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Veri�ed numerical computation for elliptic eiganvalue problems

and its applications

Kaori Nagatou

Graduate School of Mathematics, Kyushu University

Fukuoka 812-8581, Japan

1 Introduction

Several numerical methods have been proposed to verify the exact eigenvalues for in�-

nite dimensional eigenvalue problems, and in particular the eigenvalues of elliptic operators

(cf.[2],[15, 16]). In [2], the method is presented to �nd the upper and lower bounds for eigen-

values by using some test functions, the Rayleigh-Ritz method and the Temple quotient. In

[15, 16], given problems are connected with a simple problem, whose explicit eigenvalues are

known, by using homotopy method. In this paper, we give a technique that is di�erent from

these method. This method is based on the veri�cation method appearing in [25], which is

a realization, including uniqueness, of the method studied in [9-14] applicable to nonlinear

elliptic boundary value problems.

In Section 2 we apply the numerical method described in [25] to our eigenvalue problems.

Using this method we can con�rm local uniqueness of eigenpairs (i.e. pairs of eigenvalues

and corresponding eigenfunctions) in a certain set. In the last part of that section, we

also con�rm the local uniqueness separately of eigenvalues and eigenfunctions as well as the

simplicity of the eigenvalues.

In section 3 we describe a method to exclude eigenvalues in order to obtain some informations

about index. By this method we can separate the simple eigenvalues and we can also obtain

the bound for the Eigenvalue with Smallest Absolute Value (ESAV). This bound plays an

important role for rigorous estimates of the norm of the linearized operator of some nonlinear

di�erential equations, which is described in Section 4 in detail.

In Section 5 several numerical examples are presented.

1



2 Enclosing method for eigenvalues with uniqueness

property

In this section, we consider a numerical technique to verify the exact eigenvalues and eigen-

functions of second-order elliptic operators in some neighborhood of their approximations.

This technique is based on [25] using the Krawczyk-like operator and the error estimates for

the C

0

�nite element solution. We numerically construct a set containing solutions which

satis�es the hypothesis of Banach's �xed point theorem for compact map on a certain Sobolev

space.

2.1 Problem and the �xed point formulation

In what follows, let 
 be a bounded convex domain in R

2

and for some integerm, let H

m

(
)

denote the L

2

-Sobolev space of order m on 
. Then, de�ne H

1

0

(
) � fv 2 H

1

(
) j v =

0 on @
g with the inner product < u; v >

H

1

0

� (ru;rv)

L

2

for u; v 2 H

1

0

(
), and the norm

kuk

H

1

0

� kruk

L

2

for u 2 H

1

0

(
), where (�; �)

L

2

and k � k

L

2

represent the inner product and

the norm on L

2

(
), respectively.

Now, let S

h

be a �nite dimensional subspace of H

1

0

(
) that depends on h (0 < h < 1).

Usually, S

h

is taken to be a �nite element subspace with mesh size h. Also, let P

h0

:

H

1

0

(
) �! S

h

denote the H

1

0

-projection de�ned by

(r(u� P

h0

u);rv

h

)

L

2

= 0 for all v

h

2 S

h

:

We now assume the following approximation property in S

h

.

Assumption 1. For any u 2 H

2

(
)

T

H

1

0

(
);

inf

�2S

h

ku� �k

H

1

0

� C

1

hjuj

H

2

;

(2.1)

where

juj

2

H

2

�

2

X

i;j=1











@

2

u

@x

i

@x

j











2

L

2

:

Here, C

1

is a positive, numerically determined constant which is independent of h.

The following lemma is well known [3].
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Lemma 1. For any  in L

2

(
), there exists a unique solution � 2 H

2

(
)

T

H

1

0

(
) of the

following Poisson equation:

(

��� =  in 
;

� = 0 on @
:

(2.2)

Furthermore, there exists a positive constant C

2

satisfying

j�j

H

2
� C

2

k k

L

2

:

(2.3)

In particular, if 
 is a convex polygonal domain, we can set C

2

= 1 ([3]).

We consider the self-adjoint eigenvalue problem

(

��u+ qu = �u in 
;

u = 0 on @
;

(2.4)

where q 2 L

1

(
). Since we wish to enclose eigenpairs of this problem, we consider the space

H

1

0

(
)� R and de�ne the inner product < �; � >

H

1

0

�R

and the norm k � k

H

1

0

�R

by

< w

1

; w

2

>

H

1

0

�R

� (ru

1

;ru

2

)

L

2

+ �

1

�

2

;

kwk

H

1

0

�R

� (kuk

2

H

1

0

+ j�j

2

)

1

2

;

respectively, where w

i

= (u

i

; �

i

) 2 H

1

0

(
) � R (i = 1; 2) and w = (u; �) 2 H

1

0

(
) � R.

Moreover, let I

0

and I be the identity map on H

1

0

(
) and H

1

0

(
)�R, respectively.

We �rst normalize the problem (2.4) as

�nd (

b

u; �) 2 H

1

0

(
)�R s:t:

8

<

:

��

b

u+ (q � �)

b

u = 0;

Z




b

u

2

dx = 1:

(2.5)

We then de�ne the projection P

h

: H

1

0

(
)�R �! S

h

� R by

P

h

(u; �) � (P

h0

u; �):
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Now, let

b

w

h

= (

b

u

h

;

b

�

h

) 2 S

h

� R be a �nite element solution of (2.5); that is,

8

<

:

(r

b

u

h

;rv

h

)

L

2

= ((

b

�

h

� q)

b

u

h

; v

h

)

L

2

for all v

h

2 S

h

;

Z




b

u

2

h

dx = 1:

(2.6)

We used the interval library PROFIL to enclose this solution in very small intervals (cf. [4]

and Section 5).

We will verify the existence of eigenvalues and eigenfunctions for (2.5) in a neighborhood of

(�u;

b

�

h

) satisfying

(

���u+ (q �

b

�

h

)

b

u

h

= 0 in 
;

�u = 0 on @
:

(2.7)

Note that �u 2 H

2

(
)

T

H

1

0

(
), and

b

w

h

= P

h

(�u;

b

�

h

). We then have, by (2.5) and (2.7),

8

<

:

��(

b

u� �u) = (�� q)

b

u� (

b

�

h

� q)

b

u

h

;

Z




b

u

2

dx = 1:

(2.8)

De�ning v

1

= �u�

b

u

h

; we see that v

1

2 S

?

h

, where S

?

h

represents the orthogonal complement

of S

h

in H

1

0

(
), and we can write

�u =

b

u

h

+ v

1

for

b

u

h

2 S

h

and v

1

2 S

?

h

:

It is known that the a posteriori estimates are, in general, much better than the a priori

estimates, provided that the higher order base functions in S

h

are utilized (see [24] for

details). Therefore, we use a posteriori estimates for v

1

as below.

Let S

�

h

� H

1

(
) be a �nite element subspace whose basis consists of the union of the basis on

S

h

and the base functions having nonzero values on the boundary @
. De�ne

�

r

b

u

h

2 S

�

h

�S

�

h

,

a vector function in two dimension, by the L

2

-projection of r

b

u

h

2 L

2

(
)�L

2

(
) to S

�

h

�S

�

h

.

Then, de�ne

�

�

b

u

h

2 L

2

(
) by

�

�

b

u

h

� r �

�

r

b

u

h

: We then obtain the following estimation

(cf.[24]):

kv

1

k

H

1

0

� kr

b

u

h

�

�

r

b

u

h

k+ C

0

hk

�

�

b

u

h

+ (

b

�

h

� q)

b

u

h

k;

where C

0

� C

1

C

2

. Note that in this estimation we used the L

2

-estimate of v

1

:
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kv

1

k

L

2

� C

0

hkv

1

k

H

1

0

;

which is obtained by using the well-known Aubin-Nitsche trick (e.g. [5]).

Now, in order to verify solutions (

b

u; �) of (2.5) near (�u;

b

�

h

), writing

b

u = �u+

e

u ; � =

b

�

h

+

e

�;

we can rewrite (2.8) as

8

<

:

��

e

u = (

b

�

h

+

e

�� q)(

e

u+

b

u

h

+ v

1

)� (

b

�

h

� q)

b

u

h

;

Z




(

e

u+

b

u

h

+ v

1

)

2

dx = 1:

Thus using the following compact map on H

1

0

(
)�R

F (

e

u;

e

�) �

�

(��)

�1

f(

b

�

h

+

e

�� q)(

e

u+

b

u

h

+ v

1

)� (

b

�

h

� q)

b

u

h

g ;

e

�+

Z




(

e

u+

b

u

h

+ v

1

)

2

dx� 1

�

; (2.9)

where (��)

�1

is the solution operator for the Poisson equation with homogeneous boundary

conditions, we have the �xed point equation

w = F (w) (2.10)

for w = (

e

u;

e

�).

2.2 Veri�cation conditions

We now make the following assumption.

Assumption 2. Set � � (�v

1

; 0) and de�ne F

0

(�) as the Fr�echet derivative of F at �.

Assume that the restriction to S

h

�R of the operator P

h

[I �F

0

(�)] : H

1

0

(
)�R �! S

h

�R

has the inverse

[I � F

0

(�)]

�1

h

: S

h

� R �! S

h

� R:

The validity of this assumption can be numerically checked in actual computations.

Now, as in [13, 14], we decompose (2.10) into �nite and in�nite dimensional parts:
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(

P

h

w = P

h

F (w);

(I � P

h

)w = (I � P

h

)F (w):

(2.11)

We use a Newton-like method only for the �nite dimensional part, represented by the �rst

equation in (2.11). First, we de�ne the Newton-like operator

N

h

(w) � P

h

w � [I � F

0

(�)]

�1

h

(P

h

w � P

h

F (w)):

We next de�ne the operator T : H

1

0

(
)� R �! H

1

0

(
)� R as

T (w) � N

h

(w) + (I � P

h

)F (w): (2.12)

Then T becomes a compact map on H

1

0

(
)�R, and the relation

w = T (w)() w = F (w) (2.13)

holds.

Now, an arbitrary element w 2 H

1

0

(
)�R can be uniquely written as

w = (v

h

; �) + (v

?

; 0); (v

h

; �) 2 S

h

� R; (v

?

; 0) 2 S

?

h

� f0g; (2.14)

with

v

h

=

M

X

j=1

v

j

�

j

;

where M = dim S

h

, f�

j

g

M

j=1

is a basis of S

h

, (v

j

)

M

j=1

a real vector. For w in (2.14) we use

the following notation:

(w)

i

� jv

i

j; i = 1; :::;M;

(w)

M+1

� kv

?

k

H

1

0

;

(w)

M+2

� j�j:

We intend to �nd a �xed point to (2.10) in a set W , referred to as a `candidate set'. Given

a vector (W

1

; :::;W

M+2

)

t

such that W

i

> 0 (i = 1; :::;M + 2), its candidate set W is de�ned

by

6



W � fw 2 H

1

0

(
)� R j (w)

i

� W

i

(i = 1; :::;M + 2)g: (2.15)

Now let T

0

be the Fr�echet derivative of T . By the method described below we choose two

vectors (Y

1

; :::; Y

M+2

)

t

; Y

i

> 0 (i = 1; :::;M + 2) and (Z

1

; :::; Z

M+2

)

t

; Z

i

> 0 (i = 1; :::;M +2)

such that

(T (0))

i

� Y

i

; i = 1; :::;M + 2; (2.16)

(T

0

(w

1

)w

2

)

i

� Z

i

; i = 1; :::;M + 2; for any w

1

; w

2

2W: (2.17)

The veri�cation condition is described in the following theorem.

Theorem 1. If a candidate set W de�ned by (2.15) satis�es

Y

i

+ Z

i

< W

i

(i = 1; :::;M + 2); (2.18)

then there exists a �xed point of T in

K � fv 2 H

1

0

(
)� R j (v)

i

� Y

i

+ Z

i

(i = 1; :::;M + 2)g: (2.19)

Moreover, this �xed point is unique within the set W .

In order to prove this theorem, we derive two preliminary lemmas.

De�ning the norm k � k

W

by

kxk

W

� max

1�i�M+2

(x)

i

W

i

; x 2 H

1

0

(
)� R; (2.20)

we have the following lemma.

Lemma 2. For each x 2 H

1

0

(
)� R,

sup

w2W

kT

0

(w)xk

W

� max

1�i�M+2

Z

i

W

i

kxk

W

:

Proof.

Since W includes a ball centered at 0 and T

0

(w) is linear for x 2 H

1

0

(
)� R,

sup

w2W

kT

0

(w)xk

W

= kxk

W

sup

w2W











T

0

(w)

x

kxk

W











W

7



holds. Then, by the de�nition of k � k

W

, we see that

x

kxk

W

2W and this implies

sup

w2W











T

0

(w)

x

kxk

W











W

� max

1�i�M+2

Z

i

W

i

:

This proves the lemma.

Lemma 3. For any w

1

; w

2

2W ,

kT (w

1

)� T (w

2

)k

W

� sup

s2[0;1]

kT

0

(sw

1

+ (1� s)w

2

)(w

1

� w

2

)k

W

: (2.21)

Proof.

De�ning

�

T (s) � T (sw

1

+ (1� s)w

2

);

apply the mean value theorem to obtain the desired conclusion.

With these two lemmas, we can now prove Theorem 1. As usual, we de�ne the image J(V )

of an arbitrary operator J and arbitrary set V as

J(V ) � fJ(v)jv 2 V g:

Proof of Theorem 1.

We �rst prove that T (W ) � W . By (2.17) and Lemma 3,

(T (w)� T (0))

i

� sup

s2[0;1]

(T

0

(sw)w)

i

� Z

i

for all w 2W

holds. Hence, we have

(T (w))

i

� (T (0))

i

+ (T (w)� T (0))

i

� Y

i

+ Z

i

< W

i

;

from which we obtain

T (w) 2W:

8



This implies

T (W ) � W:

We next prove that, for some 0 < k < 1,

kT (w

2

)� T (w

1

)k

W

� kkw

2

� w

1

k

W

; for all w

1

; w

2

2W:

Since W is convex, by Lemmas 2 and 3 we have

kT (w

2

)� T (w

1

)k

W

� sup

s2[0;1]

kT

0

(sw

2

+ (1� s)w

1

)(w

2

� w

1

)k

W

� sup

w

3

2W

kT

0

(w

3

)(w

2

� w

1

)k

W

� max

1�i�M+2

Z

i

W

i

kw

2

� w

1

k

W

:

Thus, Y

i

> 0 (i = 1; ::;M + 2) and (2.18) imply

Z

i

W

i

<

Z

i

+ Y

i

W

i

�

9

k < 1 (i = 1; :::;M + 2):

Therefore, applying Banach's �xed point theorem to T , the theorem is proved.

2.3 Algorithm in a computer

In what follows, we describe the procedure to choose vectors (Y

1

; :::; Y

M+2

)

t

; Y

i

> 0 (i =

1; :::;M + 2), and (Z

1

; :::; Z

M+2

)

t

; Z

i

> 0 (i = 1; :::;M + 2), satisfying (2.16) and (2.17),

respectively.

As usual, we de�ne the absolute value of any interval A as

jAj � max

a2A

jaj:

Since

T (0) = N

h

(0) + (I � P

h

)F (0)

= �[I � F

0

(�)]

�1

h

(�P

h

F (0)) + (I � P

h

)F (0)

= [I � F

0

(�)]

�1

h

P

h

F (0) + (I � P

h

)F (0)

holds, for Y

1

; :::; Y

M

and Y

M+2

we �rst determine the interval vector (

e

Y

1

; :::;

e

Y

M

;

e

Y

M+2

)

t

sat-

isfying

9



P

h

T (0) = [I � F

0

(�)]

�1

h

P

h

F (0) �

0

@

M

X

j=1

e

Y

j

�

j

;

e

Y

M+2

1

A

: (2.22)

It is then su�cient to set

Y

i

= j

e

Y

i

j (i = 1; :::;M;M + 2): (2.23)

To determine the interval vector (

e

Y

1

; :::;

e

Y

M

;

e

Y

M+2

)

t

satisfying (2.22), we consider the set

Y � S

h

� R such that

Y �

�

y 2 S

h

� R j for all i = 1; :::;M + 1;

< [I � F

0

(�)]

h

y;�

i

>

H

1

0

�R

=< P

h

F (0);�

i

>

H

1

0

�R

�

; (2.24)

where [I � F

0

(�)]

h

represents the restriction to S

h

�R of the operator P

h

[I � F

0

(�)] and we

have used the basis �

1

; :::;�

M+1

of S

h

�R given by �

i

� (�

i

; 0) (i = 1; :::;M); �

M+1

� (0; 1):

Clearly, Y coincides with P

h

T (0). In the actual computation, as shown below, we can obtain

the interval hull of Y (denoted by Y ) by solving the linear system of equations in (2.24).

Then (

e

Y

1

; :::;

e

Y

M

;

e

Y

M+2

)

t

can be determined as

0

@

M

X

j=1

e

Y

j

�

j

;

e

Y

M+2

1

A

� Y : (2.25)

Observe that for �

i

(1 � i �M) and y � (

P

M

j=1

y

j

�

j

; y

M+2

), we have

< [I � F

0

(�)]

h

y;�

i

>

H

1

0

�R

=

M

X

j=1

y

j

Z




(r�

j

� r�

i

+ q�

j

�

i

�

b

�

h

�

j

�

i

) dx� y

M+2

Z




b

u

h

�

i

dx;

(2.26)

and for �

M+1

,

< [I � F

0

(�)]

h

y;�

M+1

>

H

1

0

�R

= �2

Z




b

u

h

M

X

j=1

y

j

�

j

dx: (2.27)

Moreover, for �

i

, 1 � i �M;

10



< P

h

F (0);�

i

>

H

1

0

�R

=

Z




(

b

�

h

� q)v

1

�

i

dx ; (2.28)

and for �

M+1

,

< P

h

F (0);�

M+1

>

H

1

0

�R

=

Z




(v

2

1

+ 2

b

u

h

v

1

) dx: (2.29)

Now, in order to obtain the set Y we de�ne the (M+1)�(M+1) matrix G � (g

ij

)

1�i;j�M+1

by

g

ij

= (r�

i

; r�

j

) + (�

i

; q�

j

)�

b

�

h

(�

i

; �

j

) (1 � i; j �M);

g

i;M+1

= �(

b

u

h

; �

i

) (1 � i �M); (2.30)

g

M+1;j

= �2(

b

u

h

; �

j

) (1 � j �M);

g

M+1;M+1

= 0;

and the interval vector r � ([�r

i

; r

i

])

M+1

i=1

by

r

i

�

�

�

�

�

Z




(

b

�

h

� q)v

1

�

i

dx

�

�

�

�

(i = 1; :::;M);

r

M+1

�

�

�

�

�

Z




(v

2

1

+ 2

b

u

h

v

1

) dx

�

�

�

�

:

Here, G is invertible by Assumption 2. Then, the interval vector (

e

Y

1

; :::;

e

Y

M

;

e

Y

M+2

)

t

in (2.25)

are determined by

(

e

Y

1

; :::;

e

Y

M

;

e

Y

M+2

)

t

= G

�1

r: (2.31)

We can estimate Y

M+1

by using the following inequality

k(I � P

h

)T (0)k

H

1

0

�R

= k(I � P

h

)F (0)k

H

1

0

�R

= k(I

0

� P

h0

)f(��)

�1

(

b

�

h

� q)v

1

gk

H

1

0

� C

0

hk(

b

�

h

� q)v

1

k

L

2
;

which is derived from Assumption 1 and Lemma 1; that is we can set

Y

M+1

= C

0

hk(

b

�

h

� q)v

1

k

L

2

: (2.32)
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Next, we choose a vector (Z

1

; :::; Z

M+2

)

t

satisfying (2.17).

Since

T

0

(w

1

)w

2

= N

0

h

(w

1

)w

2

+ (I � P

h

)F

0

(w

1

)w

2

= [I � F

0

(�)]

�1

h

P

h

(F

0

(w

1

)w

2

� F

0

(�)P

h

w

2

) + (I � P

h

)F

0

(w

1

)w

2

holds, for Z

1

; :::; Z

M

and Z

M+2

we �rst determine the interval vector (

e

Z

1

; :::;

e

Z

M

;

e

Z

M+2

)

t

for

all w

1

; w

2

2 W satisfying

P

h

T

0

(w

1

)w

2

= [I � F

0

(�)]

�1

h

P

h

(F

0

(w

1

)w

2

� F

0

(�)P

h

w

2

)

�

0

@

M

X

j=1

e

Z

j

�

j

;

e

Z

M+2

1

A

; (2.33)

and then set

Z

i

= j

e

Z

i

j (i = 1; :::;M;M + 2): (2.34)

To determine the interval vector (

e

Z

1

; :::;

e

Z

M

;

e

Z

M+2

)

t

satisfying (2.33), we consider the set

Z � S

h

�R such that

Z �

�

z 2 S

h

� R j there exist w

1

; w

2

2 W such that; for all i = 1; :::;M + 1;

< [I � F

0

(�)]

h

z;�

i

>

H

1

0

�R

= < P

h

(F

0

(w

1

)w

2

� F

0

(�)P

h

w

2

);�

i

>

H

1

0

�R

�

: (2.35)

In analogy to our treatment of Y, we can obtain the interval hull of Z (denoted by Z ) by

solving the linear system of equations in (2.35) using the interval right-hand side, as we now

do.

Observe that for �

i

(1 � i �M) and for all w

1

; w

2

2W , we have

< P

h

(F

0

(w

1

)w

2

� F

0

(�)P

h

w

2

);�

i

>

H

1

0

�R

=

Z




(

b

�

h

� q)f(I

0

� P

h0

)u

2

g�

i

dx+

Z




(�

1

u

2

+ �

2

(u

1

+ v

1

))�

i

dx;

(2.36)

and for �

M+1

,

< P

h

(F

0

(w

1

)w

2

� F

0

(�)P

h

w

2

);�

M+1

>

H

1

0

�R

12



= 2

Z




(u

1

+ v

1

)u

2

dx+ 2

Z




b

u

h

(I

0

� P

h0

)u

2

dx; (2.37)

where we have written w

i

= (u

i

; �

i

); u

i

2 H

1

0

(
); �

i

2 R (i = 1; 2).

Therefore, in order to obtain the set Z , we use the matrix G determined by (2.30) and the

interval vector r � ([�r

i

; r

i

])

M+1

i=1

for which

r

i

� sup

(u

j

;�

j

)2W (j=1;2)

�

�

�

�

Z




(

b

�

h

� q)f(I

0

� P

h0

)u

2

g�

i

dx

+

Z




(�

1

u

2

+ �

2

(u

1

+ v

1

))�

i

dx

�

�

�

�

;

r

M+1

� sup

(u

j

;�

j

)2W (j=1;2)

�

�

�

�

2

Z




(u

1

+ v

1

)u

2

dx+ 2

Z




b

u

h

(I

0

� P

h0

)u

2

dx

�

�

�

�

:

Then we set

(

e

Z

1

; :::;

e

Z

M

;

e

Z

M+2

)

t

= G

�1

r: (2.38)

We can also estimate Z

M+1

by using the inequality

k(I � P

h

)T

0

(w

1

)w

2

k

H

1

0

�R

= k(I � P

h

)F

0

(w

1

)w

2

k

H

1

0

�R

� C

0

hk(

b

�

h

+ �

1

� q)u

2

+ �

2

(u

1

+ v

1

+

b

u

h

)k

L

2
;

that is, we can set

Z

M+1

= sup

(u

i

;�

i

)2W (i=1;2)

C

0

hk(

b

�

h

+ �

1

� q)u

2

+ �

2

(u

1

+ v

1

+

b

u

h

)k

L

2

:

(2.39)

Now, we describe an algorithm for �nding a vector (W

1

; ::;W

M+1

;W

M+2

)

t

which satis�es the

veri�cation condition (2.18). Since (Z

i

)

M+2

i=1

depends on W , we write Z

i

as Z

i

(W ). We use

the following iteration method.

Algorithm.

1. Fix a maximum iteration number.

2. Find a vector (Y

1

; :::; Y

M+2

)

t

satisfying (2.16).

3. Set W

i

 Y

i

(i = 1; :::;M + 2).

4. Find a vector (Z

1

(W ); :::; Z

M+2

(W ))

t

satisfying (2.17).
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5. Check the veri�cation condition (2.18);

Y

i

+ Z

i

(W ) < W

i

(i = 1; :::;M + 2).

If the condition is satis�ed, then the veri�cation has succeeded.

If not, set

W

i

 (1 + �)(Y

i

+ Z

i

) (i = 1; :::;M + 2); (2.40)

where � (0 < � � 1) represents an ination parameter (cf. [19],[23] etc.), increase the

iteration number by 1, and return to step 4.

6. If the maximum iteration number is exceeded without (2.18) being satis�ed, the

veri�cation has failed.

Now assume that a set W satisfying the hypothesis in Theorem 1 exists. We de�ne

U

i

�W

i

(i = 1; :::;M + 1); �

0

� W

M+2

and set

U � fu 2 H

1

0

(
) j (u)

i

� U

i

(i = 1; :::;M + 1)g; (2.41)

� � f� 2 R j j�j � �

0

g; (2.42)

where

(u)

i

� ju

i

j; i = 1; :::;M;

(u)

M+1

� ku

?

k

H

1

0

;

with

u =

M

X

j=1

u

j

�

j

+ u

?

;

M

X

j=1

u

j

�

j

2 S

h

; u

?

2 S

?

h

:

Then we have W = U � �.

By Theorem 1 we are able to con�rm the local uniqueness of an eigenpair in U ��. But this

does not imply directly that the eigenvalue is unique in �, because there may exist another

eigenvalue in � corresponding to an eigenfunction in a set U

0

which is di�erent from U .

We therefore must show the local uniqueness individually for each eigenvalue and eigenfunc-

tion in � and U , respectively.
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2.4 Uniqueness of the enclosed eigenvalue

Let U , � and W be the sets de�ned at the end of the previous subsection. Our aim in this

subsection is to prove the uniqueness of an eigenvalue in � and of an eigenfunction in U

separately. We denote the operator T : H

1

0

(
)� R �! H

1

0

(
)�R de�ned by (2.12) as

T (u; �) = (T

1

(u; �); T

2

(u; �)); (2.43)

where T

1

and T

2

are operators such that

T

1

: H

1

0

(
)� R �! H

1

0

(
); (2.44)

T

2

: H

1

0

(
)� R �! R: (2.45)

For a �xed � 2 �, de�ne

p

�

(u) � T

1

(u; �): (2.46)

Because of the compactness of T , p

�

is also a compact map on H

1

0

(
). If (2.18) holds, then

we have

p

�

(u) 2 int(U) for all u 2 U: (2.47)

Now, for v 2 H

1

0

(
), we write

v =

M

X

j=1

v

j

�

j

+ v

?

;

where

P

M

j=1

v

j

�

j

2 S

h

; v

?

2 S

?

h

, and de�ne the norm k � k

U

by

kvk

U

� max

(

max

j=1;::;M

jv

j

j

U

j

;

kv

?

k

H

1

0

U

M+1

)

: (2.48)

We then have the following lemma.

Lemma 4. There exists a �xed point of p

�

in U for each � 2 �, and this �xed point is

unique in U . Moreover, when we denote this �xed point as u

�

, the equality

15



Z




(u

�

+ �u)

2

dx = 1 (2.49)

holds.

Proof.

In the proof of Theorem 1, we proved that, for some 0 < k < 1,

kT (w

2

)� T (w

1

)k

W

� kkw

2

� w

1

k

W

; for all w

1

; w

2

2W:

Hence, for any w

1

= (u

1

; �); w

2

= (u

2

; �) in W , we have

kT (u

2

; �)� T (u

1

; �)k

W

� kk(u

2

; �)� (u

1

; �)k

W

:

By de�nition, it follows that

kT (u

2

; �)� T (u

1

; �)k

W

= k(p

�

(u

2

); T

2

(u

2

; �))� (p

�

(u

1

); T

2

(u

1

; �))k

W

= max

(

kp

�

(u

2

)� p

�

(u

1

)k

U

;

jT

2

(u

2

; �)� T

2

(u

1

; �)j

�

0

)

;

and that

k(u

2

; �)� (u

1

; �)k

W

= k(u

2

� u

1

; 0)k

W

= ku

2

� u

1

k

U

:

Hence, for all u

1

; u

2

2 U and for the above k, we have

kp

�

(u

2

)� p

�

(u

1

)k

U

� kku

2

� u

1

k

U

: (2.50)

By (2.47) and (2.50), we can use Banach's �xed point theorem for p

�

. Thus the �rst part of

the lemma is proved.

Denoting the above �xed point as u

�

, we next prove

Z




(u

�

+ �u)

2

dx = 1:
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Noting the action of the �nite dimensional part of the operator T , we see that

(P

h0

T

1

(u; �); T

2

(u; �)) = (P

h0

u; �)

�[I � F

0

(�)]

�1

h

fP

h

(u; �)� P

h

F (u; �)g

for (u; �) 2 H

1

0

(
) � R. Then, making use of the relation p

�

(u) = T

1

(u; �) we can rewrite

the above equality as

P

h

(u; �)� P

h

F (u; �) = [I � F

0

(�)]

h

(P

h0

(u� p

�

(u)); �� T

2

(u; �)):

Comparing the second components on each side of this equality, we have

�1 +

Z




(u+ �u)

2

dx = 2

Z




b

u

h

P

h0

(u� p

�

(u)) dx:

In the case u = u

�

, we have u

�

� p

�

(u

�

) = 0, which proves the second part of the lemma.

Now, we obtain the following lemma, which is needed in the proof of the local uniqueness of

eigenvalues.

Lemma 5. Assume that (2.18) in Theorem 1 holds and let (u

�

� �u; �

�

�

b

�

h

) be a �xed point

of T (i.e. (u

�

; �

�

) be an eigenpair for (2.5)). If �

�

�

b

�

h

2 �, then either u

�

� �u 2 U or

�u

�

� �u 2 U holds.

Proof.

Since there exists a �xed point of p

�

�

�

b

�

h

in U and this �xed point is unique in it by Lemma 4,

we write this �xed point as v and de�ne v

�

by v

�

= v + �u. In what follows we assume that

u

�

6= �v

�

.

Since

Z




(v

�

)

2

dx =

Z




(v + �u)

2

dx = 1

holds by Lemma 4, de�ning

� �

Z




u

�

v

�

dx;

we have

j�j =

�

�

�

�

Z




u

�

v

�

dx

�

�

�

�

� ku

�

k

L

2
kv

�

k

L

2
= 1
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by Schwarz' inequality. Equality here holds only in the case u

�

= �v

�

. Hence our assumption

u

�

6= �v

�

implies j�j 6= 1.

Now, for each t 2 R we de�ne

g(t) � �(t)u

�

+ �(t)v

�

; (2.51)

where the functions �(t) and �(t) are de�ned by

�(t) �

1

p

2

 

cos t

p

1 + �

+

sin t

p

1� �

!

; �(t) �

1

p

2

 

cos t

p

1 + �

�

sin t

p

1� �

!

:

Then we obtain

kg(t)k

L

2

= 1

by a straightforward calculation. Moreover, we can prove that g(t) � �u is a �xed point of

p

�

�

�

b

�

h

for all t 2 R through some simple calculations. In particular, we have

g(t

1

) = v

�

; for t

1

� sin

�1

 

�

p

1� �

p

2

!

:

Since g(t) is continuous in t and not constant around t

1

, and since the �xed point of p

�

�

�

b

�

h

exists in the interior of U by (2.47), there exists a real number t

�

6= t

1

su�ciently close to t

1

satisfying

g(t

�

)� �u 6= v and g(t

�

)� �u 2 U:

This contradicts the uniqueness of the �xed point of p

�

�

�

b

�

h

in U . Consequently,

u

�

= v

�

or u

�

= �v

�

;

which implies

u

�

� �u 2 U or � u

�

� �u 2 U:

Moreover, if both u

�

� �u 2 U and �u

�

� �u 2 U hold, then both u

�

and �u

�

are eigenfunctions

corresponding to the eigenvalue �

�

and satisfy

R




(u

�

)

2

dx =

R




(�u

�

)

2

dx = 1. Therefore, both

(u

�

� �u; �

�

�

b

�

h

) and (�u

�

� �u; �

�

�

b

�

h

) are �xed points of T in U � �. Hence Theorem 1

leads us to u

�

= �u

�

, and therefore u

�

= 0. This is a contradiction. Thus we �nd that
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u

�

� �u 2 U =) �u

�

� �u =2 U:

In a similar manner, we can also show that

�u

�

� �u 2 U =) u

�

� �u =2 U:

Therefore the lemma is proved.

We next prove two additional lemmas, which are needed in the proof of the local uniqueness

of eigenfunctions.

For a �xed u 2 U , de�ne

p

u

(�) � T

2

(u; �); (2.52)

where T

2

is the same as in (2.43). Then (2.18) yields

p

u

(�) 2 int(�) for all � 2 �: (2.53)

We have the following lemma.

Lemma 6. There exists a �xed point of p

u

in � for each u 2 U , and this �xed point is

unique in �.

Proof.

In the proof of Theorem 1 we proved that, for some 0 < k < 1,

kT (w

2

)� T (w

1

)k

W

� kkw

2

� w

1

k

W

; for all w

1

; w

2

2W:

Therefore, for any w

1

= (u; �

1

); w

2

= (u; �

2

) in W we have

kT (u; �

2

)� T (u; �

1

)k

W

� kk(u; �

2

)� (u; �

1

)k

W

:

Observe that, by de�nition, we have

kT (u; �

2

)� T (u; �

1

)k

W

= max

(

kT

1

(u; �

2

)� T

1

(u; �

1

)k

U

;

jp

u

(�

2

)� p

u

(�

1

)j

�

0

)

and
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k(u; �

2

)� (u; �

1

)k

W

=

j�

2

� �

1

j

�

0

:

Hence for all �

1

; �

2

2 � and for the above k, we have

jp

u

(�

2

)� p

u

(�

1

)j � kj�

2

� �

1

j: (2.54)

Since we can again use Banach's �xed point theorem for p

u

, by (2.53) and (2.54) the lemma

is proved.

With this result we are able to prove the following lemma.

Lemma 7. Assume that (2.18) in Theorem 1 holds and let (u

�

� �u; �

�

�

b

�

h

) be a �xed point

of T . If u

�

� �u 2 U , then we have �

�

�

b

�

h

2 �.

Proof.

We denote a �xed point of p

u

�

��u

in � by �, which is unique in � by Lemma 6, and de�ne

�

�

by �

�

= �+

b

�

h

.

Assume that �

�

�

b

�

h

6= � holds. De�ning �(t) for each t 2 R as

�(t) � (1� t)�

�

+ t�

�

;

through some simple calculations we can �nd that �(t)�

b

�

h

is a �xed point of p

u

�

��u

for all

t 2 R. In particular, �(1) = �

�

. Since the �xed point of p

u

�

��u

exists in the interior of � by

(2.53), by the property of �(t) there exists a real number t

��

6= 1 su�ciently close to 1 such

that

�(t

��

)�

b

�

h

6= � and �(t

��

)�

b

�

h

2 �:

This contradicts the uniqueness of the �xed point of p

u

�

��u

in �. Therefore we have

�

�

�

b

�

h

= � 2 �;

and the lemma is proved.

From Theorem 1, and Lemmas 5 and 7 we can obtain the following theorem which is the

main result of this section.

Theorem 2. If a set W = U � � satis�es the conditions in Theorem 1, then we have

20



i)

91

u

�

: eigenfunction s.t. u

�

� �u 2 U;

Z




(u

�

)

2

dx = 1,

ii)

91

�

�

: eigenvalue s.t. �

�

�

b

�

h

2 �,

iii) F (u

�

� �u; �

�

�

b

�

h

) = (u

�

� �u; �

�

�

b

�

h

),

iv) �

�

: geometric simple eigenvalue.

Proof.

i) The existence of the eigenfunction u

�

satisfying u

�

� �u 2 U and

R




(u

�

)

2

dx =1 is con�rmed

by Theorem 1. We now prove its uniqueness.

Assume that there exists an eigenfunction v

�

which is distinct from u

�

and satis�es v

�

��u 2 U

and

R




(v

�

)

2

dx = 1. Let �

�

and �

�

be the eigenvalues corresponding to the eigenfunctions

u

�

and v

�

, respectively. Then by Lemma 7 we have �

�

�

b

�

h

and �

�

�

b

�

h

2 �. Therefore

Theorem 1 implies

�

�

= �

�

and u

�

= v

�

;

which is a contradiction.

ii) Since we can show the existence of the eigenvalue �

�

satisfying �

�

�

b

�

h

2 � by Theorem 1,

we need only prove its uniqueness.

Assume that there exists another eigenvalue �

�

which is not equal to �

�

and satis�es �

�

�

b

�

h

2

�. Then the normalized eigenfunction v

�

corresponding to �

�

satis�es either v

�

� �u 2 U or

�v

�

� �u 2 U by Lemma 5. Similarly, the normalized eigenfunction corresponding to �

�

also

satis�es either u

�

� �u 2 U or �u

�

� �u 2 U . Hence �

�

= �

�

holds by Theorem 1, which is a

contradiction.

iii) It is obvious by Theorem 1, and i) and ii) above.

iv) Assuming that �

�

is not geometric simple, there exist two eigenfunctions which correspond

to �

�

and are linearly independent. We can normalize these eigenfunctions by

Z




(u

�

)

2

dx =

Z




(v

�

)

2

dx = 1:

Note that u

�

and v

�

are also linearly independent after normalization. We then have both

u

�

� �u 2 U or � u

�

� �u 2 U
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and

v

�

� �u 2 U or � v

�

� �u 2 U

by Lemma 5. Therefore Theorem 1 leads us to conclude that either u

�

= v

�

or u

�

= �v

�

.

However, this contradicts the linear independent nature of u

�

and v

�

.
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3 Excluding method for eigenvalues

3.1 Motivation

In this section, we will mention about a veri�cation method of excluding eigenvalues. One

of the reason why we need to exclude eigenvalues is that we want to know some indices of

eigenvalues. Although we can enclose some eigenvalues by the method described in Section

2, we can obtain nothing about its indices. In order to obtain some informations about

indices, we need to check that an interval contains no eigenvalues.

The other reason is an application to the veri�cation of the solutions for the following

nonlinear elliptic boundary value problems (cf. [12]):

(

��u = f(u) in 
;

u = 0 on @
;

(3.1)

where some appropriate assumptions are given on the nonlinear map f . Setting F

0

�

(��)

�1

f , we can rewrite (3.1) as the �xed point equation:u = F

0

(u) on H

1

0

(
). Our veri�-

cation process is based upon the following Newton-like method to (I

0

� F

0

)(u) = 0:

u

n

= u

n�1

� [I

0

� F

0

0

(u

h

)]

�1

(I

0

� F

0

)(u

n�1

);

where F

0

0

(u

h

) is the Fr�echet derivative of F

0

at the approximate solution u

h

. Up to now,

instead of estimating [I

0

� F

0

0

(u

h

)]

�1

directly, we divided (I

0

� F

0

)(u) = 0 into �nite and

in�nite dimensional parts, and we used the Newton-like method only in the former part.

But if we estimate ESAV of the following eigenvalue problems

(��)[I

0

� F

0

0

(u

h

)](u) = �u;

that is,

��u� f

0

(u

h

)u = �u; (3.2)

then we can directly estimate [I

0

� F

0

0

(u

h

)]

�1

. Namely, setting q = �f

0

(u

h

) in (2.4), if we

verify the ESAV, we can apply the Newton-like method to the in�nite dimensional prob-

lems(cf. [17]). In order to estimate the ESAV rigorously, we use the veri�ed estimation of

the bound of it by excluding eiganvalues.
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3.2 Veri�cation conditions

Now, for q 2 L

1

(
), we consider the following self-adjoint eigenvalue problem:

(

��u+ qu = �u in 
;

u = 0 on @
:

(3.3)

In order to estimate the ESAV, we consider whether or not a given interval contains any

eigenvalues of (3.3). First, we assume that the ESAV is negative and we begin a procedure

to determine a bound of ESAV moving from zero in the negative direction.

We consider a su�ciently narrow interval �

i

= (a

i

; a

i�1

), where a

i

(i � 1) are negative real

numbers and a

0

= 0 (see Figure 1 (a)). For a �xed i and � 2 �

i

, we consider (3.3) as

the second-order elliptic boundary value problem. Then (3.3) has a trivial solution u = 0.

Therefore, for any � 2 �

i

, if we validate the uniqueness of the solution in (3.3) by the

method described below, it implies that � is not an eigenvalue of (3.3); that is, there is no

eigenvalue of (3.3) in �

i

. If we fail to validate the uniqueness in an interval �

j

, then we

set �

�

� inf�

j�1

(see Figure 1 (b)). Next, we start this procedure from zero and move the

positive direction. In this case, if we fail to validate the uniqueness in an interval �

k

, then we

set �

��

� sup�

k�1

(see Figure 1 (c)). Note that we can terminate this process when moving

in the positive direction after inf�

l

> j�

�

j for some interval �

l

: By comparing the absolute

value of �

�

and �

��

; we can determine a lower bound for the ESAV.

If we fail to validate the uniqueness of the solution u = 0 in interval �

1

or interval �

1

, this

implies that we could not get a bound of the ESAV as positive values. In this case, we must

re�ne our method, for example, using a smaller mesh size or higher order base functions in

S

h

, etc. However, there is the possibility that (3.3) really has 0 as an eigenvalue in such a

case.

Now, we describe a method to validate the uniqueness of solutions to (3.3) for a �xed � 2 �

i

.

Using the compact map on H

1

0

(
)

F

�

(u) � (��)

�1

(�� q)u;

we can rewrite (3.3) as

u = F

�

(u): (3.4)

Then we set

(N

h0

)

�

(u) � P

h0

u� [I

0

� F

�

]

�1

h0

(P

h0

u� P

h0

F

�

(u));
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Figure 1: Process of veri�cation

T

�

(u) � (N

h0

)

�

(u) + (I

0

� P

h0

)F

�

(u);

where we assume that the restriction to S

h

of the operator P

h0

[I

0

� F

�

] : H

1

0

(
) �! S

h

has

an inverse, [I

0

� F

�

]

�1

h0

. Then T

�

is a compact linear map on H

1

0

(
), and the equivalence

relation

u = T

�

(u)() u = F

�

(u) (3.5)

holds. Thus we have the following theorem:

Theorem 3. If there exists a non-empty, closed, bounded and convex set U � H

1

0

(
) satis-

fying T

�

(U)

�

� U , then there exists a unique solution u 2 H

1

0

(
) of u = F

�

(u).

Here, V

1

�

� V

2

implies

�

V

1

�

�

V

2

for any sets V

1

; V

2

.

Proof.

Using Schauder's �xed point theorem, there exists u in

�

U

satisfying

u = T

�

(u); (3.6)

25



and by (3.5) it is equivalent to u = F

�

(u).

Since T

�

is a linear operator and T

�

(u) = u holds, for any c 2 R we have

T

�

(cu) = cT

�

(u)

= cu: (3.7)

If u 6= 0, we can choose

b

c 2 R satisfying

b

cu 2 @U:

But this contradicts with T

�

(U)

�

� U and (3.7). Therefore u = 0. That is, u = 0 is a unique

solution of u = F

�

(u).

By Theorem 3, if there exists a closed, bounded and convex set U � H

1

0

(
) satisfying

[

�2�

i

T

�

U

�

� U then it follows that the interval �

i

contains no eigenvalues of (3.3). We use

interval approaches to verify the condition

[

�2�

i

T

�

U

�

� U (cf.[14]).

3.3 Algorithm in a computer

We now describe the actual computational procedures used to verify the condition in Theo-

rem 3.

For an interval vector B

0

� (B

(0)

j

)

M

j=1

and a strictly positive real number �

0

, we write

U

h

=

M

X

j=1

B

(0)

j

�

j

;

U

?

= f 2 S

?

h

j k k

H

1

0

� �

0

g;

where M = dimS

h

, f�

j

g

M

j=1

is a basis of S

h

. And we de�ne U as

U � U

h

� U

?

:

Then the veri�cation conditions are written as follows:

8

<

:

(N

h0

)

�

(U)

�

� U

h

(I

0

� P

h0

)F

�

(U)

�

� U

?

:

(3.8)
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If an interval vector B � (B

j

)

M

j=1

such that

M

X

j=1

B

j

�

j

� (N

h0

)

�

U (3.9)

and a real number � de�ned by

� � C

0

h sup

v2U

k(�� q)vk

L

2

satisfy the conditions

(

B

�

� B

0

;

� < �

0

;

(3.10)

then the veri�cation conditions (3.8) are satis�ed, and there exists a unique solution of (3.3)

in U for a �xed � 2 �

i

. Note that the inclusion in the former part of (3.10) is meant

componentwise.

Next we derive a necessary and su�cient condition for (3.10) which is simpler than (3.10).

If q � �, (3.3) has the only solution u = 0. Therefore we assume that q 6� �.

If we represent an element v in U as v = v

h

+ v

?

for v

h

2 U

h

and v

?

2 U

?

, we have

(N

h0

)

�

(v) = (N

h0

)

�

(v

h

+ v

?

)

= P

h0

(v

h

+ v

?

)� [I

0

� F

�

]

�1

h0

(P

h0

(v

h

+ v

?

)� P

h0

F

�

(v

h

+ v

?

))

= v

h

� [I

0

� F

�

]

�1

h0

(v

h

� P

h0

F

�

(v

h

+ v

?

)):

That is,

[I

0

� F

�

]

h0

(N

h0

)

�

(v) = [I

0

� F

�

]

h0

v

h

� (v

h

� P

h0

F

�

(v

h

+ v

?

))

= P

h0

F

�

(v

h

+ v

?

)� P

h0

F

�

(v

h

)

= P

h0

F

�

(v

?

): (3.11)

To calculate the interval vector (B

j

)

M

j=1

satisfying (3.9), we consider a set X such that

X �

�

x 2 S

h

j there exist v

?

2 U

?

such that; for all i = 1; :::;M;

< [I

0

� F

�

]

h0

x; �

i

>

H

1

0

=< P

h0

F

�

(v

?

); �

i

>

H

1

0

�

: (3.12)

In an actual computation, as shown below, we can obtain the interval hull of X (denoted by

X ) by solving the linear system of equations in (3.12) using the interval right-hand side.

Therefore we can set
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M

X

j=1

B

j

�

j

� X : (3.13)

Observe that for �

i

(1 � i � M) and x �

P

M

j=1

x

j

�

j

, we have

< [I

0

� F

�

]

h0

x; �

i

>

H

1

0

=

M

X

j=1

x

j

�

Z




r�

j

� r�

i

dx+

Z




q�

j

�

i

dx� �

Z




�

j

�

i

dx

�

; (3.14)

and for all v

?

2 U

?

,

< P

h0

F

�

(v

?

); �

i

>

H

1

0

=

Z




(�� q)v

?

�

i

dx: (3.15)

Therefore, in order to obtain the set X , we de�ne the M �M matrix G

(�)

� (g

(�)

ij

)

1�i;j�M

,

which is dependent on �, by

g

(�)

ij

= (r�

i

; r�

j

)

L

2

+ (�

i

; q�

j

)

L

2

� �(�

i

; �

j

)

L

2

(1 � i ; j �M)

and the interval vector r by

r � ([�r

i

; r

i

]); r

i

� C

0

hk(�� q)�

i

k

L

2

:

Since we supposed that [I

0

� F

�

]

�1

h0

exists, G

(�)

is invertible. Then, the interval coe�cients

B

j

in (3.9) are determined by

B = �

0

(G

(�)

)

�1

r: (3.16)

Note that B is obtained as the interval hull of the set fx 2 R

M

j G

(�)

x = �

0

r; for all r 2 rg

by the usual interval arithmetic. We can estimate � by using, for example, the triangle

inequality

� = C

0

h sup

v2U

k(�� q)vk

L

2

� C

0

h

(

sup

v

h

2U

h

k(�� q)v

h

k

L

2
+ sup

v

?

2U

?

k(�� q)v

?

k

L

2

)

� C

0

h sup

v

h

2U

h

k(�� q)v

h

k

L

2

+ C

2

0

h

2

�

0

k�� qk

1

;

where k � k

1

represents the L

1

-norm on 
. Then the following theorem holds.

Theorem 4. The conditions (3.10) are equivalent to the following inequality:
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C

0

h sup

z2(G

(�)

)

�1

r

k(�� q)�

t

� zk

L

2
+ C

2

0

h

2

k�� qk

1

< 1; (3.17)

where � � (�

i

)

M

i=1

.

Proof.

First, we suppose that (3.10) hold. Then, the veri�cation conditions (3.10) are written as

8

>

<

>

:

�

0

(G

(�)

)

�1

r

�

� B

0

;

C

0

h sup

B

0

2B

0

k(�� q)�

t

� B

0

k

L

2

+ C

2

0

h

2

�

0

k�� qk

1

< �

0

:

(3.18)

Thus we have

�

0

> C

0

h sup

B

0

2B

0

k(�� q)�

t

�B

0

k

L

2
+ C

2

0

h

2

�

0

k�� qk

1

� C

0

h sup

z2(G

(�)

)

�1

r

k(�� q)�

t

� �

0

zk

L

2
+ C

2

0

h

2

�

0

k�� qk

1

= �

0

0

@

C

0

h sup

z2(G

(�)

)

�1

r

k(�� q)�

t

� zk

L

2
+ C

2

0

h

2

k�� qk

1

1

A

;

and hence, (3.17) holds.

On the other hand, suppose that (3.17) holds. Then de�ning

� � 1� C

0

h sup

z2(G

(�)

)

�1

r

k(�� q)�

t

� zk

L

2
� C

2

0

h

2

k�� qk

1

;

� > 0 holds by (3.17). Since we assumed that q 6� �, we de�ne the interval vector b

0

as

b

0

�

�

�(M + 1)C

0

hk�� qk

1

[1];

where [1] � ([�1; 1]; :::; [�1; 1])

t

, � � max

1�i�M

k�

i

k

L

2

and write

B

0

� �

0

(G

(�)

)

�1

r+ �

0

b

0

: (3.19)

Then we have

�

0

(G

(�)

)

�1

r

�

� B

0

;
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and by straightforward calculation, we �nd that the following inequality holds:

C

0

h sup

B

0

2B

0

k(�� q)�

t

�B

0

k

L

2

+ C

2

0

h

2

�

0

k�� qk

1

< �

0

:

This proves the theorem.

Remark 3.1

We can choose �

0

and B

0

arbitrarily if they satisfy the relation (3.19). This arbitrarity

comes from the linearity of F

�

, which enables us to calculate B independently of B

0

(See

(3.11)).

By Theorem 4, if each � 2 �

i

satis�es (3.17), it follows that there is no eigenvalue of (3.3) in

�

i

. In our previous method [14], it is necessary to check the condition (3.10) in the sense of

intervals. Actually, in that case we often failed to verify the uniqueness of the trivial solution

on an interval in which no eigenvalues were contained. In the case of present method, the

condition (3.17) can be easily checked for all � 2 �

i

. Thus, computational e�ciency is

greatly increased in our new method. This has been con�rmed by actual computations.
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4 Applications to nonlinear elliptic problems

There are two known methods to verify the existence of solutions of nonlinear elliptic equa-

tions, Nakao's method [9-14] and Plum's method [17, 18]. In Nakao's method, one decom-

poses the equation into �nite and in�nite dimensional parts, and the former is processed by

�nite element approximations, while the latter is treated using constructive error estimates.

Then, Newton-like iterations for some function sets are executed to �nd a solution.

In Plum's method, the norm of the inverse of the linearized operator of the original di�er-

ential equation is evaluated by rigorously estimating the Eigenvalue with Smallest Absolute

Value (ESAV) of this linearized operator, and the solution in question is enclosed near an

approximate solution by checking a condition of the Newton-Kantorovich type in an in�-

nite dimensional space. Therefore, in Plum's method the estimation of the ESAV plays an

essentially important role.

In this section, we propose an alternative approach to this problem consisting of a mixture of

Nakao's and Plum's veri�cation methods. More precisely, we use a form of Plum's method

with local uniqueness for the basic formulation (cf. [25]), and for the estimation of the ESAV

of the linearized operator, we use Nakao's method described in Section 3. By applying such a

mixed approach, we can obtain a new veri�cation method which includes all the advantages

of the two previous methods and none of their disadvantages.

4.1 Statement of the problem and the �xed point formulation

We consider the nonlinear elliptic boundary value problems of the form

(

��u = f(u) in 
;

u = 0 on @
;

(4.1)

where we suppose that f satis�es the following assumptions:

A1. f : H

1

0

(
) �! L

2

(
) is continuous and maps bounded sets into bounded sets.

A2. f is Fr�echet di�erentiable on H

1

0

(
).

Let u

h

2 S

h

be a �nite element approximate solution of (4.1) satisfying

(ru

h

;rv

h

)

L

2

= (f(u

h

); v

h

)

L

2

for all v

h

2 S

h

:

We used the library PROFIL (cf. [4]), which enables us to enclose the above u

h

in very small

intervals. We attempt to �nd the solution of (4.1) near �u satisfying
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(

���u = f (u

h

) in 
;

�u = 0 on @
:

(4.2)

For this �u 2 H

2

(
)

T

H

1

0

(
), the relation u

h

= P

h0

�u holds, as can be con�rmed by a simple

calculation. From (4.1) and (4.2), we have

(

��(u� �u) = f(u)� f(u

h

) in 
;

u� �u = 0 on @
:

(4.3)

De�ning v

0

= �u� u

h

, we then have v

0

2 S

?

h

, and we can write

�u = u

h

+ v

0

for u

h

2 S

h

and v

0

2 S

?

h

:

Similar to the discussion in Section 2, we obtain the following estimation:

kv

0

k

H

1

0

� kru

h

�

�

ru

h

k

L

2
+ C

0

hk

�

�u

h

+ f(u

h

)k

L

2
:

Note also that in this estimation we used the L

2

-estimate of v

0

:

kv

0

k

L

2

� C

0

hkv

0

k

H

1

0

:

Now, in order to verify solutions u of (4.1) near �u, writing w = u� �u, we can rewrite (4.3)

as follows:

(

��w = f(u

h

+ v

0

+ w)� f(u

h

) in 
;

w = 0 on @
:

(4.4)

Let (��)

�1

 be the solution of (2.2) for  2 L

2

(
). Then

(��)

�1

: L

2

(
) �! H

2

(
) \H

1

0

(
)

is a bounded operator, and since the imbedding H

2

(
) ,! H

1

0

(
) is compact,

(��)

�1

: L

2

(
) �! H

1

0

(
)

is a compact operator. Thus using the compact map F

0

: H

1

0

(
) �! H

1

0

(
) de�ned by
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F

0

(w) � (��)

�1

(f(u

h

+ v

0

+ w)� f(u

h

)); (4.5)

we have the �xed point equation for w on H

1

0

(
),

w = F

0

(w): (4.6)

Next, let F

0

0

(�v

0

) be the Fr�echet derivative of F

0

at �v

0

, and de�ne L � I

0

� F

0

0

(�v

0

).

Moreover, with

e

L � (��)L : H

1

0

(
) �! H

�1

(
), by F

0

0

(�v

0

)u = (��)

�1

f

0

(u

h

)u, we have

e

Lu = ��u� f

0

(u

h

)u

which is a strongly elliptic operator. Here �� is interpreted in a distributional sense. Note

that, by restricting the domain of de�nition of

e

L to H

2

(
)

T

H

1

0

(
), we can regard the

operator

e

L : H

1

0

(
) �! H

�1

(
) as

e

L : H

2

(
)

T

H

1

0

(
) �! L

2

(
).

Now we discuss the existence of

e

L

�1

.

Since

e

L = (��)(I

0

� F

0

0

(�v

0

))

holds, (��)

�1

e

L is a Fredholm operator of index 0. If the ESAV �

�

of

e

L is known to be

nonzero, then we have the estimate

kuk

L

2

�

1

j�

�

j

k

e

Luk

L

2

for u 2 H

2

(
) \H

1

0

(
);

and therefore,

e

Lu = 0() u = 0;

which implies that (��)

�1

e

L is an injection. Thus by the Fredholm alternative theorem,

(��)

�1

e

L has an inverse. Hence, the existence of the continuous operator

e

L

�1

: L

2

(
) �!

H

2

(
)

T

H

1

0

(
) is con�rmed.

Now, de�ne the operator T

0

: H

1

0

(
) �! H

1

0

(
) as follows:

T

0

(w) �

e

L

�1

(f(u

h

+ v

0

+ w)� f(u

h

)� f

0

(u

h

)w): (4.7)
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This operator is derived by a Newton-like method for the equation (I

0

� F

0

)w = 0. Then,

since the imbeddingH

2

(
) ,! H

1

0

(
) is compact, using assumptionsA1 andA2, T

0

becomes

a compact operator on H

1

0

(
), and we have

w = T

0

(w)() w = F

0

(w):

4.2 Veri�cation conditions

In this subsection we present a veri�cation condition with uniqueness based upon [25].

Now, we intend to �nd a solution to (4.1) in a set W

0

. Taking a strictly positive real number

�, a candidate set W

0

is de�ned by

W

0

� fw 2 H

1

0

(
)j kwk

H

1

0

� �g: (4.8)

By the method described below we choose strictly positive constants � and  such that

kT

0

(0)k

H

1

0

� �; (4.9)

kT

0

0

(w

1

)w

2

k

H

1

0

�  for all w

1

; w

2

2W

0

: (4.10)

We then de�ne the set K

0

� H

1

0

(
) by

K

0

� fv 2 H

1

0

(
) j kvk

H

1

0

� � + g; (4.11)

which includes the image ofW

0

transformed by the linearized operator of T

0

. The veri�cation

condition is described in the following theorem.

Theorem 5. If K

0

�W

0

holds for a candidate set W

0

de�ned by (4.8), namely,

� +  � �; (4.12)

then there exists a solution to (4.1) in �u+K

0

. Moreover, this solution is unique within the

set �u+W

0

.

Since the proof of this theorem is similar to that of Theorem 1, we describe the outline of it.

Outline of proof.

We de�ne a scaling norm k � k

W

0

by
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kxk

W

0

�

kxk

H

1

0

�

for x 2 H

1

0

(
);

where � is the same one in (4.8). Using this norm we can prove that

T

0

(W

0

) � W

0

and

kT

0

(w

2

)� T

0

(w

1

)k

W

0

� kkw

2

� w

1

k

W

0

for some k s.t. 0 < k < 1 and for all w

1

; w

2

2W

0

. Then we can apply Banach's �xed point

theorem to obtain the desired conclusion.

4.3 Estimation of constants and algorithm

In this subsection we describe the manner in which the constants in (4.9) and (4.10) are

obtained.

Constant �

Since

T

0

(0) = L

�1

(��)

�1

(f(u

h

+ v

0

)� f(u

h

))

holds, we consider constants �

1

and � satisfying

kT

0

(0)k

H

1

0

� �

1

kf(u

h

+ v

0

)� f(u

h

)k

L

2
; (4.13)

kf(u

h

+ v

0

)� f (u

h

)k

L

2

� �: (4.14)

We then can choose � to be �

1

�.

As for �

1

, we �rst calculate the constant �

0

such that

kuk

L

2
� �

0

k(��)Luk

L

2
for u 2 H

2

(
) \H

1

0

(
): (4.15)

This constant �

0

is obtained as the inverse of the ESAV of
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(��)Lu = �u: (4.16)

Then we can calculate �

1

from �

0

as follows (cf.[17]). Assume that L

1

(
) 3 q � �f

0

(u

h

)

and that there exist constants q; �q such that

q � q(x) � �q (x 2

�


): (4.17)

Then the constant �

1

is derived as follows:

�

1

=

8

>

>

<

>

>

:

q

�

0

(1� q�

0

) if q�

0

�

1

2

;

1

2

p

q

otherwise:

(4.18)

Since f(�) 2 L

2

(
) is assumed to be bounded, � can be calculated using a simple estimation.

Constant 

We consider a constant �

2

and a monotonically increasing function Q : [0;1) �! [0;1)

such that for all w

1

; w

2

2 W

0

,

kT

0

0

(w

1

)w

2

k

H

1

0

� �

2

kf

0

(u

h

+ v

0

+ w

1

)w

2

� f

0

(u

h

)w

2

k

L

2

; (4.19)

kf

0

(u

h

+ v

0

+ w

1

)w

2

� f

0

(u

h

)w

2

k

L

2
� Q(kw

2

k

H

1

0

): (4.20)

Then since we have

kT

0

0

(w

1

)w

2

k

H

1

0

� �

2

Q(kw

2

k

H

1

0

) for all w

1

; w

2

2 W

0

;

we can choose  as �

2

Q(�).

As for �

2

, since

(��)LT

0

0

(w

1

)w

2

= f

0

(u

h

+ v

0

+ w

1

)w

2

� f

0

(u

h

)w

2

holds for all w

1

; w

2

2W

0

, we can choose �

2

= �

1

. With regard to the monotonically increasing

functionQ, since f

0

: H

1

0

(
) �! L(H

1

0

(
); L

2

(
)) (the space of bounded and linear operators

H

1

0

(
) �! L

2

(
)) is a bounded and linear operator, we can construct Q as
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Q(kw

2

k

H

1

0

) = C

(u

h

;v

0

;�)

kw

2

k

H

1

0

;

where C

(u

h

;v

0

;�)

is a positive constant independent of w

2

2 W

0

.

Now, we describe an algorithm for �nding a real number � which satis�es the veri�cation

condition (4.12),

� +  � �:

Since  depends on �, we write  as

 = (�):

If f(u) in (4.1) is a polynomial in u, (�) is a polynomial in �. Therefore, in order to �nd �

satisfying (4.12), we may solve the inequality for �. Here we present the following iteration

method.

Algorithm

1. Fix a maximum iteration number.

2. Find a constant � satisfying (4.9).

3. Set � �.

4. Find a constant (�) satisfying (4.10).

5. Check the veri�cation condition (4.12); � + (�) � �.

If the condition is satis�ed, the veri�cation has succeeded. If not,

Set � (1 + �)� (0 < � � 1); (4.21)

where � (0 < � � 1) represents an ination parameter (cf.[19],[23] etc.). Then increase the

iteration number by 1 and return to step 4.

6. If the maximum iteration number is exceeded, without (4.12) being satis�ed, the

veri�cation has failed.
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5 Numerical examples

First, we give two examples whose eigenvalues were enclosed using the method in Section 2.

Speci�cally, we have veri�ed the eigenvalues with the smallest absolute values (ESAV) with

the technique described in Section 3. We set the following conditions:


 is the rectangular domain (0; 1)� (0; 1) � R

2

, and the interval (0,1) was partitioned into

20 pieces (h =

1

20

). The basis in S

h

consists of continuous, piecewise biquadratic polynomials

on 
. (M = dimS

h

= 1521) The ination parameter � in (2.40) is set to 0.0001. Then the

constants appearing previously can be taken as C

1

=

1

2�

and C

2

= 1 (cf.[14]).

In the calculations, interval arithmetic is used to avoid the e�ects of rounding errors in

the oating-point computations. The computations were carried out on a Sun Enterprise

450 using the interval library PROFIL coded by Kn�uppel of the Technical University of

Hamburg-Harburg ([4]). PROFIL is implemented as a portable C++ class fast interval

library and supports two interval solvers proposed by Rump ([19]).

Example 1:

We consider the following self-adjoint eigenvalue problem:

(

��u� 2u

h1

u = �u in 
;

u = 0 on @
;

(5.1)

where u

h1

is a �nite element solution of the following so-called Emden equation:

(

��u = u

2

in 
;

u = 0 on @
:

(5.2)

We calculated a �nite element approximate solution (

b

u

h

;

b

�

h

) satisfying (2.6) using the interval

Newton method. The veri�ed results for the ESAV are given in Table 1. These demonstrate

that the ESAV exists in the interval

b

�

h

+ [�(Y

M+2

+ Z

M+2

); Y

M+2

+ Z

M+2

];

and that it is unique in the interval

b

�

h

+ [�W

M+2

;W

M+2

]:
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Example 1 Example 2

b

�

h

[�20:70639871

6851

7881

] [�16:610392

2420

3224

]

k

b

u

h

k

L

1

2:47738622 2:30812688

kv

1

k

L

2
0:00013965 0:00013715

Iteration number 9 9

max

1�i�M

(Y

i

+ Z

i

) 0.00296313 0.00320281

max

1�i�M

W

i

0.00296339 0.00320311

Y

M+1

+ Z

M+1

0.00111568 0.00104195

W

M+1

0.00111569 0.00104204

Y

M+2

+ Z

M+2

0.06131755 0.05976070

W

M+2

0.06132296 0.05976615

Table 1: Results of veri�cation

Example 2:

We consider the following self-adjoint eigenvalue problem:

(

��u+ �(3u

2

h2

� 2(a+ 1)u

h2

+ a)u = �u in 
;

u = 0 on @
;

(5.3)

where � and a are positive constants, and u

h2

is a �nite element solution of the following

so-called Allen-Cahn equation:

(

��u = �u(u� a)(1� u) in 
;

u = 0 on @
:

(5.4)

It is known that this equation has two solution branches with respect to the parameter � > 0

(cf.[23]). Here we considered the case in which u

h2

is an approximate lower branch solution

for � = 150, a = 0:01. As in Example 1, we calculated a �nite element approximate solution

(

b

u

h

;

b

�

h

) satisfying (2.6) using the interval Newton method. The veri�cation results are given

in Table 1. They also demonstrate that the ESAV exists in the interval

b

�

h

+ [�(Y

M+2

+ Z

M+2

); Y

M+2

+ Z

M+2

];

and that it is unique in the interval

b

�

h

+ [�W

M+2

;W

M+2

]:
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Next we give two examples, the Emden equation and the Allen-Cahn equation, which we

have studied using the method in Section 4. In these examples, 
, the number of partitions

for the interval (0,1) and the basis in S

h

are the same as previous two examples, except for

the ination parameter � in (4.21), 0.01.

Example 3:

We consider to �nd a nontrivial solution of the following so-called Emden equation:

(

��u = u

2

in 
;

u = 0 on @
:

(5.5)

The associated eigenvalue problem for the estimation of the norm of the inverse of the

linearized operator here is (5.1).

By the method described in Section 3, we have veri�ed that the interval

[�20:6; 55:5]

does not contain any eigenvalues of (5.1), and we can thus take the bound of the ESAV as

20.6. Thus, it is seen that the constants �

0

and �

1

in (4.13) and (4.15) can be taken as

�

0

= 0:0485438;

�

1

= 0:225566:

We can take the constant � in (4.14) as

� = 0:0632076:

Also, the monotonically increasing function Q satisfying (4.20) can be chosen as

Q(x) =

�

2

�

2

�+

2

�

C

3

kv

0

k

H

1

0

�

x;

where C

3

is a constant determined by
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0

1

X

0

1

Y

0

10

20

 

0

1

X

Figure 2: Approximate solution u

h1

C

3

=

�

1

40�

�

7

16

�

9

2�8

1

18

r

sin

�

9

�

9

16

:

See Appendix for the details of the method to calculate above �, Q(x) and C

3

. We completed

the veri�cation algorithm presented in Section 4.3 with 2 iterations.

The constant � in the set W

0

de�ned in (4.8) and the constant � +  in the set K

0

de�ned

in (4.11) were determined as

� = 0:014399992;

� +  = 0:014295359:

That is, there exists a solution u in (5.5) satisfying

ku� �uk

H

1

0

� 0:014295359:

Moreover, it is unique in

ku� �uk

H

1

0

� 0:014399992:
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Figure 2 displays the shape of an approximate solution of (5.5).

Example 4:

We next consider to �nd a nontrivial solution of the following so-called Allen-Cahn equation:

(

��u = �u(u� a)(1� u) in 
;

u = 0 on @
:

(5.6)

We have veri�ed the existence and uniqueness of two exact solutions on the upper and lower

branch in the case that � = 150 and a = 0:01. Then the associated eigenvalue problem for

the estimation of the norm of the inverse of the linearized operator is (5.3).

The upper branch solution

With the method described in Section 3, we have veri�ed that the interval

[�50:0; 45:0]

does not contain any eigenvalues of (5.3), and thus we can take the bound of the ESAV as

45.0. Then it follows that the constants �

0

and �

1

in (4.13) and (4.15) can be taken as

�

0

= 0:02222222;

�

1

= 0:149173:

We can choose the constant � in (4.14) as

� = 0:0107114;

and the monotonically increasing function Q satisfying (4.20) can be chosen as

Q(x) = �

�

k6u

h2

� 2(a+ 1)k

1

(C

3

kv

0

k

H

1

0

+ C

4

�)C

4

+3C

4

(C

5

kv

0

k

H

1

0

+ C

6

�)

2

�

x;

where C

4

, C

5

and C

6

are constants determined by
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0
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Y

0

0.4
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0

1

X

Figure 3: Approximate solution u

h2

(upper branch)

C

4

=

1

�

;

C

5

=

�

1

40�

�

1

8

�

7

2�6

1

14

r

sin

�

7

�

7

8

;

C

6

=

2

3

1

8

2

1

4

�

:

For the calculations of above �, Q(x); C

4

; C

5

and C

6

, see Appendix.

Veri�cation by the algorithm presented in Section 4.3 was completed with 6 iterations. The

constant � in the set W

0

de�ned in (4.8) and the constant � +  in the set K

0

de�ned in

(4.11) were determined as

� = 0:00167936;

� +  = 0:00167052:

That is, there exists a solution u in (5.6) satisfying
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0

1

X

0

1

Y
0

0.1

0.2
 

0

1

X

Figure 4: Approximate solution u

h2

(lower branch)

ku� �uk

H

1

0

� 0:00167052:

Moreover, it is unique in

ku� �uk

H

1

0

� 0:00167936:

The lower branch solution

We veri�ed that the interval

[�16:2; 18:0]

does not contain any eigenvalues of (5.3). This implies that the bound of the ESAV can be

taken as 16.2. Similarly, as before, we obtain

�

0

= 0:0617284;

�

1

= 0:24852;

� = 0:00041168:
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The monotonically increasing function Q satisfying (4.20) is the same here as in the upper

branch.

We completed the veri�cation in this case with 2 iterations. The constant � in the set W

0

de�ned in (4.8) and the constant � +  in the set K

0

de�ned in (4.11) were determined as

� = 0:00010333;

� +  = 0:00010266:

That is, there exists a solution u in (5.6) satisfying

ku� �uk

H

1

0

� 0:00010266:

Moreover, it is unique in

ku� �uk

H

1

0

� 0:00010333:

Figures 3 and 4 display contours of the approximate upper and lower branch solutions of

(5.6), respectively.
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6 Conclusions

It is very interesting and important problem to verify the eigenvalues with guaranteed error

bounds in mathematics as well as physics and engineering. In the existing veri�ed computa-

tional approaches, the methods in [2] and in [15, 16] are able to guarantee the index of the

enclosed eigenvalue. On the other hand, our method has an advantage that it is applicable

to non-selfadjoint eigenvalue problems while other methods, in [2] and [15, 16], seem to be

di�cult to deal with such kind of problems. In this paper, we applied the veri�cation method

for the nonlinear elliptic boundary value problems to the eigenvalue enclosing. This method

assures the simplicity of the enclosed eigenvalue. Moreover, by estimating the norm of the

inverse linearized operator for nonlinear elliptic problems using the ESAV, we proposed a

new veri�cation method for the solutions of that problems incorporating with the approach

in [17].
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Appendix

In this appendix, we describe the method to compute the constant � in (4.14) and the

monotonically increasing function Q satisfying (4.20). In order to obtain better constant �

and function Q, we used the best imbedding constatns by G.Talenti (cf. [22]). Therefore we

�rst describe the imbedding constants.

If the domain 
 � R

2

has a cone property, by the Sobolev imbedding theorems (cf. [1]),

there exists the imbedding

H

1

(
) ,! L

p

(
); 2 � p <1;

that is, we have

u 2 H

1

(
) ) u 2 L

p

(
):

The following theorem is the main result in [22].

Theorem

� �

Let u be any real (or complex) valued function, de�ned on the whole n-dimensional Eu-

clidean space R

n

, su�ciently smooth and decaying fast enough at in�nity. Moreover let

p be any number such that 1 < p < n. Then

(1)

�

Z

R

n

juj

q

dx

�

1=q

� C

�

Z

R

n

jDuj

p

dx

�

1=p

;

where jDuj is the length of the gradient Du of u, q = np=(n� p) and

(2) C = �

�1=2

n

�1=p

 

p� 1

n� p

!

1�1=p

(

�(1 + n=2)�(n)

�(n=p)�(1 + n� n=p)

)

1=n

:

The equality sign holds in (1) if u has the form

(3) u(x) = [a+ bjxj

p=(p�1)

]

1�n=p

;

where jxj = (x

2

1

+ � � �+ x

2

n

)

1=2

and a; b are positive constatns.

� �

In the above theorem �(n) means the gamma function.

Now, we consider the case n = 2. In the present case 
 = (0; 1) � (0; 1) we can extend

u 2 H

1

0

(
) to the whole space R

2

as follows:
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(4) u(x) =

�

u(x); (x 2 
)

0: (x 62 
)

By (4) using H�older's inequality we have

�

Z

R

2

jDuj

p

dx

�

1=p

=

�

Z




jDuj

p

dx

�

1=p

�

(

�

Z




(jDuj

p

)

2=p

dx

�

p=2

�

Z




1

2=(2�p)

dx

�

(2�p)=2

)

1=p

� j
j

(2�p)=2p

kruk

L

2
:

Therefore using the constant C in (1) we have

kuk

L

q

� Cj
j

(2�p)=2p

kruk

L

2

:

If we write q = 2k, p is then written as p = 2k=(k + 1), and 1 < p < n = 2 for k > 1. Since

� function have the properties

�(x+ 1) = x�(x); �(x)�(1� x) =

�

sin�x

;

using these properties, above constant C is written as

(5) C =

k

2�

(k � 1)

�1=2k

�

sin

�

k

�

1=2

:

Considering this constant C is depend on k, we write C as C(k). Then the following estimates

hold:

(6) ku

k

k

L

2
= kuk

k

L

2k

� (C(k))

k

j
j

1=2

kuk

k

H

1

0

:

If kuk

L

2
is small, we can sometimes obtain better estimates by using kuk

L

2
together with

(6) as described below.

By Schwarz' inequality we have

(7) ku

k

k

L

2
�

q

kuk

L

2
ku

2k�1

k

L

2
:

Then, by applying the estimates (6) to ku

2k�1

k

L

2

in (7), we have
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(8) ku

k

k

L

2
� (C(2k � 1))

k�1=2

j
j

1=4

kuk

1=2

L

2

kuk

k�1=2

H

1

0

:

Moreover, by applying the estimates (8) to ku

2k�1

k

L

2
in (7), we obtain the estimates

(9) ku

k

k

L

2
� (C(4k � 3))

(4k�3)=4

j
j

1=8

kuk

3=4

L

2

kuk

(4k�3)=4

H

1

0

:

Repeating the above technique l times, we have for k

0

� k � (1�

1

2

l

);

(10) ku

k

k

L

2

� (C(2

l

k

0

))

k

0

j
j

1=2

(l+1)

kuk

k�k

0

L

2

kuk

k

0

H

1

0

:

Now, using above estimates, we calculate the constant � in (4.14) and the monotonically

increasing function Q satisfying (4.20).

Constant �

For Example 3, we have

kf(u

h1

+ v

0

)� f(u

h1

)k

L

2

= k2u

h1

v

0

+ v

2

0

k

L

2

� 2ku

h1

k

1

kv

0

k

L

2

+ kv

2

0

k

L

2

;

and for Example 4, we have

kf(u

h2

+ v

0

)� f(u

h2

)k

L

2

= �kv

0

(�3u

2

h2

� 3u

h2

v

0

� v

2

0

+ 2(a+ 1)u

h2

+ (a+ 1)v

0

� a)k

L

2

:

From the above, we need to estimate kv

2

0

k

L

2
and kv

3

0

k

L

2
. In order to obtain better estimates

for these norms, we used the estimates (10). Since we have, by Schwarz' inequality,

kv

2

0

k

L

2

�

q

kv

0

k

L

2

kv

3

0

k

L

2

;

the estimates of kv

3

0

k

L

2

plays an important role. As we could obtain better estimate for it

in case l = 2 and k = 3 in (10), we calculated the constant � by using it.

Function Q
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For Example 3, we have for w

1

; w

2

2W

0

kf

0

(u

h1

+ v

0

+ w

1

)w

2

� f

0

(u

h1

)w

2

k

L

2

= 2k(v

0

+ w

1

)w

2

k

L

2

� 2(kv

0

k

L

4

+ kw

1

k

L

4

)kw

2

k

L

4

and for Example 4, we have

kf

0

(u

h2

+ v

0

+ w

1

)w

2

� f

0

(u

h2

)w

2

k

L

2

= �k(v

0

+ w

1

)f6u

h2

+ 3(v

0

+ w

1

)� 2(a+ 1)gw

2

k

L

2

� �k6u

h2

� 2(a+ 1)k

1

(kv

0

k

L

4

+ kw

1

k

L

4

)kw

2

k

L

4

+ 3�(kv

0

k

L

8

+ kw

1

k

L

8

)

2

kw

2

k

L

4

:

Therefore we need the estimates for kv

0

k

L

4
; kv

0

k

L

8
and kwk

L

4
; kwk

L

8
for w 2 W

0

. We used

(6) for kwk

L

4
; kwk

L

8
. Since kv

0

k

L

4
is estimated by

kv

0

k

L

4
� kv

0

k

1=4

L

2

kv

3

0

k

1=4

L

2

;

kv

3

0

k

L

2
is essential for the estimates of kv

0

k

L

4
and we used the same estimate above, i.e.,

l = 2 and k = 3 in (10). For kv

0

k

L

8

, since we have, by Schwarz' inequality,

kv

0

k

L

8

� kv

0

k

1=8

L

2

kv

7

0

k

1=8

L

2

;

the estimates of kv

7

0

k

L

2

is important. As we could obtain better estimate for it in case k = 7

in (6), we constitute the function Q by using it.
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