE has been proposed by Skelboe (1974) and 
improved by Moore (1976). The resulting algorithm does not use any contrac­
tor and does not perform any local search. The next two examples (Walster 
et al., 1985; Moore and Ratschek, 1988; Jansson and Kniippel, 1995) illus­
trate the efficiency of the Moore-Skelboe algorithm and the influence of the 
dimension of the problem. 

Example 5.4 The Branin function 

5.1 2 5 2 1 
c(p) = (P2 - 41f2P1 + ;Pl - 6) + 10(1 - 81f) cos PI + 10 (5.34) 

admits three global minimizers over the box [p] = [-5,10] x [0,15], namely 

PI = (-1f, 12.275) T, P2 = (1f, 2.275) T, P3 = (31f, 2.475) T. (5.35) 

The corresponding global minimum is C,:,:, 0.397887. For E = 10-5 , after 422 
bisections performed in 0.4 s on a PENTIUM 90, the Moore-Skelboe algorithm 
finds 18 boxes, the union of which contains all the global minimizers; c is 
also computed, with an accuracy of 10 digits. The 18 solution boxes can be 
decomposed into three groups. The interval hulls of these groups are 

[P]l = [-3.141594, -3.141586] x [12.274982,12.275012]' 

[P]2 = [3.141591,3.141599] x [2.274982,2.275014]' 

[ph = [9.424769,9.424785] x [2.474977,2.475021]. 

Example 5.5 Consider the Levy 13 family of functions 

n-l 
·2 '""' 2 ·2 cn(p) = sm 31fPl + ~(pi - 1) (1 + sm 31fPi+l) 

i=l 

(5.36) 

• 

(5.37) 

with n? 1. The search box [p] is [-10,10]xn ifn ~ 4, and [-5,5]xn if 
n > 4. Each function Cn admits the global minimum c = 0 and only one 
global minimizer P with all of its entries equal to one. The number of local 
minimizers of en grows exponentially with n (900 for n = 2 and 105 for 
n = 5). The performances of the Moore-Skelboe algorithm for six values 
of n with E = 10-5 are given in Table 5.6. The times indicated are for a 
PENTIUM 90. • 
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Table 5.6. Computing time and number of solution boxes 
as a function of dimension n 

n 1 ... 5 6 

Computing time (s) 0.05 ... 0.71 1.43 

Number of solution boxes 1 ... 66 147 

5.5.2 Hansen's algorithm 

7 8 9 

2.97 6.87 17.02 

294 547 955 

Another variation around OPTIMIZE is Hansen's algorithm. This section 
presents some of the contractors involved (Hansen and Sengupta, 1980; 
Hansen, 1992b). All of them can be cast into the framework of Chapter 4. 
Note that this algorithm does not use any contractor based on interval con­
straint propagation such as C 1 r. Some of its special features will be presented; 
for more detail the reader is urged to consult Hansen (1992b), entirely de­
voted to the subject. 

Upper-bound contractors: Assume that an upper bound c for cis 
available. Contracting a box under the constraint c(p) ~ c amounts to con­
tracting the CSP 

1i: (c(p) = Z, P E [p], Z E ]-00, c]). (5.38) 

Provided that c(.) is differentiable, an external approximation of 1i (see Sec­
tion 4.3, page 82) is given by 

(5.39) 

where gi(t;.) is the ith component of the gradient of cat t;. and m = mid([p]). 
A subsolver for 1iI is given by 

(5.40) 

which is used by Hansen to contract the domain for the variable Pk. Another 
external approximation of 1i based on the second-order Taylor expansion of 
c is 

( 
T (p - m)TH(t;.)(p - m) ) 

1i2: c(m) + (p - m) g(m) + 2 = Z ,(5.41) 

p E [p]'t;. E [p],z E]- oo,c] 

where m = mid([p]), g is the gradient vector of c, and H(t;.) is its Hessian 
matrix at t;.. The first line of (5.41) is equivalent to 
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c(m) + (Pk - mk)gk(m) 

+ L~=l,i#(Pi - mi)gi(m) + ~(Pk - mk)2hkk (t,) 

+ ~(Pk - mk)L~=l,i#(pi - mi)hik(~.) 

+ ~ L~=I,i#(pi - mi) L;=I,#k (Pj - mj)hij(t,) = z. 

H2 can thus be rewritten as 

1 : OCk + f3ktk + Iktk = 0 

2: tk = Pk - mk 

3: OCk = -z + c(m) + L~=I,i#(Pi - mi)gi(m) 

H2 : +~ L~=I,i#(Pi - m;) L;=l,j#(Pj - mj)hij(t,) 

4: f3 k = gk(m) + ~ L~=I,i#(pi - mi)hik(t,) 

5: Ik = ~hkk(t,) 
6: p E [p], t, E [p], z E ]-oo,c] 

(5.42) 

(5.43) 

Domains for OCk, f3 k and Ik are easily obtained from Constraints 3 to 6 of 
(5.43). Constraint 1 can then be used to get a domain for tk' Since this 
constraint is quadratic and involves only tk, a special algorithm can be de­
veloped to get the smallest domain for tk consistent with it (Hansen, 1992b). 
Constraint 2 can then be used to contract [Pk]. 

Concavity and gradient contractors: If no constraint is involved in 
the minimization problem and if c is differentiable, then all the global min­
imizers p should satisfy g(p) = 0, where g(p) is the value of the gradient 
of c at p. Moreover, if c is twice differentiable, it should be convex in all 
directions, including the axes of parameter space. Therefore the constraints 

(5.44) 

a2c a2c 
82 (p) ? 0, ... , a 2 (p) ? 0 

PI Pn 
(5.45) 

can be used to contract the current box [p] at Step 6 of OPTIMIZE for an 
unconstrained minimization. For a maximization, the sign of the inequalities 
in (5.45) should be reversed. 

Stopping criterion:Because of Step 8, OPTIMIZE does not bisect any 
box that satisfies w([p]) < c. In Hansen's variant of OPTIMIZE, the boxes 
that satisfy both conditions 

w([p]) < cp and w([c]([p])) < Ce, (5.46) 

are never bisected. The accuracy coefficients cp and Ce are chosen by the user. 
Uniqueness condition: Assume again that no constraint is involved in 

the minimization problem. Let [p]' be the box obtained after one iteration 
of the Newton contractor applied to the box [p] over the gradient constraint 
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g (p) = o. If [p]' is strictly included in [p], then there exists at most one global 
minimizer of c in [p] (Ratschek and Rokne, 1995; Wolfe, 1996). Therefore, 
when only one box is returned by OPTIMIZE, the uniqueness condition may 
prove that the global minimizer is unique. On the other hand, if several boxes 
are returned, it is possible that some of them do not contain any global 
minimizer, even if each of them satisfies the uniqueness condition. 

To illustrate the efficiency of Hansen's algorithm, consider the same ex­
amples as with the Moore-Skelboe algorithm. 

Example 5.6 Consider again the Branin function (5.34) of Example 5.4. 
Recall that it admits three global minimizers 

PI = (-'iT, 12.275), P2 = ('iT,2.275), P3 = (3'iT,2.475), 

in [p]o = [-5,10] x [0,15] and that the global minimum is C,,:, 0.397887. For 
cp = Cc = 10-5 , after 32 iterations performed in 0.05 s on a PENTIUM 90, 
Hansen's algorithm returns three boxes, the width of which is smaller than 
10-7 . The global minimum is obtained with an accuracy of 10- 1°. • 
Example 5.7 Consider again the Levy 13 family of functions of Exam­
ple 5.5. For n ::::; 50 and cp = Cc = 10-5 , Hansen's algorithm produces the 
results of Table 5.7. Comparing Tables 5.6 and 5.7, we observe that the use of 
contractors makes it possible to deal with higher-dimensional problems. Note 
that on this example Hansen's algorithm always returns a single box that sat­
isfies the uniqueness condition, thus proving that there exists one and only 
one global minimizer. • 

Table 5.7. Computing time and number of solution boxes 
as a function of dimension n 

n 1 .. . 5 ... 

Computing time (s) 0.05 .. . 0.33 ... 

Number of solution boxes 1 .. . 1 ... 

20 50 

12.5 401 

1 1 

Fritz-John contractor: Assume now that there are inequality con­
straints of the form h(p) ::::; 0 to be satisfied by the optimizers. Hansen 
proposes use of a contractor based on the Fritz-John conditions. Similar to 
the more famous Kuhn-Tucker conditions (Pardalos and Rosen, 1987), the 
Fritz-John conditions provide necessary conditions for a vector P to be a 
solution of a constrained optimization problem, as stated by the following 
theorem. 

Theorem 5.1 If the vector P E [p] C ]Rn is a local minimizer of the cost 
function c under the constraints hi(p) ::::; 0 for i E {I, ... , m}, then there exist 
m + 1 real coefficients uo, Ul, ... , Urn such that 
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i = 1, ... ,n, 

i = 1, ... ,rn, (5.4 7) 
Ui ~ 0, i = 0, ... ,rn, 

Uo + Ul + ... + Urn = 1. 

The coefficients Uo, Ul, ... , Urn are called Lagrange coefficients. • 
The n + m + 1 equations in (5.47) involve n + m + 1 variables (n for the 

components of p and m + 1 for the Lagrange coefficients). Since all the UiS 

should be positive and since their sum is equal to 1, the domain for each Ui 

can be set to [0,1]. The second line of (5.47) implies that if hi(p) < 0 (which 
means that the constraint associated with hi is not active at p) then Ui = O. 
The equations in (5.47) can be put in the compact form fFJ(t) = 0, where 

Uo + UI + ... + Urn - 1 

U k (p) + U Bh, (p) + ... + U Bh", (p) o BPI 1 BPI rn BPI 

(5.48) 

and 

(5.49) 

with u = (uo, UI, ... , urn) T. fF J is called the Fritz-] ohn function. A contrac­
tor for the equation fFJ(t) = 0 can be used to contract [p] without losing 
any solution of the constrained minimization problem. The efficiency of the 
Fritz-John contractor, included in Hansen's algorithm, will now be illustrated 
with two examples. 

Example 5.8 Consider the minimization of 

( 2 2) c(p) = 0.1 PI + P2 

over [p] = [-1, I]X2 under the constraint 

2 sin(27fP2) - sin(47fpI) ::::; O. 

(5.50) 

(5.51) 

This problem is known to have 24 local minimizers and only one global mini­
mizer p = (0,0) T, for which c(p) = C = 0 (Ratschek and Rokne, 1988). W'ith 
cp = Cc = 10-5, after 25 'iterations and in 0.11 s on a PENTIUM 90, Hansen's 
algorithm returns a single box approximately given by 
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[p] = ([-0.0000002,0.000004]) , (5.52) 
[-0.0000002,0.000004] 

which contains the global minimizer. The global minimum c is proved to belong 
to [0,10- 1°]. • 

Example 5.9 Hansen (1992b) illustrates the performance of his algorithm 
on about 30 test cases, but only one of them involves constraints over p, 
namely the minimization of 

2 4 6 2 c(p) = 12P1 - 6.3P1 + P1 + 6P1P2 + 6P2 

over [p] = [_2,4]X2 under the constraints 

{
I - 16pr - 25p~ ::::; 0, 

13P1 - 145p1 + 85p2 - 400 ::::; 0, 

P1P2 - 4::::; O. 

This problem is known to have two global minimizers: 

p(l) ':':' (-0.066042,0.192895) T 

and 

p(2) ':':' (0.066042, -0.192895) T, 

(5.53) 

(5.54) 

(5.55) 

(5.56) 

for which C,:,:, 0.199035. For cp = Cc = 10-5 , after 44 iterations and in 0.22 s 
on a PENTIUM 90, Hansen's algorithm generates two boxes that bracket these 
two global minimizers with a precision equal to 10- 1°. The global minimum c 
is bracketed with a precision of 10-9 . For the two boxes found in parameter 
space, the last two constraints are inactive so U2 = U3 = O. The other two 
Lagrange coefficients are Uo ':':' 0.834087 and U1 ':':' 0.165913. • 

5.5.3 Using interval constraint propagation 

OPTIMIZE is also used in the literature with contractors based on interval 
constraint propagation (rCP) such as Ct r presented in Chapter 4 (see, for 
instance, Zhou, 1996 and van Hentenryck et al., 1997). Strangely enough, the 
contractors based on rcp never seem to have been combined with those em­
ployed by Hansen. When the optimization problem is non-linear and the cost 
function is not differentiable, the contractors based on linear approximations 
(i.e., all those presented in Chapter 4, except Cn ) are in general inefficient, 
and only contractors based on rcp are able to contract large domains. This 
is illustrated by the following example (Jaulin, 2001b). 

Example 5.10 Consider the minimization of 

c(p)= max Ig(p,k)l, 
kE{1, ... ,lO} 

(5.57) 
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where 

g (p, k) = PI exp(P2 k2) + P3 exp(P4 k2) - 20 exp( -0.2 k2) 
4 4 k2 

+ 10 exp( -0.05 k 2 ) + 0.1 sin( 4)' 
(5.58) 

and P = (PI, P2, P3, P4) T belongs to the box 

[p] = [-60,60] x [-1,0] x [-60,60] x [-1,0]. (5.59) 

A permutation of PI with P3 and of P2 with P4 leaves C (p) unchanged. 
The solution set is thus symmetric with respect to the plane (PI - P3 = 

0, P2 - P4 = 0). This problem is ill conditioned and non-differentiable, and 
classical punctual local methods have difficulties finding even a local mini­
mizer (Jaulin, 2001 b). Moreover, they cannot detect that the problem has two 
global minimizers. Equipped with the single contractor C 1 r associated with the 
constraint (c (p) ::::; c), on a PENTIUM 133, OPTIMIZE finds in l. 7 s and after 
109 bisections that the global minimum lies inside [0.0653,0.0657]. The list £ 
returned by OPTIMIZE consists of 44 tiny boxes, each of which is such that its 
image by the cost function is included in [0.0653,0.0657]. These boxes can be 
classified into two symmetrical groups, associated with each of the two global 
mznzmzzers. • 

5.6 Minimax Optimization 

Consider now the difficult problem (Du, 1995) of getting an enclosure of the 
real number Cn defined by the following sequence of optimization problems: 

CI (P2, ... , Pn) maxp1E[Pl] CO(PI, ... , Pn), 

subject to (PI, ... ,Pn) E §(1), 

C2(P3,···,Pn) = minp2 E[P2] CI(P2,···,Pn), 

subject to (P2, ... , Pn) E §(2), 

Ci(Pi+I, ... ,Pn) = (-l)iminpiE[Pi] (-l)i ci_ I (Pi, ... ,Pn), 

subject to (Pi, ... ,Pn) E§(i), 

(-It- I minpn_1E[Pn_l] (-It- I Cn-2(Pn-I, Pn), 

subject to (Pn-I, Pn) E §(n - 1), 

(-It minpnE[Pn] (-It Cn-I(Pn), 

subject to Pn E §(n), 

(5.60) 
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where CO(PI, ... ,Pn) is a known function of the n vectors PI, ... ,Pn. The 
set §( i) is associated with the constraints of the ith optimization problem. 
When i is even, (_l)i = 1 and thus 

Ci(PHI,···,Pn) = minpiE[Pi] Ci-I(Pi,···,Pn), 

subject to (Pi, ... , Pn) E §(i). 

Wheni is odd, (-1) i = -1 and thus 

Ci(PHI, ... ,Pn) = maxp;E[p;] Ci-I(Pi, ... ,Pn), 

subject to (Pi, ... , Pn) E §(i). 

(5.61) 

(5.62) 

An example of such a minimax problem is the guaranteed evaluation of 

mm max mm 

P3 E [-1,2] P2 E [-1,1] PI E [0,10] 

sin(P3) ~ 0 P§ + P2 ~ 2 pi + P2P3 ~ 1 

For simplicity, it will be assumed that Ci (PH 1, ... , Pn) exists for all 
i E {O, ... , n - I} and for all PHI, ... , Pn. This assumption, satisfied in 
the applications considered in this book, implies that for any (PHI, ... , Pn), 
there exists at least one Pi such that (pi, ... , Pn) E §( i). 

Although many application problems can be cast into this form, as illus­
trated in Chapter 8, the minimax problem has received very little attention in 
the interval community (Zuhe et al., 1990; Didrit, 1997; Wolfe, 1999; Jaulin, 
200lb). Section 5.6.1 is devoted to the unconstrained case and shows how 
a convergent inclusion function for Ci can be built when a convergent in­
clusion function for Ci-I is available. The constrained case is considered in 
Section 5.6.2. Section 5.6.3 is devoted to the closely related problem of dealing 
with quantifiers. 

5.6.1 Unconstrained case 

Assume that §(i) = lRdim§(i) for i = 0, ... , n - 1. For the time being, take i 
to be even, so 

Ci(PHI,···,Pn) = min Ci-I(Pi,···,Pn). p;E[p;] 
(5.63) 

We shall now explain how to get an inclusion function for Ci(PHI, ... ,Pn) 
based on an inclusion function for ci-I (Pi, ... , Pn). Provided that an inclusion 
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function is available for CO(PI, ... , Pn), we shall thus obtain an inclusion 
function for each function Ci, including Cn as defined by (5.60). 

Denote (Pi+I, ... , Pn) by qi+l· Equation 5.63 then becomes 

ci(qi+d = min Ci-l(Pi, qi+d· 
PiE[Pi] 

The method to be proposed is based on the following theorem. 

(5.64) 

Theorem 5.2 If [Ci-l] ([Pi], [qi+1]) is a convergent inclusion function for 
Ci-l(Pi, qi+d, and if [pi](k), k E {I, ... , k} is a partition of [Pi] such that 

then 

[Ci]([qi+l]) £ min_ [Ci-I]([Pi](k), [qi+l]) 
kE{l, ... ,k} 

is a convergent inclusion function for Ci (qi+ d. 

(5.65) 

(5.66) 

• 
Proof. The first part of the proof establishes that [Ci] as defined by (5.66) is 
an inclusion function for Ci. The second part proves that [Ci] is convergent. 
Define 

(k) ( ) /',. ( ) ci qi+l = mm Ci-l Pi, qi+l . 
p.iE[p.i](k) 

(5.67) 

From (5.63), and since the [pi](k)s form a partition of [Pi], 

Ci(qi+d = min_ cik ) (qi+d· 
kE{l, ... ,k} 

(5.68) 

Now, from (5.67), 

cik ) (qi+d E Ci-l ([Pi] (k), qi+d, (5.69) 

which is a subset of [Ci-l]([Pi](k), [qi+l]), if qi+1 E [qi+l]. Therefore, from 
(5.68), 

Ci([qi+l]) C min_ [Ci-l]([Pi](k), [qi+1])' (5.70) 
kE{l, ... ,k} 

To prove that [Ci] is convergent, assume that the width of [qi+1] tends to 
zero. From (5.65) the widths of the [pi](k)s also tend to zero, and so does the 
width of [Ci-l]( [Pi] (k), [qi+ 1]) for all k E {I, ... , k}. Therefore, the width of 
[Ci]([qi+l]) as computed by (5.66) tends to zero. • 

For a given punctual vector qi+l, Figure 5.I4a gives an interpretation 
of ci(qi+d. Figure 5.I4b depicts the interval function Ci-l(Pi, [qi+l]). The 
inclusion function (5.66) obtained by partitioning [Pi] is illustrated by Fig­
ure 5.I4c. 
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(a) 
Pi 

(b) 

(c) 
[pJ (k) 

Fig. 5.14. Enclosing Ci([Qi+1]) in the minimax algorithm (unconstrained case); 
qHI stands for (PHI, ... , Pn); (a) definition of Ci from Ci-I for punctual arguments; 
(b) evaluation of Ci from Ci-I when all arguments are boxes except Pi; (c) interval 
enclosure of Ci and Ci-l when all their arguments are boxes 
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Remark 5.5 The min operator in (5.66) should be interpreted as an interval 
extension of the min operator on real numbers. For instance 

min( [1,6]' [3,5]' [0, 10]' [-1,7]' [9,9]) 

= [min(l, 3, 0, -1, 9), min(6, 5,10,7,9)] = [-1,5]. 
(5.71) 

• 
Remark 5.6 It is trivial to extend Theorem 5.2 to deal also with the case 
where i is odd. If a convergent inclusion function is available for co, a re­
cursive application of Theorem 5.2 then yields inclusion functions for all the 
functions Ci. • 

The algorithm of Table 5.8, adapted from Didrit (1997), is a recursive 
implementation of the inclusion function for Ci( qi+d based on Theorem 5.2. It 
is assumed that an inclusion function for Co is available, and the presentation 
is first for even i. The positive coefficient E represents the width of the smallest 
box that can still be bisected to update the partition of [Pi] so that this 
partition satisfies (5.65). Since i is assumed to be even, an upper bound Ci 
for Ci([qi+l]) is given by 

(5.72) 

see Figure 5.14c. This upper bound is used to eliminate any [Pi] (k) that 
satisfies 

(5.73) 

(see Step 7). In Figure 5.14c, the leftmost and rightmost boxes satisfy this 
condition and can thus be eliminated. This could be avoided in principle, but 
it is a useful simplification to eliminate boxes without bisecting them down 
to the width E whenever possible. The first call of the algorithm computes 
[Cn] (E) and the deepest call (in the sense of recursivity) evaluates 

(5.74) 

Remark 5.7 In Table 5.B, [Pi] stands for the current box [Pi] (k) of the 
partition. • 

Remark 5.8 No contractors are used in this simple version, but they should 
be involved to improve efficiency. • 

The following lines should replace their counterparts of Table 5.8 when i 
is odd: 

3' f..::i:= -00; Ci := -00; 

7' if (ub([r]) ~ f..::i) then 

8' f..::i = max(lb([r]) ,f..::i); 

9' if (W([Pi]) < E) then Ci = max(ci,ub([r-j)); 
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Table 5.8. Inclusion function for the unconstrained minimax problem 

Algorithm [ei] (in: [PHI] , ... , [Pn] ,c; out: [eiD / / i assumed to be even 

1 if i = 0 then return [co] ([PI], ... , [PnD; 

2 Q={[P)]}; 

3 f::i:= 00; Ci := 00; 

4 do 

5 pop first element out of Q into [Pi]; 

6 compute [r] := [ei-I] ([Pi] , ... , [Pn] ,W([Pi])); 
7 if (lb([r]) ,,;; Ci) then 

8 Ci := min(ub([r]), Ci); 

9 if (W([pi]) < c) then f::i := min(f::i,lb([r])); 

10 else bisect [pi] and put the resulting boxes at the end of Q; 

11 while Q i= 0; 

12 [ei]:= [f::i' Ci]. 

The algorithm computing a guaranteed enclosure of Cn is then simply 

Algorithm MINIMAx(in: Co, [PI] , ... , [Pn] ,s; out: [cn]) 

1 [cn]:= [cn] (s). 

5.6.2 Constrained case 

Assume again that i is even, so 

Ci(Pi+I, ... ,Pn) = minpiE[p;] Ci-I (Pi, ... , Pn), 

subject to (Pi, ... , Pn) E §(i). 

Denote again (Pi+I, ... ,Pn) by qi+l. Equation 5.75 then becomes 

ci(qi+d = minpiE[p;] Ci-I(Pi, qi+d, 

subject to (pi, qi+d E §(i). 

(5.75) 

(5.76) 

In the constrained case, Theorem 5.2 is replaced by the following one, which 
will also serve to obtain inclusion functions for each function Ci, including Cn. 

Theorem 5.3 Assume thati is even. If [Ci-I] ([Pi], [qi+l]) is an inclusion 
function for Ci-I(Pi, qi+d, if {[Pi](k), k E {I, ... , k}} is a partition of [Pi] 
and iJ[t§(i)] is an inclusion test for the set§(i) (i.e., [t§(i)] ([Pi], [qi+1]) = 1 =} 

([Pi], [qi+1]) c §(i) and [t§(i)]([Pi], [qi+l]) = 0 =} ([Pi], [qi+l]) n §(i) = 0), 
then a lower bound for Ci([qi+l]) is 

mm 

k E {I, ... , k} 

[t§(i)]([Pi], [qi+l]) cf 0 

(5.77) 
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and an upper bound for Ci ([qi+l]) is 

mm 

k E {I, ... , k} 

[tS(i)](mi(k), [qi+l]) = 1 

where mi(k) = mid([pi](k)). • 
Proof. The proof for the lower bound is trivial and only a proof for the 
upper bound is given. If [tS(i)](mi(k), [qi+l]) = 1, this implies that for any 
qi+l E [qi+l], (mi(k), qi+d E §(i). Then, according to (5.75), 

'v'qi+l E [qi+l], ci(qi+d::::; ci-l(mi(k),qi+d· (5.79) 

The upper bound ci(k) for [Ci-l] ([pi](k) , [qi+1]) is also an upper bound for 
[ci-l](mi(k), [qi+1]) and thus an upper bound for Ci([qi+1])' The smallest 
of these k upper bounds as given by (5.78) is also an upper bound for 
Ci([qi+l]). • 

£:;([qi+l]) { I ( [ ]) (')} Pi Pi' qi+l C § 7 

[pJ(k) 

Fig. 5.15. Illustration of Theorem 5.3 used for constrained minimax optimization 

Figure 5.15 illustrates this theorem. Boxes in dark grey correspond to 
[pi](k)s such that [tS(i)]([pi](k), [qi+l]) = O. These boxes are not taken into 
account to get the bounds £:i ([qi+l]) and Ci ([qi+l])' Boxes in light grey 
are associated with [pi](k)s for which [tS(i)]([pi](k), [qi+l]) = [0,1]. They 
should be considered for the computation of £:i ([qi+l])' White boxes satisfy 
[tS(i)] (mid ([Pi] (k)), [qi+l]) = l. They are involved in the computation of 

£:i ([qi+l]) and Ci ([qi+l]) . 
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Table 5.9 implements the inclusion function provided by Theorem 5.3. 
It requires an inclusion function for Co and an inclusion test for § (i). If 
([Pi] , ... ,[Pn]) turns out to be outside §( i), then the current box [Pi] is 
removed (see Step 6). The current upper bound Ci is updated at Step 10 in 
order to allow the evaluation of (5.78) and the possible elimination of boxes 
(see Step 8). The current lower bound I..::i is updated at Step 11 in order to 
allow the evaluation of (5.77). Recall that in the presentation of the algorithm 
it was assumed that i is even. Adaptation to deal with odd i is trivial. Note 
that Remarks 5.7 and 5.8 still apply. 

The algorithm MINIMAX computing a guaranteed enclosure of Cn is the 
same as in the unconstrained case. 

Table 5.9. Inclusion function for the constrained minimax problem 

Algorithm [ei] (in: [Pi+l] , ... , [Pn] ,c:; out: [eiJ) / / i assumed to be even 

1 if i = 0 then return [eo] ([PI], ... , [PnJ); 

2 Q = {[P)]}; 

3 fi:= 00; Ci := 00; 

4 do 

5 pop first element out of Q into [pi]; 

6 if [t§(i)] ([pi], ... , [PnJ) # 0 then 

7 compute [r] := [ei-I] ([pi] , ... , [Pn] ,W([pi])); 
8 if (lb([rJ) ~ Ci) then 

9 if [t§(i)] (mid([piJ) ,[PHI] , ... , [PnJ) = 1 then 

10 Ci := min(ub([rJ) ,Ci); 
11 if (W([piJ) < c:) then fi := min(fi,lb([r])); 

12 else bisect [pi] and put the resulting boxes at the end of Q; 

13 while Q # 0; 

14 [ei]:= [fi,Ci]. 

5.6.3 Dealing with quantifiers 

This section deals with inequality problems involving the existential quantifier 
=j and universal quantifier \/. Surveys of the available methods can be found in 
(Mishra, 1993; Caviness and Johnson, 1998; Dorato, 2000), and applications 
in (Ioakimidis, 1997; EI Kahoui and Weber, 2000). This class of problems is 
particularly important in control theory (Jaulin and Walter, 1996; Liska and 
Steinberg, 1996; Steinberg and Liska, 1996; ?; Hong et al., 1997; Jirstrand, 
1997; Neubacher, 1997). Some examples related to robust control will be 
considered in Chapter 7. Interval analysis provides very promising tools to 
solve such problems (Jaulin and Walter, 1996; Benhamou and Goualard, 2000; 
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Ratschan, 2000a, 2000b). This section shows that problems involving 3 and 
\;/ are closely related to minimax problems and that the algorithm MINIMAX 
can be used to solve them. For instance, proving that 

amounts to proving that 

max min max PI + P2P3 ~ 1. 
p:lE[I,3] P2E[I,2] PIE[O,I] 

More generally, proving that 

can be cast into proving that 

mm max 

P2 E [P2] 

(P2,P3) E §(2) 

mm 

PI E [PI] 

(PI, P2, P3) E §(1) 

(5.80) 

(5.81 ) 

(5.82) 

(5.83) 

MINIMAX can thus be used to prove (or disprove) (5.82). Of course, it should 
be slightly modified to terminate as soon as the current enclosure for the 
global optimum C3 has a positive lower bound (or a negative upper bound). 

Consider now the problem of characterizing a set § defined by inequalities 
involving \;/ and 3. For simplicity, it will be assumed that 

§ = {P3 E [P3] (0) I (\;/P2 E [P2], 3PI E [PI] I g(PI' P2, P3) ~ on, 
(5.84) 

but more general sets could be considered as well. § can be defined equiva­
lently by 

§ = {P3 E [p3](0) I min max g(PI,P2,P3) ~ o}. 
P2E[P2] PIE[PI] 

A subbox [P3] of [P3](0) is inside § if 

min min max g(PI,P2,P3) ~ 0, 
P3E[P3] P2E[P2] PIE[PI] 

and outside § if 

max min max g(PI,P2,P3) < O. 
P3E[P3] P2E[P2] PIE[PI] 

(5.85) 

(5.86) 

(5.87) 
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Define the interval function 

[h] ([P3]) = [min min max g(Pl' P2, P3), 
P3E[P3] P2E[P2] PIE[Pl] 

max min max g(Pl,P2,P3)]. 
p:JE[p:J] P2E[P2] PIE[Pl] 

(5.88) 

An enclosure [he ]([p3]) of [h]([p3]) can be obtained by running MINIMAX for 
the lower and upper bounds. The accuracy parameter in MINIMAX could be 
taken as EO = W([p3]) as suggested in Jaulin and Walter (1996). An inclusion 
test for § is then 

{ 
[t]([P3]) = 1 if lb([he ] ([P3])) ? 0, 

[t]([P3]) = ° if ub([he ] ([P3])) < 0, 

[t] ([P3]) = [0, 1] otherwise. 

(5.89) 

SIVIA (see Table 3.2, page 58) can now be used to get inner and outer ap­
proximations of § by subpavings. 

A possible application is the characterization of the projection of a set 
defined by non-linear inequalities onto a subspace, for instance, the projection 
of the three-dimensional sphere 

([JJ = {(x, y, z) E Jl{3 I x2 + y2 + z2 ~ I} 

onto the (x, y)-plane, which is defined by 

§ = {(x,y) E Jl{2 1 3z, x 2 + y2 + Z2 ~ I}. 

(5.90) 

(5.91) 

The accumulation set of the algorithm is here the set of all the points of Jl{3 

that are projected onto the boundary 8§ of §. It has a dimension equal to that 
of 8§, i. e., one. On the other hand, if the characterization of § were performed 
by running SIVIA to characterize ([JJ and then by projecting the resulting 
boxes onto the (x, y)-plane, the accumulation set would be the boundary of 
([JJ (which has a dimension equal to two instead of one for 8§), so complexity 
would be higher. Moreover this approach would not be able to provide an 
inner approximation of §, contrary to the one advocated here. 

5.7 Cost Contours 

Consider the cost function c : Jl{n ---+ Jl{, P f--+ c(p), for which an inclusion 
function [c] is assumed available. The problem to be addressed now is the 
characterization of the m level sets ILl, ... ,ILm associated with m given values 
Cl, ... ,Cm of the cost, defined by 

ILi~{pE[p]lc(p)=cd i=l, ... ,m, (5.92) 
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where [p] is the box of interest. Table 5.10 presents the algorithm ISOCRIT 
(for iso-criterion) (Didrit et al., 1997) performing this characterization. Upon 
completion of ISOCRIT, the union of the boxes listed in £ contains the m lLiS. 

The structure of ISOCRIT is similar to that of SIVIA, presented in Chap­
ter 3. At Step 4, the smallest interval containing the intersection of [c] ([p]) 
and {Cl,"" cm} is computed. A contraction is performed at Step 5, which 
may lead to the empty set if there is no Ci in [c]([p]). In such a case, [p] 
does not intersect any level set of interest and is eliminated. At Steps 7 and 
8, before storing [p] into the list £ it is also required that [h], computed at 
Step 4, be a degenerate interval. When this condition occurs, [p] is a small 
box, that intersects one level set of interest at most. The value of the cost 
associated with this level set is stored with [p] in £ for further treatment. 

Table 5.10. Algorithm for characterizing level sets 

Algorithm ISOCRIT(in: c (.) , Cl, ... , Crn , [p],c; out: £) 
1 Q := {[pJ}; £ := 0; 

2 do 

3 pop first box out of Q into [p]; 
4 [h]:=[[c]([p])n{Cl, ... ,Crn}]; 
5 contract [p] under the constraint [c]([p]) E [h]; 
6 if[h]c/=0, 

7 if w([p]) < c and if [h] is punctual, then 

8 put the pair ([p], [h]) into £; 

9 else 

10 bisect [p] and put the resulting boxes in Q; 

11 while Qc/=0. 

Example 5.11 For the Branin function of Example 5.4, page 120, and Ex­
ample 5.6, page 123, for Cl = 1, C2 = 10, C3 = 50, C4 = 150 and c = 0.2, 
ISOCRIT yields the paving of Figure 5.16 after 6951 iterations and 0.8 s on 
a PENTIUM 90. The figure suggests the existence of at least three local mini­
mizers. • 

5.8 Conclusions 

This chapter has presented solvers to treat difficult non-linear problems in a 
guaranteed way. The notions of inclusion test and of set contractor allowed 
us to focus attention on the management of search space rather than on the 
technical tools to be employed (interval analysis, consistency techniques and 
CSPs). 
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Interval analysis is present in these solvers through the notions of con­
tractor and inclusion test. This is why the literature often calls them interval 
solvers. 

This chapter concludes Part II, devoted to interval tools. It has provided 
algorithms to solve problems that are the bread and butter of engineering 
applications, such as finding all the solutions of systems of equations and 
inequalities and optimizing cost functions of various types under various con­
straints. 

These tools will be applied in Part III to typical engineering problems. 
Chapter 6 deals with the estimation of unknown quantities of interest from 
uncertain experimental data, Chapter 7 is devoted to the control of uncertain 
systems and Chapter 8 to problems of robotics. Every effort will be made to 
make the problems treated understandable by readers with other applications 
in mind. 

Fig. 5.16. Paving obtained by ISOCRIT for the Branin function 



Part III 

Applications 



6. Estimation 

6.1 Introduction 

Consider a set X consisting of real variables Xl, .. . ,Xn , which form a vector 
x. For the sake of simplicity, n = dim x will be taken as finite. A variable in 
X may, for instance, represent 

• the time at which a given event occurs (or the value taken by any other 
independent variable), 

• the value of some physical parameter, such as the rate constant of a chem­
ical reaction, 

• the value taken by some quantity of interest at a given instant of time. 

Each of the variables in x will be assumed to be partially or totally un­
known, and it is the purpose of estimation to use all the available data to 
obtain more accurate information about the numerical values of all or some 
of them, see, e.g., Walter and Pronzato (1997). When these quantities are as­
sumed to be constant, one often speaks of parameter identification. Assume 
that relations can be defined between variables, based on physical laws and 
on hypotheses about the system under consideration. Examples of such rela­
tions are Xl ~ 3X2 and X3 = sin(xI +X2). These relations define a subset M of 
]Rn, called the constrained set, containing all the xs that satisfy all of them. 
The letter M has been chosen as a reminder of the fact that the constrained 
set is a model of reality. Note that if z(t) is a time-dependent quantity of 
interest, the function z is not considered as a variable, but its values at all 
time instants of interest form as many variables. Thus, z(l), z(5) and z(10) 
may be variables. Note also that any quantity that can be assumed to be 
known exactly need not be incorporated in X. 

Remark 6.1 Differential relations, such as ii(t) + 3y(t) - sin t = 0 cannot be 
incorporated as such, since the number n of variables is taken as finite. The 
only continuous-time systems to be considered in this chapter are thus those 
for which explicit solutions can be calculated. • 

Remark 6.2 With the approach presented in this chapter, there is no need to 
distinguish between input variables, which are known and more or less under 
control, and output variables, which are observed on the system as it reacts 

L. Jaulin et al., Applied Interval Analysis
© Springer-Verlag London 2001
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to inputs and perturbations. This approach is thus well suited to behavioural 
modelling as advocated by Willems (1 g86a, 1986b), where no such distinction 
is made. When convenient, the distinction remains possible, of course. • 

Example 6.1 Consider a system with input u(t) and output y(t), where t is 
time. Assume that 

\It E m;.+, y(t) = u(t) + exp( -pt), (6.1) 

where p is some unknown scalar parameter. Assume that two measurements 
y(tI) and y(t2) of the output are collected at times t1 and t2' The set of all 
variables of interest may then be 

(6.2) 

where U1, U2, Y1 and Y2 represent u(h), U(t2), y(tI) and y(t2)' The constrained 
set is then the set M of all (h, t2, U1, U2,P, Y1, Y2) such that Y1 = U1 + e-ph 

and Y2 = U2 + e-pt2 • • 

Independently of the relations defining M, assume that information is 
available about the values that x may take. This information may come 
from measurements and from prior knowledge about their reliability. Two 
expressions of this information will be considered. 

The first one is by a real function c in the x-space, to be used as a 
measure of the feasibility of x, which will be called the prior feasibility 
function. By convention, the value of c(x) will decrease when the feasibil­
ity of x increases. The prior feasibility function may have been obtained by a 
maximum-likelihood approach based on statistical information about the na­
ture of measurement noise, but many other interpretations could be thought 
of (e.g., fuzzy logic). 

The second expression of prior information is by a subset i of m;.n con­
taining all feasible values for x, which will be called the prior feasible set. 
This set may have been derived from the technical data sheets of sensors, 
which usually contain information about the maximum error committed in 
any given range of operation. 

Example 6.2 Consider again Example 6.1, and assume that approximate 
values for all the variables have been obtained, given by 

A possible prior feasibility function is 

C(t1' t2, U1, U2,P, Y1, Y2) = Wtl (t1 - £1)2 + Wt2 (t2 - £2)2 
+ W"" (U1 - ih)2 + W"2 (U2 - U2)2 

+ wp (p _ p)2 

+ wY1 (Y1 - iiI)2 + wY2 (Y2 - ih)2 , 

(6.3) 

(6.4) 
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where W Xi is a positive coefficient expressing the confidence associated with 
the approximate value . When no is available, one may take W Xi = O. 
Note that the minimum of c is reached at x = (i1, i 2, ih, U2,j5, ih, i12) and that 
the associated value of c is zero. One may alternatively decide to represent 
prior knowledge on x by a prior feasible set X, containing x and large enough 
to include all values of x that are deemed acceptable. Here, the prior feasible 
set might be defined as 

X = {x = (t1' t2, U1, U2,P, Y1, Y2) I t1 E [i1], ... , Y2 E [Y2]} 
= [i1] x [i2] x [U1] x [U2] x [j5] x [ill] x [Y2], (6.5) 

where [i1], ... , [Y2] are prior intervals assumed to contain the true values for 
the corresponding variables. • 

Estimation will be viewed as the action of taking the constrained set 
M into account to make the information available on x more accurate. Two 
approaches will be considered. The first one, described in Section 6.2, is based 
on the prior feasibility function c(x). The posterior (set) estimate Xc is then 
defined as the set of all global minimizers of this prior feasibility function 
over the constrained set M: 

Xc = argminc(x). 
xEM 

(6.6) 

The second approach, pre~ented in Sections 6.3 and 6.4, aims to characterize 
the posterior feasible set Xs , defined as 

(6.7) 

For both approaches, a projection of the posterior estimates onto the space 
of the variables of interest should be performed. 

Remark 6.3 Here prior means before taking the constrained set into ac­
count, whereas usually in statistics it means before taking the data into ac­
count. • 

Example 6.3 Consider again Example 6.2. With the first approach, the pos­
terior estimate is 

Xc = argmin C(t1' t2, U1, U2,P, Y1, Y2). 

Y1 = U1 exp( -ptI) 

Y2 = U2 exp( -pt2) 

(6.8) 

It contains the best values for x (in the sense of c) among those in M. With 
the second approach, the posterior feasible set might be 

Xs = {x = (t1' t2, U1, U2,P, Y1, Y2) I c(x) ~ 6, 

Y1 = U1 exp( -ph) and Y2 = U2 exp( -pt2)}, 
(6.9) 

where 6 is some prespecified positive real num£er. If one is only interested in 
the value of p, then one should project Xc or Xs onto parameter space. • 
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6.2 Parameter Estimation Via Optimization 

Assume that the set X of all variables can be partitioned into two sets Z and 
y, where Z = {Zl,"" zn"} and Y = {Y1,"" Yn y}, such that there exists a 
function 1> : ]Rn" ---+ ]Rny for which the following equivalence holds 

(Zl,"" Zn", Y1, ... , Yny)T EM {o} (Y1,"" Yny)T = 1>(Zl,"" znJ. 

By an abuse of notation, we shall feel free to write, more concisely, 

(z, Y) EM {o} Y = 1>(z). 

Define the posterior feasibility function as 

c(z) ~ c(z, 1>(z)). 

(6.10) 

(6.11) 

(6.12) 

Solving (6.6) amounts to the unconstrained minimization of c(z). Except in 
important special cases such as when the posterior feasibility function c is 
quadratic in z, c(z) is not convex and the usual local iterative algorithms 
of non-linear programming may get trapped in local minima. Global guar­
anteed methods such as OPTIMIZE (page 119), should therefore be preferred 
whenever applicable. 

Example 6.4 Consider again Example 6.1, and take Z = {h, t2, U1, U2, p} 
and Y = {Y1, Y2} so 

1>(z) = (U1 exp( -Ph)) . (6.13) 
U2 exp( -pt2) 

Solving (6.8) amounts to finding the set of all the global minimizers of 

(6.14) 

Note that if t1, t2, U1 and U2 were assumed to be known exactly, they should 
not appear in z, and optimization would be with respect to the parameter p 
only. The situation considered here is much more general, since the values 
taken by the input and output, as well as the time instants at which they are 
measured, may be uncertain and may need to be estimated. • 

In what follows, the prior feasibility function c(x) will characterize the dis­
tance between x and some given vector * of prior estimates for the variables. 
A weighted L2 norm 

n 

c(x) = IIx - *II~ = L wx ; (Xi - Xi)2, 
i=l 

will be used in Section 6.2.1 and a weighted Leo norm 

c(x) = Ilx - *1100 = rr!f W Xi IXi - Xi I, 

(6.15) 

(6.16) 
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in Section 6.2.2. In both cases, W Xi is a prespecified positive weight expressing 
the degree of confidence in the prior estimate Xi. These two norms may 
lead to totally different posterior estimates X, as illustrated by Figure 6.1. 
Geometrically, x is the projection of x onto the constrained set M, as defined 
for the norm employed. 

X 2 

(a) 

M M 

(b) 

Fig. 6.1. The posterior estimate x is here very sensitive to the norm employed; (a) 
L=-norm, (b) L 2-norm 

Remark 6.4 If nothing is known about the variable Xi! W Xi may be taken 
equal to 0, in which case (6.15) and (6.16) no longer correspond to norms .• 

6.2.1 Least-square parameter estimation 
in compartmental modelling 

Compartmental models are widely used in biology and pharmacology to study 
metabolisms and the fate of drugs (Jacquez, 1972). They also find applica­
tions in ecology and chemical engineering (Happel, 1986). A compartmental 
model consists of a finite set of homogeneous reservoirs, called compartments 
and represented by circles, which may exchange material as indicated by ar­
rows. The evolution of the quantity of material in each of the compartments 
is described by a set of first-order ordinary differential equations, usually 
assumed to be linear and time-invariant, with the flow of material leaving 
Compartment i proportional to the quantity qi of material in this compart­
ment. The equations describing the behaviour of the compartmental model 
are obtained by writing down conservation equations, under the form of a 
state equation. As in Kieffer and Walter (1998), consider for example the 
system described by Figure 6.2. 

The evolution of the vector q = (ql, q2) T of the quantities of material in 
the two compartments is described by the linear time-invariant state equation 
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~u ~ 
~.~( ___ P_3 ___ )~ 
V P2 V 

~Pl 

Fig. 6.2. Two-compartment model 

{ 
~1 = - (P3 + PI) ql + P2q2 + U, 

q2 = P3ql - P2Q2· 
(6.17) 

Take the system in zero initial condition (q(O_) = 0), and assume that a 
Dirac input u(t) = 5(t) is applied to Compartment 1, so Ql(O+) = 1 and 
Q2(0+) = O. Assume also that the content of Compartment 2 is observed at 
16 instants of time, according to 

Yi=Q2(ti), i=1, ... ,16. 

It is trivial to show that 

where 

and 

P3 
ex = ----;:.========= 

V(PI - P2 + P3)2 + 4P2P3' 

PI + P2 + P3 - V(PI - P2 + P3)2 + 4P2P3 
Al = ------------~------------------

2 

PI + P2 + P3 + V(PI - P2 + P3)2 + 4P2P3 
A2 = . 

2 

(6.18) 

( 6.19) 

(6.20) 

(6.21) 

(6.22) 

These equations define the constrained set M. Assume further that the mea­
surement times ti are known exactly, and thus need not be considered as 
variables. The variables of the problem are then p = (Pl,P2,P3)T, which 
takes the role of z, and y = (Yl, ... , Y16)T. Prior values Yi of the variables Yi 
have been obtained as a result of the measurements performed on the system 
under study, and are given in Table 6.1. 

No prior information is available about p, and the measurements Yi are 
all deemed equally reliable, so the prior feasibility function is chosen as 

16 

c(p, y) = L (Yi - Yi)2 , (6.23) 
i=l 
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which does not depend on p. The associated minimization problem is 
16 

• "( v )2 mm ~ Yi - Yi . 
(p,y)EM i=l 

Now, (p, y) EM is equivalent to 

\Ii E {I, ... , 16},Yi = <Pi(P), 

(6.24) 

( 6.25) 

where <Pi(P) is computed according to (6.19)-(6.22). Minimizing the prior 
feasibility function defined by (6.23) under the constraint (p, y) E M thus 
amounts to the unconstrained minimization of the posterior feasibility func-
tion 

16 

c(p) = L (fJi - <Pi(P))2 . (6.26) 
i=l 

Table 6.1. Experimental data 

1 2 3 4 5 6 7 8 

0.0532 0.0478 0.0410 0.0328 0.0323 0.0148 0.0216 0.0127 

9 10 11 12 13 14 15 16 

0.0099 0.0081 0.0065 0.0043 0.0013 0.0015 0.0060 0.0126 

For a search box in parameter space taken as [0.01,2.0] x [0.05,3.0] x 
[0.05,3.0], and with the precision parameters cp and Cc both equal to 10-9 , 

Hansen's algorithm for unconstrained optimization (page 121) encloses the 
two global minimizers of this cost function in the two boxes 

[1.925402,1.925404] x [0.232717,0.232719] x [0.145075,0.145077] 

[0.232717,0.232719] x [l.925402, l.925404] x [0.145075,0.145077]. 

( 6.27) 

Notice that these boxes can be deduced from one another by exchanging 
their interval values for PI and P2, whereas P3 takes the same interval value 
in both boxes. This is consistent with the conclusion of an identifiability study 
(Walter and Pronzato, 1997), which indicates that the system of Figure 6.2 
is only locally identifiable, and that PI and P2 can be interchanged without 
modifying the input-output relation, whereas P3 is uniquely identifiable from 
the experimental data. It seems important to stress that the conclusion of the 
present estimation was not based on such a prior identifiability study, which 
can be dispensed with when global tools are used as here. Two compartmental 
systems representative of the solutions in (6.27) are drawn on Figure 6.3. 

Figure 6.4 presents the data y (t i ) and the fitted response y (t) associated 
with the global minimizers. 
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~u ? ~u ? 
O~(_0_.1_4_5 _)f;\ O~(_0_.1_45 __ )f;\ 

0.233 U 1.925 U 
~ 1.925 ~0.233 

Fig. 6.3. Two radically different compartmental models with the same observed 
behaviour 

Y 

0.05 

0.04 

0.03 

0.02 

0.01 

o 2 4 6 8 10 12 14 

Fig. 6.4. Data y(ti) (+) and estimated model output y(t) (curve) 

16 t 

Remark 6.5 When optimization is with respect to p, Hansen's algorithm 
needs about one day on a PENTIUM 233 to reach this conclusion. By first 
optimizing with respect to Ct, Al and A2 and then solving (6.20) to (6.22) 
for p by SIVIAX, page 104, it is possible to cut down computing time to 
about one minute (Kieffer and Walter, 1998). • 

6.2.2 Minimax parameter estimation 

As in Section 6.2.1, consider a system for which ny measurements ih,···, Yny' 
associated with the output variables Yl, ... , Yny' have been collected at known 
instants of time t i , i = 1, ... , n y . The YiS thus correspond to approximate 
values for the unknown variables Yi that would have been collected in ideal 
conditions. Assume that the system depends on an unknown parameter vector 
p E m;.np , to be estimated. The variables of the estimation problem are then 
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x= (Pl, ... ,Pnp,Yl, ... ,Yny)T. (6.28) 

Following (6.16), the prior feasibility function will be taken as 

( 6.29) 

Since nothing is known about p, we have chosen w Pi = 0 and thus c(p, y) 
does not depend On Pi see Remark 6.4. Assume that the relations defining 
the constrained set are given by 

( 6.30) 

where ¢(p, t) is some prespecified function. From (6.12), the posterior feasi­
bility function to be minimized is 

c(p) = c(¢(p, tI), ... , ¢(p, tn )) = max IYi - ¢(p, ti)l· 
y iE{I, ... ,ny } 

(6.31) 

Estimating p then amounts to computing the global minimizers of 

c(p) = max Ifi(p)l, 
iE{I, ... ,ny} 

( 6.32) 

with fi(p) = Yi - ¢(p, ti)' The resulting minimax optimization problem is 
known as a discrete Chebyshev problem. This type of problem also appears in 
sensor fusion (McKendall, 1990; McKendall and Mintz, 1992) or in decision 
theory (Berger, 1985), when One should minimize the maximum probability 
of unacceptable error or risk. 

Since c(p) is not differentiable everywhere, traditional gradient-type 
methods are usually very inefficient, besides having all the well-known limi­
tations attached to local methods. Most existing methods are also essentially 
local, and based On the iterative application of linear or quadratic program­
ming techniques. Interval solvers have been used in Wolfe (1999) for one­
dimensional problems (dim p = 1), and in Zuhe et al. (1990) and JauIin 
(200lb) for a more general case. OPTIMIZE (page 119) can be used, as illus­
trated On the following example. (It is not appropriate to resort to MINIMAX 
of Section 5.6, as the maximization is with respect to a finite number of 
times.) 

Example 6.5 Assume that the variables PI, ... ,P4, YI, ... ,YIO are related by 

( 6.33) 

The PiS and YiS form the vectors p and y. Since a permutation of PI with P3 
and of P2 with P4 does not affect the validity of the relations, p is not identifi­
able uniquely. Any reliable parameter estimation method should therefore lead 
to symmetrical solutions, provided that the search domain is sufficiently large 
to contain all of them. Assume that the data of Table 6.2 have been collected 
at known instants of time ti. These data are displayed on Figure 6.5. The 
prior feasibility function is 
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c(p,y) = c(y) = . max IYi - Yil. 
,=1, ... ,10 

(6.34) 

Again it does not depend on p, because no prior information is available about 
it. The constrained set is 

(6.35) 

and the posterior feasibility function is 

c(p) = . max IYi - ¢(p, tdl. (6.36) 
,=1, ... ,10 

The minimization of this function will be performed in Example 6.7. • 

Table 6.2. Experimental data 

y 

8 

6 

4 

2 

o 

-2 

+ 

0.25 

6.9465 

9 

-1.6660 

+ 

1 

0.8902 

12.25 

-0.7961 

+ 

+ 

2.25 4 6.25 

-3.0562 -3.7537 -2.8262 

16 20.25 25 

-0.3086 -0.1330 -0.1218 

+ + 
+ 

+ 

-4 L-____ ~+-+ __________________ ------+_------~~ 

o 5 10 15 20 25 t 

Fig. 6.5. Data of the minimax estimation example 
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OPTIMIZE (page 119) can be used to find p that minimizes c as defined 
by (6.32). At Step 6 of this algorithm, a contractor C([p]) associated with the 
constraint 

max Ifi(p)l::::; c 
iE{l, ... ,ny} 

(6.37) 

should be provided, where fi(p) = Yi - ¢(p, ti) and c is an upper bound for 
c(p). C([p]) can be obtained by contracting the CSP 

h(p) = CI 

1i: fny(P) = Cny ( 6.38) 

PI E [PI], ... , Pnp E [Pn p ] 

CI E [-c, c], ... , Cny E [-c, c] 

For the local search required at Step 4 of OPTIMIZE to decrease the upper 
bound c, the approach of JauIin (200l b) will be used, which assumes that each 
parameter Pi appears only once in the expression for fj (p). This approach 
is fast, does not need the evaluation of gradients or subgradients of the cost 
function, is easy to implement and illustrates the ability of interval methods 
to deal with local optimization. 

For a given p, a given index i of axis in parameter space and a given 
upper bound c for c(p) (if no better c is available, take c = c(p)), define the 
following sets: 

lLi(p) ~{qEJl{np IV£.E{l, ... ,i-l,i+l, ... ,np}, pe=qe}, 

§k(C) ~ {p E Jl{np I h(p)1 ::::; C}, 

§(c) ~ n~"=l §k (c) = {p E Jl{np I c(p) ::::; c}, 

lQli (p, c) ~ lLi (p) n §(c) 

= (lLi (p) n §I (c)) n ... n (lLi (p) n §ny (c)) . 

( 6.39) 

A representation of the sets lLi(p), §(c) and lQli(p,C) is given in Figure 6.6 
for dim p = 2 and i = 1. Any point q inside lQli (p, c) satisfies c( q) ::::; c and 
can thus be used to decrease the upper bound c along the direction i. 

The algorithm CROSS, presented in Table 6.3, takes advantage of this idea 
to decrease the upper bound c for c(l'». The small positive real number,," is 
used to stop the procedure when the improvement is not significant enough. 
The set lQli (p, c) computed at Step 5 is, in general, a segment or a finite union 
of aligned segments. At Step 7, q is usually taken as the centre of the largest 
segment of lQli(P, c). The situation lQli(P, c) = 0 (at Step 6) may only be 
encountered when c (p) > C, i. e., when the loop is executed for the first time. 
If the improvement on the upper bound is deemed sufficient (c - IS > ""), then 
the loop is executed again from q. 
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Fig. 6.6. Local search from p along the direction associated with Pl 

Table 6.3. A local algorithm to decrease the upper bound of the optimum cost 

Algorithm CRoss(in: c, p, K,; inout: c) 
1 c := c; q := p; 

2 do 

3 c := c; p := q; 
4 for all i E {I, ... ,np} 
5 lQli (p, c) := lLi (p) n §(c); 
6 if lQli (p, c) = 0, next i; 

7 select q inside lQli (p, c); 
8 if c(q) (c, {q:= q,c:= c(q)}; 
9 while c - c> K,. / / K, threshold to be chosen by user 

The behaviour of this algorithm will now be illustrated on a very simple 
two-dimensional problem. 

Example 6.6 Finding the smallest disk V containing n points AI,"" An 
of]R2 is a minimax problem. The centre of the solution disk is the minimizer 
of the cost function 

(6.40) 

and its radius is the minimum c. If, for instance, n = 3 and the three points 
are A I (0,4), A 2 (0, -4), A3 (4,0), then the minimizer is p = 0 and the min­
imum is c = 4. Note that c is not differentiable at p. Figure 6. 'l presents 
level sets of c. CROSS is run starting at p = (2,8) T and c = 6. :§h (c), §2 (c) 
and §3(C) are the disks in light grey on Figure 6.8. The darker set is § (c). 
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Fig. 6.7. Level sets of the cost function of Example 6.6 

The loop is first executed for i = 1, and at Step 5 CROSS computes QJI (p, c). 
Since 

QJI (p, c) = (lLI (p) n 1:h (c)) n (lLI (p) n §2 (c)) 

n (lLI (p) n §3 (c)) , 
(6.41 ) 

computing QJI (p, c) amounts to computing lLI (p) n §j (c) ,j = 1, 2, 3. This 
can be performed automatically by forward-backward propagation on the CSP 
with variables Pi and r and with the constraint 1 fj (p) I-r = ° and the domains 
[0, c] for rand JR for Pi. For instance, for j = 1, 

§I (c) = {p E JR2 1 j(PI - XA 1 )2 + (P2 - YA 1 )2 ~ C}, (6.42) 

and 

( 6.43) 

As p = (2,8) T, c = 6, and the coordinates of Al are XA 1 = ° and YA 1 = 4, 

lLI (p) n §I (c) = {p E JR2 1 VPI + (P2 - 4)2 ~ 6, P2 = 8}. (6.44) 

lLI (p) n §I (c) can now be computed as follows: 

lLI (p) n§1 (c) = {p E JR2 1 jPI + (8 - 4)2 = r, r E [0,6]' P2 = 8}, 

= {p E JR2 1 PI = r2 - 16, r E [0,6]' P2 = 8}, 

= {p E JR2 1 PI = sqr- l (r2 - 16), r E [0,6], P2 = 8}, 

= {p E JR2 1 PI E sqr-I([O, 6]2 - 16), P2 = 8}, 

= {p E JR2 1 PI E [-V25, V25]' P2 = 8}, 

= [-V25, V25] x [8,8]. 
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The function sqc 1 is the reciprocal function of the square function sqr, which 
should not be confused with the classical square root function (e.g., sqr- 1(4) = 

{-2,2} whereas y4 = 2). (Note that sqr- 1 ([4,9]) = [-3, -2] U [2,3]; it 
may thus be necessary to deal with unions of intervals.) The same reasoning, 
applied to lLl (p) n §2 (c), leads to the empty set. Therefore, (h (p, c) = 0. 

The horizontal direction i = 1 is thus eliminated and the loop of CROSS is 
now executed for the vertical direction i = 2. We get 

1Ql2 (p, c) = lL2 (p) n § (c) = [2,2] x [-1.657,1.657], (6.45) 

which corresponds to the thick segment in Figure 6.8. When the loop is left 
and if the centre of 1Ql2 (p, c) is chosen as q, then q = (2,0) T and c = V20. 
CROSS is then run again from p = q. • 

Fig. 6.8. An iteration of CROSS 

Example 6.7 Consider again Example 6.5, where the cost function is given 
by (6.36). When the initial parameter vector and the options are well chosen, 
the procedure MINIMAX of the MATLAB toolbox OPTIM (Brayton et al., 1979), 
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finds a cost equal to 0.0657 in about 5 s on a PENTIUM 133. This procedure, 
however, is local, is sensitive with respect to the initial parameter vector (it 
may even diverge), does not provide any guarantee on its results (even lo­
cally), often stops because of ill conditioning and never detects that the prob­
lem has two solutions for p. By contrast, the approach advocated here is able 
to solve this minimax problem globally and efficiently. On the same computer, 
for c = 0.05 (in OPTIMIZE), K, = 0.001 (in CROSS) and a search box equal 
to [-60,60] x [-1,0] x [-60,60] x [-1,0], OPTIMIZE proves in 1.7 s and after 
109 bisections that c E [0.0653,0.0657]. The resulting subpaving 13 (which con­
tains all the global minimizers) consists of 44 boxes and has two symmetrical 
disconnected components. This shows that interval solvers can compete with 
MATLAB procedures, even from the point of view of computing time. • 

6.3 Parameter Bounding 

6.3.1 Introduction 

The bounding approach to parameter estimation has received renewed at­
tention in the 1990s (Walter, 1990; 7; Deller et al., 1993; Norton, 1994; Nor­
ton, 1995; Milanese et al., 1996; Walter and Pronzato, 1997, and the many 
references therein). Of the reasons for this interest, we shall quote only two. 
First, this approach can deal with unavoidable structural errors resulting 
from the fact that the equations used to describe the system are always an 
approximation of reality. These errors are often deterministic, and thus not 
adequately described by random variables. Second, parameter bounding is 
well suited to the guaranteed characterization of parameter uncertainty, a 
prerequisite for a number of methods in robust control (see Chapter 7). In 
the context of bounded-error estimation, interval methods have been intro­
duced independently by Moore (1992) and Jaulin and Walter (1993b). 

In a bounding approach, the set to be characterized is Xs = i n M. 
Even if some algorithm could)n principle be found to perform this task, an 
accurate characterization of Xs often turns out to be too complex because 
X = {Xl, ... , Xn} generally contains many elements. In practice, however, it 
is often possible to partition x = (Xl, ... ,xn)T into three vectors y, p and t 
in such a way that there exists a function 1> such that 

XEM¢?(y,p,t) EM¢?y=1>(p,t). (6.46) 

When the vectors p and t are concatenated to form a vector z, this cor­
responds to (6.10), page 144. Distinguishing p and t will make it possi­
ble to distinguish parameters to be estimated (the parameter vector p = 

(PI, ... ,Pnr,)T) from other uncertain quantities (the vector of the values taken 
by the independent variables t = (tl, ... , tnt)T) introduced only to allow the 
estimation of p. In practice t may correspond to the actual instants of time 
at which experimental data are collected, if these instants are uncertain. The 
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vector y = (Yl,"" Yn )T (the output vector) consists of variables whose val-y 

ues could be computed from the constrained set M if the values of p and t 
were known. A simulator 1> is a function from ]Rnp+nt to ]Rny computing y 
from p and t. Since the variables of interest are stored in p, the set to be 
characterized is the projection IF' of Xs onto parameter space: 

j[IJ = {p E ]Rnp I :..Jt E ]Rnt, :..Jy E ]Rny , (y, p, t) E Xs = X n M}. 

Because of (6.46), this implies that 

j[IJ = {p E ]Rnp I :..Jt E ]Rnt, y = 1>(p, t) and (y, p, t) E X} 

= {p E ]Rnp l:..Jt E ]Rnt, (1)(p,t),p,t) EX}. 

(6.4 7) 

(6.48) 

(6.49) 

SIVIA can be used for the characterization of IF', provided that an inclusion 
test [Tp]([p]) is available for the test 

Tp(p) £ (:..Jt E ]Rny I (1)(p, t), p, t) EX). (6.50) 

Let [T ypt] ([y], [p], [t]) be an inclusion test for the test T ypt £ ((y, p, t) E X). 
An inclusion test for the test 

Tpt(p,t) £ ((1>(p,t),p,t) EX) (6.51) 

is then 

[Tpt] ([p], [t]) = [Typt] ([1>] ([p], [t]), [p], [t]), (6.52) 

where [1>]([p]' [t]) is an inclusion function for 1>(p, t). An inclusion test for 
T p (p) is finally given by the algorithm of Table 6.4. The initial search box [t] 
is assumed to be large enough to contain the projection of X onto t-space. 

On the one hand, the algorithm attempts to partition [t] into subboxes 
[t] such that 

(1)([p]' [t]), [p], [t]) n X = 0, ( 6.53) 

for all of these subboxes. All subboxes of [t] still to be studied are stored in 
the queue Q. If the algorithm succeeds, which means that [p] n IF' = 0, it 
returns 0 at Step 3. 

On the other hand, the algorithm tries to find one t such that 

(1)([P], t), [p], t) eX. (6.54) 

When such a t is found, this means that [p] C IF' and the algorithm returns 
1 at Step 5. 

The test at Step 7 is introduced to avoid splitting [t] ad infinitum and to 
introduce some relation with the splitting policy followed for [p] by SIVIA. 
When the algorithm fails to reach a conclusion, [0,1] is returned at Step 3. 
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Table 6.4. Inclusion test for the test of a box [p] for feasibility 

Algorithm [Tp](in: Tpt, [p], [i]; out: [Tp]) 
1 Q:= {[i]}; [Tp] := 0; 

2 repeat 

3 if Q = 0 then return; 

4 pop the first box out of Q into [t]; 

5 if ([Tpt] ([p], mid([t])) = 1) then h] := 1; return; 

6 if ([Tpt] ([p], [t]) ,,0) then 

7 if w([t]) < w([p]), h] := [0,1]; 

8 else bisect [t] and put the resulting boxes at the end of Q; 

9 forever. 

In practice, the dimension nt of t is high compared to the dimension 
np of p, and the bisections performed at Step 8 make the complexity of 
the algorithm exponential with nt. We now consider a situation where such 
bisections can be avoided. Assume that the prior feasible set is a box, written 
as 

( 6.55) 

Assume also that ti corresponds to the time at which the measurement Yi 
of Yi is collected, i = 1, ... , n y. As a result, nt is equal to ny and the ith 
component of the relation y = 1>(p, t) can now be written as Yi = <Pi(P, ti). 
This means that the value of Yi does not depend on the time at which the 
other measurements are collected, a very common situation. The test T p (p) 
defined by (6.50) is then equivalent to 

( 
3h E [tl], ... ,3tny E [tny 1 such that ) 

PI E [Pl](O), ... ,Pnp E [Pnp](O) , 

<PI (p, td E [fIl], ... , <Pny (p, tny ) E [fIny 1 

i.e., to 

PI E [Pl](O), ... ,Pnp E [Pnp](O) 

3tl E [tl] I <PI (p, td E [Yl] 

3tny E [tny ] I <Pny (p, tny ) E [fIny 1 

(6.56) 

( 6.57) 

Let [O"i]([p]) be an inclusion test for O"i(P) £ (Pi E [Pi]) and let [7]i]([P]) be an 
inclusion test for the test 7]i(P) £ (3ti E [til I <Pi(P, ti) E [Yi]). An inclusion 
test for T p (p) is then given by 

[Tp]([p]) = [0"1] ([p]) 1\ ... 1\ [O"n p ] ([p]) 1\ [7]1] ([p]) 1\ ... 1\ [7]ny ] ([p]). 
(6.58) 
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Now, the inclusion test [f)i]([P]), implemented along the lines of Table 6.4, 
requires only one-dimensional bisections along k Evaluating [Tp]([p]) thus 
requires ny searches in one-dimensional spaces instead of one search in an 
ny-dimensional space, a drastic simplification. 

An even simpler situation will be considered in the next section, where 
the value of t is assumed to be known exactly and thus need not be included 
in the variables to be considered. We shall return to uncertain measurements 
of independent variables in Section 6.3.4. 

6.3.2 The values of the independent variables are known 

Assume that t need not be incorporated in the list of variables of the estima­
tion problem, for instance because the errors committed when measurering 
the measurement times are negligible. Equation (6.49) then simplifies to 

l¥ = {p E Jl{np I (¢(p), p) EX}. (6.59) 

Assume also that X is a box, which means that prior knowledge on each 
variable is independent of prior knowledge on the other, i.e., 

Then 

Thus 

(¢(p), p) EX B ¢(p) E [y] and p E [p] 
B P E ¢-l([y]) and p E [p] 

B P E [p] n ¢-l([y]). 

(6.60) 

(6.61) 

(6.62) 

and characterizing IP' is a set-inversion problem, which can be solved usin~ 
SIVIA. Note that a number of specific methods are available to characterize IP' 
when ¢(p) is linear. In this case, l¥ is a polytope, which can be characterized 
exactly (Walter and Piet-Lahanier, 1989) or enclosed in a simpler-shaped 
set such as an ellipsoid (Fogel and Huang, 1982) or a box (Milanese and 
Belforte, 1982; Belforte et al., 1990). When ¢(p) is non-linear, there are 
much fewer methods leading to guaranteed results. One of them is based 
on signomial programming (Milanese and Vicino, 1991). Another approach 
based on interval analysis and similar to SIVIA was independently developed 
by Moore (1992). 

Example 6.8 A two-parameter problem will be used as an illustrative exam­
ple, which will make it possible to draw pictures of the paving obtained. This 
example is taken from Jaulin and Walter (1993a) and is a simplified version 
of a problem considered in Milanese and Vicino (1991). An example related 
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Table 6.5. Measurement times and corresponding interval data 

i ti [Yi] 
1 0.75 [2.7,12.1] 

2 1.5 [1.04,7.14] 

3 2.25 [-0.13,3.61] 

4 3 [-0.95,1.15] 

5 6 [-4.85, -0.29] 

6 9 [-5.06, -0.36] 

7 13 [-4.1, -0.04] 

8 17 [-3.16,0.3] 

9 21 [-2.5,0.51] 

10 25 [-2,0.67] 

to electrochemistry can be found in Braems et al. (2001). The set JID to be 
characterized consists of all parameter vectors p such that the graph of the 
function 

f (p, t) = 20 exp( -PIt) - 8 exp( -P2t) (6.63) 

crosses all the data bars of Figure 6.9. The numerical values of the corre­
sponding interval data are given in Table 6.5. 
In this simulated example, the interval data have been computed by in a sim-

y 

o 
I I I I 

I 

Fig. 6.9. Experimental data of Example 6.8, together with their uncertainty inter­
vals 
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plified way by adding a centred error interval with radius Pi = 0.51Yil + 1 to 
the ith component of the data vector 

y = (7.39,4.09, l.74, 0.097, -2.57, 

-2.71, -2.07, -l.44, -0.98, -0.66)T, (6.64) 

for i = 1, ... ,10. The posterior feasible set for the parameters is given by 
(6.62), where the search domain [p] is taken as [-0.1, l.5]X2. The coordinate 
functions of ¢ are given by 

(6.65) 

In less than 4 s on a PENTIUM 133, SIVIA generates the paving of Figure 6.10, 
thus bracketing the posterior feasible set for p between inner and outer ap­
proximations. • 

Fig. 6.10. j'aving generated by SIVIA for Example 6.8 to bracket the posterior 
feasible set IP' for the parameters between inner and outer approximations; the outer 
frame corresponds to the box [-0.1, 1.5]X2 

6.3.3 Robustification against outliers 

The approach considered so far relied on the hypothesis that the prior feasible 
set X did contain the actual values for the variables, which is unfortunately 
not always realistic. Assume again that X is the box defined by (6.55). Even 
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if each prior interval component of X is obtained from a reasonable model 
of measurement inaccuracy, for instance deduced from sensor technical data 
sheets, in practice things do not always happen as expected. For instance, 

• some constraints in M may not always hold true, 
• a sensor may fail during data collection, 
• there might be rare situations where some error bounds turn out to be 

optimistic. 

A variable Xi whose actual value does not belong to its prior interval is 
called an outlier. Robot localization (Chapter 8) will provide a context where 
such outliers are more or less unavoidable. The presence of outliers may be 
detected after completion of the estimation process, if the posterior feasible 
set turns out to be empty. Unfortunately, it may also escape detection. To 
protect oneself against the fact that X may not contain the actual values of 
some of the variables in x, one may enlarge (or relax) X. For this purpose, 
consider a relaxing function A : lRn ---+ [0, 1] such that A = 1 if and only if 
x E X. The relaxed prior feasible set 

Xn ~ {x E lRn I A(X) ~ a} = A- 1 ([a, 1]) ( 6.66) 

for a E [0, 1] contains X. Moreover Xl = X and Xo = lRn. 

Fig. 6.11. Relaxing functions 

Example 6.9 Define the characteristic function 7f[a,b] : lR ---+ lR of the inter­
val [a, b] as 

{
I if x E [a, b] 

7f[a,b] (x) = ° if x rt [a,b]. 

The function 

( 6.67) 
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Al (x) = 7f[Yl] (xd + ... + 7f[Yn] (xn ) 
n 

(6.68) 

is then relaxing for the box [y] = [Yl] x ... x [Yn]. If the wi,i E {I, ... , n}, 
are positive weights, then the function 

( Wl7f[Yl](xd + ... + Wn7f[Yn] (xn ) Aw x) = ----=-'-'--------"'--''----­

WI + ... +Wn 
(6.69) 

is also relaxing for the box [y]. Figure 6.11 illustrates the relaxing functions 
(7f[Yl](xd + 7f[Y2] (x2))/2 (left) and (37f[Yl](xd + 7f[Y2] (x2))/4 (right). • 

Allowing q out of the n variables Xi to escape their prior feasible intervals 
amounts to enlarging the prior feasible box X by choosing 

( 7f[;r,] (xd + ... + 7f[xn] (xn ) q 
A x) = and Q = 1 - -, 

n n 
(6.70) 

where the [Xi]S are the interval components of X. An inclusion test for Xc> 
can be obtained via an interval evaluation of A(X) and the characterization of 
Xc> can be performed by using SIVIA. For the characterization of the relaxed 
posterior feasible set for the parameters, defined by 

(6.71 ) 

see (6.49), SIVIA can also be used, provided that an inclusion test is available 
for the test 

(6.72) 

Such a test is given by the algorithm of Table 6.4, where the test T pt (p, t) 
is replaced by T~t (p, t) £ (( ¢(p, t), p, t) E Xa} To illustrate this approach, 
assume that the values taken by the independent variables are certain, so the 
entries of t are not variables of the estimation problem. The prior feasible 
domain for the variables is then the box X = [y] x [pl. The posterior feasible 
set for the parameters is thus 

JPo = {p E Jl{np I (¢(p), p) E [y] x [pl}. (6.73) 

Allow up to q of the ny output variables Yi to escape their prior feasible 
intervals. This amounts to replacing the box [y] in (6.73) by the set 

1Jq £ {y E Jl{ny I 7f[y,] (Yl) + ... + 7f[Yny] (Yn y ) ~ ny - q}, (6.74) 

and JPo by 

(6.75) 

SIVIA can be used to characterize JPoq for any prespecified integer value of q 

in [0, ny]. 
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Example 6.10 Consider again Example 6.8, but assume now that the vector 
y comprising all the available data is 

y = (7.39,0,1.74,0.097, -2.57, -2.71, -2.07,0, -0.98, -0.66)T, (6.76) 

which illustrates a situation where there are two outliers (y(2) = 0 instead 
of 4.09 and y(8) = 0 instead of -1.44). The resulting interval data are de­
picted in Figure 6.12. SIVIA generates the subpavings depicted in Figure 6.13 
for q = 0 (a), q = 1 (b) and q = 2 (c), respectively associated with the sets 
JlDo, JID! and JlD2 . The required accuracy was taken as E = 0.005 and the prior 
search box for the parameters was [p] = [-0.1,1.5] x [-0.1,1.5]. JlDo turns out 
to be empty, which proves that there is at least one outlier in the data. The 
fact that JlD l is not empty should serve as a warning that outliers may go un­
detected. If one looks for an outer approximation of the posterior feasible set 
that would be obtained in the absence of outliers, then one should rather over­
estimate the actual number of outliers. Since there are indeed two outliers, 
JlD2 provides such an outer approximation and contains the set JID represented 
in Figure 6.10. JlD2 is disconnected because there are two different strategies to 
eliminate two interval data in order to be able to be consistent with the eight 
remaining ones. • 

y 

10 

5 

o t 

Fig. 6.12. Interval data with two outliers 

The size ofJIDq increases with q and a compromise must of course be struck 
between the level of protection against outliers and the size of the resulting 
set estimate for the parameters. A possible strategy (Jaulin et al., 1996) is 
to start assuming that q = 0, and to increase q by one as long as JlDq remains 
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empty. This choice, which corresponds to a guaranteed implementation of 
OMNE (for Outlier Minimal Number Estimator (Lahanier et al., 1987)), 
leads to stopping at PI in Example 6.10. 

(a) (b) 

(c) 

Fig. 6.13. Pavings generated by SIVIA for Example 6.10; (a) no outlier assumed; 
(b) up to one outlier assumed; (c) up to two outliers assumed; the frames correspond 
to the parameter box [-0.1,1.5] x [-0.1,1.5] 

6.3.4 The values of the independent variables are uncertain 

In the literature devoted to parameter bounding, little attention has been 
paid to uncertainty in the measurement of independent variables. If the co­
ordinate functions of ¢(p, t) are bilinear in t and p and if the prior feasible 
domains [f] and [p] for t and p are boxes, the problem of characterizing 
the posterior feasible set P for the parameters can be solved exactly with 
the technique described in Cerone (1991, 1996). Ellipsoidal outer approxi­
mations of this set can also be computed (Norton, 1987; Clement and Gen­
til, 1990; Pronzato and Walter, 1994; Norton, 1996; Veres and Norton, 1996). 
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We shall consider a more general situation where rjJ(p, t) may be non-linear in 
p and in t. To the best of our knowledge, guaranteed and accurate results in 
such a non-linear bounding context were first presented in Jaulin and Walter 
(1999). Non-linear parameter estimation with such errors in variables has 
been considered in the context of least squares for many years (Schwetlick 
and Tiller, 1985), but the results are obtained by local methods and thus not 
guaranteed. 

Table 6.6. Prior feasible intervals for the data of Example 6.11 

i ti [til [Yi] 
1 0.75 [-0.25,1.75] [2.7,12.1] 

2 1.5 [0.5,2.5] [1.04,7.14] 

3 2.25 [1.25,3.25] [-0.13,3.61] 

4 3 [2,4] [-0.95,1.15] 

5 6 [5,7] [-4.85, -0.29] 

6 9 [8,10] [-5.06, -0.36] 

7 13 [12,14] [-4.1, -0.04] 

8 17 [16,18] [-3.16,0.3] 

9 21 [20,22] [-2.5,0.51] 

10 25 [24,26] [-2,0.67] 

Example 6.11 Consider again Example 6.5, page 149. Assume now that the 
values taken by the independent variables are uncertain. The prior interval 
[til is obtained by adding the interval [-I,ll to the associated measurement 
time ti . The resulting prior intervals [til for the tis,i = 1, ... ,10, are given 
in Table 6.6. Figure 6.14 presents the data. The uncertainty associated with 
each pair of output and time data is materialized by a grey box. The set 1F to 
be characterized consists of all the values of p = (PI, P2) T such that the graph 
of the function 

f (p, t) = 20 exp( -PIt) - 8 exp( -P2t) 

goes through all ten boxes of Figure 6.14. It is defined as 

1F = {p E Jl{nl' I 3t E Jl{nl, (rjJ(p, t), p, t) EX}, 

where 

and 

The prior box for the parameters is taken as 

(6.77) 

(6.78) 

(6.79) 

( 6.80) 
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Fig. 6.14. Uncertain experimental data with uncertain measurement times 

[p] = [PI] X [P2] = [0,1.2] X [0,0.5]. (6.81) 

SIVIA can be used to characterize P, provided that an inclusion test is available 
for 

==Jt E]RIO I (¢(p, t), p, t) EX. (6.82) 

This test can be rewritten as 

or equivalently as 

(6.84) 

i.e., as 

(6.85) 

where T/i (p) is the test 
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rli(p) = (:..Jti E [til I <Pi(P, t i ) E [Yi]). (6.86) 

An inclusion test forf)i(p) is then obtained by the algorithm of Table 6.4. 
For EO = 0.01, SIVIA generates the subpavings represented on Figure 6.15 in 
38 s on a PENTIUM 133 (Jaulin and Walter, 1999). The dark grey boxes have 
been proved to be included in P and the light grey boxes have been proved to 
have an empty intersection with P. No conclusion has been reached for the 
black boxes. • 

P2 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

-0.1 
-0.2 0 

Fig. 6.15. Paving generated to bracket the posterior feasible set JF for the param­
eters of Example 6.11 

6.3.5 Computation of the interval hull of the posterior feasible set 

In Sections 6.3.2 to 6.3.4, parameter bounding was illustrated by a modified 
version of a problem treated in Milanese and Vicino (1991). The original 
problem was the computation of the interval hull [P] of the posterior feasible 
set P for the parameters. This becomes especially interesting if a more accu­
rate outer approximation of the posterior feasible set cannot be obtained or 
turns out to be too complicated to be useful. In order to facilitate compar­
ison, the problem considered in Milanese and Vicino (1991) will also serve 
here to illustrate the methodology. 
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Example 6.12 Consider the same situation as in Example 6.8, except that 
77p = 4 (instead of 2) and the constrained set M is defined by the equations 

(6.87) 

The prior feasible box for the parameters is [p] = [2,60] x [0,1] x [-30, -1] x 
[0,0.5]. As in Example 6.5, the output data are given by (6.64) and the known 
measurement times are given by Table 6.5, but the radius of the ith interval 
output datum is now taken as Pi = 0.051Yil + 0.1 (instead of Pi = 0.51Yil + 1 
in Example 6.5). The posterior feasible set is given by 

TID = {p E JR(.4 I (1)(p), p) E [5'] x [p]} = 1>-1([5']) n [pl. 

Now, the set 1>-1 ([5']) can be defined by the following inequalities 

P1e-P2ti + P3e-P4t; E [lJi], i = 1, ... ,10, 

(6.88) 

(6.89) 

and thus HULL, described in Chapter 5 at page 116, can be used to character­
ize [IF]. For EO = 0.001, it takes less than 8 s on a PENTIUM 133 to find inner 
and outer boxes for [liD], given by 

[Pin] = [17.2,26.79] x [0.301,0.49] x [-16, -5.4] x [0.0767,0.1354]' 

[Pout] = [17.05,27] x [0.298,0.495] X [-16.2, -5.34] X [0.0763,0.136]. 

In Milanese and Vicino (1991) a signomial approach is proposed to solve this 
problem, based on Falk's algorithm (Falk, 1973). This approach yields less 
accurate results than the one advocated here and requires a computing time 
that is larger by an order of magnitude (Jaulin, 2000a). • 

6.4 State Bounding 

6.4.1 Introduction 

This section deals with the guaranteed estimation of the state vector of a non­
linear discrete-time system in a bounded-error context. Readers unfamiliar 
with the concept of state may refer to Section 7.2, page 188, for a first in­
troduction in a simpler linear framework. Consider a non-linear discrete-time 
system described by 

xnx (k) = f nx (Xl (k - 1), ... , xnx (k - 1), k), 

Y1 (k) = 91 (Xl (k), ... ,xnJk), k), 
(6.90) 
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where k is the time index, ranging from 1 to k, Xl (k), ... , Xnx (k) are the state 
variables, Yl (k), ... , Yny (k) are the output variables and the fiS and the 9iS 

are known functions, which may be represented by finite algorithms. For the 
sake of simplicity of exposition, input variables were not introduced, but they 
would pose no particular conceptual difficulties. In vector form, (6.90) can 
be written more concisely as 

{ 
x(k) = f(x(k - 1), k), 

y(k) = g(x(k),k). 
(6.91 ) 

The output vector y( k) is assumed to be measured on the system, and the 
problem to be considered is the estimation of the state x(k) from the informa­
tion available. When the data are processed in real time, the data y( i) to be 
collected on the system after time k are not available during the estimation 
of x(k). The most common assumption is thus that only past measurements 
can be taken into account, but we shall also consider the off-line case where 
results of measurements posterior to time k can be used to estimate x (k). 

In a linear context (i. e., when f and g are linear), many tools are avail­
able for state estimation. They can be classified according to how they deal 
with uncertainty. Some of them do not take explicitly into account the fact 
that (6.91) is an approximation of reality and that the measurements are 
corrupted by noise. This is the case, for instance, for Luenberger state ob­
servers (Luenberger, 1966). Other estimators, such as the ubiquitous Kalman 
filter (Kalman, 1960; Sorenson, 1983), are based on a statistical description of 
uncertainty and assume that the measurement noise and state perturbations 
are realizations of random variables, with known statistical properties. The 
last group of methods corresponds to state bounding (Schweppe, 1968; Wit­
senhausen, 1968; Bertsekas and Rhodes, 1971; Chernousko, 1994; Durieu 
et al., 1996; Maksarov and Norton, 1996; Milanese et al., 1996; Kurzhanski 
and Valyi, 1997, and the references therein). These methods are based on the 
assumption that all uncertain variables belong to known compact sets, and 
attempt to build simple sets, such as ellipsoids, orthotopes or parallelotopes, 
guaranteed to contain all state vectors consistent with this assumption. 

In a non-linear context, the methodology is far less developed, and still 
the subject of active research even in the deterministic case (Kang and 
Krener, 1998). When uncertainty is explicitly taken into account, this is most 
often by resorting to linearization. An extended Kalman filter (Gelb, 1974), 
based on linearization of (6.91) around the state trajectory, is usually em­
ployed. This linearization is inherently local and may fail to produce reliable 
estimates. It also makes any statistical interpretation of the covariance ma­
trices computed by the algorithm questionable, because the propagation of 
the statistical properties of the perturbations through non-linear equations is 
largely unknown. In this section, a new non-linear state bounding approach 
will be presented, partly based on Kieffer et al. (1998, 1999) and Jaulin, 
Kieffer, Braems and Walter (2001). 
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The set of all the variables involved in (6.90) is 

{ Xl (0), ... ,Xnx (0), 

x1(1), ... ,xnx (l), Y1(1), ... ,Yny (l), 
(6.92) 

Assume that X1(0), ... , xnJO) are known to belong to some prior bounded 
intervals [X1(0)] , ... , [xnJO)]. The interval [Xi(O)] represents the prior knowl­
edge on the initial state variable Xi(O) and may be taken arbitrarily large in 
the absence of information. Let Yi (k) be the result of the measure of the out­
put variable Yi(k). In a bounded-error context similar to that of Section 6.3, 
the measures performed at time k yield prior intervals [Yi (k)] assumed to 
contain the actual values of the output variables Yi(k). When estimation 
must be performed in real time, [Yi(k)] is taken as [-00,00] before measure­
ment. The prior domains [xi(k)] for the state variables xi(k)'s, i = 1, ... , nx , 

k = 1, ... , k, are also taken as [-00,00]. 
The initial state variables Xl (0), ... ,xnx (0) have a special status, because 

if their values were known, then the values of all the other variables could be 
computed with the help of (6.90). For this reason, they will be called source 
variables, and x(O) will be called the source vector. Let y be the vector of all 
output variables 

(6.93) 

and r/J be the vector function that computes the values taken by y when (6.90) 
is simulated starting at x( 0). We shall first consider the off-line estimation of 
the set X(O) of all the initial vectors x(O) = (X1(0), ... ,xnJO))T that belong 
to the prior domain [x(O)] and are consistent with the prior domain for y, 
i.e., with 

(6.94) 

This set is given by 

X(O) = [x(O)] n r/J-1 ([y]). (6.95) 

Its characterization is thus a set-inversion problem, which can be solved by 
SIVIA, as illustrated in Section 6.4.2. Section 6.4.3 will extend the methodol­
ogy to the estimation of all variables (and not just of the initial state). The 
use of a contractor based on forward-backward propagation will be shown 
to be particularly well suited to the context of state estimation. Finally, Sec­
tion 6.4.4 will deal with the recursive case where only the past measurements 
can be taken into account. 
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6.4.2 Bounding the initial state 

This section illustrates the use of SIVIA to characterize the set of all initial 
state vectors that are consistent with the prior interval data (J aulin, 1994). 
Consider the non-linear state equation 

{ 
xl(k + 1) = cos(xl(k)X2(k)), 

x2(k + 1) = 3Xl(k) - sin(x2(k)), 

y(k) = xi(k) - x2(k). 

The ten output data 

y = (y(0), ... ,y(9))T 

= (3, -5,0.6,2.2, -3.8, -1.4, 0.4, -1.2, -1.8, 2.6? 

( 6.96) 

(6.97) 

have been generated by simulating (6.96) for k = 0, ... ,9 from the unknown 
initial state vector x*(O) = (2,1)T, and by adding a realization of some 
random noise in [-0.5,0.5] to the resulting output y*(k). The prior feasible 
box [y] for y was obtained by adding the error interval [-0.5,0.5] to all entries 
of y. Thus 

[y] = [2.5,3.5] x [-5.5,-4.5] x [0.1,1.1] x [1.7,2.7]x 

[-4.3, -3.3] x [-1.9, -0.9] x [-0.1,0.9] x 

[-1.7, -0.7] x [-2.3, -1.3] x [2.1,3.1]. 

(6.98) 

The set of all the initial state vectors x(O) in the prior box [x(O)] that are 
consistent with [y] is given by (6.95). For E = 0.01 and [x(O)] = [_5,5]X2, 
the characterization depicted in Figure 6.16a is obtained by SIVIA in less 
than 1 s on a PENTIUM 233. The zoom around the true value x*(O) of the 
initial state presented on Figure 6.16b has been obtained for E = 0.0001 and 
[x(O)] = [1.98,2.02] x [0.98,1.02]. 

6.4.3 Bounding all variables 

As already mentioned, if a punctual value x(O) is known for the initial state 
vector, the punctual values of all other variables can be calculated by sim­
ulating (6.90) from x(O). However, the approach presented in Section 6.4.2 
to characterize the set :%:(0) does not provide any bounds for the other vari­
ables of interest. Such bounds could be obtained by set simulation of (6.90) 
from :%:(0), but this problem is much more difficult than set inversion and its 
consideration will be deferred to Section 6.4.4. For the time being, we shall 
consider a conceptually simpler approach. A slight adaptation of SIVIA de­
scribed in Table 6.7 will first be used to get an outer approximation 3((0) of 
:%:(0) consisting of a union of boxes, each of which has a width smaller than E. 

The main difference with the version of Chapter 3, page 56, is that subboxes 
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(a) (b) 

Fig. 6.16. Characterization of the set of all initial states consistent with interval 
data in [-5,5] x 2 (a) and in [1.98, 2.02] x [0.98, 1.02] (b) 

of [x(O)] which could have been proved feasible are nevertheless bisected un­
til their widths become smaller than the required accuracy parameter c. As 
a result, more boxes are obtained upon completion of the algorithm than 
necessary for a given quality of the description of X(O), but set simulation 
starting from these smaller boxes can be expected to be more accurate than 
with the characterization obtained with the initial version of SIVIA. In the 
algorithm of Table 6.7, £ is a list of boxes in the space of the initial state, 
initialized as the empty list. The first call is made with [x(O)] = [x(O)]' where 
[x(O)] is the prior box for the initial state vector. eX(Ol is a suitable contrac-

tor for the solution set X(O) (see Section 4.5, page 97). After completion of 
SIVIA, the union of all boxes in £ is an outer approximation 3((0) of the set 
X(O) = ¢-l([y]) n [x(O)]. 

Table 6.7. Adaptation of SIVIA to set simulation 

Algorithm SIvIA(in: CX(O) , [x(O)]' c; inout: £) 

1 [x(O)]:= Cx(O) ([x(O)]); 
2 if ([x(O)] = 0), then return; 
3 if (w([x(O)]) < c) then £. = £. u {[x(O)]}; return; 
4 bisect ([x(O)]) into [X(O)]l and [X(0)]2; 
5 SIVIA(CX(O)' [X(O)]l'c,£); SIVIA(CX(O), [X(0)]2'c,£). 

The set simulator described in Table 6.8 can then be employed. It uses 
inclusion functions for f and g to compute boxes guaranteed to contain the 
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successive values of the state and output vectors for any initial state vector 
in any given box of ][(0) (listed in £). It then suffices to take unions of boxes 
to get outer approximations of the set of all values of x( k) or y( k) for any 
x(O) in X(O). 

Table 6.8. Simulation of the state equations for all boxes of the list f: produced 
by SIVIA of Table 6.7 

Algorithm SETSnVIULATION(in: f:; out [x(l)], ... , [x(k)], [y(l)], ... , [y(k)]) 
1 [x(l)] = 0; ... ; [x(k)] = 0; [y(l)] = 0; ... ; [y(k)] = 0; 
2 for all [x'(O)] in f: 
3 for k = 1 to k 
4 [x'(k)] := [f]([x'(k - 1)]); 
5 [x(k)] := [x(k)] u [x'(k)]; 
6 [y'(k)] := [g]([x'(k)]); 
7 [y(k)] := [y(k)] U [y'(k)]. 

As an illustration, consider the non-linear discrete-time system 

{ 
(

Xl (k)) = (O.IXl (k -1) + X2 (k -1) eXP(xl.(k - 1))) , 

X2 (k) Xl (k - 1) + O.lx~ (k - 1) + sm(k) 

y (k) = X2 (k) /xl(k), 

(6.99) 

with k E {I, ... , 15}. Interval data have been generated as follows. First, 
starting from the true value x* (0) = (-1, 0) T of the initial state vector, the 
true values x*(k) and y* (k), k E {I, ... , 15} were computed by simulation. 
To each noise-free output y* (k) a random error was then added, with a 
uniform distribution in [-e, e], to generate noisy data Y(k). Finally, the prior 
domain for y(k) was taken equal to [Y(k)] = [y(k) - e, y(k) + e]. [y(k)] is thus 
guaranteed to contain the unknown noise-free output y* (k). The problem 
to be solved is then: given the equations of the system (6.99), the interval 
data [Y( k)], and bounded intervals [Xl (0)] and [X2 (0)] containing the initial 
state variables Xl(O) and X2(0), compute (accurate) interval enclosures for 
the values of the variables xl(k), x2(k) and y (k), k = 1, ... ,15. 

The contractor for the set X( 0) required at Step 1 of Table 6.7 may be the 
forward-backward contractor C 11 described in Section 4.2.4, page 77, applied 
to the CSP H: (1)(x(O)) - y = O,x(O) E [x(O)],y E [y]). A first simulator 1> 
is given by Table 6.9. The statements of this simulator are transformed into 
primitive constraints by introducing auxiliary variables in a second simulator, 
as indicated in Table 6.10. The resulting contractor is in Table 6.11. 

The prior domains for the components of the initial state vector were 
taken as 

[Xl(O)] = [-1.2,-0.8]' [X2(0)] = [-0.2,0.2]. (6.100) 
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Table 6.9. Simulator 

Algorithm ¢(in: X1(0), X2(0); out: y(l), ... , y(k)) 

1 for k := 1 to k, 

2 Xl (k) := 0.1 * Xl (k - 1) +X2 (k - 1) * exp(x1 (k - 1)); 

3 X2 (k) := Xl (k - 1) + 0.1 * X~ (k - 1) + sin(k); 

4 y (k) := X2 (k) /x1(k). 

Table 6.10. Simulator with auxiliary variables 

Algorithm ¢(in: X1(0),X2(0); out: y(l), ... ,y(k)) 
1 for k := 1 to k, 

2 Zl (k) := exp(x1 (k - 1)); 

3 Z2 (k) = X2 (k - 1) * Zl (k); 
4 Xl (k) := 0.1 * Xl (k - 1) +Z2 (k); 
5 Z3 (k) := 0.hsqr(x2 (k - 1)); 

6 Z4 (k) := Z3 (k) + sin(k); 

7 X2 (k) := Xl (k - 1) +Z4 (k); 
8 y (k) := X2 (k) /x1(k). 

In the absence of noise (i.e., e = 0), the contractor of Table 6.11 is able 
to find the actual values of all the variables with an accuracy of 8 digits in 
0.1 s on a PENTIUM 133. No bisection turned out to be necessary to get this 
result. The boxes drawn on the left part of Figure 6.17 are those obtained 
after each iteration of the contractor Ct r. More details about the resolution 
of this example with the methodology advocated here can be found in Jaulin, 
Braems, Kieffer and Walter (2001). 

For e = 0.5 (i.e., in the presence of noise), the volume of X(O) is no longer 
equal to zero, and thus, even with an ideal contractor, bisections have to be 
performed (see the right part of Figure 6.17). Computing time is now about 
3 s for EO = 0.001, on a PENTIUM 133. The prior interval data [y( k)] are on 
the left part of Figure 6.18 and the corresponding contracted intervals [Y(k)] 
are on the right part of the same figure. Since xi(5) and xi(13) are almost 
equal to zero and since y(k) = x2(k)/Xl(k), no contraction was achieved for 
[y(5)] and [y(13)]. Figure 6.19 presents the contracted domains obtained for 
the state variables xl(k) (left) and x2(k) (right), as functions of k. 

6.4.4 Bounding by constraint propagation 

When there are many variables in X, as in long-range state estimation, one 
should avoid bisecting boxes in the Cartesian product of the domains of all 
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Table 6.11. Forward-backward contractor for the set X(O) of initial state vectors 

Algorithm CX(O) (in: [Y(1)], ... , [Y(k)]; inout: [Xl (0)], [X2(0)]) 
1 for k := 1 to k 

2 [xI(k)]:= [-00,00]; [x2(k)] := [-00,00]; 
3 [zl(k)]:= [-00,00]; [z2(k)] := [-00,00]; 
4 [z3(k)] := [-00,00]; [z4(k)] := [-00,00]; 
5 do 
6 for k := 1 to k, / / forward 
7 [Zl (k)] := [Zl (k)] n exp([xl (k - 1)]); 

8 [Z2 (k)] := [Z2 (k)] n ([X2 (k - 1)] * [Zl (k)]); 
9 [Xl (k)] := [Xl (k)] n (0.1 * [Xl (k - 1)]+[Z2 (k)]); 

10 [Z3 (k)] := [Z3 (k)] n (0.1 * sqr([x2 (k - 1)])); 

11 [Z4 (k)] := [Z4 (k)] n ([Z3 (k)] + sin(k)); 
12 [X2 (k)] := [X2 (k)] n ([Xl (k - 1)] + [Z4 (k)]); 
13 [y (k)] := [y (k)] n ([X2 (k)l/[XI(k)]); 
14 for k := k down to 1, / / backward 
15 [X2 (k)] := [X2 (k)] n ([y (k)] * [xI(k)]); 
16 [Xl (k)] := [Xl (k)] n ([X2 (k)l/[y (k)]) ; 
17 [Xl (k - 1)] := [Xl (k - 1)] n ([X2 (k)]- [Z4 (k)]); 
18 [Z4 (k)] := [Z4 (k)] n ([X2 (k)] - [Xl (k - 1)]) ; 

19 [Z3 (k)] := [Z3 (k)] n ([Z4 (k)]- sin(k)); 
20 [X2 (k - 1)] := [X2 (k - 1)] n (0.1 * sqr- I ([z3 (k)])) ; 
21 [Xl (k - 1)] := [Xl (k - 1)] n (10 * ([Xl (k)]-[Z2 (k)])); 
22 [Z2 (k)] := [Z2 (k)] n ([Xl (k)] - 0.1 * [Xl (k - 1)]) ; 

23 [X2 (k - 1)] := [X2 (k - 1)] n ([Z2 (k)l/[Zl (k)]); 
24 [Zl (k)] := [Zl (k)] n ([Z2 (k)l/[X2 (k - 1)]); 

25 [Xl (k - 1)] := [Xl (k - 1)] n 109([Zl (k)]); 
26 while contraction is significant. 

variables, in order to avoid a combinatorial explosion of complexity. Two 
approaches may be considered for this purpose. 

The first one is based on selecting a set of source variables, as small as 
possible, such that the value of all the other variables can be computed in 
a unique way from the knowledge of the values of these source variables by 
using the available constraints. This is the approach followed in the previous 
two sections, where the source variables were Xl (0), ... ,xnJO). The source 
variables were stored in a single source vector (x(O) in Sections 6.4.2 and 
6.4.3) and search was performed in the source space to which this source 
vector belongs, using a set-inversion technique. 
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Fig. 6.17. Left: contractions generated in a noise-free context; right: contractions 
and bisections generated in a noisy context; the two frames are [-1.2, -0.8] x 
[-0.2,0.2] in the (Xl(0),X2(0))-space 
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Fig. 6.18. In the presence of noise (e = 0.5), interval output data [y( k)] (left) 
and contracted interval outputs [Y( k)] containing y* (k) obtained by taking the 
constrained set into account (right) 

The clustering approach (Dechter and Dechter, 1987; Dechter and Pearl, 
1989; Meiri et al., 1990; Gyssens et al., 1994; Seybold et al., 1998) to be 
considered now partitions X into groups of variables to form vectors, when­
ever possible. The constraints of M are then transformed into constraints on 
these vectors. The variables in X should be grouped in such a way that the 
constraint graph is a tree (i. e., does not contain cycles). The principle of the 
approach will first be illustrated on a simple problem. 
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Xl (k) x 2(k) 

10 10 

.. 

0 k 0 k 

15 15 

-10 -10 

Fig. 6.19. In the presence of noise (e = 0.5), contracted domains for xl(k) (left) 
and X2 (k) (right) as functions of k 

Example 6.13 Consider the set of variables X 
constraints 

Xlex2 + x3 ~ 2, 

XIX3 = 5, 

X2 - X3 = 0, 

X2 - X3y'X4 = 7, 

X2 + X3xSeX2 = 1, 

X5 + sin(x6x7) = o. 

{Xl, ... , xd, with the 

(6.101) 

The constraint graph is depicted on Figure 6.20a. A link between two vari­
ables Xi and Xj means that there exists a constraint involving both. This 
graph is not a tree because it contains cycles. A (simple but not very effi­
cient) heuristic to group variables in order to transform the constraint graph 
into a tree is as follows. 

1. Select all cycles with length equal to I[ (at the beginning, I[ is taken equal to 
three, but if no such cycles are found, take I[ = 4,5 ... ). In this example, 
there are four cycles with length three, namely (Xl, X2, X3), (X2, X3, X4), 
(X2,X3,X5) and (XS,X6,X7). 

2. Pool the variables associated with the arc that belongs to the maximum 
number of selected cycles into a single vector. Here, the arc is (X2, X3), 
which belongs to the first three cycles, and X2 and X3 are pooled into 
the vector (X2, X3) T. The graph of Figure 6.20b is thus obtained. These 
two steps are repeated until the graph becomes a tree, depicted in Fig­
~~~. . 
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(c) 

Fig. 6.20. Clustering variables to transform a graph with cycles into a tree 

After grouping the variables in such a way that the constraint graph is 
a tree, we have a finite set V = {VI, ... , v n } of vector variables Vi with 
dimensions di E N, and prior domains Vi C JR;.d i , i E {I, ... ,n}. Some vector 
variables, say Vi and Vj, are related by binary constraints Ci,j, which can be 
viewed as subsets of JR;.di x JR;.dj. There may also exist unary constraints C i 

expressing relations between components of Vi. The prior domain Vi for Vi 

is then obtained by intersecting C i , which can be viewed as a subset of JR;.d i , 

with the Cartesian product of the prior domains of the components of Vi. 

Example 6.14 Consider again the problem of Example 6.13. The set of 
vector variables V is {VI, V2, V3, V4, V5}, where VI = Xl, V2 = (X2' X3) T, 

V3 = X4, V4 = X5 and V5 = (X6, X7) T. There is only one unary constraint, 
given by 

(6.102) 

If the prior domains for X2 and X3 are denoted bY:%.2 and :%.3 respectively, 
the prior domain for V2 is thus 

V 2 = {V2 E :%.2 X :%.3 I X2 - X3 = o} . 

The binary constraints between these vector variables are 

C l ,2 = {(VI, V2) E JR;.3 I Xle x2 + X3 :::;; 2 and XIX3 = 5}, 

C 2,3 = {(V2' V3) E JR;.3 I X2 - X3yX4 = 7} , 
C 2,4 = {(V2' V4) E JR;.3 I X2 + X3xSeX2 = I} , 
C 4,5 = {(V4' vs) E JR;.3 I X5 + sin(x6x7) = o}. 

(6.103) 

(6.104) 

• 
In the context of state estimation, unary constraints can be avoided and the 
constraint Ci,j can generally be put into the form 
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rei,j = {(Vi, Vj) E JRd; X JRdj I Vj = fj (Vi)} , (6,105) 

To simplify notation, we shall then refer to it as rei,j : Vj = fj(Vi)' 
The value taken by Vi is consistent (with the constraints) if 

:..J(VI E VI"'" Vi-l E Vi-I, Vi+l E Vi+l, ... , Vn E Vn) I 

(VI"'" Vi-I, Vi, Vi+l, ... , vn) satisfies all the constraints. 

(6.106) 

The set of all consistent ViS is called the consistency domain associated with 
the variable Vi, and denoted by Vi. Consider two variables Vi and Vj related 
by a constraint rei,j. Define the local contractor of the domain Vi with respect 
to the variable Vj by 

(6.107) 

Figure 6.21 illustrates this definition. The adjective local indicates that only 
one constraint is taken into account. Note that Vi C Pj (Vi) C Vi. If the 
binary constraint is rei,j : Vj= fj (Vi)' then 

Pj (Vi) = Vi n f j- 1 (Vj) , 

Pi (Vj) = Vj n fj (Vi). 

Fig. 6.21. Local contractor 

) 

(6.108) 

Vi 

The consistency domains Vi can be obtained by extending to vector vari­
ables (Jaulin, Kieffer, Braems and Walter, 2001) the forward-backward propa­
gation algorithm proposed in Benhamou et al. (1999) for variables of lR. First, 
one node is selected in the tree to become its root. The tree is then scanned 
from its leaves down to its root. This is the forward propagation step. Dur­
ing this scan, the domains of the nodes are contracted with respect to their 
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children. As a result, the domain associated with the root is its consistency 
domain. Finally, the tree is scanned from its root up to its leaves. This is the 
backward propagation step. During this second scan, the domains of the nodes 
are contracted with respect their fathers. Upon completion, each domain is 
equal to the corresponding consistency domains (i.e., for any i, Vi = Vi). A 
proof can be found in Jaulin, Kieffer, Braems and Walter (2001). Note that 
the same idea for discrete domains can be found in Freuder (1978), Montanari 
and Rossi (1991) and Collin et al. (1991). 

Example 6.15 Consider the tree of Figure 6.22. Its root is VI and its leaves 
are V4, V5, V6, V7, Vs. Forward propagation consists of the following sequence 
of set operations (initially, for any i, Vi := Vi): 

V2 : = V2 n P4 (V2 ) n P5 (V2 ) n P6 (V2 ); 

V 3 : = V 3 n P7 (V 3) n Ps (V 3) ; 

VI: = VI n P2 (V d n P3 (V d . 
At this stage, VI = VI. Backward propagation consists in computing 

V2 : = V2 n PI (V2 ); 

V 4 : = V 4 n P2 (V 4) ; 

V 5 : = V 5 n P2 (V 5) ; 

V 6 : = V 6 n P2 (V 6) ; 

V3 : = V3 n PI (V3); 

V 7 : = V 7 n P3 (V 7) ; 

V 8 : = V 8 n P3 (V 8) . 

Now, for all i, Vi = Vi. 

Fig. 6.22. Tree of Example 6.15 

(6.109) 

(6.110) 

• 

Let us apply this methodology to the estimation of the state of the 
discrete-time system 



{ 
x(k) = f(x(k - 1)), 

y(k) = g(x(k)), 
k = 1, ... , k, 
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(6.111) 

where x(k) E Jl{n is the state vector and y(k) E Jl{m is the output vector. 
Equation (6.111) is a special case of (6.90), which could be treated in its 
general form along the same lines. The functions f and g may be non-linear. 
Two types of estimators will be considered, namely causal estimators where 
the estimate of the state at time k can only be based on measurements of 
the output up to time k, and non-causal estimators where all measurements 
of the output vector are available at the outset. On-line estimation can only 
use causal estimators, but off-line estimation allows one to use non-causal 
estimators and to take advantage of all the available data to estimate the 
state vector at any given time. 

Causal estimator. At time k, the set of all vector variables to be considered 
is 

Vk = {x(O), ... , x(k), y(l), ... , y(k)}. (6.112) 

The set of the associated prior domains is 

Dk = {X(O), ... , X(k), Y(l), ... , Y(k)} . (6.113) 

For simplicity, assume that no specific prior information on x(l), ... ,x(k) is 
available. Thus X(l), ... ,X( k) are each taken as Jl{n. The past measurements 
y(i), 0 <::: i <::: k are used to form the prior feasible domains Y(i) based on 
their reliability. The set of the constraints involved is 

Ck = {x(£) = f(x(£ - 1)); £ = 1, ... , k} 

U{y(£)=g(x(£)); £=l, ... ,k}. (6.114) 

The corresponding graph is represented on Figure 6.23. Despite the presence 
of arrows, this graph is not oriented, and these arrows are only meant to 
indicate the directions along which the associated functions operate. 

f 

Fig. 6.23. Graph associated with (6.111); the bold circle indicates the root selected 
x (k), but any other root could be chosen 

Forward propagation applied to the graph of Figure 6.23 computes the 
consistency domain X(k) for x(k), provided that x(k) is chosen as the root 
of the tree. This results in the causal state estimator (CSE) of Table 6.12. 
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Table 6.12. Causal state estimator based on forward propagation 

Algorithm CSE(in: X(O), Y(1), ... , Y(k); out: X(k)) 
1 X(O):= X(O); 

2 for /l := 1 to k, 

3 X(/l) := f(X(/l - 1)) n g-l(Y(/l)); 

4 X(k):= X(k). 

At time k + 1, the measurement y(k + 1) becomes available and the algo­
rithm of Table 6.12 can be used again to compute X(k + 1). One should ob­
viously rather use the recursive causal state estimator (RCSE) of Table 6.13 
(Kieffer et al., 1998, 1999), to take advantage of the results already obtained 
at time k. This algorithm performs an optimal contraction of the domain for 
x( k) after the measurement at time k. 

Table 6.13. Recursive causal set state estimator 

Algorithm RCSE(in: X(O); out: X(1), ... , X(k)) 
1 X(O):= X(O); k = 1; 

2 for k := 1 to k, 
3 wait for Y(k); 
4 X(k) := f(X(k - 1)) n g-l(Y(k)). 

Figure 6.24 illustrates the principle of one iteration of RCSE. At time 
k -1, the state is known to belong to X(k -1). The predicted set f(X(k -1)) 
thus contains all possible values of the state at time k. When a measurement 
becomes available at time k, g-l(Y(k)) contains all state vectors that could 
have led to a measured output belonging to Y(k). Thus, at time k, the state 
belongs to the corrected set f(X(k - 1)) n g-l(Y(k)). It is not required that 
X(k - 1) or f(X(k - 1)) consist of a single connected component, as will be 
seen in Section 8.4.6, page 263, when tracking a moving robot. 

Non-causal estimator. Assume now that the k output measurements y(k), 
k E {I, ... , k}, and the associated prior feasible domains Y(k) are all avail­
able at the outset. Forward-backward propagation then makes it possible 
to obtain posterior feasible domains that are consistent with past and fu­
ture information. Table 6.14 describes the resulting procedure NCSE (for 
non-causal state estimator) when the root is taken as x(k). 

Upon completion of the algorithm, X(k) is the consistency domain for x(k) 
and 1J(k) the consistency domain for y(k), and the latter contains the actual 
output y* (k) with a better accuracy than the prior domain Y (k) (provided, 
of course, that the constrained set and prior domains have been properly 
chosen). 
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A A -1 'V' 

X(k) = f(X(k-l)) n g (Y(k)) 

X(k-l) 

f 

Y(k) 

y 

Fig. 6.24. Principle of one iteration of the recursive causal state estimator (RCSE) 

Table 6.14. Non-causal state estimator based on forward-backward propagation 

Algorithm: NCSE(in: X(O), Y(l), ... , Y(k); out: X(O), ... , X(k)) 

1 X(O):= X(O); 

2 for k := 1 to k, / / forward 

3 X(k) := f(X(k - 1)) n g-l(Y(k)); 
4 for k := k down to 1, / / backward 

5 Y(k) := g(X(k)); X(k - 1) := X(k - 1) n f-l(X(k)). 

Remark 6.6 The implementation of these estimators requires a represen­
tation for sets and an implementation of the local contractor Pi. A domain 
V is represented by a subpaving that encloses it. In the present context, the 
local contractor Pi corresponds either to the image f(V) of a set V by a vector 
function f or to the reciprocal image f- 1 (W) of a set W by a vector function 
f. A guaranteed enclosure of f(V) can be computed by IMAGESp (see Chap­
ter 3, page 60) and a guaranteed enclosure of f-1(W) can be computed by 
SIVIA (see Chapter 3, page 56). • 

Illustration. Consider the non-linear system 
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{ 
( XI(k)) =3(sin(XI(k-l)+X2(k-l))), 

X2 (k) cos (Xl (k - 1) +X2 (k - 1)) 

y (k) = IXI (k) I, 

(6.115) 

with k E {I, ... , 10}. For x* (0) = (0 O)T, the true values x*(k) and 
y* (k) ,k E {I, ... , 10}, have been generated by simulation of this system. 
The output data f} (k) have then been obtained by adding a bounded noise 
to the noise-free output y* (k) 

f} (k) = y*(k) + n(k), (6.116) 

where n(k) is a realization of a random variable uniformly distributed in 
[-0.1,0.1]. The prior domain for the kth output is then taken as 

1J(k) = f} (k) + [-0.1,0.1]' (6.117) 

so 

y*(k) E 1J(k), k = 1, ... ,10. (6.118) 

The prior domain for x(k) is taken as X(k) = Jl{2. The posterior domains 
obtained for x(k) by causal and non-causal estimation are depicted on Fig­
ure 6.25. The total computing time for both estimators is less than one minute 
on a PENTIUM 133. The frames of all subfigures are [-4,4] x [-4,4]. The first 
sub figure is entirely grey, which illustrates the obvious fact that the causal 
estimator is unable to provide any information about x(O) (X(O) = Jl{2), in 
contrast to the non-causal estimator. The last two subfigures, for k = 10, are 
identical because both estimators have now processed the same information. 

6.5 Conclusions 

Estimation problems involve uncertain variables related by constraints. These 
constraints are used to decrease the uncertainty in the variables, and advan­
tage may thus be taken of the tools available for the solution of constraint 
satisfaction problems (CSPs). This chapter has shown how the formalism and 
algorithms of CSPs can be adapted to estimation. A unified framework has 
been proposed for a large class of estimation problems, and the efficiency of 
the interval solvers of Chapter 5 has been demonstrated in this context. 

It is now possible to obtain guaranteed estimates of parameters or state 
variables, even when these parameters are not identifiable or when these 
state variables are not observable. Non-linear and time-varying constraints 
are easily handled. The approach could be extended to the case where X 
consists of infinitely many variables, some of which may for instance be integer 
or Boolean variables. 
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Fig. 6.25. Causal and non-causal set estimates 
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Least-square estimation suffers from the fact that the cost function to 
be minimized is a sum of terms involving the same parameters, so multi­
occurence of these parameters is unavoidable and tends to make inclusion 
functions for the cost function very pessimistic, which complicates the elim­
ination of uninteresting parts of the search domain. Parameter and state 
bounding are comparatively easier to implement, and interval constraint 
propagation contributes to allowing the treatment of high-dimensional prob­
lems. 



7. Robust Control 

7.1 Introduction 

The aim of this chapter is to illustrate the use of interval techniques presented 
in Part II to solve some robust control problems. Robustness is understood 
here with respect to uncertainty in the model of the process to be controlled. 
The problems considered range from the analysis of the properties of an ex­
isting uncertain system to the design of a controller for an uncertain process. 

Only systems described by linear time-invariant differential equations will 
be considered. The main reason is that checking stability then amounts to 
checking non-linear inequalities. The control of systems defined by non-linear 
differential or difference equations is much more complicated. A first approach 
based on interval methods for the control of non-linear difference equations 
has been proposed in Jaulin and Walter (1997). 

Robust control has been a very active field of research for many years 
(Horowitz, 1963; Dorato et al., 1993; Kwakernaak, 1993; Barmish, 1994; Boyd 
et al., 1994; Francis and Khargonekar, 1995) and it is impossible to present 
the state of the art in any detail in a single chapter. We shall focus attention 
on robust stability and robust control problems for uncertain systems that 
can be described by parametric models, the unknown parameters of which are 
assumed to lie between known bounds. This type of uncertainty is difficult 
to handle with reference techniques such as Hoo-analysis and IL-analysis, and 
interval techniques turn out to be particularly suitable, as examples will show. 

We did our best to make this chapter understandable by readers who are 
not specialists in control. As a result, control-oriented readers may find some 
issues oversimplified and may complain that important techniques are not 
covered. We plead guilty, but hope that these readers will nevertheless find 
interesting material here, which they may easily extend and adapt to other 
contexts. 

The chapter is organized as follows. In Section 7.2, basic notions about the 
stability of deterministic linear models are recalled, as well as the notion of 
stability degree. Uncertainty in the parameters of the model is introduced in 
Section 7.3. Various types of parameter dependency are considered, and some 
results from the literature are recalled, including the celebrated Kharitonov 
theorem and edge theorem. Some limitations of these results are indicated. 
Section 7.4 explains how the tools of interval analysis can be put to work for 

L. Jaulin et al., Applied Interval Analysis
© Springer-Verlag London 2001
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the analysis of the stability of existing uncertain systems when the tools of 
Section 7.3 cannot be used. Section 7.5 is dedicated to the design of controllers 
for uncertain processes. 

7.2 Stability of Deterministic Linear Systems 

Assume, for the time being, that the system E to be considered involves no 
uncertainty. In control, it is customary to distinguish inputs, which are signals 
used to act on E, and outputs, which are signals observed on E as it reacts. 
The vector of all inputs at time t will be denoted by u(t), and the vector 
of all outputs by y(t). We shall consider only continuous-time systems, but 
most of the notions to be presented can be transposed to discrete time. When 
E is linear, time-invariant and initially at rest (u == 0 and y == 0 before time 
t = 0), the Laplace transform of the output is related to that of the input by 

y(s) = G(s)u(s), (7.1 ) 

where 05 is the Laplace variable and G( s) is the transfer matrix associated 
with E. An important alternative representation of a linear time-invariant 
system E is the state-space representation 

E: {X(t) = Ax(t) + Bu(t), 
y(t) = Cx(t), 

(7.2) 

where x is the state vector, x is its first derivative with respect to time, and 
A, Band C are the drift, control and observation matrices, respectively. The 
state x(t) may be viewed as the minimal information that it is necessary 
to know at time t to be able to calculate the evolution of the system in 
response to known future inputs. The initial state vector is denoted by x(O) 
and corresponds to the initial conditions. We shall assume that the dimension 
n of x is finite, which will be the case whenever E is described by a set of 
linear ordinary differential equations. 

The Laplace transform of the state-space representation (7.2) for zero 
initial conditions is 

{ 
sx(s) = Ax(s) + Bu(s), 

y(s) = Cx(s). 
(7.3) 

Eliminating x(s) from (7.3) we get y(s) = C(sIn-A)-lBu(s), where In is 
the n x n identity matrix, so the transfer matrix between u( s) and y( s) is 

(7.4) 

The entries of G(s) are thus rational functions of s. This would not be the 
case for systems involving delays or partial differential equations, which have 
an infinite-dimensional state vector. 
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E is said to be asymtotically stable if and only if its state x( t) converges 
to 0 when t tends to infinity provided that u(t) = 0 for any t ~ o. As a result, 
y(t) also converges to o. Asymptotic stability will be the only type of stability 
considered in this book, and whenever we speak of a stable system, one should 
understand an asymptotically stable system. Conversely, when we speak of 
an unstable system, we mean a system that is not asymptotically stable. For 
obvious safety reasons, stability is a vital requirement for most controlled 
systems, and the remainder of this section will be devoted to methods for 
testing E for stability. 

7.2.1 Characteristic polynomial 

When u(t) = 0 for any t ~ 0, the state vector satisfies 

x(t) = eAtx(O). (7.5) 

Since the entries of the matrix eAt are linear combinations of terms of the 
form eA;t, where the AiS are the eigenvalues of A, E is stable if and only if all 
the eigenvalues have strictly negative real parts, i.e., Re(Ai) < 0, i = 1, ... , n. 
Now, the eigenvalues of A are also the roots of the characteristic polynomial 
of A, defined by 

P(s) = det(sIn - A). (7.6) 

This polynomial can be written as 

P(s) = ansn + an_lsn- l + ... + alS + ao. (7.7) 

P( s) also corresponds to the denominators of the entries of the transfer ma­
trix G(s), as evidenced by (7.4), unless there are simplifications between 
numerators and denominators. 

By extension, we shall say that P( s) is stable if and only if all its roots 
have strictly negative real parts, and that the roots of E are those of its 
characteristic polynomial. Thus, E is stable if and only if P( s) is stable, that 
is, if all its roots are in the left part C- of the complex plane. A necessary 
condition for P( 05) to be stable is that all its coefficients have the same sign. If 
the leading coefficient an in (7.7) is taken equal to 1, this condition translates 
into ai > 0, i = 0, ... , n - 1. 

7.2.2 Routh criterion 

Efficient methods are available to check whether a given polynomial is sta­
ble. The Routh criterion is based on the construction of the Routh table 
(Table 7.1). The coefficients ai of the polynomial are stored in the first two 
rows of this table as indicated. These rows are padded with zeros on their 
right. The remaining (n-1) rows of the Routh table are computed as follows: 
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b _ an -lan-2 - an an -3 
1- , b _ an -lan-4 - an an -5 

2- , 
an -l an -l 

b1an -3 - an -l b2 

b1 

b1an -5 - an -lb3 (7.8) 

Table 7.1. Routh table 

an a n-2 a n-4 0 

an-l a n-3 a n-5 0 

b1 b2 b3 0 

Cl C2 C3 0 

0 

gl 0 

hI 

The number of roots of P( s) with positive real part is equal to the number 
of sign changes in the first column of the Routh table. For instance, if the 
first column of the Routh table contains the sequence (1,12, -4,3,2, -1) in 
this order, then the number of sign changes is equal to three and P( s) has 
three roots with positive real parts. Assume that an has been normalized to 
one and define the Routh vector as the vector of all the entries of the first 
column of the Routh table after discarding the first entry: 

(7.9) 

P( s) is stable if and only if r > 0 and unstable (i. e., not asymptotically 
stable) if and only if there exists a component ri of r such that ri :::;; O. See 
Levine (1996) to deal with situations where some entries of r are zeros. 

7.2.3 Stability degree 

The location of the roots of P( s) provides more information that just the 
stability or instability of E. When E is stable, the real parts of the roots of 
its characteristic polynomial are related to the speed with which x converges 
to 0 in the absence of input, and complex roots are responsible for oscillations 
in the process, if any. For instance, if the roots of P(s) are 

(-0.2 - 3j, -0.2 + 3j, -0.5 - 7j, -0.5 + 7j, -1 - 3j, -1 + 3j), (7.10) 

then, in the absence of input, all the components Yi(t) of the output vector 
y(t) of the system E given by (7.1) or (7.2) have the form 

Yi(t) = al sin(3t + <PI) exp( -0.2t) + a2 sin(7t + <P2) exp( -0.5t) 
+ a3 sin(3t + <P3) exp( -t), (7.11) 
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where the coefficients CXl, CX2, CX3, ¢l' ¢2 and ¢3 depend on the initial condi­
tions x(O). The function Yi(t) is depicted on Figure 7.1 for CXl = CX2 = CX3 = 1 
and ¢l = ¢2 = ¢3 = o. The location of the roots is directly related to the 
temporal behaviour of the outputs of the system. To impose characteristics 
of this behaviour, it is thus natural to require that these roots belong to a 
prespecified region r of the complex plane. This corresponds to the notion 
of r -stability. Now, interval methods can prove the r-stability of a polyno­
mial efficiently without computing its roots. For instance, proving that the 
polynomial 

P(s) = s8 + 16s7 + 112s6 + 448s5 + 1120s4 + 1792s3 

+ 1792s2 + 1024s + 256 (7.12) 

is r-stable, where r is the circle with radius 2 and centre -3, amounts to 
checking that the CSP 

H: (P(s) =0, Is+31 > 2) (7.13) 

has no solution, which can be done with SIVIAX described on page 104. 

Y 

2.5 

2 

1.5 

1 

0.5 

0 

-0.5 

-1 

-1.5 t 
0 2 4 6 8 10 12 14 16 18 20 

Fig. 7.1. A possible output of a system with roots as in (7.10); the asymptotic 
enveloping exponential curves correspond to ± exp( -O.2t) 

Sometimes it is possible to translate r-stability into asymptotic stability 
by algebraic transformation (Sondergeld, 1983). This is so, for example, when 
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r is the part n of the complex plane located on the left of the vertical line 
Re(8) = -5. A system E is said to be 5-8table if and only if it is ro-stable, 
i.e., all its roots are in ro. For instance, if the roots of E are given by (7.10), 
then E is O.l-stable but 0.3-unstable. To check the 5-stability of P(8), it 
suffices to check the stability of the polynomial 

QO(8) = P(8 - 5) 

= (8 - 5)n + an-1(8 - 5)n-1 + ... + a1(8 - 5) + ao 

= 8n + bn_1(5)8n- 1 + ... + b1(5)8 + bo(5), 

as stated by the following theorem. 

Theorem 7.1 P(8) i8 5-8table if and only if P(8 - 5) i88table. 

(7.14) 

• 
Proof. The proposition "Qo(8) is stable" is equivalent to the implication 

\/8 E C, Qo(8) = 0 =} Re(8) < 0, 

i.e., to 

\/8 E C, P(8 - 5) = 0 =} Re(8) < 0, 

which is equivalent to the implication 

\/8 E C, P(8) = 0 =} Re( 8 + 5) < O. 

This means that all the roots of P( 8) are in ro. 

(7.15) 

(7.16) 

(7.17) 

• 
N ow, the stability of Q 0 (8) can be tested using the Routh criterion. Define 

the 5-Routh vector r( 5) as the Routh vector associated with Q 0 (8). Then 

P(8) is 5-stable {o} Qo(8) is stable 

The 8tability degree (or decay rate) of P(8) is 

15M £ sup 5 = max 5. 
r(O»O r(O);::O 

{o} r(5) > O. (7.18) 

(7.19) 

By extension, the stability degree of E is that of its characteristic polynomial. 
The larger the stability degree of E is, the faster the state of E will return 
to equilibrium in the absence of inputs. Stability degree is thus an important 
factor to be taken into account when designing a controller. Figure 7.2 illus­
trates the significance of the stability degree 15M for the root configuration of 
(7.10); 15M is found here to be equal to 0.2. This means that asymptotically 
the dominant component of Yi(t) is a1 sin(3t+¢1) exp( -0.2t) (see Figure 7.1). 

Often, however, the equations describing E are imprecise, and one would 
like to take the uncertainty of the model into account when testing E for 
stability, in order to reach a conclusion that is robust to this uncertainty. 
Methods to do so are presented in the next section. 
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Fig. 7.2. Stability degree 15M; the crosses correspond to the roots of the character­
istic polynomial 

7.3 Basic Tests for Robust Stability 

Assume now that the state-space representation of the system E depends on 
some np-dimensional time-invariant parameter vector p: 

E(p) : {X(t) = A(p)x(t) + B(p)u(t), 
y(t) = C(p)x(t), 

(7.20) 

where p is known to belong to the box [pl. Let E ([p]) be the set of all the 
systems E(p) such that p belongs to [pl. E([p]) is said to be robustly stable 
if and only if E(p) is stable for any p in [pl. Proving the robust stability of 
E([p]) is one of the fundamental topics of robust control theory. The set of 
all the characteristic polynomials associated with E([p]) is defined by 

P(s, [p]) ~ {an(p)sn + an_l(p)sn-l + ... + ao(p) I p E [pJ}. (7.21) 

Define the coefficient function by 

(7.22) 

and the coefficient set by 

A ~ {a(p) I p E [p]} = a([p]). (7.23) 

A polynomial P(s, p) is entirely specified by its coefficient function a(p). 
This is why, for the sake of brevity, we shall also use a(p) to designate the 
polynomial P( s, p) and A to designate the corresponding set of polynomi­
als. Depending on the context, a may thus be a coefficient function or a 
polynomial, and A a set of coefficient functions or a family of polynomials. 

Consider a family A of polynomials, and assume that the degree of each 
of them is equal to n (an is thus never equal to zero). A is said to be robustly 
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stable if and only if all polynomials in fA are stable, and robustly unstable if 
and only if all polynomials in fA are unstable. The problem to be considered 
now is the test of robust stability (or instability) for different types of fA. 

• Case 1: The coefficient set fA is a box 

(7.24) 

The corresponding family of polynomials is classically called an interval 
polynomial. It can be written as 

(7.25) 

Note that when fA is given under the form (7.23), i.e., fA = a([p]), a may not 
be the identity function and may even be non-linear in p. If, for instance, 
a is a function from ]R2 to ]R2 defined by 

a (p) = (sin (pI) , exp (P2)) T , (7.26) 

then the image by a of any box [p] is a box and fA is thus a box or equiv­
alently an interval polynomial. 

• Case 2: fA is a polytope, or equivalently designates a polytope polynomial. 
• Case 3: fA is the image of a box [p] by a function a (.). fA then designates 

an image-set polynomial, which can be written under the form (7.23). 

Example 7.1 Since the entries ofp appear independently in the coefficients, 
the family of polynomials 

fA = {(PI + sin2(p2))s2 + exp(V'P3)s + psln(l + P6) I p E [pJ} (7.27) 

is an interval polynomial and thus a polytope polynomial and an image-set 
polynomial. It can be rewritten indifferently as 

(7.28) 

or as 

(7.29) 

The family of polynomials 

fA = {(cos(pI) + sin2(p2))s2 + 3 cos(pds + P3 + sin2(p2) I p E [pJ} 

(7.30) 

is not an interval polynomial, but is a polytope polynomial. For instance, if 
[p] = [0,7T/2]X3, then COS([PI]) = sin2([p2]) = [0,1]. fA thus can be rewritten 
as 

fA = {(p~ + p;)S2 + 3p~ s + p~ + P; I pi E [0,1] x [0,1] x [0, 7T /2J} . 

(7.31 ) 

Because of the dependency of the coefficients of the polynomial, no form sim­
ilar to (7.28) can be given. • 
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7.3.1 Interval polynomials 

The Kharitonov theorem (Kharitonov, 1978) provides necessary and sufficient 
conditions for the robust stability of interval polynomials; see also Bialas 
(1983), Barmish (1984) and countless publications in the 1980s. This very 
important result is at the origin of the extreme-point approach to testing 
uncertain systems for robust stability (Bartlett et al., 1988). 

Theorem 7.2 (Kharitonov) The interval polynomial 

[a] =[!.lcn,an] x··· x [!.lcI,aI] x [!.lco,ao] 

is robustly stable if and only if the four polynomials KI(s), K2(S), K3(S) and 
K 4 (s) respectively given by 

!.lcnSn + !.lcn_ISn-I + an_2Sn-2 + an_3Sn-3 + !.lcn_4Sn-4 + !.lcn_5 Sn - 5 ... , 

ansn + !.lcn_ISn-I + !.lcn_2Sn-2 + an_3Sn-3 + an_4Sn-4 + !.lcn_5 Sn - 5 ... , 

ansn + an_ISn- I + !.lcn_2Sn-2 + !.lcn_3Sn-3 + an_4Sn-4 + an_5 Sn - 5 ... , 

!.lcnSn + an_ISn- I + an_2Sn-2 + !.lcn_3Sn-3 + !.lcn_4Sn-4 + an_5 Sn - 5 .. . 

are stable. • 
Studying the robust stability of a non-denumerable set of polynomials 

thus boils down to testing at most four of them for stability, independently 
of the value of n. (When n :::;; 5, it is possible to prove robust stability with 
even less computation, see Anderson et al. (1987).) If the family It. is not an 
interval polynomial, the Kharitonov theorem can still be used by wrapping 
It. into an interval polynomial [a]. If [a] is robustly stable, then It. is also 
robustly stable, but the condition becomes only sufficient, of course. This is 
illustrated by the following example. 

Example 7.2 The family of polynomials 

It. = {P5s4 + (P4 + COS2 (P3) )s3 + 2PIS2 + P2yP4S + PI 

PI E [5,7]' P2 E [3,4]' P3 E [-7T/4,7T/4]' P4 E [1,2], P5 E [1,2]} 

is not an interval polynomial, but it is a subset of the interval polynomial 

[a] = [1, 2]s4 + [3/2, 3]s3 + [10, 14]s2 + [3, 4V2]s + [5,7]. 

The Kharitonov polynomials associated with [a] are 

KI(S) = s4 + ~s3 + 14s2 + 4V2s + 5, 

K 2(s) = 2s4 + ~s3 + 10s2 + 4V2s + 7, 

K3(S) = 2s4 + 3s3 + 10s2 + 3s + 7, 

K4(S) = s4 + 3s3 + 14s2 + 3s + 5. 

(7.32) 

(7.33) 
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Each of them is easily proved stable, e.g., by the Routh criterion. Therefore 
[a] is robustly stable, and so is It.. Assume now (Wei and Yedavalli, 1 989) 
that 

PI E [1.5,4]' P2 = 1, P3 = 7r /2, P4 = 1, P5 = 1. (7.34) 

Then 

[a] = s4 + s3 + [3, 8]S2 + 05 + [1.5,4]. (7.35) 

The corresponding Kharitonov polynomial K 2 (05) = 054 + 053 + 3052 + 05 + 4 is 
unstable, which implies that [a] is not robustly stable. This does not imply 
that It. is not robustly stable. It is actually easy to show that It. is robustly 
stable, for instance by building a formal Routh table depending on Pl. • 

In practice, It. is seldom an interval polynomial. For instance, if the entries 
of p appear independently in the drift matrix A(p), then the coefficient 
function a(p) is multilinear and the coefficient set It. is not even a polytope. 

7.3.2 Polytope polynomials 

The main result regarding the robust stability of polytope polynomials is the 
edge theorem (Bartlett et al., 1988). 

Theorem 7.3 (edge theorem) The polytope polynomial It. is robustly stable 
if all its edges are robustly stable. • 

Recall that the number of edges in a box increases exponentially with its 
dimension. A la-dimensional box has 5120 edges. Therefore, the edge theorem 
may require the study of the robust stability of many edge polynomials of 
the form 

(7.36) 

Now, this is not an easy problem. There are examples where the two vertices 
PI (05) and P2(S) of the edge are stable whereas the edge PI,2(S, A) itself is not 
robustly stable (Bialas and Garloff, 1985). The robust stability of an edge can 
be established using the Bialas algebraic condition (Bialas, 1985), based on 
the Hurwitz criterion. Another approach is to treat polytope polynomials as 
special cases of image-set polynomials, as presented in the following section. 

7.3.3 Image-set polynomials 

Assume that the characteristic polynomial associated with E(p) is 

P(s, p) = sn + an_I(p)sn-I + ... + aI(p)s + ao(p). (7.37) 

The Routh vector of P(s, p) is a function of p, called the Routh function 
(Didrit, 1997) and denoted by r(p). From the Routh criterion, the following 
equivalence holds: 
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P(s,p) is stable {o} r(p) > O. (7.38) 

Thus, E([p]) is robustly stable if and only ifr(p) > 0 for any p in [pl. Let 
[r] be an inclusion function for the Routh function r. If all the components 
[Ti] ([p]) of [r]( [p]) are positive (i. e., if their lower bounds are strictly positive) 
then E([p]) is robustly stable. On the other hand, if there exists a component 
Ti of r such that Ti([p]) :::;; 0 then E([p]) is robustly unstable (E(p) is not 
asymptotically stable for any pin [p]). 

An efficient way to prove the robust stability or instability of E([p]) is 
to use contractors (see Chapter 4). Proving robust instability amounts to 
proving that r(p) > 0 admits no solution in [pl. This is equivalent to saying 
that the solution set of the CSP 

H: (r(p) - y = 0, P E [p], Y E [O,oo[xn) (7.39) 

is empty. Note that the edge approach is unable to prove robust instability, 
even for interval polynomials. Proving robust stability amounts to proving 
that, 

\lp E [p], r(p) > 0 

{o} \lp E [p], \Ii E {I, ... ,n}, Ti(P) > 0 

{o} \Ii E {I, ... , n}, \lp E [p], Ti(P) > 0 (7.40) 

{o} \Ii E {I, ... , n}, \lp E [p], -, (Ti(P) :::;; 0) 

{o} \Ii E {I, ... , n}, -, (:..Jp E [p]1 Ti(P) :::;; 0), 

where -,A is equivalent to (A is false). Now, saying that -,(:..Jp E [p]1 Ti(P) :::;; 0) 
is equivalent to saying that the CSP 

Hi: (Ti(P) +y = O,p E [p],y E ]O,ooD (7.41 ) 

has an empty solution set. Therefore, E([p]) is robustly stable if and only if 
all such H;'s have empty solution sets. All the contractors presented in Chap­
ter 4 can thus be used to check both robust stability and robust instability. 
Note, however, that checking robust stability with this approach requires the 
contraction of n CSPs instead of one for robust instability. 

Remark 7.1 The type of Teasoning followed heTe to pTOve TObust stability 
can also be used to check that a given box is inside a set § defined by non­
lineaT inequalities. ContmctoTs could thus be used in an algoTithm such as 
SIVIA, not only to check that a box is outside §, but also to check that a box 
is inside §. • 

Remark 7.2 When the coefficient function a(p) is polynomial in p, so is 
r(p). Bemstein polynomials may then be used fOT computing an outeT ap­
pTOximation of r([p]) and thus fOT checking the signs of the entTies of r([p]) 
(Vicino et al., 1990; Milanese et al., 1991; CaTlott, 2000). • 
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7.3.4 Conclusion 

The complexity of the test of the stability of E([p]) drastically depends on 
the nature of the coefficient set A.. When A. is a box, the Kharitonov theorem 
reduces the task to that of checking at most four polynomials for stability, 
whatever the degree of the uncertain polynomial. When A. is a polytope, the 
edge theorem reduces the task to that of checking the edges of this polytope, 
which may nevertheless reveal quite demanding. When A. is a general image­
set polynomial, the problem becomes even more complicated (Nemirovskii, 
1993; Poljak and Rohn, 1993; Blondel and Tsitsiklis, 1995). The next section 
presents numerical methods based on interval analysis that can be used even 
in this most complicated case. Moreover, these methods will make it possible 
to characterize the part of [p] that corresponds to stable systems, when E([p]) 
is neither robustly stable nor robustly unstable, as well as to characterize level 
sets of the stability degree. 

7.4 Robust Stability Analysis 

The basic tests presented in Section 7.3 will now be used for the analysis of 
the robust stability of E([p]). 

7.4.1 Stability domains 

The stability domain §p of the polynomial 

P(s,p) = sn + an_l(p)sn-1 + ... + al(p)s + ao(p) (7.42) 

is the set of all the parameter vectors p such that P( s, p) is stable. It can be 
defined as 

(7.43) 

The characterization of §p can thus be cast into the framework of set inversion 
and performed by the algorithm SIVIA (Walter and Jaulin, 1994). 

Example 7.3 Consider the multi-affine polynomial (Ackermann et al., 1990; 
Ackermann, 1992) 

P(s,p) = s3 + (PI + P2 + 2)s2 + (PI + P2 + 2)s 

(7.44) 

where the coefficient (5 corresponds to the radius of an unstable disk centred 
at Pc = (1,1) T inside a stable region. The construction of the Routh table 
leads to the Routh function 
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(7.45) 

Note that if (J" = 0 and PI and P2 are positive, then P( s, p) is always stable, 
except at Pc. For [p] = [-3,7] x [-3, 7], EO = 0.05 and (J" = 0.5, SIVIA computed 
the paving of Figure 7.3 in 0.3 s on a PENTIUM 90 (Didrit, 1997). Since all 
the components of 

( 
[6, 16] ) 

[r]([2,7], [2,7]) = [~, 2:7] 
[ 135 735] 

4 ' 4 

(7.46) 

are positive, the box [2,7] x [2, 7] was proved to be stable in a single iteration 
(see Figure 7.3). 

P2 
7 

6 

5 

4 

3 

2 

0 

-1 

-2 

-3 
-3 

PI 

Fig. 7.3. Characterization of the stability domain of Example 7.3 for (J" = 0.5; grey 
boxes are stable and white boxes unstable 

On the other hand, since 

( 
[-4, 1] ) 

[r]([-3, -~], [-3, -~]) = [IZ, 1~7] , 

[_63 _13] 
4' 4 

(7.4 7) 
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the box [-3, -~] x [-3, -~] was proved unstable in a single iteration. Fig­
ure 7.4 has been generated in 0.2 s for (J" = O. SIVIA was unable to prove 
that p = (1,1) T was unstable but a small indeterminate box (too small to be 
visible) was generated around this unstable point. • 

P2 
7 

6 

5 

4 

3 

2 

0 

-1 

-2 

-3 
-3 

PI 

Fig. 7.4. Characterization of the stability domain of Example 7.3 for (J" = 0; grey 
boxes are stable and white boxes unstable; the unstable point (1, 1) is surrounded 
by an indeterminate box, too small to be visible 

Example 7.3 has been used by Ackermann to illustrate the limits of the 
idea of studying edges: for (J" = 0.5, and [p] = [0,2] x [0,2] all the edges of [p] 
are stable, but [p] nevertheless contains an unstable region. This example was 
treated in Murdock et al. (1991) with an approach based on a genetic algo­
rithm. Since this approach amounts to random search, its efficiency decreases 
with (J" and no guarantee on its result can be provided. Kiendl and Michalske 
(1992) have studied the same example with a partition method. Their ap­
proach is valid only in the case of polytope polynomials, which implies here 
a pessimistic reparametrization of the model, with detrimental consequences 
on the quality of the results (see the figures in Kiendl and Michalske, 1992). 

The following example shows how SIVIA can be used to characterize the 
root locus of an uncertain polynomial. 

Example 7.4 We already know that the uncertain polynomial P(s, [p]) of 
Example 7.3 is robustly stable for (J" = 0 and p E [p] = [2,7] x [2,7]. Define 
its root locus R([p]) as the set of all the roots of P(s,p) for p E [p], i.e., 
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R([p]) £ {s E C I P(s,p) = O,p E [pl}. (7.48) 

R([p]) is thus the projection onto the complex plane of the set 

{(s, p) E Cx [pll P(s, p) = a}, (7.49) 

which can be characterized by SIVIA of Section 3.4.1, page 55. The associated 
subpaving, depicted on Figure 7.5, intersects the imaginary axis, so stability 
is not proved. Nevertheless, this subpaving provides important information 
about the uncertain model. For instance, it shows that, even if the model is 
robustly stable on [p], a small non-parametric perturbation may push some 
roots across the imaginary axis. • 
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Fig. 7.5. Outer approximation of the root locus for the uncertain polynomial 
P(s, [p]) of Example 7.4 

7.4.2 Stability degree 

Level sets. When E depends on a vector p of parameters, so does its 6-
Routh vector, now written r (p, 6) (see (7.18), page 192). The stability degree 
of E is now defined as 

6M(p) £ sup 6 = max 6. 
r(p,o) >0 r(p,o)):O 

(7.50) 
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ISOCRIT presented in Chapter 5, page 135, for the characterization of level 
sets will now be applied to the function 6!VI (p). Recall that the level set 
of 6 !VI (p) associated with 61 is the set of all ps in the region of interest of 
parameter space that are such that 6!VI (p) = 61. The levels of interest are 
denoted by 61, 62, ... , 15m . It is assumed that the functions a(p) and thus 
6!VI (p) are continuous. 

ISOCRIT requires an inclusion function for 6 !VI (p), which can be evaluated 
for any given box [p] by minimizing and maximizing 6!VI(p) over [p] with 
OPTIMIZE presented in Chapter 5, page 119. 

Example 7.5 For the multi-affine polynomial of Example 7.3 for [p] = 

[-3,7] x [-3,7]' 61 = 0.1, 62 = 0, c = 0.05 and (]" = 0.5, ISOCRIT com­
puted the paving of Figure 7.6 in 3.6 s on a PENTIUM 90 (Didrit, 1997). The 
level set associated with 62 = 0 is consistent with the result of Example 7.3 
(see Figure 7.3). • 
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Fig. 7.6. Level sets of the stability degree for (]" = 0.5 

Example 7.6 Consider now the uncertain system (Kokame and Mori, 1992) 

x = (~ 
PI 

1 -PI) 
o -IP2 X, PI E [-7,1.3]' P2 E [-1,2.5]. 

P2 

(7.51) 
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Its characteristic polynomial is 

p (s, p) = s3 + S2 + (pi + p~ + 1) s + 1. (7.52) 

From the Routh table of P(s - 5, p), one can easily prove that for 5 ~ i the 
system is 5-unstable for any p in [p], and that for 0 ~ 5 < i the system is 
5-stable if and only if 

1
2 2 45(252 -25+1) /',2(-) 

PI +P2 > -25+1 =I!.. 6, 

(7.53) 
-3 -2 K 

2 2 -6 + 6 - u + 1 /', -2(-) 
PI + P2 < 5 = (J" 6. 

Therefore, E(p) is 5-stable for all ps located between the circles centred at 
zero and with radii equal to I!.. ( 5) and 0'( 5) . Moreover, the only unstable point 
is o. For 51 = 0.2, 52 = 0.1, 53 = 0.05 and 54 = 0, and for [p] = [-7,1.3] x 
[-1,2.5] and EO = 0.1, ISOCRIT computed the paving of Figure 7.7 in 0.3 son 
a PENTIUM 90 (Didrit, 1997). • 

P2 
2. 5 r---~---,y-'-<TTl"I.,....-rr--'-mr1 ..,...-.,-,..-,-,.--,-,--, 

2· 

1.5 /5 = 0.2 --t~H=ffi! 

0.5 
/5 = 0.05 

o 

-0.5 

- 1 '----'------"-----'-. .LLL~_u.' 
-7 -6 -5 -4 -3 -2 -1 o 

Fig. 7.7. Characterization of level sets of the stability degree 

This example has also been studied by Kokame and Mori (1992). Their 
method applies when the drift matrix is affine in the parameters and only 
makes it possible to find a point in parameter space that is 5-stable for a 
given value of 5. 
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Robust stability degree. Define the robust stability degree 6M([P]) of 17(p) 
for p in [p] as the stability degree in the worst case: 

6M([P]) = min max 6. 
pE [pI r(p,o):?o 

(7.54) 

If 6 M ([p]) > 0, then all the roots of 17 (p) are in C - and the uncertain system 
17([p]) is robustly stable (i.e., it is stable for any p in [p]), as illustrated by 
Figure 7.8 (left). If 6 M ([p]) ~ 0, then there exists some p in [p] such that 
17(p) is unstable, as illustrated by Figure 7.8 (right). 

1m 1m 

R([p]) R([p]) 

Re Re 

Fig. 7.8. Left: the root locus of E ([p]) is in C-, bLVI([p]) is thus positive and E ([p]) 
is robustly stable; right: E ([p]) is not in C-, OM([p]) is thus negative and E(p) is 
unstable for some p in [p] 

The algorithm MINIMAX, presented in Section 5.6, page 133, can be used 
to compute bi\I([P]) in a guaranteed way, as illustrated by the two following 
examples. 

Example 7.7 Consider the uncertain system (Balakrishnan et al., 1991a) 

x = r 1 :2P2 2 1 X. 

P2 PI 

1 + PI 1 + p~ 

(7.55) 

For [p] = [1,2] x [0,0.5]' with c = 0.001, on a PENTIUM 90, MINIMAX finds 
in 2 sand 237 iterations that the robust stability degree satisfies 

-2.01590 ~ 6M([P]) ~ -2.01451. 

The system is thus not robustly stable. • 
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Example 7.8 Consider the uncertain system (Balakrishnan et al., 1991a, 
1991b) 

° 1 1 x. 

pi + p~ + 1 

X= [(P' I ""I)' + ~,+ 1)' I 0" (7.56) 

For [p] = [-4,0] x [-4,4]' with E = 0.01, again on a PENTIUM 90, MINIMAX 
needs only 20 iterations to prove that the robust stability degree satisfies 

-1.0048866272::::; 6M([p]) ::::; -0.9999999781. 

This system is thus not robustly stable. 

7.4.3 Value-set approach 

(7.57) 

• 

The concept of value set (Saeki, 1986; Barmish, 1988), allows a simple geo­
metrical interpretation of robust stability in the complex plane. Recall that 
the uncertain system E with characteristic polynomial 

P(s, p) = an(p)sn + an_l(p)sn-l + ... + al(p)s + ao(p) 

is robustly stable in [p] if the CSP 

H: (P(s,p) = O,p E [p],Re(s) ~ 0) 

(7.58) 

(7.59) 

has no solution for sand p. This can be checked easily with SIVIAX, presented 
in Section 5.2, page 104. Since s is complex, the dimension of the search 
space is dim p + 2. Let us first show that it is often possible to reduce this 
dimension to dim p + 1 by taking advantage of the continuity of the roots of 
the characteristic polynomial with respect to its coefficients. Assume that [p] 
contains a stable vector Po and an unstable vector Pl. The roots associated 
with Po all have negative real parts and at least one of the roots associated 
with PI has a positive real part. This is illustrated by Figure 7.9. Assume 
also that the coefficients of P( s, p) are continuous in p and that the leading 
coefficient an (p) never vanishes. When p moves from Po to PI in [p], at least 
one of the roots crosses the imaginary axis (see Figure 7.9), i.e., there exist p 
in [p] and win Jl{ such that P(jw, p) = 0. This leads to the following theorem. 

Theorem 7.4 If 

1. the coefficients of P(s, p) are continuous functions of p, 
2. the leading coefficient an (p) never vanishes over [p], 
3. there exists Po in [p] such that P(s, Po) is stable, 

then P(s, [p]) is robustly stable if and only if the CSP 

H: (P(jw, p) = 0, P E [p], wE Jl{) 

has no solution. 

(7.60) 

• 
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~/[p] 

~ Rc 

Fig. 7.9. Along the path from a stable point Po to an unstable point Pl, at least 
one of the roots crosses the imaginary axis 

The stability of P(s, Po) can be checked with the Routh criterion, for 
instance. The domain for w can be restricted to w ? 0, because if (p, w) 
is a solution of (7.60), so is (p, -w). The dimension of search space is now 
dim p + 1 instead of dim p + 2. To apply SIVIAX to prove that (7.60) has 
no solution, it is important to bound the domain for w. As the module of 
P(jw, p) tends to infinity with w, there exists an angular frequency Wc (cutoff 
frequency) beyond which P(jw, p) will never be equal to zero for any p in 
[pl. The following theorem (Marden, 1966) provides a mean for computing 
an upper bound for Wc. 

Theorem 7.5 All the roots of P(s) = ansn + ... + alS + ao, with an of. 0, 
are inside the disk with centre zero and radius 

(7.61) 

• 
Proof. First, let us prove the result for the monic polynomial H (s) = sn + 
an_lsn- l + ... + als + ao. Since 

PI(s) can be obtained by the following sequence: 

Qo(s) = 1, 

Qi(S) = SQi-l(S) + an-i, i = 1, ... , n, 

P1(s) = Qn (s). 

(7.62) 

(7.63) 

Assume that lsi ? (3 and that IQi-l (s) I ? 1 (this holds true for i = 1). 
IQi(S)1 = ISQi-l(S) + an-il· Since lsi? {3, IQi-l(S)1 ? 1 and (7.61) implies 
that lan-il :::;; {3 -1. The property Ipleje, + P2eje21 ? IPI - P21 then implies 
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that IQi(S)1 ~ (3 - ((3 - 1) = 1. Therefore, lsi ~ (3 implies IH(s)1 ~ 1 and 
thus PI(s) of. o. Theorem 7.5 is thus valid for monic polynomials. Now, the 
roots of P(s) are those of the monic polynomial 

n an-I n-I al ao s +--s + ... +-s+-, 
an an an 

(7.64) 

and are therefore located inside the disk with centre 0 and radius 

(3 - (I ao I I an-II) _ max(laol,···, lan-II) 
- 1 + max , ... , - 1 + I I . 

an an an 
(7.65) 

• 
When P( s) depends on p, (3 becomes a function of p. An inclusion func­

tion for (3(p) is thus 

[(3]([p]) = 1 + max(l[ao]([p])I,···, l[an-I]([p])I). 
I [an] ([p]) I 

(7.66) 

If 73 is the upper bound of the interval [(3] ([p]) , the uncertain polynomial 
P( s, [p]) has all its roots inside the disk with centre 0 and radius 73. 73 is 
thus an upper bound of the cutoff frequency We. The domain for w is now 
taken as [0,73], which is finite. For some types of coefficient functions, it has 
been shown (Sideris, 1991; Ferreres and Magni, 1996) that the study can be 
limited to a finite number of frequencies. 

Example 7.9 Consider the polynomial (Barmish and Tempo, 1995) 

with 

ao(p) = (P3 + 2)p§ + PI(cos2p3 - P2(P4 - 0.5)2) + 5, 

al (p) = P2 (2 cos 2P3 + PI cos P4) + 20, 

a2(p) = 4P3 + P2(1 + 2pI) + 0.5, 

(7.67) 

(7.68) 

and take p E [p] = [0,1]X4. Equation 7.66 yields (3 = 24rad/s. SIVIAX 
proves in 0.00505 on a PENTIUM 233 that P(s, [p]) is robustly stable (see 
Exercise 11.24, page 331). • 

In the literature on robust control, Theorem 7.4 is generally presented by 
introducing the value set 

P(jw, [p]) = {P(jw,p) I p E [p]}, (7.69) 

considered as a function of w. IMAGESP of Chapter 3, page 59, can be used 
to compute such value sets. 
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1m 
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Fig. 7.10. Three outer approximations of value sets for Example 7.9 

Example 7.10 Consider again the problem of Example 7.9. Outer approxi­
mations of the value sets P(jw, [p]) obtained by IMAGESP for w = 0.1 rad/s, 
w = 1.1 rad/s and w = 2.1 rad/s are presented in Figure 7.10. • 

Another formulation of Theorem 7.4 is the zero-exclusion condition stated in 
Frazer and Duncan (1929). 

Theorem 7.6 (zero-exclusion condition) If the coefficients of the polynomial 
P(s, p), are continuous functions ofp and if there exists Po in [p] such that 
P(s, Po) is stable, then P(s, [p]) is robustly stable if and only if for any w ~ 0, 
o ~ P(jw, [p]). • 

Example 7.11 Consider again the problem of Examples 7.9 and 7.10. IM­

AGESP can be used to compute an outer approximation of the set 

P(j [0,24], [p]) = {P(jw, p) I w E [0,24], P E [pl}. (7.70) 

Computing time can be reduced considerably by avoiding the bisection of any 
box the image of which does not contain 0 (A dro t, 2000). The resulting sub­
paving, computed in less than 2 s on a PENTIUM 233, is presented in Fig­
ure 7.11. It contains the three value sets of Figure 7.10. Since P(j [0, 24], [p]) 
does not contain 0, the zero-exclusion condition implies that P( s, [p]) zs ro­
bustly stable, as it is easy to show that P(s, mid[p]) is stable. • 



7.4 Robust Stability Analysis 209 

1m 
100 iT'T"TIT"PT'TSSTTST'"TIT'T'TIT"PT'lTPl 

-100 
-180 20 Re -5 5Re 

Fig. 7.11. Intersections of the outer approximation of the set of all value sets with 
the frames [-180,20] x [-100,100] and [-5,5] x [-5,5]; 0 is excluded 

Remark 7.3 The approach presented here can be used even if P(s, p) is not 
a polynomial. This allows consideration of systems with delays (Barmish, 
1994), thus makin9 it possible to deal with a much larger class of problems 
than the approach based on the Routh criterion. • 

In order to cast the problem into the framework of optimization (Didrit, 
1997), one may transform the zero-exclusion condition (Vw ~ 0, 0 ~ 
P(jw, [p])) into the equivalent condition 

rl([p]) £ min IP(jw, p)12 > o. (7.71) 
pE[p],w;?O 

The dimension of search space is again dim p + l. The domain [0, J3] for w is 
obtained by computing an upper bound of the cutoff frequency as in (7.66). 
Note thatf)([p]) can be viewed as a stability margin. 

Example 7.12 Consider again the problem of Examples 7.9, 7.10 and 7.11. 
Barmish and Tempo (1995) show how to construct an outer approximation of 
the value set P(jw, [p]) for a given value ofw. From ten such approximations 
obtained for ten values of w, they conclude that the family of polynomials 
P( s, [p]) should be robustly stable, without proving it rigorously. Recall that 
an upper bound of the cutoff frequency is J3 = 24 rad/s. The search domain 
is [x] = [0,24] x [0,1] x4. Since the minimum of the cost function c(w, p) = 

IP(jw,p)1 2 is independent ofp4, no bisection OJ[P4] is allowed (Didrit, 1997). 
After 275 bisections and in 5.16 s on a PENTIUM 90, Hansen's algorithm, 
presented in Section 5.5.2, page 121, isolates four solution boxes. Each of 
them contains one p of the form p = (1,0,0, P4) T. This may indicate that the 
solution is on the boundary of the domain of interest, which poses no problem 
to the algorithm. The associated frequency domain for w is [4.4609,4.4611]; 
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71([P]) is proved to belong to [15.799,15.802]. We have thus not only proved 
that P( s, p) is robustly stable, but also quantified a stability margin. • 

The next example shows how r-stability can be studied when the region 
r of interest is not a half-plane. 

Example 7.13 For the polynomial 

where 

P(s, p) = s3 + a2(p)s2 + al(p)s + ao(p), 

ao(p) = sin(P2)eP2 + PIP2 - 1, 

al (p) = 2PI + 0.2PI eP2 , 

a2 (p) = PI + P2 + 4, 

(7.72) 

(7.73) 

two of the coefficient functions are neither linear nor polynomial. Using an 
affine outer approximation, Amato et al. (1995) have proved that this poly­
nomial is stable for all parameter vectors in [p] = [1,1.5]X2. We shall now 
study the robust r -stability of P( s, [p]), where r is a cone symmetrical with 
respect to the real axis, with vertex 0 and half angle ¢ = ~. The reasoning to 
be followed is depicted in Figure 7.12. r is the intersection of the half-planes 
[])-1j' and []) 1j'. Since P( s, p) has real coefficients, its roots are symmetrical 
with respect to the real axis and a polynomial is r -stable if and only if it is 
[])-1j' -stable, in which case it is also [])1j' -stable. We shall thus consider only 
the problem of [])-1j' -stability. The polynomial is [])-1j' -stable if and only if 

P(s) = 0, s rt [])-1j' 

has no solution for s. Set z = se-j'f;; (7.74) becomes equivalent to 

P(zeH ) = O,z rt C-, 

(7.74) 

(7.75) 

where C- is the set of all complex numbers with strictly negative real parts, 
and the polynomial is [])-1j' -stable if and only (7.75) has no solution for z. Set 
F(z) = P(zej'f;); proving the r -stability of 17 ([p]) then amounts to proving 
the stability of F(z). This can be done by checking that for a given p in [p], 
F( s, p) is stable (trivial) and that 

min IF(jw, [p])12 > 0, 
pE[p], wEIR 

(7.76) 

see (7.71). The latter condition can be checked using Hansen's optimization 
algorithm to minimize the cost function 

c (w, p) = IF(jw, [p]W. (7.77) 

For lOp = 10-3 and Cc = 10-5 , after 230 iterations executed in 2.1 s on a 
PENTIUM 90, one solution box is generated, the width of which is smaller than 
lOp. This solution box contains the point with coordinates PI = 1.5, P2 = 1 and 
w = 0.678 rad/s. The algorithm also returns a small interval that contains 



7.4 Robust Stability Analysis 211 

the mzmmum of the cost function c (.), the width of which is less than Ce. 

This minimum, found to be approximately equal to 0.217, is guaranteed to be 
strictly positive. The robust stability of F(z, [p]) and thus the r -stability of 
P(s, [p]) are therefore established. • 

1m 1m 

Rc 

1m 

x 

x 
x x 

x Re 

Fig. 7.12. Transformation of a r-stability problem into a problem of stability for 
a polynomial with complex coefficients 

Casting the zero-exclusion condition into such an optimization framework 
does not make it possible to benefit from the graphical interpretation of the 
value sets, but it allows consideration of any type of parametric dependency. 
An approach similar to the one followed here can also be used to detect 
whether the behaviour of the uncertain system is acceptable in the sense of 
many robust performance criteria. 

7.4.4 Robust stability margins 

To illustrate the notion of robust stability margin, consider a system with a 
single input and a single output, defined by its transfer function 

G s = N(s) = s + 1 
() D(s) s2+0.4s+1· (7.78) 

The unit step response of this system is presented in Figure 7.13. (The unit 
step response is the output of the system when u = 0 for t < 0 and u = 1 for 
t ~ 0.) 

Put this system inside a negative feedback loop as indicated on Fig­
ure 7.14. Such feedback loops are commonly used to counteract the effect 
of external perturbations by adapting the input of G based on the devi­
ation between what is achieved (y) and what is desirable (u). Let H(s) 
be the transfer function of the resulting closed-loop system. For zero ini­
tial condition, the Laplace transform y(s) of the system output y(t) satisfies 
y(s) = G(s)(u(s) - y(s)), or equivalently 
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G(8) 
Y(8) = 1 + G(8) U(8). (7.79) 

Fig. 7.13. Unit step response of the open-loop system defined by (7.78) 

U + Y 
I------,--t~ 

Fig. 7.14. Closed-loop system 

The transfer function for the closed-loop system can thus be written as 

H(8) = G(8) 
1 + G(8) 

N(8) 8+1 
(7.80) 

N(8) + D(8) 

The unit step response of this closed-loop system is presented in Figure 7.15. 
Here H (8) is stable, but if the coefficients of G (8) are moved continuously, 
H (8) may become unstable. It will do so when any of the roots of its de­
nominator crosses the imaginary axis, i.e., when 3w I N(jw) + D(jw) = 0, or 
equivalently when 

. N(jw) 
3w I G(Jw) = -( .-) = -l. 

D JW 
(7.81) 

This amounts to saying that H(8) becomes unstable when the set 



7.4 Robust Stability Analysis 213 

0.8,-----~----~----~------~----~ 

0.6 

0.4 

0.2 

1.6 3.2 4.8 6.4 8 

Fig. 7.15. Unit step response of the closed-loop system 

G(jJR) = {G(jw) I wE JR} (7.82) 

crosses the critical point -1. It is thus possible to study the stability of the 
closed-loop system H(8) by analyzing features of the open-loop system G(8). 
Of special importance is the location of the graph of the set G(jJR), called 
the Nyqui8t plot of G, relative to the critical point. Note that this critical 
point has a modulus equal to 1 and a phase angle equal to -Jr. The Nyquist 
plot of the system defined by (7.78) is given in Figure 7.16. 

Assume that the nominal model G(8) is such that H(8) is stable. To evalu­
ate the robustness of the stability of H(8) to a modification of G(8), perturb 
the open-loop system until it becomes unstable by multiplying G(8) by a 
complex coefficient peje , with p > o. This is illustrated by Figure 7.17. The 
open-loop transfer function is now 6(8) = peje G(8), and the corresponding 
closed-loop transfer function will be denoted by fI (8). For P = 1 and e = 0, 
the system is not perturbed, i. e., 6 (8) = G (8). The gain p is often mea­
sured in dB, with PdB = 2010g10 (p). When P = 0,1 or 00, PdB = -00,0 or 
00, respectively, so PdB = 0 when the gain is not perturbed. The perturbed 
open-loop transfer function can be written as 

(7.83) 

If PdB or e depart from their nominal zero values, fI becomes unstable when 
6(jJR) crosses the critical point -1, i.e., when 

"dB ·e :..Jw E JR 1102iJ eJ G(jw) =-1. (7.84) 

Take first e = 0, and define the gain margin mG as the smallest value 
of IPdBI such that fI(8) becomes unstable. This means that if the gain of 
the open-loop system is modified in such a way that the absolute value of 



214 7. Robust Control 

1m 
3 

2 

1 
G(oo) 

0 
G(O)/I 

/ 

-1 

-2 

G(jw) 

-3 
-1 0 1 2 3 Re 

Fig. 7.16. Nyquist plot of the open-loop system G(8); its location with respect to 
the critical point -1 provides information on the stability of the closed-loop system 
H(8); the angle m¢ represents the phase margin of G(8) 
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Fig. 7.17. Perturbed system 

PdB remains less than mG, then the closed-loop system remains stable. From 
(7.84), 

mG = min IPdBI I 3w E lR, 102ilG(jw) = -1 . /', { f'dE } (7.85) 

Since 10 P~I(~ G(jw) = -1 {o} PdB = 201og10 G0~)' the gain margin may equiv­

alently be computed as 



{ 
mG = min 120l0g10 (-:-1 ) I, 

G JW,P 
subject to 10Pi',~ G(jw) = -1. 
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(7.86) 

Now, in (7.86) the real number PdB is a free variable and the constraint 
lOP2',? G(jw) = -1 is thus equivalent to stating that G(jw) is real and strictly 
negative, i.e., that Im(G(jw)) = 0 and Re(G(jw)) < o. Therefore 

{ 
mG = min 120l0g10 (-:-1 ) I, 

G JW,P 
subject to (Im(G(jw)) = 0) /\ (Re(G(jw)) < 0). 

(7.87) 

Moreover, since G(jw) = G( -jw) when the constraint Im(G(jw)) = 0 is 
satisfied, the search can be limited to w ? O. Finding mG thus amounts to 
solving the constrained minimization problem 

{ 
mG = min 120l0glO (-:-1 ) I, 

G JW,P 
subject to (Im(G(jw)) = 0) /\ (Re(G(jw)) < 0) /\ (w ? 0). 

(7.88) 

Take now PdB = 0, and define the phase margin m¢ as the smallest value of 
lei such that H(s) becomes unstable. From (7.84), 

m¢ ~ min {lei I ==Jw E lR?, ejeG(jw) = -I}. (7.89) 

Since G(jw) and G(-jw) are conjugate, e can be taken as positive, 

m¢ = min{e I ==Jw E lR?, ejeG(jw) = -I}. 
e):o 

(7.90) 

Finding m¢ thus amounts to solving the constrained minimization problem 

{ 
m¢ = mine, 

subject to (e? 0) /\ (ejeG(jw) = -1). 
(7.91 ) 

Assume now that the transfer function of the system to be put in the loop 
is G (05, p), where p is an uncertain parameter vector. Assume that for any 
p in [p] the closed-loop system is stable, which can readily be checked with 
the techniques described in Section 7.2.2, page 189. The notions of gain and 
phase margins can be extended to this context by considering the worst case, 
i.e., the value of p in [p] such that the margin under consideration is the 
smallest. This leads to defining the robust gain margin as 

mG([p]) = min 
P E [p] 

min 120l0glO G(~l,p) I, (7.92) 
Im(G(jw,p)) = 0 

Re(G(jw, p)) < 0 

w?O 

and the robust phase margin as 
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Tnq, ([p l) = min 
p E [p] 

min 
8,?0 

ej&G(jw,p) =-1 

8. (7.93) 

These quantities can be computed with OPTIMIZE, presented in Chapter 5, 
page 119. 

Example 7.14 Consider the system 

(2s + 1) ((1 + PI)s + e-P2 ) 

G(s, p) = D(s, p) , 

where 
S 2 

D(s, p) = s (s + 5) (--2 + 1 + cos 5PI) 
1 + P2 

*(S2 + v'P2(3 + 2 sin 3PI)S + p~ - 2P2 + 2). 

For p E [-1,1] x [0.3,1.5] and cp = Cc = 0.005, OPTIMIZE finds that 

16.405 dB ~ TnG([pl) ~ 16.891 dB 

1.537rad ~ Tnq,([pl) ~ 1.544rad. 

(7.94) 

(7.95) 

(7.96) 

On a PENTIUM 90, it takes 23.8 sand 1495 iterations to generate 56 solution 
boxes for the gain margin, and 72.7 sand 6349 iterations to generate 1384 
solution boxes for the phase margin (Didrit, 1997). • 

7.4.5 Stability radius 

To characterize the stability margin of 17 (p) with respect to the uncertainty 
on p around some nominal value po, Safonov and Athans (1981) and Doyle 
(1982) have independently defined the notion of stability radius. 

Definition 7.1 The stability radius of E(p) at po is 

p ~ sup {rl '? 0 IE(p) is stable for all p E [p](f))} 

= min {f) '? 0 IE(p) is unstable for one p E [p](rl)}, 
(7.97) 

where [p] (f)) is the box with centre po such that the width of its j th component 
satisfies W ([p 0' 'fiJl) = 2of)wj for some prespecified positive number Wj. • 

-J 

The quantity rl is thus the radius of the hypercube [p](f)) in the Loo norm 
weighted by the Wjs. Figure 7.18 illustrates this notion for dim p = 2 and 
WI = W2 = 1. Now, since 

(7.98) 

and since 
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E(p) is unstable B:..Ji such that Ti(P) ~ 0 (7.99) 

B (Tl(P) ~ 0) V··· V (Tn(P) ~ 0), 

where V stands for the Boolean operator OR, the stability radius can also be 
defined as 

P = min TJ, 
1))0 

subject to { 
(( Tl (p) ~ 0) V ... V (Tn (p) ~ 0)) 

( {
pO - TJUi· - p. :< 0 ) 

II \;/ j E {I, ... , np}, J 0 J J '" , 

-Pj - TJUij + Pj ~ 0 

(7.100) 

where II stands for the Boolean operator AND. Because of the operator V 
involved in the constraints, OPTIMIZE cannot be applied directly. 

p~- 71 

p~- 71 p~+ 71 

Fig. 7.18. Stability radius p at pO; §,p is the stability domain. 

An equivalent definition of P is 

P = min {PI , ... ,Pn}, 

with 

Pi = mint), 
1))0 

{ 
(Ti(p) ~ 0) 

subject to (. {p~ - TJUij - Pj ~ 0 ) 
II \;/ J E {I, ... , np}, 0 

-Pj - rlUij + Pj ~ 0 

(7.10l) 

(7.102) 
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Now, the PiS can be computed using OPTIMIZE, because the associated con­
straints are related with 1\ operators. The stability radius P is then obtained 
by taking the smallest of the Pis. 

The number of minimizations to be performed is equal to the number 
of inequalities to be checked in the stability test. If the Routh criterion is 
used, this number is equal to n. The Routh-Hurwitz criterion can reduce this 
number to three, as stated by the following theorem (Kolev, 1993b; Malan 
et al., 1997). 

Theorem 7.7 The family of polynomials 

P(s, [p]) = an([p])sn + an_l([p])sn-l + ... + al([p])s + ao([p]) 

is robustly stable if E(mid([p])) is stable and if for any p in [p] 

{ 
ql(p) = ao(p) > 0, 

q2(P) = an(p) > 0, 

Q3(P) = Dn-1(p) > 0, 

(7.103) 

(7.104) 

where D n - 1 (p) is the (n - 1) th Hurwitz determinant associated with P( s, p): 

al(p) a3(p) a5(p) ... a2n-l (p) 

ao(p) a2(p) a4(p) ... a2n-2(P) 

Dn-1(p) = 
0 al(p) a3(p) ... a2n-3(P) 
0 ao a2(p) ... a2n-4(P) 

0 0 0 ... an-l(p) 

The stability radius P satisfies 

P = min T), 
'7)0 

subject to 

or equivalently 

P = min{Pl' P2' P3}' 

Pi = min TI, 
'7)0 

subject to (Qi(P) ~ 0) 1\ (Vj {p~ ~ TIWj - Pj ~ 0 ). 
-Pj - 'lwJ + PJ ~ 0 

(7.105) 

• 

(7.106) 

(7.107) 
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The number of minimizations to be performed is now equal to three instead 
of n. 

When the coefficient function is affine, the problem can be solved using 
linear programming (Tesi and Vicino, 1989). When this function is poly­
nomial, methods based on generalized geometric programming, also called 
signomial programming, have been used (Vicino et al., 1990). The problem 
of computing the stability radius has been proved to be NP-hard in Braatz 
et al. (1994). 

The efficiency of interval techniques for computing stability radii will now 
be demonstrated on two examples. 

Example 7.15 The polynomial 

P(s,p) = s3 + (PI + P2 + 2)s2 + (PI + P2 + 2)s 

+2PIP2 + 6PI + 6P2 + 2 + 172, 

was considered in Examples 7.3 and 7.5, pages 198 and 202. When PI and 
P2 are positive, this polynomial is stable for all parameter vectors outside the 
disk with centre po = (1, I)T and radius 17. Hansen's optimization algorithm 
is now used to compute the stability radius for different values of 17 based on 
(7.107). As in Murdock et al. (1991), Psarris and Floudas (1995) and Malan 
et al. (1997), the nominal value for p is taken as po = (1.4,0.85) T, and the 
weights are WI = 1.1 and W2 = 0.85. The box [P](17) is thus defined by 

1.4 - 1.1rl ~ PI ~ 1.4 + 1.lr), 

0.85 - 0.85rl ~ P2 ~ 0.85 + 0.8517. 
(7.108) 

The results, obtained on a PENTIUM 90 for different values of 17 are given in 
Table 7.2. They are similar to those of Malan et al. (1997), but our approach 
can deal with a general non-linear parametric dependency, as illustrated by 
the next example. • 

Table 7.2. Stability radii for various values of (J" (Example 7.15) 

(J" 10- 1 10- 3 10- 5 10- 7 

Ep and Ec 10-5 10-5 10-5 10- 7 

Number of iterations 66 113 55 63 

Computing time (s) 0.44 0.55 0.44 0.49 

Number of solution boxes 1 5 1 2 

Stability radius 0.2727 0.3627 0.3636 0.3636 

Example 7.16 Consider the polynomial 
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with 

ao(p) = sin(P2)eP2 + PIP2 - 1, 

al (p) = 2Pl + 0.2Pl eP2 , 

a2 (p) = PI + P2 + 4. 

(7.109) 

(7.110) 

The coefficient function a(p) is neither linear nor polynomial. A computa­
tion of the stability radius based on (7.107), using Hansen's optimization 
algorithm for Cp = Cc = 10-5 , finds it to be approximatively equal to 2.025 at 
pO = (1.5,1.5) T (Didrit, 1997). This is consistent with the fact that P(s, p) 
is stable for any pin [p] = [1,2]X2 (Amato et al., 1995). • 

7.5 Controller Design 

Although relatively few papers have been dedicated to controller design via 
interval analysis (Kolev et al., 1988; Kearfott, 1989b; Khlebalin, 1992; Kolev, 
1993a; Jaulin and Walter, 1996; Malan et al., 1997), interest is growing, as 
illustrated by a recent special issue of Reliable Computing (Garloff and Wal­
ter, 2000). In this section, the application of the interval solvers presented in 
Chapter 5 to the tuning of the parameters of controllers will be demonstrated. 

Consider a linear system to be controlled. Assume first that the system is 
perfectly known and that no uncertain parameters are involved. The param­
eter vector c of the controller can be chosen arbitrarily in a box [c]. Denote 
by r( c, 6) the 6-Routh function associated with the controlled system. The 
controller that maximizes the stability degree is given by 

c = argmax max 6. 
cE [c] r( c,a)):O 

(7.111) 

Example 7.17 Consider again the system 17 (p) of Example 7.6, page 202. 
Assume now that p can be tuned so as to maximize the stability degree, so p 
plays here the role of c. The characteristic polynomial of 17 (p) is 

P(s, p) = s3 + s2 + (pi + p~ + l)s + 1, (7.112) 

where the parameters PI and P2 can be chosen arbitrarily in [p] = [-7, 1.3] x 
[-1,2.5]. Recall that for any p, 17 (p) is 6-unstable for 6 ? i. For 0 < 6 < i, 
P( s, p) is 6 -stable for all vectors p inside the region located between the circles 
with radii 

Q:( 6) 46(262 - 26 + 1) and 0'(6) = J _63 + 6~ - 6 + 1 
-26 + 1 6 

(7.113) 

The maximal stability degree is obtained when the inner and outer circles 
merge. This happens for 6 = i. Then d 6) = 0'(6) = 2f. There are thus 
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2.5 

2 

1.5 

~~ I fEM!~ 
1 f ) 

0.5 
-~ 

o 

-0.5 

-1 ~, 1 
-7 -6 -5 -4 -3 -2 -1 o 1 

Fig. 7.19. Paving generated to characterize the set of all the maximizers of the 
stability degree of Example 7.17; all maximizers are in the black subpaving 

infinitely many values of p that maximize the stability degree of the closed-loop 
system. This is due to the fact the system is overparametrized. For Cc = 0.05 
and Cb = O.OOl, after 588 iterations in 2.5 s on a PENTIUM 90, Hansen's 
optimization algorithm yields 6M E [0.3333,0.3339]. All maximizers are zn 
the black subpaving of Figure 7.19. • 

Assume now that the model of the system to be controlled depends on a 
vector p of uncertain parameters. Two types of parameters have then to be 
dealt with, namely p and the tuning parameters c of the controller. 

Consider a closed-loop system E(p, c), the forward path of which consists 
of a controller C(8, c) cascaded with an uncertain parametric model G(8, p), 
p E [p] (see Figure 7.20). The problem to be studied is the computation of 
the set §c of the vectors c that maximize the stability degree in the worst 
case. This set satisfies 

§c = arg max min max 6. 
eE [el pE [pi r(p,e,b))O 

(7.114) 

The rightmost max corresponds to the definition of the stability degree. The 
min ensures the worst-case conditions. The leftmost max corresponds to the 
optimality requirement. If one chooses an element c in §c for the controller, 
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then one is certain that the stability degree of the controlled system is at 
least equal to 

5~1 = max min max 5, 
cE[cl pE[pl r(p,c,o))O 

(7.115) 

and 5~1 is the optimal robust stability degree. 

Example 7.18 (Jaulin, 1994; Jaulin and Walter, 1996; Didrit, 1997). For 
the closed-loop system E(p, c) of Figure 7.20, MINIMAX gives the results of 
Table 7.3. In this table, #§c is the number of boxes in the subpaving §c con­
taining all the values of c corresponding to globally optimal robust controllers, 
[§cl is the interval hull of§c, and [5~I] is an interval guaranteed to contain 
the associated optimal robust stability degree. The times are indicated for a 
PENTIUM 90, and the order of magnitude of E is 10-3 . • 

2 
U + C28 + c1 ~ PIP3 

I - 8 2 2 
(P28 + 1)(8 + P:ls + P:l) 

y 

Fig. 7.20. Uncertain system with a PI controller 

Table 7.3. Results obtained by MINIMAX for the optimal robust controller 

[p] Time (s) #§c [§cl [bl'vI] 
(1,1,I)T 5.5 66 [0.257,0.273] x [0.305,0.354] [0.300,0.326] 

[0.99,1.01]X3 85 69 [0.239,0.274] x [0.264,0.382] [0.288,0.299] 

[0.95, 1.05] x 3 339 37 [0.207,0.277] x [0.179,0.437] [0.261,0.282] 

[0.9,1.1] x3 345 17 [0.207,0.254] x [0.191,0.367] [0.230,0.246] 

Remark 7.4 In practice, it is often sufficient to find one c such that the 
robust stability degree is higher than some prespecified value~. The problem 
can then be formulated as 

find one c E [c] I 'Vp E [p], r(p, c,~) > O. (7.116) 

This is much simpler than finding the set of all optimal robust controllers, 
and OPTIMIZE can be adapted to solve this problem in a more efficient way 
( J aulin and Walter, 1996). • 
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7.6 Conclusions 

Robust control provides a mine of opportunities for applying interval analysis. 
Almost any question of interest in this field can be cast into the framework 
of set inversion, minimax optimization or constrained optimization, and we 
hope that the examples considered in this chapter have convinced the reader 
that interval analysis is well equipped to provide pertinent answers. 

Of course, interval analysis in its present state cannot handle all problems 
of robust control, if only because of the curse of dimensionality. Four factors, 
however, contribute to making problems of practical interest tractable. First, 
one is in general interested in controllers with only a few tuning parameters 
(about three for the ubiquitous PID controller). Secondly, parametric uncer­
tainty in the model of the process to be controlled can often be limited to 
a few dominant factors, frequently connected to physically meaningful pa­
rameters. Thirdly, it is usually easy to express the open-loop or closed-loop 
transfer matrix of the system to be controlled as an explicit function of the 
uncertain and tuning parameters, which facilitates the derivation of efficient 
inclusion functions. Lastly, what is needed in general is a vector of satisfac­
tory tuning parameters rather than a characterization of the set of all such 
vectors. 

Assessing how far the complexity barrier can be pushed back in actual 
controller design is an exciting challenge, which will require the cooperation 
of control engineers and interval analysts. 



8. Robotics 

8.1 Introduction 

Robots are mechanical systems that are controlled to achieve specific tasks, 
deemed too repetitive, too dangerous or too difficult for human beings. As a 
result, robotics is a vast interdisciplinary field, which draws on mathematics, 
mechanics, control theory, artificial intelligence, ergonomics ... This chapter 
cannot, of course, pretend to exhaustiveness, and will limit itself to illus­
trating how interval analysis can contribute to the solution of three difficult 
problems. 

The first one, presented in Section 8.2, is the evaluation of all possible 
configurations of a parallel robot, known as a Stewart-Gough platform, given 
the lengths of its limbs. This has become a classical benchmark for computer 
algebra, because it involves solving a rather complicated set of non-linear 
equations (Raghavan and Roth, 1995). We shall show that interval analysis 
makes it possible to deal with this type of problem on a personal computer 
even in the most complex and most general case, and shall stress the ad­
vantages of the resulting solution compared to those based on more classical 
symbolic manipulations. 

The second problem, described in Section 8.3, is the planning of a collision­
free path for a rigid object in a known environment. It will be solved by 
combining interval and graph-theoretical tools. This will be illustrated by a 
planar test case where the object is a non-convex polygon and the obstacles 
consist of line segments. 

The last problem, considered in Section 8.4, is the localization and track­
ing of a robot from on-board distance measurements in a partially known en­
vironment. We shall see how this can be cast into the framework of bounded­
error parameter and state estimation described in Chapter 6, and how sensor 
failures, partially outdated maps and ambiguities due to symmetries in the 
environment can be taken into account. 

L. Jaulin et al., Applied Interval Analysis
© Springer-Verlag London 2001
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8.2 Forward Kinematics Problem for Stewart-Gough 
Platforms 

8.2.1 Stewart-Gough platforms 

A Stewart-Gough platform consists of a rigid mobile plate linked to a rigid 
base by six rectilinear limbs, the lengths of which can be controlled (see 
Figure 8.1). Because the limbs act in parallel on the position and orientation 
of the mobile plate with respect to the base, this platform is an example of 
what is known as a parallel robot (as opposed to an articulated arm where 
the effectors attached to the articulations act in series). This mechanism was 
proposed by Gough in 1949 for a tyre-testing bed (Gough, 1956), and used by 
Stewart (1965) to design a flight simulator. Stewart-Gough platforms have 
now found many other applications in tasks where force and precision are 
required (Merlet, 1990). 

Fig. 8.1. Symbolic rendition of a Stewart-Gough platform 

Let a( i) and b( i) be the extremities of the ith limb attached to the base 
and mobile plate, respectively. The forward kinematic problem consists in 
computing all possible configurations of the platform, given (1) the coor­
dinates of the a(i)s in a frame attached to the base, (2) the coordinates 
of the b( i)s in a frame attached to the mobile plate and (3) the lengths 
Yi of the limbs. Solving this problem is difficult, to the point that it has 
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become a benchmark for symbolical and numerical computations (Nanua 
et al., 1990; Lazard, 1992; Mourrain, 1993; Wang and Chen, 1993). 

Several methods are available for translating the problem into a set of non­
linear equations to be solved. An approach based on the Euler angles will be 
presented in Sections 8.2.2 and 8.2.3. The solution of the resulting equations 
by an interval solver will be described in Section 8.2.4. More details can be 
found in Didrit et al. (1998). 

8.2.2 From the frame of the mobile plate to that of the base 

Let Ro be a frame attached to the base, and R4 be a frame attached to the 
mobile plate (the reason for such an indexation will become clear shortly). 
The configuration (position and orientation) of the mobile plate with respect 
to the base can be represented by the coordinates (cxo, cyo, czo) in Ro of a 
given point C of the mobile plate together with the three Euler angles 1/;, e and 
i.{J, as illustrated by Figure 8.2. The coordinates of the a( i)s are known in Ro 
and those of the b ( i) s are known in R4. These coordinates do not depend on 
the configuration of the platform, but the transformation from Ro to R4 does. 
To compute the lengths of the limbs as functions of the configuration, one 
must express the a(i)s and b(i)s in the same frame, say Ro. A transformation 
is thus needed to compute the coordinates of the b( i)s in Ro from those in 
R4. This section is devoted to building this transformation. 

Fig. 8.2. Frame transformation using the Euler angles ?j;, (J and 'P 

Let Rl be the frame obtained after rotating Ro around ko by an angle 
VJ (see Figure 8.2). The basis vectors of Rl can be expressed with respect to 
those of Ro as 
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i 1 = cos VJ io + sin 1jJ jo, 

jl = - sin VJ io + cos VJ jo, 

kI = ko, 

or in matrix form as 

(

COS .1jJ sin 1jJ 0) 
where PI = - sin 1jJ cosljJ 0 . 

001 

(8.1) 

(8.2) 

Let R2 be the frame obtained after rotating RI around i l by an angle B. The 
basis vectors of R2 satisfy 

(8.3) 

For R 3 , obtained after rotating R2 around k2 by an angle cp, we have 

( i3 ) (i2 ) ( cos cp sin cp 0) 
h = P 3 j2 ,where P 3 = -sincp coscp 0 . 

k3 k2 0 0 1 

(8.4) 

Combining (8.2), (8.3) and (8.4) yields 

(8.5) 

Consider now a vector v with coordinates (xo, Yo, zo) in R o and (X3, Y3, Z3) 
in R 3 . It satisfies 

(8.6) 

or, in vector form, 

(8.7) 

From (8.5), this implies that 

(8.8) 
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Since (io,jo, ko) is a basis of ]R3, (8.8) is equivalent to 

(xo Yo zo) = (X3 Y3 Z3)P3P 2P I, (8.9) 

or to 

(8.10) 

where 

pT= pTpipj, (8.ll ) 

with PI, P2 and P3 given by (8.2) to (8.4). Finally, let R4 be the frame 
obtained after translating R3 by the vector c with coordinates CxO, cyo and 
CzO in Ro. The coordinates TnxO, TnyO and Tnzo of a point m in Ro can be 
obtained from its coordinates Tnx4, Tny4 and Tnz4 in R4 as 

(
mxo) (cxo) (mX4) myO cyo + pT my4 

rrLzo CzO rrLz4 

(8.12) 

8.2.3 Equations to be solved 

The length Yi of the ith limb of the platform is the Euclidean distance between 
a(i) and b(i). Now, the coordinates of a(i) are given in R o, but those of b(i) 
are given in R4. To compute this distance, the coordinates of these points 
must be expressed in the same frame, e.g., Ro. The coordinates ofb(i) in Ro 
can be computed by (8.12). The length Yi can then be obtained as 

Yi = Ila(i) - b(i)112 

= V(axo(i) - bxo (i))2 + (ayo(i) - byo (i))2 + (azo(i) - bzo (i))2. 

(8.13) 

The procedure for computing the lengths of the six limbs as functions of 
the configuration x = (cxo, cyo, CzO, 1jJ, e, cp) T of the platform is summarized 
in Table 8.1. The coefficients Tij correspond to the entries of the matrix pT 
in (8.ll). 

Finding all possible configurations of a Stewart-Gough platform from the 
knowledge of the lengths of its limbs thus amounts to solving the equation 

f(x) - y = 0 (8.14) 

for x, where x is the configuration vector, f(x) is the vector of the lengths 
of the limbs as predicted by the algorithm of Table 8.1 and y is the vector 
containing the actual numerical values of the lengths Yi, i = 1, ... ,6, of the 
limbs. Interval solvers such as those presented in Chapter 5 can be used to 
solve this problem, as shown in the next section. 
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Table 8.1. Algorithm for computing the vector Ym of lengths of the limbs for a 
given configuration of the platform 

Algorithm SGSIIvlULATOR (in: CxO, cyo, czo,?,b, e, 'P; out Ym) 

1 1'11:= cos 1/) cos 'P - sin?,b cos e sin 'P; 

2 rl2:= - cos?,b sin 'P - sin?,b cos e cos 'P; 

3 rl3:= sin 1/) sin e; 
4 1'21:= sin 1/) cos 'P + cos?,b cos e sin 'P; 

5 1'22:= - sin 1/) sin 'P + cos?,b cos e cos 'P; 

6 1'23:= - cos?,b sin e; 
7 1'31:= sin e sin 'P; 

8 1'32:= sin e cos 'P; 

9 1'33:= cos e; 
10 for i := 1 to 6 
11 bxo(i) := CxO + r11bx4 (i) + r 12 by4 (i) + r 13 bz4 (i); 
12 byo(i) := cyo + r 21 bx4 (i) + r 22 by4 (i) + r 23 bz4 (i); 
13 bzo(i) := CzO + r31 bx4 (i) + r32 by4 (i) + r33 bz4 (i); 
14 Yi := J(axo(i) - bxo (i))2 + (ayo(i) - byo (i))2 + (azo(i) - bzo (i))2; 

15 Ym:=(Yl, ... ,Y6? 

8.2.4 Solution 

No analytic solution is available for (8.14) in the general case. It has been 
shown (Lazard, 1993; Mourrain, 1993; Raghavan, 1993; Wampler, 1996), that 
there are at most 40 complex solutions in the general case, a bound that can 
be decreased for special configurations (Lee and Roth, 1993; Faugere and 
Lazard, 1995). Of course, only the real solutions are interesting in practice. 
Since (8.14) involves trigonometric functions, formal elimination methods for 
the solution of sets of polynomial equations, such as those based on the con­
struction of a Grabner basis (Lazard, 1992, 1993), do not apply directly. How­
ever, (8.14) can be transformed into a set of nine polynomial equations, at the 
cost of increasing the number of unknowns from six to nine. For special types 
of platforms, the problem can be simplified. For instance, when the ais are 
coplanar, b I = b 2 , b 3 = b 4 , b 5 = b 6 and (b I , b 3 , b 5 ) form an isosceles trian­
gle, it is possible to cast the problem into that of solving a single polynomial 
equation in one indeterminate with a degree equal to 16 (Merlet, 1990; Nanua 
et al., 1990; Innocenti and Parenti-Castelli, 1991). Husty (1996) has shown 
how to perform a similar transformation in the general non-planar case, but 
this involves complicated algebraic manipulations that are only possible in 
practice when the geometrical parameters defining the problem take small 
integer values. Many formal methods based on elimination theory suffer from 
the same limitation. Moreover, these methods must use numerical algorithms 
to find the solutions of the high-degree polynomials that they generate, and 
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the accuracy of the numerical results may be questionable, unless guaranteed 
methods such as those based on interval analysis are used. By contrast, the 
approach used in this section is able to isolate all real solutions of (8.14) in 
the most general non-planar case with realistic coefficients for the geometrical 
parameters. 

Before running an interval solver, one must specify a prior box guaranteed 
to contain all solutions of interest. The naive initial domain 

[x]O = lR x lR x lR x [-7T,7T] x [-7T,7T] x [-7T,7T] (8.15) 

can be reduced by taking into account the geometry of the problem. Since 

(8.16) 

where pT is given by (8.11)1, the configuration of the platform for (1jJ + 
7T, - e, cp + 7T) is the same as for (1jJ, e, cp). The prior domain can therefore be 
reduced to 

[x]o = lR x lR x lR x [-7T,7T] x [0,7T] x [-7T,7T]. (8.17) 

To bound the domains associated with the first three components of x, notice 
that 

c = a(i) + (b(i) - a(i)) + (c - b(i)). (8.18) 

In Ro, this equation becomes 

( 
cxo) (aXO(i)) 
cyo = ayo(i) + (b(i) - a(i))Ro + (c - b(i))Ro. 

CzO azo( z) 

(8.19) 

Now, since Yi is the distance between a( i) and b(i), each component of (b(i)­
a(i))Ro belongs to the interval [-Yi, Yi] and since the distance d (c, b(i)) 
between c and b( i) is known, each component of (c - b( i) )Ro belongs to the 
interval [-d (c, b(i)), d (c, b(i))]. Thus, for any i, 

(
cxo ) (aXO(i)) ([-Yi, Yi]) ([-d(C, b(i)), d(c, b(i))]) 
cyo E ayo(i) + [-Yi, Yi] + [-d(c, b(i)), d(c, b(i))] , 

CzO azo(z) [-Yi, Yi] [-d(c, b(l.)), d(c, b(z))] 

(8.20) 

and c expressed in Ro belongs to the box 

1 To check (8.16), it suffices to check it for all entries of the matrices. For in­
stance, for the entry associated with the first row and the first column, we have 
cos(1jJ + 7T)COS('P + 7T) - sin(?,b + 7T)cos(-e)sin('P + 7T) = (-cos1jJ)(-cos'P) 
(- sin ?,b) cos e( - sin 'P) = cos?,b cos 'P - sin?,b cos e sin 'P. 
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(
aXO(i) + [-Yi' Yi] + [-d(e, b(i)), d(e, b(i))]) 

[e]o =. n ayo(i) + [-Yi' Yi] + [-d(e, b(i)), d(e, b(i))] . 

'E{1, ... ,6} azo(i) + [-Yi' Yi] + [-d(e, b(i)), d(e, b(i))] 

(8.21) 

Remark 8.1 If the base and mobile plate are both planar (which is often the 
case in practice), and if (cxo, cyo, CzO, 1jJ, e, cp) is a solution, then the config­
uration (cxo, cyo, -czo, 1jJ + 'if, e, cp + 'if), which is symmetrical with respect to 
the base, is also a solution. In such a case, the search domain can be limited 
to positive czos. The prior knowledge that the mobile plate is above the base 
would lead to the same decision. • 

Table 8.2. Data of Example 8.1 

i axo( i) ayo( i) azo (i) bx4 (i) by4 ( i) bz4 (i) (Yi)2 
1 -3 2 0 -1 1 0 22 

2 3 2 0 1 1 0 31 

3 4 0 0 2 -1 0 39 

4 1 -3 0 1 -2 0 29 

5 -1 -3 0 -1 -2 0 22 

6 -4 1 0 -2 -1 0 22 

2 

1 

o 4 

-1 

-2 

-3 

Fig. 8.3. Shapes of the base and mobile plate (Example 8.1) 
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Example 8.1 (planar case) The base and mobile plate are planar, as de­
scribed in Table 8.2. Their shapes are represented on Figure 8.3. Based on 
(8.17), (8.21) and Remark 8.1, the search box is taken as 

[-7.93,3.99] x [-4.99,8.25] x [0,6.25] X [-7f,7f] X [0,7f] X [-7f,7f]. 

For Ex = Ef = 10-5 , after 286345 iterations performed in 92 minutes on 
a PENTIUM 90, Hansen's algorithm for solving equations (Hansen, 1992b) 
generates four boxes, each of which satisfies the uniqueness condition of 
page 122. This algorithm is similar to the generic solver SIVIAX of Sec­
tion 5.2, page 104, with the contractors described in Section 5.5.2, page 121. 
Approximations of the four solutions are given in Table 8.3. Figure 8.4 
presents the associated configurations. • 

b(2) 

b(3) 

a(4) 

Fig. 8.4. The four configurations associated with Example 8.1 
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Table 8.3. Configurations obtained for Example 8.1 

CxO CyO ZyO ?j; e 'P 
1 0.823 1.359 4.600 -1.482 1.856 -1.726 

2 -1.014 1.001 4.976 0.690 0.966 -0.531 

3 -2.014 1.222 4.423 0.027 0.519 -0.015 

4 -1.772 -1.574 1.921 -0.871 1.297 0.706 

Table 8.4. Data of Example 8.2 

i axo( i) ayo( i) azO (i) bx4 (i) by4 (i) bz4 (i) (Yi)2 
1 -9.70 9.1 1.0 -3.000 7.300 1.0 426.76 

2 9.70 9.1 -1.0 3.000 -7.300 -1.0 576.27 

3 12.76 3.9 1.0 7.822 -1.052 1.0 365.86 

4 3.00 -13.0 -1.0 4.822 -6.248 -1.0 377.70 

5 -3.00 -13.0 1.0 -4.822 -4.822 1.0 381.53 

6 -12.76 3.9 -1.0 -7.822 -7.822 -1.0 276.30 

Example 8.2 (non-planar case) The base and mobile plate, as described 
in Table B.4, are no longer planar. Again based on (B.17) and (B. 21), the 
prior box is taken as 

[-30.37,18.92] x [-19.52,33.1] x [-25,23] x [-'if, 'if] X [0, 'if] X [-'if, 'if]. 

For Cx = Cf = 10-5 , after 481800 iterations performed in 153 minutes on a 
PENTIUM 90, Hansen's algorithm for solving equations finds ten boxes (see 
Table B.S). For each of them, the uniqueness condition is satisfied. The asso­
ciated configurations are depicted on Figure B.S. For some of them the mobile 
plate intersects the base, which is not realistic but was not forbidden in the 
problem as it had been defined. • 

8.3 Path Planning 

This section presents a recent approach to finding a collision-free path for 
an object in a environment cluttered with known obstacles (Jaulin and 
Codon, 1999; Jaulin, 2001a). This problem of path planning in a known 
environment has received considerable attention (Nilsson, 1969; Lozano­
Perez, 1981; O'Dunlaing and Yap, 1982; Rimon and Koditschek, 1992). Most 
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Fig. 8.5. The ten configurations associated with Example 8.2 

of the methods available in the literature are based on the concept of con­
figuration space (or C-space) (Lozano-Perez and Wesley, 1979). Each coor­
dinate in C-space represents a degree of freedom of the object. The number 
of independent parameters needed to specify the configuration of this object 
corresponds to the dimension of C-space. The initial configuration and de­
sired final configuration of the object become two points a and b in C-space. 
Examples of such objects are industrial robots with n degrees of freedom. 
Their configuration can be characterized by n real numbers, which are the 
coordinates of an n-dimensional vector in C-space (Lozano-Perez, 1983). 

The feasible configuration space § is a subset of C-space that only con­
tains configuration vectors for which the object does not collide with ob­
stacles. Path planning amounts to finding a path belonging to § from the 
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Table 8.5. Configurations obtained for Example 8.2 

CxO CyO ZyO 1/) e 'P 
1 4.945 -6.707 9.757 2.076 2.159 2.801 

2 4.458 -4.606 7.666 1.126 1.973 2.051 

3 -10.406 -6.218 -7.269 0.692 1.860 0.225 

4 -2.904 -1.346 -3.538 1.124 1.107 1.756 

5 -4.835 5.507 -16.756 -2.790 0.503 3.040 

6 -6.980 6.457 -14.916 -2.256 0.740 2.664 

7 1.561 6.709 15.219 -0.928 1.227 0.566 

8 -11.524 -0.882 10.701 0.172 1.582 -0.504 

9 -7.674 -3.113 5.658 -1.612 1.953 -1.828 

10 -5.000 5.000 17.000 0.000 0.524 0.000 

initial point a to the desired point b. A number of approaches to solving 
this problem are based on the use of potential functions (Khatib, 1986). 
The obstacles to be avoided are then surrounded by a repulsive potential, 
and the desired final configuration is surrounded by an attractive potential. 
Driven by the force generated by these potentials, the object is expected 
to reach the desired configuration without colliding with obstacles (provided 
that it does not stop at any local minimum). Approaches based on subdivision 
of C-space have also been considered (Brooks and Lozano-Perez, 1985; Re­
boulet, 1988; Pruski, 1996). These approaches partition C-space into three 
sets of non-overlapping boxes, namely those that have been proved to be 
inside §, those that have been proved to be outside §, and those for which 
nothing has been proved. Although this sounds familiar, the methods used 
so far in the path-planning literature to decide whether a box is inside or 
outside § are not based on interval analysis and meet difficulties with ori­
entation parameters. Interval analysis has already been used for parametric 
path planning in Jaulin and Walter (1996) and Piazzi and Visioli (1998), but 
this required a parametric model for the path to be available, i.e., the path 
had to belong to a family parametrized by a vector p to be tuned, and the 
dimension of p had to be small. In these papers, the model chosen for the 
path was a cubic polynomial. By contrast, the approach to be presented now 
does not require any parametric model of the path. 

Section 8.3.1 recalls the basic notions used to build a graph associated 
with the path-planning problem. In Section 8.3.2, two algorithms for finding 
a feasible path from a to b are described. The first one characterizes § with 
subpavings before looking for a feasible path. Except for the fact that the tests 
used to decide on the feasibility of a box are based on interval analysis, this al­
gorithm is rather classical (Brooks and Lozano-Perez, 1985; Reboulet, 1988). 
The second algorithm, much more efficient, only investigates regions of C­
space that may lead to an interesting path. As an application, Section 8.3.3 
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considers the planning of the displacement of a non-convex polygonal ob­
ject in a two-dimensional space cluttered with obstacles represented by line 
segments. 

8.3.1 Graph discretization of configuration space 

A guaranteed characterization of the feasible configuration space § can be 
obtained using a subdivision algorithm such as SIVIA, presented in Chapter 3. 
A graph associated with this characterization can then be built. The whole 
procedure, which we call graph discretization, will be used in Section 8.3.2 
for path planning. The basic notions needed to understand the principles of 
graph discretization will now be presented. 

Recall that a paving of a box [Po] is a set of non-overlapping boxes, the 
union of which is equal to [Po]. This paving is denoted by IP' when it is 
considered as a set and by P when it is considered as a list of boxes (see 
Remark 3.1, page 51). Figure 8.6 describes a paving P = {[PI] , [P2] , ... , [P9]} 
of the box [Po] = [-2,10] x [-2,6]. 

6 

4 [PI] [P2] [P:l] 

2 

[P6] 
- [Ps] 

[P7] 
[P4] [Ps] o 

[Pg] 

-2 
-2 1 4 7 10 

Fig. 8.6. A paving, denoted by JID as a set and by P as a list of boxes 

Two boxes of [Jl{n listed in P are neighbours if they share, at least partly, 
an (n -I)-dimensional face. For instance, [PI] and [P4] are neighbours in the 
paving of Figure 8.6, but [P2] and [Ps] are not. The subpaving PI of a paving 
P that contains all the boxes of P satisfying a given condition is denoted by 
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PI = subpaving (P, condition) . (8.22) 

Consider, for example, the test t(p) £ (PI = 5), where PI is the first compo­
nent of p, again in connection with the paving of Figure 8.6. If [t] ([p]) is the 
minimal inclusion test for t(p), since [t] ([P3]) = [t] ([P5]) = [0, 1], then 

subpaving (P, [t] ([p]) = 0) = {[PI], [P2], [P4], [P6], [P7], [Ps], [pg]}. 

(8.23) 

Some basic notions of graph theory are also needed (Deo, 1974). A graph Q = 

(V, E) consists of a non-empty set V of vertices, and of a set E of unordered 
pairs of vertices of V called edges. If Va and Vb are two vertices of the graph, 
the edge associated with the pair (va, Vb) is denoted by VaVb. A walk in Q is a 
sequence of vertices Vi (i = 1, ... ,k) such that for any i E {I, ... , k - I}, the 
edge ViVi+1 belongs to E. The walk is a path if Vi i=- Vj for i i=- j. The walk is 
a cycle if Vk = VI. A graph is connected if there is a path between any two 
vertices. Two distinct vertices Vi and Vj of Q are neighbours if E contains the 
edge ViVj' A subgraph of Q is a graph whose vertices and edges belong to Q. 

Any paving P of a box [Po] can be represented by a graph Q. Each element 
[Pi] of P is associated with a vertex Vi of Q. If two boxes [Pi] and [Pj] of P 
are neighbours, then Q contains the edge ViVj' For instance, the graph Q as­
sociated with the paving of Figure 8.6 is given in Figure 8.7a. Subpavings can 
also be represented by graphs. For instance, the graph QI associated with the 
subpaving PI of (8.23) is given in Figure 8.7b.1t is a (disconnected) subgraph 
of Q. The graph associated with a paving (or subpaving) P is denoted by Q = 

graph(P). The construction of the graph associated with a given subpaving 
requires fast algorithms to find the neighbours of a given box, such as the 
one developed by Samet (1982). 

(a) 

,(1 v'dlV~ 
~v, v~ 

Vg 

(b) 

Fig. 8.7. (a) Graph 9 associated with the paving P; (b) Graph 91 associated with 
the subpaving P1 of P; 91 is a disconnected sub graph of 9 
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8.3.2 Algorithms for finding a feasible path 

Consider a compact set § included in a box [Po] and two points a and b of 
§. Assume that a thin inclusion test [t] is available to decide whether a box 
is inside or outside §. A motion from the initial point a to the desired final 
point b is a one-to-one continuous function m : [0,1] ---+ m;.n; T ---+ m(T), such 
that m(O) = a and m(l) = b. The associated path is the set 

lL = {m(T) I T E [0, I]}. (8.24) 

The path lL is feasible if lL c §. In this section, two algorithms FEA­
SIBLEPATH1 and FEASIBLEPATH2 searching for such paths are proposed. 
When they succeed, both return a box path, i.e., a list of adjacent boxes 
{[Pal , [PI] , ... , [PC-I] , [Pb]}, such that a E [Pal and b E [Pb] , and that all 
these boxes are inside §. It is then still necessary to find a feasible point path 
lL from a to b. In general, the choice of this final point path should be based 
on domain-specific considerations such as kinematic or dynamic characteris­
tics, and not on purely geometric criteria (Laumond, 1986). For instance, a 
desirable property of the final path is smoothness. Here, for the sake of sim­
plicity, a broken line from a to b lying inside the box path will be considered 
sufficient. 

Table 8.6. Algorithm for finding a shortest path in a graph 

Algorithm DI.JKSTRA(in: Q,Va,Vb; out: L) 

1 for each vertex v E Q, d(v) := 00; 

2 d( Va) := 0; dmin := 0; 

3 repeat 

4 if Q (dmin ) = 0 then L := 0; return; 

5 dmin := dmin + 1; 

6 for each vertex v E Q (dmin - 1), 

7 for each neighbour w of v in Q with d( w) = 00, d( w) := dmin ; 

8 until d( Vb) =f 00; 
9 g:= d(Vb); Vc := Vb; 

10 for i := g - 1 down to 0, select a neighbour Vi of Vi+1 such that d( Vi) = i; 

11 L:={Va,Vl,V2, ... ,VC-l,Vb}. 

Among the algorithms that have been proposed for finding the shortest 
path between two specified vertices Va and Vb in a graph Q, one of the most 
efficient is due to Dijkstra (1959). It will be called by the two algorithms FEA­
SIBLEPATH1 and FEASIBLEPATH2. Although it has been initially derived for 
weighted digraphs (i.e., graphs with directed edges), we shall use a simplified 
version for non-directed graphs, presented in Table 8.6. With each vertex V 

of Q is associated an integer d( v) representing the minimum number of edges 
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in a path from Va to V. Q (i) , i E N, denotes the set of all vertices of Q such 
that d( v) = i. If the algorithm DIJKSTRA returns an empty list L, then Va 
and Vb are not in the same connected component of Q. Otherwise, it returns 
one of the shortest paths from Va to Vb, in terms of the number of vertices 
crossed. 

Running DIJKSTRA(Q, VI, V6) on the graph of Figure 8.7a, one gets d(vI) = 
0, d(V2) = d(V4) = 1, d(V3) = d(V5) = 2, d(V6) = d(V7) = d(vs) = d(vg) = 3. 
DIJKSTRA returns either the path {VI, V2, V3, V6} or the path {VI, V4, V5, V6}. 

Table 8.7. Basic algorithm for finding a feasible path 

Algorithm FEASIBLEPATHl(in: t (.), a, b, [po] ,E; out: ~, message) 

1 if [t] (a) # 1 or [t] (b) # 1 then 

2 ~:= 0; message := "error: a and b should be feasible"; return; 

3 if a tt [po] or b tt [po] then 

4 ~:= 0; message := "error: a and b should belong to [po]"; return; 

5 Q := {[po]}; .1lP' := 0; l!" := 0; 

6 while Q # 0; 

7 pop a box out of Q into [p]; 

8 if [t] ([p]) = 1 then l!" := l!" U {[p]}; 

9 if [t] ([p]) = [0,1] and w ([p]) ( E then .1lP' := .1lP' U {[p]}; 

10 if [t] ([p]) = [0,1] and w ([p]) > E then 

11 bisect([p]) and put the two resulting boxes at the end of Q; 

12 end while; 

13 Jlii = l!" U .1lP'; g = graph(15) ; 2. = graph(E) ; 

14 Va:= vertex([Pa]), where [Pal E 15 and a E [Pal ; 
15 Vb:= vertex([Pb]), where [Pb] E 15 and b E [Pb] ; 
16 Z:= DIJKSTRA (g, Va, Vb) ; 
17 if Z = 0 then 

18 ~ := 0; message := "no path"; return; 

19 if Va tt 2. or Vb tt 2. then 

20 ~ := 0; message := "no path"; return; 

21 ~:= DIJKSTRA (2., Va, Vb) ; 
22 if ~ # 0 then 

23 message := "path found"; 

24 else 

25 message := "failure". 

The first part of the algorithm FEASIBLEPATH 1 given in Table 8.7, is the 
procedure SIVIA (see Chapter 3), which is used to build a paving IF' and two 
subpavings lE and JlD of IF' satisfying 
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lE' c § c IF'. (8.25) 

A stack of boxes Q serves to store all the boxes still to be studied. The 
graphs fl. and 9 associated with P and P are then built, and two boxes [Pal 
and [Pbl of P are selected, such that a E [Pal and b E [Pb]. Several acceptable 
candidates [Pal or [Pb] may exist if a or b is on the boundary of a box of 
P. In such a case, the algorithm selects any of them. Let Va and Vb be the 
two vertices of 9 associated with [Pal and [Pbl. FEASIBLEPATHI calls the 
procedure DIJKSTRA to get a path £, of 9 from Va to Vb. If no such path is 
found, then a and b have been proved to belong to disconnected components2 

of §, and FEASIBLEPATHI reports that there can be no path. If a non-empty 
£, is found, then DIJKSTRA is run again to find a path t,. of fl. connecting Va 

to Vb. If such a path t,. = {va, VI, ... , V£-I, Vb} is found, then the associated 
box path in lE' is included in § and a point path can thus be generated. If t,. 
is empty, the algorithm reports failure because nothing has been proved yet 
about the existence or inexistence of a feasible path from a to b. One may 
then run the algorithm again with a smaller E. 

The rationale for FEASIBLEPATH2 presented in Table 8.8 is that the time 
spent running DIJKSTRA is very short compared to that required to build 
a detailed characterization of the feasible configuration space. During each 
iteration of FEASIBLEPATH2, DIJKSTRA is used to locate the regions of con­
figuration space that seem most promising, and the algorithm stops as soon 
as a feasible path has been found. Let IF' be the current paving of the search 
box [Pol. As FEASIBLEPATHl, FEASIBLEPATH2 first looks for a shortest path 
£, in the graph associated with an available subpaving W of IF', which satisfies 
§ C W. If no such path is found, then a and b are not in the same connected 
component of § and the algorithm reports that there can be no path. If the 
path exists, then FEASIBLEPATH2 tries to find the shortest path t,. in the 
graph fl. associated with a subpaving lE' of IF', which satisfies lE' C §. If such 
a path is found, it is returned. Otherwise, since the box path corresponding 
to £, may nevertheless contain a feasible path, all subboxes of this path are 
bisected and a new paving IF' is thus obtained. 

8.3.3 Test case 

The configuration space of this test case was chosen two-dimensional, so that 
the feasible configuration set § can be visualized easily, but it suffices to try to 
find a solution to realize that the problem is nevertheless quite complicated. 

Consider a two-dimensional room that contains J segment obstacles. The 
extreme points of the jth obstacle are denoted by aj and b j for j E J = 

2 If Z = 0, then the vertices Va and Vb belong to distinct connected components 
of the graph g, i.e., the points a and b belong to distinct connected component 
of Jlil. Now, since a E 13, b E 13 and 13 C Jlil, a and b belong to distinct connected 
component of 13. Thus, when FEASIBLEPATH1 returns "no path", this conclusion 
is guaranteed (provided that outward rounding has been implemented). 
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Table 8.8. Improved algorithm for finding a feasible path 

Algorithm FEASIBLEPATH2(in: [t], a, b, [po] ; out: ~, message) 

1 if [t] (a) =f 1 or [t] (b) =f 1 then 
2 ~ := 0; message := "error: a and b should be feasible"; return; 

3 if a rf. [po] or b rf. [po] then 
4 ~ := 0; message := "error: a and b should belong to [po]"; return; 

5 let P be the paving consisting of the single box [po] ; 
6 repeat 

7 J5 := subpaving(P, 1 E [t]([p])); g := graph(J5) ; 

8 Va := vertex([Pa]), where [Pal E J5 and a E [Pal ; 
9 Vb := vertex([Pb]), where [Pb] E J5 and b E [Pb] ; 

10 Z:= DI.JKSTRA (g, Va, Vb) ; 
11 if £ = 0 then ~:= 0; message := "no path"; return; 

12 E:= subpaving(P, [t]([p]) = 1); fl. = graph(E); 

13 if Va E fl. and Vb E fl. then ~:= DI.JKSTRA (fl., Va, Vb) ; 
14 if ~ =f 0 then message := "path found"; return; 

15 C := {[p] E J5 I vertex([p]) E Z and [t] ([p]) = [0, I]}; 
16 bisect all subboxes of C, thus obtaining a new paving P; 
17 forever. 

7r P 
- ....................• 

4 : 

8 8 

Room Configuration space 

Fig. 8.8. To any given configuration of the object in the room corresponds a single 
point P in C-space 

{I, ... ,}} The object to be moved is a non-convex polygon with z vertices, 
denoted by 8i E ]R2, i E I = {I, ... , n. In the example to be treated, J = 2 
and z = 14. The vertex 81 is constrained to stay on the horizontal axis of 
the room frame. The configuration of the object is thus represented by a 
two-dimensional vector p = (Pl,P2)T, where PI is the coordinate of 81 along 
the horizontal axis and P2 is the heading angle of the object (in radians). 
Figure 8.8 illustrates the notion of configuration space for this test case. 
Figure 8.9a presents the initial configuration and Figure 8.9b the desired 
final configuration. 
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-~ -~ 
. 
• 

(a) (b) 

Fig. 8.9. Initial configuration (a) and desired final configuration (b) 

A vector p associated with a given configuration is feasible if and only if 
none of the edges of the object intersects any of the segment obstacles and the 
extreme points of each segment obstacle lay outside the object. As illustrated 
by Figure 8.8, p = (8, 7T/4)T is feasible. In what follows, segm(a, b) denotes 
the segment with end points a and b, and line ( a, b) is the straight line passing 
through a and b. Since [AJ denotes the interval hull of A (i.e., the smallest 
box containing A), [a U bJ will represent the smallest box that contains a and 
b. If s;'+1 is taken equal to Sl, then 

(p E §) -i=? (
Vi EI,Vj E.:J, segm(si,si+dn segm(aj,bj ) =0) . 

and aj and b j are outside the object 

segm(aj , b) , a}o{so 1 ,: 

~/' 
Si! 
, 

+- linc(si' s';+1) 

(a) 

(8.26) 

(b) (c) 

Fig. 8.10. Three configurations where the two segments have an empty intersection 

Testing whether segm(si' Si+d intersects segm(aj, b j ) is equivalent to 
testing whether the three following conditions are simultaneously satisfied: 
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{
(i) line(si,si+d n segm(aj, b j ) # 0, 

(ii) segm(si,si+dnline(aj,bj) #0, 
(iii) [Si+1 U Si] n raj U b j ] # 0. 

(8.27) 

Condition (i) is false in Figure 8.10a, (ii) is false in Figure 8.10b and (iii) is 
false in Figure 8.10c. In each of these cases, although the other two conditions 
hold true, segm(si' si+d n segm(aj, b j ) = 0. 

Table 8.9. Algorithm for testing a configuration vector p for feasibility 

Algorithm t(in: p; out: t) 

1 for j = 1 to j, 

2 xa = (Xa(j) - PI) COSP2 + Ya(j) sinp2; 

3 Ya = - (Xa(j) - PI) sinp2 + Ya(j) COSP2; 
4 Xb = (Xb(j) - PI) COSP2 + Ya(j) sinp2; 

5 Yb = - (Xa(j) - PI) sinp2 + Ya(j) COSP2; 

6 a = (Xa, Ya? ; b = (Xb, Yb? ; 
7 if a is inside the object then t := 0; return; 

if b is inside the object then t := 0; return; 

for i = 1 to z, 
d l = det(si - b,Si - a) * det(si+1 - b,Si+1 - al; 
d2 = det(si+l - Si,Si - a) * det(si+1 - Si,Si - b ; 

8 

9 

10 

11 

12 

13 

14 

if (d 1 ~ 0) and (d 2 ~ 0) and ([Si+1 U Si] n [a U b] i= 0) then 

t := 0; return; 

t := 1. 

The algorithm of Table 8.9 tests the configuration vector p for feasibility. 
For a given segment number j, Steps 2 to 6 compute ii = (xa, Ya)T and 
b = (Xb,Yb)T, the coordinates of the extreme points of segm(aj, b j ) in the 
object frame. To prove that ii is inside the object as required at Step 7, it 
suffices to check that 

i 

L arg(si - ii, Si+1 - ii) # O. 
i=l 

(8.28) 

This sum is equal to zero if ii is outside the polygon (Figure 8.11a) and to 
27T if ii is inside (Figure 8.11 b). The same type of condition is used for b at 
Step 8. If d1 ::::; 0, d2 ::::; 0 and [Si+1 U Si] n [ii U b] # 0, then (8.27) indicates 
that the ith edge of the object intersects the jth segment obstacle; p is thus 
unfeasible and the algorithm returns zero at Step 13. An inclusion test [t] ([p]) 
for t(p) is given by the algorithm of Table 8.10. To evaluate [xal , Wal , [Xb] , 
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[lib] , [Xb] , [d I ] , [d2 ], the centred form has been used with respect to PI and 

P2· 

Fig. 8.11. Test to check whether a is inside or outside a polygon; (a): the sum of 
the angles is equal to zero; (b): the sum is equal to 27r 

Table 8.10. Algorithm for testing a configuration box [p] for feasibility 

Algorithm [t] (in: [p]; out: [tJ) 
1 [t]:= 1; 
2 forj:=lto), 

3 rial := (Xa(j) - PI) cos [P2] + Ya(j) sin [P2] ; 
4 [Ya] := - (Xa (j) - PI) sin [P2] + Ya (j) cos [P2] ; 
5 [ib] := (Xb(j) - PI) cos [P2] + Ya(j) sin [P2] ; 
6 [l/b] := - (Xa(j) - PI) sin [P2] + Ya(j) cos [P2] ; 
7 [a] := ([i a] , [YaJ)T; [b] = ([ib] , [ihW; 
8 if [a] is inside the object then [t] := 0; return; 

9 if [b] is inside the object then [t] := 0; return; 

10 for i := 1 to 7, 
11 [d l ] := det (Si - [b], Si - [a]) * det (Si+1 - [b], Si+1 - [a]) ; 
12 [d2 ] := det(Si+l - Si, Si - [aJ) * det (Si+l - Si, Si - [b]) ; 
13 if ([d1 ] < 0 and [d2 ] < 0) then [t] := 0; return; 

14 if (0 E [d 1 ] or 0 E [d2 J) and [[a] U [b]] n [Si+1 U Si] =f 0 

15 then [t] := [0,1]. 

In less than 10 minutes on a PENTIUM 133 and for E = 0.1, FEASI­
BLEPATH1 generates the paving presented in Figure 8.12 and the associated 
graph. The grey boxes are proved feasible, and the black boxes unfeasible. 
Nothing is known about the white boxes. In less than 0.1 s, FEASIBLEPATH1 
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Fig. 8.12. Paving and path generated by FEASIBLEPATH1; the frame corresponds 
to the search box [po] = [-28,57] x [-1.4,2.7]; z corresponds to a dead-end 

Fig. 8.13. Display of the motion; the two obstacles are still visible 

then finds the shortest path in the graph. The corresponding motion is dis­
played in Figure 8.13. As expected, the two obstacle segments are still visible 
on the figure. For EO = 0.2, FEASIBLEPATH1 is unable to find a feasible path 
and reports failure. 

In less than 1 minute, FEASIBLEPATH2 finds the path shown in Fig­
ure 8.14. The grey boxes are proved to be inside §, the black boxes are 
outside § and nothing is known about the white boxes. FEASIBLEPATH2 ex­
pends efforts on bisecting and analyzing zones of C-space only when needed, 
which explains why it is much more efficient than FEASIBLEPATHl. 
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Fig. 8.14. Paving and path generated by FEASIBLEPATH2. The frame corresponds 
to the search box [po] = [-28,57] x [-1.4,2.7] 

Remark 8.2 The configuration presented in Figure 8.15, usually reached 
when trying to solve the problem by hand, is a dead-end. It corresponds to z 
in Figure 8.12. • 

Fig. 8.15. A dead-end 

Remark 8.3 The frame box [Po] = [-28,57] x [-1.4,2.7] has been cho­
sen small enough to make the small boxes visible, and large enough to in­
clude the whole path. The same problem has also been treated for [Po] = 
[-100,100] x [-10,10]. The computing time with FEASIBLEPATH1 is about 
three times larger than for the former [Po], whereas the computing time with 
FEASIBLEP ATH2 is not changed significantly. • 
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8.4 Localization and Tracking of a Mobile Robot 

The autonomous localization of a vehicle in a partially known environment 
is a key problem of mobile robotics. A variety of sensors may be used, each 
of them providing uncertain measurements that must be combined, and this 
localization is archetypal of problems of data fusion (Crowley, 1989; Castel­
lanos et al., 1999). The difficulty is increased by the fact that the maps of 
the environment provided to the robot are often inaccurate or outdated. 

Fig. 8.16. Robuter mobile robot by Robosoft 

To localize itself dynamically, a robot such as that of Figure 8.16 must 
first estimate its initial position and orientation, and this initialization 
phase is more complex than tracking proper. Indeed, once a reasonably 
accurate initialization has been performed, it is often possible to use a 
well established local tracking technique such as extended Kalman filter­
ing (Leonard and Durrant-Whyte, 1991) or its bounded-error counterpart 
(Hanebeck and Schmidt, 1996; Meizel et al., 1996). It will be assumed here 
that initially the robot is only known to be located inside the region de­
scribed by the map. In this context, initialization pertains to pattern analy­
sis (Drumheller, 1987), and has been handled using data interpretation trees 
(Crimson and Lozano-Perez, 1987; Halbwachs and Meizel, 1997), and more 
recently global maximum-likelihood estimation (Olson, 2000). 

The method presented in this chapter makes it possible to solve localiza­
tion and tracking problems even when the result of the initialization phase 
is ambiguous or very imprecise. It is based on the hypothesis that the mea­
surement errors and state perturbations belong to known compact sets, but 



8.4 Localization and Tracking of a Mobile Robot 249 

the estimation method will be made robust to data that would not satisfy 
this assumption. 

The simpler static case where the robot is immobile will be considered 
first. Robot localization is formulated as a bounded-error parameter estima­
tion problem in Section 8.4.1. Section 8.4.2 describes a model of the mea­
surements provided by ultrasonic sensors (or sonars). The construction of an 
inclusion function for the output of this model is discussed in Section 8.4.3. 
This inclusion function allows the techniques presented in Chapter 6 to be 
used. Section 8.4.4 explains how outliers are dealt with and an example is 
treated in Section 8.4.5. 

The case of the moving robot is considered in a second part, parameter 
estimation being replaced by state estimation. The tracking methodology, 
based on the recursive causal state estimator of Section 6.4, is described in 
Section 8.4.6 and illustrated in Section 8.4.7. 

8.4.1 Formulation of the static localization problem 

Computation will involve two frames, namely the world frame Wand a frame 
R tied to the robot. The origin c of R is chosen as the middle of the axis 
between the driving wheels. Its coordinates in Ware Xc and Yc' The angle 
e between Rand W corresponds to the heading angle of the robot (see Fig­
ure 8.17). Points and their coordinates will be denoted by lower-case letters 
in Wand by tilded lower-case letters in R. Thus, a point ill with coordinates 
(x, f)) in R will be denoted by m in W, with 

m = (xc) + (c~s e - sin e) (~). 
Yc sm e cos e y 

(8.29) 

Three parameters are to be estimated, namely xc, Yc and e. They form the 
configuration vector p = (xc, Yc, e) T (Figure 8.17). 

The problem is to estimate the value of p, assumed constant for the 
time being, from a map representing the environment of the robot and from 
distance measurements provided by a belt of ns on-board sonars, some of 
which are visible on Figure 8.16. Bounds are assumed to be available for the 
measurement errors (they may have been obtained by separate laboratory 
experiments), and the resulting interval distances are stored in the interval 

vector [d] = ([d1l, ... , [dnJ)T. 
Provided that a model is available to compute the vector d m (p) of the 

distances that can be expected when the robot configuration is p, the local­
ization problem becomes a now familiar bounded-error parameter estimation 
problem, namely that of characterizing the set 

IP' = {p E [pol I d m (p) E [dl}, (8.30) 

where [pol is an initial search box, assumed to be large enough to contain all 
the configurations of interest. IP' then contains all the configurations vectors 
that are consistent with the map and measurements. 
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w 
Xc 

Fig. 8.17. Configuration p of the robot, p =(xc,Yc,e)T 

In order to be able to build d m (p) in Section 8.4.2, we shall first de­
scribe how the map is assumed to represent the environment and formulate 
hypotheses about the measurement process. 

12 

10 ..... 

Ob-______________ ~ •.• ~ ______________ ~ 
o 5 10 12 

Fig. 8.18. Map of the environment of the robot; distances are in metres 
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Map. The map M = {[aj, b j II j = 1, ... , nw } of the environment is assumed 
to consist of nw oriented segments [aj, b j ] that describe the landmarks (walls, 
pillars, etc.). Such a map is represented on Figure 8.18, with the obstacles 
in grey. By convention, when going from aj to b j , the reflecting face of the 
segment is on the left. The half-plane L1a; b j located on the reflecting side of 
the segment [aj, b j 1 is therefore characterized by 

L1a •jbj = {m E]R2 I det (~, ajIrt) ~ 0 } . (8.31) 

Remark 8.4 Such an analytical test of whether a point belongs to a given 
half-plane will often be used. Another option is to use a scalar product (see 
Figure 8.19). • 

-+ ---7 
(ab, aml~O 

(a) (b) 

Fig. 8.19. Analytical tests to characterize half-planes; (a) boundary passing 
through a and h; (b) boundary orthogonal to (a, h) and passing through a; cones 
and strips are obtained as intersections of such half-planes 

Measurements. The position of the ith sensor in the robot frame R is 
Si = (Xi, f};). This sensor emits an ultrasonic wave as~umed to propagate 
in a cone characterized by its vertex Si, orientation ei and half-aperture 

(Figure 8.20). As is frame-independent, ii = Ii' This emission cone 
will be denoted by IE(Si, Bi , Ii)' The wave emitted will reflect from some 
landmarks located in the environment of the robot. On landmarks with a 
rough surface, reflection is both specular and diffuse (Hecht, 1987; Kuc and 
Siegel, 1987). The angle of incidence on the surface of a given landmark deter­
mines whether the reflected wave will hit the sensor. A limit incidence angle 
(3j can be defined, beyond which the reflected wave would not be received if 
the half-aperture angle Ii of the emission cone were zero. When Ii is non­
zero, the mean incidence angle of the wave should be less than Ii + ((3j/2) 
for the reflected wave to be received (Kieffer et al., 2001). The value of (3j 
depends on the roughness of the surface of the obstacle represented by the 
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b j_1 

! ~ . , R Y;! 
: ! 
! ' 
'. ........• ) .............................. 

Fig. 8.20. Emission cone 

jth segment of the map. It is large for rough surfaces, and very small for 
smooth surfaces. Two characteristic situations are illustrated by Figure 8.2l. 
When a reflected wave is received by the ith sensor, the time elapsed since 

(a) 

Fig. 8.21. Left: the reflected wave is received if the reflection is diffuse; right: no 
reflected wave is received 

emission is converted into a distance, and interpreted as a measure di of the 
distance between this sensor and the surface of the closed landmark at least 
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partly located inside the emission cone. Based on laboratory experiments, 
the relative error on such distance measurements will be assumed to belong 
to [-Qi' Qi], where Qi is a characteristic of the ith sonar. Thus, the interval 
[dil = [(1 - Qi) di , (1 + Qi) dil is assumed to contain the actual distance to 
the closest obstacle at least partly located in the emission cone. 

Sometimes, however, the wave is only received after several reflections (or 
even not received at all). A rigorous interpretation of the resulting measure 
of distance would then become much more complicated, and we shall instead 
consider such data as outliers, against which the estimation of configuration 
must be made robust. The almost unavoidable presence of many such outliers 
makes the problem particularly difficult. 

, , , , , , 

Fig. 8.22. Emission diagram 

, , , , , , , , , , , , 
" , , " \ 
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The ns measures of distances can be summarized by an emission diagram 
(see Figure 8.22). Each segment in this diagram corresponds to a distance di 

as measured by a sonar. Some obstacle should lay at least in part between the 
two corresponding arcs of circles, which materialize the relative uncertainty 
Qi and the half aperture Ii of the emission cone of this sonar. 

8.4.2 Model of the measurement process 

For the sake of simplicity, the same model will be used for all sonars and 
landmarks, so it will be possible to drop the index i from Qi and Ii and 
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the index j from (3j. For any given sensor i and configuration vector p, the 
distance that would be obtained if only one segment of the map were present 
is computed. This operation is repeated for all the segments of the map, in 
order to compute the smallest of these distances, which is taken as the ith 
component of d m (p). The details of the operation are given below but may 
be skipped by proceeding directly to Section 8.4.3. 

Consider a sonar, with emission cone IE(s, e, ,). For any given configura­
tion p = (xc, Yc, B)T, IE can be equivalently described in W by its vertex s (p) 
and two unit vectors U1 (p, e, ,) and ~ (p, e, ,) corresponding to its edges, 
given by 

U1 = (COs( B + ~ - ,)), ~ = (COS( B + ~ + ,)) . 
sin(B+B-,) sin(B+B+,) 

(8.32) 

Omitting the dependency in p, e and " one may write IE IE (s, U1, ~) . 
Since, is always less than Jr /2, the condition for any m E JR;.2 to belong to 
the emission cone is 

mE IE (s, U1,~) {o} (det (U1, sUi) ~ 0) II (det (~, sUi) ~ 0) , (8.33) 

see Figure 8.19a. 
The model of the distance measured by a sonar is based on the following 

definition, where [a, b] is a segment of the map. 

Definition 8.1 The remoteness of the emission cone IE (s, U1,~) from the 
segment [a, b], denoted by r- (s, U1, ~,a, b), is the smallest distance between 
the ver-tex s and the inter-section of [a, b] and IE, provided that this inter-section 
exists and that s belongs to the half-plane .dab located on the r-efiecting side 
of [a, b]; other-wise, the r-emoteness is infinite. • 

From (8.31), testing whether (s E .dab) is equivalent to testing whether 

(det(~,aS) ~ 0), and we assume in what follows that this test holds true. 
The minimum of IlsUill when m describes [a, b] nIE should then be evaluated. 
Let h be the orthogonal projection of s onto the line (a, b). If hE [a, b] n IE, 

then r- (s, U1, ~,a, b) = II~II. Testing whether h E [a, b] n IE amounts to 
testing whether h E [a, b] and h E IE. Testing whether h E [a, b] is equivalent 
to testing whether s belongs to the strip limited by straight lines orthogonal 
to [a, b] and passing through a and b, so 

(8.34) 

see Figure 8.19b. Based on (8.33), one can write 

(h E IE) ~ (det (U1,~) ~ 0) II (det (~,~) ~ 0) . (8.35) 

This test is not so convenient, because the coordinates of h are difficult to 
---+ ---+ --+ --+ 

obtain. Since s E .dab, sh/llshll is obtained from ab/llabll by a rotation of 
-Jr /2, so (8.35) may be rewritten as 
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(h E IE) ¢==? ((lit;b) ~ 0) /\ ( (lG,;b) ~ 0) . (8.36) 

Combining (8.34) and (8.36), one obtains 

(h E [a, b] n IE) ¢==? ((;b, as) ~ 0) /\ ( (~, ~) ~ 0) 

/\ ((U1,;b) ~ 0) /\ (\lG,;b) ~ 0). (8.37) 

If h t/:. [a, b] nIE, then r (s, U1, lG,a, b) is either infinite (if [a, b] nIE = 0) or 
obtained for one of the extremities of the segment [a, b] nlE. These extremities 
belong to lK = {a, b, hI' h 2}, where hI and h2 are the intersections of the 
line (a, b) with the lines (s, U1) and (s, lG) . For the example of Figure 8.23, 

r(s,U1,lG,a,b) = II~II. A test of whether an element of lK belongs to 
[a, b] n IE is easily derived from (8.33). For v E {a, b} 

(v E IE) ¢==? (det (U1,~) ~ 0) /\ (det (lG,~) ~ 0). (8.38) 

a 

s 

Fig. 8.23. Remoteness of the isolated segment [a, b] from the sensor s; the half­
plane located on the non-reflecting side of [a, b] is in light grey; the emission cone 
IE is in dark grey 

By construction, hI and h2 belong to IE n (a, b); One thus has only to check 
whether they belong to [a, b], which is equivalent to checking whether they 

---+ ---+ 
belong to the cone with vertex s and edges sa and sb. From (8.33) one 
obtains, for i = 1,2, 

(hi E [a, b] n IE) ¢==? (det (~, U;) ~ 0) /\ (det (~, U;) ~ 0) . (8.39) 

Finally, if neither h nor any element of lK belongs to [a, b] n IE, then it has 
been proved that [a, b] n IE = 0, and the remoteness of IE from [a, b] is taken 
as infinite. 
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Table 8.11. Function evaluating the remoteness of a cone from an isolated segment 

Algorithm r (in: s, U!, U;,a, b; out: r) 
1 if (det(~, as) < 0) 
2 r := +00; return; 

3 if ((~,as)? 0) /\ ((~,~)? 0) /\ ((U!,~) (0) /\ ((u;'~)? 0) 
--'-'t 

4 then rh := Ilshll = £(s, (a, b)), else rh := +00; 

5 if (det (U!,sa)? 0) /\ (det (U;,sa) (0) 

6 then ra := lisall, else ra := +00; 

7 if (det (U!,~)? 0) /\ (det (U;,~) (0) 
---+ 

8 then rb := Ilsbll, else rb := +00; 

9 for i := 1 to 2 

10 if (det (sa, U;) ? 0) /\ (det (~, U;) ( 0) 
-----+ 

11 then rh i := Iishill = £ur (s, (a, b)), else rh i := +00; 

12 r:= rnin (rh' ra , rb, rh" rh2) . 

Table 8.11 presents a function evaluating r (s, li1,~, a, b) for an iso­
lated segment [a, b], which is based on these tests. At Step 4, the distance 
ji (s, (a, b)) from s to the line (a, b) (Figure 8.24) is given by 

--+ ---+ 
ji(s, (a, b)) = II~II = Idet(~, as)1 

Ilabll 
(8.40) 

and, at Step 11, the distance jilt (s, (a, b)) from s to the line (a, b) along the 
unit vector 11 (Figure 8.24) is given by 

--+ 
-----+ Ilahll 

jilt (s, (a, b)) = Ilsmll = -I '-1 
smB 

--+ ---+ 
I det(ab, as)1 

--+ 
Ilablllsin BI 

--+ ---+ 
I det(ab, as)1 

I det(~,l1)1 . 
(8.41 ) 

When nw segments are present, the fact that some of them may not be 
illuminated, because they lie in the shadow of others that are closer to the 
sensor, must be taken into account. Let rij(p) be the remoteness of the jth 
segment, taken as isolated, from the ith sensor if the configuration is p 

(8.42) 

The model of the measure that will be performed by the ith sensor if the 
configuration is p is then taken as 

(dm)i (p) = . min rij (p). 
)=1, .. ,nw 

(8.43) 
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h m ...... ~ () 
a 

Fig. 8.24. Distances from the point s to the line (a, b) 

By evaluating (8.43) for i = 1, ... , ns , one gets the vector d m (p), to be com­
pared with the interval distance data [d]. The function dm (p) is evaluated 
by the algorithm of Table 8.12. 

Table 8.12. Function computing the distances expected when the configuration 
is p 

Algorithm d m (in: p; out: dIll) 

1 for i := 1 to ns 

2 Si:= (~:) + (:~:: ~:~nee)Si; 
3 -----+._ (cOS(e+Bi- I )). -----+._ (cOS(e+Bi+ I )). 

Uh .- - , U2~ .- ~ , 
sin(e + ei -I) sin(e + ei + I) 

4 (dm)i (p) := +00; 
5 for j := 1 to nw 

6 (dm)i (p) := min ((dm)i (p),r (Si, Ul":, U;:,aj, b j )). 

Remark 8.5 The complexity of evaluating d m is bilinear in ns and nw. • 

8.4.3 Set inversion 

The problem of characterizing 

IP' = {p E [Po] I dm (p) E [d]} 

= [Po] n (dm)-l ([d]) , (8.44) 

may then be solved using SIVIA, described in Table 3.1, page 56. The only 
prerequisite is to have an inclusion function [dm ] (.) for d m (.). The model 
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d m (.) is based on the evaluation of remoteness, which involves a number of 
conditional branchings. When evaluating [dm] ([p]) on any given box of pa­
rameter space, it is necessary to decide which branch( es) should be executed. 
A method proposed in Jaulin et al. (2000), based on the notion of x-function 
(Kearfott, 1996a), is now presented. If t is the Boolean result of a test and y 
and z are two real numbers, then 

( ) _ {y if t = 1, 
X t,y,z -

z if t = O. 
(8.45) 

The interval counterpart of X (t, y, z) is given by 

{ 
[y] if [t] = 1, 

[X] ([t] , [y] , [z]) = [z] if [t] = 0, 

[y] u [z] if [t] = [0,1]. 

(8.46) 

The result of the evaluation of a test based on [X] is therefore always an 
interval. 

An interval counterpart of Table 8.11 is given by Table 8.13. 

Table 8.13. Inclusion function for the remoteness of a cone from an isolated seg­
ment 

Algorithm [1'] (in: [s], [UI], [u2],a, b; out: [1']) 

1 [t T ]:= (det(;b,as) ? 0); 

if [tTl = 0 then [1'] := +00; return; 

2 [th]:= ( (;b,~) ? 0) /\ ( (~, bTsl) ? 0) 

/\ ( (;b, ~) ~ 0) /\ ( (;b, ~) ? 0); 

3 [rhl:= [xl ([thl ,[i] ([s] , (a, b)), +(0); 
4 [tal:= (det (~,~) ? 0) /\ (det (~,~) ~ 0); 

5 [ra]:= [X] ([tal, II~II, +(0); 

6 [tb]:= (det(~,~) ?O)/\(det(~,~) ~O); 
7 [rbl:= [xl ([tbl, II~II, +(0); 
8 for i := 1 to 2 

9 [th;] := (det (~,~) ? 0) /\ (det (~,~) ~ 0); 

10 hJ := [X] ([thJ , [i~] ([s] , (a, b)), +(0); 
11 [1']:= min ([rh] ,[ra] , h], h,], h2]); 
12 [1']:= [X] ([t T ] , [1'], +(0). 

-----+ 
In this table, a [s] stands for the set of all the vectors with origin at a 

and extremity in the box [s]. The box [s], guaranteed to contain the location 
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of the sensor s for any configuration in [p] = ([xc], [Yc] , [e])T, is evaluated by 
replacing all the occurrences of the real variables in (8.29) by their interval 
counterparts. Similarly, the characteristics of the cone (8.32) are evaluated 

as [IE] = IE ([s] , ~, ~). Finally, the minimum of two intervals is defined 
as 

min ([a] , [b]) = [min (Q, Q) ,min (a, b) 1 ' (8.4 7) 

and the extension to more than two intervals is straightforward. 

Remark 8.6 The algorithm of Table 8.13 could be accelerated by removing 
Step 12. The price to be paid would be a possible augmentation of the number 
of outliers, see Section 8.4.4. • 

It is now trivial to obtain an inclusion function [dm] (.) for d m (.), based 
on Tables 8.12 and 8.13. This inclusion function is presented in Table 8.14. 
The complexity of evaluating [dm] remains bilinear in ns and nw' 

Table 8.14. Inclusion function for the measurement model 

Algorithm [dm] (in: [p] ; out: [dm]) 
1 

2 

3 

for i := 1 to ns 

lSi] := (xc) + (cos [e] - sin [e]) Si: 
Yc sin[e] cos[e] . 

------+.= (cos([e]+~i-')). ~.= (cos([e]+~i+')). 
[Uh] . sin([e] + ei - ,) ,[U2,]' sin([e] + ei + ,) , 

[dm]; ([p]) := +00; 

for j := 1 to nw 

4 

5 

6 [dm]; ([p]) := min ([dm]; ([p]) , [r] ([Si],~'~' aj, b j )). 

8.4.4 Dealing with outliers 

In the context of robot localization, outliers are almost unavoidable. Outliers 
are data points for which the hypotheses made on the bounds of measure­
ment error are violated. They may correspond to multiple reflections, to the 
presence of persons or pieces of furniture, to sensor failures, to an outdated 
map, etc. In the presence of such outliers, the set JID, as defined by (8.30), may 
turn out to be empty. Introducing the relaxing function (see Section 6.3.3, 
page 160) 

A (p) = L~~l 7T[d·;l (p) , 
ns 

(8.48) 
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where 

(8.49) 

and characterizing the set 

jp'q = {p E [Pol I A (p) ~ 1 - :s} , (8.50) 

allows up to q outliers to be tolerated. To choose the value of q, one may 
use GOMNE (Jaulin et al., 1996), the principle of which has been recalled in 
Section 6.3.3, page 160. 

Remark 8.7 Tests have been proposed in Kieffer et al. (1999, 2000) that 
make it possible rapidly to eliminate vast domains of the prior search domain 
during set inversion, thus accelerating localization quite considerably. The 
next example was treated using these tests. • 

8.4.5 Static localization example 

Although based on simulations, this example is quite realistic, and similar 
results have been obtained on real data (Leveque, 1998). The characteristics 
of the robot are those of the robot of Figure 8.16, which is equipped with 
ns = 24 sonars. Each of them has been found experimentally to have a half­
aperture I of 0.2 rad and a distance relative inaccuracy ex of 2% within its 
operating range. 

Table 8.15. Distances measurements provided by the sonars 

1 2 3 4 5 6 7 8 
3.24 3.21 9.02 9.60 2.58 1.11 1.01 0.91 

9 10 11 12 13 14 15 16 

0.89 0.95 1.10 1.27 1.21 1.14 1.14 1.21 

17 18 19 20 21 22 23 24 
1.39 0.91 0.96 1.02 1.19 4.95 3.71 3.30 

The robot is placed in an environment described by the map of Fig­
ure 8.18. All the obstacles have a limit incidence angle (3 of 0.6 rad. The 
(unknown) configuration of the robot is (xc, Yc, e) = (8 m, 3.5 m, 6 rad). The 
distance measurements provided by the on-board sensors are reported in 
Table 8.15 and correspond to the emission diagram of Figure 8.22. In or­
der to simulate one of the phenomena that may lead to outliers, whenever 
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the incidence angle of the wave emitted by a given sonar is larger than 
1+ ((3/2), the measured distance is taken at random according to a uni­
form distribution between 0.5 m and 10 m. The search box [xo] is taken equal 
to [0 m, 12 m] x [0 m, 12 m] x [0 rad, 27Tfad]. 

The static localization procedure returns no solution until at least three 

outliers are tolerated. When q = 3, the outer approximation jpl3 of the solution 
set, presented in Figure 8.25, consists of two disconnected subsets, one of 
which is guaranteed to contain the actual configuration provided that there 
are no more than three outliers. This outer approximation satisfies 

-3 
IF' c [7.93m,8.07m] x [3.43m,3.57m] x [5.90rad,6.10rad] 

U [1.93 m, 2.07 m] x [3.43 m, 3.57 m] x [5.90 rad, 6.10 rad]. 
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Fig. 8.25. Jlil3 and its projections 

Figure 8.26 displays two configurations belonging to jpl3. The measure­
ments corresponding to outliers have been drawn in bold. The ambiguity in 
the localization is a consequence of the local symmetries of the map, and 
should of course not be interpreted as a defect of the estimation method. 
Guaranteed set inversion only reveals the existence of an identifiability prob­
lem, whereas most other localization techniques would limit themselves to 
providing a single point estimate of the configuration of the robot, without 
any warning as to the possible existence of radically different solutions. 

When q is increased, the volume of the outer approximation of the solution 
set (computed by adding the volumes of the boxes of jplq) may also increase, 
because some informative measurements may now be ignored. A compromise 
may thus have to be struck between robustness and accuracy. Here, for q = 5, 
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Fig. 8.26. Two of the possible configurations obtained by the static localization 
procedure; outliers are in bold 

the volume of jplq increases notably, with additional disconnected components 
indicative of the fact that the data considered as outliers are not always the 
same. Computation also gets more intensive, as eliminating some portions of 
the initial search box becomes more difficult. Table 8.16 indicates the volumes 
obtained and computing times from q = 0 to q = 5, on a PENTIUM-II 450. 

Table 8.16. Results of the static localization procedure as a function of the max­
imum number q of outliers tolerated 

q Volume of IP,q Computing time Cumulated computing time 

0 0 25 s 25 s 

1 0 48 s 73 s 

2 0 89 s 162 s 

3 0.0035 129 s 291 s 

4 0.0043 167 s 458 s 

5 0.0078 216 s 674 s 

Remark 8.8 In Leveque (1998), the results provided by an earlier version 
of this localization algorithm were compared with those obtained by extended 
Kalman filtering. As could be expected, computing time was definitely in 
favour of the latter, but the outliers had to be weeded out and the associ­
ation between the measurements and the landmarks of the map had to be 
performed before the extended Kalman filter could be employed. The extended 
Kalman filter was of course unable to detect any ambiguity in the localization 
due to the local symmetries in the map. • 
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8.4.6 Tracking 

Assume now that the robot may be moving. Its configuration is thus a func­
tion of time, which will be called state. To estimate this state in real time, we 
shall use the recursive causal state estimator of Table 6.13, page 182. Only 
the results Wo = Wq of the initial static localization and the distance data 
obtained during motion may be taken into account. 

At each step k, the estimator computes a set Wk guaranteed to contain 
all the values of the state that are compatible with the information available 
up to step k, by alternating prediction and correction phases. Recall that the 
state equation (6.91) of the model underlying the state estimator involves 
two functions f (.) and g (.). The prediction of the evolution of the state 
vector between steps is performed with the help of f (.), while g (.) models 
the measurements at step k and is used for the correction step. Neglecting 
the displacement that takes place during the measurements at step k, one 
can view the correction step as static, so d m (.) takes the role of g(.), and 
only f(.) needs to be built. 

The robot is assumed to move slowly enough for a kinematic description 
to be realistic. The components of the state vector then satisfy 

de Wr - WI 

dt = P 6 

dxc _ Wr + WI e 
dt - P 2 cos, (8.51) 

dYe Wr + WI . e 
dt = P 2 sm, 

where WI and Wr are respectively the instantaneous rotation speeds of the left 
and right driving wheels, P is the radius of these wheels and 6 is the average 
distance between the points at which they are in contact with the ground (see 
Figure 8.17). The behaviour of the robot is controlled by acting on the input 
variables WI and W r . An exact discretization of (8.51) is performed, assuming 
that the rotation speeds of the driving wheels are constant during a sampling 
period T. The orientation of the robot at time k + 1 given its orientation at 
time k is then given by 

Wr -WI ek+l=ek+ T p _ . 
6 

If WI and Wr are identical, then 

Wr +WI 
(xeh+1 = (xeh + Tp 2 COS ek, 

Wr +WI . 
(Ych+l = (Ych + Tp 2 smek , 

else 

(8.52) 

(8.53) 
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During turns, the distance 5 between the points of contact of the driving 
wheels with the ground is not known precisely. This is why 5 will be taken 
as an interval [5] = [0.57 m, 0.63 m]. The prediction of the evolution of the 
state of the robot depends non-linearly on [5], and the deviation between 
the actual value of 5 and the midpoint of [5] can be seen as a bounded state 
perturbation. 

The correction step is implemented using the static localization procedure. 
Only the configuration domain corresponding to the set obtained during the 
previous prediction step is explored, which speeds up the procedure spectac­
ularly. 

Possible outliers only have to be taken into account during the correction 
step and are thus treated as in the static case, except that the maximum 
number of outliers q to be tolerated may now depend on the time instant k. 

One of the possible strategies for tuning qk is to search first for the set Jlil~ 
of the state vectors consistent with all distance measurements performed at 
time k (qk = 0), and then to increment qk by one as long as Jlilk' remains 
empty. 

In practice, it may be advisable to give a larger value to qk than required 
to make Jlilkk non-empty. As a matter of fact, the robust state estimation pro­
cedure advocated here is only guaranteed if at each step the actual number 
of outliers is lower than or equal to qk the maximum number of outliers toler­
ated. In the example treated in the next section, caution has been exercised 
by allowing at each step one more outlier than strictly necessary to make 
-qk 
IP'k· non-empty. Such a precautionary measure of course usually comes at the 
cost of some deterioration of precision since a larger number of measurements 
must be neglected, so again a compromise must be struck between robustness 
and precision. 

8.4.7 Example 

Consider again the situation of Section 8.4.5, but assume now that the robot 
is in motion. The map of the environment is still described by Figure 8.18, 
and the initial outer approximation Jlilo of the state vector corresponds to the 
result of the static localization performed in Section 8.4.5. 

The robot actually moves from the room located on the right of the bot­
tom of Figure 8.18 to that at the top. New measurements are taken every 
second to correct the predicted set containing the state of the robot. The 
evolution with k of the projection of the set Jlilk' onto the (x, y) plane is rep­
resented on the left of Figures 8.27 and 8.28. On the right of these figures, 
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the robot is represented in configurations belonging to the estimated solution 
set. Up to k = 6, this set consists of two disconnected parts. After k = 6, the 
left part of the predicted set can be eliminated, because configurations in the 
right part are consistent with all but five measurements at k = 6, whereas to 
keep configurations in the left part, one should at least tolerate eight outliers 
at k = 6. 

k=3 
12r-----------------~ 12r-----------------~ 

10 

5 10 12 

k=6 
12 r-----------" 
10 

5~~" 

o 

Fig. 8.27. Evolution of the projection onto the (x, y) plane of an outer approxi­
mation of the solution set (left), and configurations belonging to this set (right); 
measurements are collected every second; up to k = 6, the local symmetry of the 
environment allows two types of radically different solutions 

Simulating a 20-second scenario takes about 15 s on a PENTIUM-II 450. 
Each correction step takes much less time than in the static localization phase, 
because the prior search space results from the previous prediction step and is 
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much smaller than for the initialization of the procedure. It is thus possible 
to track the robot in real time, taking into account 24 measurements per 
second, which seems reasonable for a robot moving relatively slowly. 

12 i"""""~~~~~~~"""""""i 

10 

5~-

o 
o 5 10 12 o 5 10 12 

12r-----------------~ 

10 

5~-

o 
o 5 10 12 o 5 10 12 

Fig. 8.28. Evolution of the projection on the (x,y) plane of an outer approxi­
mation of the solution set (left), and configurations belonging to this set (right); 
measurements are collected every second; after k = 6 the ambiguity due to the local 
symmetry is eliminated 

Table 8.17 indicates the evolution with time of qk, the maximum number 
of outliers tolerated. Let 'lk be the smallest value of qk such that Wk' is not 
empty; to guard against one non-detected outlier, qk was taken equal to qk+ l. 
Data points corresponding to outliers are indicated in bold on Figures 8.27 
and 8.28. Transiently, qk turns out to be very large (more than one third of 
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all measurements), which corresponds in this simulated case to configurations 
for which many incidence angles are beyond the limit (3. Computing time is 
not significantly increased in this type of situation, because of the small size 
of the search domains. 

Table 8.17. Evolution of qk, the maximum number of outliers tolerated, as a 
function of time index k 

Instant k 

I 

1 2 3 4 5 6 7 8 9 10 

qk 3 7 8 9 6 6 7 8 9 8 

11 12 13 14 15 16 17 18 19 20 

8 10 9 7 10 9 6 7 5 5 

Remark 8.9 In actual applications, data acquisition is often sequential (e.g., 
with sensors interrogated by groups of four). This constraint can easily be 
taken into account by using only the last data acquired for the updating of the 
predicted configuration. • 

8.5 Conclusions 

Three problems of robotics have been considered, for which interval analysis 
was able to give guaranteed solutions. 

Interval solvers made it possible to solve the forward kinematic problem 
for a Stewart-Gough platform in the most general non-planar case. Trigono­
metric functions were handled as such, without having to increase the number 
of unknowns to eliminate them. The real solutions, which are the only ones 
of interest, were readily isolated. It was not necessary to assume that the 
geometric coefficients were small integers, and the solutions were provided 
with an estimate of their precisions. It would also be easy to take into ac­
count uncertainty in the geometrical parameters defining the platform or in 
the lengths of its limbs by giving them interval values. 

In the context of path planning, two algorithms have been presented, 
based on a combination of interval and graph theoretic tools. Interval anal­
ysis is used to test boxes of configuration space for feasibility. The main 
limitation of the approach is that computing time increases exponentially 
with the number of degrees of freedom of the object to be moved. 

The last problem treated was autonomous robot localization, which is 
particularly amenable to solution via interval analysis, because the number 
of parameters to be estimated is small. The method advocated in this chapter 
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has definite advantages over conventional numerical methods. It is not nec­
essary to enumerate all possible associations between sensor data and land­
marks, nor is it necessary to consider all possible choices of q outliers among 
ns data points. As a result, combinatorial explosion is avoided. The results 
obtained are global, and no configuration compatible with prior information 
and measurement can be missed. They are extremely robust, and the estima­
tor used can even handle a majority of outliers. Provided that the number of 
actual outliers is at most equal to the maximum number tolerated, the results 
are still guaranteed. The present computing times allow real-time implemen­
tation. The method is flexible, and additional information on the physics of 
the problem could readily be incorporated. One could, for instance, take into 
account the fact that the operational range of sonars is limited. Other types 
of sensors, such as rotating laser range finders (Borenstein et al., 1996; Crow­
leyet al., 1998), as well as multi-sensor data fusion (Kam et al., 1997) should 
form the subject of future studies in the context of interval methods such as 
those advocated here. 

This concludes Part III, devoted to engineering applications. Part IV will 
be about implementation. 



Part IV 

Implementation 



9. Automatic Differentiation 

9.1 Introduction 

Interval solvers require the repeated interval evaluation of derivatives of func­
tions. For instance, the evaluation of centred inclusion functions (page 33), 
Newton contractors (page 86), contractors based on parallel linearization 
(page 87) and the choice of the direction of bisection in SIVIAX (see (5.4), 
page 106) all require the computation of derivatives of functions with interval 
arguments. 

This can be decomposed into two steps. The first one is the obtention 
of a punctual algorithm for evaluating the derivative of the function f to be 
differentiated. Except for academic examples, f has no analytical expression 
(it may be described by an algorithm), and evaluating its derivative is a hard 
task that may lead to errors if performed by hand. This is why a systematic 
methodology is needed, such as the one to be described in this chapter. The 
second step is to get a guaranteed enclosure of this derivative when intervals 
are involved. This can readily be achieved using the methods of Chapter 2, so 
we shall only consider the first step of the procedure. For more information, 
see Rall (1980; 1981), Corliss (1988), Bischof (1991), Evtushenko (1991), Iri 
(1991), Bischof et al. (1992), Corliss (1992) and Rall and Corliss (1999). 

Automatic differentiation has two modes. The forward mode propagates 
derivatives in the same direction as when evaluating the function f to be 
differentiated. The backward (or reverse) mode propagates derivatives in the 
opposite direction. The principles of forward and backward differentiations 
are presented in Section 9.2. Section 9.3 provides recipes to build programs 
computing the derivative of f with respect to its arguments, when f is eval­
uated by a program. Two very simple illustrative examples are presented in 
detail in Section 9.4. 

9.2 Forward and Backward Differentiations 

Consider the sequence 

yk+ 1 = ¢k+1(yk), k E {O, ... , Ii -I}, (9.1) 

L. Jaulin et al., Applied Interval Analysis
© Springer-Verlag London 2001
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where the dimension nk of the vector yk may depend on k, and the initial 
vector yO is assumed to be known. Define the function 

(9.2) 

This section proposes an approach for computing the numerical value of ddf 
Vo 

for a given numerical value of YO. Define the functions 

Ak~¢kO¢k-l0 ... 0¢\ kE{l, ... ,k}, AO~In()l 

1j;k ~ ¢k 0 ... 0 ¢k+l, k E {O, ... , k - I}, 1j;k ~ Ink' 

(9.3) 

(9.4) 

where In denotes the n-dimensional identity function (or matrix). The fol­
lowing properties hold true (see Figure 9.1): 

yk = Ak(yO), 

yk = 1j;k(yk), 

f = 1j;0 = A ° o1j;0 = ... = 1j;k 0 A k = ... = 1j;k 0 A k = A k, 

df d1j;° dAk 

dyO dyO dyO 

Fig. 9.1. Many ways of evaluating yk = f(vO) 

9.2.1 Forward differentiation 

(9.5) 

(9.6) 

(9.7) 

(9.8) 

Equation 9.3 implies that Ak+l = ¢k+1 OAk. Differentiate this relation to get 

dyk dyo' (9.9) 
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If 

Ak ~ d>..k 
dvo' 

then the first derivative of f with respect to vO is given by 

df = d>..k = Ak 
dvo dvo 

A k can be computed recursively evaluating the sequences 

{ 
Ak+1 = dq}+l Ak 

d k ' 

vk+ 1 = q}~l(vk), 
k=0, ... ,k-1, 

(9.10) 

(9.11) 

(9.12) 

where A ° = Inn' This corresponds to the forward-differentiation algorithm 

FD1 of Table 9.1. When FD1 terminates, A = Ak = d~J' 

Table 9.1. First version of the forward-differentiation algorithm 

Algorithm FDl(in: yO; out: A) 

1 v:= yO; 

2 A:= Inn; 

3 for k := 0 to k - 1 

4 A := (dq}+l / dv k ) A; 
5 v := ¢k+l(V). 

Remark 9.1 The order of the statements 4 and 5 in the algorithm of Ta­
ble 9.1 is significant, because dq}+ 1 / dvk is a function of v. • 

9.2.2 Backward differentiation 

Equation 9.4 implies that '¢k = '¢k+1 0 rjJk+1. Differentiate this relation to 
get 

If 

dVk+1 dvk ' 

Bk ~ d'¢k 
dvk ' 

then the first derivative of f with respect to vO is given by 

df = d'¢o = B O 

dvo dvo . 

(9.13) 

(9.14) 

(9.15) 
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B O can be computed recursively evaluating the sequences 

k = 0, ... , k -1, 
(9.16) 

k = k - 1, ... ,0, 

where Bk = Ink' This corresponds to the backward-differentiation algorithm 
, . _ 0 _ d<jJ° _ df BD1 of Table 9.2. When BD1 termmates, B - B - dvO - dvO ' 

Table 9.2. First version of the backward-differentiation algorithm 

Algorithm BD1(in: yO; out: B) 

1 for k := 0 to k - 1 
2 yk+1 := ¢k+1 (yk); 

3 B:= Ink; 
4 for k := k - 1 down to 0 

5 B := B (d¢k+l / dyk) . 

Remark 9.2 In (9.12) and FD1, the iteration counter k of both sequences 
increases, whereas in (9.16) and BD 1, the iteration counter k increases when 
evaluating y and decreases when evaluating B. As a result, all the components 
of the yk s that are needed to evaluate dq}+l / dyk must be stored. This is not 
so with FD 1, and limited storage may lead to using FD 1 rather that BD 1 
on large-scale problems. • 

Remark 9.3 Both (9.12) and (9.16) compute the following product ofli ma­
trices 

(9.17) 

The only difference is that (9.12) computes this product from the right to the 
left whereas (9.16) computes it from the left to the right. Depending on the 
dimension of the matrices, one or the other approach is more efficient. For 
instance, the product 

(
121) (471) (929) (1) 223 820 253 2 

145 145 445 0 

(9.18) 

requires much less computation if evaluated from the right to the left. Com­
puting (AB) C may thus require much more (or less) computation than com­
puting A (BC). • 



9.3 Differentiation of Algorithms 275 

Remark 9.4 Since 'ljJk o),k is constant for k E {O, ... , k}, after differenti­
ation, (d'ljJk /dvk ) (d),k /dvO) is also independent of k. Equations (9.10) and 
(9.14) then imply that 

(9.19) 

This property can be used to check that the implementations of FD1 and 
BD1 are correct. • 

9.3 Differentiation of Algorithms 

An algorithm can be viewed as a special case of the sequence (9.1), where 
k is increased by one each time an assignment statement has been executed 
and where v k comprises all the variables to be stored in the computer when 
the value of the statement counter is k. For a vast class of algorithms, the 
rjJks are elementary in the sense that they modify only one variable (i.e., only 
one component of v k ). As a result, the possibly very large matrices A and 
B involved in FD1 and BD1 are sparse. This can be taken advantage of to 
reduce computation, as explained in this section. 

Three assumptions on the rjJks involved in (9.1) will now be made. Each 
of them will entail an adaptation of FD 1 and BD 1. 

9.3.1 First assumption 

Assumption 9.1 The vectors vI, ... ,vk- 1 all have the same dimension n 

and each of the functions rjJ2, ... , rjJk-l modifies only one component of its 
arguments, i.e., \/k E {I, ... , Ii - 2}, 31L I \/i #IL, ¢~+l(vk) = vf. • 

Therefore, rjJk+ 1 (vk ) can be expressed as 

rjJk+1( k k) 
VI'···' Vn = ( k k k+l k k k k) T 

VI'···' V I,_l' ¢I' (VI'···' vn ), V M+1'···, Vn , 

(9.20) 

and its Jacobian matrix is 

1 0 0 0 0 

0 1 0 0 0 
drjJk+l 8q}+1 8q}+1 8¢:+1 8¢:+1 8¢k+l 

I' I' I' (9.21 ) 
dvk ~ 8vi_l fik ~ 8 k 

1 V M V M+1 Vn 

0 0 0 1 0 

0 0 0 0 1 
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In what follows, the index J.L of the component of v k modified by q}+l will be 
denoted by IL(q}+l). FD1 and BD1 will now be modified to take advantage 
of Assumption 9.l. 

Forward differentiation: Let aT be the 'ith row vector of A in the forward­
differentiation algorithm FD 1. The assignment statement 

drjJk+1 
A:=~A 

at Step 4 can be rewritten as 

( ~I) := drjJk+1 (~I) 
. dvk ' 

aJ aJ 
Because of (9.21), (9.23) reduces to 

n 8Aok+1 
T ""' '+'1' T aM := ~ --k- a j , 

j=l 8vj 

(9.22) 

(9.23) 

(9.24) 

and all other row vectors aT of A should be left unchanged. The forward­
differentiation algorithm FD1 can therefore be rewritten as FD2 of Table 9.3. 

Table 9.3. Second version of the forward-differentiation algorithm 

Algorithm FD2(in: vO; out: A) 

2 A:= dq}/ dvo; 

3 v:= ¢l(V); 
4 for k := 1 to k - 2 

5 Jl := Jl(¢k+l); 

/ / Step 4 of FDl, k = 0 

/ / Step 5 of FDl, k = 0 

6 a~ := ~7=1 ( 8¢;+1 / 8vn aJ; / / see (9.24) 
7 vM := ¢;+l(V); 
8 A:=(d¢k/dvk-l)A. //Step4ofFDl,k=k-l 

In FD2, Step 4 of FD 1 receives special treatment for k = 0 and k = k -1. 
At the end of FD2, the assignment statement v := rjJk(v) that would be 
needed for FD2 to be strictly equivalent to FD1 was not inserted because 
it does not affect the result generated by FD2. The matrix A returned by 
FD2 corresponds to A k = df / dvo. 

Backward differentiation: Let b j be the jth column vector of B in the 
backward-differentiation algorithm BDl. The assignment statement 
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at Step 5 can be rewritten as 

(9.26) 

(9.27) 

Since bit is involved in the first equation of (9.27), it must be assigned after 
the bis for i # IL, so the order of the equations in (9.27) is significant. The 
backward-differentiation algorithm BDI can now be rewritten as BD2 of 
Table 9.4. For BD2 to be strictly equivalent to BDI (see Step 2 of BDI for 

k = Ii - 1), the statement v k := ¢k(vk-l) should have been inserted after 
the loop of Step 2 of BD2, but this is unnecessary as it does not affect the 
result. Step 5 creates many superfluous variables that BD2 has to store. This 
can be avoided by using a stack as in BD2BIS of Table 9.5. The stack makes 
it possible at Step 8 of BD2BIS to update the only component of v k that 
differs from that of vk+l. Recall that v k is used at Steps 9 and 10 of BD2BIS 
for the evaluation of 8¢:+ 1 / 8vf. 

Table 9.4. Second version of the backward-differentiation algorithm 

Algorithm BD2(in: vO, out: B) 
1 v I := ¢I(VO); 

2 for k := 1 to k - 2 

3 Ji := Ji(¢k+I); 
4 k+I ._ ~k+I( k k). vjL .-'+'jL Vl, ... ,Vn , 

5 for i := 1 to n, i =f Ji, V;+l := vf; 
6 B:= (d¢kldvk- 1 ); 

7 for k := k - 2 down to 1 

8 Ji := Ji(¢k+I); 

9 for i := 1 to n, i =f Ji, 

10 b i := b i + (D¢~+I / Dvf) bjL; 

11 bjL := (D¢~+I / Dv~) bjL; 

12 B:= B (d¢l / dVO) . 

I I Step 2 of BD1, k = 0 

II Step 1 of BD1 

I I (9.20) 

I I Step 5 of BD1, k = k - 1 

I I Step 5 of BD1 

I I (9.27) 

I I Step 5 of BD1, k = 0 
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Table 9.5. A more efficient version of BD2 

Algorithm BD2BIs(in: vO; out: B) 

1 VI := ¢I(VO); 

2 for k := 1 to k - 2 

3 Ji:=Ji(¢k+I); 

4 stack vI'; 

5 VI':=¢:+l(VI, ... ,Vn ); 

6 B:= ( d¢k / dVk- I ) ; 

7 for k := k - 2 down to 1 

8 Ji:= Ji(¢k+I); unstack into vI'; 

9 for i := 1 to n, i =f Ji, b i := b i + (8¢:+1 / 8vf) bl'; 

10 bl' := (8¢:+1 / 8vZ) bl'; 

11 B:= B (d¢l / dVO) . 

9.3.2 Second assumption 

Assumption 9.2 The first components of vI correspond to the no input 
variables v? of f, i.e., 

(9.28) 

where Omxn denotes the m x n zero matrix and In denotes the n x n identity 
matrix. • 

FD2 and BD2BIS will now be modified to take Assumption 9.2 into ac­
count. 

dq," Forward differentiation: The statement A := dvO at Step 2 of FD2 be-
comes 

C)- ( 
Ino ) 

O(n-no)xno ' 
(9.29) 

so the forward-differentiation algorithm FD2 can be rewritten as FD3 of 
Table 9.6. 
Backward differentiation: Equation 9.28 implies that 
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Table 9.6. Third version of the forward-differentiation algorithm 

Algorithm FD3(in: yO; out: A) 

1 v := (v~, ... ,vgo' 0, ... , O?; 

2 for i := 1 to no, a; = (0, ... ,0,1,0, ... ,0); 

3 for i := no + 1 to n, a; = (0, ... ,0); 

4 for k := 1 to k - 2 

5 p:=p(¢k+l); 
6 aT .= ",n (8A.k+l/ 8v k ) a J

T ; 
1". L...J~l <PI" J . 

7 vI" := ¢:+l(V); 
8 A:= (d¢k/dvk-1)A. 

/ / Step 3 of FD2 

/ / see (9.29) 

/ / see (9.29) 

d</>' The statement B := B dvO at Step 11 of BD2BIS thus amounts to removing 
the last n-no columns of B. The backward-differentiation algorithm BD2BIS 
can then be rewritten as BD3 of Table 9.7. 

Table 9.7. Third version of the backward-differentiation algorithm 

Algorithm BD3(in: vo; out: B) 
1 v:= (v~, ... ,vgo,O, ... ,O)T; 

2 for k := 1 to k - 2 

3 p:= p(¢k+l); 
4 stack vI"; 
5 vI" := ¢:+1(Vl, ... ,vn ); 

6 B:= d¢k/dvk- 1; 

7 for k := k - 2 down to 1 

8 p:= p(¢k+l); unstack into vI"; 

9 for i := 1 to n, i "p, b i := b i + (8¢:+1 / 8vf) bl"; 

10 bl" := (8¢:+1 / 8v;) bl"; 
11 remove the last n - no columns of B. 

9.3.3 Third assumption 

Assumption 9.3 The last nk components ofvk - 1 correspond to the output 

variables vf of f, i.e., 

vk = ql (vk- 1) (Onkx(n-nd I In;J vk- 1 . (9.30) 

• 
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FD3 and BD3 will now be modified to take Assumption 9.3 into account. 

Forward differentiation: Equation 9.30 implies that 

(9.31 ) 

The assignment statement A := (dq} /dvk-1)A at Step 8 of FD3 thus 
amounts to removing the first n - nk rows of A. The forward-differentiation 
algorithm FD3 can finally be rewritten as FD4 of Table 9.8. When FD4 
terminates, A is equal to df / dvo. 

Table 9.B. Fourth version of the forward-differentiation algorithm 

Algorithm FD4(in: vo; out: A) 

1 v:= (v~, ... ,v~o' 0, ... ,0) T; 

2 for i := 1 to no, aT = (0, ... ,0,1,0, ... ,0); 

3 for i := no + 1 to n, aT = (0, ... ,0); 

4 for k := 1 to k - 2 

5 j1:= j1(¢k+l); 

6 a~ := L:;=1 (D¢Z+l / Dvn aJ; 
7 vI' := ¢Z+l(V); 
8 remove the first n - n-;;: rows of A. 

Backward differentiation: The assignment statement 

d¢k 
B·=-­

. dvk- 1 

at Step 6 of BD3 can now be split into 

and 

(9.32) 

(9.33) 

(9.34) 

The backward-differentiation algorithm BD3 can finally be rewritten as 
BD4 of Table 9.9. When BD4 terminates, B is equal to df/dvo. 
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Table 9.9. Fourth version of the backward-differentiation algorithm 

Algorithm BD4(in: vo; out: B) 

1 v:= (v~, ... ,v;o,O, ... ,O)T; 
2 for k := 1 to k - 2 

3 /-i:= /-i(¢k+1); 

4 stack vJL; 
5 .- A-.k+1( ). vJL'-'I'JL Vl, ... ,Vn, 

6 for i := 1 to n - nrc, b i = (0, ... ,O?; 

7 for i := n - nrc + 1 to n, b i = (0, ... ,0,1,0, ... ,O)T; 

8 for k := k - 2 down to 1 

9 

10 

11 

/-i:= /-i(¢k+1); unstack into vJL; 
for i := 1 to n, i i= /-i, b i := b i + (D¢~+1 / Dvf) bJL; 
b '= (DA-.k+1/Dv k ) b . JL' 'l'JL JL JL' 

12 remove the last n - no columns of B. 

9.4 Examples 

This section illustrates how FD4 and BD4 can be built when the function 
to be differentiated is given by an algorithm. Recall that the algorithm to be 
differentiated can be viewed as a special case of (9.1). 

9.4.1 Example 1 

Assume that the algorithm to be differentiated is 

Algorithm f(in: u; out: y) 

1 x:= 2u; 

2 x:= 3x2 + u; 

3 y:= x - u. 

Remark 9.5 This first example has been chosen simple enough to allow dif­
ferentiation without any knowledge about automatic differentiation. The func­
tion to be differentiated is f(u) = (3 (2u)2 + u) - u. • 

To comply with the notation of Sections 9.2 and 9.3, rewrite this algorithm 
using VI, V2 and V3 instead of u, x and y to get 

Algorithm f(in: VI; out: V3) 

1 V2:= 2VI; 

2 V2: = 3v§ + VI; 

3 V3: = V2 - VI· 
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Assumption 9.1 is satisfied as no more than one variable is changed at any 
given step. Assumptions 9.2 and 9.3 are also satisfied since the input variable 
VI corresponds to the first component of v = (VI, V2, V3) T and the output 
variable V3 to its last component. The functions q}(v) of (9.1) are given by 

(9.35) 

2 3 4 -Moreover p,(¢ ) = 2, p,(¢ ) = 2, p,(¢ ) = 3 and k = 5. 

Forward differentiation: FD4 translates into the algorithm of Table 9.10. 
Since f has only one input VI, A is a column matrix and its rows aT are 
the scalar numbers ai. Return to the initial notation for the variables u, x 
and y, and simplify the pseudo-code to get the algorithm of Table 9.11. By 
convention, the elements of A associated with the variables u, x and yare 
denoted by au, ax and a y . When the algorithm terminates, a y is equal to 
df / du at the numerical value taken by u. 

Table 9.10. First version of the forward-differentiation algorithm for Example 1 

2 

3 

4 

5 

6 

7 

8 

al := 1; a2 := 0; a3 := 0; / / Steps 2 and 3 of FD4 
[)¢2 [)¢2 [)¢2 

a 2 :=-[) 2 aI +_[) 2 a2 +_[) 2a3=2aI; //k=1,/-l=2 
VI V2 V3 

V2 := 2VI; 

[)¢3 [)¢3 [)¢3 
a2 := -[) 2 al + -[) 2 a2 + -[) 2 a3 = al + 6V2a2; / / k = 2, /-l := 2 

VI V2 V3 

V2 := 3v~ + VI; 

[)¢4 [)¢4 [)¢4 
a3 := -[) 3 al + -[) 3 a2 + -[) 3 a3 = -al + a2; / / k = 3, /-l := 3 

VI V2 V3 

V3 := V2 - VI. / / useless 

Backward differentiation: BD4 translates into the algorithm of Ta­
ble 9.12. Since f has only one output V3, B is a row matrix and its columns b i 

are the scalar numbers bi . Return to the initial notation for the variables u, x 
and y, and remove unnecessary statements to get the algorithm of Table 9.13. 
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Table 9.11. Final version of the forward-differentiation algorithm for Example 1 

Algorithm -;if FD (in: u; out: ay) 

1 a u := 1; 

2 ax := 2au ; 

3 x:= 2u; 

4 ax := au + 6xa x; 

5 x:= 3x2 + u; 

6 ay := -au + ax. 

Table 9.12. First version of the backward-differentiation algorithm for Example 1 

Algorithm d'%, BD (in: VI; out: bl ) 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

stack V2; V2 := 2VI; 

stack V2; V2 := 3v~ + VI; 

unstack into V3 

o¢~ 
bI := bI + ov~ b3 = bI - b3 ; 

0¢4 
b2 := b2 + ov~ b3 = b2 + b3 ; 

0¢4 
b3 := ov:~ b3 = 0; 

unstack into V2 

bl := bl + ~~~ b2 = bl + b2 ; 

o¢~ 
b3 := b3 + ov;b2 = b3 ; 

o¢~ 
b2 := ov; b2 = 6v2 b2 ; 

unstack into V2 

0¢2 
bI := bI + ov~ b2 = bI + 2b2 ; 

b .- b o¢~ b - b . 
3·- 3 + ov'~ 2 - 3, 

o¢~ J 

b2 := ov; b2 . 

/ / f1 = 2, k = 1 

/ / f1 = 2, k = 2 

/ / f1 = 3, k = 3 

/ / Steps 6 and 7 of BD4 

/ / f1 = 3, k = 3 

/ / f1 = 2, k = 2 

/ / f1 = 2, k = 1 
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By convention, the elements of B associated with the variables u, x and yare 
denoted by b,,, bx and by. When the algorithm of Table 9.13 terminates, b" is 
equal to df / du at the numerical value taken by u. 

Table 9.13. Final version of the backward-differentiation algorithm for Example 1 

Algorithm ~ ED (in: u, out: bu ) 

1 x:= 2u; 

2 stack x; x := 3x2 + u; 

3 y:= x - u; 

4 bu := 0; bx := 0; by := 1; 

5 bu := bu - by; bx := bx + by; by := 0; 

6 unstack into x; 

7 bu := bu + bx ; bx := 6xbx ; bu := bu + 2bx . 

With a bit of practice, it becomes easy to code the forward and the back­
ward differentiation algorithms directly from the code evaluating the function 
to be differentiated. 

9.4.2 Example 2 

Consider the discrete-time dynamical system (Walter and Pronzato, 1997) 
described by 

y(k + 1) = PIy(k), where y(O) = P2. (9.36) 

Assume that prior values Y(l), ... , y(n) are available for y(l), ... , y(n). The 
parameter vector p = (PI, P2) T is to be estimated by minimizing the cost 

c(p) = L~=I (Y(PI,P2, k) - y(k))2 (9.37) 

= (PIP2 - y(n))2 + ... + (PIP2 - y(2))2 + (PIP2 - y(1))2 . 

The evaluation of the derivative of c with respect to p is required by most op­
timization algorithms. Again, an analytical expression of the gradient vector 
can easily be obtained by hand. To illustrate the use of automatic differenti­
ation, c(p) is put in the form of the following algorithm. 



9.5 Conclusions 285 

Algorithm c(in: PI,P2; out: s) 

1 s:= 0; 

2 y:= P2; 

3 for k : = 1 to n 

4 Y := PlY; 

Forward differentiation: FD4 translates into the algorithm of Table 9.14. 
Since c has two inputs PI and P2, the row vectors a~I' a~2' a; and aJ all 
have two entries. When the algorithm of Table 9.14 terminates, a; is equal 
to (d~CI (p), d~2 (p)). 

Table 9.14. Forward-differentiation algorithm for Example 2 

Al . h dC FD (. T) gont III dp m: Pl,P2; out: as 

1 aJI:= (1 0); aJ2 := (0 1); a; := (00); a~ := (00) ; 

2 s:= 0; 

3 a~:= a~2; Y := P2; 

4 for k := 1 to n 

5 a~ := Pla~ + ya~l; Y := PlY; 

6 a; := a; + 2(y - Y(k))a~. 

Backward differentiation: BD4 translates into the algorithm of Ta­
ble 9.15. Since c has only one output, the column vectors by, bpI' b p2 and 
b s are scalar numbers denoted by by, bpI' bp2 and bs . When the algorithm 
of Table 9.15 terminates, bPI and bp2 are respectively equal to ddc (p) and 

PI 

d~c2 (p). 

9.5 Conclusions 

This chapter has presented some basic notions on the automatic differentia­
tion of a program evaluating a function f. When the code of this program is 
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Table 9.15. Backward-differentiation algorithm for Example 2 

Algorithm ~BD(in: Pl,P2; out: bpll bp2 ) 

1 s:= 0; 

2 Y:=P2; 

3 for k := 1 to n 

4 stack Y; Y := PlY; 

5 stack s; s := s + (y - y(k))2; 

6 by := 0; bPI := 0; bs := 1; 

7 for k := n down to 1 

8 unstack into s; 

9 by := by + 2(y - y(k))bs ; 

11 unstack into y; 

12 bPI := bPI + yby; by := Plby; 

14 bp2 := by. 

not too long, it is easy to build the differentiating program by hand using the 
methodology illustrated in Section 9.4 and simplifying the resulting code as 
much as possible. Of course, a computer implementation of the methodology 
is preferable when complex programs must be handled. 

Different criteria should be taken into account for the choice between 
forward and backward differentiation. For an easy implementation, forward 
differentiation may be preferred because it can be implemented using operator 
overloading (Hammer et al., 1995). To save space, forward differentiation 
may be preferred as it does not require storing values taken by the variables 
in the program to be differentiated. To save run time, the choice between 
forward and backward differentiation should depend on the number of inputs 
nu and the number of outputs ny of the code computing f. Recall that each 
variable Vi of the algorithm for f corresponds to nu variables (through the 
row vector an for forward differentiation and to ny variables (through the 
column vector hi) for backward differentiation. In Section 9.4.2, for instance, 
the algorithm to be differentiated has two inputs and one output, so ai is 
two-dimensional whereas hi is scalar. Now, the vectors ai and hi have to be 
stored and updated at each iteration. If the number of inputs is larger than 
the number of outputs, backward differentiation will generally be quicker and 
in the opposite case forward differentiation should be preferred. 



10. Guaranteed Computation with 
Floating-point Numbers 

10.1 Introduction 

One of the main features of interval analysis is its ability to provide boxes 
guaranteed to contain the image of a given box by a function. This con­
tainment property has to be preserved by computer implementation. The 
intervals computed using a finite-precision representation of real numbers 
should therefore always contain those that would be obtained with an infi­
nite precision. A trade-off should moreover be found between execution time 
and accuracy of interval evaluation. 

The first part of this brief chapter is dedicated to the consequences of 
the floating-point representation used for real numbers on the implementa­
tion of interval software. Section 10.2 gives some indications on the IEEE 
754 standard for binary floating-point arithmetic. This standard is complied 
with by the processors equipping most of today's personal computers and 
workstations, and has contributed much to the normalization of a previ­
ously rather chaotic situation (Severance, 1998). We shall see that it includes 
features facilitating the implementation of interval computation, such as di­
rected rounding, but leaves some problems open. Section 10.3 suggests an 
implementation of interval computation, taking into account empty inter­
vals and intervals with infinite bounds. Finally, Section 10.4 gives pointers to 
presently available software. 

10.2 Floating-point Numbers and IEEE 754 

Among the representations proposed to approximate real numbers on com­
puters (see Swartzlander and Alexopoulos, 1975, for the sign/logarithm rep­
resentation or Matula and Kornerup, 1985, for the slash number system), 
the floating-point representation is the most widely used. A floating-point 
number can be written as 

(10.1) 

where do.d1d2 ... dp - 1 is the p-digit significand, (3 is the base and e is the 
unbiased signed exponent, constrained to belong to some interval [emin, emaxl. 

L. Jaulin et al., Applied Interval Analysis
© Springer-Verlag London 2001
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The reasons for calling the exponent unbiased will become clear shortly. The 
notation (10.1) corresponds to the real number 

± (dopo + ddr1 + d2P-2 + ... + dp _ 1P-(P-1)) x p e , 

with (0 ~ di < p). 

(10.2) 

Example 10.1 The real number 0.5 is implicitly expressed in base 10. For 
p = 10 and p = 4, its floating-point representation is 5.000 x 10- 1 . For p = 2 
and p = 6, it becomes 1.00000 x 2- 1 . • 

This representation, however, is not uniquely defined. For instance, 

2.500 x 10- 1 = 0.025 X 101 . (10.3) 

This complicates the design of some algorithms, such as those requiring the 
comparison of numbers. To ensure uniqueness, the leading digit do in (10.1) is 
forced to be non-zero. The resulting representation is said to be normalized. 

Remark 10.1 When p = 2, as usual on computers, do is either 0 or 1, thus 
in a normalized binary representation do is always equal to 1. • 

10.2.1 Representation 

The IEEE 754 standard includes a norm for the binary representation of 
floating-point numbers (p = 2). More details may be found in IEEE Com­
puter Society (1985), Goldberg (1991) and Kahan (1996). Four floating-point 
formats have been defined, namely single, double, single extended and double 
extended. The first two are the most widely used, and correspond to float 
and double in C or C++. Each format is characterized by the width p of its 
significand and its interval of allowed exponents; see Table 10.1. 

Table 10.1. IEEE 754 floating-point formats 

Format p emin emax Exponent width Format width 

single 24 -126 127 8 32 

single ext. 32 ~ -1022 ? 1023 ?11 ? 43 

double 53 -1022 1023 11 64 

double ext. 64 ~ -16382 ? 16383 ? 15 ? 79 

For both extended formats, only a lower bound of the number of digits 
of the exponent is specified. This number of digits may thus depend on the 
implementation. Note that emax is greater than leminl. This is to avoid over­
flow when computing l/x if x is a non-zero floating-point number with the 
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smallest absolute value in the format considered (e.g., ±1.000 ... 0 X 2- 126 

in the single format). Underflow, however, is not prevented, but this was re­
garded by the authors of the standard as less of a problem than overflow. 
The exponents emin - 1 and e max + 1 have been reserved for the coding of 
special numbers (see Section 10.2.3). 

Representing a floating-point number also requires coding the signs of 
its significand and exponent. A specific bit is used for coding the sign of the 
significand, with 0 for + and 1 for -. The sign of the exponent is coded using a 
shift of the exponent by a prespecified offset (e.g., +127 for the single format). 
The result is called a biased exponent. Provided that floating-point numbers 
are stored with the exponent followed by the significand, this approach has 
the advantage of preserving the ordering of the floating-point numbers in 
their representations. 

Since a bit is required to code the sign of the significand, 33 bits would 
seem be needed for the single format. To stay within 32 bits, it is possible 
to use the fact that the leading digit do in (10.1) is always equal to one for 
a normalized binary representation and therefore need not be stored. The 
leading digit is then hidden in the significand. Table 10.2 presents some bit 
patterns. The hidden digit is put between parentheses. 

Table 10.2. Decimal representation and bit pattern of floating-point numbers 

Decimal Binary representation Interpretation 

represent. Sign Exponent Significand of binary representation 

1 0 01111111 (1) 000 ... 000 (_1)0 x 1.000 x 2127-127 

-2 1 10000000 (1) 000 ... 000 ( -1) 1 x 1.000 X 2128-127 

16.5 0 10000011 (1)000010 ... 0 
(_1)0 x 1.00001 x 2131-127 

= 1 X 24 + 1 X Tl 

10.2.2 Rounding 

One of the consequences of describing real numbers with a finite number of 
bits is that they usually cannot be represented exactly. It is thus necessary to 
provide rounding mechanisms to get representable numbers. Even the result 
of a computation based on floating-point numbers must often be rounded to 
get a floating-point number. 

Rounding error is measured in ulp (units at the last place). The difference 
between the actual number and its floating-point approximation is thus ex­
pressed using as the unit the least significant bit in the floating-point format 
considered. For example, if f3 = 2 and p = 4, then representing 1.001 by 1.000 
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results in an error of 1 ulp; representing 1.10001 by 1.100 corresponds to an 
error of 0.01 = 1.0 x 2- 2 = 0.25 ulp. More generally, if a real number z is 
approximated by a floating-point number ±do.d1d2 ... dp - 1 X {3e, the error in 
ulp is given by 

(10.4) 

When the error is less than 0.5 ulp, the floating-point number is said to be 
correctly rounded (Kahan, 1996). 

Four rounding modes are specified in the standard. The default rounding 
mode is to the nearest floating-point number. The results of the four basic 
arithmetical operations, the square root, the remainder of operator % (if 
a = n x b + r, with (a, b) E ]R2 and nEZ, then the remainder r = a%b 
satisfies Irl < Ibl) and the conversion from integer to floating-point numbers 
are required to be correctly rounded in the default rounding mode. The other 
three rounding modes are towards 0, towards +00 and towards -00. The last 
two rounding modes are particularly useful for the implementation of guar­
anteed computation, as will be seen in Section 10.3. Figure 10.1 illustrates 
these four rounding modes. The bold vertical segments correspond to num­
bers that are exactly representable in the floating-point system considered. 
The real numbers corresponding to two consecutive bold segments differ by 
one ulp. The real number x is not representable exactly and the four rounding 
modes lead to two possible results. 

x rounded x rounded 
0 towards 0 x to the nearest 

I I I • 
x rounded x rounded 

towards -00 towards +00 

Fig. 10.1. The four rounding modes specified by IEEE 754 

The results of transcendental functions are presently not required to be 
correctly rounded, because of what is known as the table maker's dilemma 
(Goldberg, 1991; Daumas et al., 1995; Muller, 1997; Lefevre et al., 1998). 
Consider a floating-point system with base 2 and significand of width p. 
Assume, for example, that the logarithm of a floating-point number a has 
been evaluated with a precision of p + 2 digits: 

loga c::: 1.x ... xOl11. 
'"-v---' 

p digits 
(10.5) 
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The xs in (10.5) represent digits that play no role in the dilemma. When 
rounding is towards -00, log a should be rounded to 1.x ... x01 if a com-
putation with more digits would reveal that log a = 1.x ... x01110 ... and 
to 1.x ... x10 if it appears that log a = 1.x ... x10010 . .. Assume now 
that the evaluation is made with increasing precision, and that its result is 
1.x ... xOll11 and then 1.x ... x011111, and then ... As logarithm is a tran­
scendental function, it is impossible to know in advance when the precision 
will be sufficient, hence the dilemma for the choice of the result of the round­
ing. So, for some very special numbers, computation would need to be made 
with a very high precision (and thus at a very high computational cost) for 
the dilemma to be solved, and this is not required by IEEE 754. 

This dilemma has an important consequence on the difficulty of evaluat­
ing tight intervals guaranteed to contain the values taken by transcendental 
functions, as will be seen in Section 10.3.3. 

10.2.3 Special quantities 

Special quantities have been defined in IEEE 754 to allow correct handling 
of exceptional situations such as division by zero or an attempt to evaluate 
the square root of a negative number. The codes of these special quantities 
are reported in Table 10.3. 

Table 10.3. Special quantities and their coding according to IEEE 754 

Number Sign Exponent Significand 

±CXJ ± e max + 1 1.00 ... a 
±O ± emin - 1 1.00 ... a 

denormalized ± emin - 1 i= 1.00 ... a 
NaN any e max + 1 i= 1.00 ... a 

Infinite quantities. The quantities ±oo provide a way to continue compu­
tation after an overflow. Propagating +00 is much safer than representing it 
by a very large finite number, as illustrated by the following example. 

Example 10.2 When log (exp (1000)) is evaluated using single-precision 
floating-point numbers, exp (1000) overflows. An IEEE 754-compliant pro­
cessor would then code it as +00, and the final result would also be +00, 
indicating an overflow in the computation. If a very large number was used 
instead of +00, e.g., 1038 , then the final result of the computation would 
be log (1038 ) :::::: 87, which looks reasonable but is of course meaningless as 
log (exp (1000)) = 1000. • 
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Signed zeros. Since the leading digit do in the significand of a normal­
ized binary floating-point number is equal to 1, the representation of 0 
is problematic. By convention, the signed zeros +0 = l.0 x pemin-l and 
-0 = -l.0 x pemin-l are used. The standard imposes that +0 = -0 is con­
sidered as true; otherwise, as simple a test as (x==O) would have an un­
predictable behaviour. It should however be kept in mind that these two 
numbers are distinct. This is of particular importance for interval divisions. 
Thus, [4,5] / [+0,2] = [2, +00] whereas [4,5] / [-0,2] = [-00, +00]. Although 
IEEE 754 recommends the implementation of a CopySignO function that 
reveals the sign of 0, few compilers offer this function (it is provided in BOR­
LAND's C++ BUILDER, but was not available in its predecessors). 

Denormalized numbers. Such numbers are introduced to allow the rep­
resentation of smaller numbers than possible with the normalized represen­
tation (at the cost of a reduction in the number of significant digits). For 
de normalized numbers, the leading digit is assumed to be o. 
NaNs. As indicated by Table 10.3 there are many NaNs. Each of them 
stands for Not a Number, but should rather be interpreted as Not any Num­
ber (Kahan, 1996) when it is used to indicate that a result is invalid. Any 
invalid operation has thus been requested to yield a NaN. Examples of invalid 
operations are Vi with x < 0, 0 x 00, 0.0/0.0,00/00, (±oo) - (±oo) when 
the signs in the parentheses are the same, y%O.O and oo%y, with y E R 
Any arithmetic operation involving NaN s produces a NaN, unless the result 
obtained when replacing each of these NaNs by an arbitrary number (which 
may be finite or infinite) does not depend on the value of the replacement. 

The concept of NaN was introduced for numerical computation, and is 
not widely used yet in mathematical analysis. It provides an elegant way 
to cope with exceptional situations that may be encountered, for example, 
during root search or global optimization. Usually an initial search domain 
is required. If the function to be evaluated is not defined over some parts 
of this domain, then a badly designed search algorithm might stall during 
the exploration of these parts. With NaN s, it becomes possible to detect a 
posteriori that the function was not defined at some points of the search 
domain without terminating search prematurely. Another possible technique 
is to throw an exception whenever the function turns out not to be defined, 
see Section 1l.13. 

Even if this is not specified in IEEE 754, other real functions should 
sometimes also return a NaN, such as log(x), with x:::;; 0, sin (00), arcsin(y) 
with Iyl > 1, etc. This is so, for example, for INTEL's PENTIUM. 

10.3 Intervals and IEEE 754 

IEEE 754 does not specify how interval computation should be implemented, 
but makes it easier to satisfy requirements such as containment or portability. 
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This section will summarize proposals presented in Chiriaev and Walster 
(1998), Walster (1998) and Lerch and Wolff von Gudenberg (2000), for the 
implementation of interval arithmetic on IEEE 754-compliant computers. 
These proposals have been followed by SUN for the development of FORTRAN 
and C++ compilers providing a native interval type, which is treated on the 
same level as the real type. Machine representation of intervals will first 
be considered, before describing a closed interval arithmetic satisfying the 
containment requirement. Finally, we shall see that it is possible to obtain 
guaranteed inclusion functions even for transcendental functions. 

10.3.1 Machine intervals 

Let R be the set of all finite machine numbers, i.e., of all real numbers that 
are representable in a given floating-point format. Denote by N the largest 
element of R. We have 

-00 < -N < ... < 0 < ... < N < 00, (10.6) 

where 0 represents +0 and -0 indifferently, as in the rest of this section. 
Let R be the set of all machine numbers, R = R U {-oo, +oo}, where 

-00 and +00 are the standard IEEE 754 infinite quantities. Any element 
of JR;. can be mapped without ambiguity into one element of R, using either 
rounding towards +00 denoted by r (.) or rounding towards -00 denoted 
by 1 (.). These rounding modes both preserve the ordering ~ of JR;. and are 
idempotent, i.e., I(l(x)) = I(x) and 1 (l(x)) = 1 (x). They are provided by 
IEEE 754, as described in Section 10.2.2. For real numbers with an absolute 
value lower than N, the rounding error is guaranteed to be less than one ulp 
in both cases. 

Let IR be the set of all finite machine intervals 

IR={[a,b] I aER, bER, a~b}, 

and IR be the set of all machine intervals 

IR = IR U {[a, +00] I a E R} U {[-oo, b] I bE R} 

U[-oo,+oo] U [NaN0 !NaN0 J, 

(10.7) 

(10.8) 

where the interval [NaN0 !NaN0 J represents the empty set 0, obtained, for 
example, by intersecting two disjoint intervals (see Section 2.3). Note that 
[-00, -00] and [+00, +00] do not belong to IR. The intervals [-00, -N] and 
[N, +00] have a clearer set-theoretic interpretation and facilitate implemen­
tation, because operations such as -00 + 00 or +00 - 00 are avoided during 
interval addition or subtraction. 

Any arithmetical operation involving 0 or any elementary function ap­
plied to 0 returns 0. NaN0 is a NaN only used for the coding of the empty 
set, which cannot be obtained otherwise. This coding takes advantage of the 
fact that the IEEE 754 NaNs are absorbing, i.e., that any computation 
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involving NaNs returns NaNs. Using [NaN0 ,NaN0 J greatly facilitates the 
implementation of interval algorithms; often, [NaN0 ,NaN0 J can be treated 
like any other standard interval, and no check for emptiness is required. 

T (.) and 1 (.) can be used to map any interval of lIlR? into one element of 
IR without ambiguity. This is done by the outward-rounding function 1 (.), 
defined as follows: 

\j [x] = [;f, x] E lIlR?, 1 ([xl) = [1 (;f), T (x)] E IR. (10.9) 

Intervals whose lower bound is greater than N are thus represented by 
[N, +00] ; similarly, intervals whose upper bound is smaller than -N are rep­
resented by [-00, -N]. 

Remark 10.2 It is possible to implement outward rounding using only one 
type of directed rounding, as 

1 ([xl) = [l(;f) , T(x)] = [l(;f) ,- l( -x)] = [- T( -;f) , T(x)]. (10.10) 

This property may be used to reduce the number of time-consuming switchings 
of the rounding mode of the processor (Knofel, 1993). • 

10.3.2 Closed interval arithmetic 

For any operator 0 in {+, -, *, I}, [x] in IR and [y] in IR, 

1 ([x] 0 [y]) E IR, 

and 

[x] 0 [y] c 1 ([x] 0 [y]) . 

(10.11 ) 

(10.12) 

The operator 1 (.) on IR thus makes it possible to define an arithmetic on 
machine intervals that satisfies the containment requirement. This arithmetic 
is also closed, as all arithmetic operations that are not defined when interval 
operands contain 0 or infinite quantities are extended applying the rules of 
computation with infinite quantities (Kahan, 1968; Chiriaev and Walster, 
1998). 

Example 10.3 With this arithmetic, 

1 ([2, 3] * [5,7]) = [10,21], 

1(2 * [500, N]) = [1000, +00]' 

1 ([0, 3] * [10, +00]) = [-00, +00], 

1 ([ -00, - N] + [N, +00]) = [-00, +00], 

1 ([1, 3] / [0,3]) = [-00, +00], 

1([-5,2] / [0,0]) = [-00, +00]' 

1( [0,0] / [0,0]) = [-00, +00] . 

(10.13) 

• 
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When only arithmetical interval operations are involved, IEEE 754 guar­
antees an error of less than one ulp in the computation of the bounds. Thus, 
maximum precision is obtained at maximum speed, and no trade-off between 
speed and precision has to be found. 

Example 10.4 The result of the division of x = 5 by y = 50 is 0.1, which 
is not exactly representable by a floating-point number in base 2. Directed 
rounding makes it possible to compute an interval [zJ guaranteed to contain 
x/y, with 

~ = 1.100110011001100110011000 X T4 

and 

z = 1.100110011001100110011001 X T4 

if single precision is used. The bounds of [zJ differ only by one ulp. • 

A pseudo-code for interval addition is given in Table 10.4. 

Table 10.4. Interval addition 

Algorithm operator+ (in: [aJ, [b]; out: [r]) 

1 store_roundingJIlOdeO; 

2 [r]:= [l(g+.I!),r(a+b)]; 
3 restore_roundingJIlOdeO. 

Three points have to be noticed. First, there is no need to check whether 
[aJ or [b] is the empty set 0, as the representation of 0 by [NaN0, NaN0 J guar­
antees that the result will be [NaN 0, NaN 0] as soon as any of the operands 
is empty. Second, the current rounding mode is stored before interval addi­
tion and restored after, in order to make evaluations on real numbers with 
maximum accuracy. Finally, the rounding mode is switched twice during the 
evaluation of [r] but could be switched once only, see Remark 10.2. 

10.3.3 Handling elementary functions 

The main problem with elementary functions is that some of them, such as 
log or tan, are not defined on the entire real line. The actions to be taken 
when evaluating, for example, log ([-3,1]) is one of the major points of dis­
agreement between intervalists. In this book, we have chosen to return the 
range of a function over a given interval, even if this function is not defined on 
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part of this interval, see (2.30). If a function is not defined on any part of an 
interval argument, then the range returned is the empty set, as in PROLOG 4. 

An implementation of the square root (sqrt) satisfying the containment 
constraint is easily achieved with a precision of one ulp on each bound, as 
sqrt is requested by IEEE 754 to be correctly rounded, see Table 10.5. 

Table 10.5. Interval square root 

Algorithm sqrt(in: [a]; out: [r]) 

1 [b] := [a] n [0,00]; 

2 if ([b] = 0) / /optional 

3 [r] := 0; return; 

4 store_roundingJIlodeO; 

5 [r]:= [l(sqrt(Q)), r(sqrt(b))]; 

6 restore_roundingJIlodeO· 

Testing [b] for emptiness is optional on any computer on which any ele­
mentary function applied on a NaN returns a NaN, as required by IEEE 754. 
Here, the two switchings of the rounding mode are necessary. 

Example 10.5 With this implementation, 

1 ( v15,8]) = [1 ( V5) , T ( vis)] , 
1 (JF3,7J) = [0, T (J7)] , 
1 ( )[15, +00]) = [1 ( V:i5) ,+00] , 
1 ( )[-5, -2]) = 0. 

(10.14) 

(10.15) 

(10.16) 

(10.17) 

• 
For transcendental functions, due to the table maker's dilemma, it is not 

possible to guarantee the enclosure of the correct mathematical result by 
simply switching to the appropriate rounding mode (see Section 10.2.2). A 
solution is to expand the interval computed so that it is guaranteed to con­
tain the actual mathematical result. The number of ulps by which the result 
must be expanded depends on the quality of the implementation of the tran­
scendental functions. Figure 10.2 illustrates a situation where computations 
compliant with IEEE 754 produce an interval [y] that does not contain 
log([x]). The problem is then solved by expanding [y] by one ulp for each 
bound. When dealing with transcendental functions, a trade-off has to be 
found between speed of computation and accuracy. 
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(a) 
I F 

) 

(b) • ) 

Fig. 10.2. Evaluation of the image of [xl by the log function; the actual image is 
in light grey; (a) image as approximated according to IEEE 754 (in dark grey); 
because of the table maker's dilemma, the approximation does not contain the 
actual image; (b) guaranteed approximation of the image, obtained by expanding 
the previous approximation by one ulp for each bound (in dark grey) 

10.3.4 Improvements 

The implementation that has just been described corresponds to the simple 
extended interval system defined in Walster (1998). For arithmetic opera­
tions, only what is provided by IEEE 754 is needed, as exemplified by the 
implementation of interval addition described in Section 10.3.2. 

More sophisticated interval systems have been presented in Walster 
(1998), such as the full extended interval system, which provides better con­
trol when underflow occurs in operations involving intervals. This reduces the 
number of situations where the entire real line is returned as a result. The 
main difference with the simple system is the distinction between the signed 
zeros; in the simple extended system [+0,5] is considered equal to [-0,5], 
which is no longer the case with the full system. The next example illustrates 
the consequences of such a distinction. 

Example 10.6 Take [a] = [4,5] and [b] = [0.5, N]. When evaluated with a 
library implementing the simple extended system, 

1 ([a] /1 (1/ [b])) = 1 ([4, 5] / [0,2]) = [-00, +00]. (10.18) 

The same quantity evaluated with a library implementing the full extended 
system would be 

1 ([a] /1 (1/ [b])) = 1 ([4, 5] / [+0,2]) = [2, +00]. (10.19) 

Such a result requires specifying that 1 (l/N) = +0 and detecting the sign of 
o for the second division. • 

Implementing the full extended system is a complicated task, and only 
simple extended systems have been released so far. 

10.4 Interval Resources 

The purpose of this section is to give pointers to available software for interval 
computation. A regularly updated list of such pointers may be found at 
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http://www.cs.utep.edu/interval-comp/main.html 

The reader is also invited to consult Kearfott (1996b) for a historical presen­
tation of the development of interval resources. 

A series of interval software has been developed since the 1960s at Karl­
sruhe University, and the present XSC family of libraries (for eXtension for 
Scientific Computing) has benefitted from the experience accumulated. Thus, 
PASCAL-XSC (Klatte et al., 1992), FORTRAN-XSC and C-XSC (Klatte 
et al., 1993; Hammer et al., 1995) extend PASCAL, FORTRAN and C++ to 
intervals. A common characteristic of these tools is their control of one of the 
main sources of numerical errors by the implementation of an accurate dot 
product (Kulisch and Miranker, 1981; Wolff von Gudenberg, 1994). Standard 
algorithms are provided for such tasks as the global optimization of possibly 
multi-modal functions or the solution of sets of possibly non-linear equations. 
These libraries are available for most platforms and provide a software sup­
port of the IEEE 754 standard when this standard is not fully implemented 
in hardware. Details and portions of the source code may be found at 

http://www.xsc.de/ 

A new version of C-XSC, which complies with the new ISO-C++ stan­
dard, is under development under the name of C-XSC++. A beta version 
is available at 

http://www.uni-karlsruhe.de/-uad3/cxsc/ 

The Basic Interval Arithmetic Subroutines Library (Corliss, 1991) could 
serve as a template for any interval library, independently of the language in 
which this library would be coded. Several tools have been developed based 
on this work; the most popular is probably the PROFIL/BIAS library, written 
in C++ (Kniippel, 1994). This library is freely available for most platforms, 
but less complete than C-XSC. It may be downloaded from 

ftp://ti3sun.ti3.tu-harburg.de/pub/profil/ 

More details may be found in Chapter 11. 
INTLIB ( for INTerval LIBrary) was developed by Kearfott in FORTRAN, 

especially for the solution of sets of non-linear equations (Kearfott et al., 1992; 
Kearfott, 1996b). This library and other interesting tools may be downloaded 
from 

http://interval.louisiana.edu/kearfott.html 

The very recent release by SUN of the FORTE FORTRAN/HPC and C++ 
compilers is particularly noteworthy. These compilers are the first to offer 
a native interval type, allowing the coding of algorithms based on interval 
computations without the need for any additional library. A closed interval 
arithmetic system is also implemented (see Section 10.3). For the time being, 
these compilers only run on computers equipped with the SOLARIS operating 
system. Limited-time trial versions of both of them may be downloaded from 
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see also the CD-RO M provided with this book. 
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Another C++ interval package providing a closed interval arithmetic sys­
tem is fLlib++ (Lerch and Wolff von Gudenberg, 2000). This library should 
become freely available at 

http://www.math.uni-wuppertal.de/org/WRST/xsc/download.html 

All these products have benefitted considerably from object-oriented pro­
gramming and operator overloading, which allow intervals and interval vec-
tors to be manipulated about as simply as other standard data types. 

To solve relatively simple problems for which compilation can be avoided, 
interpreted languages can be used. Interval MAPLE add-ons have been de­
veloped by Connell and Corless (1993). For MATLAB, Zemke developed the 
tutorial tool B4M (BIAS for MATLAB 5), and Rump is at the origin of the much 
more ambitious INTLAB library (Rump, 1999,2001), where special attention 
has been paid to the computation of transcendental functions. INTLAB runs 
under WINDOWS, UNIX and LINUX. INTLAB and B4M may be downloaded 
from 

http://www.ti3.tu-harburg.de/english/index.html 

10.5 Conclusions 

The IEEE 754 standard for binary floating-point representation provides 
a framework for a guaranteed implementation of the algorithms presented 
in this book. Of special importance is rounding control, which allows the 
limitation of precision resulting from a floating-point representation of real 
numbers to be taken into account in such a way that the results are still guar­
anteed. Although the first compilers and thus the first libraries for interval 
computation complied with only part of the specifications of this standard, 
the trend is towards stricter compliance. 

The release by SUN of the FORTE series of compilers now makes it possible 
to cope with intervals directly. One of the main present challenges is the de­
sign of hardware for the same purpose. Efforts have been put into the design 
of dedicated coprocessors (Wolff von Gudenberg, 1996; Schulte and Swartz­
lander, Jr., 2000) and into the suggestion of modifications of the architecture 
of processors (Stine and Schulte, 1998a, 1998b; Kolla et al., 1999). Unfortu­
nately, most of the results presently available are confined to the specification 
level and to the realization of prototypes. 



11. Do It Yourself 

11.1 Introduction 

The first purpose of this chapter will be to show how YOUR LIBRARY, a 
basic library for interval analysis, can be implemented in C++. As will soon 
become apparent, such an implementation is a lot of work. One may thus 
wonder if one would not be better off using a readily available library, and 
the second purpose of this chapter will be to explain how this can be done. We 
have chosen the PROFIL/BIAS library, because it is licensed free of charge, and 
runs on a large choice of platforms. The time spent building YOUR LIBRARY 

will facilitate the understanding of the source code of PROFIL/BIAS, as they 
share their basic syntax. The last purpose of this chapter will be to give 
some details on how the algorithms described in the rest of the book may be 
implemented, using either YOUR LIBRARY or PROFIL/BIAS. 

The material is organized as follows. First the minimum knowledge about 
C++ required to start is summarized. The basic objects of YOUR LIBRARY, 

namely intervals, interval vectors and matrices, are then introduced. For each 
of them, the presentation is similar. We start by recalling specific notions of 
C++ if needed, before building up the object structure step by step. Typ­
ical problems of implementation are then illustrated in detail, which should 
allow completion of YOUR LIBRARY as suggested by the exercises. We then 
explain how these objects are implemented and used in PROFIL/BIAS. Ex­
ercises illustrating the implementation of some of the algorithms described 
earlier complete the presentation of these objects. Subpavings, which are not 
part of PROFIL/BIAS, are presented in much more detail. The chapter ends 
with a section on error handling. 

Readers not interested in library implementation may skip Sections 11.3, 
11.6 and 11.9. The solutions of the exercises may be found at 

http://www.lss.supelec.fr/books/intervals 

11.2 Notions of C++ 

This section can obviously not replace a C++ course. More details about the 
language can be found in many excellent text books, including Stroustrup 

L. Jaulin et al., Applied Interval Analysis
© Springer-Verlag London 2001
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(1991), Capper (1994) and Anderson and Anderson (1998), or on the WEB, 
for example at 

http://www.cetus-links.org/oo_c_plus_plus.html 

or 

http://math.nist.gov/-RPozo/c++class/ 

11.2.1 Program structure 

It would be quite unreasonable for a large-scale project to consist of a single 
module. Rather, the project is organized as a series of more or less indepen­
dent modules stored in source files (identified by an extension that depends 
on the compiler and may be . cpp or . cc). One of the modules may take 
care of graphics, a second one of interval computations, a third one of the 
handling of interval vectors, and so on. A given module may call functions of 
other modules, which requires the knowledge of the definitions and functions 
of these modules. This knowledge is provided by the header file associated 
with each module, identified by the extension . hpp or . h. 

Consider, for instance, the module myapp. cpp, which exemplifies the main 
function required by any project. Assume that this module uses a library for 
interval computation, the source code of which is in i val. cpp. The header 
file i val. h of this library must be included in myapp. cpp as follows. 

11-------------------------------------------------------
II File: myapp.cpp 
II Purpose: illustrates the inclusion of files 

#include "ival.h" 

main () 
{ 

} 

II rest of the module 
I I ... 

II to use the interval library 

11-------------------------------------------------------

Just before the compilation of myapp. cpp, a precompiler replaces the line 
#include "i val. h" by the content of i val. h. Header files should therefore 
contain as little code as possible, to avoid a needless increase in the size of 
the code to be compiled and of the resulting executable code. Source files 
thus extended are processed by the compiler to generate object files. Object 
files are then linked together by the linker to generate the executable file. 
The linker may also collect suitable parts of already compiled libraries (files 
with the extension . lib). The structure of a C++ project is summarized in 
Figure 11.1. 
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Fig. 11.1. Structure of a C++ project 

Remark 11.1 Any chain of characters following I I in a given line is treated 
as a comment and ignored by the compiler. It is equally possible to indicate 
that a chain extending on several lines should be treated as a comment by 
inserting it between I * and * I . • 

Other headers may be needed to allow the use of standard C++ libraries, 
for instance, 

#include <iostream.h> 

for standard input-output operations, 

#include <math.h> 

for mathematical functions such as sine or cosine. 
The name of the header file to be included is put between brackets « 

» when it corresponds to a library provided with the compiler. Usually, 
this name is put between quotes (" ") for user-defined libraries. The type of 
delimiter indicates the directory in which the file is to be found. 

11.2.2 Standard types 

The most commonly used standard types in C++ are char for characters, 
int for signed integers, float and double for single and double precision 
floating-point numbers. Any variable must be declared before being used. 
This declaration may take place anywhere before the first use of the variable, 
and is performed as follows: 

int i; II integer variable 
double x; II double-precision floating-point variable 
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c++ is case dependent and all statements end with a semicolon. A variable 
that cannot be modified during execution will be preceded by the qualifier 
canst, as in 

canst int i 3; II integer i cannot be modified 

11.2.3 Pointers 

The address-of operator & is employed to locate the memory where a variable 
is stored. Thus, &x contains the address where x is stored; &x is called a pointer 
to x. It is also possible to declare variables that are pointers: 

double* px; II px is a pointer to a double 
px = &x; II px now contains the address of x 

To access the variable stored at the address indicated by a pointer, the deref­
erencing operator * is used: 

double x; 
double* px; px = &x; 
*px = 3; II *px is x, so x = 3 

Remark 11.2 Strictly speaking, double* px (declaration of the pointer px 
to a double) differs from double *px (declaration of the double pointed 
at by px). In practice, both are treated by the compiler in the same way, 
so the positions of spaces are not significant. However, the second syntax is 
recommended to avoid potential confusions appearing, e.g., when one wants 
to declare two pointers to doubles in a single instruction. The correct syn­
tax is double *px, *py, since double* px, py or double *px, py would 
correspond to the declaration of a pointer px and a double py. • 

11.2.4 Passing parameters to a function 

To illustrate how functions exchange information, consider first a function 
evaluating the mean of two double-precision floating-point numbers 

double MeanValue(double a, double b) 
{ 

double m; II m is local to the function 
m = (a + b) I 2; 

return m; 
} 

In this example, a double containing the value of m is returned to the calling 
function. The braces { } define the scope of a function or are used to group 
statements. The function MeanValue may be called as follows: 



double alpha, beta, gamma; 
alpha = 3; beta = 5; 
gamma = MeanValue(alpha, beta); 
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The parameters of MeanValue are passed by value. At each call, a copy of each 
of them is made and the function works on these copies. Thus, alpha and a 
are stored at different locations. Any modification of the values of variables 
local to a function thus leaves the original parameters in the calling function 
unchanged. 

Consider now a function exchanging the values of two doubles. Since the 
parameters in the calling function must be changed, they cannot be passed 
by value. A possible technique is to pass them by reference: 

void Exchange(double& a, double& b) 
{ 

} 

double temp; 
temp = a; 
a = b; 

b = temp; 

The & symbol in the list of arguments, not to be confused with the address-of 
operator represented by the same symbol, indicates that the following param­
eter is passed by reference. Again, spaces are not significant, so double&a, 
double& a and double &a are equivalent, but for the same reason as in Re­
mark 11.2, it is recommended to write double &a in declaration statements. 
The void return type indicates that nothing is returned to the calling func­
tion. Exchange may be called as follows: 

double alpha, beta; 
alpha = 3; beta = 4; 
Exchange (alpha, beta); II now alpha = 4 and beta = 3 

Here, alpha and a represent the same variable and share the same memory 
location. 

Remark 11.3 It is good practice to put the qualifier const in front of any 
argument of a function that should not be modified by this function, and this 
has recently become mandatory for const variables passed by reference. • 

Finally, parameters may be passed by address. In this case, pointers to the 
parameters to be transmitted are passed. Among other things, this approach 
makes it possible to pass a function as an argument of another function, as 
will be seen in Section 11.8, page 327, and Section 11.12.3, page 342. 

11.3 INTERVAL Class 

Some more C++ notions will now be introduced to allow the creation of 
INTERVAL objects. Objects are entities characterized by their properties (or 
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data members) and by member functions (or methods) that apply to them. 
Member functions provide interfaces for accessing and modifying properties 
of objects. In C++, the notion of object is implemented using classes. An 
INTERVAL class will thus be designed, which will allow the application pro­
grammer to ignore the details of the implementation of intervals, just as one 
usually need not know the details of how floating-point numbers are repre­
sented. The INTERVAL class should contain (or encapsulate) the properties of 
intervals, the definition of arithmetical operations on intervals, input-output 
functions, etc. 

The first step in the creation of the INTERVAL class of YOUR LIBRARY 

is the definition of a header file i val. h collecting all its properties and the 
headers of its member functions: 

11-------------------------------------------------------
I I File: ival.h 
II Purpose: INTERVAL class specifications 
#ifndef INTERVAL 
#define INTERVAL 

#include <iostream.h> II for basic unformatted ilo 

class INTERVAL{ 
private: 

double inf, sup; 
public: 

II constructors 
INTERVAL() II default 

{inf = 0; sup = O;} 
INTERVAL(const double a, const double b)llinitialized 

{inf = a; sup = b;} 
INTERVAL(const INTERVAL& a) 

{inf = a.inf; sup = a.sup;} 
II copy constructor 

II destructor 
- INTERVAL () {}; 

II other member functions 
INTERVAL& operator=(const INTERVAL&); 

II friend functions 
II read-only access functions 

friend double Inf(const INTERVAL& a) 
{ return a.inf }; 

friend double Sup(const INTERVAL& a) 
{ return a.sup }; 

friend double Diam(const INTERVAL&); 
friend INTERVAL Hull(const INTERVAL&, 

II assignment 

const INTERVAL&); 
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II overloaded operators 
friend INTERVAL operator+(const INTERVAL&, 

const INTERVAL&); 
friend INTERVAL operator/(const INTERVAL&, 

const double); 
friend ostream& operator«(ostream&, 

const INTERVAL&); 
I I ... 
}; II class definition blocks end by a semi-colon 
#endif 
11-------------------------------------------------------

The header file can stand as a documentation for the class. In what fol­
lows, the various parts of this header will be explained, and the reader will be 
asked to come back to it. As here, header files often begin with #ifndef ... , 
#define ... and end with #endif. These directives are used by the precom­
piler to prevent multiple inclusions by checking that the corresponding header 
file has not already been included. The name __ INTERVAL_ has been chosen 
arbitrarily, in such a way that the corresponding chain of characters cannot 
be found anywhere else in the source code. 

The definition of a class starts by the keyword class followed by its the 
name and by a block { ... }; containing its properties and member functions. 
Note the semi-colon ending the block. An interval may be characterized by its 
lower and upper bounds, thus our INTERVAL class encapsulates two private 
properties, inf and sup, which correspond to these two bounds. Private prop­
erties can only be read or modified (using the access operator .) by member 
functions of the INTERVAL class. Thus, if a is an instance of the INTERVAL 
class, a. inf contains its lower bound. This protection of the private proper­
ties will make it possible, for instance, to prevent the instanciation of invalid 
intervals with their lower bound greater than their upper bound. The proper­
ties and member functions that can be accessed outside the class are placed 
after the keyword public. It is customary (but not mandatory) to give names 
starting with lower-case letters to the properties of a class and names starting 
with upper-case letters to the member functions. 

Remark 11.4 Other characterizations of intervals could have been consid­
ered (for instance, an interval could have been specified by its centre and 
width). This would obviously have had important consequences on the imple­
mentation of the rest of the class. • 

11.3.1 Constructors and destructor 

The instanciation of an INTERVAL is very similar to that of a float. Thus, one 
may write a program f irstapp. cpp that uses the ivaI module as defined 
by ival.h 



308 11. Do It Yourself 

11------------------------------------------------------
II File: firstapp.cpp 
II Purpose: INTERVAL instanciation 

#include "ival.h" 

int mainO 
{ 

} 

INTERVAL x; 
INTERVAL y(2,3); 
INTERVAL z(y); 
I I ... 

II to use the INTERVAL class 

II default constructor used 
II initialized constructor used 

II copy constructor used 

11------------------------------------------------------

These instanciations implicitly call constructors. Constructors are mem­
ber functions with the same name as the class and no return type. They 
allow the initialization of the objects being created. Here, they specify the 
bounds of the intervals. Three constructors are presented, the implementa­
tion of which is performed directly inside the header file ivaI. h as they are 
very short. The default constructor, called for the instanciation of x, sets both 
of its bounds to o. The initialized constructor, called for the instanciation of 
y, sets its lower bound to 2 and its upper bound to 3. This constructor may 
check the validity of the intervals that it creates, and may also emit an er­
ror message if appropriate (see Section 11.13). Finally, the copy constructor, 
called for the instanciation of z, copies the interval passed as an argument, 
so here z = [2,3]. 

The destructor - INTERVAL () is called automatically at the end of a pro­
gram or upon exit of a function, for each instance of the INTERVAL class 
that has been created within this program or function. Thus, when leaving 
the function main 0 of f irstapp. cpp, the destructor will be called three 
times. Destructors make it possible, among other things, to free dynamically 
allocated memory (see Section 11.6). 

Exercise 11.1 Create a file i val.h as indicated, and supplement it with a 
constructor with a single double argument so as to instanciate punctual in­
tervals. • 

11.3.2 Other member functions 

It is now possible to create and initialize intervals. The next member functions 
mentioned in ivaI. h (assignment, arithmetical operations) are more compli­
cated, so their description will be put in a file ivaI. cpp in order to keep 
ivaI. h readable. The first member function mentioned after the destructor, 
as 
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INTERVAL& operator=(const INTERVAL&); 

performs an overloading of the assignment operator = for intervals. This 
member function assigns the value of the INTERVAL argument to the call­
ing INTERVAL instance. This argument is preceded by the qualifier const, 
indicating that it should not be modified in the body of the function. This 
protection is particularly useful in cascaded calls to functions with the same 
parameter, as the compiler will notify any attempt to modify a constant 
argument. 

The code overloading the assignment operator may look as follows: 

11------------------------------------------------------
II File: ival.cpp 
II Purpose: INTERVAL class implementation 

#include "ival.h" II to use the INTERVAL class 

INTERVAL& INTERVAL: :operator=(const INTERVAL& a) 
{ 

} 

if (this==&a) 
return (*this); 

inf = a.inf; sup 
return (*this); 

I I ... 

II prevents self-assignment a = a 

a.sup; 

11------------------------------------------------------

INTERVAL:: indicates that the member function belongs to the INTERVAL 
class. The keyword this corresponds to a pointer to the address of the cur­
rent object (*this is thus a reference to the object itself). This address is 
compared to the address &a of the argument a to avoid self-assignment. The 
rest of the member function is similar to the copy constructor. The overloaded 
operator = may be employed as follows: 

INTERVAL x, y(3,4), z(1,3); 
x = y; 
y = x = z; II cascading is possible 

II x and yare now equal to z 

The last functions listed in ivaI. h are friend functions of the INTERVAL 
class. Friend and member functions share access to the private members of 
the class, but the syntaxes of their calls differ. Friend-functions calls obey the 
usual syntax for mathematical functions. The friend functions Inf and Sup 
of the INTERVAL class provide read-only access to the interval bounds: 

INTERVAL x(3,4) ; 
double lowerbound; 
lowerbound = Inf(x); II call of a friend function 
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A member function would require the use of the access operator . and thus 
be less intuitive. This is why friend functions will be used to evaluate prop­
erties of an interval, such as its width or its centre, or to implement usual 
mathematical functions (Cos, Sin, Exp ... ). 

A possible implementation of a friend function computing the width of 
an interval (and called Diam for compatibility with PROFIL/BIAS) is 

11------------------------------------------------------
II File: ival.cpp (continued) 
I I ... 
double Diam(const INTERVAL& a) 
{ return (a. sup - a.inf); } 
I I ... 

II evaluation of width 

11------------------------------------------------------

Since friend functions are not considered as members, they are not preceded 
by INTERVAL: :. Binary operators will also be implemented as friend func­
tions. The code for the addition operator + may thus be: 

11------------------------------------------------------
II File: ival.cpp (continued) 
I I ... 
#include <float.h> II for rounding-mode control 
I I ... 
INTERVAL operator+(const INTERVAL& a, const INTERVAL& b) 
{ 

} 

INTERVAL res; 
unsigned int cw = _contro187(NULL,NULL); II stores the 

II current rounding mode 
_contro187(RC_DOWN,MCW_RC); II rounding is towards -00 
res.inf = a.inf + b.inf; 
_contro187(RC_UP,MCW_RC); 
res.sup = a.sup + b.sup; 
_contro187(cw,MCW_RC); 

return res; 

II rounding is towards +00 

II initial rounding mode 
II is restored 

I I ... 
11------------------------------------------------------

Including the module float allows the statement _contro187 ( . , .) to 
be used to retrieve or change the floating-point control word of an INTEL­
compatible mathematical coprocessor, according to the IEEE 754 standard 
(see Chapter 10). It is particularly useful to specify the rounding modes 
used for the outward rounding of the results of arithmetical operations. As 
mentioned in Section 10.3.2, page 294, it is advisable to store the rounding 
mode before modifying it and, to set it back to its initial value upon exit. 
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Exercise 11.2 Supplement ival.cpp with the friend function Hull comput­
ing the interval hull of two INTERVALs. The header of Hull is already zn 
ival.h. • 
Exercise 11.3 Based on Diam, supplement i val.h and i val.cpp with other 
friend functions such as 

friend double Mid(const INTERVAL& a); 

computing the centre of an interval a and 

friend int Intersection(INTERVAL& r, const INTERVAL& a, 
const INTERVAL& b) ; 

where r is the intersection of a and b. This function should return 1 if the 
intersection is non-empty and 0 otherwise. • 

Exercise 11.4 Overload operator- and operator* for two INTERVALs .• 

Exercise 11.5 Overload operator<= to test whether an INTERVAL a is in­
cluded in an INTERVAL b. The header of this function should be 

friend int operator<=(const INTERVAL& a, const INTERVAL& b) ; 

This function should return 1 if a is included in band 0 otherwise. • 

The overloading of the operator I for the division of an interval by an 
interval poses no particular problem unless the divisor contains zero. In the 
latter case, various policies may be followed, see Section 11.13, page 349. 
Consider first the simpler situation where the divisor is not an interval but 
a double. If the divisor is zero, then the following code returns an approx­
imation of the entire real line under the form of the interval [-Infinity, 
Infinity] (see Section 10.2.3, page 291): 

11------------------------------------------------------
II File: ival.cpp (continued) 
I I ... 
INTERVAL operator/(const INTERVAL& a, const double b) 
{ 

INTERVAL res; 
unsigned int cw 

if (b > 0) 

_contro187(NULL,NULL); II stores the 
II current rounding mode 

{_contro187(RC_DOWN,MCW_RC); II rounding towards -00 

res.inf = a.inf I b; 
_contro187(RC_UP,MCW_RC); II rounding towards +00 

res.sup = a.sup I b; } 
else if (b < 0) 
{_contro187(RC_DOWN,MCW_RC); II rounding towards -00 
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res.inf = a.sup I b; 
_controI87(RC_UP,MCW_RC); 
res. sup a.inf I b; } 

else 

II rounding towards +00 

{res.inf -Infinity; res. sup = Infinity; } 
_controI87(cw,MCW_RC); II restores the initial 

II rounding mode 
return res; 

} 

I I ... 
11------------------------------------------------------

The quantity Infinity, corresponding to +00 has not been defined yet and 
is not C++ standard. So it has to be defined using its bit pattern (see 
Section 10.2.3). As Infinity will be used by many functions, it should be 
placed at the beginning of ivaI. h. 

11-------------------------------------------------------
I I File: ival.h 
II Purpose: INTERVAL class specifications 
#ifndef INTERVAL 
#define INTERVAL 

#include <iostream.h> II for basic unformatted ilo 

II definition of Infinity using its bit pattern 
union UREAL { unsigned short ushort[4]; double real; }; 
static union UREAL PosInfty = {{ OxOOOO, OxOOOO, 

OxOOOO, Ox7FFO }}; 
static double Infinity = PosInfty.real; 

class INTERVAL{ 

11-------------------------------------------------------

Exercise 11.6 Overload operatorl for two INTERVALs. When 0 belongs to 
the interval divisor, [- Infini ty, Infinity] should be returned (see Sec­
tion 10.3.2, page 294). • 

The last friend function listed in i val.h overloads the binary insertion 
operator « to allow the insertion of an interval in an output stream. This 
makes it possible to write the two bounds of an interval on the screen or to 
a file. It may be implemented as follows: 

11------------------------------------------------------
II File: ival.cpp (continued) 
I I ... 
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#include <iostream.h> II to allow streams to be used 
I I ... 
ostream& operator«(ostream& os, const INTERVAL& a) 
{ 

} 

os « "[" « a.inf « 
return (os); 

I I ... 

II II , « a.sup « II] "; 

11------------------------------------------------------

The lines 

INTERVAL a(2,3); 
cout « "a = II « a «endl; II console output 

produce the following output to the screen (console): 

a = [2,3] 

This version of the INTERVAL class, when completed with the results of 
the exercises, allows most basic arithmetical operations on intervals. 

11.3.3 Mathematical functions 

The inclusion functions for the standard mathematical functions remain to be 
implemented. As they are not always needed, they will be put in a separate 
module, called func for compatibility with PROFIL/BIAS. This module con­
stitutes an interval counterpart to the standard mathematical library math. 

The header func. h lists the functions to be implemented: 

11------------------------------------------------------
II File: func.h 
II Purpose: standard math functions for INTERVALs 
#ifndef FUNCTIONS 
#define FUNCTIONS 

#include "ival.h" 
#include <math.h> 

II to use the INTERVAL class 
II for standard mathematical library 

INTERVAL Exp (const INTERVAL& x) ; 
INTERVAL Log (const INTERVAL& x) ; 
I I ... 
INTERVAL Sin (const INTERVAL& x) ; 
INTERVAL Cos (const INTERVAL& x); 
INTERVAL Tan (const INTERVAL& x); 
I I ... 
INTERVAL Sqr (const INTERVAL& x) ; 
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INTERVAL Sqrt (canst INTERVAL& x); 
I I ... 
INTERVAL ArcSin (canst INTERVAL& x) ; 
INTERVAL ArcTan (canst INTERVAL& x) ; 
I I ... 
#endif 
11------------------------------------------------------

Only some of these functions will be presented in detail. Based on these 
examples, the implementation of the others should pose no problem. 

Monotonic functions are particularly simple to implement. For instance, 
an inclusion function for the exponential function could be implemented in 
func . cpp as follows 

11------------------------------------------------------
II File: func.cpp 
II Purpose: standard math functions for INTERVALs 
#include "func.h" 
I I ... 
INTERVAL Exp(const INTERVAL& x) 
{ return INTERVAL(exp(Inf(x)) , exp(Sup(x))); } 
I I ... 
11------------------------------------------------------

Outward rounding was not implemented. As a matter of fact, rounding con­
trol is not requested by IEEE 754 for the standard functions, except for 
sqrt, and guaranteed rounding for transcendental functions is still an active 
domain of research (see Section 10.2.2, page 289). 

The implementation of an inclusion function for the logarithm function is 
similar, except that the domain of definition of this function is JR;.+. The policy 
described in Section 10.3.3, page 295, may be followed. Another possibility is 
to implement a special error treatment when an interval argument [xl is not 
entirely included in JR;.+ (see Section 11.13, page 349). 

Exercise 11.7 Based on the code for Exp, supplement func.cpp with inclu­
sion functions for other monotonic functions, such as Sqrt for the square 
root • 

For non-monotonic functions, the use of an algorithm is usually necessary. 
Thus, to obtain an inclusion function for the square function, one may write: 

11------------------------------------------------------
I I File: func.cpp (continued) 
I I ... 
INTERVAL Sqr(const INTERVAL& x) 
{ 

double infsqr = Inf(x)*Inf(x); 



} 

11.4 Intervals with PROFIL/BIAS 315 

double supsqr = Sup(x)*Sup(x); 
if (Inf(x) >= 0) 

return INTERVAL (infsqr, supsqr); 
else if (Sup(x) <= 0) 

return INTERVAL (supsqr, infsqr); 
else 

return INTERVAL (0 , max (infsqr, supsqr)); 

/ / ... 
//------------------------------------------------------

Exercise 11.8 Build an inclusion function Sin for the sine function. From 
the result, build inclusion functions Cos and Tan for the cosine and tangent 
functions. • 

The library built so far may be used to treat the exercises of Section 1l.5. 
One may prefer to use a ready-made library, as suggested in the next section. 

11.4 Intervals with PROFILjBIAS 

PROFIL/BIAS is a library for interval computation. It runs under many oper­
ating systems, from UNIX to DOS via OS/2. It may also be run under WIN­
DOWS, after slight modifications of its source code. Rounding-mode control 
is provided for a variety of processors, including RS/6000, SPARe and PEN­
TIUM. It is also highly configurable (one may, for example, give up outward 
rounding in order to speed up computation). The library can be downloaded 
from 

ftp://ti3sun.ti3.tu-harburg.de/pub/profil/ 

A slightly modified version of this library (see readme. txt) may be down­
loaded from 

http://www.lss.supelec.fr/books/intervals 

Documentation for PROFIL/BIAS may be found at 

http://www.ti3.tu-harburg.de/Software/PROFILEnglisch.html 

The library consists of two layers, namely BIAS and PROFIL. 

11.4.1 BIAS 

BIAS (for Basic Interval Arithmetic Subroutines), has been written in C in 
the spirit of the FORTRAN BLAS library (for Basic Linear Algebra Subrou­
tines). It allows computation on punctual and interval scalars, vectors and 
matrices. The basic arithmetic operations, rounding controls and elementary 
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mathematical functions are implemented. Guaranteed results are obtained 
using rounding mode control for all the operations for which this is made 
possible by the IEEE 754 standard. BIAS consists of four main modules: 

• biasO handles floating-point and interval scalars; 
• bias1 handles floating-point and interval vectors; 
• bias2 handles floating-point and interval matrices; 
• biasf implements inclusion functions for the usual mathematical functions. 

As the BIAS layer is transparent to the user, it will not be described in detail 
here; see Knuppel (1993, 1994) or the documentation available on the WEB 
for more information. 

11.4.2 PROFIL 

PROFIL (for Programmer's Run time Optimized Fast Interval Library) is a 
C++ interface for BIAS, which takes advantage of the availability of classes 
and operator overloading to make statements involving interval scalars, in­
terval vectors and interval matrices syntactically identical to those involving 
their floating-point counterparts. Portability has been ensured by using stan­
dard C++, but aliases have been defined for the names of some types of 
variable, using the keyword typedef. Thus 

typedef double REAL; 

makes REAL a synonym of double. The correspondence for the most frequent 
types of variable is indicated in Table 11.1. For pointers, PROFIL/BIAS defines 
PREAL as a synonym of REAL*. More generally, any PROFIL/BIAS specific type 
preceded by P corresponds to a pointer to a variable of the type. 

Table 11.1. Some standard C++ types and their PROFIL/BIAS equivalent 

Standard C++ PROFIL/BIAS Variable type 

void VOID none 

char character 

int INT signed integer 

float single-precision floating-point number 

double REAL double-precision floating-point number 
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11.4.3 Getting started 

The next program performs the addition of intervals: 

11------------------------------------------------------
II File: add.cpp 
II Purpose: addition of INTERVALs 
#include "ival.h" II interval module of PROFIL library 

void mainO 
{ 

INTERVAL a(3,4); 
INTERVAL b(5,7); 
INTERVAL c; 
c = a + b; 

II console output 

II a = 

II b 

cout « a « " + " « b « " = " « c « endl; 
} 

[3,4] 
[5,7J 

11------------------------------------------------------

To allow compilation of this program, the modules biasO and ivaI must 
be included in the project. Addition (or any other standard operation) is 
simply written like its real counterpart. An output to the screen is performed 
using the standard insertion operator «. 

All the standard mathematical functions (Cos, Sin, Tan, Exp, Log, Logl0, 
Sqrt, Sqr ... ) are provided by the func module of PROFIL (see the func.h 
header file). The use of the func module requires the biasf module (or 
a library containing it) to be included in the project. Note that the PRO­

FIL/BIAS names of the standard mathematical functions start with capital 
letters. These functions can be evaluated with floating-point and interval 
arguments. Names starting with lower-case letters can only be used with 
floating-point arguments. 

The following example illustrates the use of elementary mathematical 
functions: 

11------------------------------------------------------
II File: standmat.cpp 
II Purpose: standard math functions for INTERVALs 
#include "ival.h" II interval module of PROFIL library 
#include "func.h" II standard functions for INTERVALs 

void mainO 
{ 

INTERVAL a(3,4); 
INTERVAL b(-2,3); 
INTERVAL c,d; 
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} 

c = Exp(a); d = Sqr(b); 

II console output 
cout « "Exp(" « a « ") 
cout « "Sqr(" « b « ") 

" « c « endl; 
" « d « endl; 

11------------------------------------------------------

11.5 Exercises on Intervals 

These exercises may indifferently be treated with YOUR LIBRARY or PRO­

FIL/BIAS. 

Exercise 11.9 Write a program to compare the values of the two following 
inclusion functions for x 2 - x at [x] = [-1, 3] : 

[f]l ([xl) = [x]2 - [x], 

[fb ([xl) = ([x] - 1/2)2 - 1/4. 

This program requires the i val module to be included in the project. • 

Exercise 11.10 Consider the function f defined by f(x) = x 2 +sin(x). Com­
pute the images obtained for [xh = [2;, 4;] and [xb = m~, 1~~;] when using 
the natural, mean, Taylor and minimal inclusion functions associated with 
f, as given in page 36. Compare the performances of these inclusion func­
~~. . 
Exercise 11.11 Consider the equation 

f(x) = 0, (11.1) 

where 

(11.2) 

The prior domains for the variables Xl, x2 and X3 are chosen as 

[-1000,0] x [-10,10] x [-3.14,3.14]. (11.3) 

The purpose of this exercise is to implement a forward-backward propagation 
algorithm (see Section 4.2.4, page 77) to compute domains for Xl, X2 and 
X3 compatible with (11.1). First, write an algorithm computing the domain 
[y] = [f] ([Xl]' [X2] ,[X3l) by forward propagation, and check that 0 E [y]. 
Then, using Table 4.6, page 79, implement backward propagation. Does it 
lead to an efficient reduction? Remember to check whether intersections are 
empty, which would indicate that there is no solution to (11.1) in (11.3). Try 
other prior domains. • 
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11.6 Interval Vectors 

In order to build a class of interval vectors, a few more notions of C++ are 
needed. Several approaches are available to create vectors. The simplest one 
is to use an array. For instance 

float a[5]; 

creates an array a of five floats, i.e., allocates the space for five floats 
in the memory of the computer. Access to the entries of this array is then 
performed as follows: 

a [0] 
a [3] 
a[4] 

4; 
3.5; 
a[0]*a[3]; 

II writes on first entry of a 

II writes on last entry of a 

Note that, contrary to mathematical usage, the first element of this ar­
ray is indexed by 0 and not by 1. The size of the array is fixed at compile 
time, which lacks flexibility. To be able to handle dynamic arrays (i.e., arrays 
with variable sizes) one must resort to the use of pointers (Section 1l.2.3, 
page 304). A pointer to the memory location where the first entry of the 
vector will be stored must first be created, for example, by 

float *pa; II pa points to a float or an array of floats 

Memory must then be allocated dynamically (i. e., at run time) to store n 
floats. This is performed by the statement 

pa = new float[n]; II an array of n floats is created 

Of course, the positive integer n must have been given a suitable numerical 
value. Access to the entries of the array may then be performed as follows: 

pa[n-l] = pa[O] + pa[4] ; II writes on last entry of pa 

To protect oneself against resource leak, care must be taken to free mem­
ory space when it is no longer needed. This is performed with the keyword 
delete for scalars and delete [] for arrays. 

delete[] pa; II frees the memory allocated to pa 

Consider now an array a of five floats. The statement 

a[5] = 6.4; II writes outside the array 

assigns a value to the sixth entry of a, which is outside the space allocated to 
this array. As a result, memory space in principle available for other tasks is 
overwritten, with possibly fatal consequences, although no error is generated 
during compilation. This can be avoided if access control is implemented. In 
C++, vector classes can be defined to take care of these problems of memory 
management, as will be seen in the next section. 
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11.6.1 INTERVALVECTOR class 

An interval vector can be characterized by its number of entries, which may 
be stored in an integer, and the address of the memory location where its 
first entry is placed. This address may be stored in a pointer to an INTERVAL. 
The integer and pointer form the private properties of an INTERVALVECTOR, 
whose header, called i val vec. h again for compatibility with PROFIL/BIAS, 

may be as follows: 

11------------------------------------------------------
II File: ivalvec.h 
II Purpose: specification of the INTERVAL_VECTOR class 
#ifndef INTERVAL_VECTOR 
#define INTERVAL_VECTOR 

#include "ival.h" 
#include <iostream.h> 

II to use INTERVALs 
II to use basic unformatted ilo 

class INTERVAL_VECTOR{ 
private: 

int nElements; 
INTERVAL* theElements; 

public: 
II constructors 

INTERVAL_VECTOR() II default 
{nElements = 0; theElements 

INTERVAL_VECTOR(int n) 
NULL;} 

{II some code checking that n > 0 
II could be inserted here 

II initialized 

nElements = n; theElements new INTERVAL[n] ;} 
INTERVAL_VECTOR(const INTERVAL_VECTOR&); II copy 

II destructor 
-INTERVAL_VECTOR() 

{delete[] theElements;} 
II other member functions 

II assignment 
INTERVAL_VECTOR& operator=(const INTERVAL_VECTOR&); 

II fonction call operator 
INTERVAL& operator()(int); 

II friend functions 
II read-only access functions 

friend int Dimension(const INTERVAL_VECTOR& a) 
{ return a.nElements; } 

II overloaded operators 
friend INTERVAL_VECTOR operator+ 

(const INTERVAL_VECTOR&, const INTERVAL_VECTOR&); 
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friend INTERVAL_VECTOR operator-
(const INTERVAL_VECTOR&, const INTERVAL_VECTOR&); 

friend INTERVAL_VECTOR operator* 
(const INTERVAL_VECTOR&, const INTERVAL&); 

friend ostream& operator«(ostream&, 
const INTERVAL_VECTOR&); 

I I ... 
}; 

#endif 
11-----------------------------------------------------

In what follows, the various parts of this header will be explained, and the 
reader will be asked to refer to it. 

Remark 11.5 The various PROFIL/BIAS vector classes contain one more 
private property, the integer IsTemporary which serves as a flag indicating 
if a vector is the temporary result of an intermediary operation that can be 
destructed upon completion. Using this flag improves code efficiency, at the 
cost of some restriction in syntax. This point will not be considered in YOUR 

LIBRARY. • 

11.6.2 Constructors, assignment and function call operators 

Dynamic allocation of memory is necessary whenever a non-empty vector is 
created. This is performed by all constructors of the INTERVALVECTOR class, 
with the exception of the default constructor that creates a vector with no 
entry. As an illustration, consider the following copy constructor, to be placed 
in ivaI vec . cpp (the default and initialized constructors, much shorter, are 
in ivaI vec. h): 

11------------------------------------------------------
II File: ivalvec.cpp 
II Purpose: implementation of the INTERVAL_VECTOR class 
#include "ivalvec.h" II to use INTERVAL_VECTORs 

INTERVAL_VECTOR: : INTERVAL_VECTOR 

{ 

} 

(const INTERVAL_VECTOR& v) 

nElements = v.nElements; 
if (v.theElements == NULL) theElements = NULL; 
else theElements = new INTERVAL [nElements] ; 
for (int i = 0; i < nElements; i++) 

theElements[i] = v.theElements[i]; 

I I ... 
11------------------------------------------------------
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Remark 11.6 For the sake of simplicity, the content of each component of 
v is copied here using a loop. This could be done much faster by copying 
the content of the array pointed by v.theElements into the array pointed by 
theElements, using the memcpy function of the standard memory module. • 

The number of entries of the new instance of the INTERVALVECTOR class 
is thus made identical to that of v, and the same amount of memory as for v 
is dynamically allocated. Each entry of v is then copied into its counterpart 
in the array allocated by new. When the allocation fails for lack of memory, 
new returns a NULL pointer, which can be used to detect and handle this error 
(see Section 11.13, page 349). 

The destructor is systematically called when an object is no longer used. 
It takes care of freeing the corresponding memory, as shown in ivaI vec . h 
above. 

The assignment operator resembles the copy constructor: 

//------------------------------------------------------
/ / File: 
/ / ... 

ivalvec.cpp (continued) 

INTERVAL_VECTOR& INTERVAL_VECTOR: :operator= 

{ 

} 

(const INTERVAL_VECTOR& v) 

if (this == &v) return (*this); 
if (nElements != v.nElements) 

{ nElements = v.nElements; delete[] theElements; } 
if (v.theElements == NULL) theElements = NULL; 
else theElements = new INTERVAL [nElements] ; 
for (int i = 0; i < nElements; i++) 

theElements[i] = v.theElements[i]; 
return (Hhis); 

/ / ... 
//------------------------------------------------------

First, the address of v is compared to that of the invoking object (this) 
to prevent self assignment. If the two vectors do not have the same number 
of elements, the invoking object must be re-sized. The memory allocated 
to theElements is then freed before being reallocated. The content of v is 
then copied to this. A reference to the calling object is finally returned to 
allow the cascading of assignments, as in a = b = c; where a, band care 
INTERVALVECTORs. 

Exercise 11.12 Based on the model of ivalvec.h, write the header file 
vector.h of a module implementing vectors of doubles. • 

The function call operator, denoted by operator () ( ... ), can be used for 
accessing entries of vectors under boundary control. A possible implementa­
tion is as follows: 
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11------------------------------------------------------
I I File: ivalvec.cpp (continued) 
I I ... 
#include <stdlib.h> II for the exit function 
I I ... 
INTERVAL& INTERVAL_VECTOR: :operator() (int i) 
{ 

} 

if ((i < 1) I I (i > nElements)) II basic error handling 
{ cout « "attempt to violate the boundary of " 

« "INTERVAL_VECTOR" « (*this) « endl; 
exit(EXIT_FAILURE); } 

return (*(theElements + i - 1)); II returns ith entry 

I I ... 
11------------------------------------------------------

The index i is first tested to determine whether it belongs to the interval 
of valid indices (from 1 to nElements). Either an error is generated and the 
instruction exit (EXILFAILURE) causes the program to abort, or the refer­
ence to the INTERVAL corresponding to the index is returned. This reference 
provides read-write access to the entries of the vector. 

INTERVAL_VECTOR a(4); II a 4-component vector is created 
a(3) 4; 
a(4) a(3); 
a(6) 0; II generates an error 

The possibility of inserting instructions to detect and handle errors in the 
code of member functions has been illustrated on the function call operator. 
The lines that would allow a similar detection and handling will be omitted 
from the code of the next functions, for the sake of brevity. In practice, 
they should not be dispensed with if a robust library is to be built (see also 
Section 11.13, page 349). 

Remark 11.7 operator() ( ... ) has been implemented in such a way that 
the smallest valid index is 1 (as usual in mathematics). When i is equal to 1, 
what is returned is *(theElements), i.e., the first entry of the vector. • 

Remark 11.8 The test if ((i<1) II (i>nElements)) involves the logical OR 

operator, written as I I. The logical AND is written as && and the complemen­
tation operator ---, is denoted by an exclamation mark. For instance, ! (5)0) 

holds false. • 

11.6.3 Friend functions 

The first friend function in ivaI vec. h provides read-only access to the size 
of the vector. The next friend functions extend addition, subtraction and 
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multiplication by a scalar to INTERVALVECTORs. This is done by component­
wise application of the corresponding scalar operators. The overloading of 
operator+ for two INTERVALVECTORs is, for instance, performed by 

11------------------------------------------------------
I I File: ivalvec.cpp (continued) 
I I ... 
INTERVAL_VECTOR operator+(const INTERVAL_VECTOR& a, 

{ 

} 

const INTERVAL_VECTOR& b) 

II creates a vector to store the result 
INTERVAL_VECTOR res(a.nElements); 
for (int i = 1; i <= a.nElements; i++) 

res(i) = a(i) + b(i); 
return (res); 

I I ... 
11------------------------------------------------------

Here, component-wise addition is performed. This implementation is far 
from being optimal, because for each addition of scalar intervals, the over­
loaded function call operator is called three times, which involves as many 
unnecessary checkings of index ranges. This addition would be implemented 
more efficiently as 

res.theElements[i-1] a.theElements[i-1] 
+ b.theElements[i-1]; 

which does not use the function call operator. 

Exercise 11.13 Supplement ivalvec.h and ivalvec.cpp with the overload­
ing of 

1. operator- for the subtraction of two INTERVALVECTORs, 
2. operator* for the product of an INTERVALVECTOR by an INTERVAL, 
3. operator* for the product of an INTERVAL by an INTERVALVECTOR, 
4. operator« to obtain a basic output of an INTERVALVECTOR to a stream. 

This function may be implemented as a friend function with the header 

friend ostream& operator«(ostream&, 
const INTERVAL_VECTOR&); 

• 
Exercise 11.14 Supplement ivalvec.h and ivalvec.cpp with a friend func­
tions evaluating the INTERVALVECTOR corresponding to the interval hull of 
two INTERVALVECTORs. The header of this function may be 
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friend INTERVAL_VECTOR Hull(const INTERVAL_VECTOR& a, 
const INTERVAL_VECTOR& b); 

• 
Exercise 11.15 Supplement ivalvec.h and ivalvec.cpp with afriendfunc­
tion evaluating the intersection of two INTERVALVECTORs. The header of this 
function may be 

friend int Intersection(INTERVAL_VECTOR& r, 
const INTERVAL_VECTOR& a, const INTERVAL_VECTOR& b); 

where r is the intersection of a and b. This function should return 1 if the 
interval vectors intersect and 0 otherwise. • 

Exercise 11.16 Supplement ivalvec.h and ivalvec.cpp with friend func­
tions providing a test to check the inclusion of an interval vector in another 
one. This could be done by overloading operator<=, and a possible header is 

friend int operator<=(const INTERVAL_VECTOR& a, 
const INTERVAL_VECTOR& b); 

The test should return 1 if a is included in band 0 otherwise. • 
11.6.4 Utilities 

The implementation of algorithms such as SIVIA requires specific tools, to be 
stored in a module util. This module implements, for instance, the bisection 
of an interval vector x across its ith dimension via the functions Lower and 
Upper, which compute the two interval vectors resulting from the bisection. 

11------------------------------------------------------
I I File: util.h 
II Purpose: INTERVAL utilities 
#ifndef __ UTILITIES 
#define __ UTILITIES 
#include "ivalvec.h" II to use INTERVAL_VECTORs 

INTERVAL VECTOR Lower (const INTERVAL_VECTOR& x, int i); 
INTERVAL_VECTOR Upper (const INTERVAL_VECTOR& x, int i); 
I I ... 
#endif 
11------------------------------------------------------

Remark 11.9 In the rest of the book, we chose to call left box and right 
box the two boxes resulting from a bisection, by analogy with the left and right 
subtrees (see Section 3.3.2, page 51). Here, lower and upper are used instead 
of left and right to ensure compatibility with PROFIL/BIAS. • 
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Upper may be implemented as follows: 

11------------------------------------------------------
II File: util.cpp 
II Purpose: INTERVAL utilities 
#include "util.h" 

INTERVAL_VECTOR Upper (const INTERVAL_VECTOR& x, int i) 
{ 

} 

INTERVAL_VECTOR t(x); 
t(i) = INTERVAL(Mid(x(i)), Sup(x(i))); 
return t; 

I I ... 
11------------------------------------------------------

Exercise 11.17 Implement Lower. 

11. 7 Vectors with PROFIL/BIAS 

Three vector classes are available in PROFIL/BIAS. 

Module name Class name Description 

vector VECTOR vectors of doubles 

intvec INTEGER_VECTOR vectors of integers 

ivaI vec INTERVALVECTOR vectors of intervals 

• 

The use of the INTERVALVECTOR class requires the biasO and biasl modules 
(or a library containing them) to be included in the project. The following 
simple program illustrates some basic features of vectors implemented using 
PROFIL/BIAS. 

11------------------------------------------------------
II File: addvect.cpp 
II Purpose: addition of two INTERVAL_VECTORs 
#include "ivalvec.h" II INTERVAL_VECTORs library 

void mainO 
{ 

INTERVAL_VECTOR a(3); 
INTERVAL_VECTOR b(3); 
INTERVAL_VECTOR c; 

II the dimension of a 
II and b is three 

II c is not initialized 



} 

11.8 Exercises on Interval Vectors 327 

a(l) INTERVAL(5,7); 
a(2) INTERVAL(-2,3); 
a(3) -2; II all components of a are now initialized 
b = a; 
b(3) = INTERVAL(4,5); 
c = a + b; 

II console output 
cout « a « " + " « b « " = " « c « endl; 

11------------------------------------------------------

After the declaration of three INTERVALVECTORs, two of them are initialized 
and added. The result is stored in the third, and the result displayed on the 
console. The size of c is adjusted to that of the result of a + b; memory 
management is thus transparent to the user. 

Other functions such as multiplication or division of a vector by a scalar, 
scalar product, etc. are also available, see the PROFIL/BIAS documentation. 

11.8 Exercises on Interval Vectors 

The aim of this section is to build and use a first version of SIVIA. Only the 
tools developed in YOUR LIBRARY will be required, but all the exercises of 
this section may also be treated with PROFIL/BIAS. 

The functions to be developed will be placed in a module called s i via. 

11------------------------------------------------------
I I File: sivia.h 
II Purpose: first version of Sivia 
#include "ivalvec.h" II to use INTERVAL_VECTORs 

II defines a new type "interval Booleans" 
typedef enum{IB_TRUE, IB_FALSE, IB_INDET} INTERVAL_BOOL; 
II PIBT stands for "Pointer to an Interval Boolean Test" 
typedef INTERVAL_BOOL (*PIBT) (const INTERVAL_VECTOR&); 
double MaxDiam (const INTERVAL_VECTOR&, int&); 
void Sivia (PIBT, const INTERVAL_VECTOR&, double); 
11------------------------------------------------------

s i via. h starts with the definition of two new types of variable (using the key­
word typedef). The first new type INTERVAL...BOOL corresponds to interval 
Booleans (see Section 2.5.1, page 38), i.e., to variables that can take their val­
ues in the set defined after the keyword enum, namely IB_TRUE, IB...FALSE, and 
IB_INDET for indeterminate. The prefix IB_ was introduced to avoid conflicts 
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with TRUE and FALSE of PROFIL/BIAS. The second new type PIBT corresponds 
to pointers to interval Boolean tests. It allows a test to be passed as a pa­
rameter of a function. Thus, an interval Boolean test can be passed to Si via 
as a parameter. This makes Si via flexible by allowing it to work on different 
tests. 

The syntax of the definition of a type of pointer to a function is 

typedef return_type (*type_name) (type of the parameters); 

A pointer of the type PIBT thus points to a function having a constant refer­
ence to an INTERVALVECTOR as a parameter and returning an INTERVAL...BOOL. 
The header of the function implementing the test should look like 

INTERVAL_BOOL Name_of_the_test (const INTERVAL_VECTOR&); 

Once this test has been defined, Si via can be called by 

Sivia(Name_of_the_test, X, eps); 

where X is the predefined search box, and eps the predefined precision factor 
(see Section 3.4.1, page 55). To characterize a set defined by another test, it 
suffices to create a new function similar to Name_oLthe_test. 

Exercise 11.18 Build an interval Boolean test Iva1Boo1Test to be used by 
Si via to characterize the set 

s = {(x,y) E JR;.2 I x4 - 4x2 + 4y2 E [-0.1,0.1]}. 

This test should return IB_TRUE iJ[x] 4 - 4 [X]2 + 4 [y]2 C [-0.1,0.1]' IBYALSE 
if [x]4 - 4 [X]2 + 4 [y]2 n [-0.1,0.1] = 0 and IB_INDET otherwise. • 

The result of the next exercise will be used by Si via to select the dimen­
sion across which indeterminate boxes will be bisected. 

Exercise 11.19 Code MaxDiam using the Diam function provided in the ivaI 
module. MaxDiam should return a double containing the width of the box 
passed as a parameter. The index of the first component with maximal width 
of this box should be passed back to the calling function by reference to an 
into • 
Exercise 11.20 Code Si via using a recursive structure (i.e., the routine 
will call itself). Iva1BoolTest should be called first. If its result is true or 
false, then a message indicating the result should be displayed, followed by a 
return statement. Else the box is indeterminate, and its width should be com­
puted using MaxDiam. If it turns out to be lower than the precision parameter 
eps, then a message should be displayed, followed by a return statement. Else, 
the current box should be bisected using Lower and Upper, and Si via should 
be called for each of the resulting sub boxes. • 

Solutions to Exercises 11.18 to 11.20 may be found below: 
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11------------------------------------------------------
II File: sivia.cpp 
II Purpose: first version of Sivia 
#include "sivia.h" 
#include "util.h" II to use Lower and Upper 

int MaxDiam(const INTERVAL_VECTOR& x) 
{ 

} 

int mdcomp = 1; II initialization 
double diam = Diam(x(mdcomp»; 
II the widths of all components must be compared 
for (int i = 2; i <= Dimension(x); i++) 

if (Diam(x(i» > diam) II a component with a larger 
{ diam = Diam(x(i»; mdcomp = i; } II width found 

return mdcomp; 

void Sivia(PIBT IBTest, const INTERVAL_VECTOR& x, 

{ 

} 

int test = IBTest(x); 
if (test == IB_TRUE) 

double eps) 

{ cout « x « " is included in S" « endl; 
return; } 

if (test == IB_FALSE) 
{ cout « x « " does not intersect S" « endl; 

return; } 

int maxdiamcomp; 
if (test == IB_INDET) 
{ if (MaxDiam(x, maxdiamcomp) < eps) 

} 

{ cout « x « " is indeterminate" « endl; 
return; } II x is too small to be bisected 

II x is bisected into xlow and xup ... 
INTERVAL_VECTOR xlow = Lower(x, maxdiamcomp); 
INTERVAL_VECTOR xup = Upper(x, maxdiamcomp); 

II and Sivia is called recursively 
Sivia(IBTest, xlow, eps); 
Sivia(IBTest, xup, eps); 

11------------------------------------------------------

To use SIVIA, it now suffices to define the test to be inverted and to write 
the function main (), which will call Si via (): 
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11------------------------------------------------------
II File: siviademo.cpp 
II Purpose: first test of Sivia 
#include "sivia.h" 
#include "func.h" 

II Definition of the test 
INTERVAL_BOOL IvalBoolTest (const INTERVAL_VECTOR& x) { 

INTERVAL z = Sqr(x(1)) * (Sqr(x(1)) - INTERVAL(4)) 

} 

+ Sqr(x(2)) * INTERVAL(4); 
INTERVAL r; II temporary interval, which will contain 

II the intersection of z and [-0.1,0.1] 
if (z <= INTERVAL(-0.1,0.1)) return IB_TRUE; 
if (Intersection(r, z, INTERVAL(-0.1,0.1)) == 0) 

return IB_FALSE; 
return IB_INDET; 

void mainO 
{ 

} 

INTERVAL_VECTOR x(2); 
x(1) = INTERVAL(-5,5); 
x(2) = INTERVAL (-5 ,5) ; 
Sivia(IvalBoolTest, x, 0.05); 

II search box 

II eps is set to 0.05 

11------------------------------------------------------

This version of SIVIA produces only a console output. A graphic output 
may be added, but this is beyond the scope of this book. At 

http://www.lss.supelec.fr/books/intervals 

the reader will find a version of SIVIA that writes the solution set in a file 
that can be imported, e.g., by MATLAB, to be plotted. A figure similar to 
that on page 62 is then obtained. 

Exercise 11.21 Code the interval Boolean test IBTAnnular to test a box of 
lllR 2 for inclusion in the area Sc between circles centred on the origin and with 
radii 1 and 2. Characterize Sc using Sivia. • 

Exercise 11.22 Code the interval Boolean test IBTUpRight to test a box of 
lIlR2 for inclusion in the set Sq corresponding to the upper right quadrant of 
lR2 . Characterize Sq using Si via. • 

Exercise 11.23 Code the interval Boolean test IBTInt to test a box of lllR2 

for inclusion in the set Si = Sc n Sq) where Sc and Sq are defined as zn 
Exercises 11.21 and 11.22. Characterize Si using Sivia. • 
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Exercise 11.24 Evaluate the real and imaginary parts of P(jw, p), as de­
fined in Example 7.9, page 207. Using Sivia, prove that the CSP 

1i: (P(jw,p) = O,p E [p], wE [0 rad/s, 24 rad/s]) 

has no solution and that the polynomial P( s, p) is robustly stable. • 

11.9 Interval Matrices 

Building a complete INTERVAL...MATRIX class is a considerable task, because of 
the number of member functions needed to implement all the possible inter­
actions with other classes. This is why we shall limit ourselves to giving some 
hints about how this has been done in PROFIL/BIAS, before presenting some 
features of this library that will be useful to implement the algorithms de­
scribed in this book. Examples of such implementations will form the subject 
of exercises. 

The size of a matrix is characterized by its numbers of rows and columns, 
represented here by the two positive integers nRows and nCo1s. For its storage, 
the matrix is transformed into a one-dimensional array by stacking its rows. 
The matrix entry located at the rth row and cth column is stored at the 
(r-l) *nCo1s+ (c-l)th memory location after that designated by the pointer 
theElements. The memory location pointed to by theElements is thus used 
to store the upmost and leftmost entry. The header of the interval matrix 
library i valmat may be 

11------------------------------------------------------
I I File: ivalmat.h 
II Purpose: specification of the INTERVAL_MATRIX class 
#include "ivalvec.h" II to use INTERVAL_VECTORs 

class INTERVAL_MATRIX{ 
private: 

int nRows, nCols; 
INTERVAL *theElements; 

public: 
II constructors 

INTERVAL_MATRIX() 
{nRows = 0; nCols = 0; theElements 

INTERVAL_MATRIX(int r, int c) 
{nRows = r; nCols = c; 

theElements = new INTERVAL[r * c];} 
I I ... 

II destructor 

I I default 
NULL;} 

II initialized 

-INTERVAL_MATRIX() {delete[] theElements;} 
II other member functions 
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II function call operator 
INTERVAL& operator() (int r, int c) 
{ return (theElements[(r-1) * nCols + (c-1)]); } 

I I ... 
II friend functions 

II read-only access functions 
friend int RowDimension(const INTERVAL_MATRIX& x) 

{ return x.nRows; } 
friend int ColDimension(const INTERVAL_MATRIX& x) 

{ return x.nCols; } 
I I ... 
}; 

11------------------------------------------------------

The default constructor builds an empty matrix. The initialized construc­
tor creates an array of r*c intervals beginning at the memory location 
theElements. The destructor frees the allocated memory. 

As for interval vectors, the function call operator is used to access a given 
entry of the matrix. A reference to this entry is returned to allow a possible 
modification of its value, taking into account how the matrix has been stored. 
Assignment, addition and subtraction of matrices, multiplication and division 
by scalars are performed as in the INTERVALVECTOR class. 

Classes for matrices of reals or integers are built according to the same 
model. From now on, the reader is urged to switch to the matrix classes 
provided by PROFIL/BIAS. 

11.10 Matrices with PROFIL/BIAS 

Three matrix classes are provided by PROFIL/BIAS. 

Module name Class name Description 

matrix MATRIX matrix of doubles 

intmat INTEGER...MATRIX matrix of integers 

i valmat INTERVAL...MATRIX matrix of intervals 

The use of the INTERVAL...MATRIX class requires the biasO, bias1 and bias2 
modules (or a library containing them) to be included in the project. The 
following example illustrates some features of the INTERVAL...MATRIX class. 

11------------------------------------------------------
II File: matxdemo.cpp 
II Purpose: using matrices 
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#include "ivalvec.h" 
#include "ivalmat.h" 

II INTERVAL_VECTOR library 
II INTERVAL_MATRIX library 

void mainO 
{ 

} 

INTERVAL_MATRIX a(4,3); II a has 4 rows and 3 columns 
INTERVAL_VECTOR b(3) ; 
INTERVAL_VECTOR c; II c is not initialized 

Initialize(a,INTERVAL(-1,1));11 all entries are [-1,1] 
a(2,3) = INTERVAL(-2,3); II entry is now [-2,3] 
a(3,3) = -2; II entry is now [-2,-2] 
c = Row(a,2); II access to 2nd row 
c = Col(a,3); II access to 3rd column 
b(1) = 1; b(2) INTERVAL(1,2); b(3) = INTERVAL(4,5); 

c = a * b; II product of a matrix by a vector 

II console output 
cout « a « " * " « b « " = " « c « endl; 

11------------------------------------------------------

Many other functions are available. Inf, Sup, Mid, Diam respectively com­
pute the lower and upper bounds, the centres and the widths of all the entries 
of an INTERVALMATRIX. The results are stored in a MATRIX. Useful functions 
are also provided in the util module, such as 

• MATRIX Inverse (MATRIX&) ; which returns the inverse of a matrix of 
doubles, 

• MATRIX Transpose (MATRIX&) ; which returns the transpose of a matrix of 
doubles, 

• MATRIX Id(INT n); which returns an n x n identity matrix. 

These functions are not available for the INTERVALMATRIX class. The reader 
is invited to have a look at the self-explanatory header i valmat . h or at the 
documentation of PROFIL/BIAS. 

11.11 Exercises on Interval Matrices 

In this section, PROFIL/BIAS will be used to implement some of the tools 
presented in Section 4.2 to solve CSPs. These tools will be implemented in a 
new contractors module. 

Exercise 11.25 (Intervalization of Gauss elimination) The problem is 
to find a box enclosure of the solution set of the CSP 
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H: (A E [A], b E [b], p E [P]) . 

Ap- b = 0 
(11.4) 

The Gauss-elimination contractor presented in Section 4.2.2, page 70, at­
tempts to reduce the domain of p. This involves only basic operations on 
interval vectors and matrices. The header of the contractors module may 
include 

11------------------------------------------------------
I I File: contractors.h 
II Purpose: implementation of some contractors 
#include "ivalmat.h" II to use interval matrices 

II contractor based on Gauss elimination 
INTERVAL_VECTOR GaussElimination(INTERVAL_MATRIX A, 

INTERVAL_VECTOR b, INTERVAL_VECTOR p, INT& err); 
I I ... 
11------------------------------------------------------

l. Implement GaussElimination, based on Table 4.3, page 72. Note that 
this contractor modifies the parameters A and b. To prevent this, they 
may be passed by value. An err flag may be used to return the error status 
of the procedure. If a problem has occurred, this flag can be assigned any 
value but 0, 0 indicating that no error has been detected. 

2. Apply GaussElimination on the domains 

( 
[4,5] [-1,1] [l.5,2.5]) 

[A] = [-0.5,0.5] [-7, -5] [1,2] , 

[-l.5, -0.5] [-0.7, -0.5] [2,3] 

(1l.5) 

(
[3,4]) ([-10,10]) 

[b] = [0,2] and [p] = [-10,10] . 

[3,4] [-10,10] 

(1l.6) 

3. Check that this contractor is idempotent. • 
The fixed-point methods presented in Section 4.2.3, page 72, attempt to 

solve the CSP 

H: (f(x) = O,X E [xl) (1l. 7) 

using an algorithm '¢ such that 

f(x) = 0 {o} x = '¢(x). (1l.8) 

The next two exercises are devoted to building contractors based on this idea. 
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Exercise 11.26 (Gauss-Seidel contractor) The Gauss-Seidel contractor 
presented in Section 4.2.3, page 73, uses a transformation of the CSP (11.4) 
and evaluates 

diag([A])-1 ([b]- extdiag([A]) [p]). 

The algorithm to be coded should build diag([A])-1, using the inverse 
of each diagonal entry of [A]; extdiag([A]) is obtained by keeping the non­
diagonal entries oj[ A] and forcing the diagonal entries to zero. The remaining 
computations involve only simple vector and matrix operations. The header 
of the contractors module may be supplemented with 

II contractor based on Gauss-Seidel elimination 
INTERVAL_VECTOR GaussSeidelIteration(INTERVAL_MATRIX A, 

INTERVAL_VECTOR b, INTERVAL_VECTOR p, INT& err); 

Again, the err flag may be used to signal problems, e.g., during the construc­
tion of diag([A]) -1, due to the presence of an interval containing zero in the 
diagonal of [A]. 

1. Implement the Gauss-Seidel contractor. 
2. Apply it on the domains defined by (11.5) and (11.6). 
3. Iterate application; does the contractor converge? • 

Exercise 11.27 (Krawczyk contractor) The Krawczyk contractor has 
been presented in Section 4.2.3, page 75. Consider the CSP 

H : (f(x) = 0, x E [x]), 

with f : ]R2 ---+ ]R2, and 

{ 
!I(X1,X2) = xi - 4X2, 

h(x1, X2) = x~ - 2X1 + 4X2, 

and 

[x] = [-0.1,0.1] x [-0.1,0.3]. 

The Jacobian matrix for f is 

J, ~ (~~ 2X~: 4 ) 

(11.9) 

(11.10) 

(11.11) 

(11.12) 

Implement the algorithm of Table 4.5, page 76, for this example. The Inverse 
function of the util module of PROFIL/BIAS may be helpful. Note that build­
ing a generic Krawczyk contractor would require the use of pointers to func­
tions taking an interval vector as a parameter and returning an interval vector 
(for [flJ and an interval matrix (for [JflJ. The implementation and the use 
of such pointers are similar to those of pointers to interval Boolean tests 
described in Section 11.B. • 
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The results obtained by the Gauss-elimination and Gauss-Seidel contrac­
tors may be improved by an appropriate preconditioning of the system of 
equations; see Section 4.3.2, page 75. This is illustrated by the following ex­
ercise. 

Exercise 11.28 (Preconditioning) In (11.4), [Aj and [b] are multiplied 
by the preconditioning matrix (mid ([A])) -1 before applying a contractor. 

1. Add the two following contractors to the contractors module: 

II contractors using preconditioning 
INTERVAL_VECTOR PrecGaussElimination(INTERVAL_MATRIX A, 

INTERVAL_VECTOR b, INTERVAL_VECTOR p, INT& err); 
INTERVAL_VECTOR PrecGaussSeidelIteration(INTERVAL_MATRIX A, 

INTERVAL_VECTOR b, INTERVAL_VECTOR p, INT& err); 

The Inverse function of the util module of PROFIL/BIAS may be used to 
evaluate (mid ( [A])) -1 . 

2. Compare the performances obtained with the preconditioned contractors 
to those obtained without preconditioning. • 

11.12 Regular Subpavings with PROFIL/BIAS 

Regular subpavings as described in Chapter 3 are not supported by PRO­

FIL/BIAS. The aim of this section is thus to implement regular subpavings as 
basic objects for set inversion and image evaluation. 

Subpavings are stored using binary trees. Although such trees are classi­
cally used in sorting algorithms and symbolic computation, their implemen­
tation as may be found in standard template libraries is not adequate for our 
purpose and many of the functions needed are not implemented. This is why 
a specific implementation will be developed. 

11.12.1 NODE class 

The implementation of subpavings is based on the NODE class. Each node 
of the binary tree representing a subpaving is associated with a box of this 
subpaving. This node also contains pointers to the nodes corresponding to the 
left and right children of this box. The NODE class thus encapsulates a pointer 
to an INTERVALVECTOR and two pointers to NODEs. A SUBPAVING will then 
be represented by a pointer to a NODE. The header of a module implementing 
the NODE class (and therefore SUBPAVINGs) may be 



11.12 Regular Subpavings with PROFIL/BIAS 337 

11------------------------------------------------------
I I File: subpaving.h 
II Purpose: definition of NODE and SUBPAVING 
#include "ivalvec.h" II to use INTERVAL VECTORs 
#include <iostream.h> II for standard i/o 

class NODE; 
typedef NODE* SUBPAVING; II makes SUBPAVING an alias of 

II pointer to a NODE 
class NODE 
{ 

private: 
INTERVAL_VECTOR *theBox; 
SUBPAVING leftChild; 
SUBPAVING rightChild; 

public: 
II constructors 

NODE() I I default 
{ theBox = NULL; 

leftChild = NULL; rightChild = NULL; } 
NODE(const INTERVAL_VECTOR& v) II initialized 
{ theBox = new INTERVAL_VECTOR(v); 

leftChild = NULL; rightChild = NULL; } 
NODE(const NODE& n); II copy 

II destructor 
-NODE() 
{ delete theBox; 

delete leftChild; delete rightChild; } 
II friend functions 

}; 

friend INTERVAL_VECTOR Box(SUBPAVING a) 
{ return (*a->theBox); } 
friend SUBPAVING LeftChild(SUBPAVING a) 
{ return a->leftChild; } 
friend SUBPAVING RightChild(SUBPAVING a) 
{ return a->rightChild; } 
friend bool IsEmpty(SUBPAVING a) 
{ return ((a == NULL) I I (a->theBox == NULL)); } 
friend bool IsLeaf(SUBPAVING a) 
{ return (!IsEmpty(a) && IsEmpty(a->leftChild) 

&& IsEmpty(a->rightChild)); } 
friend ostream& operator«(ostream&, SUBPAVING); 

11------------------------------------------------------
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The default constructor of a NODE sets all its properties to NULL. A 
SUBPAVING pointing to such a node, as created, for example, by 

SUBPAVING A = new NODE() ; 

is considered to be empty. Another useful representation of an empty sub­
paving is the NULL-valued SUBPAVING, created, for example, by 

SUBPAVING B = NULL; 

Although A and B have been created differently, they will behave in the same 
way in the algorithms to be presented. The initialized constructor defines a 
NODE that reduces to a leaf and thus contains only an INTERVALVECTOR, and 
two NULL-valued pointers. Finally, the copy constructor presented below has 
a recursive structure similar to that already used in SIVIA. Such a recursive 
structure is typical of computation on binary trees. 

11------------------------------------------------------
II File: subpaving.cpp 
II Purpose: implementation of NODE and SUBPAVING 
#include "subpaving.h" II to use SUBPAVINGs 

NODE: :NODE(const NODE& n) II copy constructor 
{ theBox = new INTERVAL_VECTOR(*n.theBox); 

II recursion on the children 
if (n.leftChild) 

leftChild = new NODE(*n.leftChild); 
else leftChild = NULL; 
if (n.rightChild) 

rightChild = new NODE(*n.rightChild); 
else rightChild = NULL; } 

11------------------------------------------------------

The INTERVALVECTOR copy constructor is first called to copy theBox. The 
NODE copy constructor is then recursively called on the nodes associated with 
the left and right subpavings, if they exist. The destructor, implemented in 
subpaving. h, shares the same recursive structure: delete leftChild and 
delete rightChild implicitly call the destructor on the left and right sub­
pavings, after releasing the memory allocated to theBox. 

The friend functions listed in subpaving. h allow access to some proper­
ties of SUBPAVINGs. Box, LeftChild and RightChild provide access to the 
properties of the subpaving passed as their argument. IsEmpty and IsLeaf 
respectively test whether a subpaving is empty and whether it corresponds 
to a leaf. 

Exercise 11.29 Implement operator« to provide a basic output to streams 
for SUBPAVINGs. Only boxes corresponding to leaves may be inserted. • 
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11.12.2 Set inversion with subpavings 

SIVIA (Section 3.4.1, page 55) may be considered as a basic function manip­
ulating subpavings; this is why it will be implemented as a friend of the NODE 
class. The header subpaving. h may thus be supplemented as follows: 

11------------------------------------------------------
II File: subpaving.h (continued) 
II Purpose: definition of NODE and SUBPAVING 
II and of functions manipulating subpavings 
I I ... 
#include "util.h" 

previously included modules 
II to use Lower and Upper 

II define type "interval Booleans" 
typedef enum{IB_TRUE, IB_FALSE, IB_INDET} INTERVAL_BOOL; 
II define type "pointer to an interval Boolean test" 
typedef INTERVAL_BOOL (*PIBT) (const INTERVAL_VECTOR&); 
I I ... 
class NODE 
{ 

I I ... 
friend SUBPAVING Sivia (PIBT, SUBPAVING, double); 

}; 

II utility function 
double MaxDiam (INTERVAL_VECTOR&, int&); 

11------------------------------------------------------

This version of SIVIA returns a subpaving, contrary to the version of page 327. 
The two versions can coexist, as C++ allows function overloading. Depending 
on the types of the arguments, one or the other function will be called. An 
example of a call to SIVIA for subpavings is 

SUBPAVING X = Sivia(Name_of_the_test, S, eps); 

where S is a predefined search subpaving, Name_oLthe_test is an interval 
Boolean test defining the set to be characterized (see Section 11.8, page 327) 
and eps is the precision factor. The solution subpaving X is returned. 

MaxDiam can be implemented in subpaving. cpp in the same manner as 
in Section 11.8 (only the set-inversion algorithm differs): 

11------------------------------------------------------
I I File: subpaving.cpp (continued) 
I I ... 
SUBPAVING Sivia (PIBT IBTest, SUBPAVING S, double eps) 
{ 

if (IsEmpty(S)) return NULL; 
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int test = IBTest(Box(S)); 
int maxdiamcomp; 

if (test == IB_FALSE) 
return NULL; 

if ((test == IB_TRUE) 
I I (MaxDiam(Box(S),maxdiamcomp) < eps)) 

return new NODE(*S); 
if (IsLeaf (S)) 

Expand(S, maxdiamcomp); 
return Reunite (Sivia(IBTest, LeftChild(S), eps) , 

Sivia(IBTest, RightChild(S), eps) , Box(S)); 
II Expand and Reunite to be presented 
II in the next two subsections 
} 

11------------------------------------------------------

SUBPAVINGs allow an implementation of SIVIA that closely follows the 
description of Section 3.4.1, page 55. Notice, however, that only an outer 
subpaving is computed here, and that some statements have been added to 
improve efficiency. 

If the search subpaving S is empty, Si via returns an empty subpaving. 
Else, a user-defined interval Boolean test is evaluated on Box (S), the box 
corresponding to the root of S. If the test holds IBYALSE, an empty subpaving 
is returned. If it holds IB_TRUE or if the root box is deemed small enough, a 
subpaving corresponding to the copy of S is returned. If S is a leaf, Expand 
transforms it into a non-minimal subpaving containing two boxes resulting 
from the bisection of Box(S) across its first component of maximum width. 
Si via is then recursively called on the left and right children of S. The 
two resulting subpavings are finally merged (by Reunite) in order to get a 
minimal subpaving. 

As implemented here, Si via modifies S. This could easily be avoided, if 
needed. Let us now turn to the functions Expand and Reunite, which are 
used in Si via. 

Expanding a subpaving. Expand grafts two sibling leaves to a node, pro­
vided that this node is degenerate and thus corresponds to a leaf. As this 
modifies private properties of NODEs, Expand is implemented as a friend of 
the NODE class, which requires inserting 

friend void Expand(SUBPAVING S, int comp); 

in subpaving. h. The code for expand is as follows: 

11------------------------------------------------------
I I File: subpaving.cpp (continued) 
I I ... 
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void Expand(SUBPAVING S, int comp) 
{ 

} 

if (!IsLeaf(S)) return; 
S->leftChild = new NODE(Lower(Box(S), comp)); 
S->rightChild = new NODE(Upper(Box(S), comp)); 

11------------------------------------------------------

If the subpaving S to be expanded is not a leaf, it is left as is. If it is a leaf, two 
children are added. Their boxes result from the bisection of Box (S) across 
the dimension compo 

Reuniting subpavings. Reunite computes a minimal subpaving from two 
sibling subpavings. It may be implemented as follows: 

11------------------------------------------------------
I I File: subpaving.cpp (continued) 
I I ... 
SUBPAVING Reunite(SUBPAVING lChild, SUBPAVING rChild, 

{ 

} 

INTERVAL_VECTOR& x) 

if (IsEmpty(lChild) && IsEmpty(rChild)) return NULL; 

SUBPAVING result = new NODE(x); II resulting subpaving 

if (IsLeaf(lChild) && IsLeaf(rChild)) 
{ delete lChild; delete rChild; return result; } 

result->leftChild = lChild; 
result->rightChild = rChild; 
return result; 

11------------------------------------------------------

Implementation closely follows the presentation of Section 3.3.3, page 52. An 
empty subpaving is returned if both subpavings to be reunited are empty. 
If both are leaves, they are destroyed and the parent node (which has thus 
become a leaf) is returned. In all other cases, both subpavings are attached 
to their parent node. 

Exercise 11.30 Code a function NbLeaves, evaluating the number of leaves 
of a SUBPAVING. • 

Exercise 11.31 Code a function Volume, summzng the volumes of all the 
leaves of a SUBPAVING. • 

The aim of the next exercise is to allow the evaluation by SIVIA of an 
outer approximation of f- 1 (11) for any regular subpaving 11. This involves 

testing whether [f] ([xl) c 11, i.e., whether a box belongs to a subpaving. 
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Exercise 11.32 Using the algorithm INSIDE of Section 3.3.3, page 52, im­
plement 

friend int operator<=(const INTERVAL_VECTOR&, SUBPAVING); 

to test whether an INTERVALVECTOR is included in a SUBPAVING. • 

Exercise 11.33 This exercise is intended to illustrate the possibility of using 
SIVIA to evaluate the direct image of a set by a function, provided that this 
function is invertible in the usual sense. 

1. Compute a subpaving §c containing the set Sc of Exercise 11.21. Evaluate 
the volume of this subpaving. 

2. Use Sivia to compute a subpaving §cl containing f(§c), where 

f : (Xl, X2) T f--+ (2Xl - X2, -Xl + 2X2) T. 

Note that f is invertible in the usual sense, with inverse 

f-l: (Xl, X2) T f--+ (~Xl + i X2, iXl + ~X2) T, 

so 

{f(Xl,X2) I (Xl,X2) E §c} = {(Xl,X2) I f- l (Xl,X2) E §c}. 

Thus, to compute §c1, it suffices to perform the set-inversion of§c by f-l. 
3. Compute a subpaving §c2 containing f- l (§cl). This subpaving would be 

equal to §c if no pessimism were introduced. Evaluate the volume of §c2 
and compare it to the volume of§c. Evaluate the influence of the precision 
parameter eps on pessimism. • 

11.12.3 Image evaluation with subpavings 

IMAGESP (Section 3.4.2, page 59) performs basic subpaving manipulations. 
It will thus also be implemented as a friend of the NODE class. The header of 
the subpaving module should therefore be supplemented as follows: 

11------------------------------------------------------
II File: subpaving.h (continued) 
II Purpose: definition of NODE and SUBPAVING 
II and of functions manipulating subpavings 
I I ... 
#include "imlist.h" 

previously included modules 
II to manage lists of 

II INTERVAL_VECTORS 
I I ... 
II defines type "pointer to an INTERVAL VECTOR function" 
typedef INTERVAL_VECTOR (*PIVF) (const INTERVAL_VECTOR&); 
I I ... 
class NODE 
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{ 

I I ... 

}; 

II friend functions for the basic steps of ImageSp 
friend void Mince(SUBPAVING, double); 
friend void Evaluate(PIVF, SUBPAVING, IMAGELIST&, 

INTERVAL_VECTOR&); 
friend SUBPAVING Regularize(INTERVAL_VECTOR&, 

IMAGELIST&, double); 
II ImageSp 
friend SUBPAVING ImageSp(PIVF, SUBPAVING, double); 

I I ... 
11------------------------------------------------------

This modified header implements PIVF, a new type of pointer to an in­
terval vector function that will be employed to point to the vector inclusion 
function to be used by IMAGESp. The header of this function should look like 

INTERVAL_VECTOR Name_of_function(const INTERVAL_VECTOR&); 

Once this function has been properly defined, an outer approximation Y of 
the image of a regular subpaving X can be obtained as follows: 

SUBPAVING Y = ImageSp(Name_of_function, X, eps); 

where eps is the predefined precision factor. 

Exercise 11.34 Implement an interval vector function f corresponding to 
f : ]R2 ----+]R2 defined by 

2 2 II (Xl, X2) = Xl + X2 - X2' 

h (Xl, X2) = xi + X~. 
The implementation may involve the natural inclusion function or any centred 
~~. . 

The modified header also contains friend functions corresponding to the 
three basic steps of IMAGESp, namely mincing, evaluation and regularization. 
Before considering the implementation of these three steps, we shall explain 
how the lists of boxes involved in IMAGESp can be managed. 

List management. We developed the imlist module, based on the veclist 
module of PROFIL/BIAS, to provide a new class IMAGELIST to store and up­
date the lists of boxes involved in IMAGESp. Any instance of IMAGELIST 
contains IMAGELISLELEMENTs. The properties of each of these elements are 
Box, an INTERVALVECTOR, and Volume, a double corresponding to the vol­
ume of Box. IMAGELISLELEMENTs are sorted by decreasing volume of their 
Box. 
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To use the IMAGELIST class for IMAGESp, only one property and a few 
member functions are needed. This is why we shall limit ourselves here to 
listing them and refer the reader to the information about veclist provided 
in the documentation of PROFIL/BIAS for more details. 

The initialized constructor of list elements is 

IMAGELIST_ELEMENT(INTERVAL_VECTOR&); 

The property 

IMAGELIST_ELEMENT* current; 

points to the element of the list that is currently active. 
A box can be inserted in the list using 

IMAGELIST& operator+=(INTERVAL_VECTOR&); 

The first element of the list is accessed using 

IMAGELIST_ELEMENT& First(IMAGELIST&); 

This function updates the current property, making this first element active. 

IMAGELIST_ELEMENT& Next(IMAGELIST&); 

gives access to the element stored after the currently active element of the 
list and makes it active by updating the current property. 

INT IsEmpty(IMAGELIST&); 

tests whether a list is empty. 

INT Finished(IMAGELIST&); 

tests whether the last element of a list has been reached. 

Remark 11.10 The list module provided by the standard template library 
cannot be used, due to an incompatibility with the INTERVALVECTOR class .• 

Mincing, evaluation and regularization will now be considered in turn. 

Mincing. The first step of IMAGESp will be performed by the Mince func­
tion, which transforms a minimal subpaving into a non-minimal one consist­
ing of boxes with widths lower than the precision parameter eps. Mince may 
be implemented as follows: 

//------------------------------------------------------
/ / File: 
/ / ... 

subpaving.cpp (continued) 

void Mince(SUBPAVING A, double eps) 
{ 

if (IsEmpty(A)) return; 
if (IsLeaf (A)) 
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{ int comp; 

} 

if (MaxDiam(Box(A), comp) < eps) return; 
else Expand (A , comp); 

Mince(A->leftChild, eps); 
Mince(A->rightChild, eps); 

I I ... 
11------------------------------------------------------

If the subpaving to be minced is empty, nothing is done. If it is a leaf and 
the corresponding box is larger than eps, then the leaf is expanded. If the 
subpaving is not a leaf, then Mince is recursively applied to its left and right 
children. 

Evaluation. The images of all the boxes generated by Mince must now 
be evaluated. Evaluate computes the list of these images and the interval 
hull (hull) of the union of all the boxes listed in the resulting image list. 
Implementation may be as follows: 

11------------------------------------------------------
I I File: subpaving.cpp (continued) 
I I ... 
void Evaluate(PIVF f, SUBPAVING A, IMAGELIST& list, 

{ 

} 

if (IsEmpty(A» return; 
if (IsLeaf (A» 
{ 

INTERVAL_VECTOR& hull) 

INTERVAL_VECTOR image(f(Box(A»); 
II computation of interval hull 

if (IsEmpty(list» hull = image; 
else hull = Hull(hull, image); 

II images are stored in list 

} 

list += IMAGELIST_ELEMENT(image); 
return; 

Evaluate(f, A->leftChild, list, hull); 
Evaluate(f, A->rightChild, list, hull); 

I I ... 
11------------------------------------------------------

Regularization. All these image boxes must now be merged into a single 
subpaving. This may be performed as follows: 
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jj------------------------------------------------------
j j File: 
j j ... 

subpaving.cpp (continued) 

SUBPAVING Regularize (INTERVAL_VECTOR& hull, 

{ 
IMAGELIST& list, double eps) 

if (IsEmpty(list)) return NULL; 
if (hull == First(list) .Box) return new NODE(hull); 
int maxdcomp; 
if (MaxDiam(hull,maxdcomp) < eps) 

return new NODE(hull); 

INTERVAL_VECTOR lefthull = Lower (hull , maxdcomp); 
INTERVAL_VECTOR righthull = Upper(hull, maxdcomp); 
IMAGELIST leftlist,rightlist; 
INTERVAL_VECTOR inter; 
while (!Finished(list)) 
{ 

} 

if (Intersection(inter , Current (list) .Box,lefthull)) 
leftlist += IMAGELIST_ELEMENT(inter); 

if (Intersection(inter , Current (list) .Box,righthull)) 
rightlist += IMAGELIST_ELEMENT(inter); 

Next (list) ; 

return Reunite (Regularize (lefthull , leftlist, eps) , 
Regularize (righthull, rightlist, eps) , hull); 

} 

jj------------------------------------------------------

The box hull is the interval hull of the union of all the boxes listed in 
list. These boxes are to be merged into a subpaving, the root of which 
will correspond to the box hull. If list is empty, an empty subpaving is 
returned. If the largest box of the list, i.e., the box stored in its first element, 
is equal to hull, then the subpaving reduces to this box. If the width of hull 
is lower than the precision parameter eps, then list contains only boxes 
with width lower than eps, thus the regularized subpaving reduces to hull. 
This allows the subpaving to be created after a finite number of recursions. 
It only contains boxes with width lower than eps. 

If none of these tests is satisfied, hull is bisected into lefthull and 
righthull and two corresponding lists (leftlist and rightlist) are gen­
erated, which respectively contain the intersections of all elements of list 
with lefthull and righthull. Regularize is then recursively applied on 
these two boxes and the corresponding lists. 

IMAGESP can now be written very concisely: 
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//------------------------------------------------------
/ / File: 
/ / ... 

subpaving.cpp (continued) 

SUBPAVING ImageSp(PIVF f, SUBPAVING A, double eps) 
{ 

} 

IMAGELIST images; 
INTERVAL_VECTOR hull; 
Mince(A,eps); 
Evaluate(A, f, images, hull); 
return (Regularize (hull , images, eps»; 

//------------------------------------------------------

Exercise 11.35 Evaluate the image of the box [-2,2]2 by the function de­
fined in Exercise 11.34 with the help of ImageSp. • 

11.12.4 System simulation and state estimation with subpavings 

Four exercises will bring the reader from simulation to joint parameter and 
state estimation. 

Exercise 11.36 Consider the discrete-time system 

(
XI(k+l)) (PCOS(7T/4) -PSin(7T/4)) (Xl(k)) 

X2 (k + 1) - P sin ( 7T / 4) P cos ( 7T / 4) X2 (k) , 
(11.13) 

where P = 0.85. At step k = 0, (Xl (0) ,X2 (0)) T is only known to belong to 
:%:0 = [4,5] x [-1,1]. The problem is to evaluate the set:%:k containing all the 
possible values of (Xl (k) ,X2 (k)) T at any given time k > o. With the help of 
IMAGESP, code an algorithm evaluating a subpaving Xk guaranteed to contain 
:%:k for k = 1, ... ,10. The precision of the description will be controlled by the 
value given to eps by the user. Evaluate the influence of eps on computing 
time and on the quality of description, assessed by comparing the volumes of 
the subpavings computed. All subpavings should be written to a file (e.g., to 
output.spv). Two-dimensional projections of these subpavings may then be 
plotted using 

DrawSpaving.exe 

available at 

http://www.lss.supelec.fr/books/intervals 

• 
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Exercise 11.37 Modify the code written for Exercise 11.36 to answer the 
same questions assuming now that the parameter P in the drift matrix of 
(11.13) is uncertain and only known to belong to the interval [p] = [0.8,0.9], 
so that (11.13) becomes 

(
XI(k+1)) ([P] COS (7T/4) -[p]Sin(7T/4)) (X1(k)) (1l.14) 

x2(k+1) - [p]sin(7T/4) [p]cos(7T/4) xdk)· 

• 
Exercise 11.38 Assume now that measurements y (k), k = 0, ... ,10, pro­
vide information about the state of the uncertain system described by (11.14), 
according to the observation equation 

y(k)=Xl(k)+wk, (1l.15) 

where Wk is a bounded measurement noise belonging to [-0.1,0.1]. The pur­
pose of this exercise is to implement a state estimator for this system, alter­
nating prediction and correction steps as explained in Section 6.4, page 168. 

1. Implement the prediction step using ImageSp. 
2. Implement the correction step using Si via. 
3. Generate data y (k), k = 0, ... ,10, by simulating (11.14) with [p] replaced 

at each time instant k by Pk picked at random in [0.8,0.9]' with Wk picked 
at random in [-0.1,0.1] and with Xl(O) = 4.5 and X2(0) = 0. 

4. Evaluate a subpaving Xk containing Xk for k = 0, ... ,10, assuming that 
the initial state is only known to belong to Xo = [4, 5] x [-1, 1] and that 
the data are those obtained as the result of the previous question. • 

Exercise 11.39 Consider the same problem as in Exercise 11.38, but assume 
now that the unknown parameter p is constant and can be appended to the 
state vector to form an extended state vector. The aim of this exercise is to 
build a set estimator for this extended state vector to perform joint state and 
parameter estimation. 

1. Write the discrete-time state equation satisfied by the extended state vec­
tor. 

2. Generate data y (k), k = 0, ... ,10, by simulating (11.14) with [p] replaced 
by p* = 0.85, with Wk picked at random in [-0.1,0.1] and with Xl(O) = 4.5 
and X2(0) = 0. 

3. Use the same method as in Exercise 11.38 to estimate the extended state 
vector from the data thus generated. 

4. Modify the code for the simulation of the data and for the estimation 
of the extended state vector to allow the unknown parameter p to vary 
according to 

Pk = Pk-l + 6k, 

where 6k belongs to [-0.01,0.01] and Po belongs to [0.8,0.9]. • 
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11.13 Error Handling 

Many strategies may be considered in the presence of errors, from burying 
one's head in the sand to aborting the program within which the error took 
place. The best solution usually lies between these two extremes, as illustrated 
by the next two examples. 

Example 11.1 Consider an interval Newton routine to find all the zeros of 
f (x) = tan (x) - x over [-10K, 10K]. The function tan is not defined on the 
entire search interval. This is no reason for not running the algorithm. In 
such a case, one would rather take [J] ([-10K, 10K]) = [-00, +00], to indicate 
that [-10K, 10K] may contain zeros of f (x). • 

Example 11.2 Assume now that the function f of the previous example is 
only an intermediary result in long and costly computations, and that the 
propagation of the interval [-00, +00] in these computations leads to useless 
results. One may then prefer to abort the procedure as soon as possible to save 
time and money, and facilitate the detection of the problem. • 

The measures to be taken when a given error is detected thus depend on 
the context. Only those errors that call for a systematic action can be treated 
inside a library. The others should only be detected, the responsibility for 
the measures to be taken resting with the user. We shall limit ourselves to 
presenting simple options. 

11.13.1 Using exit 

This is the simplest way to handle errors, but also the least flexible. The 
function exit () belongs to the stdlib module. It has already been used in 
Section 11.6.2, page 321. In the following code, exitO is used whenever an 
addition of two vectors with differing sizes is attempted: 

11------------------------------------------------------
I I File: iva1vec.cpp (continued) 
I I ... 
INTERVAL_VECTOR operator+(const INTERVAL_VECTOR& a, 

{ 
const INTERVAL_VECTOR& b) 

if (a.nE1ements != b.nE1ements) 
II the program is aborted 
{ cout « "Attempt to add vectors of differing sizes" 

« end1; 
exit(EXIT_FAILURE); } 

II no error is encountered, the addition is performed 
INTERVAL_VECTOR res(a.nE1ements) ; 
for (int i = 1; i <= a.nE1ements; i++) 
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} 

res(i) = a(i) + b(i); 
return (res); 

I I ... 
11------------------------------------------------------

A message is sent to the standard output stream (the code could be mod­
ified to insert the message, for example, in a .log file), and the program 
is aborted. The parameter EXIT...F AlLURE signals to the operating system 
that the program has terminated with an error. Many C++ libraries han­
dle errors in this way. Sometimes, flags can be set at compile time in or­
der to adjust the sensitivity of the code to errors. For example, if the flag 
_...BIASRAISEDIVIDEBYZERO_ is set, PROFIL/BIAS aborts the program when a 
division by an interval containing 0 is encountered. If the flag is not set, the 
entire real line is returned. 

11.13.2 Exception handling 

A C++ exception causes the function where the error occurred to be exited, 
but may allow the program to be continued, contrary to exit. Consider again 
protection against the addition of vectors with differing sizes. The previous 
code could be replaced by the following one, where an exception is thrown 
whenever this error occurs. 

11------------------------------------------------------
I I File: ivalvec.cpp (continued) 
I I ... 
INTERVAL_VECTOR operator+(INTERVAL_VECTOR& a, 

{ 

} 

if (a.nElements != b.nElements) 
II an exception is thrown 

INTERVAL_VECTOR& b) 

throw "Attempt to add vectors of differing sizes"; 
II no exception thrown, so addition can be performed 
INTERVAL_VECTOR res(a.nElements) ; 
for (int i = 1; i <= a.nElements; i++) 

res(i) = a(i) + b(i); 
return (res); 

I I ... 
11------------------------------------------------------

The argument of throw may be a string, an integer, or even a class that 
may contain much more information than just a string. As soon as an ex­
ception is thrown, the execution of the function ends. The calling function 
should catch the exception, by using try and catch blocks, as in 
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11------------------------------------------------------
I I File: exceptdemo.cpp 
II Purpose: demonstrates how an exception is caught 
#include "ivalvec.h" II to use INTERVAL_VECTORs 
#include <iostream.h> 

void mainO 
{ 

INTERVAL_VECTOR x(3) ,y(2) ,z; 

x(i) 

x(3) 
yO) 

INTERVAL(2,3); x(2) 
INTERVAL(-6,-5); 
INTERVAL(2,3); y(2) 

II standard ilo 

INTERVAL(-3,4); 

INTERVAL(-3,4) ; 

try { II if an exception is thrown in this block 
z = x + y; 

} II then it will be caught 
catch (char *msg) { II msg contains the string thrown 

cout « msg « endl; 
return; 

} 

II other functions 
I I ... 
11------------------------------------------------------

Functions that may throw exceptions are placed into a try block. If an 
exception is thrown, the catch block is executed. In this simple illustrative 
example, computation is terminated exactly as it would have been using 
exi to, but nothing forbids inclusion of a more sophisticated treatment in 
the catchO block. 

11.13.3 Mathematical errors 

This is probably the most frequent type of error in our context. How should a 
routine react, for instance, when asked to evaluate the logarithm of an interval 
with a negative lower bound? Most libraries for interval computations use one 
of the two options presented, namely exiting or throwing an exception, which 
is far from being always satisfactory. 

The representation of intervals proposed in Section 10.3 makes it possible 
to reduce the number of cases where a numerical error requires a specific 
treatment, by introducing infinite and void intervals and by using a set­
theoretic stand point for interval computation. 
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access control, 319, 322 
access operator, 307 
accumulation set, 48, 103 
address-of operator, 304 
amputation, 115 
approximation 
- inner, 45, 109, 135, 197 
- outer, 45, 109 
arrays, 319 
assignment operator, 322 
asymtotic stability, see stability 
automatic differentiation, 271 

backward differentiation, 273 
backward propagation, 180 
base, 287 
behavioural modelling, 142 
Bernstein polynomials, 197 
Bialas algebraic condition, 196 
BIAS, 315 
binary constraints, 178 
binary tree, 51 
bisection, 50, 104, 115 

direction of, 104 
- efficiency of a, 106 
- of interval vectors, 325 
Boolean function, 39 
Boolean number, 39 
Boolean operators, 323 
-AND,217 
- OR, 98, 217 
bounded-error estimation, 155 
bounding 

all variables, 171 
- by constraint propagation, 174 
- the initial state, 171 
box consistency, 95 
box path, 239 
boxes, 23, 319 
bracketting sets, 45 
branching algorithm, 117 

Cartesian product, 11 
- of intervals, 18 
causal state estimator, 181 
centre, 311 

of a box, 24 
- of an interval, 18 
- of an interval matrix, 26 
centred inclusion function, 33 
characteristic 
- functions, 161 
- polynomials, 189 
x-function, 258 
children of a box, 49 
class, 306 
closed interval arithmetic, 294 
closed-loop system, 211 
clustering approach, 176 
coefficient function, 193 
coefficient set, 193 
comments, 303 
compartmental models, 145 
concavity contractor, 122 
conditional branchings, 258 
configuration, 227 
- space, 235 
- vector, 249 
connectedness, 45 
consistency, 179, 249 
- box, 95 
- domain, 179 
consistent subvector, 83 
constrained minimax optimization, 131 
constrained minimization, 117 
constrained set, 141 
constraint graph, 177 
constraint propagation, 77 
constraint satisfaction problems, 65, 

333 
- external approximation of, 82 
constraints 
- binary, 178 
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equality, 65, 99 
inequality, 65, 99 
primitive, 78 
unary, 178 

constructors, 307 
copy, 308, 321, 338 

- default, 308, 332, 338 
- initialized, 308, 332, 338 
containment property, 287 
contractors, 65, 66, 115, 333 

based on linear programming, 81 
basic, 67 
by parallel linearization, 87 
collaboration between, 90 
concavity and gradient, 122 
fixed-point, 72 
fixed-points of, 91 
for sets, 97 
forward-backward, 77 
Fritz-John, 123 
Gauss elimination, 70, 333 

- - with preconditioning, 84 
- Gauss-Seidel, 73, 335 
- - with preconditioning, 84 

idempotent, 72, 91 
Krawczyk, 75, 335 
local, 179 
monotonic, 91 
Newton, 77, 86 
upper-bound, 121 

control matrix, 188 
controller design, 220 
convergence rate, 35 
convergent inclusion function, 28 
copy constructor, 321, 338 
correction step, 182 
cost contours, 135 
critical point, 213 
CROSS, 151 
CSE,181 
CSP, see constraint satisfaction 

problems 
cutoff frequency, 206 
cycles 
- in a constraint network, 177 
- in a graph, 238 
cyclic strategy, 91 

deadlock, 92 
decay rate, 192 
default constructor, 332, 338 
delays, 209 
6-stability, 192 

dependency effect, 15, 39, 41 
depth of a box, 52 
dereferencing operator, 304 
derivatives 
- evaluation of, 271 
destructor, 307, 322, 332 
Diam, see width 
differentiation 

backward, 273 
choice between forward and 
backward, 286 
forward, 271 
of algorithms, 275 

Dijkstra's algorithm, 239 
direct image, 12, 55, 59 
directed rounding, 294 
disconnected components, 241 
discontinuous intervals, 19 
disjunction of constraints, 98 
distance from a point to a line 
- directional, 256 
- orthogonal, 256 
distance measurements, 249 
domains, 65 
dot product, 298 
drift matrix, 188 
- uncertain, 348 
dynamic allocation, 319, 321 
dynamic arrays, 319 

edge theorem, 196 
edges, 238 
elementary functions, 295 
- transcendental, 296 
emISSIOn 
- cone, 251, 254 
- diagram, 253 
empty subpaving, 338 
encapsulation, 306 
entries 
- of matrices, 332 
- of vectors, 323 
error handling, 323, 349 
errors in variables, 165 
estimation, 141 
- bounded-error, 155 
- causal, 181 
- joint state and parameter, 348 

minimax, 148 
non-causal, 182 
parameter, 145, 148, 155, 160, 202, 
249 
recursive causal, 182, 263 



- robust, 160 
- state, 181, 182, 263, 347 
Euler angles, 227 
exceptions, 350 
executable files, 302 
exponent 
- biased, 289 
- unbiased, 287 
extended interval systems, 297 
extended Kalman filtering, 248, 262 
external approximation, 83 
- of a CSP, 121 

fair strategy, 91 
feasibility functions 
- posterior, 144 
- prior, 142 
feasible configuration space, 235 
feasible set 

interval hull of posterior, 167 
posterior, 143 
prior, 142 
relaxed posterior, 162 
relaxed prior, 161 

feedback loops, 211 
files 

executable, 302 
header, 302, 306 
object, 302 
source, 302 

finite subsolvers, 67, 68 
fixed point of a contractor, 91 
fixed-point contractor, 72 
floating-point representation, 287 
- denormalized, 292 
- normalized, 288 
formal transformations, 88 
forward differentiation, 271 
forward kinematic problem, 226 
- non-planar case, 234 
- planar case, 232 
forward propagation, 179 
forward-backward contractor, 77 
friend functions, 309, 323 
Fritz-John contractor, 123 
full compact sets, 48 
function call operator, 322, 332 
function overloading, 339 

gain margin, 213 
- robust, 215 
r-stability, 191, 210 
n-stability, 192 
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Gauss elimination contractor, 70, 333 
Gauss-Seidel contractor, 73, 335 
global minimizers, 117 
global minimum, 117 
global optimization, 117 
gradient 
- contractor, 122 
- vector, xv, 33 
graphs, 238 

half-plane, 251 
Hansen's algorithm, 121 
Hausdorff distance, 46 
header files, 302, 306 
Hessian matrix, xv, 35 
HULL, 113 

ICP, see interval constraint propagation 
idempotent contractors, 72, 91 
identifiability, 147, 261 
IEEE 754 standard, 287 
image 
- direct, 12, 55, 59 
- reciprocal, 12, 55 
image evaluation, 55, 59 
- by IlVIAGESP, 342 
- by SIVIA, 342 
image-set polynomials, 194, 196 
IlVIAGESP, 60, 342 
incidence angle, 251 
inclusion, 12, 311 
- for interval vectors, 325 
inclusion functions, 27, 29 

centred form, 33 
convergent, 28 
evaluation with contractors, 96 
for a Boolean function, 39 
for a subsolver, 69 
minimal,28 
mixed centred, 34 
natural, 30 
Taylor, 35 
thin, 28 

inclusion monotonicity, 29 
inclusion tests, 40 

for sets, 42 
- minimal, 40 
- thin, 40 
independent variables, 155 
- known, 158 
- uncertain, 164 
index set, 68 
infinite quantities, 291, 311 



376 Index 

inflation 
- inner, 113 
- outer, 115 
initial conditions, 188 
initialized constructor, 332, 338 
inner approximation, 45, 109, 135, 197 
inner inflation, 113 
input 

of a subsolver, 68 
- of a system, 188 
- variables, 169 
insertion operator, 312 
intersection, 11, 18, 311 
- of boxes, 24 
- of interval vectors, 325 
interval Booleans, 38, 327 
- operations on, 39 
INTERVAL class, 305 
interval constraint propagation, 91, 

125, 174 
interval hull, 18, 24, 26, 111, 311 
- of interval vectors, 324 
- of the posterior feasible set, 167 
interval matrices, 25, 331 
INTERVALMATRIX class, 331 
interval polynomials, 194, 195 
interval software, 297 
interval solvers, 137 
interval union operator, 18, 22 
interval vector, see box 
INTERVALVECTOR class, 320 
intervals, 18 

arithmetical operations on, 19 
closed, 20 
discontinuous, 19 
empty, 18 
punctual, 20 

ISOCRIT, 136 

Jacobian matrix, xv 
joint state and parameter estimation, 

348 

Kharitonov theorem, 195 
kinematic description, 263 
Krawczyk contractor, 75, 335 

L2 norm, 144 
Lagrange coefficients, 124 
landmarks, 251 
Laplace transform, 188 
least-square parameter estimation, 145 
leaves, 52 
left box, 325 

left child, 49 
level sets, 135, 202 
linear CSPs, 71 
linear interval equations, 71 
linear programming, 81 
LX) norm, 144 
list management, 343 
local contractor, 179 
local search, 99 
localization, 248, 260 
logical operators 

AND, 39 
complementation, 39 
exclusive or, 40 
in C++, 323 
OR,39 

lower bound 
of a box, 24 

- of an interval, 18 
- of an interval matrix, 25 
lower interval vector, 325 

machine intervals, 293 
machine numbers, 293 
map, 251 
maximization, 117 
member functions, 306 
methods, see member functions 
midpoint 

of a box, 24 
- of an interval, 18 
- of an interval matrix, 26 
min operator, 130 
mincing, 60 
minimal 

inclusion function, 28 
inclusion test, 40 
subpaving, 52 
tree, 52 

minimax 
- optimization, 126 
- parameter estimation, 148 
MINIMAX, 131, 133 
mixed centred inclusion function, 34 
model, 141 
monotonic contractor, 91 
Moore-Skelboe algorithm, 120 
motion, 239 

NaN, 292 
NCSE,182 
neighbours, 237, 238 
Newton contractor, 77, 86 



NODE class, 336 
nodes, 51 
non-causal estimators, 182 
non-differentiable cost function, 126 
non-linear equations 
- non-square systems of, 87 
- square systems of, 104 
non-parametric perturbations, 201 
not a number, 292 
n-trees, 50 
NULL pointer, 322 
Nyquist plot, 213 

object files, 302 
objects, 305 
observation matrix, 188 
operator overloading, 309 
- for interval vectors, 324 
operators 

access, 307 
address-of, 304 
assignment, 322 
dereferencing, 304 
function call, 322, 332 
insertion, 312 
min, 130 
overloading of, 309 

optimization 
constrained, 123 
global, 117 
Hansen's algorithm, 121 
minimax, 126 
Moore-Skelboe algorithm, 120 

OPTIMIZE, 118 
outer approximation, 45, 109 
outer inflation, 115 
outliers, 160, 253, 259 
output 

of a model, 156 
of a subsolver, 68 
of a system, 188 
variables, 169 

outward rounding, 294, 314 
overloading 

of functions, 339 
- of operators, 309 

parallel linearization, 87 
parallel robot, 226 
parameter bounding, 155 
parameter estimation 

bounding approach to, 155, 249 
- least-squares, 145 

minimax, 148 
robust, 160 
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parameter identification, 141 
parameter uncertainty intervals, 112 
parameter vector, 155 
passing 

functions, 328 
- parameters, 304 
- tests, 328 
path,238 
path planning, 234 
paving, 48, 103 
pessimism 
- due to dependency effect, 15 
- due to wrapping effect, 17 
phase margin, 215 
- robust, 215 
PI controllers, 222 
PID controllers, 223 
pointers, 304 

NULL,322 
this, 309 
to functions, 328 
to interval Boolean tests, 328 
to interval vector functions, 343 

polynomials 
Bernstein, 197 
characteristic, 189 
image-set, 194, 196 
interval, 194, 195 
polytope, 194, 196 
stable, 189 

polytope polynomials, 194, 196 
posterior 

feasibility function, 144 
- feasible set, 143 
- set estimate, 143 
potential functions, 236 
power set, 13 
preconditioning, 76, 84, 336 
prediction step, 182 
primitive constraints, 78 
principal plane, 110 
prior 
- feasibility function, 142 
- feasible set, 142 
private, 307 
PROFIL,316 
PROFIL/BIAS, 298, 301, 331 

intervals, 315 
list management, 343 
matrices, 332 
pointers, 316 
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standard mathematical functions, 
317 
types of variables, 316 
vector classes, 326 

projection, 12 
propagation 
- backward, 180 
- forward, 179 
properties of objects, 305 
proximity, 46 
public, 307 

quantifiers, xv, 133 

RCSE, 182, 263 
reciprocal image, 12, 55 
recursive causal state estimator, 182, 

263 
regular subpavings, 49 
regularization, 60 
relaxed posterior feasible set, 162 
relaxed prior feasible set, 161 
relaxing functions, 161, 259 
remoteness, 254 
resource leak, 319 
reunification, 50 
right box, 325 
right child, 50 
robust 

control, 187 
estimation, 160 
gain margin, 215 
instability, 197 
phase margin, 215 
stability, 193, 197 

analysis, 198 
- - degree, 204 
-- margin, 211 
root 

locus, 200 
- of a binary tree, 52 
- of a subpaving, 51 
rounding, 289, 290 
- directed, 294 
- outward, 294 
Routh 

criterion, 189 
function, 196 
table, 189 
vector, 190 

Routh-Hurwitz criterion, 218 

set inversion, 55 
- with subpavings, 339 

set simulator, 172 
set theory, 11 
set topology, 46 
sets, 11 
- defined by inequalities, 106 
siblings, 50 
signed zeros, 292 
significand, 287 
signomial programming, 168, 219 
simulation, 347 
simulator, 156 
SIVIA,55 

based on an inclusion function, 56 
based on an inclusion test, 58 
for image evaluation, 342 
for set simulation, 172 
implementation of, 327 
with subpavings, 339 

SIVIAP, 110 
SIVIAPY, 109 
SIVIAX, 104 
slack variables, 65, 99 
software, 297 
solution set of a CSP, 65 
solvers, 103 
sonars, 249 
source 

files, 302 
- variables, 170, 175 
- vectors, 170 
stability, 188 

degree, 192, 201, 220 
- margin, 209 
- radius, 216 
stable polynomials, 189 
standard mathematical functions, 313 
state, 188 
- bounding, 168 
- estimation, 347 

causal, 181 
- - non-causal, 182 
- - recursive causal, 182, 263 
- variables, 169 
- vector, 188 
state-space representation, 188 
static localization, 260 
Stewart-Gough platform, 226 
store, 91 
strategy, 91 
- cyclic, 91 
- fair, 91 
subdistributivity, 20 
subgraph, 238 



subpavings, 45, 48 
considered as lists of boxes, 51 
considered as sets, 51 
expanding, 340 
image evaluation for, 345 
implementation of, 336 
intersecting, 53 
mincing, 344 
minimal, 52 
regular, 49 
regularization of, 345 
represented by graphs, 238 
reuniting, 53, 341 
simulation with, 347 
state estimation with, 347 
taking the union of, 54 
testing inclusion of boxes in, 54 

subsolvers 
finite, 67 

- fixed-point, 72 
- intervalization of, 69 
subtrees, 52 
subvector, 68 
symmetry plane, 105 
symmetry segment, 105 

table maker's dilemma, 290, 296 
Taylor inclusion function, 35 
thin 
- inclusion functions, 28 
- inclusion tests, 40 
this pointer, 309 
tracking, 248, 263 
transfer 
- function, 211 
- matrix, 188 
trees 
- binary, 51 
- minimal, 52 
tuning parameters, 221 
types of C++ variables, 303 

ulp,289 
ultrasonic sensors, 249 
unary constraints, 178 
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uncertain measurement times, 165 
uncertainty layer, 56 
unconstrained 
- minimax optimization, 127 
- minimization, 117 
union, 11, 18 
- of boxes, 24 
- operator, 22 
uniqueness condition, 122 
unit step response, 211 
units at the last place, 289 
upper bound 

of a box, 24 
- of an interval, 18 
- of an interval matrix, 25 
upper interval vector, 325 

value sets, 205, 207 
variable types, 303 

walk, 238 
weights, 145 
width 

of a box, 24 
- of an interval, 18 
- of an interval matrix, 25 
worst-case design, 221 
wrappers, 15 
wrapping 

effect, 16, 26, 38 
- operator, 16 

zero-exclusion condition, 208 
zeros, 292 
r-stability, 191, 210 
n-stability, 192 
6-stability, 192 
x-function, 258 


