
Studies in Computational Intelligence 805

Bartłomiej Jacek Kubica

Interval Methods for
Solving Nonlinear
Constraint Satisfaction,
Optimization and
Similar Problems
From Inequalities Systems to Game
Solutions

Studies in Computational Intelligence

Volume 805

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

The series “Studies in Computational Intelligence” (SCI) publishes new develop-
ments and advances in the various areas of computational intelligence—quickly and
with a high quality. The intent is to cover the theory, applications, and design
methods of computational intelligence, as embedded in the fields of engineering,
computer science, physics and life sciences, as well as the methodologies behind
them. The series contains monographs, lecture notes and edited volumes in
computational intelligence spanning the areas of neural networks, connectionist
systems, genetic algorithms, evolutionary computation, artificial intelligence,
cellular automata, self-organizing systems, soft computing, fuzzy systems, and
hybrid intelligent systems. Of particular value to both the contributors and the
readership are the short publication timeframe and the world-wide distribution,
which enable both wide and rapid dissemination of research output.

The books of this series are submitted to indexing to Web of Science,
EI-Compendex, DBLP, SCOPUS, Google Scholar and Springerlink.

More information about this series at http://www.springer.com/series/7092

http://www.springer.com/series/7092

Bartłomiej Jacek Kubica

Interval Methods for Solving
Nonlinear Constraint
Satisfaction, Optimization
and Similar Problems
From Inequalities Systems to Game Solutions

123

Bartłomiej Jacek Kubica
Department of Applied Informatics
Warsaw University of Life Sciences
Warsaw, Poland

ISSN 1860-949X ISSN 1860-9503 (electronic)
Studies in Computational Intelligence
ISBN 978-3-030-13794-6 ISBN 978-3-030-13795-3 (eBook)
https://doi.org/10.1007/978-3-030-13795-3

Library of Congress Control Number: 2019931826

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-13795-3

To my beloved son, Stefanek, the joy of my
life.

Preface

This book contains recent research on interval methods for solving nonlinear
constraint satisfaction, optimization and similar problems. It presents a compre-
hensive survey of applications: it includes various branches of robotics, artificial
intelligence systems, economy, control theory, dynamical systems theory and
others. The book is completed with three Appendices, describing the notation,
representation of numbers, used as intervals’ endpoints and example implementa-
tions of the interval data type in a few programming languages.

Warsaw, Poland Bartłomiej Jacek Kubica

vii

Acknowledgements

The author is grateful to everyone, who helped him in the process of preparation of
this monograph.

Many thanks to Prof. Roman Wyrzykowski for all his help and for providing the
MICLab project, crucial in performing several of the practical experiments.

I would like to acknowledge my friend and ‘closest approximation to mentor I
have ever had’, Adam Woźniak.

Thanks to Prof. Sergey P. Shary, my great friend, and his wife, Irene A. Sharaya,
who, unfortunately, is no longer between us.

Particular thanks to my Mother, my Wife and all my family.
And—last, but not least—thanks to my Lord, Jesus Christ, because without Him

we can do nothing (John 15, 5).

ix

Contents

1 Introduction . 1
References . 3

2 Interval Calculus . 5
2.1 Introduction . 5
2.2 Basics of Interval Computations . 5
2.3 Operations on Intervals . 6

2.3.1 Interval Arithmetic . 6
2.3.2 Interval Enclosures of Other Operations

and Functions . 7
2.3.3 Auxiliary Operations . 7

2.4 Properties and Features of the Interval Calculus 8
2.5 Interval Extension of a Function . 8

2.5.1 Most Common Forms of Interval Extensions 9
2.5.2 How to Construct Formulae for Interval-Valued

Functions? . 9
2.6 Comparison of Intervals . 10
2.7 A Metric on the Space of Intervals . 13
2.8 Open or Closed Intervals? . 13
2.9 Purposes of the Interval Calculus . 14
References . 15

3 Bounding Derivatives by Algorithmic Differentiation 17
3.1 Interval Algorithms and Derivatives Computation 17

3.1.1 Basic Approaches . 17
3.2 Algorithmic Differentiation . 18
3.3 Implementation of AD . 19

3.3.1 Forward AD with Operator Overloading 19
3.3.2 Forward AD with Dual Numbers 19
3.3.3 Reverse Mode AD . 20

xi

3.4 State-of-the-Art Libraries . 21
3.4.1 ADHC Library . 22
3.4.2 Computing Arbitrary Many Derivatives 24

3.5 Summary . 25
References . 25

4 Branch-and-Bound-Type Methods . 27
4.1 Preliminary Remarks . 27
4.2 Introduction . 27
4.3 The Solution Set . 29
4.4 Generic Algorithm . 31
4.5 Analysis of the B&BT Algorithm . 33
4.6 The Second Phase—Quantifier Elimination 34

4.6.1 Herbrand Expansion . 34
4.6.2 Shared Quantities . 36
4.6.3 Existentially Quantified Formulae 37
4.6.4 When is the Second Phase Not Necessary? 38

4.7 Necessary Conditions . 38
4.8 Seeking Local Optima of a Function . 39
4.9 Example Heuristics . 41
4.10 Conclusions . 42
References . 43

5 Solving Equations and Inequalities Systems Using Interval
B&Bt Methods . 47
5.1 Constraint Satisfaction Problems . 47
5.2 Solving Systems of Nonlinear Equations 48
5.3 Interval Newton Operators . 50
5.4 Other Verification Tests . 53

5.4.1 Miranda Test . 53
5.4.2 Using Quadratic Approximation 53
5.4.3 Borsuk Test . 54
5.4.4 Computing Topological Degree 54
5.4.5 Obstruction Theory Test . 55

5.5 Consistency Enforcing . 56
5.5.1 Hull-Consistency . 56
5.5.2 Box-Consistency . 58
5.5.3 Higher-Order Consistencies . 59

5.6 Heuristics for Choosing and Parameterizing the Tools 61
References . 62

xii Contents

6 Solving Quantified Problems Using Interval Methods 65
6.1 Interval Global Optimization . 65

6.1.1 Branch-and-Bound Algorithm . 66
6.1.2 Processing a Box in Interval Global Optimization 69

6.2 Pareto Sets of Multicritria Problems . 70
6.2.1 Tools . 72

6.3 Game Solutions . 73
6.3.1 Algorithm . 74
6.3.2 Tools . 75

6.4 Summary . 75
References . 75

7 Parallelization of B&BT Algorithms . 79
7.1 Introduction . 79
7.2 Generic Algorithm . 79
7.3 Basic Implementation Details . 81

7.3.1 Data Structures . 81
7.3.2 Memory Management . 81

7.4 Parallelization of the B&BT Algorithm 82
7.5 Shared Memory Implementations . 82

7.5.1 Storage of L . 83
7.5.2 Storage of Lver and Lpos . 83
7.5.3 Shared Quantities . 84

7.6 Distributed Memory Implementations . 85
7.6.1 Load Balancing . 85
7.6.2 Termination Detection . 85
7.6.3 Advanced Issues . 86

7.7 Parallelization of Rejection/Reduction Tests 87
7.7.1 Parallelization of Existence Tests 87
7.7.2 Modern Architectures . 88

7.8 Summary . 88
References . 88

8 Interval Software, Libraries and Standards 91
8.1 Main Issues in Implementing Interval Libraries 91

8.1.1 IEEE 754 Standard . 92
8.2 C-XSC . 92

8.2.1 Basic Types . 93
8.2.2 The Use of BLAS . 93
8.2.3 The Toolbox and Additional Software 93
8.2.4 Author’s Solvers and Libraries . 94

8.3 Other Libraries . 94
8.3.1 PROFIL/BIAS . 94
8.3.2 Boost::Interval . 94

Contents xiii

8.3.3 Other Packages . 95
8.3.4 GPU Libraries . 96
8.3.5 IEEE Standard 1788–2015: Standard for Interval

Arithmetic . 96
References . 98

9 Applications of Interval B&BT Methods . 101
9.1 Introduction . 101
9.2 Robotics . 101

9.2.1 Manipulator Kinematics . 102
9.2.2 Mobile Robots . 103
9.2.3 Path Planning . 106

9.3 Measurements and Estimation . 106
9.3.1 Parameter Estimation . 106
9.3.2 State Estimation . 107
9.3.3 Outliers . 107
9.3.4 Processing Statistical Samples Under Interval

Uncertainty . 108
9.4 Artificial Intelligence Systems . 109

9.4.1 Neural Networks . 109
9.4.2 Support Vector Machines . 111

9.5 Control Theory . 112
9.5.1 Stability Checking . 113
9.5.2 Designing a Controller . 114
9.5.3 H1-Control . 115
9.5.4 Model-Predictive-Control . 115

9.6 Nonlinear Dynamics, Chaos and Differential Equations 116
9.7 Economical Modeling and Multiagent Systems 117

9.7.1 Economy Modeling . 117
9.7.2 Queueing Systems . 121
9.7.3 Decision Making . 123

9.8 Summary . 125
References . 126

Appendix A: Notation . 133

Appendix B: Standards for Numerical Computation 135

Appendix C: Implementations of the Interval Class
in Various Languages . 143

Solutions . 155

xiv Contents

Acronyms

AD Algorithmic (Automatic) Differentiation
AHP Analytic Hierarchy Process
AI Artificial Intelligence
B&B Branch-and-Bound method
B&BT Branch-and-Bound-type method
B&P Branch-and-Prune method
BC Box-Consistency
CLR Common Language Runtime (the .NET virtual machine)
CPU Central Processing Unit
CSP Constraint Satisfaction Problem
DBN Deep Belief Network
DP Dynamic Programming
FPU Floating-Point Unit
GPU Graphics Processing Unit
GS Gauss–Seidel
HC Hull-Consistency
HIBA_USNE Heuristical Interval Branch-and-prune Algorithm for

Underdetermined and well-determined Systems of Nonlinear
Equations

IRR Internal Rate of Return
JSON JavaScript Object Notation
JVM Java Virtual Machine
MCDM Multi-Criteria Decision-Making
MPC Model Predictive Control
MVA Mean-Value Analysis
NaN Not-a-Number or Not-any-Number
NE Nash Equilibrium/Equilibria
NPV Net Present Value
ODE Ordinary Differential Equations
PDE Partial Differential Equations

xv

PDF Probability Density Function
PID Proportional–Integral–Derivative controller
PPS Partitioning Parameter Space
RPC Remote Procedure Call
SIVIA Set Inversion Via Interval Analysis
SLAM Simultaneous Localization and Mapping
SNE Strong Nash Equilibrium/Equilibria
SVM Support Vector Machine
TBB Threading Building Blocks
TOPSIS Technique for Order of Preference by Similarity to Ideal Solution
VaR Value at Risk
XML eXtensible Markup Language

xvi Acronyms

List of Figures

Fig. 2.1 Comparison of intervals x ¼ ½0; 4� and y ¼ ½1; 5�
Example (2.3) . 11

Fig. 2.2 Comparison of intervals x ¼ ½0; 5� and y ¼ ½1; 3� 11
Fig. 2.3 Comparison of intervals x ¼ ½0; 3� and y ¼ ½3; 5� 13
Fig. 4.1 Solution set consisting of separate points 30
Fig. 4.2 Solution set of measure zero—a manifold 30
Fig. 4.3 Solution set with a non-empty interior . 30
Fig. 5.1 Illustration of the Newton operators: pointwise (left)

and interval (right) ones . 50
Fig. 5.2 Expression tree of constraint (5.8) . 58
Fig. 9.1 Left: both feasible 3R manipulator configurations, right:

three examples of uncountably many feasible 5R manipulator
configurations . 102

Fig. 9.2 The robot in an environment with regular obstacles 105
Fig. 9.3 The robot in an environment with irregular obstacles 105
Fig. 9.4 Left: the original map—the robot can determine, in which

room it is, thanks to the presence of a pillar, center: an
additional object may confuse the robot and make it think,
it is in the other room, right: now, as the additional object
has different shape than the pillar, the robot will hopefully
realize that something is wrong—it should nowhere see what
it does. 108

Fig. 9.5 A single neuron model . 109
Fig. 9.6 An artificial neural network . 110
Fig. 9.7 The “margin” between linearly separate sets—maximized

by SVMs . 111
Fig. 9.8 A system with negative feedback—closed loop control 114
Fig. 9.9 Control system . 115
Fig. 9.10 Fuzzy set as a collection of nested intervals 119

xvii

Fig. 9.11 Open queueing network example . 122
Fig. 9.12 Closed queueing network example . 122
Fig. B.1 The IEEE 754 format . 135
Fig. B.2 The unum 1.0 format . 139
Fig. B.3 The unum 3.0 format . 139

xviii List of Figures

Chapter 1
Introduction

The generic problem we are considering in this monograph can be formulated as
follows:

Find all x ∈ X such that P(x) is fulfilled. (1.1)

Here, P(x) is a formula with a free variable x and X ⊆ R
n .

The above problem is ubiquitous and pretty general; we can think of it as some
generalization of a constraint satisfaction problem (CSP). Its instances include:

• systemsof equations—then P(x)means “
(
f (x) = 0

)
” for some function f : Rn →

R
m ;

• constraint satisfaction problems—then P(x) means “
(
g(x) ≤ 0

)
” or“

(
(g(x) ≤

0) and (f (x) = 0)
)
”, for g : Rn → R

m1 , f : Rn → R
m2 ;

• global optimization problems—then P(x) means “(∀t ∈ X)
(
f (x) ≤ f (t)

)
”, for

f : Rn → R;
• problems of seeking Pareto-optimal points of a multicriteria problem—then P(x)
means “(∀t ∈ X)

(
(∀i = 1, . . . , N) (fi (x) ≤ fi (t)) or (∃ j ∈ [1..N]) (f j (x) <

f j (t))
)
”, for f : Rn → R

N ;
• and many other problems discussed, i.a., in Chap. 4 (cf. also [6, 7]).

As we can easily tell, the problem under consideration might be a decision problem,
an optimization problem, an approximation problem or virtually any other type of
problems encountered in several branches of science and engineering.

Rarely have such problems been considered, in the past. Typically, the problem
under consideration has been formulated as an optimization problem or a CSP, or
an instance of another well-known type of problems. Yet, in this monograph, an
approach to solve the generic problem is proposed.

What can the formula P be like, in general? It is a formula, in the first-order logic
[1]. But in what formal system?

As a first-order formula, P consists of variables (ranging over some domain
X , or over a few domains), constants (with numerical values), comparison signs
(=, ≤, ≥, <, >), logical conjunctions (and, or, not), logical quantifiers (∀ and ∃;

© Springer Nature Switzerland AG 2019
B. J. Kubica, Interval Methods for Solving Nonlinear Constraint Satisfaction,
Optimization and Similar Problems, Studies in Computational Intelligence 805,
https://doi.org/10.1007/978-3-030-13795-3_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13795-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-13795-3_1

2 1 Introduction

generalizations, like Mostowski’s quantifiers [8], may be considered, as well), and
functions (like f (x), in the above examples).

To define the formal system precisely, we should clarify, what function symbols
can be used in our formulae.As it has been stated inmany former papers (in particular,
[3, 5]), these functions have to be computable, i.e., to allow bounding their value
for each argument, with a given accuracy. This is certainly possible for Lipschitz-
continuous functions, i.e., functions satisfying the condition:

(∃L ≥ 0) (∀x ∈ X) (∀y ∈ X) || f (x) − f (y)|| ≤ L · ||x − y|| ,

for some norm || · ||.
Yet, it is worth noting that Lipschitz functions are not the only ones that can

be bounded. As pointed in [4] or [10], even functions that are nowhere smooth or
differentiable can sometimes be bounded (using interval methods, as we shall see).

It is possible that so-called Hausdorff-continuous functions [11] are the most
general class of functions that can be used to construct the formula P , but this
important conjecture has not been proven yet, and it will not be further studied
in this monograph. What is relevant is how to solve problems of type (1.1) for
several commonly encountered classes of functions: polynomials, rational functions,
common transcendental functions (like exp, sin, cos, etc.), and possibly also other
functions.

When restricting to polynomial functions, symbolic quantifier elimination meth-
ods (like cylindrical algebraic decomposition) may be sufficient for solving them.
This property does not hold for more general classes of functions [9], and purely
symbolic techniques tend to be inefficient, even if applicable; yet there are other
approaches, as well [2].

But why are problems of type (1.1) so important to us? Firstly, because, as we
have said, they are very common in several branches of science and engineering (cf.,
e.g., Chap. 9, for the survey of applications). Secondly, because we have a proper tool
for solving them. This tool, the so-called interval analysis, is going to be presented
in the next chapter.

The remainder of the book is organized as follows. After introducing interval
calculus in Chap.2, we present algorithmic differentiation techniques, in Chap.3.
These techniques help us to bound not only functions, discussed above, but also their
derivatives. In particular, the author’s library ADHC is briefly presented.

Then, in Chap.4, the author proposes the main generic branch-and-bound-type
algorithm for solving problems of type (1.1). Its logical structure and basic features
are analyzed and discussed.

In Chap.5, the simplest instance of the generic algorithm is presented: the branch-
and-prune algorithm. This version is adequate for solving equations systems and
constraint satisfaction problems. Results of the author and other researchers are
reviewed and the author’s HIBA_USNE solver is presented.

Chapter6 reviews three other types of quantified problems that can be solved using
the proposed interval B&BT algorithm: global optimization, seeking Pareto-sets of
multicriteria problems and seeking game solutions.

1 Introduction 3

Next, in Chap.7, problems and issues of parallelization of B&BT algorithms are
presented. Both shared-memory and distributed-memory environments are consid-
ered. Several tools and features are mentioned.

Libraries and other software available for interval B&BT algorithms are the sub-
ject of Chap.8. Then, in Chap.9, applications are discussed. The survey tends to
be comprehensive: it includes various branches of robotics, artificial intelligence
systems, economy, control theory, dynamical systems theory, and others.

The book is completed with three Appendices, describing the notation (to make it
easy for checking, while reading the monograph), representation of numbers, used as
intervals’ endpoints (floating-point numbers, fixed-point numbers and unums) and
example implementations of the interval data type in a few programming languages.

References

1. Adler, J., Schmid, J.: Introduction to Mathematical Logic. University of Bern (2007)
2. Franek, P., Ratschan, S., Zgliczynski, P.: Satisfiability of systems of equations of real analytic

functions is quasi-decidable. In: International Symposium on Mathematical Foundations of
Computer Science, pp. 315–326. Springer (2011)

3. G-Tóth, B., Kreinovich, V.: Verified methods for computing Pareto sets: General algorithmic
analysis. Int. J. Appl. Math. Comput. Sci. 19(3), 369–380 (2009)

4. Gutowski, M.W.: Introduction to interval calculi and methods (in Polish). BEL Studio,
Warszawa (2004)

5. Kreinovich, V., Kubica, B.J.: From computing sets of optima, Pareto sets and sets of Nash
equilibria to general decision-related set computations. J. Univers. Comput. Sci. 16, 2657–
2685 (2010)

6. Kubica, B.J.: A class of problems that can be solved using interval algorithms. Computing 94,
271–280 (2012). (SCAN 2010 (14th GAMM-IMACS International Symposium on Scientific
Computing, Computer Arithmetic and Validated Numerics) Proceedings)

7. Kubica, B.J.: Interval methods for solving various kinds of quantified nonlinear problems.
In: O. Kosheleva (ed.) Beyond Traditional Probabilistic Data Processing Techniques: Interval,
Fuzzy, etc. Methods and Their Applications (2018)

8. Mostowski, A.: On a generalization of quantifiers. Fundamenta Mathematicae 44(1), 12–36
(1957)

9. Ratschan, S.: Efficient solving of quantified inequality constraints over the real numbers. ACM
Trans. Comput. Logic (TOCL) 7(4), 723–748 (2006)

10. Rump, S.M.: Inclusion of zeros of nowhere differentiable n-dimensional functions. Reliab.
Comput. 3(1), 5–16 (1997)

11. Sendov, B.: Hausdorff Approximations, vol. 50. Springer Science & Business Media (1990)

Chapter 2
Interval Calculus

2.1 Introduction

Interval calculus is a branch of numerical analysis and mathematics that operates on
sets rather than numbers; specifically, it operates on intervals, obviously. A domain
strictly conjuncted with the interval analysis is the so-called reliable computing that
performs verified (or “certified”, as many authors say) computations, rigorously
bounding the numerical and any other errors.

Why do we need such computations? The exhaustive answer to this question
is more complicated than it seems. Let us postpone it until Sect. 2.9. Now, let us
just briefly say, it finds applications in description of several kinds of errors and
uncertainty, including numerical inaccuracy and measurement errors. But, as we
shall see later, this is only a small part of fields, where intervals can be (and often
are) used.

Firstworks and concepts on interval calculus havebeendeveloped (independently)
by Norbert Wiener, Warmus [36], Moore [26] and other researchers, in the first
decades of the XX-th century. The first comprehensive study is due to Ramon E.
Moore, in his Ph.D. dissertation, defended in 1962 at Stanford University, while his
first published book [25] occurred in 1966. Also, Moore is usually considered to be
the “founding father” of the interval calculus.

Since than, this approach slowly becomes more and more widely accepted in
many branches of science and engineering.

Libraries and other software working with intervals will be surveyed in Chap. 8.
Here, let us present the theory.

2.2 Basics of Interval Computations

The idea of interval analysis can be found in several textbooks; e.g., [10, 15, 17, 22,
26, 27, 35].

We define the (closed) interval [x, x] as a set {x ∈ R | x ≤ x ≤ x}. We denote
all intervals by brackets; open ones will be denoted as]x, x[and partially open as:

© Springer Nature Switzerland AG 2019
B. J. Kubica, Interval Methods for Solving Nonlinear Constraint Satisfaction,
Optimization and Similar Problems, Studies in Computational Intelligence 805,
https://doi.org/10.1007/978-3-030-13795-3_2

5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13795-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-13795-3_2

6 2 Interval Calculus

[x, x[,]x, x]. (We prefer this notation to using the parenthesis, that are used also to
denote sequences, vectors, etc.)

In computer programs, we (typically) represent an interval usually as a pair of
numbers: its endpoints. Should we add some flags to indicate, if the interval is closed,
open or half-open?We discuss this in more details below, in Sect. 2.8; here let us just
say that usually, we restrict ourselves to representing closed intervals.

Following [19], we use boldface lowercase letters to denote interval variables,
e.g., x, y, z, and IR denotes the set of all real intervals.

2.3 Operations on Intervals

We design arithmetic (and other) operations on intervals so that the following con-
dition was fulfilled:

� ∈ {+,−, ·, /}, a ∈ a, b ∈ b implies a � b ∈ a � b . (2.1)

2.3.1 Interval Arithmetic

The actual formulae for arithmetic operations—see, e.g., [10, 15, 17]—are as fol-
lows:

[a, a] + [b, b] = [a + b, a + b] ,
[a, a] − [b, b] = [a − b, a − b] , (2.2)

[a, a] · [b, b] = [min(ab, ab, ab, ab),max(ab, ab, ab, ab)] ,
[a, a] / [b, b] = [a, a] · [1 / b, 1 / b

]
, 0 /∈ [b, b] .

It is worth noting, that division by an interval containing zero is also possible—in
the extended Kahan-Novoa-Ratz arithmetic [17]:

a/b =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a · [1/b, 1/b] for 0 /∈ b
[−∞,+∞] for 0 ∈ a and 0 ∈ b
[a/b,+∞] for a < 0 and b < b = 0

[−∞, a/b] ∪ [a/b,+∞] for a < 0 and b < 0 < b
[−∞, a/b] for a < 0 and 0 = b < b
[−∞, a/b] for 0 < a and b < b = 0

[−∞, a/b] ∪ [a/b,+∞] for 0 < a and b < 0 < b
[a/b,+∞] for a < 0 and 0 = b < b

∅ for 0 /∈ a and 0 = b

. (2.3)

2.3 Operations on Intervals 7

Remark 2.1 Formulae (2.2), althoughwell-known, are less universal than theywould
seem. If the endpoints are represented using the IEEE 754 Standard for floating-point
numbers [13], these endpoints can have infinite values. So what would be the result
of the following multiplication: [0, 1] · [1,+∞]? According to Formulae (2.2), we
obtain a NaN (Not any Number) for the right endpoint, but we can simply bound the
set:

{z = x · y | x ∈ [0, 1], y ∈ [1,+∞]} ;

its bounds are obviously: [0,+∞].
Various interval libraries and packages implement such operations in different

manners; some unification has been provided by the IEEE Standard 1788–2015
[14]. We get back to this topic in Chap.8.

The definition of interval vector x, a subset of Rn is straightforward: Rn ⊃ x =
x1 × · · · × xn . Traditionally, an interval vector is called a box.

2.3.2 Interval Enclosures of Other Operations and Functions

We can obtain similar formulae for power of an interval:

[a, a]n =
⎧
⎨

⎩

[an, an] for odd n
[min{an, an},max{an, an}] for even n and 0 /∈ [a, a]

[0,max{an, an}] for even n and 0 ∈ [a, a]
. (2.4)

and other transcendental functions, e.g.:

exp
([a, a

) = [exp(a), exp(a)],
log

([a, a
) = [log(a), log(a)], for a > 0,

· · ·

Links between real and interval functions are set by the notion of an inclusion func-
tion: see; e.g., [15]; also called an interval extension; e.g., [17].But beforewedescribe
this notion, let us devote a few words to properties of interval operations.

2.3.3 Auxiliary Operations

For each interval, we can define its width (sometimes called its diameter): wid x =
x − x and midpoint: mid x = x+x

2 .
The interval hull �S of the set S ⊆ R

n is the smallest box x ∈ IR
n such that

x ⊇ S. This notion should not be confused with a convex hull, that is in general not
a box.

This terminology and notation follows [19].

8 2 Interval Calculus

2.4 Properties and Features of the Interval Calculus

The arithmetic defined by formule (2.2) has properties very different than the arith-
metic of real numbers.

Let us consider the simplest example: what is the value of x − x? According to
(2.2), we obtain [x − x, x − x], which is not necessarily zero; it would be zero only
for the degenerate case of x = x . This means, intervals of the set IR do not form a
group, not to mention a ring, field or linear space.

Remark 2.2 It isworth noting that there are someextensions of the traditional interval
arithmetic, making some supersetKR of IR a group. This is obtained by introducing
so-called improper intervals, i.e., “intervals” [x, x] such that x > x . Discussion of
Kaucher arithmetic (see [16]; cf. [35]) or modal interval arithmetic [3, 4], while
interesting and important, is beyond the scope of this monograph.

Also, the law of distributivity is in general not fulfilled for intervals. Instead, we
have the so-called subdistributivity principle:

a · (b + c) ⊆ ab + ac .

Inclusion in the above formula becomes equality only under some specific circum-
stances, e.g., when a is a degenerate interval [a, a]. Other cases are discussed in a
very interesting paper [34].

As these properties are very different from the ones known from the arithmetic
of real-numbers, they are not as much different from the arithmetic of floating-point
numbers. It is well-known that the numerical accuracy of an expression depends on
the formula that is used. Yet for intervals of arbitrary length (numerical errors are
usually assumed to be “small”), the problem is even more important.

Details will become clear in the next section, where we shall discuss various
interval extensions of a function.

2.5 Interval Extension of a Function

Definition 2.1 A function f : IR → IR is an inclusion function of f : R → R, if for
each interval x within the domain of f the following condition is satisfied:

{ f (x) | x ∈ x} ⊆ f(x) .

The definition is analogous for functions f : Rn → R
m .

2.5 Interval Extension of a Function 9

2.5.1 Most Common Forms of Interval Extensions

Obviously, a so-called natural interval extension, consisting of the same operations
as the real-valued function, is its interval extension. This property is a direct conse-
quence of (2.1).

Example 2.1 Consider the function f (x) = x2 + x + 1. Its natural interval exten-
sion is, obviously, f(x) = x2 + x + 1.

Obviously, so are other interval extensions, derived from other expressions, that
would be equivalent for real numbers, but may be more (or less) precise for intervals:
f1(x) = x · (x + 1) + 1 and f2(x) = (

x + 1
2

)2 + 3
4 .

Another commonly used interval extension or, more precisely, class of interval
extensions, are so-called centered forms of the inclusion function. They appear as
follows:

fc(x) = f(c) + ∇f(x) · (x − c), where c ∈ x . (2.5)

Usually c = mid x is taken (and the centered form is then called themeanvalue form).
Other points might be also useful; so-called corner forms have even been patented.

Example 2.2 Consider the function f (x) from Example2.1. The meanvalue form
of its interval extension is: fc(x) = x̌2 + x̌ + 1 + ∇f(x) · (x − x̌), where x̌ = mid x
and ∇f(x) = 2 · x + 1.

When computing interval operations—either the ones above or computing the
enclosure for a transcendental function—we can round the lower bound downward
and the upper bound upward. This will result in an interval that will be overestimated,
but will be guaranteed to contain the true result of the real-number operation. An
interesting theoretical analysis of rounded computations can be found, e.g., in [21]
or, in a more modern approach, [23], where it is considered with relation to current
architectures of Intel processors.

2.5.2 How to Construct Formulae for Interval-Valued
Functions?

So, there can be several interval extensions of the same real-valued function f .
Accuracies of these extensions may differ to the high extent; also on various sub-
areas of the domain of f , various interval extensions can be more precise. Which of
them to choose? What criteria to use?

10 2 Interval Calculus

There are no simple answers to these questions. Let us consider a univariate
polynomial: f (x) = a0 + a1x + a2x2 + · · · + anxn . Its natural interval extension:

f(x) = a0 + a1x + a2x2 + · · · + anxn , (2.6)

may certainly be severely overestimated.
For floating-point numbers, it is well-known that the optimal—both in terms of

accuracy and efficiency—manner to compute the value of a polynomial is to use the
Horner’s form. But the interval Horner-form of the extension function:

f(x) = a0 + x · (a1 + x · (. . .)) , (2.7)

is not necessarily a good option. As we already know, a sequence of multiplications
of the same interval is, in general, less precise than the power of an interval.

In [11], so-called remainder forms are proposed, instead. But they are no panacea
and for more sophisticated functions (or even for multivariate polynomials), we may
need something different.

It seems very worthwhile to seek some symbolic techniques to transform expres-
sions before their evaluation in interval arithmetic. Some efforts have been performed
in this area, particularly using the Gröbner bases theory for polynomial systems—
see, e.g., [1, 5, 28]. Nevertheless it seems, much can (and should) be improved in
this area.

2.6 Comparison of Intervals

What order (or orders) does the space of intervals have? A few partial orders can be
considered.

The one defined by the inclusion relation x ⊆ y is particularly important in several
algorithms. We shall meet such algorithms, in particular, in Sects. 5.3 and 5.5.

Another order is enforced by the relation “<”: x < y, iff (∀x ∈ x) (∀y ∈ y) (x <

y). Obviously, this simply means x < y.
Some authors (e.g., [22]) consider yet other po-relations, e.g., x � y, iff x ≤ y and

x ≤ y. This relation seems to have lower importance and it will not be considered
here.

All of the above relations have been po-relations, which means some pairs of
intervals are incomparable with respect to these orders. Nevertheless, for some prac-
tical problems, we need some policy (or at least heuristic) to compare arbitrary pairs
of intervals. The following example will show the need for such relation.

Example 2.3 Assume we have x ∈ x = [0, 4] and y ∈ y = [1, 5]. Which of these
two quantities is larger (cf. Fig. 2.1)? Obviously, we cannot determine whether x ≤ y
or y ≤ x .

2.6 Comparison of Intervals 11

Fig. 2.1 Comparison of
intervals x = [0, 4] and
y = [1, 5] Example (2.3)

Fig. 2.2 Comparison of
intervals x = [0, 5] and
y = [1, 3]

But if we were to guess, what would we choose? Suppose, we have two choose
between two technologies to use in our projects and experts are to estimate the costs.
They can provide intervals only: one has the cost x ∈ x and the other one y ∈ y.

It is intuitively obvious,we should choose the technologywith cost x ∈ x = [0, 4].
In Example2.3, the result was obvious; although, it might not be obvious to verbal-
ize the rationale behind our choice. For other pairs of intervals, say x = [0, 5] and
y = [1, 3] (cf. Fig. 2.2), the decision would be less intuitive. How can we compare
arbitrary intervals? There are a few heuristics for that. In a very interesting sur-
vey, Sevastjanov et al. [32] distinguish three classes of approaches to the intervals’
comparison problem:

• “qualitative” heuristics, based on diagrammatic representation of intervals [24],
• “quantitative” heuristics, based on measuring distance between intervals,
• hybrid approaches.

In a series of papers, various of these approaches are elaborated and generalized to
the case of fuzzy intervals [30]. Some sort of summary has been done in Sect. 3.2
of [31].

Dempster-Shafer theory

One of the approaches is based on the Dempster-Shafer theory [2]; cf. also [29, 30,
33]. It allows us to describe the degree of certainty (so-called belief function) and
possibility (so-called plausibility function) of x ≤ y being fulfilled. This way, we
obtain, the so-called belief interval of a condition, having a probabilistic interpreta-
tion (lower and upper probability of x ≤ y).

For instance, let us consider intervals x = [0, 4] and y = [1, 5] from Example2.3.
Define two independent random variables: X , uniformly distributed on x, and Y ,
uniformly distributed on y. Analyzing the likelihood of X ≤ Y , we obtain four pos-
sibilities (cf. Fig. 2.1):

12 2 Interval Calculus

(a) H1 = {X ∈ [0, 1] and Y ∈ [1, 4]},
(b) H2 = {X ∈ [0, 1] and Y ∈ [4, 5]},
(c) H3 = {X ∈ [1, 4] and Y ∈ [1, 4]},
(d) H4 = {X ∈ [1, 4] and Y ∈ [4, 5]}.
Please note that X ≤ Y is certain for cases (a), (b) and (d) and possible for (c). The
basic probability assignment to these events are:

P(H1) = 1 − 0

4 − 0
· 4 − 1

5 − 1
= 1

4
· 3
4

= 3

16
,

P(H2) = 1 − 0

4 − 0
· 5 − 4

5 − 1
= 1

4
· 1
4

= 1

16
,

P(H3) = 4 − 1

4 − 0
· 4 − 1

5 − 1
= 3

4
· 3
4

= 9

16
,

P(H4) = 4 − 1

4 − 0
· 5 − 4

5 − 1
= 3

4
· 1
4

= 3

16
.

And we obtain:

Bel
({X ≤ Y }) = P(H1) + P(H2) + P(H4) = 7

16
,

Pl
({X ≤ Y }) = P(H1) + P(H2) + P(H3) + P(H4) = 1 .

Please note that, in the case presented in Fig. 2.2, we have some evidence for both
x ≤ y and x ≥ y. Details can be found in [33].

Other approaches

Some of the approaches attempt to use the metric on the IR space (see the next
section); the metric describes how far the intervals are from each other, but does not
specify, which of them is “higher” and which is“lower”.

Finally, it turns out, that usually the most convenient and proper manner of com-
paring intervals is to simply compare their midpoints, i.e.,:

x � y, iff (x + x) ≤ (y + y) . (2.8)

This approach is compatible with our intuition for Example2.3 and results in y � x
for x = [0, 5] and y = [1, 3].

Obviously, comparing midpoints of intervals is a specific case of using the Hur-
wicz criterion [12], i.e., comparing weighted sums (mixtures) of endpoints:

αH · x + (1 − αH) · x , (2.9)

where αH denotes the level of optimism-pessimism of the decision maker. It is easy
to observe that for αH = 1

2 , we compare the midpoints.

2.6 Comparison of Intervals 13

Fig. 2.3 Comparison of
intervals x = [0, 3] and
y = [3, 5]

Anyway, all the above approaches for comparing intervals have been heuristical
and more or less prone to failures. The only situation when we can reliably compare
intervals is when (∀x ∈ x) (∀y ∈ y) (x < y), like in Fig. 2.3.

2.7 A Metric on the Space of Intervals

We can define a metric on the space of intervals. The most commonly used one is:

d(x, y) = max(|x − y|, |x − y|) . (2.10)

Please note, however, that, in spaces of intervals, the metric has a different role,
than in spaces of numbers. It should be the most convenient to explain it, using an
example.

Example 2.4 Assumewe have a real-valued quantity u that we want to approximate.
We obtained two floating-point estimates (e.g., using two different algorithms): u1
and u2. The metric d in the space real numbers (or real vectors) gives us the hint
about the quality of these estimates; if |u1 − u2| is small enough, then the estimates
are (probably) good.

Now, assume,we have interval enclosures of u:u1 andu2. Consider two situations:

(a) d(u1,u2) ≤ ε, but u1 ∩ u2 = ∅,
(b) we have relatively high d(u1,u2), but u1 ∩ u2 is nonempty, yet narrow.

In contrast to the non-interval case, the in the first situation, we have no good estimate
(although, we know that the algorithms or their input have not been correct!), but in
the second case, we got a quite good enclosure of u: u1 ∩ u2.

2.8 Open or Closed Intervals?

Wehave already stated that usually, we use only closed intervals in our computations.
What about open and half-open ones?

14 2 Interval Calculus

The answer to this question is not trivial. As it will be presented in Chap.8,
there are some packages that allow us to represent non-closed intervals as well.
Nevertheless, most authors agree about representing closed intervals only; also the
IEEE 1788–2015 Standard [14] is consistent with it.

The reasons are thoroughly discussed by Shary in Sect. 1.11B of his book [35].
Briefly summarizing this discussion, the space of closed intervals is compact, while
the space of all possible intervals is not. Performing computations in a non-compact
space would result in several subtle difficulties; for instance, a sequence in such a
space does not necessarily achieve its limit. Also, the metric (2.10) would become a
pseudo-metric, as intervals [x, x],]x, x], [x, x[and]x, x[would not be distinguish-
able by it.

2.9 Purposes of the Interval Calculus

Now, let us answer the question, why and for what to use interval methods? The
answer to this question is more complicated than it might seem at the first glance.

To the best knowledge of the author, initially, the approach has been developed
as a tool to deal with numerical inaccuracy; at least these were the considerations
of Warmus and Moore. However, in this context, their usefulness is questionable.
For floating-point computations, the traditional Wilkinson’s error analysis [37] is
sufficient, usually. Obviously, there are exceptions to this rule (see e.g., the Rump’s
example in [10]), but they are relatively rare.

Nevertheless, there are several other kinds of imprecision; in addition to numerical
errors, we have:

• discretization errors,
• truncation errors (e.g., for infinite series),
• inexact data; e.g., results of measurements,
• human-related uncertainty: e.g., precise description of decision-makers’ prefer-
ences,

• uncertainty related to decisions taken by another decision-makers,
• …

Intervals give us the tool to bound all these kinds of uncertainty. Indeed, robust
control, processingmeasurements and game theory are areas, where intervalmethods
have found some important applications; cf., e.g., [6–9, 15, 18, 20].

Yet, in the opinion of the author, interval calculus should not be understood as a
tool of uncertainty description, but rather as an approach to seek points satisfying
a certain logical condition. Uncertainty description is a subclass of this category of
problems—we seek some parameter values such that either for each uncertain value
a condition is fulfilled or there exists such value in the range of an uncertain quantity
that a condition is fulfilled. But there are also important applications not related to
uncertainty description. This approach is described in Chap. 4 of this volume.

2.9 Purposes of the Interval Calculus 15

Problems

2.1 Given f (x) = x3 + x2 compute f(x) for x = [−2,−1], [1, 2], [−2, 2]. Which
of these values are sharp?

2.2 Check if the distributivity law a · (b + c) = ab + ac is fulfilled for:

(a) a = [2, 2], b = [3, 5], c = [−1, 1],
(b) a = [−2, 2], b = [3, 5], c = [−1, 1],
(c) a = [−2, 2], b = [3, 5], c = [1, 4],
(d) a = [−2, 2], b = [−3, 3], c = [−1, 1],
(e) a = [1, 2], b = [3, 5], c = [−4,−1],
(f) a = [1, 2], b = [−5,−3], c = [−4, 1].
2.3 Compute belief and plausibility functions for x ≤ y from Figs. 2.2 and 2.3.

2.4 Implement a simple class interval and basic interval arithmetic operations
in one of the object-oriented programming languages. Outward rounding can be
neglected in the solution of this exercise.

References

1. Benhamou, F., Granvilliers, L.: Combining local consistency, symbolic rewriting and interval
methods. In: Artificial Intelligence and Symbolic Mathematical Computation, pp. 144–159
(1996)

2. Fedrizzi, M., Kacprzyk, J., Yager, R.R. (eds.): Advances in the Dempster-Shafer Theory of
Evidence (1994)

3. Gardenes, E., Sainz, M.A., Jorba, L., Calm, R., Estela, R., Mielgo, H., Trepat, A.: Modal
intervals. Reliab. Comput. 7(2), 77–111 (2001)

4. Goldsztejn,A.:Modal intervals revisited, part 1: a generalized interval natural extension.Reliab.
Comput. 16, 130–183 (2012)

5. Granvilliers, L., Monfroy, E., Benhamou, F.: Symbolic-interval cooperation in constraint pro-
gramming. In: Proceedings of the 2001 International Symposium on Symbolic and Algebraic
Computation, pp. 150–166. ACM (2001)

6. Gutowski, M.W.: Interval straight line fitting (2001). arXiv:math/0108163
7. Gutowski, M.W.: Introduction to Interval Calculi and Methods (in Polish). BEL Studio,

Warszawa (2004)
8. Gutowski, M.W.: Breakthrough in interval data fitting I. The role of Hausdorff distance (2009).

arXiv:0903.0188
9. Gutowski, M.W.: Breakthrough in interval data fitting II. From ranges to means and standard

deviations (2009). arXiv:0903.0365
10. Hansen, E., Walster, W.: Global Optimization Using Interval Analysis. Marcel Dekker, New

York (2004)
11. Hansen, P., Jaumard, B., Xiong, J.: Decomposition and interval arithmetic applied to global

minimization of polynomial and rational functions. J. Glob. Optim. 3(4), 421–437 (1993)
12. Hurwicz, L.: Optimality criteria for decision making under ignorance. In: Cowles Commission

Discussion Paper, Statistics, 370 (1951)
13. IEEE: 754-2008–IEEE standard for floating-point arithmetic (2008). http://ieeexplore.ieee.org/

document/4610935/

http://arxiv.org/abs/math/0108163
http://arxiv.org/abs/0903.0188
http://arxiv.org/abs/0903.0365
http://ieeexplore.ieee.org/document/4610935/
http://ieeexplore.ieee.org/document/4610935/

16 2 Interval Calculus

14. IEEE: 1788-2015–IEEE standard for interval arithmetic (2015). http://standards.ieee.org/
findstds/standard/1788-2015.html

15. Jaulin, L., Kieffer, M., Didrit, O., Walter, É.: Applied Interval Analysis. Springer, London
(2001)

16. Kaucher, E.: Interval analysis in the extended interval space IR. In: Fundamentals of Numerical
Computation (Computer-Oriented Numerical Analysis), pp. 33–49. Springer (1980)

17. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht (1996)
18. Kearfott, R.B., Kreinovich, V.: Applications of Interval Computations, vol. 3. Springer Science

& Business Media (2013)
19. Kearfott, R.B., Nakao, M.T., Neumaier, A., Rump, S.M., Shary, S.P., van Hentenryck, P.:

Standardized notation in interval analysis. Vychislennyie Tiehnologii (Computational Tech-
nologies) 15(1), 7–13 (2010)

20. Kubica, B.J., Woźniak, A.: Applying an interval method for a four agent economy analysis. In:
PPAM 2011 (9th International Conference on Parallel Processing and Applied Mathematics)
Proceedings. Lecture Notes in Computer Science, vol. 7204, pp. 477–483 (2012)

21. Kulisch, U.: An axiomatic approach to rounded computations. Numerische Mathematik 18(1),
1–17 (1971)

22. Kulisch, U.: Computer Arithmetic and Validity-Theory. Implementation and Applications. De
Gruyter, Berlin, New York (2008)

23. Kulisch, U.: An axiomatic approach to computer arithmetic with an appendix on interval
hardware. In: PPAM 2011 (9th International Conference on Parallel Processing and Applied
Mathematics) Proceedings. Lecture Notes in Computer Science, vol. 7204, pp. 484–495 (2012)

24. Kulpa, Z.: Diagrammatic representation of interval space in proving theorems about interval
relations. Reliab. Comput. 3(3), 209–217 (1997)

25. Moore, R.E.: Interval Analysis. Prentice Hall (1966)
26. Moore, R.E.,Kearfott, R.B., Cloud,M.J.: Introduction to IntervalAnalysis. SIAM,Philadelphia

(2009)
27. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press (1990)
28. Pedamallu, C.S., Özdamar, L., Csendes, T.: Symbolic interval inference approach for subdi-

vision direction selection in interval partitioning algorithms. J. Glob. Optim. 37(2), 177–194
(2007)

29. Sevastianov, P.: Numerical methods for interval and fuzzy number comparison based on the
probabilistic approach and Dempster-Shafer theory. Inf. Sci. 177(21), 4645–4661 (2007)

30. Sevastjanov, P., Bartosiewicz, P., Tkacz, K.: A method for comparing intervals with interval
bounds. In: PPAM 2011 (9th International Conference on Parallel Processing and Applied
Mathematics) Proceedings. Lecture Notes in Computer Science, vol. 7204, pp. 496–503 (2012)

31. Sevastjanov, P., Tikhonenko, A.: Direct interval extension of TOPSIS method. In: PPAM 2011
(9th International Conference on Parallel Processing and Applied Mathematics) Proceedings.
Lecture Notes in Computer Science, vol. 7204, pp. 504–512 (2012)

32. Sevastjanov, P.V., Róg, P., Venberg, A.V.: A constructive numerical method for the comparison
of intervals. In: PPAM 2001 (4th International Conference on Parallel Processing and Applied
Mathematics) Proceedings. Lecture Notes in Computer Science, vol. 2328, pp. 756–761 (2003)

33. Sevastjanow, P.: Interval comparison based on Dempster–Shafer theory of evidence. In: PPAM
2003 (5th International Conference on Parallel Processing and AppliedMathematics) Proceed-
ings. Lecture Notes in Computer Science, vol. 3019, pp. 668–675 (2004)

34. Sharaya, I.A.: On the distributivity in classical interval arithmetic. Vychislennyie Tiehnologii
(Computational Technologies) 2(1), 71–83 (1997). (in Russian)

35. Shary, S.P.: Finite-Dimensional Interval Analysis. Institute of Computational Technologies,
SB RAS, Novosibirsk (2013)

36. Warmus, M.: Calculus of approximations. Bulletin de l’ Academie Polonaise de Sciences 4(5),
253–257 (1956)

37. Wilkinson, J.H.: Rounding Errors in Algebraic Processes. Prentice Hall, Englewood Cliffs, NJ
(1963)

http://standards.ieee.org/findstds/standard/1788-2015.html
http://standards.ieee.org/findstds/standard/1788-2015.html

Chapter 3
Bounding Derivatives by Algorithmic
Differentiation

3.1 Interval Algorithms and Derivatives Computation

On the face of it, this is not obvious that derivatives are useful in solving problems
of type (1.1). Actually, there might be some instances of this problem for which
derivatives would be of little help. Nevertheless, in many practical cases (cf. any of
the quoted papers of the author or any textbook on interval analysis), derivatives (or
slopes, or yet another equivalent of derivatives; cf., e.g., [8, 11, 17]) are very useful
in interval algorithms.

In general, we can state that:

• first-order necessary conditions for several problems are formulated using deriva-
tives, e.g., Fritz John conditions for optimization or analogous conditions for
Pareto-optimization or seeking game solutions,

• the interval Newton operator makes use of some version of derivatives; this opera-
tor is the main tool in bounding solutions of equations and inequalities, which—as
explained in Chap.4—is crucial in both phases of Algorithm 1.

But to utilize derivatives (or slopes) in an interval solver, their values have to be
bounded somehow. How to compute bounds on the derivatives of a function?

3.1.1 Basic Approaches

Classical numerical differentiation tools, based on finite-differences, are of little (or
virtually no) help. They are rather inaccurate (especially, when trying to compute
higher derivatives) and there is no obvious way to bound the error, which is crucial
for interval methods (cf. Chap. 2).

Symbolic differentiation is more adequate, but it has several drawbacks, also. It
requires a separate (and complicated) toolset to transform formulae and the resulting
expressions may be complicated and impractical; cf. [11].

© Springer Nature Switzerland AG 2019
B. J. Kubica, Interval Methods for Solving Nonlinear Constraint Satisfaction,
Optimization and Similar Problems, Studies in Computational Intelligence 805,
https://doi.org/10.1007/978-3-030-13795-3_3

17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13795-3_3&domain=pdf
https://doi.org/10.1007/978-3-030-13795-3_3

18 3 Bounding Derivatives by Algorithmic Differentiation

Algorithmic differentiation (often called “automatic differentiation”) turns out to
be a feasible alternative to the both above approaches (see, e.g., [9–11]).

3.2 Algorithmic Differentiation

This technique is based on the following observation: each function evaluated by a
computer is described by a computer program, that consists of several elementary
operations (arithmetic operations, transcendental functions, etc.). And it is known,
how to compute derivatives of such elementary operations. So, we can enhance this
program, so that it computed derivative(s) together with the original function.

The basic rule is called the chain rule:

∂

∂x
f
(
g(x)

) = ∂ f

∂w
· ∂w

∂x
. (3.1)

Using (3.1), it is possible to decompose complicated expressions to “atoms” that can
be differentiated, and “assemble” the derivative from the “building blocks”.

For instance, for basic arithmetic operations, we have the following formulae:

〈u,u′〉 + 〈v, v′〉 = 〈u + v, u′ + v′〉 ,
〈u,u′〉 − 〈v, v′〉 = 〈u − v, u′ − v′〉 ,
〈u,u′〉 · 〈v, v′〉 = 〈u · v, u · v′ + u′ · v〉 ,
〈u,u′〉 / 〈v, v′〉 = 〈u/v, (u′ · v − u · v′)/v2〉 .

Other operations, e.g., power or transcendental functions, can be extended in an
analogous manner, e.g.:

〈u,u′〉n = 〈
un, nun−1u′〉

Let us consider a simple example, to make the things more explicit.

Example 3.1

f (x) = x2 − 3x + 2 ,

x = [−1, 2] ,
〈
x, x′〉 = 〈[−1, 2], [1, 1]〉 ,
〈y, y′〉 = f

(
〈x, x′〉

)
,

f
(
〈x, x′〉

)
= 〈

x, x′〉2 − 3 · 〈
x, x′〉 + 〈

2, 0
〉
,

〈y, y′〉 = 〈[−1, 2], [1, 1]〉2 − 3 · 〈[−1, 2], [1, 1]〉 + 〈
2, 0

〉
,

〈y, y′〉 = 〈[0, 4], [−2, 4]〉 + 〈[−6, 3], [−3,−3]〉 + 〈[2, 2], [0, 0]〉 ,
〈y, y′〉 = 〈[−4, 9], [−5, 1]〉 .

3.2 Algorithmic Differentiation 19

We can consider also computing higher derivatives—then the record has more
fields, e.g., 〈u,u′,u′′,u′′′〉; the formulae are analogous (they may become quite com-
plicated for higher derivatives, though).

The differentiated function may be multivariate—then higher derivatives are rep-
resented by some containers: vectors, matrices, etc., instead of singleton values.

3.3 Implementation of AD

Algorithmic differentiation can be implemented in a fewmanners. The above schema
is called the forward mode algorithmic differentiation (see, e.g., [11]). It can be
realized either by operator overloading or using so-called dual numbers (cf. [9]).
An alternative schema, is called the reverse mode algorithmic differentiation. Let us
present these approaches, briefly.

3.3.1 Forward AD with Operator Overloading

This approach can be used in object-oriented programming—if only they allow oper-
ator overloading. We need to create a class representing an algebraic expression.
Actually, this seems to be the most common approach; the author’s library ADHC,
presented below, in Sect. 3.4.1, adopts this approach, as well. Hence, we defer the
presentation of details, until then.

3.3.2 Forward AD with Dual Numbers

Dual numbers, introduced by Clifford already in XIX century, are conceptually sim-
ilar to complex numbers. We have:

x = a + b · ε ,

where ε /∈ R. The difference with complex numbers is that ε2 = 0 and not −1.
Similarly to complex numbers, each dual number has a conjugate one:

(a + b · ε) · (a − b · ε) = a2 + (ab − ab) · ε + b2 · ε2 = a2 .

What is the interpretation of ε? Actually, because ε2 = 0, it can be interpreted as “a
value close to zero”, i.e., an approximation of the infinitesimal number.

20 3 Bounding Derivatives by Algorithmic Differentiation

We can simply obtain the arithmetic rules for dual numbers:

(a + b · ε) + (c + d · ε) = (a + b) + (c + d) · ε ,

(a + b · ε) − (c + d · ε) = (a − b) + (c − d) · ε ,

(a + b · ε) · (c + d · ε) = (ac) + (ad + bc) · ε ,

(a + b · ε) / (c + d · ε) = a

c
+ ad − bc

c2
· ε .

Similarity to the rules of differentiation is obvious. Obviously, using the Taylor series
expansion, proper definitions of transcendental functions can be provided, as well.

As this approach to AD is elegant and relatively easy to implement, it seems to
have few advantages with respect to the former approach: the direct use of operator
overloading. There exist some software packages using dual numbers ([9] presents
some Haskell code), but none of them (at least, to the best knowledge of the author)
uses interval data types.

3.3.3 Reverse Mode AD

The reverse mode is more efficient (at least when differentiating functions f : Rn →
R

m with m < n), but also more difficult and cumbersome to implement and to use.
As the forward mode, the reverse mode is based on (3.1), but the accumulation

is performed in the opposite direction. We need to store all intermediate quantities
(in a so-called Wengert’s list) and we compute their values, by solving an equations
system. It will be the simplest to explain it, using the example we already know.

Example 3.2 As in Example 3.1, let us consider the function:

f (x) = x2 − 3x + 2 ,

x = [−1, 2] ,

Its expression can be decomposed to the following form:

x1 = x ,

x2 = x21 ,

x3 = 3 · x1 ,
x4 = x2 − x3 ,

x5 = x4 + 2 .

3.3 Implementation of AD 21

Derivatives of all terms are:

x ′
1 = 1 ,

x ′
2 = 2 · x ∈ [−2, 4] ,
x ′
3 = 3 · x ′

1 ,

x ′
4 = x ′

2 − x ′
3 ,

x ′
5 = x ′

4 .

This equations system can be written in the matrix form:

⎛

⎜⎜⎜
⎜
⎝

1 0 0 0 0
0 1 0 0 0

−3 0 1 0 0
0 −1 1 1 0
0 0 0 −1 1

⎞

⎟⎟⎟
⎟
⎠

·

⎛

⎜⎜⎜
⎜
⎝

x ′
1
x ′
2
x ′
3
x ′
4
x ′
5

⎞

⎟⎟⎟
⎟
⎠

=

⎛

⎜⎜⎜
⎜
⎝

1
[−2, 4]

0
0
0

⎞

⎟⎟⎟
⎟
⎠

.

The result of solving the above system is:

⎛

⎜⎜⎜
⎜
⎝

x ′
1
x ′
2
x ′
3
x ′
4
x ′
5

⎞

⎟⎟⎟
⎟
⎠

=

⎛

⎜⎜⎜
⎜
⎝

1
[−2, 4]

3
[−5, 1]
[−5, 1]

⎞

⎟⎟⎟
⎟
⎠

,

which is consistent with the result obtained in Example 3.1.

As it has been stated, the reverse mode AD is more difficult and cumbersome
than the forward mode and, although it is used by some researcher, it will not be
considered further, in this monograph.

3.4 State-of-the-Art Libraries

It is not simple to find an appropriate library for AD. The most popular packages,
like ADOL-C [6], are not compatible with using interval data types and arithmetic.
For several years, the author has been using the code, from C-XSC library [1].
Unfortunately, this package has several drawbacks:

• there are distinct classes (GradType, HessType, DerivType), implemented
in distinct files (grad_ari.cpp, hess_ari.cpp, ddf_ari.cpp) for com-
puting first or second derivatives and for univariate or multivariate functions;

• there are global variables (GradOrder, HessOrder, DerivOrder) to dis-
tinguish the order of computed derivative—these variables have to be checked

22 3 Bounding Derivatives by Algorithmic Differentiation

at run-time, several times during the computation; they also affect multithreaded
implementations [15];

• extended interval division (for divisors containing zero) is not supported in the
algorithmic differentiation library;

• computing derivatives of higher order would require to implement a separate (but
analogous) class;

• although, the developers of C-XSC have provided several useful classes for sparse
matrices and vectors, their AD code makes no use of it;

• the compound assignment operators (e.g., “+=”), that might have a significant
impact on performance of the code, have not been implemented for AD classes.

Fortunately, there is a way to overcome all (or at least most) of these issues, yet it is
necessary to apply template metaprogramming.

3.4.1 ADHC Library

In 2016, the author has provided a novel automatic differentiation library, based on
C++ templates (see, e.g., [7]). The package has been named ADHC, which stands
for Algorithmic Differentiation and Hull Consistency [2].

Virtues of template meta-programming allowed obtaining several useful features
of the ADHC library. This includes efficiency and versatility. The same source code
can be used to generate (with no penalty at runtime) distinct procedures for comput-
ing function values, gradients, Hesse matrices and—potentially—higher derivatives.
Also, we can use the same source code to differentiate uni- and multivariate func-
tions and to use sparse or dense representations of vectors and matrices of partial
derivatives. And C-XSC library provides us pretty nice implementations of sparse
vectors and matrices (cf. [12]), that can directly be applied in ADHC.

Proper types are generated, using the so-called typelist (see, e.g., [7]). They are
specializations of the following template:

template<int level, sparsity_t sparse_mode, int num_vars>

struct adhc_ari {

// ...

};

The three template arguments are:

• level—information on what should be computed; number of computed deriva-
tives (for nonnegative values) or construction of the syntactic tree (for value −1),

• sparse_mode—should sparse or dense matrix/vector representation be used,
• num_vars—the number of variables.

Please note, num_vars is an argument of the template, so expressions using poten-
tially different number of variables are of inherently different types. Hence, naïvely

3.4 State-of-the-Art Libraries 23

performing an operation on such incompatible objects will be detected at compile-
time already. For instance, the following code:

adhc::adhc_ari<2, sparse, 2> x;

adhc::adhc_ari<2, sparse, 3> y;

//...

z = x + y;

will not compile. In contrast to that, theADcode fromC-XSC library has to use a ded-
icated function TestSize() while performing virtually any arithmetic operation,
which results in a certain overhead at runtime.

The type of the second template argument, sparse_mode, is an instance of
enumerable type sparsity_t and can have three values:

typedef enum sparsity_t {dense, sparse, highly_sparse};

As it has already been stated, the C-XSC library contains useful classes for sparse
matrices and vectors (cf. [12]):cxsc::srvector,cxsc::scvector,cxsc::
sivector, cxsc::scivector, cxsc::srmatrix, cxsc::scmatrix,
cxsc::simatrix, cxsc::scimatrix.

Sparse vectors are represented as a pair of std::vector objects: one storing
values and the other one—indices of non-zero elements. Sparse matrices are stored
in a compressed column storage format. Details can be found, i.a., in [14].

For instance, the function considered in previous examples, in ADHC could look
as follows:

const int lev = 1;

const int n = 1;

adhc_ari<lev, sparse_mode, n>

f(const adhc_ari<lev, sparse_mode, n> &x) {

adhc_ari<lev, sparse_mode, n> result;

result = sqr(x) - 3.0*x + 2.0;

return result;

}

The library has been used in the HIBA_USNE solver [5] and in the solver for
game solutions, described in [13] (cf. also Sect. 6.3); the author plans to use it in
other solvers, also.

24 3 Bounding Derivatives by Algorithmic Differentiation

3.4.2 Computing Arbitrary Many Derivatives

The current implementation of ADHC does not allow computing derivatives of order
higher than two. This is caused by two issues that require solution:

• implementation of classes representing higher-dimensionality tensors, not only
vectors and matrices;

• providing universal enough formulae for higher derivatives of various operations.

But even after these issues will have been solved, users of ADHCwill need to decide
at compile-time, how many derivatives they would like to compute. Actually, this is
an inherent limitation of template meta-programming: conditions have to be known
at compile-time.

Actually, for most problems, it is reasonable to assume, we make such decisions
prior to running the solver. Yet, in some cases, it would be beneficial to delay the
decision on the number of computed derivatives, until runtime. An example of such
situation is seeking local optima of the function f (x) = x2·n (or a similar function,
having a very flat optimum—with several derivatives equal to zero). If we do not
know n at compile-time, we shall not know how many derivatives to compute.

It would seem beneficial to be able to increase the number of computed derivatives
subsequently, during runtime. Unfortunately, according to the best knowledge of the
author, no currently available package allows this; ADHC is no exception to this
rule.

How could such a procedure be implemented? Obviously, it is possible, but rather
cumbersome. For instance, sticking to types of the C-XSC library [1], we could
have a list, say std::vector<> of pointers to some abstract class, representing
an arbitrary derivative value. We would need to define this abstract class, because
classes representing a single interval, interval vectors, matrices, etc. are not related
in the inheritance hierarchy. Hence, we would have to use some wrapper-classes, all
derived from the abstract base class, that we would define.

Yet another possibility is to represent the list as std::vector<void *> and
cast the pointer to a void to a pointer to specific classes, using the reinterpret_
cast<>.

Both approaches seem inconvenient, but feasible.
The new C++17 standard offers us yet another, more proper, possibility: the

type std::any [4]. A variable of this type can store a value of arbitrary-type;
it is similar to a C-style pointer to a void, but safe casts are available, using the
std::any_cast operator. Unfortunately, the C++17 standard is not widely sup-
ported, yet, but Boost libraries [3] offer a similar concept of boost::any.

Nevertheless, it is questionable, if computing higher derivatives, using automatic
differentiation, would really be useful. The computed values would be very likely to
be highly overestimated. Possibly, using Taylor arithmetic [16] in such case would
be a better approach. Verifying it experimentally, would be pretty interesting.

3.5 Summary 25

3.5 Summary

This survey of AD techniques was very brief and incomplete. Nevertheless, even
such a brief description was necessary for the completeness of this monograph, as
AD techniques are very often used together with interval analysis (cf. the textbooks
[10, 11]). In all author’s experiments, his ADHC library will be used.

References

1. C++ eXtended Scientific Computing library (2015). http://www.xsc.de
2. ADHC, C++ library (2017). https://www.researchgate.net/publication/316610415_ADHC_

Algorithmic_Differentiation_and_Hull_Consistency_Alfa-05
3. Boost C++ libraries (2017). http://www.boost.org/
4. C++ documentation for std::any (2017). http://en.cppreference.com/w/cpp/utility/any
5. HIBA_USNE, C++ library (2017). https://www.researchgate.net/publication/316687827_

HIBA_USNE_Heuristical_Interval_Branch-and-prune_Algorithm_for_Underdetermined_
and_well-determined_Systems_of_Nonlinear_Equations_-_Beta_25

6. ADOL-C: ADOL-C library (2016)
7. Alexandrescu, A.: Modern C++ Design: Generic Programming and Design Patterns Applied.

Addison-Wesley (2001)
8. Hansen, E., Walster, W.: Global Optimization Using Interval Analysis. Marcel Dekker, New

York (2004)
9. Hoffmann, P.H.: A hitchhiker’s guide to automatic differentiation. Numer. Algorithms 72(3),

775–811 (2016)
10. Jaulin, L., Kieffer, M., Didrit, O., Walter, É.: Applied Interval Analysis. Springer, London

(2001)
11. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht (1996)
12. Krämer,W., Zimmer,M.,Hofschuster,W.:UsingC-XSC for high performance verified comput-

ing. In: PARA 2010 Proceedings. Lecture Notes in Computer Science, vol. 7134, pp. 168–178
(2012)

13. Kubica, B.J.: Advanced interval tools for computing solutions of continuous games. Vychislen-
nyie Tiehnologii (Computational Technologies) 23(1), 3–18 (2018)

14. Kubica, B.J., Kurek, J.: Interval arithmetic, hull-consistency enforcing and algorithmic differ-
entiation using a template-based package. In: CPEE 2018 Proceedings (2018)

15. Kubica,B.J.,Woźniak,A.:Amulti-threaded interval algorithm for the Pareto-front computation
in a multi-core environment. In: PARA 2008 Proceedings. Lecture Notes in Computer Science,
vol. 6126/6127. Accepted for Publication (2010)

16. Nedialkov, N., Kreinovich, V., Starks, S.A.: Interval arithmetic, affine arithmetic, Taylor series
methods: why, what next? Numer. Algorithms 37(1), 325–336 (2004)

17. Shary, S.P.: Finite-dimensional Interval Analysis. Institute of Computational Technologies, SB
RAS, Novosibirsk (2013)

http://www.xsc.de
https://www.researchgate.net/publication/316610415_ADHC_Algorithmic_Differentiation_and_Hull_Consistency_Alfa-05
https://www.researchgate.net/publication/316610415_ADHC_Algorithmic_Differentiation_and_Hull_Consistency_Alfa-05
http://www.boost.org/
http://en.cppreference.com/w/cpp/utility/any
https://www.researchgate.net/publication/316687827_HIBA_USNE_Heuristical_Interval_Branch-and-prune_Algorithm_for_Underdetermined_and_well-determined_Systems_of_Nonlinear_Equations_-_Beta_25
https://www.researchgate.net/publication/316687827_HIBA_USNE_Heuristical_Interval_Branch-and-prune_Algorithm_for_Underdetermined_and_well-determined_Systems_of_Nonlinear_Equations_-_Beta_25
https://www.researchgate.net/publication/316687827_HIBA_USNE_Heuristical_Interval_Branch-and-prune_Algorithm_for_Underdetermined_and_well-determined_Systems_of_Nonlinear_Equations_-_Beta_25

Chapter 4
Branch-and-Bound-Type Methods

4.1 Preliminary Remarks

This chapter presents themain application of interval methods (at least in the author’s
opinion): seeking points that satisfy a certain logical condition. The generic algorithm
to solve such problems is presented: the interval branch-and-bound-type algorithm.
This generic algorithm has several instances, in particular:

• classical B&B methods, used in optimization (e.g., [15]), but also other problems
(e.g., seeking Pareto sets [28] or Nash equilibria [29]);

• branch-and-prune methods (B&P)—for systems of equations and/or inequalities
[10, 12, 13];

• partitioning parameter space (PPS)—for interval linear systems [45];
• SIVIA (Set Inversion Via Interval Analysis)—for various constraint satisfaction
problems (CSPs) [13, 14];

• …

Presentation in this chapter tries to be as general and abstract as possible. Readers
who are not familiar with any of the above approaches might find this presentation
hard to follow. Possibly, it would be more convenient for them to have a look at
Chaps. 5 and 6 first.

4.2 Introduction

Let us recall Problem (1.1):

Find all x ∈ X such that P(x) is fulfilled.

Here, P(x) is a formula with a free variable x and X ⊆ R
n; often X is a single box

x(0) (as in other chapters, the standard notation from [16] is adopted).

© Springer Nature Switzerland AG 2019
B. J. Kubica, Interval Methods for Solving Nonlinear Constraint Satisfaction,
Optimization and Similar Problems, Studies in Computational Intelligence 805,
https://doi.org/10.1007/978-3-030-13795-3_4

27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13795-3_4&domain=pdf
https://doi.org/10.1007/978-3-030-13795-3_4

28 4 Branch-and-Bound-Type Methods

In what formal system is P a formula? We shall not answer this interesting open
question here. Instead, let us present a few well-known problems that can be formu-
lated as instances of (1.1).

The problem of solving interval linear systems is often formulated that way (e.g.,
[2, 43, 44]). Also:

• a system of (nonlinear) equations: {x ∈ X | f (x) = 0},
• a constraint satisfaction problem (CSP) with inequality constraints: {x ∈ X |

f (x) ∈ [y, y]},
• global optimization: {x ∈ X | (∀t ∈ X)

(
f (x) ≤ f (t)

)},
• seekingPareto set of amulticriterionproblem: {x ∈ X | (∀t ∈ X)

(
(∀i=1, . . . , N)

(fi (x) ≤ fi (t)) or (∃ j ∈ [1..N]) (f j (x) < f j (t))
)},

• seeking Nash equilibrium points of a non-cooperative game: {x ∈ X | (∀i =
1, . . . , N) (∀ti ∈ xi ⊆ R

ki) (fi (x\i , ti) ≥ fi (x))}.
Some other, less commonly studied, examples include:

• seeking all optima of a function—local and global ones (studied, e.g., for a very
specific case in [47]): {x ∈ X | (∃ε > 0)

(
(∀t ∈ X) and (d(x, t) < ε) (f (x) ≤

f (t))
)},

• seeking local (but non-global) minimizers of a function: {x ∈ X | (∃ε > 0)
(
(∀t ∈

X) and (d(x, t) < ε) (f (x) ≤ f (t))
)
and

(
(∃s ∈ X) (f (s) < f (x))

)},
• seeking local minimizers of a function, for which the optima have a sufficiently
large “attraction basin”, e.g., containing at least an interval of the given range:
{x ∈ X | (∃ε > δ)

(
(∀t ∈ X) and (d(x, t) < ε)

)
(f (x) ≤ f (t))},

• and many other similar problems.

The quantity d(·, ·), used in above formulae, denotes the metric.
All above problems are instances of (1.1) and can be solved using a similar

algorithm, that will be described in this Chapter (cf. also [22, 27]).
It is worth noting that Problem (1.1) has some variants, e.g.:

• Find a single solution point x ∈ X such that P(x).
• Find the inner approximation of the solution set, i.e., a box x ⊆ X such that for
all x ∈ x we have P(x).

• Find the outer approximation of the solution set, i.e., a box x such that all x ∈ X
for which P(x) satisfy x ∈ x.

Above problems, often being solved, e.g., for interval linear equations [43, 44], are
not going to be considered in this monograph.

As for problems of type (1.1) in its original form, the author has formulated
a general meta-algorithm to solve them. Let us call it the branch-and-bound-type
method (B&BT method), or generalized branch-and-bound method.

This meta-algorithm has several well-known instances for solving various prob-
lems (see Chaps. 5 and 6, and references therein). All these algorithms differ in some
significant details, but also they have several similarities:

• they are based on subsequent subdivision of the search domain, i.e., they are
instances of the so-called divide-and-conquer approach (which is an inexact trans-
lation of the Latin phrase divide et impera);

4.2 Introduction 29

• they bound values of some functions on obtained subboxes, using the interval
calculus;

• they use the samekindof tools to process subboxes, e.g., intervalNewtonoperators,
consistency enforcing operators, linear relaxations, initial exclusion phases, etc.
(see, e.g., [13, 15]);

• they can be parallelized in a similar manner;
• they face similar problems in storing and distributing boxes, collecting and storing
results, load balancing, etc. [22].

Actually, there is some confusion in naming the algorithms: for instance, Kearfott
in his classical book [15] calls “a branch-and-bound method” the procedure that is
called “branch-and-prune” by other researchers (see, e.g., [10, 12]). It seems useful
to indicate actual common features and differences between these algorithms.

4.3 The Solution Set

What can the interval branch-and-bound procedure compute? Usually, two lists of
boxes are constructed; and so do the pseudocodes presented below, in Sect. 4.4:

• verified solutions—boxes that are guaranteed to contain some points within the
solution set,

• possible solutions—boxes that (under the given accuracy) could not be verified
either to contain solutions or not to contain them.

What specifically does the list of verified boxes contain? It is related to the geometry
of the solution set and hence problem-dependent.

In general, the solution set can have three forms:

• a countable set (a set of isolated points)—then verified solutions are boxes guar-
anteed to contain a single solution (see Fig. 4.1),

• an uncountable set with an empty interior (a manifold)—then verified solutions
are boxes guaranteed to contain a segment of the solution set (see Fig. 4.2),

• an uncountable set with a nonempty interior—then verified solutions are boxes
guaranteed to lie in the interior of the solution set, i.e., to contain only actual
solutions (see Fig. 4.3).

Please note that each of the above possibilities is quite often encountered in
practical problems:

• a countable set is the solution to (non-singular) global optimization problems and
well-determined nonlinear equations systems,

• an uncountable set with an empty interior is the solution to Pareto set seeking
problems and underdetermined systems of equations,

• an uncountable set with a nonempty interior is often the solution to constraint
satisfaction problems with inequality constraints.

30 4 Branch-and-Bound-Type Methods

Fig. 4.1 Solution set consisting of separate points

Fig. 4.2 Solution set of measure zero—a manifold

Fig. 4.3 Solution set with a non-empty interior

In any case, “possible” solutions are small boxes (usually their diameter is smaller
than some predefined accuracy parameter ε; cf. Algorithm 2, line 16) that have not
been proved either to contain a solution(s) or not to contain any.

Now, that we know what the algorithm is supposed to compute, let us present it
in the from of a pseudocode.

4.4 Generic Algorithm 31

4.4 Generic Algorithm

The main algorithm to solve problems of type (1.1), the B&BT method, can be
expressed by Algorithm 1.

Algorithm 1 The overall algorithm
Require: L , P
1: perform the essential B&BT method (i.e., Algorithm 2) for (L , P), storing the results in Lver ,

L pos , Lcheck
2: {The second phase}
3: perform the verification (i.e., Algorithm 3) for Lver , Lcheck , P
4: perform the verification (i.e., Algorithm 3) for L pos , Lcheck , P

This algorithm consists of two phases: the actual B&BT method (Algorithm 2)
and the second phase, when the results are verified (if it is necessary; Algorithm 3).
Why and when do we need the verification in the second phase, will be explained in
Sect. 4.6.

Algorithm 2 The essential generalized branch-and-bound method
Require: L , P
1: Lver = L pos = Lcheck = ∅
2: x = pop (L)
3: loop
4: process the box x, using the rejection/reduction tests
5: update the shared quantities (if any; see explanation in Sect. 4.6.2)
6: if (x does not contain solutions) then
7: if CHECK(P , x) then
8: push (Lcheck , x)
9: discard x
10: else if VERIF(P , x) then
11: push (Lver , x)
12: else if (the tests resulted in two subboxes of x: x(1) and x(2)) then
13: x = x(1)

14: push (L , x(2))
15: cycle loop
16: else if (x is small enough) then
17: push (L pos , x)
18: if (x was discarded or x was stored) then
19: x = pop (L)
20: if (L was empty) then
21: return Lver , L pos , Lcheck
22: else
23: bisect (x), obtaining x(1) and x(2)

24: x = x(1)

25: push (L , x(2))

32 4 Branch-and-Bound-Type Methods

Algorithm 3 Verification of solutions
Require: Lsol , Lcheck , P
1: for all (x ∈ Lsol) do
2: discard x if it contains no points x ∈ x, satisfying P(x)
3: {details of the verification depend on P , but the shared quantities and, possibly, the boxes

from Lcheck are useful there; cf. Sect. 4.6}

Words “push” and “pop” in Algorithm 2 name operations of inserting and remov-
ing elements to/from the set (independent of the representation of the set—it can be
a stack, a queue or a more sophisticated data structure). This depends on the problem
under consideration and other features of the specific implementation.

The following notation is used in the algorithms:

• L—the list/set of initial boxes, often containing a single box x(0);
• P(x)—the predicate formula, defining the problem under solution;
• the lists/sets of solutions: Lver—verified solution boxes and L pos—possible solu-
tion boxes;

• Lcheck—the list/set of boxes (possibly, with some additional information) repre-
senting the shared quantities, that will be used in the second phase to verify boxes
from Lver and L pos ; for examples see Sect. 4.6.3 or [33], where seeking strong
Nash equilibria is considered;

• VERIF(P , x) states that the box x has been verified to contain a solution (or a point
satisfying some necessary conditions to be a solution); by a solution we mean a
point x satisfying P(x);

• CHECK(P , x) states that the box x does not contains a solution, yet it can be useful
to verify P for some other box in the second phase.

In general, CHECK and VERIF are predicates in a second-order logic: they depend
on P , so they are functions of a formula. Obviously, it might be pretty difficult to
develop them for some P (cf., e.g., [22, 29, 33] for examples). In the remainder, we
discuss this issue in more details.

Remark 4.1 A comment is necessary about subdividing a box. In lines 13–14 and
24–25 of Algorithm 2 it is implied that we always store one of the resulting boxes
and process the other one in the next step.

Often, this is so, but there are exceptions to this rule. There might be various
policies for box selection and for some algorithm versions, wemight push both boxes
x(1) and x(2) and pop the new value of x. A good example is global optimization:
cf. pseudocodes and remarks in Sect. 6.1.1. Actually, such a formulation might be
considered more general to what is presented in Algorithm 2.

Nevertheless, such a situation is—according to the author’s experience—relatively
rare and, for several algorithm versions (in particular, for multithreaded implemen-
tations), it is crucial to reduce the number of push/pop operations. So, the author
considers the above presentation to be proper, even if requiring this comment. We
shall consider this problem also in Chaps. 6 and 7.

4.4 Generic Algorithm 33

Remark 4.2 For some algorithms, we might need bisection in the second phase, as
well as in the first one. This is the case, e.g., for some algorithms computing the
Pareto-sets, e.g., [31]; precisely, this may happen when the computation of shared
quantities does not require exhaustive search of X .We do not reflect this possibility in
the pseudocode of Algorithm 3; such situations seem rare, but the possibility requires
mentioning.

Remark 4.3 As we have been able to formulate a generic algorithm to solve prob-
lems of type (1.1), it follows that, under some technical assumptions about P , such
problems are computable (see also [9, 18] and references therein). Probably, they
are often NP-hard (cf., e.g., [19, 41] and, especially, the book of Kreinovich et alii
[20]), but we are still able to devise proper heuristics [46]. We shall get back to that
in Sect. 4.9.

4.5 Analysis of the B&BT Algorithm

What happens in both phases of the algorithm? This varies to some extent, depending
on the problem under solution. Yet, in general, we can distinguish two objectives of
the first phase:

• removing boxes that do not satisfy some necessary conditions of P (see Sect. 4.7),
• computing some quantities that will be necessary for solutions verification, in
the second phase; they will be called shared quantities in the remainder (see
Sect. 4.6.2).

The importance of these two objectives varies, depending on the specific problem
being addressed; as we shall see, for some problems one of these tasks might even
be irrelevant.

For global optimization, most of the work is performed in the first phase—we
check first-order necessary conditions of optimality (usually: Fritz John conditions
[15]) and also we check if y > y∗, where the upper bound on the global minimum
y∗ is successively improved.

Hence, for the problem of approximating the whole ε-optimality region, we can
discard few boxes in the first phase. ε-optimal points do not have to satisfy any
first-order necessary conditions (they are solutions of an inequality!) and y∗ is still
overestimated in this phase. The main objective of the first phase of the algorithm
solving this problem, is—actually—to compute y∗ as precisely as possible; boxes
will be rejected in the second phase.

For other problems, we have to compute much more complicated quantities for
use in the second phase: e.g., for a multicriteria problem, we have to obtain a set of
boxes representing the Pareto frontier (see [32] and references therein). These boxes
are inverted in the second phase, using another B&BT procedure.

An analogous situation is encountered for computing (strong) Nash equilibria of
a game [33].

34 4 Branch-and-Bound-Type Methods

Obviously, for many B&BT methods the second phase is not necessary. For what
problems is it the case and why? This question will be addressed in the next section.
But to answer it, let us describe in more details, what operation is performed in the
second phase. Actually, it is some kind of quantifier elimination—but a very specific
kind.

4.6 The Second Phase—Quantifier Elimination

So,why andwhendoweneed the second phase?As already stated, for someproblems
(equations systems, CSPs) the first phase suffices, but for other ones (e.g., global
optimization) the second phase is inevitable. Please note that for solving equations
or inequalities systems, formula P is non-quantified.

Actually, solving equations and inequalities is the task best suited for interval
methods. Using classical interval tools (including the Newton operator), we can
verify boxes containing the solutions—in both cases; and for too wide boxes, we can
subdivide them.

But how do we apply interval methods for problems of type (1.1) with quantified
P? What we need there is quantifier elimination and the partition of Algorithm 1
into two phases is related to this task. To the best knowledge of the author, this fact
has not been recognized before (not to count the author’s paper [27]).

Other words, in the first phase (apart from discarding boxes that do not satisfy
necessary conditions), we need to obtain some quantities that would allow to verify
P(x) for boxes x
 x , using equations and inequalities, only. We refer to them as
shared quantities as they are stored independently of the boxes and often they can
be used to verify several of these boxes.

For instance, in global optimization, we need to compute a single shared quantity
in the first phase: an upper bound on the global minimum. In the problems of Pareto
sets or Nash equilibria seeking, we need to extract more shared quantities in the first
phase (the set of approximate Pareto-optimal points, etc.).

But what shared quantities are (in general) necessary to verify a specific predi-
cate P?

To give a comprehensive answer to this, we have to introduce the notion of obtain-
ing the Herbrand expansion of P; see, e.g., [6] and references therein; see also [1].

4.6.1 Herbrand Expansion

Let us consider formula P from (1.1), having the form either P(x) ≡ (∀t ∈ X)

P ′(x, t) or P(x) ≡ (∃t ∈ X) P ′(x, t).
If the quantifier is universal, we have to verify that for all values in the domain a

property holds. If the quantifier is existential, we have to find a value for which the
property holds.

4.6 The Second Phase—Quantifier Elimination 35

This is related to obtaining the Herbrand expansion of the quantified formula P ,
i.e., transforming it to a non-quantified alternative (or conjunction) of formulae for
specific values t1, t2, …, tk . Formula “∃t such that P ′(t)” can be transformed into a
Herbrand disjunction: “P ′(t1) ∨ P ′(t2) ∨ . . . ∨ P ′(tk)”. Hence formula “∀t we have
P ′(t)” can be transformed into a Herbrand conjunction: “P ′(t1) ∧ P ′(t2) ∧ . . . ∧
P ′(tk)”.

In the original theorem of Jacques Herbrand, these expansions have been used
to determine the provability of a formula (see, e.g., [6]). Yet, they can be used to
approximate the formulae, also. Actually, while these Herbrand expansions are not
equivalent to the original formulae, they can provide good approximations, if the
values t1, . . . , tk are chosen properly.

What are these “proper” values of t1, . . . , tk and how many of them do we need
(i.e., what is k)? This strongly depends on P . In general, the ti ’s depend also on x ;
we have t1(x), . . . , tk(x) and we seek:

x ∈ X such that P ′(x, t1(x)
) ∧ P ′(x, t2(x)

) ∧ . . . ∧ P ′(x, tk(x)
)
. (4.1)

The above conjunction is obtained for the universal quantifier; for an existential one,
we would use a disjunction.

For specific problems, the structure of (4.1) might get pretty simple; in partic-
ular values of ti are often independent on x , ti (x) = ti . A good example is global
optimization, where a single value t (the approximate global minimizer) is sufficient
(actually, we need to store y∗ = f (t), only). For other problemsmore ti ’s are needed.
We get back to this topic in Sect. 4.6.2. Now, let us consider the relation between the
original formula and its non-quantified form.

Relation between a formula and its Herbrand disjunction/conjunction.
As it has already been mentioned, a quantified formula is not (in general) equiv-

alent to its Herbrand form. Actually, the relations are as follows:

∀t P ′(t) =⇒ P ′(t1) ∧ P ′(t2) ∧ . . . ∧ P ′(tk) ,
∃t P ′(t) ⇐= P ′(t1) ∨ P ′(t2) ∨ . . . ∨ P ′(tk) .

What does that mean?
For a universal quantifier, the transformed formula is weaker than the initial one.

We are not able to verify the initial problem strictly, but a weaker one, e.g., solving
a global optimization problem, actually, we seek ε-optimal points, satisfying some
necessary optimality conditions (see also [9, 18]). It is up to us to choose points
t1, . . . , tk so that weakening of the original problem is as small as possible.

Hence, for an existential quantifier, the transformed formula is stronger than the
initial one. We can verify the initial formula directly—at least for some points—but
values of t1, . . . , tk have to be chosen carefully, so that as many solutions could be
verified, as possible.

36 4 Branch-and-Bound-Type Methods

What can be the structure of formula P?

Up to now, we have considered computing the Herbrand expansion of the formula
P starting with a universal or existential quantifier. Also, we know that for a non-
quantified P , computing the Herbrand expansion is not necessary; we can consider
such P its own Herbrand expansion.

What about other cases? Can P start with a non-quantified sub-formula, but con-
tain quantifiers in the remainder? In general, it could, but we can assume P to be in
the prenex normal form, i.e., a sequence of quantifiers followed by a non-quantified
expression.

This case is sufficient, as all first-order formulae can be transformed to such form
(see, e.g., [1], Theorem 7.1.9). So, we only need to consider P in the prenex normal
form (cf. [18]).

Example 4.1 Let us consider the following problem:

Find all elements of
{
x ∈ X | (g(x) ≤ 0) =⇒ (∀t ∈ X)

(
f (x) ≤ f (t)

)}
. (4.2)

In this case, the formula P is not in the prenex normal form. Yet it can easily be
converted to such form: we make use of the fact that the implication (p =⇒ q) is
equivalent to �= p ∨ q and that the quantifier can be taken before the implication if
the predecessor is independent on the bound variable. Hence, we obtain:

Find all elements of
{
x ∈ X | (∀t ∈ X)

(
(g(x) > 0) ∨ (

f (x) ≤ f (t)
))}

. (4.3)

4.6.2 Shared Quantities

Now, let us explain the notion of shared quantities, which we have been using before.
Actually, to verify a box to contain (or not to contain) a solution, we need the values
t1, . . . , tk for the Herbrand conjunction/disjunction.

So, these values can be considered the shared quantities fromAlgorithm 2. Please
note, these values can be stored in the list Lcheck , mentioned in Algorithms 2 and 3.
Yet, not necessarily should these values be represented explicitly.

For several problems, it is some function of ti ’s, and not them themselves, that
we are interested in. The simplest example is global optimization. The Herbrand
representation of this problem would be as follows:

Find all x ∈ X such that
(
f (x) ≤ f (t)

)
,

where t is the approximate global optimizer, i.e., the best point found. But what we
actually need for verification is y∗ = f (t) and not t itself; y∗ can be computed from
t , but it takes time and is unnecessary.

4.6 The Second Phase—Quantifier Elimination 37

Obviously, the same applies to the problem of seeking Pareto-optimal solutions
of a multicriteria problem; just we have several shared quantities then.

Hence, for seeking (ordinary or strong) Nash equilibria of a game, ti ’s have to be
represented directly: verification of an equilibrium requires comparison of its values
with values at specific points of the domain (see [29, 33], for details).

To sum up, we can state that:

• In theory, the shared quantities can always be represented by the list Lcheck .
• In practice, rarely is this list directly used.
• Usually, some more specific quantities are kept instead of the list Lcheck , e.g., the
values of (or bounds on) some function of points from boxes that would be stored
in Lcheck .

What quantities should be used for a specific problem? It seems, this has to be
decided for each problem individually (cf. also Sect. 7 of [22]). Also, finding the
proper formulation can hardly be automated.

Investigating general conditions for simplification of the Herbrand form, might
be an interesting subject of future investigations.

4.6.3 Existentially Quantified Formulae

All well-known problemsmentioned so far, had P startingwith a universal quantifier.
Problems with existential quantifiers:

Find all x ∈ X such that (∃t ∈ X) P ′(x, t) is fulfilled,

seem to be less frequently encountered. As an example—possibly an artificial one—
let us consider, as in [27], the problem of seeking all points from the domain of
function f , such that the function values are identical as in some other point, i.e.,
points where f is not an injection:

Find all x ∈ X such that (∃t ∈ X) (t �= x)
(
f (x) = f (t)

)
.

How to solve it? Certainly, we need two phases: in phase 1 we partition X into several
boxes x ⊆ X and we compute for each of them both inner and outer approximations
of f(x). The twins arithmetic might be convenient here (see, e.g., [38]). The place
where we store boxes x, together with inner and outer approximations of f(x), is the
aforementioned set Lcheck .

In the second phase, we try to verify each box x to have or have not a counterpart
x′ such that: (

x ∩ x′ = ∅)
and

(
f(x) ∩ f(x′) �= ∅)

. (4.4)

It is worth noting that we do not really have to assemble lists Lver and L pos :
information they contain would be redundant with this already contained in Lcheck .

38 4 Branch-and-Bound-Type Methods

Furthermore, it is worth investigation, what data structure to use for storing the
records in Lcheck , to find pairs of boxes that satisfy (4.4). Possibly, an interval tree
would be appropriate here (cf. [22]), but it is not a panacea. A detailed discussion is
out of the scope of this book, but it might be an interesting subject of further research.

4.6.4 When is the Second Phase Not Necessary?

We do not need to use such Herbrand expansions (and hence to perform the second
phase) at least in the following three cases:

• formula P is non-quantified, itself—e.g., for equations systems and constraint
satisfaction problems;

• formula P can be transformed to a non-quantified form symbolically, without the
necessity of computing specific values—we have such a situation for computing
all local minima of a function, a problem discussed in Sect. 4.8;

• the quantifier(s) in formula P ranges over other domains than X—it is a so-called
quantified constraint problem (see, e.g., [4, 11, 39]); in this case we do not need
any second phase, but a “nested” B&BT method in phase one—to process all
feasible values of the parameter.

Obviously, in some cases we have quantifiers ranging over both: X and some other
domain. Then, we might need the second phase, but some of the quantifiers will still
be present; a good example is solving the min-max problem (e.g., [48]).

As already mentioned, for global optimization of a smooth function, we seek
points that fulfill some first-order necessary conditions (∇ f (x) = 0 for the uncon-
strained case or Fritz John conditions otherwise) and f (x) ≤ y∗ + ε. We could
replace the latter by f (x) = y∗, but it would be pretty ill-conditioned and hard
to verify.

A similar example will be encountered in the Sect. 4.8.

4.7 Necessary Conditions

Earlier, we stated that determining how many shared quantities t1, . . . , tk should be
computed andwhat is their adequate representation is hard to be automated; probably
it has to be done by a human expert. Possibly, it is related to the fact that CHECK
from Algorithm 2 is not a formula in first-order logic, but in the second (or even
higher) order one.

What is more, there is another very important feature of each B&BT algorithm
that can hardly be provided by an algorithm: determining the necessary conditions
of P , to be used in the first phase. Indeed, the predicate VERIF, as well as CHECK,
goes beyond the first-order logic, certainly.

The necessary conditions of P can be classified in a few categories:

4.7 Necessary Conditions 39

• 0th-order conditions: check the Herbrand expansion of P for current estimates of
t1, . . . , tk .

• 1st-order conditions, e.g., checking if the gradient is equal to zero for unconstrained
global optimization, Fritz John conditions for constrained global optimization or
analogous conditions for Pareto-optimal points [31], or game solutions, e.g., [29,
33], etc.

• 2nd-order conditions, e.g., checking the eigenvalues (or simply diagonal elements;
cf., e.g., [15]) of the Hesse matrix for unconstrained global optimization; see, e.g.,
[15].

• Higher-order conditions, rarely used, so far.

It is worth noting that some pretty similar problems may have quite different neces-
sary conditions. A good example is the dissimilarity between the well-known prob-
lem of global optimization and the problem of seeking ε-optimal solutions, which
we already mentioned. In the latter, solutions are points satisfying the inequality
f (x) ≤ y∗ + ε, thus there are no 1st-order necessary conditions, like the Fritz John
ones.

Hence, for another pretty similar problem of seeking local optima, the 1st-order
conditions are of high importance. This problem will be detailed in the next section.

4.8 Seeking Local Optima of a Function

The problem of finding all local minima of a function is very specific, it has interest-
ing properties and—in contrast to, e.g., global optimization or seeking ε-optimal
solutions—so far, rarely has it been considered directly (as a distinct problem
from, e.g., solving a system of equations ∇ f (x) = 0). Notable exceptions include
[8, 34, 47].

Let us formulate the problem as follows: find all elements of the set:

{x ∈ [x, x] ⊆ R
n | (∃ε > 0) (∀t ∈ [x, x] and d(x, t) < ε)

(
f (x) ≤ f (t)

)} . (4.5)

The formulation is very similar to the global optimization problem, but its features
are very different:

• the local optimization problem requires, as the name says, only local information;
in particular, we do not need to process the objective’s values, but only derivatives;

• consequently, there is no global information stored in the B&BT algorithm, no
shared quantities;

• also, the order of processing boxes is irrelevant, while it was quite important for
global optimization (cf., e.g., [15, 35, 37]);

• finally, no second phase is needed for Problem (4.5), while for global optimization
it was necessary to distinguish global from local optima.

The main difference boils down to the fact that, for Problem (4.5), quantifiers in the
formula can be removed symbolically, without performing their “numerical remov-

40 4 Branch-and-Bound-Type Methods

ing” (i.e., without computing any shared quantities) in the two phases ofAlgorithm1.
To be succinct: all necessary information is local, so no shared quantities are needed.

Remark 4.4 It is worth noticing that properties of (4.5) are more similar to proper-
ties of the problem of solving a system of equations than to global optimization—
although, the formulation of (4.5) is very different from {x ∈ [x, x] | f (x) = 0}.

How to produce the non-quantified formulation of (4.5)? Let us consider the case
of smooth functions. For unconstrained optimization, we can formulate the problem
as follows:

{x ∈ [x, x] | (∇ f (x) = 0) and (Hesse matrix of f (x) has no

negative eigenvalues)} . (4.6)

Please note, that—also for this problem—formula (4.6) is not equivalent to (4.5),
but weaker. If an eigenvalue of the second derivatives matrix is equal to zero, the
point may or may not be a local minimum.

Actually, a local minimum can be singular and have arbitrarily many derivatives
equal to zero, e.g., function f (x) = x2·n , where n ≥ 2 and x ∈ [−10, 10]. If we do
not know n in advance, we cannot determine how many derivatives to compute and
investigate.

A more precise formulation than (4.6) is possible; for the univariate case, it can
go as follows:

{
x ∈ [x, x] ⊆ R | (f ′(x) = 0) and

(
(f ′′(x) > 0) or

(f ′′(x) = 0 and f ′′(·) has a local minimum at x)
)}

. (4.7)

Such a formulation allows to verify local minima of an arbitrary f , provided it has no
plateau, i.e., it is not constant. If f was constant on some subregions, no numerical
algorithm would be able to verify it in a finite number of steps; at least not in the
general case.

Also, formulation (4.7) is impractical, even for a problem with no plateau. Com-
puting higher derivatives is difficult, both, from the theoretical (tensor algebra) and
practical (lack of interval automatic differentiation libraries, with higher derivatives)
point of view.

Solving Problem (4.5) for a function with a plateau seems hard, indeed. We can
check if |f′(x)| is lower than some threshold value, but it does not allow to distinguish
a constant function and a function changing slowly on some region (or even having
a local minimum there!).

The situation is different if we state a related but distinct problem:

{x ∈ [x, x] ⊆ R
n | (∃ε > εmin) (∀t ∈ [x, x] and d(x, t) < ε)

(
f (x) ≤ f (t)

)}.
(4.5’)

4.8 Seeking Local Optima of a Function 41

It is the problem of seeking “significant” local optima, i.e., the deepest optima in a
“sufficiently large” subdomain. The threshold value of the subdomain radius is εmin.
When solving such a problem, checking |f′(x)| becomes a useful tool.

By the way, please note, as quite different tools occur useful for pretty similar
problems. Although, the same meta-algorithm can be applied for several problems,
choosing proper tools (and heuristics to parameterize them) is pretty hard. It does
not seem, this decision can be automated—only a human can choose proper tools
and heuristics to make the algorithm efficient for a specific class of problems.

Finally, let us note that formulation (4.5’)might be better for practical applications
than (4.5). And the problem of enclosing all local optima of a function is of high
interest as it can find several practical applications, i.a., in the game theory (so-
called potential games [42]), NMR (nuclear magnetic resonance) spectroscopy or
radio-astronomy [47].

4.9 Example Heuristics

What tools should we use to process boxes in the B&BT algorithm? Details depend
on the specific problem (cf. Chaps. 5 and 6), obviously, but interval analysis provides
us a variety of common tools, in particular:

• various interval Newton operators for solving equations (or inequalities) systems,
• various local consistency notions (hull-consistency, box-consistency,
bound-consistency, etc.) and methods for their enforcing,

• other specific tests, e.g., checking monotonicity of a function, checking positive
definiteness of a matrix, etc.

Which of these tools should be used for a specific problem (and for a specific box)?
How to apply them? How should they be parameterized?

There are no general answers to these questions. Instead, we have to rely on some
heuristics, tailored for a specific class of problems.

Many such heuristics for various problems have been developed—both, by the
author and by other researchers.

Most of these tools accelerate the actual B&BT algorithm. Yet, some of them
can be applied prior to it. This is the case, in particular, for initial exclusion phases,
proposed, e.g., in Caprani et alii [7], Kolev [17] and a few papers of the author [23,
25, 26]. Also, prior to Algorithm 1 we can perform some symbolic preprocessing of
the problem; for instance the Gröner basis theory can be applied here.

In the remainder of this section, we shall concentrate on heuristics for box subdi-
vision.

Bisection

The most common form of box subdivision in the B&BT process is its bisection
(in one of the coordinates). Some researchers (e.g., [5]; see also [15], Paragraph 5.1.2)

42 4 Branch-and-Bound-Type Methods

suggest using multisection, but according to the author’s experiences (see [21]), it
does not seem worthwhile.

Possibly in the future, heuristics will be developed to choose between bi- and
multisection for specific classes of problems.

And which of the variables to bisect? A common idea is to bisect the longest edge
of the box; it is called the maximal diameter bisection. Several other approaches have
been proposed to choose the variable for bisection; see [3, 15, 45] and, in particular,
[40]. Most of them are efficient on some problems, but fail not on other ones; some,
like [36], have been tailored for very specific problem classes only. How to obtain
more universal heuristics?

In [24] the author observed that the proper approach is to create boxes suitable for
reduction by the rejection/reduction tools, used in the current instance of the B&BT
algorithm.

For optimization problems (at least unconstrained ones) minimizing the diameter
of objectives on resulting boxes is proper, usually.

But, e.g., for the problem of solving nonlinear systems, the main rejection/
reduction tool is some version (or versions) of the interval Newton operator and
proper heuristics should be tuned to produce boxes suitable for this procedure. Such
heuristics are proposed, i.a., by the author in [24, 26].

For the problem of Pareto sets seeking the situation is yet different. The procedure
to process a box ismore sophisticated (themultiobjective version of themonotonicity
test [28], consistency checking of the criteria [30], etc.) and the proper heuristic to
choose the variable for bisection has to be adequate to these features. It is described
in [32].

Remark 4.5 Some authors devise the heuristics for bisection to minimize the diam-
eter of objectives on resulting boxes (see, in particular, [3]). In the author’s opinion,
this approach is in general wrong, as it does not have to lead to producing boxes
suitable for further processing.

The difference is particularly important for higher problem dimensions. Please
note, Rn for n >> 2 can have properties much different than these of R or R2.
Distances are higher in such spaces and bisecting a single component of a box does
not result in changing these distances significantly. That is why bisections should be
used for separating different solution points and not for reducing the range of the
function, which would require an outrageous amount of bisections.

4.10 Conclusions

In this chapter, we have considered interval branch-and-bound-type algorithms as
a tool for solving a wide class of problems, described using a formula in the first-
order logic. Similarities and differences between various instances of this type of
algorithms have been discussed. We have tried to clear some confusion in the termi-
nology used in the area.

4.10 Conclusions 43

We have shown, how the necessity of quantifier elimination forces splitting some
versions of these algorithms into two phases. The quantifier elimination process has
been linked to obtaining the Herbrand expansion of the formula.

It has been stated that, although, Algorithm 1, for solving problems of type (1.1),
is pretty general, adapting it for a specific problem and tuning to be efficient is
a difficult process, hard (or impossible) to be automated. Probably, at least three
features have to be determined by a human: the number and nature of the shared
quantities used by the algorithm, their adequate representation and heuristics used
by the rejection/reduction tests.

Similar problems might need quite different heuristics and an expert’s knowledge
is necessary to choose and tune them. Artificial intelligence and self-tuning methods
might be of some use, but in general, these details have to be designed by a human.

It is worth noting that B&BT algorithms are natural candidates for parallelization
and—as they are usually time consuming—proper parallelization is often crucial for
achieving satisfying efficiency. Parallelization of B&BT algorithms will be consid-
ered in Chap.7.

References

1. Adler, J., Schmid, J.: Introduction to Mathematical Logic. University of Bern (2007)
2. Alefeld, G., Kreinovich, V., Mayer, J.: The shape of the solution set for systems of interval

linear equations with dependent coefficients. Math. Nachr. 192, 23–36 (1998)
3. Beelitz, T., Bischof, C.H., Lang, B.: A hybrid subdivision strategy for result-verifying nonlinear

solvers. Technical Report 04/8, Bergische Universität Wuppertal (2004)
4. Benhamou, F., Goualard, F.: Universally quantified interval constraints. In: Principles and

Practice of Constraint Programming–CP 2000, pp. 67–82. Springer (2000)
5. Berner, S.: New results on verified global optimization. Computing 57(4), 323–343 (1996)
6. Buss, S.R.: On Herbrand’s theorem. In: Logic and Computational Complexity, pp. 195–209.

Springer (1995)
7. Caprani, O., Godthaab, B., Madsen, K.: Use of a real-valued local minimum in parallel interval

global optimization. Interval Comput. 2, 71–82 (1993)
8. Eick, C., Villaverde, K.: Robust algorithms that locate local extrema of a function of one

variable from interval measurement results: a remark. Reliab. Comput. 2(3), 213–218 (1996)
9. G-Tóth, B., Kreinovich, V.: Verified methods for computing Pareto sets: general algorithmic

analysis. Int. J. Appl. Math. Comput. Sci. 19(3), 369–380 (2009)
10. Gau,C.Y., Stadtherr,M.A.:Dynamic load balancing for parallel interval-Newton usingmessage

passing. Comput. Chem. Eng. 26(6), 811–825 (2002)
11. Hao, F., Merlet, J.P.: Multi-criteria optimal design of parallel manipulators based on interval

analysis. Mech. Mach. Theory 40(2), 157–171 (2005)
12. Ishii, D., Goldsztejn, A., Jermann, C.: Interval-based projection method for under-constrained

numerical systems. Constraints 17(4), 432–460 (2012)
13. Jaulin, L., Kieffer, M., Didrit, O., Walter, É.: Applied Interval Analysis. Springer, London

(2001)
14. Jaulin, L.,Walter, É.: Set inversion via interval analysis for nonlinear bounded-error estimation.

Automatica 29(4), 1053–1064 (1993)
15. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht (1996)
16. Kearfott, R.B., Nakao, M.T., Neumaier, A., Rump, S.M., Shary, S.P., van Hentenryck, P.:

Standardized notation in interval analysis. Vychislennyie Tiehnologii (Computational Tech-
nologies) 15(1), 7–13 (2010)

44 4 Branch-and-Bound-Type Methods

17. Kolev, L.V.: Some ideas towards global optimization of improved efficiency. In: GICOLAG
Workshop, Wien, Austria, pp. 4–8 (2006)

18. Kreinovich, V., Kubica, B.J.: From computing sets of optima, Pareto sets and sets of Nash
equilibria to general decision-related set computations. J. Univers. Comput. Sci. 16, 2657–
2685 (2010)

19. Kreinovich, V., Lakeyev, A.V.: Linear interval equations: computing enclosures with bounded
relative or absolute overestimation is NP-hard. Reliab. Comput. 2(4), 341–350 (1996)

20. Kreinovich, V., Lakeyev, A.V., Rohn, J.: Computational Complexity and Feasibility of Data
Processing and Interval Computations, vol. 10. Springer Science & Business Media (2013)

21. Kubica, B.J.: Performance inversion of interval Newton narrowing operators. Prace Naukowe
Politechniki Warszawskiej. Elektronika, 169, 111–119 (2009). KAEiOG 2009 (Konferencja
Algorytmy Ewolucyjne i Optymalizacja Globalna) Proceedings

22. Kubica, B.J.: A class of problems that can be solved using interval algorithms. Computing 94,
271–280 (2012). SCAN 2010 (14th GAMM-IMACS International Symposium on Scientific
Computing, Computer Arithmetic and Validated Numerics) Proceedings

23. Kubica, B.J.: Exclusion regions in the interval solver of underdetemined nonlinear systems.
Technical Report 12-01, ICCE WUT (2012)

24. Kubica, B.J.: Tuning the multithreaded interval method for solving underdetermined systems
of nonlinear equations. In: PPAM 2011 (9th International Conference on Parallel Processing
and Applied Mathematics) Proceedings. Lecture Notes in Computer Science, vol. 7204, pp.
467–476 (2012)

25. Kubica, B.J.: Excluding regions using Sobol sequences in an interval branch-and-prunemethod
for nonlinear systems. Reliab. Comput. 19(4), 385–397 (2014). SCAN 2012 (15th GAMM-
IMACS International Symposium on Scientific Computing, Computer Arithmetic and Vali-
dated Numerics) Proceedings

26. Kubica, B.J.: Presentation of a highly tuned multithreaded interval solver for underdetermined
and well-determined nonlinear systems. Numer. Algorithms 70(4), 929–963 (2015). https://
doi.org/10.1007/s11075-015-9980-y

27. Kubica, B.J.: Interval methods for solving various kinds of quantified nonlinear problems. In:
Kosheleva, O. (ed.) Beyond Traditional Probabilistic Data Processing Techniques: Interval,
Fuzzy, etc. Methods and Their Applications (2018)

28. Kubica, B.J., Woźniak, A.: Interval methods for computing the Pareto-front of a multicrite-
rial problem. In: PPAM 2007 Proceedings. Lecture Notes in Computer Science, vol. 4967,
pp. 1382–1391 (2009)

29. Kubica, B.J., Woźniak, A.: An interval method for seeking the Nash equilibria of non-
cooperative games. In: PPAM 2009 Proceedings. Lecture Notes in Computer Science,
vol. 6068, pp. 446–455 (2010)

30. Kubica, B.J.,Woźniak, A.: Optimization of themulti-threaded interval algorithm for the Pareto-
set computation. J. Telecommun. Inf. Technol. 1, 70–75 (2010)

31. Kubica, B.J., Woźniak, A.: Using the second-order information in Pareto-set computations of
a multi-criteria problem. In: PARA 2010 Proceedings. Lecture Notes in Computer Science,
vol. 7134, pp. 137–147 (2012)

32. Kubica, B.J., Woźniak, A.: Tuning the interval algorithm for seeking Pareto sets of multi-
criteria problems. In: PARA 2012 Proceedings. Lecture Notes in Computer Science, vol. 7782,
pp. 504–517 (2013)

33. Kubica, B.J.,Woźniak,A.: Intervalmethods for computing strongNash equilibria of continuous
games. Decis. Mak. Manuf. Serv. 9(1), 63–78 (2015). SING10 Proceedings

34. Lyager, E.: Finding local extremal points by using parallel interval methods. Interval Comput.
3, 63–80 (1994)

35. Lyudvin,D.Y., Shary, S.P.: Testing implementations of PPS-methods for interval linear systems.
Reliab. Comput. 19(2), 176–196 (2013). SCAN 2012 Proceedings

36. Majumdar, S.: Application of relational interval arithmetic to computer performance analysis:
a survey. Constraints 2(2), 215–235 (1997)

https://doi.org/10.1007/s11075-015-9980-y
https://doi.org/10.1007/s11075-015-9980-y

References 45

37. Moore, R.E.,Kearfott, R.B., Cloud,M.J.: Introduction to IntervalAnalysis. SIAM,Philadelphia
(2009)

38. Nesterov, V.M.: Interval and twin arithmetics. Reliab. Comput. 3(4), 369–380 (1997)
39. Ratschan, S.:Continuousfirst-order constraint satisfaction. LectureNotes inComputer Science,

vol. 2385, pp. 181–195 (2002)
40. Ratz, D., Csendes, T.: On the selection of subdivision directions in interval branch-and-bound

methods for global optimization. J. Glob. Optim. 7, 183–207 (1995)
41. Rohn, J., Kreinovich, V.: Computing exact componentwise bounds on solutions of linear sys-

tems with interval data is NP-hard. SIAM J. Matrix Anal. Appl. 16(2), 415–420 (1995)
42. Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Int. J. Game

Theory 2(1), 65–67 (1973)
43. Sharaya, I.A.: On maximal inner estimation of the solution sets of linear systems with interval

parameters. Reliab. Comput. 7(5), 409–424 (2001)
44. Shary, S.P.: Algebraic approach to the interval linear static identification, tolerance, and control

problems, or one more application of Kaucher arithmetic. Reliab. Comput. 2(1), 3–33 (1996)
45. Shary, S.P.: Finite-dimensional Interval Analysis. Institute of Computational Technologies, SB

RAS, Novosibirsk (2013)
46. Traylor, B., Kreinovich, V.: A bright side of NP-hardness of interval computations: interval

heuristics applied to NP-problems. Reliab. Comput. 1(3), 343–359 (1995)
47. Villaverde, K., Kreinovich, V.: A linear-time algorithm that locates local extrema of a function

of one variable from interval measurement results. Interval Comput. 4, 176–194 (1993)
48. Zuhe, S., Neumaier, A., Eiermann, M.: Solving minimax problems by interval methods. BIT

Numer. Math. 30(4), 742–751 (1990)

Chapter 5
Solving Equations and Inequalities
Systems Using Interval B&Bt Methods

Let us consider solving the following problem:

Find all x ∈ X such that ci (x) are fulfilled for i = 1, . . . ,m . (5.1)

Such a problem is called a Constraint Satisfaction Problem (or CSP for short) and
constraints can be either inequalities “gi (x) ≤ 0” or equations “ fi (x) = 0”.

Let us start our considerations with CSPs having inequalities only.

5.1 Constraint Satisfaction Problems

So, we are trying to compute the set:

S = {x ∈ X | gi (x) ≤ 0, i = 1, . . . ,m}.

We can also write S = {x ∈ X | g(x) ≤ 0}, where g = (g1, . . . , gm).
What can we compute using interval methods? Two lists of boxes, as for any

B&BT algorithm.
In case of a system of inequalities, the interior of the solution set S is nonempty

and the verified solutions are boxes contained in this interior, i.e., boxes that contain
solutions only. Possible boxes will lie on the boundaries and contain some points
both from S and its complement Rn − S. Typically there will be several possible
boxes, unless S is a box itself (which would be highly unlikely).

The branch-and-prune algorithm for a CSP can be formulated as follows:
The “rejection/reduction tests”, mentioned in the algorithm are going to be

described later in this chapter; see also the book [24] or several papers, e.g., [3,
4, 7, 8, 18, 19, 40, 41].

© Springer Nature Switzerland AG 2019
B. J. Kubica, Interval Methods for Solving Nonlinear Constraint Satisfaction,
Optimization and Similar Problems, Studies in Computational Intelligence 805,
https://doi.org/10.1007/978-3-030-13795-3_5

47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13795-3_5&domain=pdf
https://doi.org/10.1007/978-3-030-13795-3_5

48 5 Solving Equations and Inequalities Systems Using Interval B&Bt Methods

Remark 5.1 It is worth noting that there exist several algorithms similar toAlgorithm
4. They differ in some minor details or are devoted to problems slightly different
than (5.1). A good example is SIVIA—Set Inversion Via Interval Analysis (see
[24, 25]; cf. [38]). This algorithm is devoted to seek an inversion of the set Y ,
i.e., the set {x ∈ X | g(x) ⊆ Y ≤ 0}, where Y is usually an interval, but can be
a more sophisticated set, also. SIVIA is pretty similar to Algorithm 4; necessary
modifications are left to the reader as a simple exercise.

Both SIVIA and the B&P algorithm for CSPs that consist of inequalities only,
are relatively simple. We can verify the solutions directly by enclosing the range
of g functions on obtained boxes; no more complicated tools are needed for the
verification. Consequently, all more sophisticated tests applied to a box are optional;
they can accelerate discarding infeasible boxes, though.

These tests (interval Newton operators, consistency operators, etc.) are very simi-
lar to the ones used for nonlinear equations systems; as they are optional for inequal-
ities systems, we shall not discuss them until later in this chapter (Sect. 5.3 and next).

5.2 Solving Systems of Nonlinear Equations

Now, let us consider the problem of solving equations or systems of equations. So,
we are trying to compute the set:

Algorithm 4 Interval branch-and-prune algorithm for a system of inequelities

Require: x(0),g
1: {x(0) is the initial box, g(·) is the interval extension of the function g : Rn → R

m}
2: {Lver – verified solution boxes, L pos – possible solution boxes}
3: Lver = L pos = ∅
4: x = x(0)

5: loop
6: compute y = g(x)
7: optionally, process the box x, using additional rejection/reduction tests
8: if (y > 0) then
9: discard x
10: else if (y ≤ 0]) then
11: push (Lver , x)
12: else if (wid x < ε) then
13: push (L pos , x) {The box x is too small for bisection}
14: if (x was discarded or x was stored) then
15: if (L == ∅) then
16: return Lver , L pos {All boxes have been considered}
17: x = pop (L)
18: else
19: bisect (x), obtaining x(1) and x(2)

20: x = x(1)

21: push (L , x(2))

5.2 Solving Systems of Nonlinear Equations 49

S = {x ∈ X | fi (x) = 0, i = 1, . . . ,m} ,

which we can also denote as S = {x ∈ X | f (x) = 0}, where f = (f1, . . . , fm).
Let us present the B&P algorithm for equations systems, based on the

HIBA_USNE solver [2]. It can be expressed by the pseudocode presented in
Algorithm 5.

Algorithm 5 Interval branch-and-prune algorithm
Require: L , f, ε
1: {L – the list of initial boxes, often containing a single box x(0)}
2: {Lver – verified solution boxes, L pos – possible solution boxes}
3: Lver = L pos = ∅
4: x = pop (L)
5: loop
6: process the box x, using the rejection/reduction tests
7: if (x does not contain solutions) then
8: discard x
9: else if (x is verified to contain a segment of the solution manifold) then
10: push (Lver , x)
11: else if (the tests resulted in two subboxes of x: x(1) and x(2)) then
12: x = x(1)

13: push (L , x(2))
14: cycle loop
15: else if (wid x < ε) then
16: push (L pos , x) {The box x is too small for bisection}
17: if (x was discarded or x was stored) then
18: if (L == ∅) then
19: return Lver , L pos {All boxes have been considered}
20: x = pop (L)
21: else
22: bisect (x), obtaining x(1) and x(2)

23: x = x(1)

24: push (L , x(2))

The “rejection/reduction tests”, mentioned in line 6 of the algorithm, include, in
particular:

• switching between the componentwise Newton operator (for larger boxes) and
Gauss-Seidel with inverse-midpoint preconditioner, for smaller ones,

• box-consistency enforcing [35],
• bound-consistency enforcing [36],
• hull-consistency and 3B-consistency enforcing [37],
• an additional second-order approximation procedure [34],
• sophisticated heuristics to choose the bisected component [32, 35],
• an initial exclusion phase of the algorithm (deleting some regions, not containing
solutions)—based on Sobol sequences [33, 35].

The above list is not exhaustive.

50 5 Solving Equations and Inequalities Systems Using Interval B&Bt Methods

What is the purpose of processing the box using these tests? We can say, there are
two main purposes:

• discarding boxes (or subregions of boxes) that do not contain solutions,
• proving the existence of solutions in boxes that do contain them.

The first goal is crucial for efficiency of the solver. As Gutowski states in his book
[20], what we are trying to do is “picking holes” in the solution set; in the author’s
opinion, it is a very good description of B&BT methods.

The second goal is more subtle. In some applications, it might be more important
to us to localize solutions than to verify them. Yet, interval methods allow us to prove
that some boxes contain solution points.

For equations systems, proving it is more difficult than for inequalities systems.
It does not suffice to find a box x such that f(x) ⊆ [−ε,+ε] for some small ε; as the
computed value is overestimated, it might be the case that all values of actual f (x),
x ∈ x are positive (or all of them are negative) and zero is not reached anywhere.

Nevertheless, there are procedures allowing to verify at least some of the solutions.
The most important one (but not the only one!) of them is the interval Newton
operator.

5.3 Interval Newton Operators

The interval Newton operator (see, e.g., [21, 27]) is one of the most celebrated
achievements of the interval analysis. It can be understood as a generalization of the
traditional (point) Newton operator (Fig. 5.1).

In the univariate case, the operator can be expressed by the following formula:

N (x, f, x̌) = x̌ − f(x̌)
f′(x)

.

Usually x̌ = mid x is used; in general, another x̌ ∈ x could be applied, also.
In the multidimensional case, instead of division by an interval, we have to solve

a linear equations system with an interval coefficient matrix:

Fig. 5.1 Illustration of the Newton operators: pointwise (left) and interval (right) ones

5.3 Interval Newton Operators 51

A · (x − x̌) = −f(x̌) , (5.2)

where A is the so-called Lipschitz matrix of f (·), i.e., the interval matrix satisfying
the condition:

(∀x ∈ x) (∀y ∈ x) (∃A ∈ A)
(
f (x) − f (y) = A · (x − y)

)
.

The interval linear system (5.2) can be solved in a few ways. Among other versions
of the interval Newton operator, it is worth to note the Krawczyk operator (see, e.g.,
[27]) and the componentwise Newton operator [22]. Several versions and details
have been discussed in [31]; see also [29]. Yet, nowadays, the interval Gauss-Seidel
method is the most commonly used. Before we present it, let us say a few words
about preconditioning the Eq. (5.2).

Preconditioners

Multiplying both sides of an equations system by a nonsingular matrix does not
change the roots of this system.

So the equations system:

Y · A · (x − x̌) = −Y · f(x̌) ,

has the same solutions as (5.2), for each nonsingular matrix Y (with real-valued
components).

Such preconditioning is often applied for traditional floating-point linear systems,
to improve the numerical conditioning. For interval systems, preconditioning is even
more important, as it can dramatically reduce (or enlarge) the diameter of resulting
enclosures for the solution (cf. the description of interval calculus in Chap. 2). Mul-
tiplying the sides of the equation by a suitable preconditioning matrix Y , may lead
to a significant improvement in the obtained results.

In the context of the Newton method, a quite commonly used preconditioner is
the inverse midpoint preconditioner:

Y = (midA)−1 .

The operation “mid ” of interval matrices and vectors is understood componentwise,
i.e. it produces real matrices (vectors) of midpoints.

It is worth noting that the inverse midpoint preconditioner is not the only one
in use. In particular, Kearfott and other authors recommend using so-called LP-
preconditioners [27]. They are obtained by solving a proper linear programming
problem. The author does not use this approach; reasons will be given in Chap. 7.

The Interval Gauss-Seidel Step

Formulae used in the preconditioned GS step are similar to the ones of the traditional
GS step. Let us present the pseudocode for the case of well-determined systems; in

52 5 Solving Equations and Inequalities Systems Using Interval B&Bt Methods

the underdetermined case, we have to choose a submatrix ofA. Details can be found
in [31]; cf. also [39].

But for the well-determined case, we get Algorithm 6.

Algorithm 6 Interval Gauss-Seidel step

Require: xold, x̌
1: x = xold

2: for (i = 1, . . . , n) do
3: Yi :, the i-th row of the preconditioning matrix Y

4: xnewi = x̌i −
(
Yi : · f(x̌) +

i−1∑

j=1
Yi : · A j : · (xnewj − x̌ j) +

N∑

j=i+1
Yi : · A j : · (x j − x̌ j)

)
/(Yi : ·

Ai :)
5: if

(
x ∩ xnew == ∅)

then

6: return ∅ {there are no solutions in xold}
7: replace x by

(
x ∩ xnew

)

8: return x

Algorithm 6 returns the box in which all roots of the Eq. (5.2) must lie; it returns
an empty set, if it can be verified that there are no roots in xold.

Properties of the Interval Newton Operator

Why is the interval Newton operator such a useful tool? Because its properties are
much stronger than the features of a point Newton operator.

The interval Newton step allows not only to discard or reduce boxes by proving
the non-existence of roots; it allows also to prove the uniqueness of solutions in some
boxes.

The following propositions state these properties (cf., e.g., [21, 27]).

Proposition 5.1 Suppose we are trying to find the roots of the equation (equations
system) f (x) = 0 in the box x; we use the interval extension f(·) of the function h(·).
Let computation of the intervalNewton operator lead to the result N (x, f, x̌) ∩ x = ∅,
where x̌ is any point from the box x.

Then f (x) has no roots in the box x.

Proposition 5.2 Suppose we are trying to find the roots of the equation (equations
system) f (x) = 0 in the box x; we use the interval extension f(·) of the function f (·).

Each root of f (x) belonging to the box x (if any), belongs to the set(
N (x, f, x̌) ∩ x

)
.

Proposition 5.3 Suppose we are trying to find the roots of the equation (equations
system) f (x) = 0 in the box x; we use the interval extension f(·) of the function f (·).
Let computation of the interval Newton operator lead to the result N (x, f, x̌) ⊂ int x,
where x̌ is any point from the box x.

Then there is a single unique root of f (x) in the box x.

5.3 Interval Newton Operators 53

Remark 5.2 We can say that the interval Newton operator is that important as it can
achieve both goals of tools processing boxes in B&P algorithms: it can discard non-
solutions and verify actual solutions. Most other tools allow only doing one of these
operations; e.g., consistency methods prune boxes, but do not verify the existence,
while several verification tests do not allow pruning or discarding boxes.

5.4 Other Verification Tests

As said above, the Newton operator is the most famous and the most celebrated tool
for boxes verification. Indeed, as stated in Remark 5.2, its features are very attractive,
but it is certainly not the only verification tool that can be used. There are several
others—some of them are very simple and some are very sophisticated and based on
advanced mathematical theories, most notably on algebraic topology.

5.4.1 Miranda Test

This test, presented, e.g., in [27], is one of the simplest. Consider a continuous
function f : X → R. Assume,wehave found twopointsa, b ∈ X such that f (a) > 0
and f (b) < 0. It is well known (from the Bolzano’s intermediate value theorem),
that any curve connecting a and b and lying inside X , on which f is continuous, will
contain a point x such that f (x) = 0.

The Miranda’s theorem generalizes this result to a function f : Rn → R
n .

Another similar test is also presented in [13].

5.4.2 Using Quadratic Approximation

This test has been proposed by the author in [34]. As the Newton test is based on
linear approximation of f , a quadratic approximation can be used, also. Yet, unlike
in the Newton case, we do not approximate the whole f = (f1, . . . , fm), but only
one of its components fi .

As we obtain a representation in the form of a quadratic function, we can solve the
resulting quadratic equation, to find its zeros. Obviously, this is a quadratic equation
with interval-valued coefficients. In Chapter 8 of the book of Hansen and Walster
[21], a procedure to enclose zeros of such an equation is presented.

Experiments in [34] show that this test can dramatically improve the performance
on some problems, but is rather inefficient on other ones. As it is expensive to use (it
requires computing second derivatives), it should be used with caution. An adequate
heuristic is proposed in [34]; cf. also Sect. 5.6.

54 5 Solving Equations and Inequalities Systems Using Interval B&Bt Methods

Remark 5.3 The test using the quadratic approximation is one of the few that share
the feature of the interval Newton operator, described in Remark 5.2: it can both—
discard and narrow boxes not containing solutions and verify boxes that contain the
actual solutions.

5.4.3 Borsuk Test

This tool, proposed in [12], is based on one of the theorems of Karol Borsuk. The
theorem states (slightly simplifying) that the function f (·) must have a zero on the
box x, if:

f (mid x + r) �= λ · f (mid x − r), (∀λ > 0) and (mid x + r ∈ ∂x) . (5.3)

For each pair of faces xi+, xi− of x, we have to compute the intersection of interval
expressions:

]0,+∞[∩
(

∩m
j=1

f j (xi+)

f j (xi−)

)
�= ∅ . (5.4)

If the intersection is empty for at least m pairs of faces, then there is no λ for which
the disequality (5.3) becomes an equality; hence, according to the theorem, f has a
zero in x.

Remark 5.4 In its original formulation [12], the test is used for well-determined
problems, i.e., such where n = m. Hence, the intersection (5.4) must be nonempty
for all i = 1, . . . , n. In the underdetermined case, it suffices that the intersection is
nonempty for m arbitrary values of i .

Remark 5.5 Instead of whole faces xi+ and xi−, we could use their sub-faces—or,
more precisely: pairs of sub-faces, symmetric with respect to the center of the box.
Such subdivision of faces allows more precise approximation of f ’s values, but at
additional computational cost. Details can be found, e.g., in [11] or the Master’s
thesis [5]; the author’s HIBA_USNE solver does not use this approach.

5.4.4 Computing Topological Degree

Topological degree is one of the most general tools to verify existence of equations’
zeros.

Let us define the degree: deg(f, y, B), where f : Rn → R
n is a function, y a

value from its codomain (in all our considerations we shall take y = 0) and B is a
closed connected n-dimensional subset of the f ’s domain.

Definition of the degree is complicated (cf. [10, 26, 27]), but when y is not a
singular value of f and y /∈ range(f, ∂B), we have:

5.4 Other Verification Tests 55

deg(f, y, B) =
∑

x∈ f −1(y)

sgn det f ′(x) , (5.5)

where f ′(x) represents the Jacobi matrix of the system f (x) = 0.
A few algorithms have been developed to compute the topological degree: [9,

10, 26]. Some of them (in particular, [26]) base on computing the formula (5.5),
other ones adopt different approaches. As important property of the degree is its
composability: if we have two sets B1, B2 such that B1 ∩ B2 = ∅ or even int B1 ∩
int B2 = ∅, then:

deg(f, y, B1 ∪ B2) = deg(f, y, B1) + deg(f, y, B2) . (5.6)

The algorithm of Franek and Ratschan [10] is based on this feature. It subdivides the
set under consideration to obtain sets for which the degrees can be computed more
easily.

Why would we want to compute this degree, anyway? Because of its most impor-
tant property:

If deg(f, y, B) �= 0, then ∃x0 ∈ B f (x0) = 0 . (5.7)

5.4.5 Obstruction Theory Test

In a series of papers (see, e.g., [9, 10] and the references therein), Franek et alii
propose a fascinating family of methods targeted specifically at underdetermined
systems.

Assume, we have f : Rn → R
m , where m < n and we want to verify that a box x

contains a solution point (a segment of the solution manifold). Assume the boundary
region of x does not contain zeros: ∀x ∈ ∂x f (x) �= 0.

The question is, if f can be extended from ∂x to the whole x without containing
a zero.

Let us formulate it differently. As the boundary region of x does not contain zeros,
we can consider the image of f on the boundary as a space homeomorphic to the
subset of the (m − 1)-dimensional sphere Sm−1. The boundary ∂x of x ⊂ R

n itself,
is obviously homeomorphic to Sn−1.

So, the problem boils down to checking the extendability of some function
f : Sn−1 → Sm−1 from Sn−1 to the whole disk Dn . Abusing the notation, we do
not distinguish between the original f and f : Sn−1 → Sm−1. This should not lead
to any confusion.

To be succinct, the methods of Franek et alii try to approximate the boundary ∂x
as a cell complex or a simplicial set and they construct a Postnikov complex, build
of Eilenberg-MacLane spaces. Basing on this representation, we can check possible
extendability of a function for subsequent skeletons of the complex.

56 5 Solving Equations and Inequalities Systems Using Interval B&Bt Methods

This test seems a pretty general tool, suitable for underdetermined problems as
well aswell-determined ones (in the latter case it is equivalent to using the topological
degree). Unfortunately, it is not only based on complicated mathematical notions,
but also it seems extremely cumbersome to implement and usually requiring high
computational effort. Eilenberg-MacLane spaces have often infinite dimensionality
and thus they can only be represented implicitly. And they are only a building block
of the algorithm!

Also, please note that existing software such as GUDHI [1] is of little help when
implementing this test and some of the useful algorithms might even occur to be
unimplementable, like, e.g., the Brown’s algorithm [6].

The things would get improved significantly, if we could operate on cubical com-
plexes directly and not convert them to simplicial sets. Unfortunately, it is not obvious
if required operations can be performed for cubical complexes. The topic can be sub-
ject of an interesting research in the future.

5.5 Consistency Enforcing

Enforcing some kind of consistency on a box is one of the most common pruning
operations, allowing to reduce or discard boxes in the B&P process.

The notion of “consistency” has been used in Constraint Logic Programming: a
constraint is arc-consistent, if for each values in all variables’ domains, there are
values of other variables such that the constraint is fulfilled.

For discrete domains,we candirectly use arc-consistency. For continuousdomains,
this kind of consistency would be too restrictive, so there are various relaxations of
this notion [4]. Some of them take into account only the numerical accuracy, but
some are even weaker, but easier to compute, in particular: hull-consistency and
box-consistency.

5.5.1 Hull-Consistency

Hull-consistency (also known under the name of 2B-consistency) has been used in
several interval programs over the years; see, e.g., [3, 4]. It can be defined as follows.

Definition 5.1 A box x = (x1, . . . , xn)T is hull-consistent with respect to a con-
straint c(x1, . . . , xn), iff:

∀i xi = �{s ∈ xi | ∃x1 ∈ x1, · · · ∃xi−1 ∈ xi−1, ∃xi+1 ∈ xi+1 · · · ∃xn ∈ xn
c(x1, . . . , xi−1, s, xi+1, . . . , xn)} .

Following [28], the symbol “�” denotes the interval hull.

5.5 Consistency Enforcing 57

Other words, x is hull-consistent iff for each i we can find two points xa and xb,
satisfying the property c, for which xai = xi and xbi = xi .

Remark 5.6 Slightly simplifying, hull-consistency is a relaxation of arc-consistency
requiring only existence of solutions on the endpoints of each variable’s domain, but
not necessarily for all interior points.

Now, let us describe, how to check if a box is hull-consistent and how to enforce
hull-consistency on a box.

5.5.1.1 Algorithms for Enforcing Hull-consistency

For simple constraints, checking and/or enforcing hull-consistency is relatively sim-
ple.

As a simple example, let us consider an equation x1 + x2 − 3 = 0. By obvious
symbolic transformations, we obtain formulae for both variables that can be used to
obtain their consistent domains:

x1 = 3 − x2 and

x2 = 3 − x1.

Using the above consistency operators, we can simply check consistency for any
box or compute its sub-box containing all consistent values. For instance, a box
[−4, 2] × [−2, 4] is not hull-consistent, but it can be reduced to the hull consistent
one, by applying:

x1 = x1 ∩ (3 − x2) = [−4, 2] ∩ [−1, 5] = [−1, 2],
x2 = x2 ∩ (3 − x1) = [−2, 4] ∩ [1, 7] = [1, 4].

This box is hull-consistent indeed, as points (−1, 4) and (1, 2) are solutions of the
initial constraint x1 + x2 − 3 = 0.

However, for a more sophisticated constraint, obtaining a consistent box is not as
straightforward. Let us consider the constraint:

x31 + 2 · x21 − sin(x2) = 0. (5.8)

Again, by relatively simple symbolic transformations we can extract x2 from
Eq. (5.8), but not x1. The solution is to decompose such an equation into primitive
ones, by adding additional variables and apply hull-consistency to such a decomposed
system. For the constraint (5.8), we could obtain:

58 5 Solving Equations and Inequalities Systems Using Interval B&Bt Methods

t1 − x31 = 0,

t2 − x21 = 0,

t3 − 2 · t2 = 0,

t4 − t1 − t3 = 0,

t5 − sin(x2) = 0,

t4 − t5 = 0.

The algorithm HC4 [3] (cf. also [19]) performs such a decomposition, creating a tree
of the initial constraint, where a variable corresponds to each node (Fig. 5.2).

5.5.2 Box-Consistency

Definition 5.2 A box x = (x1, . . . , xn)T is box-consistent, iff for each i :

f(x1, . . . , xi−1, [xi , x+
i], xi+1, . . . , xn) � 0 and

f(x1, . . . , xi−1, [x−
i , xi], xi+1, . . . , xn) � 0 .

Let us consider a simple example: the system of equations

C = {x1 + x2 = 0, x1 − x2 = 0} .

The box [−1, 1]2 contains a single solution only: (0, 0). Nevertheless, it is box-
consistent with respect to the system C .

Fig. 5.2 Expression tree of
constraint (5.8)

5.5 Consistency Enforcing 59

5.5.2.1 Algorithms for Enforcing Box-Consistency

A possible procedure enforcing box-consistency is described by Algorithm 7. There
can be also other procedures, differing in some significant details (cf., e.g., [3, 4, 8,
15]).

Algorithm 7 Procedure bc_enforce
Require: x, f, L pairs , ε, εequal
1: repeat
2: store xold = x
3: modified = false
4: for all (j, i) ∈ L pairs do
5: if (bc3revise(x, f j , i, xoldi , ε, εequal , modified) results in “no solutions”) then
6: return “no solutions”
7: until (not modified)
8: return x

Procedure “bc3revise” performs the reduction for a specific variable with respect
to a specific equation. It is described by Algorithm 8.

Algorithm 8 Procedure bc3revise
Require: x, f, i, xoldi , ε, εequal , modified
1: if (left_narrow (x, f, i, ε, εequal) results in “no solutions”) then
2: return “no solutions”
3: if (right_narrow (x, f, i, ε, εequal) results in “no solutions”) then
4: return “no solutions”
5: if (dist(xi , xoldi) >= εequal) then
6: modified = true
7: return x

Procedure “left_narrow” is described by Algorithm 9 (“right_narrow” is analo-
gous). The code can be found (with comments and a discussion) in [35, 36], but we
give it here for the sake of completeness.

5.5.3 Higher-Order Consistencies

The most important drawback of both hull- and box-consistency is that it considers
only a single constraint. There are however higher-order-consistency notions that do
not have this limitation.

Most authors (e.g., [7, 40]) use the following notions of 3B-consistency and
bound-consistency (or “box(2)-consistency”):

60 5 Solving Equations and Inequalities Systems Using Interval B&Bt Methods

Algorithm 9 Procedure left_narrow
Require: x, f, i, ε, εequal
1: xle f t = [xi , x+

i]
2: if (0 ∈ f(xle f t)) then
3: return xle f t , “found a pseudo-solution”

4: compute the interval extension of gi = ∂ f
∂xi

(x)
{Using the automatic differentiation arithmetic makes us compute the whole interval gradient
g, but only one component is going to be used}

5: update x = xle f t

6: compute xnew = xle f t − f(xle f t)
gi

{Perform the interval Newton step using ordinary or extended
interval arithmetic, depending on whether 0 ∈ gi or not}

7: if (xi ∩ xnew = ∅) then
8: return “no solution”
9: if (dist(xi , xnew) < εequal) then
10: update xi = xi ∩ xnew
11: return xi , “found a pseudo-solution”
12: update xi = xi ∩ xnew
13: if (wid xi ≤ ε) then
14: return xi , “found a pseudo-solution” {The component xi too narrow for bisection}

15: bisect xi , obtaining x(1)
i and x(2)

i
16: if (left_narrow (x(1), f, i, ε) results in (x∗, “found a pseudo-solution”)) then
17: return x∗, “found a pseudo-solution”
18: if (left_narrow (x(2), f, i, ε) results in (x∗, “found a pseudo-solution”)) then
19: return x∗, “found a pseudo-solution”
20: return “no solution”

Definition 5.3 A box x = (x1, . . . , xn)T is 3B-consistent, iff all its facets, lower:
(x1, . . . , xi−1, [xi , x+

i], xi+1, . . . , xn)T and upper ones:
(x1, . . . , xi−1, [x−

i , xi], xi+1, . . . , xn)T , contain a non-empty 2B-consistent subbox.

Definition 5.4 A box x = (x1, . . . , xn)T is bound-consistent, iff all its facets, lower:
(x1, . . . , xi−1, [xi , x+

i], xi+1, . . . , xn)T and upper ones:
(x1, . . . , xi−1, [x−

i , xi], xi+1, . . . , xn)T , contain a non-empty box-consistent subbox.

Yet higher order kB consistency is also used; to the best knowledge of the author,
an analog for box-consistency has never been used (or named).

Let us set these notions in order:

• the simplest consistencieswe shall call by their traditional names: box-consistency,
hull-consistency, interval-consistency (cf. [4]), etc.,

• higher order consistencies will be called kB-consistency(c), where c denotes the
simplest consistency used.

So, we have:

• HC: hull-consistency,
• 3B-consistency(HC), traditionally called just 3B-consistency,
• kB-consistency(HC), traditionally called just kB-consistency,
• BC: box-consistency,

5.5 Consistency Enforcing 61

• 3B-consistency(BC), traditionally called bound-consistency,
• kB-consistency(BC), which has not have a name, formerly,
• IC: interval-consistency,
• 3B-consistency(IC),
• …

The procedure enforcing the higher-order consistency, has been proposed by the
author. Up to now, it has been implemented for the case of 3B-consistency(BC) (i.e.,
bound-consistency) [36]. We present it as Algorithm 10.

Algorithm 10 Higher-order-consistency enforcing procedure
Require: x, f, ε, εequal , λmin , consistency_proc

{f = (f1, . . . , fm), consistency_proc is the procedure enforcing lower-order consistency; this
procedure might require also some other arguments}

1: let λ = λ0
2: repeat
3: modified = false
4: for (i = 1, . . . , n) do
5: store xcur = x
6: store xold = xcuri
7: c1 = (1 − λ) · xcuri + λ · xcuri
8: c2 = λ · xcuri + (1 − λ) · xcuri
9: change xcuri = [c2, xcuri]
10: apply consistency_proc to xcur

11: if (it resulted in “no solutions”) then
12: change xi = [xi , c2]
13: else
14: change xi = [xi , xcuri]
15: store xcur = x
16: change xcuri = [xcuri , c1]
17: apply consistency_proc to xcur

18: if (it resulted in “no solutions”) then
19: change xi = [c2, xi]
20: else
21: change xi = [xcuri , xi]
22: if (wid xi + εequal ≤ xoldi) then
23: modified = true
24: if (not modified) then
25: change λ = λ/2
26: until (λ ≤ λmin)
27: return x

5.6 Heuristics for Choosing and Parameterizing the Tools

Aswe could see, interval analysis provides us a rich set of procedures and techniques
to process boxes in B&BT algorithms. To develop an efficient algorithm for a specific
problem, we need to choose these tools that will have good performance for this
problem (and for a specific box!) and parameterize these tools properly.

62 5 Solving Equations and Inequalities Systems Using Interval B&Bt Methods

For instance, the GS operator usually will not perform well on relatively large
boxes; consistency operators will be much more efficient. On the other hand, for
sufficiently small boxes, the GS operator will often be unmatched—unless for boxes
where f is singular or at least ill-conditioned.

Hull-consistencyoutperformsbox-consistency for simple constraints—especially,
when each variable occurs only once in the formula. For more complicated con-
straints, the dependency problem (cf. Chap. 2) often makes HC inefficient. Yet, there
are problemswith relatively complicated formulae, forwhichHC still performs better
than BC (see, e.g., [37]).

So, what should be applied in practice? There is no simple answer to this question;
we need to develop proper heuristics and policies. Several papers of the author have
been devoted to this goal: [30, 32–37]. For efforts taken by other researchers, see,
e.g., [14, 16, 18, 23, 24, 27].

We shall not present these heuristics here in details. What should be emphasized
is that static heuristics and policies have only a limited potential of performance
improvement. As the author observed in [37], intelligent heuristics, based onmachine
learning techniques should be applied, so that the solver could adapt to the features
of a specific problem. Up to now, very little has been done in this field; the only paper
known to the author is [17].

References

1. GUDHI C++ library (2017). http://gudhi.gforge.inria.fr/
2. HIBA_USNE, C++ library (2017). https://www.researchgate.net/publication/316687827_

HIBA_USNE_Heuristical_Interval_Branch-and-prune_Algorithm_for_Underdetermined_
and_well-determined_Systems_of_Nonlinear_Equations_-_Beta_25

3. Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.F.: Revising hull and box consistency.
In: International Conference on Logic Programming, pp. 230–244. The MIT Press (1999)

4. Benhamou, F., McAllester, D., Hentenryck, P.V.: CLP(intervals) revisited. In: Proceedings of
the 1994 International SymposiumonLogic Programming, pp. 124–138. TheMITPress (1994)

5. Borkowski, T.: Comparison of existence tests of zeros of equations systems in a given region:
tests of Miranda, Borsuk and Newton. Master’s thesis, ICCEWUT (2013). (under supervision
of Bartłomiej J. Kubica). (in Polish)

6. Brown, E.H.: Finite computability of Postnikov complexes. Ann. Math., 1–20 (1957)
7. Collavizza, H., Delobel, F., Rueher, M.: Comparing partial consistencies. In: Csendes, T. (ed.)

Developments in Reliable Computing, pp. 213–228. Springer, Netherlands (1999)
8. van Emden, M.H.: Computing functional and relational box consistency by structured propa-

gation in atomic constraint systems (2001). arXiv preprint arXiv:cs/0106008
9. Franek, P., Krčál, M.: Robust satisfiability of systems of equations. In: Proceedings of the

Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 193–203. SIAM
(2014)

10. Franek, P., Ratschan, S.: Effective topological degree computation based on interval arithmetic.
Math. Comput. 84(293), 1265–1290 (2015)

11. Frommer, A., Lang, B.: On preconditioners for the Borsuk existence test. PAMM 4(1), 638–639
(2004)

12. Frommer, A., Lang, B.: Existence tests for solutions of nonlinear equations using Borsuk’s
theorem. SIAM J. Numer. Anal. 43(3), 1348–1361 (2005)

http://gudhi.gforge.inria.fr/
https://www.researchgate.net/publication/316687827_HIBA_USNE_Heuristical_Interval_Branch-and-prune_Algorithm_for_Underdetermined_and_well-determined_Systems_of_Nonlinear_Equations_-_Beta_25
https://www.researchgate.net/publication/316687827_HIBA_USNE_Heuristical_Interval_Branch-and-prune_Algorithm_for_Underdetermined_and_well-determined_Systems_of_Nonlinear_Equations_-_Beta_25
https://www.researchgate.net/publication/316687827_HIBA_USNE_Heuristical_Interval_Branch-and-prune_Algorithm_for_Underdetermined_and_well-determined_Systems_of_Nonlinear_Equations_-_Beta_25
http://arxiv.org/abs/cs/0106008

References 63

13. Goldsztejn, A.: Comparison of theHansen-Sengupta and the Frommer-Lang-Schnurr existence
tests. Computing 79(1), 53–60 (2007)

14. Goualard, F.: On considering an interval constraint solving algorithm as a free-steering non-
linear Gauss-Seidel procedure. In: Proceedings of the 2005 ACM Symposium on Applied
Computing, pp. 1434–1438. ACM (2005)

15. Goualard, F., Goldsztejn, A.: A data-parallel algorithm to reliably solve systems of nonlinear
equations. In: Ninth International Conference on Parallel and Distributed Computing, Appli-
cations and Technologies, PDCAT 2008, pp. 39–46. IEEE (2008)

16. Goualard, F., Jermann, C.: On the selection of a transversal to solve nonlinear systems with
interval arithmetic. Comput. Sci. ICCS 2006, 332–339 (2006)

17. Goualard, F., Jermann, C.: A reinforcement learning approach to interval constraint propaga-
tion. Constraints 13(1–2), 206–226 (2008)

18. Granvilliers, L.: On the combination of interval constraint solvers. Reliab. Comput. 7(6), 467–
483 (2001)

19. Granvilliers, L., Benhamou, F.: Progress in the solving of a circuit design problem. J. Glob.
Optim. 20(2), 155–168 (2001)

20. Gutowski, M.W.: Introduction to interval calculi and methods. BEL Studio, Warszawa (2004).
(in Polish)

21. Hansen, E., Walster, W.: Global Optimization Using Interval Analysis. Marcel Dekker, New
York (2004)

22. Herbort, S., Ratz, D.: Improving the efficiency of a nonlinear-system-solver using the com-
ponentwise Newton method. Technical Report 02/97, Institut für Angewandte Mathematik,
Universität Karslruhe (1997)

23. Ishii, D., Goldsztejn, A., Jermann, C.: Interval-based projection method for under-constrained
numerical systems. Constraints 17(4), 432–460 (2012)

24. Jaulin, L., Kieffer, M., Didrit, O., Walter, É.: Applied Interval Analysis. Springer, London
(2001)

25. Jaulin, L.,Walter, É.: Set inversion via interval analysis for nonlinear bounded-error estimation.
Automatica 29(4), 1053–1064 (1993)

26. Kearfott, R.B.: An efficient degree-computation method for a generalized method of bisection.
Numer. Math. 32(2), 109–127 (1979)

27. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht (1996)
28. Kearfott, R.B., Nakao, M.T., Neumaier, A., Rump, S.M., Shary, S.P., van Hentenryck, P.:

Standardized notation in interval analysis. Vychislennyie Tiehnologii (Computational Tech-
nologies) 15(1), 7–13 (2010)

29. Kolev, L.V.: Some ideas towards global optimization of improved efficiency. In: GICOLAG
Workshop, Wien, Austria, pp. 4–8 (2006)

30. Kubica, B.J.: Performance inversion of interval Newton narrowing operators. Prace Naukowe
Politechniki Warszawskiej. Elektronika 169, 111–119 (2009). KAEiOG 2009 (Konferencja
Algorytmy Ewolucyjne i Optymalizacja Globalna) Proceedings

31. Kubica, B.J.: Interval methods for solving underdetermined nonlinear equations systems.
Reliab. Comput. 15, 207–217 (2011). SCAN 2008 Proceedings

32. Kubica, B.J.: Tuning the multithreaded interval method for solving underdetermined systems
of nonlinear equations. In: PPAM 2011 (9th International Conference on Parallel Processing
and Applied Mathematics) Proceedings. Lecture Notes in Computer Science, vol. 7204, pp.
467–476 (2012)

33. Kubica, B.J.: Excluding regions using Sobol sequences in an interval branch-and-prunemethod
for nonlinear systems. Reliab. Comput. 19(4), 385–397 (2014). SCAN 2012 (15th GAMM-
IMACS International Symposium on Scientific Computing, Computer Arithmetic and Vali-
dated Numerics) Proceedings

34. Kubica, B.J.: Using quadratic approximations in an interval method for solving underdeter-
mined and well-determined nonlinear systems. In: PPAM 2013 Proceedings. Lecture Notes in
Computer Science, vol. 8385, pp. 623–633 (2014)

64 5 Solving Equations and Inequalities Systems Using Interval B&Bt Methods

35. Kubica, B.J.: Presentation of a highly tuned multithreaded interval solver for underdetermined
and well-determined nonlinear systems. Numer. Algorithms 70(4), 929–963 (2015). https://
doi.org/10.1007/s11075-015-9980-y

36. Kubica, B.J.: Parallelization of a bound-consistency enforcing procedure and its application in
solving nonlinear systems. J. Parallel Distrib. Comput. 107, 57–66 (2017). https://doi.org/10.
1016/j.jpdc.2017.03.009

37. Kubica, B.J.: Role of hull-consistency in the HIBA_USNE multithreaded solver for nonlinear
systems. In: PPAM 2017 Proceedings. Lecture Notes in Computer Science, vol. 10778, pp.
381–390 (2018)

38. Kubica, B.J., Woźniak, A.: Interval methods for computing the Pareto-front of a multicriterial
problem. In: PPAM 2007 Proceedings. Lecture Notes in Computer Science, vol. 4967, pp.
1382–1391 (2009)

39. Neumaier, A.: The enclosure of solutions of parameter-dependent systems of equations. In:
Reliability in Computing: The Role of Interval Methods in Scientific Computing, pp. 269–285.
Academic Press Professional, Inc. (1988)

40. Puget, J.F., Hentenryck, P.V.: A constraint satisfaction approach to a circuit design problem. J.
Glob. Optim. 13(1), 75–93 (1998)

41. Ratschek, H., Rokne, J.: Experiments using interval analysis for solving a circuit design prob-
lem. J. Glob. Optim. 3(4), 501–518 (1993)

https://doi.org/10.1007/s11075-015-9980-y
https://doi.org/10.1007/s11075-015-9980-y
https://doi.org/10.1016/j.jpdc.2017.03.009
https://doi.org/10.1016/j.jpdc.2017.03.009

Chapter 6
Solving Quantified Problems Using
Interval Methods

6.1 Interval Global Optimization

Global optimization is one of the first problems for which the interval B&BT algo-
rithm has been applied; actually, it has been the eponymous B&B algorithm (see [8,
12, 33] and references therein).

This applies to unconstrained:

min
x

f (x) ,

s.t. (6.1)

x ∈ [x, x] ,

inequality constrained version:

min
x

f (x) ,

s.t. (6.2)

g(x) ≤ 0 ,

x ∈ [x, x] ,

and equality constrained version:

min
x

f (x) ,

s.t.

g(x) ≤ 0 , (6.3)

h(x) = 0 ,

x ∈ [x, x] ,

© Springer Nature Switzerland AG 2019
B. J. Kubica, Interval Methods for Solving Nonlinear Constraint Satisfaction,
Optimization and Similar Problems, Studies in Computational Intelligence 805,
https://doi.org/10.1007/978-3-030-13795-3_6

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13795-3_6&domain=pdf
https://doi.org/10.1007/978-3-030-13795-3_6

66 6 Solving Quantified Problems Using Interval Methods

In all three cases, x = [x, x] ⊆ R
n and f : Rn → R.

For the first two cases, the feasible set has a nonempty interior (at least typically),
while for equality constrained problems, the feasible set is of measure zero.

There are a few algorithms to solve problems (6.1), (6.3) and (6.2), e.g., the
Moore-Skelboe algorithm, Hansen-Sengupta, etc. (cf, e.g., Chap. 9 of [9]).

They differ in several important details, but are all instances of theB&Balgorithm.

6.1.1 Branch-and-Bound Algorithm

The interval B&B for global optimization is an instance of Algorithm 1 with its
subprograms: Algorithms 2 and 3. Let us present this instance as Algorithm 11; this
is not the only possible formulation, as we discuss later, but the one most important
for our purposes.

Remark 6.1 Interval B&B algorithm for global optimization is often formulated
differently than in Algorithm 11. The most important difference are lines 31–36.
Often both boxes after bisection are stored in L and a new box x is always selected
from L . This allows to change the main loop of the algorithm to a while loop:
…
while (L �= ∅) do
choose from L the pair (x, y) with the smallest y
…
bisect (x), obtaining x(1) and x(2)

[y(1), y(1)] = f(x(1))

store (L , (x(1), y(1)))

[y(2), y(2)] = f(x(2))

store (L , (x(2), y(2)))
…
Nevertheless, the author would like to keep the form presented in Algorithm 11.

The order of boxes processing seems less relevant to the algorithm’s efficiency than
avoiding one insertion to a priority queue.

This topic has been discussed also in Chap.4, in Remark 4.1.

Tools used to process a box depend on problem version (6.1–6.2); we shall discuss
them in Sect. 6.1.2.

In any case, the algorithm version has the following features, distinguishing it
from other instances of the B&BT algorithm:

• the order of processing boxes is very significant,
• the second phase is simple, but inevitable.

The Order of Processing Boxes

6.1 Interval Global Optimization 67

Algorithm 11 The branch-and-bound method for global optimization
Require: x0, f(·),g(·), ε {f – objective, g – constraints}
1: Lver = L pos = ∅
2: [y(0), y(0)] = f(x(0))

3: L = {}
4: yopt = y(0)

5: x = x(0)

6: new_box = false
7: loop
8: if (new_box) then
9: if (L == ∅) then
10: break {All pairs from L have been considered}
11: choose from L the pair (x, y) with the smallest y
12: new_box = false
13: process the box x, using the rejection/reduction tests
14: update yopt if possible
15: if (it was verified that x contains no solutions) then
16: new_box = true
17: continue
18: else if (it was verified that x contains a single stationary point) then
19: narrow (x) as possible, using interval tools
20: push (Lver , x)
21: new_box = true
22: else if (wid (x) < ε) then
23: push (L pos , x)
24: new_box = true
25: else if (the tests resulted in two subboxes of x: x(1) and x(2)) then
26: x = x(1)

27: store (L , (x(2), y(2)))
28: cycle loop
29: else
30: bisect (x), obtaining x(1) and x(2)

31: [y(1), y(1)] = f(x(1))

32: [y(2), y(2)] = f(x(2))

33: if (y(2) < y(1)) then
34: swap ((x(1), y(1)), (x(2), y(2)))

35: x = x(1)

36: store (L , (x(2), y(2)))
37: {Second phase – verification}
38: for all (x ∈ Lver) do
39: if (f(x) > yopt) then
40: discard x
41: for all (x ∈ L pos) do
42: if (f(x) > yopt) then
43: discard x
44: return Lver , L pos

Usually, the boxes are sorted according to increasing lower bound of the objective
function. Specifically, we store pairs (x, y), where [y, y] = f(x); such pairs are usu-
ally stored in some sort of priority queue.

68 6 Solving Quantified Problems Using Interval Methods

Indeed, such an ordering and taking the pair with the lowest y if each iteration
guarantees the convergence of the algorithm. However, it is not the optimal approach.
According to an interesting paper of Shary [39], it is better to choose a pair with
sufficiently small, but not necessarily smallest y. It even occurred to be beneficial
to randomize the chosen box, i.e., to choose the random one of the first few in the
priority queue. It is worth noting that compatible results have been obtained for
Lipschitz optimization, by Lera and Sergeyev [27].

In [28], yet another approach has been described, replacing the priority queue by
a pair of lists: “promising boxes” with sufficiently small y and the list of other boxes.
This approach seems quite successful and particularly sufficient for multithreaded
implementations; cf. Chap.7.

The Second Phase of Global Optimization Algorithm

The second phase of Algorithm 11 is simple, but important. It boils down to scanning
the lists Lver and L pos (resp. other solution list(s) assembled by another versions of
this algorithm) and removing from them all solution boxes containing local (and not
global) optima.

While the procedure itself is simple, it should be emphasized that such final scan
has to be done after phase one is completed: otherwise, we would not be certain
about the value of yopt . In the case of a distributed implementation (cf. Chap.7), this
phase requires synchronization between all instances performing the first phase, and
executing some sort of reduction operation to compute the minimum of all “local”
values of yopt .

Bisection

Which variable to subdivied and in what manner? This problem has been extensively
studied by several authors. The most common concept of bisecting symmetrically
the longest edge of the box (so-called, maximal diameter bisection):

k = argmax
i

widxi ,

is widely accepted as convergent, but it is definitely not optimal—at least not for all
problems.

Another common approach is to subdivide the component with maximal smear:

k = argmax
i

wid
(∂f(x)

∂xi
· xi

)
.

This idea has been independently proposed by Csendes [36] and Shary (cf. [40]). It
works well for unconstrained problems, but for constrained onesmore subtle policies
may become handy (see, e.g., [12]).

Some researchers (e.g., [3, 35]; see also [12], Paragraph 5.1.2) have also suggested
to use multisection, but its usefulness is questionable. Details have been given in
Sect. 4.9.

6.1 Interval Global Optimization 69

Other Possible Interval Global Optimization Algorithms

Section 5.1 of [12]makes an interesting survey of various interval global optimization
algorithms. Besides the versions we already know, several other ones are mentioned.
Some of them make no use of derivatives or are targeted at very specific class of
problems.

One of the algorithmsworthmentioning is [4]. The idea is to seek the approximate
global minimizer with a non-interval algorithm, prior to the actual B&B procedure.
Many professional solvers can be applied here; also multithreaded or distributed
ones. The obtained minimizer should then be validated and a very good initial value
of yopt gets computed this way. Many subregions can thus be efficiently deleted,
using some kind of constraint propagation on the constraint f (x) ≤ yopt .

Yet another interesting algorithm for global optimization has been proposed by
Shary [38]. In this approach, the B&B procedure is performed not in the space
R

n � x , but Rn+1 � (x, y), i.e., the objective y is treated as one of the variables, that
can be bisected as well as the other variables. A similar idea has been applied by the
author for multicriteria problems; see below, Sect. 6.2.

6.1.2 Processing a Box in Interval Global Optimization

Tools to process a single box in interval B&B global optimization algorithms have
been extensively studied by several authors. As there exist several textbooks (includ-
ing [8, 12]) and papers, only a brief description will be given here.

It is alsoworth noting that many of these techniques are analogous to ones used for
solving nonlinear equations systems, presented in Chap. 5. For instance, the interval
Newton operators or various constraint propagation techniques can be applied in two
manners:

• for solving 0th-order conditions, of the type: f (x) ≤ yopt ;
• for solving 1st-order conditions, like ∇ f (x) = 0 for unconstrained problems or
Fritz John conditions, for constrained ones.

Nevertheless, efficiency of these tools may be different for global optimization than
for equations systems. For instance, choice of the preconditioning matrix in the
interval Newton operator turns out to be less important for the former problem than
for the latter [11].

In general, it is worth to distinguish two situations, when the used tools will differ:

• unconstrained and inequality-constrained problems: then the feasible set has (usu-
ally) a non-empty interior and it is relatively easy to find feasible points;

• equality-constrained problems: then the feasible set is of measure zero and obtain-
ing a verified feasible point requires solving a system of (typically underdeter-
mined) nonlinear equations [13].

70 6 Solving Quantified Problems Using Interval Methods

Many tools, like the midpoint test or monotonicity test [11] are not applicable in
the second case. Quoted books (particularly [12]) and papers (e.g., [15–17, 31, 41])
discuss other (less common) tools, also.

6.2 Pareto Sets of Multicritria Problems

In many branches of engineering and decision-making, we encounter “optimization”
problemswith several criteria. Otherwords,we are interested in solving the following
problem:

min
x

qk(x) k = 1, . . . , N ,

s.t.
g j (x) ≤ 0 j = 1, . . . ,m ,
xi ∈ [xi , xi] i = 1, . . . , n .

(6.4)

Often, we can aggregate all criteria qk(x) into a single value, but sometimes we are
interested in finding the whole Pareto frontier, defined below.

Definition 6.1 A feasible point x is Pareto-optimal (non-dominated), if there exists
no other feasible point x ′ such that:

(∀k) qk(y) ≤ qk(x) and

(∃i) qi (y) < qi (x) .

The set P ⊂ R
n of all Pareto-optimal points (Pareto-points) is called the Pareto-

optimal set. The Pareto frontier is the image of the Pareto-optimal set.
For convenience, in the sequel, they both will be called Pareto sets.
Computing the Pareto sets (or even approximating them precisely enough) is a

hard task, especially for nonlinear problems. Interval methods turned out to be a
useful tool to obtains such an approximation. They can be used in at least three
manners:

• reducing the problem to repeated unicriterion global optimization;
• B&BT procedure performed in the decision space;
• B&BT procedure performed in the criteria space and resulting boxes inverted to
the decision space.

Let us present them briefly.

Reducing to Global Optimization

Fernandez and Toth [6] present a sophisticated algorithm for a bicriteria problem.
One of the criteria is treated as the objective and the other as a constraint. A sequence
of constrained optimization problems:

6.2 Pareto Sets of Multicritria Problems 71

min
x

f1(x) ,

s.t.

f2(x) ≤ y2 ,

x ∈ X ,

(6.5)

is then solved starting with y2 = +∞ and restricting the constraint subsequently.
Precisely: for each of these optimization problems, the set of ε-optimal solutions is
approximated, until this set becomes empty.

Thanks to reducing the problem to global optimization, tools analogous to typi-
cal global optimization problems can be used. As much information as possible is
extracted from the solution of each (6.5) problems; in particular, boxes that cannot
contain solutions of further optimization problems get discarded, not to be considered
in subsequent algorithm’s stages. For all details, the reader is referred to [6].

The algorithm seems efficient, but it can hardly be generalized to the case of larger
number of criteria (and such a generalization would be quite inefficient, probably).

The B&BT Search in Decision Space of the Problem

This approach, most similar to algorithms currently used in global optimization or
equations solving, was presented in the paper of Ruetsch [37]. While processing the
boxes he uses two kinds of tests to discard them:

• comparing the bounds on criteria values in boxes, to delete dominated ones,
• a “differential approach”—some procedure using the information about gradi-
ents, probably equivalent (or almost equivalent) to the “multicriteria variant of the
monotonicity test” introduced by Kubica and Woźniak [19].

Unfortunately, the paper [37] lacks several important informations, useful to imple-
ment the algorithm:

• How are the boxes stored and chosen for comparisons? In particular, is linear
search necessary?

• Details about the “differential procedure”.

The B&BT Search in Criteria Space of the Problem

This approach was first presented by Barichard and Hao [2] and than in a series of
papers of Kubica and Woźniak [19, 21, 22, 24, 25].

Barichard and Hao proposed an algorithm storing pairs of boxes—the box in
decision and in criteria space. They perform bisection in the criteria space and use
constraint propagation to narrow the corresponding box in decision space. Also,
some algorithm, called “substitution procedure” is used to find a feasible point in
each box. Having feasibility of some points verified, boxes dominated by them can
be discarded.

Paper [2] lacks several important details about the substitution and the constraint
propagation procedures, which makes it difficult to implement it. Also, presented
results lack the information about computation time or number of iterations, criteria
evaluations.

72 6 Solving Quantified Problems Using Interval Methods

Kubica and Woźniak [18, 22] proposed an algorithm similar in general assump-
tions, but different in significant details. Among others, boxes obtained from b&b
procedure are inverted to the decision space. This means that with each box y in the
criteria space a set of boxes {x} in the decision space is associated, not a single box.
This set is represented by three lists of boxes:

• boxes verified to lie in the interior of reverse image of y,
• boundary boxes of the reverse image of y,
• boxes yet to be checked.

To invert the boxes a version of the SIVIA procedure [10] is used. In contrast to
classical SIVIA, the procedure in Kubica and Woźniak’s algorithm is broken when
the first interior box is found—even, if there are still unchecked boxes. This allows
a relatively early approximation of the Pareto front and consequently a possibility to
discard dominated boxes in the criteria space.

After obtaining the desired accuracy (given by εy parameter) of the Pareto front
approximation, we enter the “second phase” in which all boxes from the decision
space, yet unchecked (because SIVIA was broken), are investigated until a desired
accuracy εx is obtained. This second phase does not allow discarding boxes from the
criteria space or affect the approximation of the Pareto front.

Algorithm 12 The branch-and-bound method in the criteria space

Require: x0, f(·),g(·), εx , εy {f = (f1, . . . , fN)T – criteria, g – constraints}
1: y(0) = f(x(0))

2: L =
{(
y(0), {}, {}, {x(0)})

}

3: while (there is a quadruple in L , for which wid y ≥ εy) do
4: take this quadruple (y, Lin, Lbound, Lunchecked) from L
5: bisect y to y(1) and y(2)

6: for i = 1, 2 do
7: apply SIVIA with accuracy εx to quadruple (y(i), Lin, Lbound, Lunchecked), breaking it

after finding the first feasible box
8: if (the resulting quadruple has a nonempty interior, i.e., Lin �= ∅) then
9: delete quadruples that are dominated by y(i)

10: insert the quadruple to the end of L
11: {Second phase – finishing to invert the Pareto frontier}
12: for all (quadruple in L) do
13: process boxes from Lunchecked until all of them get to Lin or Lbound
14: return Lver , L pos

6.2.1 Tools

Tools that can be applied in all three algorithms to compute Pareto sets are (at least to
some extent) distinct in all cases. In his earlier paper, the author has proposed several
tools for Algorithm 12. In particular, a multicriterion analog of the monotonicity test

6.2 Pareto Sets of Multicritria Problems 73

has been introduced [19], 2nd-order Pareto-optimality conditions (analogous to Fritz
John conditions) [24] and specialized heuristics for bisection [25].

Other notable tools have been introduced, in particular, in [7, 29, 30].

6.3 Game Solutions

Seeking solutions of continuous games is one of the most sophisticated (yet still
practical) instances of Problem (1.1). It has been considered in the author’s papers
[14, 20, 23, 26].

The game theory tries to predict decisions and/or advise the decision makers on
how to behave in a situation when several players (sometimes called “agents”) have
to choose their behavior that will also influence the others. In the game theory, the
behavior of a separate player can be described by its “strategy”, and we suppose
that the i-th player chooses the strategy xi ∈ Xi . Usually, it is assumed that each
player tends to minimize their cost function (or maximize their utility) represented
by qi (x1, . . . , xn).

So, each of the decision makers solves the following problem:

min
xi

qi (x
1, . . . , xn) , (6.6)

s.t.

xi ∈ Xi .

What solution are they going to choose?
The most commonly considered is the so-called Nash equilibrium point [34].

It can be defined as a situation (an assignment of strategies to all players), when
each player’s strategy is optimal against those of the others. Formally, the tuple
x∗ = (x1∗, . . . , xn∗) is a Nash equilibrium, iff

(∀i ∈ {1, . . . , n}) (∀xi ∈ Xi) qi (x
1∗, . . . , xi−1∗, xi , xi+1∗, . . . , xn∗) ≥ qi (x

1∗, . . . , xn∗) .

The notion of aNEhas several interesting (and non-obvious) theoretical and practical
features (in particular, contrary to a popular belief, they are not necessarily self-
enforcing [5]), which are however out of the scope of this monograph.

Also, they have several important drawbacks—both theoretical (rather strong
assumptions about the players’ knowledge and rationality) and practical (they can be
Pareto-inefficient, i.e., it is possible to improve the outcome of one player, without
worsening results of the others [32]).

Hence, several “refinements” to the notion of NE have been introduced, including,
in particular, the strong Nash equilibrium (SNE); see [1]. For such points, not only
none of the players can improve his performance by changing strategy, but also
no coalition of the players can improve the performance of all of its members, by
mutually deviating from the SNE. Formally:

74 6 Solving Quantified Problems Using Interval Methods

(∀I ⊆ {1, . . . , n}) (∀x I ∈ ×i∈I Xi
)
(∃i ∈ I) qi (x

\I∗, x I) ≥ qi (x
\I∗, x I∗) . (6.7)

6.3.1 Algorithm

Algorithm 13 presents the version of B&BT method (the generic Algorithm 1),
specialized for seeking game equilibria. A similar algorithm works for NE and SNE.
The differences are in two points:

• details of processing a single box;
• details of verifying the box in the 2nd phase.

We get back to these differences in the next subsection.

Algorithm 13 The branch-and-bound-type method for seeking NE/SNE
Require: x0,q(·), ε
1: Lver = L pos = Lcheck = Lsmall = ∅
2: x = x(0)

3: loop
4: xold = x
5: process the box x, trying to verify if it does or does not contain a point satisfying the necessary

conditions of being a solution
6: if (x was discarded, but not all qi ’s are monotonous on it) then
7: push (Lcheck , xold)
8: discard x
9: else if (the tests resulted in two subboxes of x: x(1) and x(2)) then
10: x = x(1)

11: push (L , x(2))
12: cycle loop
13: else if (wid (x) < ε) then
14: push (Lsmall , x)
15: if (x was discarded or x was stored) then
16: x = pop (L)
17: if (L was empty) then
18: break
19: else
20: bisect (x), obtaining x(1) and x(2)

21: x = x(1)

22: push (L , x(2))
23: {Second phase – verification}
24: for all (x ∈ Lsmall) do
25: check if another solution from Lsmall does not invalidate x
26: verify if no box from Lcheck contains a point that would invalidate x
27: put x to Lver , L pos or discard it, according to the results
28: return Lver , L pos

6.3 Game Solutions 75

6.3.2 Tools

Optimal tools and heuristics for B&BT algorithms seeking NE/SNE still require
further studies. The author has done somepreliminary research in this area, providing,
in particular, the analog of monotonicity test for verifying SNE [26] or emphasizing
the importance of testing concavity of players’ criterion functions and investigating
the possibilities of eigenvalues bounding, for this purpose [14].

Obviously, the tools differ slightly depending on if in request is NE, SNE or pos-
sibly yet another kind of game solution. Papers [20, 26] discuss necessary conditions
of Nash and strong Nash equilibria (analogous to Karush John conditions [12] or
similar conditions for Pareto-optimality [25]). They can be solved using the interval
Newton operator or other constraint propagation methods.

It is worth noting that the elaborate character of Algorithm 13 (in particular,
its sophisticated 2nd phase) make it particularly hard to parallelize in a distributed
environment. Problems with such an implementation, and how the author had dealt
with them are discussed in [14]; cf. also Sect. 7.6 of this volume.

6.4 Summary

In this chapter, three important classes of problems have been considered: global
optimization, Pareto-sets seeking and game solutions seeking. All of them can be
solved using the interval B&BT algorithm.All of them have already been studied, but
as for the first problem, these are extensive studies, described in several textbooks,
for the second one there are just a few collections of papers. The last problem has
been considered mostly by the author of this monograph, in a few of his papers.

All three of the problems still require further studies to develop modern, highly-
tuned, parallelized and practical algorithms, by filling the B&BT “skeleton” with
proper tools and heuristics, tailored for the given class of problems.

References

1. Aumann, R.J.: Acceptable points in general cooperative games. In: A.W. Tuckar, R.D. Luce
(eds.) Contributions to the Theory of Games IV. Princeton University Press (1959)

2. Barichard, V., Hao, J.K.: Population and interval constraint propagation algorithm. Lecture
Notes in Computer Science, vol. 2632, pp. 88–101 (2003)

3. Berner, S.: New results on verified global optimization. Computing 57(4), 323–343 (1996)
4. Caprani, O., Godthaab, B., Madsen, K.: Use of a real-valued local minimum in parallel interval

global optimization. Interval Comput. 2, 71–82 (1993)
5. Clark, K., Kay, S., Sefton, M.: When are Nash equilibria self-enforcing? An experimental

analysis. Int. J. Game Theory 29(4), 495–515 (2001)
6. Fernandez, J., Toth, B.: Obtaining an outer approximation of the efficient set of nonlinear

biobjective problems. J. Glob. Optim. 38, 315–331 (2007)

76 6 Solving Quantified Problems Using Interval Methods

7. Goldsztejn, A., Domes, F., Chevalier, B.: First order rejection tests for multiple-objective opti-
mization. J. Glob. Optim. 58(4), 653–672 (2014)

8. Hansen, E., Walster, W.: Global Optimization Using Interval Analysis. Marcel Dekker, New
York (2004)

9. Jaulin, L., Kieffer, M., Didrit, O., Walter, É.: Applied Interval Analysis. Springer, London
(2001)

10. Jaulin, L.,Walter, É.: Set inversion via interval analysis for nonlinear bounded-error estimation.
Automatica 29(4), 1053–1064 (1993)

11. Kearfott, R.B.: An interval branch and bound algorithm for bound constrained optimization
problems. J. Glob. Optim. 2(3), 259–280 (1992)

12. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht (1996)
13. Kearfott, R.B.: On proving existence of feasible points in equality constrained optimization

problems. Math. Program. 83(1–3), 89–100 (1998)
14. Kubica, B.J.: Advanced interval tools for computing solutions of continuous games. Vychislen-

nyie Tiehnologii (Computational Technologies) 23(1), 3–18 (2018)
15. Kubica, B.J., Malinowski, K.: An interval global optimization algorithm combining symbolic

rewriting and componentwise Newton method applied to control a class of queueing systems.
Reliab. Comput. 11(5), 393–411 (2005)

16. Kubica, B.J., Malinowski, K.: Optimization of performance of queuing systems with long-
tailed service times. Prace Naukowe Politechniki Warszawskiej. Elektronika 156, 237–245
(2006)

17. Kubica, B.J., Niewiadomska-Szynkiewicz, E.: An improved interval global optimization algo-
rithm and its application to price management problem. In: PARA 2006 Proceedings. Lecture
Notes in Computer Science, vol. 4699, pp. 1055–1064 (2007)

18. Kubica, B.J., Woźniak, A.: Interval componentwise Newton operator in computing the Pareto-
front of constrained multicriterial problems. In: Proceedings of KKA 2008 Conference (2008)

19. Kubica, B.J., Woźniak, A.: Interval methods for computing the Pareto-front of a multicriterial
problem. In: PPAM 2007 Proceedings. Lecture Notes in Computer Science, vol. 4967, pp.
1382–1391 (2009)

20. Kubica, B.J., Woźniak, A.: An interval method for seeking the Nash equilibria of non-
cooperative games. In: PPAM 2009 Proceedings. Lecture Notes in Computer Science, vol.
6068, pp. 446–455 (2010)

21. Kubica,B.J.,Woźniak,A.:Amulti-threaded interval algorithm for the Pareto-front computation
in a multi-core environment. In: PARA 2008 Proceedings. Lecture Notes in Computer Science,
vol. 6126/6127. Accepted for Publication (2010)

22. Kubica, B.J.,Woźniak, A.: Optimization of themulti-threaded interval algorithm for the Pareto-
set computation. J. Telecommun. Inf. Technol. 1, 70–75 (2010)

23. Kubica, B.J., Woźniak, A.: Applying an interval method for a four agent economy analysis. In:
PPAM 2011 (9th International Conference on Parallel Processing and Applied Mathematics)
Proceedings. Lecture Notes in Computer Science, vol. 7204, pp. 477–483 (2012)

24. Kubica, B.J., Woźniak, A.: Using the second-order information in Pareto-set computations of a
multi-criteria problem. In: PARA 2010 Proceedings. Lecture Notes in Computer Science, vol.
7134, pp. 137–147 (2012)

25. Kubica, B.J., Woźniak, A.: Tuning the interval algorithm for seeking Pareto sets of multi-
criteria problems. In: PARA 2012 Proceedings. Lecture Notes in Computer Science, vol. 7782,
pp. 504–517 (2013)

26. Kubica, B.J.,Woźniak,A.: Intervalmethods for computing strongNash equilibria of continuous
games. Decis. Mak. Manuf. Serv. 9(1), 63–78 (2015). SING10 Proceedings

27. Lera, D., Sergeyev, Y.D.: Deterministic global optimization using space-filling curves and
multiple estimates of Lipschitz and Hölder constants. Commun. Nonlinear Sci. Numer. Simul.
23(1), 328–342 (2015)

28. Lyudvin,D.Y., Shary, S.P.: Testing implementations of PPS-methods for interval linear systems.
Reliab. Comput. 19(2), 176–196 (2013). SCAN 2012 Proceedings

References 77

29. Martin, B.: Rigorous algorithms for nonlinear biobjective optimization. Ph.D. thesis, Université
de Nantes (2014)

30. Martin, B., Goldsztejn, A., Granvilliers, L., Jermann, C.: Constraint propagation using dom-
inance in interval branch & bound for nonlinear biobjective optimization. Eur. J. Oper. Res.
260(3), 934–948 (2017)

31. Martínez, J., Casado, L.G., García, I., Sergeyev, Y.D., Toth, B.: On an efficient use of gradient
information for accelerating interval global optimization algorithms. Numer. Algorithms 37(1–
4), 61–69 (2004)

32. Miettinen, K.: Nonlinear Multiobjective Optimization, vol. 12. Kluwer Academic Publishers,
Dordrecht (1999)

33. Moore, R.E.,Kearfott, R.B., Cloud,M.J.: Introduction to IntervalAnalysis. SIAM,Philadelphia
(2009)

34. Nash, J.F.: Equilibrium points in n-person games. Proc. Natl. Assoc. Sci. 36, 48–49 (1950)
35. Pal, L.: Global optimization algorithms for bound constrained problems. Ph.D. thesis, Univer-

sity of Szeged (2010)
36. Ratz, D., Csendes, T.: On the selection of subdivision directions in interval branch-and-bound

methods for global optimization. J. Glob. Optim. 7, 183–207 (1995)
37. Ruetsch, G.R.: An interval algorithm for multi-objective optimization. Struct. Multidiscip.

Optim. 30(1), 27–37 (2005)
38. Shary, S.P.: A surprising approach in interval global optimization. Reliab. Comput. 7(6), 497–

505 (2001)
39. Shary, S.P.: Randomized algorithms in interval global optimization. Numer. Anal. Appl. 1(4),

376–389 (2008)
40. Shary, S.P.: Finite-dimensional Interval Analysis. Institute of Computational Technologies, SB

RAS, Novosibirsk (2013)
41. Toth, B., Casado, L.G.: Multi-dimensional pruning from the Baumann point in an interval

global optimization algorithm. J. Glob. Optim. 38(2), 215–236 (2007)

Chapter 7
Parallelization of B&BT Algorithms

7.1 Introduction

In the Chap. 4, the author has presented the class of interval branch-and-bound-type
(B&BT) algorithms for solving problems of the form (1.1):

Find all x ∈ X such that P(x) is fulfilled,

where P(x) is a formula with a free variable x and X ⊆ R
n . This is a pretty general

class, containing, i.a., equations systems, constraint satisfaction problems (CSPs),
global optimization, seeking Pareto-optimal points of a multicriteria problem, seek-
ing solutions of a game and many others.

The structure andvarious details and issues of such algorithmshavebeendescribed
in Chap. 4. In the present chapter, we are going to discuss implementation of B&BT
algorithms. This chapter is mostly a survey, but it contains some original considera-
tions, also.

Before we get to the merit, let us remind the general structure of such algorithms,
for the sake of completeness.

7.2 Generic Algorithm

The generic B&BT algorithm can be expressed by the pseudocode, presented in
Algorithm 1.

This algorithm consists of two phases: the actual B&BT method (Algorithm 2)
and the second phase, when the results are checked (if it is necessary; Algorithm 3).

All details can be found in Chap. 4; also notation from Chap. 4 is preserved:

• L—the list of initial boxes;
• P(x)—the predicate formula, defining the problem under consideration;

© Springer Nature Switzerland AG 2019
B. J. Kubica, Interval Methods for Solving Nonlinear Constraint Satisfaction,
Optimization and Similar Problems, Studies in Computational Intelligence 805,
https://doi.org/10.1007/978-3-030-13795-3_7

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13795-3_7&domain=pdf
https://doi.org/10.1007/978-3-030-13795-3_7

80 7 Parallelization of B&BT Algorithms

Algorithm 14 The overall algorithm
Require: L , P
1: perform the initial exclusion phase on L (if sufficient)
2: perform the essential branch-and-bound-type method (i.e., Algorithm 2) for (L , P), storing the

results in Lver , L pos , Lcheck
3: {The second phase}
4: perform the verification (i.e., Algorithm 3) for Lver , Lcheck , P
5: perform the verification (i.e., Algorithm 3) for L pos , Lcheck , P

Algorithm 15 The essential generalized branch-and-bound method
Require: L , P
1: Lver = L pos = Lcheck = ∅
2: x = pop (L)
3: loop
4: process the box x, using the rejection/reduction tests
5: update the shared quantities (if any)
6: if (x does not contain solutions) then
7: if CHECK(x) then
8: push (Lcheck , x)
9: discard x
10: else if VERIF(x) then
11: push (Lver , x)
12: else if (the tests resulted in two subboxes of x: x(1) and x(2)) then
13: x = x(1)

14: push (L , x(2))
15: cycle loop
16: else if (x is small enough) then
17: push (L pos , x)
18: if (x was discarded or x was stored) then
19: x = pop (L)
20: if (L was empty) then
21: return Lver , L pos , Lcheck
22: else
23: bisect (x), obtaining x(1) and x(2)

24: x = x(1)

25: push (L , x(2))

Algorithm 16 Verification of solutions
Require: Lsol , Lcheck , P
1: for all (x ∈ Lsol) do
2: discard x if it does not contain any point x ∈ x, satisfying P(x)
3: {details of the verification depend on P , but the shared quantities and, possibly, the boxes

from Lcheck are useful there}

• the lists/sets of solutions: Lver—verified solution boxes, L pos—possible solution
boxes;

• Lcheck—boxes (possibly, with some additional information) that can be used in
the second phase to verify boxes from Lver and L pos , if needed;

7.2 Generic Algorithm 81

• VERIF(x)—the box x has been verified to contain a solution/a point satisfying
some necessary conditions to be a solution;

• CHECK(x)—the box x does not contains a solution, yet it can be useful to verify
P for some other box in the second phase.

7.3 Basic Implementation Details

Let us start with discussing two issues of each implementation: used data structures
and memory management. As B&BT algorithms tend to be memory-demanding,
these issues are pretty important even for a serial implementation; for a parallel one,
their importance is even higher.

7.3.1 Data Structures

Themost basic issue of the implementation is to choose a proper data structure to store
sets of boxes: L , Lver , L pos and Lcheck . Several data structures might be appropriate:
a vector, a linked list, various realizations of a stack, a queue, a priority queue or
many others. It depends on the order in which the boxes should be processed—if this
order is relevant—and on various other implementation details.

An extremely important factor is the efficiency under the conditions of paralleliza-
tion. This topic is going to be considered later in the paper (consult Sect. 7.5).

Another important factor is efficient memory management, which will be dis-
cussed in the next subsection.

7.3.2 Memory Management

Typically, B&BT algorithms process a large number of boxes. How to store these
boxes? How to organize the memory for storing them? As pointed in [32], the
implementation that keeps boxes on the heap (which means that, in C++, we use
new/delete operators) is suboptimal at least for two reasons:

• the default C++ allocator is not tuned for allocating relatively small objects; it
is a simple wrapper over the C malloc/free operations with some additional
overhead; cf. [4];

• memory management in a multithreaded environment happens to be particularly
inefficient.

There are a few possibilities for improvement. It is possible to use a specialized
memory allocator, e.g., the Small Object Allocator from the Loki library [37] or
another one (for details, consult [32]).

82 7 Parallelization of B&BT Algorithms

Another possibility (and probably the best one) is to use the move semantics,
introduced in the C++11 standard. This allows to avoid using dynamic variables, but
cannot be applied if we decide to store boxes on linked lists. Yet, it is compatible
with containers, like, e.g., std::vector or tbb::concurrent_vector (from
the TBB library [25]). Results from [32] seem to confirm the superiority of the
move semantics over dynamic allocation of memory, but further investigations seem
required to give an unambiguous answer.

7.4 Parallelization of the B&BT Algorithm

Now, let us get to themain topic: parallelization of the considered class of algorithms.
Both phases of a B&BT algorithm parallelize well, as different boxes can be pro-
cessed independently. Yet, they are (in general) not “embarrassingly parallel”—for
both basic kinds of parallel implementation (shared or distributed memory) some
problems have to be addressed.

The next two sections discuss shared- and distributed-memory parallelization
possibilities of a B&BT algorithm.

7.5 Shared Memory Implementations

The main difficulties of multithreaded implementation of B&BT algorithms are:

• MT-safe (i.e., multithreaded-safe) implementation of the procedure processing a
single box,

• efficient and MT-safe storage of the set of boxes to be considered (L),
• efficient and MT-safe storage of lists/sets Lver and L pos ,
• efficient and MT-safe storage of Lcheck and other shared quantities (if any).

Even the basic “building block” of the algorithm—the procedure dealingwith a single
box—does not have to be MT-safe, in general. The C-XSC library [2], the package
that the author is using, guarantees safe arithmetic operations, midpoint computation
(but only since version 2.3.0!), etc., but the automatic differentiation code has been
made MT-safe far later. See [34] for several details.

Also, e.g., some linear programming solvers (like GLPK [1]) are not MT-safe, so
using LP-preconditioners (see, e.g., [20]) or LP-narrowing (see, e.g., [19, 21]) is not
straightforward in multithreaded solvers. The author does not use them in his current
codes.

7.5 Shared Memory Implementations 83

7.5.1 Storage of L

As mentioned in Sect. 7.3.1, several data structures can be used to store boxes:
depending on the problem under consideration, it can be a stack, a queue, a priority
queue, etc. Whatever data structure is used, operations on it have to be synchro-
nized (unless each thread has a private list, which is an approach characteristic for
distributed memory systems, described in next subsection).

A single lock, guarding the whole data structure L is a valid approach, but it
becomes inefficient for a higher number of cooperating threads. There are several
efficient implementations of MT-safe structures (see, e.g., [27] and the references
therein, for a discussion of this topic) and a good collection of such implementations
can be found, e.g., in the TBB (Threading Building Blocks) library [3].

Still, there is yet another possibility and—in several situations—it can be recom-
mended. For several programming frameworks, including TBB, L does not have to
be represented explicitly; we can rely on the internal mechanism of task servicing.
For example, the author’s solver of nonlinear equations systems uses the TBB task-
based parallelism, by utilizing programming concepts tbb::parallel_do and
tbb::parallel_do_feeder<T> (see TBB documentation at [3]) to implement
the branch-and-prune method (see [25, 26, 28, 29, 31]).

However, for global optimization and other problems, where the order of pro-
cessing boxes is relevant, we may have to represent the list L , explicitly. A priority
queue (tbb::priority_queue<T>) seems like a proper solution, but not the only
one. Lyudvin and Shary [38], among with other authors, claim, it is not beneficial to
choose the box with the smallest lower bound, always. This sounds, like a very good
news to parallel programmers and the approach of [38]—the two lists: “basic” and
“cache”— might allow utilizing all advantages of the task-based parallelism. The
author used it in his solver for MPC problems [30].

7.5.2 Storage of Lver and L pos

If the sets of verified and possible solutions are to be shared between all working
threads, the access to them has to be synchronized, too. As for L , discussed in the
previous paragraph, using a single lock for the whole list does not seem the optimal
approach, as we have several concurrent implementations of various data structures,
that are much more scalable.

What should we use? A concurrent vector (implemented as a list of arrays)
seems a proper choice; TBB [3] provides us a sufficient class for this purpose:
tbb::concurrent_vector<T> (and so do other libraries, certainly, e.g.,
Microsoft Parallel Patterns Library or other TBB’s competitors).

Yet, if wewish to stick to using a linked list, there is another very good option, also.
Instead of using any kind of mutex, we can insert elements in a lock-free manner,

84 7 Parallelization of B&BT Algorithms

using an atomic exchange instruction. Such an instruction can be defined, by the
following pseudocode:

Algorithm 17 XCHG
Require: var, value
1: tmp = var
2: var = value
3: return tmp

Using this atomic operation, we can perform a very simple, efficient and wait-free
[17] operation of element insertion (provided, no-one removes the element from the
list, concurrently with the insertion operation, but this is the case):

Algorithm 18 insert
Require: head, elem
1: tmp = XCHG(head, elem)

2: elem->next = tmp

The procedure is wait-free, as it does not require any retrial or iteration, as meth-
ods based on the compare-and-swap operation [17]. A similar procedure is used in
Vyukov’s algorithms for a non-blocking queue (presented on his web page [49]).

The problem is that the XCHG operation might not be available on assembler
languages, using other instruction sets, than x86. Also, relatively few software pack-
ages provide this operation for high-level languages, like C/C++, but Intel TBB and
the C++11 standard—do. So do CUDA, but GPU programming is yet quite another
story (see, e.g., an interesting discussion in [6]).

7.5.3 Shared Quantities

As already indicated, solving equations (systems), CSPs and other problems, not
requiring quantifier elimination (or the second phase—Algorithm 3) do not require
any shared quantities or other shared objects, except—at most—L , Lver and L pos .

But B&BT algorithms for many more sophisticated problems need some shared
quantities. The simplest case is global optimization, where we need a single floating-
point number, representing the upper bound on the global minimum. Such a quantity
can be secured by a single lock; an active waiting lock (a spin-lock) is appropriate
here, usually, as the operations of updating (or reading) of the single number are
relatively quick.

For the problem of seeking the Pareto sets, we need to keep the set of several points
(or boxes!), representing an approximation of the Pareto frontier. In the author’s

7.5 Shared Memory Implementations 85

paper [35], it is proposed to protect the Pareto frontier approximation by a readers-
writer lock. The results were promising, but—probably—we can do better, by using
efficient MT-safe data structures. Such experiments are planned in the near future.

In [27, 33], the author stated that an interval tree might be of great use in rep-
resenting the shared data in interval B&BT methods. A careful investigation of this
idea did not verify it. When we need data related to specific regions of the search
domain—as in seeking (strong) Nash equilibria [36]—it is better to rely on the list
Lcheck of boxes, as in Algorithm 2. Otherwise, other data structures are pretty suf-
ficient, as discussed in the previous paragraph. The applicability of interval trees
seems very limited.

7.6 Distributed Memory Implementations

Environments with the local memory, like MPI [41], seem less appropriate for par-
allelization of B&BT algorithms, unless we consider the simplest versions with no
shared quantities. But, even for the case of equations system or CSP solving, we
have to address at least two non trivial issues:

• box migration between the nodes for load balancing,
• termination detection.

There are a few approaches to solve both above issues.

7.6.1 Load Balancing

This problem has been studied by several authors; see, e.g., [7, 16, 48] and references
therein. To some extent, it is analogous to load balancing between threads, e.g., in
TBB (see [25]; also the documentation in [3]). All load-balancing policies are purely
heuristical, obviously.

The author does not have his own experiences, yet, but it seems the policy should
take the network topology into account. Please note, the modern standard MPI-3
brings several topology-aware features [18].

7.6.2 Termination Detection

Also, detecting that all of the cooperating nodes have become idle, is all but trivial.
The paper [39] surveys several techniques for termination detection; this is an abstract
study, not related to B&BT algorithms, specifically.

86 7 Parallelization of B&BT Algorithms

A specific policy to detect termination, usually must depend on the network topol-
ogy. Ring topology seems particularly convenient. Also, weight-throwing methods
of detection might be useful for interval B&BT algorithms.

7.6.3 Advanced Issues

Real difficulties start when implementing algorithm versions for more sophisticated
problems—the ones that have to sharemore information. In environments with local
memory, nothing is shared, naturally.

For global optimization, when we share a single floating-point number, we can
have its local “photographs” on each node and update them according to some pro-
tocol.

Yet, synchronizing the approximation of the whole Pareto frontier, like that, does
not seem, to be a good idea. There are a few possibilities:

• devote one of the nodes to maintain a shared resource and respond on queries from
other nodes,

• distribute the resource, e.g., each of the nodes keeps someparts of the approximated
Pareto frontier,

• re-design the algorithm to use the “shared” data as late as possible.

All of these approaches seem to have some advantages, but which of them is accept-
able in practice, remains to be determined. The last one seems the most compatible
with the idea of communication-avoiding algorithms (see, e.g., [5]), which is the
recent trend in distributed algorithms design. But is it possible to re-design B&BT
algorithms that way?

Analogous issues are related to storing the Lcheck list, e.g., in algorithms computing
(strong) Nash equilibria.

In particular, in [32], the author presents an MPI-based version of the B&BT
algorithm for seeking solution of continuous games. In this implementation, each
node stores its own lists of solutions and its own sub-list of Lcheck . In the verification
phase, sub-lists of Lcheck are not moved, but the solutions peregrinate through all
nodes in order, to be verified using all boxes from all sub-list of Lcheck .

After they have gone around all nodes, the root node gathers all results to assemble
“global” lists Lver and L pos . For details, the reader is referred to [32].

It is worth noting that the library CXSC-MPI [9] has not been updated for a few
years and has several drawbacks. In particular, it lacks:

• functions MPI_Send_recv() or MPI_Send_recv_replace();
• non-blocking operations other than sending, in particular MPI_Irecv();
• collective operationsmore sophisticated than MPI_Bcast(), in particular MPI_
Scatter(), MPI_Gather(), MPI_Scatterv() or MPI_Gatherv().

These limitations can be worked around in a few ways; for instance, an interval
could be replaced with a pair of floating-point numbers. Unfortunately, this would

7.6 Distributed Memory Implementations 87

require wasting time on transforming the data structures. Another possibility is to
use pack/unpack functions for sending noncontiguous data. Details and the example
solution, developed by the author, have been described in [32].

7.7 Parallelization of Rejection/Reduction Tests

In previous sections, we assumed the following schema of parallelization: various
boxes, produced by the B&BT process, are processed concurrently, but processing
a single box is carried out by a serial procedure.

Rarely have been rejection/reduction tests on boxes parallelized so far, but there
are exceptions to this rule. For instance, in [31] the procedure to enforce bound
consistency is parallelized.

Also, much effort has been put to parallelizing operations on interval matrices.
Several early papers can be found in references of [24]. Newer investigations usually
try to utilize BLAS libraries for interval matrices; see, e.g., [42]; cf. also [10, 11].

It might seem that parallel matrix operations can be applied to parallelizing rejec-
tion/reduction tests directly. The author’s opinion is different. Techniques used in
parallelizing BLAS operations are tuned for matrices of dimension above thousands,
which is much larger than the Hesse matrices, or other matrices, encountered in
typical nonlinear problems tractable for B&BT algorithms (usually, far below one
hundred). BLAS libraries might help, because of efficient cache utilization and vec-
torization (cf. [44]), but not parallelization; at least in the predictable future.

The master’s thesis [43] considers parallelization of algorithms for computing
eigenvalues of intervalmatrices. And checking the sign of eigenvalues is an important
rejection test, e.g., for optimization or game solution seeking (see [32]).

7.7.1 Parallelization of Existence Tests

A separate couple of words should be devoted to parallelization of existence tests of
nonlinear systems. The simplest tests, the classical ones based on the interval Newton
operator (see, e.g., [20, 40]) or Miranda’s theorem [20], are probably too simple to
be parallelized efficiently, but this is not true for more complicated ones.

In particular, the new tests, using the toolset of algebraic topology: the Bor-
suk theorem [8], topological degree theory [14, 15] or, especially, (co)homotopy
and (co)homology theory [12, 13] are much more complicated and computation-
ally intensive. Operations on simplicial sets or cell complexes, used in the latter
approaches, seem pretty well suited for parallelization.

On the other hand, the importance of existence tests does not seem crucial, as they
can be used only for verification of solutions that have already been found.

Nevertheless, the role of parallelized (or vectorized) rejection/reduction tests is
likely to be increasing.With the advent of many-core architectures, parallelization of

88 7 Parallelization of B&BT Algorithms

the algorithm should bemulti-level and scalable. And a parallelized test ismore likely
to utilize hyper-threads, working on the same core (they share the same cache!), than
concurrent processing of unrelated boxes (resulting in cache misses, inevitably).

7.7.2 Modern Architectures

Finally, it is worth noting, that tuning such implementations for modern architectures
is an issue itself. In [31], the author described his efforts to tune the bound-consistency
enforcing procedure for the Intel Xeon Phi coprocessor; he has only partially suc-
cessful.

Tuning the algorithms may require in-depth knowledge about the parameters of
a specific device; auto-tuning techniques should probably be applied here, also.

These remarks apply to GPUs [22, 23], Xeon Phi and similar coprocessors [46,
47] and, in particular, to hybrid architectures, combining a few different devices [45].

7.8 Summary

This chapter discussed several issues of parallel implementations of interval B&BT
algorithms: both shared- and distributed-memory ones. Synchronization, sharing
data structures, memory management, and other issues have been discussed.

In the author’s opinion, discussion on parallelization of rejection/reduction tests
(in Sect. 7.7) was particularly innovative.

Also other remarks form this chapter are crucial for a successful implementation
of a B&BT algorithm, a universal and well-suited for current hardware architectures
approach to solve various decision problems; namely, problems of seeking points
that satisfy a certain condition, specified in a first-order logic.

References

1. GNU Linear Programming Kit (2014). http://www.gnu.org/software/glpk/
2. C++ eXtended Scientific Computing library (2015). http://www.xsc.de
3. Intel Threading Building Blocks (2017). http://www.threadingbuildingblocks.org
4. Alexandrescu, A.: Modern C++ Design: Generic Programming and Design Patterns Applied.

Addison-Wesley (2001)
5. Baboulin, M., Donfack, S., Dongarra, J., Grigori, L., Rémy, A., Tomov, S.: A class of

communication-avoiding algorithms for solving general dense linear systems on CPU/GPU
parallel machines. Procedia Comput. Sci. 9, 17–26 (2012)

6. Beck, P.D., Nehmeier, M.: Parallel interval Newton method on CUDA. In: PARA 2012 Pro-
ceedings. Lecture Notes in Computer Science, vol. 7782, pp. 454–464 (2013)

7. Berner, S.: Parallelmethods for verified global optimization practice and theory. J. Glob.Optim.
9(1), 1–22 (1996)

http://www.gnu.org/software/glpk/
http://www.xsc.de
http://www.threadingbuildingblocks.org

References 89

8. Borkowski, T.: Comparison of existence tests of zeros of equations systems in a given region:
tests of Miranda, Borsuk and Newton. Master’s thesis, ICCEWUT (2013). (under supervision
of Bartłomiej J. Kubica). (in Polish)

9. CXSC-MPI: MPI extension for the use of C-XSC in parallel environments (2015). http://
www2.math.uni-wuppertal.de/~xsc/xsc/cxsc_software.html#cxsc_mpi

10. Dąbrowski, R., Kubica, B.J.: Comparison of interval C/C++ libraries in global optimization.
Prace Naukowe Politechniki Warszawskiej. Elektronika 169, 51–56 (2009)

11. Dąbrowski, R., Kubica, B.J.: Cache-oblivious algorithms and matrix formats for computations
on interval matrices. Lecture Notes in Computer Science, vol. 7134, pp. 269–279 (2012)

12. Franek, P., Krčál, M.: Robust satisfiability of systems of equations. In: Proceedings of the
Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 193–203. SIAM
(2014)

13. Franek, P., Krčál, M.: Cohomotopy groups capture robust properties of zero sets (2015). arXiv
preprint arXiv:1507.04310

14. Franek, P., Ratschan, S.: Effective topological degree computation based on interval arithmetic.
Math. Comput. 84(293), 1265–1290 (2015)

15. Frommer, A., Hoxha, F., Lang, B.: Proving the existence of zeros using the topological degree
and interval arithmetic. J. Comput. Appl. Math. 199(2), 397–402 (2007)

16. Gau,C.Y., Stadtherr,M.A.:Dynamic load balancing for parallel interval-Newton usingmessage
passing. Comput. Chem. Eng. 26(6), 811–825 (2002)

17. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming, Revised Reprint. Elsevier
(2012)

18. Hoffler, T.: Advanced MPI: new features of MPI-3 (2016). http://htor.inf.ethz.ch/teaching/
mpi_tutorials/speedup15/hoefler-advanced-mpi-speedup15.pdf

19. Jaulin, L., Kieffer, M., Didrit, O., Walter, É.: Applied Interval Analysis. Springer, London
(2001)

20. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht (1996)
21. Kolev, L.V.: Some ideas towards global optimization of improved efficiency. In: GICOLAG

Workshop, Wien, Austria, pp. 4–8 (2006)
22. Kozikowski,G.: Implementation of anOpenCL library for automatic differentiation.Bachelor’s

thesis, ICCE WUT (2011). (under supervision of Bartłomiej J. Kubica). (in Polish)
23. Kozikowski, G., Papamanousakis, G., Yang, J.: Potential future exposure, modelling and accel-

erating on GPU and FPGA. In: Proceedings of the 8th Workshop on High Performance Com-
putational Finance, WHPCF 2015, pp. 4:1–4:8. ACM, New York, NY, USA (2015). https://
doi.org/10.1145/2830556.2830560

24. Kreinovich, V., Bernat, A.: Parallel algorithms for interval computations: an introduction.
Interval Comput. 3, 6–62 (1994)

25. Kubica, B.J.: Intel TBB as a tool for parallelization of an interval solver of nonlinear equations
systems. Technical Report 09-02, ICCE WUT (2009)

26. Kubica, B.J.: Shared-memory parallelization of an interval equations systems solver—
comparison of toos. Prace Naukowe Politechniki Warszawskiej. Elektronika 169, 121–128
(2009). KAEiOG 2009 (Konferencja Algorytmy Ewolucyjne i Optymalizacja Globalna) Pro-
ceedings

27. Kubica, B.J.: A class of problems that can be solved using interval algorithms. Computing 94,
271–280 (2012). SCAN 2010 (14th GAMM-IMACS International Symposium on Scientific
Computing, Computer Arithmetic and Validated Numerics) Proceedings

28. Kubica, B.J.: Tuning the multithreaded interval method for solving underdetermined systems
of nonlinear equations. In: PPAM 2011 (9th International Conference on Parallel Processing
and Applied Mathematics) Proceedings. Lecture Notes in Computer Science, vol. 7204, pp.
467–476 (2012)

29. Kubica, B.J.: Presentation of a highly tuned multithreaded interval solver for underdetermined
and well-determined nonlinear systems. Numer. Algorithms 70(4), 929–963 (2015). https://
doi.org/10.1007/s11075-015-9980-y

http://www2.math.uni-wuppertal.de/~xsc/xsc/cxsc_software.html#cxsc_mpi
http://www2.math.uni-wuppertal.de/~xsc/xsc/cxsc_software.html#cxsc_mpi
http://arxiv.org/abs/1507.04310
http://htor.inf.ethz.ch/teaching/mpi_tutorials/speedup15/hoefler-advanced-mpi-speedup15.pdf
http://htor.inf.ethz.ch/teaching/mpi_tutorials/speedup15/hoefler-advanced-mpi-speedup15.pdf
https://doi.org/10.1145/2830556.2830560
https://doi.org/10.1145/2830556.2830560
https://doi.org/10.1007/s11075-015-9980-y
https://doi.org/10.1007/s11075-015-9980-y

90 7 Parallelization of B&BT Algorithms

30. Kubica, B.J.: Preliminary experiments with an interval Model-Predictive-Control solver. In:
PPAM 2015 Proceedings. Lecture Notes in Computer Science, vol. 9574, pp. 464–473 (2016)

31. Kubica, B.J.: Parallelization of a bound-consistency enforcing procedure and its application in
solving nonlinear systems. J. Parallel Distrib. Comput. 107, 57–66 (2017). https://doi.org/10.
1016/j.jpdc.2017.03.009

32. Kubica, B.J.: Advanced interval tools for computing solutions of continuous games. Vychislen-
nyie Tiehnologii (Computational Technologies) 23(1), 3–18 (2018)

33. Kubica, B.J., Woźniak, A.: An interval method for seeking the Nash equilibria of non-
cooperative games. In: PPAM 2009 Proceedings. Lecture Notes in Computer Science, vol.
6068, pp. 446–455 (2010)

34. Kubica,B.J.,Woźniak,A.:Amulti-threaded interval algorithm for the Pareto-front computation
in a multi-core environment. In: PARA 2008 Proceedings. Lecture Notes in Computer Science,
vol. 6126/6127. Accepted for Publication (2010)

35. Kubica, B.J.,Woźniak, A.: Optimization of themulti-threaded interval algorithm for the Pareto-
set computation. J. Telecommun. Inf. Technol. 1, 70–75 (2010)

36. Kubica, B.J.,Woźniak,A.: Intervalmethods for computing strongNash equilibria of continuous
games. Decis. Mak. Manuf. Serv. 9(1), 63–78 (2015). SING10 Proceedings

37. Loki: Loki C++ template library (2015). http://loki-lib.sourceforge.net
38. Lyudvin, D.Y., Shary, S.P.: Testing implementations of pps-methods for interval linear systems.

Reliab. Comput. 19(2), 176–196 (2013). SCAN 2012 Proceedings
39. Matocha, J., Camp, T.: A taxonomy of distributed termination detection algorithms. J. Syst.

Softw. 43(3), 207–221 (1998)
40. Moore, R.E.,Kearfott, R.B., Cloud,M.J.: Introduction to IntervalAnalysis. SIAM,Philadelphia

(2009)
41. MPI: Message Passing Interface (2017). http://www.mpi-forum.org
42. Nguyen, H.D.: Efficient implementation of interval matrix multiplication. Lecture Notes in

Computer Science, vol. 7134, pp. 179–188 (2012)
43. Owczarek, B.: Parallel algorithms for computing eigenvalues of interval matrices. Master’s

thesis, ICCE WUT (2015). (under supervision of Bartłomiej J. Kubica). (in Polish)
44. Skalna, I., Duda, J.: A study on vectorisation and paralellisation of the monotonicity approach.

Lecture Notes in Computer Science (2016). Submitted
45. Szustak, Ł., Halbiniak, K., Kuczyński, Ł., Wróbel, J., Kulawik, A.: Porting and optimization of

solidification application for CPU-MIC hybrid platforms. Int. J. High Perform. Comput. Appl.
(2016). https://doi.org/10.1177/1094342016677740

46. Szustak, Ł., Rojek, K., Olas, T., Kuczynski, Ł., Halbiniak, K., Gepner, P.: Adaptation of
MPDATA heterogeneous stencil computation to Intel Xeon Phi coprocessor. Sci. Program.
2015 (2015). https://doi.org/10.1155/2015/642705

47. Szustak, Ł., Rojek, K., Wyrzykowski, R., Gepner, P.: Toward efficient distribution ofMPDATA
stencil computation on Intel MIC architecture. In: Proceedings of the 1st International Work-
shop on High-Performance Stencil Computations, pp. 51–56 (2014)

48. Ueberholz, P., Willems, P., Bull, M., Lang, B.: Non-blocking load balancing for branch-and-
bound-type algorithms. In: PARA 2008 Proceedings. Lecture Notes in Computer Science.
Accepted for Publication (2013)

49. Vyukov, D.: Non-intrusive MPSC node-based queue. http://www.1024cores.net/home/lock-
free-algorithms/queues/non-intrusive-mpsc-node-based-queue. (web page; Accessed 2017)

https://doi.org/10.1016/j.jpdc.2017.03.009
https://doi.org/10.1016/j.jpdc.2017.03.009
http://loki-lib.sourceforge.net
http://www.mpi-forum.org
https://doi.org/10.1177/1094342016677740
https://doi.org/10.1155/2015/642705
http://www.1024cores.net/home/lock-free-algorithms/queues/non-intrusive-mpsc-node-based-queue
http://www.1024cores.net/home/lock-free-algorithms/queues/non-intrusive-mpsc-node-based-queue

Chapter 8
Interval Software, Libraries and
Standards

Throughout the years, several packages and programs have been developed for inter-
val computations. One of the classical interval solvers is GlobSol, written by Ralph
B. Kearfott in Fortran [4]. Several papers describe the use of this solver (see, e.g.,
[28] and the references therein).

There are many other packages for Matlab [10], Python, ADA and for more niche
languages such, as OCaml [14] or Julia [5]. The web page [9] lists several of them.
Yet, in our survey, the focus is on C++ packages. But before we present them, let us
discuss what they should contain.

8.1 Main Issues in Implementing Interval Libraries

It might seem, implementing an interval data type and providing basic arithmetic
operations on it (as defined in Sect. 2.3), should be relatively easy in any modern
object-oriented language. Notwithstanding, there are some issues; most of them are
related to correctly performing of the outward rounding, but other representation-
related problems can be encountered, also, like:

• Can an interval have infinite bounds or not?
• What will be the result of operations on such infinite bounds, e.g. [0, 1] · [1,+∞]?
• How to treat the value NaN (Not a Number)? Should we have a NaI (Not an
Interval), also?

These and other similar questions have found some answers in the IEEE 754 standard
for the floating-point operations.

© Springer Nature Switzerland AG 2019
B. J. Kubica, Interval Methods for Solving Nonlinear Constraint Satisfaction,
Optimization and Similar Problems, Studies in Computational Intelligence 805,
https://doi.org/10.1007/978-3-030-13795-3_8

91

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13795-3_8&domain=pdf
https://doi.org/10.1007/978-3-030-13795-3_8

92 8 Interval Software, Libraries and Standards

8.1.1 IEEE 754 Standard

This standard has been published in 1985; the last revision is from 2008 [23]. The
standard defines the representation of floating-point numbers and properties of some
basic operations on them.

It is worth noting that this standard may not be supported by some devices, e.g.,
by some embedded devices or older (as well as niche) GPUs. Nevertheless, it is
supported by x86 assembler, most modern GPUs (both using CUDA and OpenCL)
and most other machines (cf. Sect. 8.3.4).

There is a wide literature on the standard (cf., e.g., Sect. 10 of [26]). Also, in
one of the appendices (Appendix B) to this monograph, this standard is described.
Many features are discussed there: positive and negative zero, normal and subnormal
(denormal) numbers, various kinds of NaN, etc. Here, let us emphasize only the
properties relevant for operations on intervals (cf. [20]):

• There are four roundingmodes: towards the nearest number, towards zero, upwards
and downwards.

• There are infinities: +∞ and −∞; they are different from NaNs.

The rounding mode can be switched, using the proper instruction (in C/C++ we
have a feset() function; in the x86 assembly language, fldcw should be used).
Unfortunately, changing the mode is usually a relatively time-consuming operation.
And a typical interval operation has to change the roundingmode at least three times:
downwards, to compute the lower bound; upwards, to compute the upper bound; then
restore the initial rounding mode. An important part of many interval libraries is to
minimize then umber of rounding mode changes; some tricks allow us to use only
one kind of directed rounding [21].

As for considering intervals with infinite bounds, there are a few possibilities,
also; see, e.g., [21, 37].

8.2 C-XSC

This library has been used by the author in his computational experiments, so it will
be described in more details than other packages.

The C-XSC library [2], as other XSC languages (the name stands for eXtended
Scientific Computing), has been developed in the University of Wuppertal.

Some time ago, the package had been relatively slow (cf., e.g., comparison in
[19]), but much has changed since then. The version 2.3.0 has been highly improved
and optimized. Support for BLAS operations (see below, Sect. 8.2.2), novel types for
sparse vectors and matrices and many other innovative tools have been integrated to
the library (cf. [33]).

8.2 C-XSC 93

8.2.1 Basic Types

Intervals are represented by the cxsc::interval class. Its endpoints are double-
precision floating point numbers; they are not represented by double variables,
but using a custom cxsc::real wrapper class. There are also classes for complex
numbers and intervals: cxsc::complex, cxsc::cinterval.

All these classes have theirmultiple-precision counterparts (also known as stagge-
red representations):cxsc::l_real,cxsc::l_complex,cxsc::l_interval,
and cxsc::l_cinterval. Afterwards, we have so-called extended staggered
representations of these entities [15]: cxsc::lx_real, cxsc::lx_complex,
cxsc::lx_interval, cxsc::lx_cinterval, etc.

It is worth noting that vectors and matrices in C-XSC are not represented
using STL templates, but with custom classes: cxsc::rvector, cxsc::rmatrix,
cxsc::ivector, cxsc::imatrix, cxsc::l_rvector, etc.

8.2.2 The Use of BLAS

As for traditional floating-point algorithms, for many interval algorithms, their most
intensive steps are operations on matrices and vectors. For traditional computations,
several versions of BLAS (Basic Linear Algebra Subroutines) have been developed
to provide tuned (or auto-tuning) procedures, optimized for a specific architecture
and environment. OpenBLAS, GotoBLAS, MKL or ATLAS are good examples of
various BLAS instances.

In what manner are they optimized? It depends on the architecture. Usually, their
main focus is efficient use of the cache hierarchy, but multithreading, vectorization
and reducing computational complexity are of interest, also.

Interval algorithms can benefit from using BLAS, as well, as pointwise ones.
Several papers, including [42, 43] describe algorithms for computing enclosures of
matrix products (a real and an interval matrix, two interval matrices, etc.), using a
few computations of products of real-valued matrices.

C-XSC can optionally use a given BLAS package for matrix operations. As the
author’s experiments indicate, this can be veryworthwhile [34], but not for all interval
algorithms [35].

8.2.3 The Toolbox and Additional Software

The library of C-XSC is pretty rich. We get some automatic differentiation codes,
solvers for linear systems with interval coefficients, etc.

On the web page [2], we can find also some additional packages, e.g., for MPI
computations with C-XSC [18], computing slopes of functions or some sophisticated
solvers, e.g., for differential and integral equations. Some of these tools have been
mentioned in other chapters of this monograph.

94 8 Interval Software, Libraries and Standards

Unfortunately, the library has not been updated since the February 2014, when
version 2.5.4 has been released.

8.2.4 Author’s Solvers and Libraries

All interval-related programs and packages developed by the author, at least so-far,
have been based on C-XSC. This is true for the ADHC library, described in Chap. 3,
HIBA_USNE solver for equations systems, described in Chap. 5, and solvers used
in Chap.6: not made public, yet.

Whether in the future these pieces of software should migrate to another interval
library, is an open question.

8.3 Other Libraries

8.3.1 PROFIL/BIAS

This is another widely used C++ interval library; cf., e.g., [26]. The name PRO-
FIL stands for Programmer’s Runtime Optimized Fast Interval Library [12]. It is
a C++ library with several features, including transcendental functions, automatic
differentiation, etc. Actually, it is a C++ interface to lower-level procedures of BIAS.

BIAS.

BIAS is an acronym for Basic Interval Arithmetic Subroutines. It is a set of C func-
tions. As the name suggests, the focus is made on operations on interval matrices.
Yet, unlike C-XSC (cf. Sect. 8.2.2), specific BIAS procedures are developed, not
basing on non-interval BLAS packages. Their focus is not on efficiently using the
cache memory, but on reducing the number of rounding mode switching.

In the author’s opinion, the idea is inferior to using BLAS: floating-point BLAS
packages are changing constantly, adapting to evolving hardware architectures and
utilizing other improvements. BIAS procedures are not able to cope with the devel-
opment of computer technology. Moreover, they do not seem to be updated since
2009.

8.3.2 Boost::Interval

The Boost libraries [6] are well-known to virtually all C++ programmers. They
provide a variety of packages for data structures, algorithms, meta-programming and
mathematical notions. In particular, we have theBoost::Interval library [7], providing
the interval arithmetic and other basic interval operations.

8.3 Other Libraries 95

This package has several interesting features. Firstly, the interval data type it
provides is a template class, parameterized by two arguments: type and a policy
class; so it looks as follows: boost::interval<T, policies>.

The first template argument, is obviously, the underlying type: over which space
dowe define intervals.What types can be used here? The answer is relatively compli-
cated. Three data types are recommended: float, double and long double,
but the set of possible options is not limited to this triple. Ordinal types, like int or
boolean can be used here, also, although some functionality might not be available
for them.

On the other hand, some substituting for T some types is explicitly forbidden:
these are all types that are not totally ordered, like std::complex<T>.

The second argument, the policy class describes several features of the actual
instantiation of the interval data type:

• What rounding should be used for the endpoints?
• What conditions should be checked during the operations, e.g., do we allow empty
or improper intervals, should we throw exceptions when they occur, etc.

• What comparison operation should be used for intervals (cf. the discussion in
Sect. 2.6)?

The library is universal, but less optimized than C-XSC or other competitors. This
may change in future versions, obviously.

8.3.3 Other Packages

GAOL

Another package worth mentioning is GAOL [8]. The name is a pun: “gaol” means
a jail and, according to the opinion of its providers,“GAOL is not JAIL”, i.e., “Just
Another Interval Library”. One of its distinct features is implementing the so-called
relational interval arithmetic.

FILIB++

This is another package of C-XSC providers; a C++ version of the older C FI_LIB
library. The name stands for Fast Interval LIBrary [1]. The library is minimalistic
(no vectors, no matrices, etc.), yet highly optimized for speed, e.g., transcendental
functions are computed using table lookup. Unfortunately, no new version of the
library has been released since 2011.

Moore library

Paper [39] describes yet another modern approach to providing an interval arithmetic
library. The paper has been released in 2018 and it claims to use the C++20 standard
of the C++ language.

Similarly to Boost::Interval, discussed above, the package makes intensive use
of template metaprogramming and other modern C++ tools (including so-called

96 8 Interval Software, Libraries and Standards

concepts). According to [39], intervals, interval vectors and matrices are represented
in the library; there are also some codes to perform automatic differentiation.

One of its interesting (but controversial; cf. Sect. 2.8) features is the possibility of
representing not only closed, but also open and half-open intervals.

To the best knowledge of the author, the library is not publicly available: at least
currently.

Yet another libraries

There are manymore libraries, obviously. It is worth to mention somemultiprecision
libraries: MPFR and, based on it, MPFI [22]. To the best knowledge of the author, a
pretty good implementation of the interval arithmetic was present in Sun’s Fortran
compilers. In [25], yet another library, based on long double-precision numbers, has
been presented. See papers [19, 44] and references therein, for more information.

IBEX

IBEX [13] is one of the interval solvers that are actively developed. It allows solving
CSPs (including equations systems) and optimization problems. The core library
defines C++ classes representing intervals, interval vectors, matrices, etc.

8.3.4 GPU Libraries

These packages deserve a separate subsection, as they differ fromCPU libraries to the
high extent. Firstly, GPUs and their programming interfaces are not as standardized
as high-level programming languages for traditional architectures. Not only we have
the “dualism” between CUDA and OpenCL, but even various versions (“compute
capabilities”) of CUDA have a very differentiated API. What is more, some GPUs
(especially older ones) are not compatible with the IEEE 754 Standard; in particu-
lar, they do not allow directed roundings. Consequently, first interval programs for
GPU, had to implement outward rounding in a more sophisticated (and less efficient)
manner; see [17].

Cards using OpenCL, as well as modern NViDIA cards using CUDA allow
directed roundings. Packages with this feature have been implemented and used;
cf. [30–32].

Unfortunately, to the best knowledge of the author, none of this packages is pub-
licly available, as for now.

8.3.5 IEEE Standard 1788–2015: Standard for Interval
Arithmetic

This standard [24] has been developed throughout years 2008–2015 [41] by the IEEE
P-1788 Working Group for Interval Arithmetic, coordinated by John Pryce [40].

8.3 Other Libraries 97

It was an attempt to unify various models, approaches, “philosophies” and def-
initions of the interval calculus: set-theoretical interval arithmetic, containment set
arithmetic, modal interval arithmetic, etc. They are called various flavors by authors
of the standard; some of them have been mentioned in Chap. 2. As for now, only the
“set-based flavor” (intervals are sets of numbers; if a bound is equal to ±∞, it is not
a member of the interval) is included in the standard, but other ones are planned to
be included in the revisions of the Standard. This includes the Kaucher flavor [27],
allowing improper intervals, like [2, 1].

All of themneed to be consistent with the originalMoore’s arithmetic (called com-
mon intervals, by the Standard’s authors), i.e., the arithmetic of bounded, nonempty,
compact intervals [40].

Decorators

Several interesting (and even more not-so-interesting, yet highly important) details
are defined by the Interval Standard. We cannot discuss all of them here (please
consult papers [40, 41] or the standard itself [24] for details).

Yet, we shall describe one of the features, which turns out to be very innovative
with respect to earlier implementation concepts of the interval system: decorators
of intervals. What does that mean? A decorated interval is a pair (x, d), where x is
an interval [x, x] and d is its decorator, i.e., a description of definedness, continuity,
etc.

The idea of decorators is similar to global flags, defined by the IEEE 754 Standard
for floating-point computations. These flags indicate underflow, overflow, or other
possible features affecting the quality of the obtained result. In IEEE 1788 Stan-
dard, global flags have been replaced by “local” decorators, more adequate for today
platforms, that support parallelizm pretty often.

To describe the decorator values, defined by the Standard, let us consider the
interval y = f(x). Now, the decorator of y can have the following values:

• com (common)— f was defined, continuous and bounded on all points from x,
• dac (defined and continuous)— f was defined and continuous on all points from
x, although possibly unbounded at some of them,

• def (defined)— f was defined (but not necessarily continuous) on all points from
x,

• trv (trivial)—“no information”,
• ill (ill-formed)—“Not an Interval”, f was not defined on x.

Obviously, the higher the value from the above list, the better the result is considered
to be.

Software for IEEE Std 1788–2015

Few libraries are consistent with this standard, up to now. The author is aware of
two, only, described in [41]: libieeep1788 [3], written by Marco Nehmeier, and
Octave Interval [11], by Olivier Heimlich.

Developing this standard may not only help to unify interval libraries, but also
provide better hardware support for interval analysis [29]. As, in particular, Kulisch

98 8 Interval Software, Libraries and Standards

indicates in his papers, present x86 processors already contain all components nec-
essary for the hardware support of interval arithmetic and the exact dot product of
interval vectors [16, 36, 38].

References

1. FILIB++ library (2011). http://www2.math.uni-wuppertal.de/wrswt/software/filib.html
2. C++ eXtended Scientific Computing library (2015). http://www.xsc.de
3. The C++ IEEE 1788 library (2015). https://github.com/nehmeier/libieeep1788
4. GlobSol solver (2015). https://interval.louisiana.edu/GlobSol/
5. ValidatedNumerics package (2016). https://github.com/JuliaIntervals/ValidatedNumerics.jl
6. Boost C++ libraries (2017). http://www.boost.org/
7. Boost Interval library (2017). http://www.boost.org/doc/libs/1_66_0/libs/numeric/interval/

doc/interval.htm
8. Gaol: NOT Just Another Interval Library (2017). https://sourceforge.net/projects/gaol/
9. Interval and related software (2017). http://www.cs.utep.edu/interval-comp/intsoft.html
10. IntLab. the Matlab/Octave toolbox for reliable computing (2017). http://www.ti3.tu-harburg.

de/rump/intlab/
11. Octave Interval library (2017). https://octave.sourceforge.io/interval/
12. PROFIL/BIAS (2017). http://www.ti3.tuhh.de/keil/profil/index_e.html
13. IBEX library (2018). http://www.ibex-lib.org/
14. Alliot, J.M., Gotteland, J.B., Vanaret, C., Durand, N., Gianazza, D.: Implementing an interval

computation library for OCaml on x86/amd64 architectures. In: OUD 2012, OCaml Users and
Developers Workshop (2012)

15. Blomquist, F.: Staggered correction computations with enhanced accuracy and extremely wide
exponent range. Reliab. Comput. 15(1), 26–35 (2011)

16. Bohlender, G., Kulisch, U.W.: Comments on fast and exact accumulation of products. In: PARA
2010 Proceedings. Lecture Notes in Computer Science, vol. 7134, pp. 148–156 (2012)

17. Collange, S., Flórez, J., Defour, D.: A GPU interval library based on Boost.Interval. In: 8th
Conference on Real Numbers and Computers, pp. 61–71 (2008)

18. CXSC-MPI: MPI extension for the use of C-XSC in parallel environments (2015). http://
www2.math.uni-wuppertal.de/~xsc/xsc/cxsc_software.html#cxsc_mpi

19. Dąbrowski, R., Kubica, B.J.: Comparison of interval C/C++ libraries in global optimization.
Prace Naukowe Politechniki Warszawskiej. Elektronika 169, 51–56 (2009)

20. Goualard, F.: Towards good C++ interval libraries: Tricks and traits. In: the 4th Asian Sympo-
sium on Computer Mathematics. Chiang Mai. Citeseer (2000)

21. Goualard, F.: Fast and correct SIMDalgorithms for interval arithmetic. In: PARA2008Proceed-
ings. Lecture Notes in Computer Science, vol. 6126/6127 (2010). (Accepted for publication)

22. Grimmer, M., Petras, K., Revol, N.: Multiple precision interval packages: comparing different
approaches. Lecture Notes in Computer Science, pp. 64–90 (2004)

23. IEEE: 754-2008–IEEE standard for floating-point arithmetic (2008). http://ieeexplore.ieee.org/
document/4610935/

24. IEEE: 1788-2015–IEEE standard for interval arithmetic (2015). http://standards.ieee.org/
findstds/standard/1788-2015.html

25. Jankowska,M.A.: Remarks on algorithms implemented in someC++ libraries for floating-point
conversions and interval arithmetic. In: PPAM 2009 Proceedings. Lecture Notes in Computer
Science, vol. 6068, pp. 436–445 (2010)

26. Jaulin, L., Kieffer, M., Didrit, O., Walter, É.: Applied Interval Analysis. Springer, London
(2001)

27. Kaucher, E.: Interval analysis in the extended interval space IR. In: Fundamentals of Numerical
Computation (Computer-Oriented Numerical Analysis), pp. 33–49. Springer (1980)

http://www2.math.uni-wuppertal.de/wrswt/software/filib.html
http://www.xsc.de
https://github.com/nehmeier/libieeep1788
https://interval.louisiana.edu/GlobSol/
https://github.com/JuliaIntervals/ValidatedNumerics.jl
http://www.boost.org/
http://www.boost.org/doc/libs/1_66_0/libs/numeric/interval/doc/interval.htm
http://www.boost.org/doc/libs/1_66_0/libs/numeric/interval/doc/interval.htm
https://sourceforge.net/projects/gaol/
http://www.cs.utep.edu/interval-comp/intsoft.html
http://www.ti3.tu-harburg.de/rump/intlab/
http://www.ti3.tu-harburg.de/rump/intlab/
https://octave.sourceforge.io/interval/
http://www.ti3.tuhh.de/keil/profil/index_e.html
http://www.ibex-lib.org/
http://www2.math.uni-wuppertal.de/~xsc/xsc/cxsc_software.html#cxsc_mpi
http://www2.math.uni-wuppertal.de/~xsc/xsc/cxsc_software.html#cxsc_mpi
http://ieeexplore.ieee.org/document/4610935/
http://ieeexplore.ieee.org/document/4610935/
http://standards.ieee.org/findstds/standard/1788-2015.html
http://standards.ieee.org/findstds/standard/1788-2015.html

References 99

28. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht (1996)
29. Kirchner, R., Kulisch, U.W.: Hardware support for interval arithmetic. Reliab. Comput. 12(3),

225–237 (2006)
30. Kozikowski, G.: Implementation of anOpenCL library for automatic differentiation (in Polish).

Bachelor’s thesis, ICCE WUT (2011). (under supervision of Bartłomiej J. Kubica)
31. Kozikowski, G., Kubica, B.J.: Interval arithmetic and automatic differentiation on GPU using

OpenCL. In: PARA 2012 Proceedings. Lecture Notes in Computer Science, vol. 7782, pp.
483–503 (2013)

32. Kozikowski, G., Kubica, B.J.: Parallel approach to Monte Carlo simulation for option price
sensitivities using the adjoint and interval analysis. In: PPAM2013 Proceedings. Lecture Notes
in Computer Science, vol. 8385, pp. 600–612 (2014)

33. Krämer,W., Zimmer,M.,Hofschuster,W.:UsingC-XSC for high performance verified comput-
ing. In: PARA 2010 Proceedings. Lecture Notes in Computer Science, vol. 7134, pp. 168–178
(2012)

34. Kubica, B.J.: Tuning the multithreaded interval method for solving underdetermined systems
of nonlinear equations. In: PPAM 2011 (9th International Conference on Parallel Processing
and Applied Mathematics) Proceedings. Lecture Notes in Computer Science, vol. 7204, pp.
467–476 (2012)

35. Kubica, B.J., Woźniak, A.: Tuning the interval algorithm for seeking Pareto sets of multi-
criteria problems. In: PARA 2012 Proceedings. Lecture Notes in Computer Science, vol. 7782,
pp. 504–517 (2013)

36. Kulisch, U.: An axiomatic approach to rounded computations. Numerische Mathematik 18(1),
1–17 (1971)

37. Kulisch, U.: Computer Arithmetic and Validity-Theory, Implementation and Applications. De
Gruyter, Berlin, New York (2008)

38. Kulisch, U.: An axiomatic approach to computer arithmetic with an appendix on interval
hardware. In: PPAM 2011 (9th International Conference on Parallel Processing and Applied
Mathematics) Proceedings. Lecture Notes in Computer Science, vol. 7204, pp. 484–495 (2012)

39. Mascarenhas, W.F.: Moore: Interval arithmetic in C++20 (2018). https://arxiv.org/abs/1802.
08558

40. Pryce, J.: The forthcoming IEEE standard 1788 for interval arithmetic. In: SCAN 2014 Pro-
ceedings. Lecture Notes in Computer Science, vol. 9553, pp. 23–39 (2015)

41. Revol, N.: Introduction to the IEEE1788-2015 standard for interval arithmetic. In: International
Workshop on Numerical Software Verification, pp. 14–21. Springer (2017)

42. Revol, N., Théveny, P.: Parallel implementation of interval matrix multiplication. Reliab. Com-
put. 19(1), 91–106 (2013)

43. Rump, S.M.: Fast interval matrix multiplication. Numer. Algorithms 61(1), 1–34 (2012)
44. Žilinskas, J.: Comparison of packages for interval arithmetic. Informatica 16(1), 145–154

(2005)

https://arxiv.org/abs/1802.08558
https://arxiv.org/abs/1802.08558

Chapter 9
Applications of Interval B&BT Methods

9.1 Introduction

Interval methods have found applications in several areas; yet, they are still not the
“mainstream”. This is caused as by the relative hardness of of mastering this tool, as
by its relatively high computational demands. Both obstacles should decrease in the
future bit by bit: the interval calculus becomesmore widely known and accepted con-
stantly and modern, highly-parallel computer architectures allow successful imple-
mentations of these demanding algorithms.

As for now, themost prominent areaswhere interval analysis has been successfully
applied are: robotics, chemical engineering and control theory.

This chapter surveys several selected applications; also, it discusses some less
known or only potential applications, e.g., in queueing theory.

9.2 Robotics

Robotics is one of the fields where the interval calculus has found pretty many
applications. This is not surprising when considering at least the following facts:

• In the description of both kinematics and dynamics of robots, we encounter
strongly nonlinear functions.

• While the models are nonlinear, their structure can be described by relatively pre-
cise formulae; this is in contrast to, e.g., economic modeling, where most models
are rather crude approximations.

• Wehave to estimate several quantities frommeasurements that are (by their nature)
imprecise; the measurement error can usually be bound by an interval.

Intervalmethods find applications in designing robots [31], kinematics computations,
path planning [45] and solving other problems.

© Springer Nature Switzerland AG 2019
B. J. Kubica, Interval Methods for Solving Nonlinear Constraint Satisfaction,
Optimization and Similar Problems, Studies in Computational Intelligence 805,
https://doi.org/10.1007/978-3-030-13795-3_9

101

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13795-3_9&domain=pdf
https://doi.org/10.1007/978-3-030-13795-3_9

102 9 Applications of Interval B&BT Methods

9.2.1 Manipulator Kinematics

The most common problems solved for manipulator kinematics are: the forward
kinematic problem (when we know the configuration of the manipulator and we
need to compute the position of the effector) and the inverse kinematics problem
(when we know the effector’s position and we need to determine the manipulator’s
configuration).

Variables used to describe the manipulator’s configuration vary, depending on the
type of manipulator (serial or parallel one) and the type of used joints: rotational,
transitional, spherical, etc.

As an example, let us consider solving the inverse kinematic problem of a serial
planar nR-manipulator, i.e., a manipulator working in the XOY space and consisting
of n rotational joints. Assume, the kinematic chain starts in the point (0, 0) and the
effector is supposed to be placed in the point (1, 1) and oriented orthogonally (under
the right angle) to the OY axis. This problem can be formulated as the following
system of equations:

n∑

i=1

li · cos
(i∑

j=1

xj
)

− 1 = 0 ,

n∑

i=1

li · sin
(i∑

j=1

xj
)

− 1 = 0 ,

n∑

i=1

xi − π

2
= 0 ,

xi ∈ [− π

2
,
π

2

]
, i = 1, . . . , n .

(9.1)

Obviously, xi’s represent angles between subsequent links and li’s—lengths of these
links. We assume li = 1.0 for i = 1, . . . , n.

For n = 3 the problem is well determined—there are exactly two manipulator
configurations satisfying the constraints (see Fig. 9.1, on the left). But for n = 5,
the set of possible manipulator configurations is a manifold—it is of the measure
continuum. A few example configurations are presented on the right part of Fig. 9.1

This problem has been considered, in particular, in the author’s papers [58, 60].

Fig. 9.1 Left: both feasible
3R manipulator
configurations, right: three
examples of uncountably
many feasible 5R
manipulator configurations

9.2 Robotics 103

To avoid costly computations of trigonometric functions, angles are often repre-
sented by pairs (s, c), consisting of their sines and cosines. Obviously, because of
the Pythagorean identity, we have s2 + c2 = 1, for each pair.

Problem (9.1), expressed in this manner, takes the following form:

n∑

i=1

li · ci − 1 = 0 ,

n∑

i=1

li · si − 1 = 0 ,

s2i + c2i − 1 = 0, i = 1, . . . , n ,

cn = 0 ,

sn = 1 ,

si, ci ∈ [−1, 1], i = 1, . . . , n .

Obviously, si = sin
∑i

j=1 xj, ci = cos
∑i

j=1 xj, where xj’s come from (9.1). As cn and
sn are, in fact, precisely known, we can reduce the above system to the following
form:

n−1∑

i=1

li · ci − 1 = 0 ,

n−1∑

i=1

li · si + ln − 1 = 0 ,

s2i + c2i − 1 = 0, i = 1, . . . , n − 1 ,

si, ci ∈ [−1, 1], i = 1, . . . , n − 1 .

(9.2)

Some well-known benchmarks, e.g., “Puma” or “Robot kinematics” [2] have such
origin, also.

There are several papers describing other similar problems and their interval-based
solutions. In particular, solving the forward kinematics problem for the Steward-
Gough platform has been extensively studied; cf. [80–83] and Chap. 8 of [45].

9.2.2 Mobile Robots

9.2.2.1 Robot Localization

The problem of mobile robot localization, in its traditional formulation, is founded
on the assumption that we know the environment, but do not know the current
position of the robot. We need to estimate this position from the measurements

104 9 Applications of Interval B&BT Methods

of the robot’s sensors: the odometer (which is usually the least accurate), cameras,
sonars, radars, etc. This problem is sometimes facetiously called “the kidnapped robot
problem” [16].

There can be several formulations of this problem and several assumptions we
can make. Initially, let us assume that the robot is immobile and the map is described,
e.g., as a set of segments, representing the walls. Measurements, provided by sonars,
cameras andother sensors, give the robot the information about its distance fromwalls
and other objects. Now, knowing the map, the robot has to answer the question: in
which location is it possible to see, such an environment? This reduces to a CSP
of the form: find x such that f (x) ∈ [y, y], where x represents the robot’s pose, f
represents the distances from the obstacles, seen in a specific pose and [y, y] is the
range of these distances, provided by the sensors.

Obviously, many questions should be answered to even describe the function
f , not to mention solving the problem. Section 8.4.2 of [45] describes the model
of sensors, allowing to bound their error. Other parts of Chap. 8 of the book [45]
discusses several other details.

Also, specific tests have been developed for solving the underlying CSP [52];
according to the claims of the authors, they reduce the search region pretty efficiently.

What about the situation, when the robot is not immobile? Then providing the
good initial estimate is still quite important. When the initial location is known with
enough precision, the robot can be tracked using the Kalman filter or its bounded-
error versions [45].

Another problem is that the map may be inaccurate or outdated. Then we face
the presence of so-called outliers, inevitable in robotics, but present also in other
estimation problems. Estimation in the presence of outliers will be described in
Sect. 9.3.

Finally, the map may be completely unknown. Such a situation is described in the
next paragraph.

9.2.2.2 SLAM

The problem of SLAM (Simultaneous Localization and Mapping) [24] is of great
importance in mobile robotics. In such problems we have no (or very limited) knowl-
edge not only of the initial position of the robot, but also on its surroundings, the
landmarks it may observe, etc. So, not only does the robot have to estimate its posi-
tion, but also to identify and localize the landmarks and describe the map of the
surrounding terrain.

Several (often incompatible) approaches have been proposed for solving the
SLAMproblem; see, e.g., [24]. Intervalmethods have extensively been applied there,
in various manners; in particular, the group of Jaulin has developed various SLAM
methods for underwater robots: [5, 43, 44, 106]. It is worth noting that the interval
approach succeeded in some cases where other approaches failed [79].

In general, we can distinguish two main approaches to SLAM:

9.2 Robotics 105

• feature-based SLAM—we treat coordinates of landmarks, obstacles, etc. as vari-
ables (together with the robot pose) and solve the resulting CSP problem,

• location-based SLAM—we define on the (2D or 3D) space of possible robot
locations a function (called occupancy map), returning zero if the point is free and
1 if the point is occupied by an obstacle; then we perform a SIVIA-like procedure
to enclose the “map”—the set of occupied points.

The first approach is usually cheaper for situations, when we are interested only in
point landmarks or when obstacles to localize have regular shapes (as on Fig. 9.2).

Hence in a natural environment, with quite irregular obstacles, it would be far less
useful (Fig. 9.3).

In general, the occupancy map does not have to be binary; it can return the prob-
ability that a point is occupied. Also, we could consider a fuzzy map, where points
can be occupied to some degree. Nevertheless, we are interested in points where the
robot can or cannot move, so such fuzzy values would need to be defuzzified for path
planning (cf. Sect. 9.2.3) or other processing.

Feature-based SLAM is adopted, e.g., in the CuikSLAM method of Porta [89].
In this approach, we use a kinematic solver, analogous as for manipulators, to solve
distance constraints between the robot and various landmarks. This approach has

Fig. 9.2 The robot in an
environment with regular
obstacles

Fig. 9.3 The robot in an
environment with irregular
obstacles

106 9 Applications of Interval B&BT Methods

been generalized by the author to the case when landmarks cannot be distinguished
faultlessly [67], but only preliminary experimental results are available, as for now.

And how to identify the landmarks? Image processing and object detection meth-
ods have to be used there. Several such methods have been developed; artificial intel-
ligence techniques are a good example. As we discuss in Sect. 9.4, interval methods
can find applications at this level, as well.

9.2.3 Path Planning

When we have the map and know the approximate robot position, we may want to
compute a feasible path to follow—both, for manipulators and mobile robots. The
path should be guaranteed not to collide with any obstacles; also, it should probably
be verified to intersect with some areas, the robot has to visit.

Interval methods are useful there, also [42].
Assume, there are two robot positions: a and b and we wish to find the path from a

to b. Obviously, a and b should be feasible. The simplest approach is to enclose the set
of all feasible robot positions (using some version of SIVIA algorithm) and then use
theDijkstra’s algorithm (or another graph algorithm) tofind the path froma tob.More
sophisticated algorithms make use of the fact that the Dijkstra’s algorithm is much
quicker than the branch-and-bound type procedure, so we can try to seek the path
repeatedly, even before finishing the exhaustive search for feasible positions [45].

9.3 Measurements and Estimation

All measurements are inaccurate. The measurement error is usually modeled using
probabilistic techniques; often it is assumed to have a normal distribution.

In his book [27] and several papers (i.a., [26, 28–30]) Gutowski thoroughly criti-
cizes traditional statistical techniques. Instead, an approach based on interval analysis
is proposed. Similar ideas have been introduced by other authors—in particular, [9,
10, 55, 101] and many others.

9.3.1 Parameter Estimation

In the simplest case, basing on the measurements, we intend to determine some
parameters that are fixed—they have identical values for all measurements.. Other
words, we need to find p such that:

y = f (x, p) . (9.3)

9.3 Measurements and Estimation 107

Assume we know n pairs (xi, yi) to satisfy the above relation, but we do not know
p—at most we have some crude bounds on it. Problem (9.3) can be linear (e.g., [26])
or nonlinear (e.g., [28, 102]).

In both cases, we can formulate the problem in two manners: either as an opti-
mization problem:

min
p

||y − f (x, p)|| , (9.3’)

or as a CSP:
Find the set {p | f(xi, p) ⊆ yi i = 1, . . . , n} . (9.3”)

Both approaches have their advantages and drawbacks. Using (9.3’), we can verify
if the model is correct, i.e., if it is consistent with all the measurements. On the other
hand, formulation (9.3”) allows us to find a solution, even if the model is not strictly
correct—or if there are some outliers (see below, Sect. 9.3.3).

Anyway, both problems can be solved using interval algorithms, described in
Chaps. 5 and 6.

9.3.2 State Estimation

State estimation is a specific kind of parameter estimation. If one of the parameters
is not constant, we treat its values in different time moments as different parameters:
p(0), p(1), p(2), etc.

We shall meet this kind of estimation problems, in particular, inModel-Predictive-
Control, that is described in Sect. 9.5.

9.3.3 Outliers

The outliers are measurements for which our model does not hold: usually, the error
is out of range that we assumed. There are several reasons for outliers’ occurrences:
malfunctioning of the hardware, unexpected events, etc.

As an example, we can assume the mobile robot, estimating its position, using
sensors’ data (cf. Sect. 9.2.2). The sensors provide us the information about distances
from the obstacles. But in many situations, another, unknown obstacle may occur: a
person enters the room, a column in a drowned city gets moved by the water, etc.

In such situations, an object that is not present on the map (or lack of an object
present on the map) influences the measurements, resulting in outliers. There can be
two results of such a situation:

108 9 Applications of Interval B&BT Methods

Fig. 9.4 Left: the original map—the robot can determine, inwhich room it is, thanks to the presence
of a pillar, center: an additional object may confuse the robot and make it think, it is in the other
room, right: now, as the additional object has different shape than the pillar, the robot will hopefully
realize that something is wrong—it should nowhere see what it does

• the set of values of the estimated quantity (e.g., the robot’s position) is empty,
• the set of values is nonempty, but erroneous.

The first situation is actually less dangerous, as the error gets detected, while in the
second case it escapes detection. Such situations are illustrated by Fig. 9.4.

How to solve problems of type Eq. (9.3”)? There are two basic approaches:

• seek solutions that satisfy at least k out of n inequalities,
• seek solutions that approximately satisfy all solutions, i.e., they satisfy f(xi, p) ⊆

[y
i
− ε, yi + ε] for some ε > 0.

9.3.4 Processing Statistical Samples Under Interval
Uncertainty

Finally, a few words have to be devoted to processing statistical data under interval
and/or fuzzy uncertainty. Computing the expected value of an interval-valued sample
is straightforward:

E x = 1

N
·

N∑

i=1

xi , (9.4)

but computing the sample’s variance or covariance is much more complicated. Actu-
ally, it has turned out [22] that while computing the lower bound of the variance is
tractable, computing (with a prescribed accuracy) the upper bound is NP-hard (it is
a bound of a general quadratic function).

Hence, computing the median or other quantiles is, again, simple. The domain
is interesting and worth further studies; developing interval-based tests for various
statistical hypotheses is going to be very useful, while far from simple.

9.4 Artificial Intelligence Systems 109

9.4 Artificial Intelligence Systems

The topic of AI tools is extremely broad (and pretty hot these days). Even a brief
survey is completely beyond the scope of this monograph. Let us just mention two of
the AI techniques, where interval methods have found some applications: artificial
neural networks and so-called support vector machines.

9.4.1 Neural Networks

Artificial neural networks (ANN) are commonly used for classification and for many
other tasks. The idea is to create a structure that works in a manner that mimics the
way human (or animal) brain works—obviously, in a severe simplification.

A single neuron is represented by the structure visible on Fig. 9.5. Values xi for
i = 1, . . . , n are its inputs, wi’s are their weights and σ(·) is the so-called sigmoid
function, that returns values close to zero when the neuron is “not triggered” and
close to one if it is “triggered”. As the sigmoid function, we can use, in particular:

σ(z) = 1

1 + exp(−z)
, (9.5)

hyperbolic tangent or arctan can also be used. It is worth noting that in the original
works of McCulloch and Pitts [78], the Heaviside step has been used, instead of the
sigmoid function:

H (z) =
{
1 for z ≥ 0,
0 for z < 0.

, (9.6)

Fig. 9.5 A single neuron
model

110 9 Applications of Interval B&BT Methods

Fig. 9.6 An artificial neural
network

Yet, as the Heaviside step is non-differentiable (at least in the space of “proper”
functions), the smooth alternatives described above are more commonly used, today.

So, the artificial neuron works as the function, transferring its inputs as follows:

y = σ
(n∑

i=1

wixi
)
. (9.7)

Such neurons are grouped in a few layers; each of them processes the data generated
by earlier layers (see Fig. 9.6). Traditionally, just two layers have been used: the input
layer and the output layer; recently deep believe networks, with several hidden layers,
become more and more popular. The idea of DBN is that the network creates some
auxiliary “notions” to produce the final decision; a good overview of deep learning
techniques (not restricted to ANNs) can be found in [96].

Training a neural network (teaching it to respond with desired outputs to proper
inputs) is, in its essence, a specific kind of parameter estimation: we have a set of
input-output pairs—precise (xi, yi) or interval-valued ones (xi, yi)—and we want to
determine the weights. It can be done, as in Sect. 9.3.1, either by solving a CSP or
an optimization problem. The former approach can be found, e.g., in [3], while [95]
focuses on the latter one. Actually, using global optimization to train a neural network
seems more popular, as non-interval researchers also tend to use optimization for
parameter estimation. Some use other global optimization techniques, as simulated
annealing or genetic algorithms. Non-global techniques, like the steepest descent
iteration or quasi-Newton methods have also been applied in ANNs training.

The interval approach seems a promising alternative and their acceptance
increases. Both interval approaches—CSP and global optimization—are considered
in [7], for a three-layer network.

The network presented on Fig. 9.6 does not contain feedback connections: all
information is transmitted “in one way”: from the input layer, through the hidden
one(s) to the output; there are no “backward” connections to earlier layers. Such
non-recurrent ANNs are commonly (and successfully) used in practice, e.g., in clas-

9.4 Artificial Intelligence Systems 111

Fig. 9.7 The “margin”
between linearly separate
sets—maximized by SVMs

sification [73, 108], image recognition [109] or simply approximating multivariate
nonlinear functions.

Nevertheless, in some applications (like prediction of a time series or other issues
related to dynamical systems), we need the neural network to remember its previous
states—and this can be achieved by using the feedback connections. It seems rea-
sonable to assume, interval algorithms can be used for training ANNs with feedback
as well, as for these without it. Nevertheless, the author is not aware of any actual
research performed in this area.

9.4.2 Support Vector Machines

Neural networks are a powerful, but complicated AI tool. For simple classification
problems, they are often replaced by tools less sophisticated, but simpler and—which
is the most important—easier to train. Support Vector Machines (SVM) an example
of such tools. As example applications, let us present [11, 70–72, 116].

In its principle, an SVM is roughly equivalent to a single neuron of an ANN.
We have two sets of points: belonging and non-belonging to the approximated set,
and we seek the hyperplane separating these sets of points. The “margin” (Fig. 9.7)
between the sets should be maximized.

This decision problem can be formulated in terms of optimization:

min
w,b

||w|| (9.8)

s.t.

yk · (wTxk − b) ≥ 1 ∀k = 1, . . . , n.

Does (9.8) always have a solution?Not necessarily, of course. The feasible setmay be
empty—this is when the sets of elements belonging and non-belonging to a notion,
are not linearly separable.

In such cases, the so-called kernel trick can be applied: we project the points
(xk , yk) to another, higher-dimensional, space, tomake themmore likely to be linearly
separable.

112 9 Applications of Interval B&BT Methods

This results in the following optimization problem:

min
w,b

||w|| (9.9)

s.t.

yk · (wTφ(xk) − b) ≥ 1 ∀k = 1, . . . , n .

Most common kernel functions can be found, i.a., in the “Practical guide to SVM
classification” [12].

In some situations, we are aware that our data contain outliers (cf. Sect. 9.3.3)
and the separating hyperplane does not have to precisely separate all of the points.
In such cases, some of the constraints may not be satisfied at the solution point. To
obtain such a solution, we introduce additional slack variables ζk for each constraint
k = 1, . . . , n. The importance of minimizing the slack variables will be described
by an additional parameter C.

Thus, we obtain a modified optimization problem for training the SVM:

min
w,b

(
wTw + C ·

n∑

k=1

ζk
)

(9.10)

s.t.

yk · (wTφ(xk) − b) ≥ 1 − ζk , for k = 1, . . . , n .

The optimization problems we need to solve for training an SVM, specifically
problems (9.8)–(9.10), presented above, are usually convex (but not for all kernels!).
This is actually the greatest advantage of SVMs with respect to ANNs (where the
optimization problem is certainly nonconvex) and also the reason why interval meth-
ods are relatively rarely used to parameterize this tool.

However, theybecomevirtually irreplaceable in the case trainingpairs are interval-
valued: (xi, yi), instead of precise ones: (xi, yi). Such a situation has been considered,
i.a., in [93] or [111].

9.5 Control Theory

Robust control is another field where interval methods find a natural application.
Control systems should be designed so that some properties (which usually means
stability, but also observability, etc.) of the closed-loop system are fulfilled, even if the
parameters deviate from their nominal values. Checking many of these conditions
reduces to solving a CSP or an equations system that either has to be fulfilled or
cannot be fulfilled.

9.5 Control Theory 113

9.5.1 Stability Checking

For instance, let us consider a continuous-time linear system:

ẋ(t) = A · x(t) + B · u(t) ,
y(t) = C · x(t) .

Assume we do not know exact values of the matrix parameters A, B,C, but only their
bounds: A ∈ A, B ∈ B, C ∈ C.

Such a system has the property of asymptotic stability when all eigenvalues of
A have negative real parts (see, e.g., Chap. 7 of [45]). Such a condition would be
relatively easy to verify using interval methods, if we had a good algorithm to bound
the eigenvalues of an interval matrix A. Unfortunately, the solution of such problem
is not straightforward; see the discussion in Sect. 3.1 of [61].

A better approach is to use the characteristic polynomial of the matrix A ∈ A.
The Routh-Hurwitz criterion allows us to check the stability of this polynomial, by
solving a system of inequalities, hence a CSP. Details can be found, in particular, in
[85] or in Sect. 7.2 of [45].

An analog for a discrete-time system:

x(k + 1) = A · x(k) + B · u(k) ,
y(k) = C · x(k) ,

is the Schur criterion, verifying that all roots of the characteristic polynomial ofA ∈ A
(and hence all eigenvalues of the matrix) lie in the unit circle. As in the continuous
case, interval methods can be applied for verification of this condition [112].

9.5.1.1 Robust Control

Robust control problems are often formulated not in terms of uncertain matrices, as
in the previous subsection, but in terms of other uncertain parameters:

ẋ(t) = A(p) · x(t) + B(p) · u(t) ,
y(t) = C(p) · x(t) ,

where p ∈ [p, p].
In this case, the characteristic polynomial might have a more complicated struc-

ture (its coefficients will not be independent). Section 7.3 of [45] considers several
techniques and theorems to deal with such problems; a good survey can also be found
in [112].

114 9 Applications of Interval B&BT Methods

Fig. 9.8 A system with
negative feedback—closed
loop control

In general, affine arithmetic and other techniques for parametric linear systems
can be applied there: [34, 103, 104]. Modal interval arithmetic methods are also very
useful for robust control problems [113]; yet, the use of these kind of methods is
beyond the scope of this monograph.

9.5.1.2 Frequency Methods

Analyzing dynamical systems in the time domain can be cumbersome, especially
when the responses are slowly decaying. In such cases, it is better to analyze the sys-
tem in its frequency domain. There are several such methods, typically applying the
Fourier transform. These methods include spectral analysis, Bode plots and Nyquist
plots.

This last technique is devoted to analyzing stability of systems with the negative
feedback, presented on Fig. 9.8.

Such systems tend to have better characteristics than open-loop ones; in particular,
they are less sensitive to parameter variations.

How to analyze the stability of closed-loop systems? Thanks to the Nyquist crite-
rion, the problem reduces to analyzing the open-loop system. If the open-loop system
has the transfer function G(s), then this function for the closed-loop system would
be as follows:

Gc(s) = G(s)

1 + G(s)
. (9.11)

Assume, the open-loop system is stable, i.e.,G(s) does not have poles in the real half-
plane. Then it suffices to check, if

(
1 + G(s)

)
does not have zeros, i.e., G(jω �= −1

forω ∈ [0,+∞]. This boils down, again, to solving a system of equations; precisely:
verify that such system does not have solutions.

9.5.2 Designing a Controller

When designing a controller (Fig. 9.9)—either of type PID, or another one (H∞,
fuzzy,MPC, neural…)—weneed to choose its parameters, so that given requirements
are met. Such design problems are often formulated as optimization problems: we
tend tomaximize the stability degree or other performancemeasure; see, e.g., Section
7.5 of [45].

9.5 Control Theory 115

Fig. 9.9 Control system

Global optimization (cf. Sect. 6.1) can be applied here or linear programmingwith
interval coefficients, as in [84].

Hence in [69], we consider bicriteria design of a PI controller, with the transfer
function:

R(s) = k · (
1 + 1

Ts

)
. (9.12)

The criteria are: the integral square error and the total change of the unit response.
Multicriteria analysis methods can be applied to choose the best parameters of

the controller. In [69], the whole Pareto frontier (and Pareto set) has been computed.
Other approaches, like goal programming or TOPSIS [98] are applicable, as well.

9.5.3 H∞-Control

TheH∞-control is one of modern approaches to designing controllers. The idea is to
choose such a controller that minimizes some quality measure, specifically the H∞
norm of some matrix.

Thus, the synthesis problem reduces to seeking the global optimum of a function
over the feasible set. Such an optimization problem can, obviously, be solved using
interval methods (cf. Sect. 6.1). A specialized algorithm has been proposed in [85].
In [115] it is noted that such algorithm is more stable and less sensitive to numerical
errors than its alternatives.

A similar optimization can be performed over Hardy spaces other than H∞, e.g.,
over H2. There are also mixed H2/H∞ approaches [112].

9.5.4 Model-Predictive-Control

Model-Predictive Control (MPC) is another popular advanced control technique,
often preferred to PID, because of its robustness and simplicity in taking control
constraints into account. In recent years, the interest grows in applying interval
methods to compute MPC.

116 9 Applications of Interval B&BT Methods

There are several variants of this approach.We can use it in continuous or discrete-
time systems, we can use a single prediction or a bunch of predictions, we can
associate probabilities with various predictions or use the minimax approach. In any
case, we tend to optimize the predicted behavior of the controlled system, in a given
time interval. Hence, finding the control for the MPC problem boils down to solving
a nonlinear optimization problem.

Because of that, interval methods are a natural tool to be used. Indeed, several
researchers have contributed to develop proper algorithms. In particular, papers of
Rauh and his collaborators are remarkable in this area; see, e.g., [91, 92] and the
references therein.

Also the author contributed to the field, proposing to use total derivatives [59] in
MPC problem description.

As for nearly-linear systems, simpler control methods (like PID) suffice, the most
important purpose of MPC is often to drive the system to the vicinity of some stable
region. In this region, we can linearize the system and apply some simple control
method. Such use of MPC is called the dual-mode MPC and interval methods are
useful there, as well—see [17].

9.6 Nonlinear Dynamics, Chaos and Differential Equations

Also in other problems related to dynamical systems, interval analysis can become
handy. Solving ordinary and partial differential equations, integral equations and
other variations have been extensively studied by several authors. Particularly, let us
note several contributions of Berz and Makino, e.g., [35, 77].

Proving the chaotic behavior of some dynamical systems is worth noting as one
of the significant achievements of the interval community. Several papers can be
quoted here, in particular many papers of Tibor Csendes and his collaborators: [14,
15]. In 2014 a Moore’s prize has been given to Balázs Bánhelyi, Tibor Csendes,
Tibor Krisztin and Arnold Neumaier, for verifying the Wright’s conjecture on a
delay differential equation [4].

Among other notable papers, let us list, i.a., the following ones: [25, 39–41, 86,
114].

The above list of papers on using interval methods for differential equations is far
from being complete (or even fair), but a more complete description of contributions
to ODE and PDE is absolutely beyond the scope of this Chapter; an interested reader
can easily find several other papers and books on these topics.

9.7 Economical Modeling and Multiagent Systems 117

9.7 Economical Modeling and Multiagent Systems

Economical modeling differs to the high extent from robot modeling, described in
Sect. 9.2. Although, the models are nonlinear, also, they are far less precise than for
distance constraints in kinematic problems. Various models of price sensitivity [65]
are a good example.

Consequently, in solving economical problems, we are often not interested in pre-
cise localization, e.g., of the global optimum (or another precisely-defined solution),
but in finding an acceptable solution, which can be obtained by less computationally-
demanding techniques. On the other hand, problems under solutions are often of very
high dimensionalities (thousands andmore of variables), which is far beyond the pos-
sibilities of today interval B&BT algorithms (cf., e.g., [65]).

Does it mean interval algorithms will not be useful for economical applications?
No, because of the following reasons:

• Although often we can settle with crude approximations of the solution (obtained,
basing on a very crude and inaccurate model), there are some applications, where
finding, e.g., the global maximum (or minimum) is crucial; such an application
is described in Sect. 2 of [13]: risk management requires robust approximation of
VaR (Value-at-Risk) or another risk measure.

• Imprecision of economical models can often be described as interval uncertainty.
This approach is applied, e.g., in [19].

9.7.1 Economy Modeling

In this subsection, let us consider three economical modeling issues, where interval
methods have found useful applications.

9.7.1.1 Game-Theoretic Models

In [68], the author has described agame-theoreticalmodel of the economy, basingon a
simple Keynesian theory. Using the algorithms described in Sect. 6.3, we localize the
Nash equilibrium of the game between the following players: the monopolistic trade
union, the government and the central bank. Their decision variables are: the nominal
wage W , budget deficit B and the supply of money M , respectively. Companies are
not considered as a player in this model, as they are assumed to be perfectly rational
and choose decisions that maximize their profits; hence they can be eliminated from
the model (cf. [68] and the references therein).

118 9 Applications of Interval B&BT Methods

Decision problems for all three players can be formulated as follows.
For the trade union:

find wo = arg max0≤w≤eTU = (1 − γ) ·
(
w − m − B

exp(m)
+ yc

)
+ (9.13)

+α1 · min
(
γ · (

m + B

exp(m)
− w

) + (1 − γ) · yc − yTU , 0
)

+

−α2 · max
(
exp

(
(1 − γ) · (

m + B

exp(m)

) + γw − (1 − γ) · yc
) +

− 1 −
TU , 0
)
.

For the government:

find Bo = arg max0≤B≤Bm
G = β1 · min(B − BG, 0) + (9.14)

+β2 · min
(
γ · (

m + B

exp(m)
− w

) + (1 − γ) · yc − yG, 0
)

+

−β3 · max
(
exp

(
(1 − γ) · (m + B

exp(m)
) + γw − (1 − γ) · yc

) +

− 1 −
G, 0
)
.

And for the central bank:

find m = arg maxm−≤m≤m+CBS(m) = (9.15)

− max
(
exp

(
(1 − γ) · (m + BN (m)

exp(m)
) +

+ γwN (m) − (1 − γ) · yc
) − 1 −
CB, 0

)
+

+ δ · min
(
γ · (

m + BN (m)

exp(m)
− wN (m)

) + (1 − γ) · yc − yCB, 0
)
.

Values w, b andm are logarithms ofW , B andM . Again, details have been explained
in [68].

Interval B&BT methods allowed to enclose the solution of this game—at least
for this simple model.

9.7.1.2 Input-Output Models

Another important economicalmodel is theLeontief input-outputmodel, representing
interdependencies between various branches of an economy. The model of Wassily
Leontief has earned a Nobel prize (in 1973) and is currently used by several countries
for planning.

9.7 Economical Modeling and Multiagent Systems 119

Assume we have N goods and the demand for each of them by the end consumers
(households) is di for i = 1, . . . ,N . But to produce a unit of the j-th good, we need
aij amounts of i-ths goods for i = 1, . . . ,N and j �= i.

This means, we need to produce the following amount of the i-ths good in our
economy:

xi =
N∑

j=1

aijxj + di . (9.16)

This results in a system of equations, that can be presented in the matrix form:

x = A · x + d . (9.17)

The obvious problem is that the parameters aij and di are hard to determine and
prone to various kinds of uncertainty. Hence, it is useful to represent them not as
precise numbers, but either intervals (see, e.g., [94], Chap. 6 of [51]) or fuzzy numbers
(Sect. 7.2 of [20]).

For interval linear systems, variousmethods (and various solution concepts!) have
been proposed; we have already discussed some of them—cf., e.g., [36, 87, 97, 99,
100, 104] and many others.

What about fuzzy linear systems? Actually, a fuzzy number can be represented
as a collection of nested intervals; see Fig. 9.10 and Chap. 11 of [51].

So, the interval calculus can be applied to fuzzy numbers, as well.

Fig. 9.10 Fuzzy set as a collection of nested intervals

120 9 Applications of Interval B&BT Methods

9.7.1.3 Net Present Value and Internal Rate of Return

TheNet Present Value (NPV) is a common quality measure of financial projects [20].
It is usually computed as:

NPV =
T∑

t=1

Pt

(1 + d)t
− KV , (9.18)

where KV is the initial capital to be invested and Pt is the total income in year
t = 1, . . . ,T . Obviously, d is the discount rate.

The value of d forwhichKV is at least returned by the income is called the Internal
Rate of Return (IRR); so, it is the solution of the following nonlinear equation:

T∑

t=1

Pt

(1 + d)t
= KV .

As for the Leontief equations system, the parameters are severely uncertain in all
real-life situations. While KV may be considered known (although, in [20] it is
considered fuzzy, also), Pt’s are definitely vague.

All representations of uncertainty can be applied to capture this imprecision:
probabilistic, set-theoretic and fuzzy models. As in previous paragraphs, the interval
calculus is useful to perform the computations. The concept of interval extended zero
(cf. [18, 19, 97]) seems particularly useful, in such applications.

However, it is worth noting that only relatively simple cases can be solved
in practice. Providing useful estimates for real-world data still remains an open
problem [20].

9.7.1.4 Value at Risk

TheValue at Risk (VaR) is another widely accepted tool in financial decisionmaking.
It is ameasure of the risk of a project, defined as the possible loss of the project (under
certain assumptions).

Computing this value, even provided all the assumptions are proper, may be a
hard task. In [13], Kearfott describes this issue for the currency trading problem by a
bank. It turns out, an optimum of a nonconvex function has to be localized to properly
estimate the VaR. This has been one of the applications of the GlobSol solver [1].

9.7 Economical Modeling and Multiagent Systems 121

9.7.2 Queueing Systems

This is another natural source of nonlinear problems. Various queueing systems and
networks have features (mean sojourn time, mean busy period length, etc.) that are
nonlinear functions of some parameters.

For instance, in the case of an M /M /1 queueing system, i.e., a system with
exponential (M = “memoryless”) interarrival and service time and a single service
channel, we have the following formulae for the average sojourn time (by which we
understand the time the task spends in the system: waiting in the queue and then
being serviced).

In the case of an infinite buffer for the queue, we have:

E S = 1

μ − λ
, (9.19)

while for a limited buffer of size n − 1:

E S = 1

μ − λ
− (n + 1) · (

λ
μ

)n+1

μ ·
(
1 − (

λ
μ

)n+1
) . (9.20)

In both cases, λ is the arrival rate (parameter of the exponential distribution of the
interarrival time; 1

λ
is the mean of this time) and μ—the service rate.

In the case of an M /G/1 queue, i.e., the one with non-exponential service time,
the formula is more sophisticated:

E S = EB + λ · E(B2)

2 · (1 − λ · EB)
, (9.21)

where B is the service time. As we can see from Formula (9.21), the mean value
of the sojourn time depends not only on the mean value of the service time, but
also on its variance (the second moment). For details and explanation of these inter-
esting phenomena of probability theory, the reader can consult several textbooks,
e.g., [32, 107].

Attempting to optimize such measures results in global optimization problems
[62–64]. It is worth noting that, for some service time distributions, particularly long-
tailed ones (like the Pareto distribution), the expected value (9.21) may be infinite. In
such cases, another performance measure is necessary. It can, in particular, be based
on the Laplace transform of the PDF of the service time [63].

Interval methods are well suited to bound the values of performance measures—
presented by above formulae as well, as other ones. They get even more useful, if
some parameters of these distributions are not precisely known, which is a com-
mon situation. Paper [76] surveys several such situations. In [117], an application to
modeling the performance of SunRPC systems is discussed.

122 9 Applications of Interval B&BT Methods

Fig. 9.11 Open queueing
network example

Fig. 9.12 Closed queueing
network example

In the latter paper (and many other ones), a computer system is modeled as a
queueing network: open or closed one. In the first case, there is an external source
of tasks entering the system (customers, packets, programs or whatever the system
is modeling).

Closed queueing networks are harder to analyze as the arrival rate to the system
is not a parameter, but has to be deduced from the structure of the system. In closed
networks, the number of tasks that circulate in the system is fixed. Clients request-
ing some services can be represented by additional queueing systems with a single
task that is send to the server with some probability distribution, representing the
likelihood of the service being requested by this client (Figs. 9.11 and 9.12).

An approach to analyze closed queueing network is themeanvalue analysis (MVA;
see, e.g., [32]).

In [74], MVA is performed for a closed queueing network with uncertain parame-
ters. The interval algorithmdescribed there iswell-tuned,makinguse ofmonotonicity
of some functions and other specific features. Another approach is described in [75].

In a more general setting, the parameters may not be interval-valued, but fuzzy or
described by yet another uncertainty representation (cf. Sect. 9.7.3.1). In [90], it is
claimed that while the uncertainty related to arrival times is usually of probabilistic
nature, vagueness of service times is better described by fuzzy or possibilistic quan-
tities. This is the case when we have only superficial knowledge about scheduling
policies and the servicing process on the server machine. In the author’s opinion, the
interarrival time’s uncertainty may also be of non-probabilistic nature. This would

9.7 Economical Modeling and Multiagent Systems 123

be the case when the users choose the server they want to use basing on some criteria
that are only broadly known to us. Such a model would be an obvious extension of
the one described in [57].

Queueing systems are usually modeled via Markov chains [107]. Other model
is diffusive approximation, used in the case of so-called heavy-traffic: we assume
there a continuum of tasks processed at service stations, instead of a discrete set of
tasks. Such a model is considered, i.a., in [53]. There are also other approaches to
solve queueing systems. Using interval methods, we can attempt to directly solve
the Lindley’s equation, using the Wiener-Hopf factorization [33]; details are beyond
the scope of this survey.

Markov chains are typically considered to have a precisely-known transition
matrix; yet, in real-life situations this assumption should often be relaxed. In partic-
ular, several authors have considered Markov chains with interval-valued transition
probabilities. Two versions of this problem should be distinguished:

• theMarkov process is stationary: its transitionmatrix is invariant, just not precisely
known; such a situation is considered, i.a., in [54];

• the Markov process may be non-stationary and its transition matrix may vary; yet,
we know bounds on its changes [105].

Up to now, relatively few studies on these topics have been published. A possible
reason is that few researchers are skilled in both areas: queueing theory and interval
methods. Hopefully, the situation will change in the future, as modeling computer
systems (and many other systems well-described by queueing models) has several
important applications, and interval methods are being used more and more fre-
quently.

9.7.3 Decision Making

Most problems considered in this monograph can be classified as “decision-making
problems”, namely almost all problems of type (1.1). Yet, in this subsection, we shall
consider more practical applications.

When facing the need of choosing an option out of a few alternatives or from a
continuum of possible values, we need to deal with two problems: uncertainty and
multicriteriality.

9.7.3.1 Uncertainty Representation

The uncertainty we face for most real-world problems, has several sources. Numer-
ical computations are inaccurate, our measurements are imprecise, our models are
only some approximations of actual phenomenons, we lack the knowledge of sev-
eral things (and of decisions of other decision-makers); even our own goals (and
sometimes also our limitations) are not quite strict.

124 9 Applications of Interval B&BT Methods

Uncertainty modeling is a broad research field. Traditional tools and theories used
to describe uncertainty are:

• probability theory,
• set theory,
• fuzzy set theory and fuzzy logic.

Some more modern theories, include:

• various kinds of imprecise probability theory (see, e.g., [6, 23, 57, 63], Chap. 10
of [51]),

• intuitionistic fuzzy sets—these of Atanassov and other versions (cf. Sect. 3.1 of
[20]),

• so-called type-2 and type-n fuzzy sets (cf. Chap. 3 of [20]),
• possibility theory of Dubois and Prade,
• Dempster-Shafer theory (cf. [21], Sect. 3.3 of [20]),
• info-gap theory of Ben-Haim [8]; see also [88, 110].

and many other approaches. In an interesting paper [56], a few of the above uncer-
tainty models are applied to decide whether to use cloud storage or not.

The rationale behind all these models is far beyond the scope of this monograph.
What is important is that interval methods are pretty useful in processing several of
them.

It is important not to identify the interval calculus with any of the uncertainty
representations. Even for the set-theoretic uncertainty, it might not be necessary to
apply the interval analysis; the Hurwicz approach, combining the best and worst case
with some coefficients [37, 66] or other approaches (like in [118] or [38]) can be
sufficient.

Nevertheless, in many situations, intervals may become very handy:

• set-theoretic uncertainty canbeboundusing (a collectionof) intervals to investigate
the worst-case scenario, using optimization methods (possibly of Sect. 6.1),

• also for the info-gap theory, the interval calculus can be applied to analyze the
possible values of the unknownparameters andfind the robustness andoportunness
of the uncertainty model, in the range of the horizon of uncertainty,

• fuzzy sets (and their various extensions) can be represented as a collection of
α-cuts, which again may be bound using intervals (cf. Chaps. 11–13 of [51],

• also for the Dempster-Shafer theory and various imprecise probability theories,
the application of interval methods is straightforward.

Particular interest should be devoted solving multistage decision problems in pres-
ence of various kinds of uncertainty. Awell-established approach (or, more precisely:
class of approaches) to solve such problems is dynamic programming (DP; see, e.g.,
[49] and the references therein), efficient for some, but definitely not all cases [48].
Alternatives toDP are some randomized algorithms [48] ormethods similar toB&BT
[46, 47].

9.7 Economical Modeling and Multiagent Systems 125

In [50] an application to controlling regional development is described. Both
objective and subjective goals and constraints are considered in this paper and they
are modeled using fuzzy quantities.

As it has already been stated, interval methods can help in solving such problems
on various levels: at least, in the branch-and-bound process, in the implementation
of fuzzy arithmetic itself, and, finally, in aggregating various criteria. This last topic
is going to be described in the next paragraph.

9.7.3.2 Multicriteria Decision Making (MCDM)

In Sect. 6.2, we considered the problem of approximating the Pareto frontier (and
Pareto set) of a multicriteria decision problem. But even enclosing the whole effi-
cient set does not solve the issue of choosing a single decision, that is going to get
selected—the one “subjectively” optimal for the decision-maker. To obtain this goal,
we need to “aggregate” the criteria somehow; we may or may not approximate the
whole frontier for that.

A few approaches have been proposed for MCDM: utility functions—linear or
nonlinear ones (aggregating all criteriawith someweights), goal programming, TOP-
SIS, AHP…

For several of these approaches, the preferences of the decision-maker are not
completely precise. Fuzzy (and intuitionistic fuzzy) representation of goals or refer-
ence points seems quite natural. Interval methods can be applied in such situations,
in a manner analogous to the ones described previous paragraphs.

For details, the interested reader should consult [20] and the references therein.
Heuristics for comparison of intervals, fuzzy intervals, etc. (cf. Sect. 2.6) are partic-
ularly useful, in this application.

Interval-valued reference points have also been considered (cf., e.g., [98] and the
references therein).

9.8 Summary

As we have seen, while the interval approach is still underused, the area of its appli-
cations continuously increases. Potential usage in various branches of science and
engineering are, as it has been shown, very broad. We hope for increasing adoption
of the interval calculus in these areas—and we look forward to it. The advent of mul-
ticore and manycore architectures, as well as other massively parallel ones, should
promote this approach, as the interval B&BT algorithms are well suited for parallel
implementations (cf. Chap. 7).

126 9 Applications of Interval B&BT Methods

References

1. GlobSol solver (2015). https://interval.louisiana.edu/GlobSol/
2. Polynomial nonlinear system benchmarks (2017). https://www-sop.inria.fr/coprin/logiciels/

ALIAS/Benches/node1.html
3. Adam, S.P., Karras, D.A., Magoulas, G.D., Vrahatis, M.N.: Solving the linear interval toler-

ance problem for weight initialization of neural networks. Neural Netw. 54, 17–37 (2014)
4. Bánhelyi, B., Csendes, T., Krisztin, T., Neumaier, A.: Global attractivity of the zero solution

for Wright’s equation. SIAM J. Appl. Dyn. Syst. 13(1), 537–563 (2014)
5. Bars, F.L., Bertholom, A., Sliwka, J., Jaulin, L.: Interval SLAM for underwater robots; a new

experiment. In: NOLCOS 2010 (2010)
6. Beer, M., Ferson, S., Kreinovich, V.: Imprecise probabilities in engineering analyses. Mech.

Syst. Signal Process. 37(1–2), 4–29 (2013)
7. Beheshti, M., Berrached, A., de Korvin, A., Hu, C., Sirisaengtaksin, O.: On interval weighted

three-layer neural networks. In: Proceedings of the 31st Annual on Simulation Symposium,
1998, pp. 188–194. IEEE (1998)

8. Ben-Haim, Y.: Info-gap Decision Theory: Decisions Under Severe Uncertainty, 2nd edn.
Academic Press (2006)

9. Berleant, D., Xie, L., Zhang, J.: Statool: a tool for distribution envelope determination (DEnv),
an interval-based algorithm for arithmetic on random variables. Reliab. Comput. 9(2), 91–108
(2003)

10. Berleant, D., Zhang, J.: Using Pearson correlation to improve envelopes around the distribu-
tions of functions. Reliab. Comput. 10(2), 139–161 (2004)

11. Bilski, A.: A review of artificial intelligence algorithms in document classification. Int. J.
Electron. Telecommun. 57(3), 263–270 (2011)

12. Chang, C.C., Lin, C.J.: LIBSVM–A Library for Support Vector Machines (2016). https://
www.csie.ntu.edu.tw/~cjlin/libsvm/

13. Corliss, G.F., Kearfott, R.B.: Rigorous global search: Industrial applications. In: Develop-
ments in Reliable Computing, pp. 1–16. Springer (1999)

14. Csendes, T., Bánhelyi, B., Garay, B.: A global optimization model for locating chaos. In:
International Workshop on Global Optimization, pp. 81–84 (2005)

15. Csendes, T., Bánhelyi, B., Hatvani, L.: Towards a computer-assisted proof for chaos in a
forced damped pendulum equation. J. Comput. Appl. Math. 199(2), 378–383 (2007)

16. Desrochers, B., Lacroix, S., Jaulin, L.: Set-membership approach to the kidnapped robot
problem. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 3715–3720. IEEE (2015)

17. Dombrovskii, V.V., Chausova, E.V.: Model predictive control for linear systems with interval
and stochastic uncertainties. Reliab. Comput. 19(4), 351–360 (2014)

18. Dymova, L., Pilarek, M., Wyrzykowski, R.: Solving systems of interval linear equations with
use of modified interval division procedure. In: PPAM 2009 Proceedings (2010)

19. Dymova, L., Sevastjanov, P., Pilarek, M.: A method for solving systems of linear interval
equations applied to the Leontief input-output model of economics. Expert Syst. Appl. 40(1),
222–230 (2013)

20. Dymowa, L.: Soft Computing in Economics and Finance. Springer (2011)
21. Fedrizzi, M., Kacprzyk, J., Yager, R.R. (eds.): Advances in the Dempster-Shafer Theory of

Evidence (1994)
22. Ferson, S., Kreinovich, V., Aviles, M.: Exact bounds on sample variance of interval data.

In: Extended Abstracts of the 2002 SIAM Workshop on Validated Computing, Toronto, pp.
67–69 (2002)

23. Ferson, S., Kreinovich, V., Ginzburg, L., Myers, D.S., Sentz, K.: Constructing probability
boxes and Dempster-Shafer structures. Technical Report (2003)

24. Frese, U.: A discussion of simultaneous localization andmapping.Auton. Robot. 20(1), 25–42
(2006)

https://interval.louisiana.edu/GlobSol/
https://www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/node1.html
https://www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/node1.html
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/

References 127

25. Gajda, K., Jankowska, M., Marciniak, A., Szyszka, B.: A survey of interval Runge–Kutta and
multistep methods for solving the initial value problem. In: PPAM 2007 Proceedings. Lecture
Notes in Computer Science, vol. 4967, 1361–1371 (2009)

26. Gutowski, M.W.: Interval straight line fitting (2001). arXiv:math/0108163
27. Gutowski, M.W.: Introduction to Interval Calculi and Methods (in Polish). BEL Studio,

Warszawa (2004)
28. Gutowski, M.W.: Interval experimental data fitting. In: Liu, J. (ed.) Focus on Numerical

Analysis, pp. 27–70. Nova Science Publishers, New York (2006)
29. Gutowski,M.W.: Breakthrough in interval data fitting I. The role ofHausdorff distance (2009).

arXiv:0903.0188
30. Gutowski, M.W.: Breakthrough in interval data fitting II. From ranges to means and standard

deviations (2009). arXiv:0903.0365
31. Hao, F., Merlet, J.P.: Multi-criteria optimal design of parallel manipulators based on interval

analysis. Mech. Mach. Theory 40(2), 157–171 (2005)
32. Harchol-Balter, M.: Performance Modeling and Design of Computer Systems: Queueing

Theory in Action. Cambridge University Press (2013)
33. Haßlinger, G., Fausten, D.: Analysis of the workload in communication systems including

data transfers over arbitrary time scales. Int. J. Simul. 3(3–4), 25–37 (2002)
34. Hladík, M.: Enclosures for the solution set of parametric interval linear systems. Int. J. Appl.

Math. Comput. Sci. 22(3), 561–574 (2012)
35. Hoefkens, J., Berz, M., Makino, K.: Efficient high-order methods for ODEs and DAEs. In:

Automatic Differentiation of Algorithms, pp. 343–348 (2002)
36. Horacek, J., Hladík, M.: Subsquares approach–a simple scheme for solving overdetermined

interval linear systems. In: PPAM 2013 (10th International Conference on Parallel Processing
and Applied Mathematics) Proceedings. Lecture Notes in Computer Science, vol. 8385, pp.
613–622 (2014)

37. Hurwicz, L.: Optimality criteria for decisionmaking under ignorance. In: CowlesCommission
Discussion Paper, Statistics, 370 (1951)

38. Huynh, V., Kreinovich, V., Nakamori, Y., Nguyen, H.T.: Towards efficient prediction of deci-
sions under interval uncertainty. In: PPAM 2007 Proceedings. Lecture Notes in Computer
Science, vol. 4967, pp. 1372–1381 (2009)

39. Jankowska, M.A.: Remarks on algorithms implemented in some C++ libraries for floating-
point conversions and interval arithmetic. In: PPAM 2009 Proceedings. Lecture Notes in
Computer Science, vol. 6068, pp. 436–445 (2010)

40. Jankowska, M.A.: An interval backward finite difference method for solving the diffusion
equation with the position dependent diffusion coefficient. In: PPAM 2011 Proceedings. Lec-
ture Notes in Computer Science, vol. 7204, pp. 447–456 (2013)

41. Jankowska,M.A.: Interval finite differencemethod for solving the problem of bioheat transfer
between blood vessel and tissue. In: PPAM 2013 Proceedings. Lecture Notes in Computer
Science, vol. 8385, pp. 644–655 (2014)

42. Jaulin, L.: Path planning using intervals and graphs. Reliab. Comput. 7(1), 1–15 (2001)
43. Jaulin, L.: Range-only SLAMwith occupancymaps: a set-membership approach. IEEETrans.

Robot. 27(5), 1004–1010 (2011)
44. Jaulin, L., Dabe, F., Bertholom,A., Legris,M.: A set approach to the simultaneous localization

and map building-application to underwater robots. ICINCO-RA 2, 65–69 (2007)
45. Jaulin, L., Kieffer, M., Didrit, O., Walter, É.: Applied Interval Analysis. Springer, London

(2001)
46. Kacprzyk, J.: A branch-and-bound algorithmm for themultistage control of a nonfuzzy system

in a fuzzy environment. Control Cybern. 7, 51–64 (1978)
47. Kacprzyk, J.: A branch-and-bound algorithmm for the multistage control of a fuzzy system

in a fuzzy environment. Kybernetes 8(2), 139–147 (1979)
48. Kacprzyk, J.: A genetic algorithm for the multistage control of a fuzzy system in a fuzzy

environment. Mathw. Soft Comput. 4(3), 219–232 (1997)

http://arxiv.org/abs/math/0108163
http://arxiv.org/abs/0903.0188
http://arxiv.org/abs/0903.0365

128 9 Applications of Interval B&BT Methods

49. Kacprzyk, J., Esogbue, A.O.: Fuzzy dynamic programming: main developments and appli-
cations. Fuzzy Sets Syst. 81(1), 31–45 (1996)

50. Kacprzyk, J., Straszak, A.: Application of fuzzy decision-making models for determining
optimal policies in “stable” integrated regional development. In: Fuzzy Sets, pp. 321–328
(1980)

51. Kearfott, R.B.,Kreinovich,V.:Applications of IntervalComputations, vol. 3. Springer Science
& Business Media (2013)

52. Kieffer, M., Jaulin, L., Walter, É., Meizel, D.: Robust autonomous robot localization using
interval analysis. Reliab. Comput. 6(3), 337–362 (2000)

53. Kingman, J.F.C.: The single server queue in heavy traffic. In:Mathematical Proceedings of the
Cambridge Philosophical Society, vol. 57, pp. 902–904. Cambridge University Press (1961)

54. Kozine, I.O., Utkin, L.V.: Interval-valued finite Markov chains. Reliab. Comput. 8(2), 97–113
(2002)

55. Kreinovich, V.: Statistical data processing under interval uncertainty: Algorithms and com-
putational complexity. In: Soft Methods for Integrated Uncertainty Modelling, pp. 11–26.
Springer (2006)

56. Kreinovich, V., Gallardo, E.: Optimizing cloud use under interval uncertainty. In: PPAM 2015
Proceedings. Lecture Notes in Computer Science, vol. 9574, pp. 435–444 (2016)

57. Kubica, B.J.: Estimating utility functions of network users-an algorithm using interval com-
putations. Ann. Univ. Timisoara 40, 121–134 (2002)

58. Kubica, B.J.: Presentation of a highly tunedmultithreaded interval solver for underdetermined
and well-determined nonlinear systems. Numer. Algorithms 70(4), 929–963 (2015). http://
dx.doi.org/10.1007/s11075-015-9980-y

59. Kubica, B.J.: Preliminary experiments with an interval Model-Predictive-Control solver. In:
PPAM 2015 Proceedings. Lecture Notes in Computer Science, vol. 9574, pp. 464–473 (2016)

60. Kubica, B.J.: Parallelization of a bound-consistency enforcing procedure and its application
in solving nonlinear systems. J. Parallel Distrib. Comput. 107, 57–66 (2017). https://doi.org/
10.1016/j.jpdc.2017.03.009

61. Kubica, B.J.: Advanced interval tools for computing solutions of continuous games.
Vychislennyie Tiehnologii (Computational Technologies) 23(1), 3–18 (2018)

62. Kubica, B.J., Malinowski, K.: An interval global optimization algorithm combining symbolic
rewriting and componentwise Newton method applied to control a class of queueing systems.
Reliab. Comput. 11(5), 393–411 (2005)

63. Kubica, B.J., Malinowski, K.: Interval random variables and their application in queueing sys-
tems with long–tailed service times. In: Soft Methods for Integrated Uncertainty Modelling,
pp. 393–403. Springer (2006)

64. Kubica, B.J., Malinowski, K.: Optimization of performance of queuing systems with long-
tailed service times. Prace Naukowe Politechniki Warszawskiej. Elektronika 156, 237–245
(2006)

65. Kubica, B.J., Niewiadomska-Szynkiewicz, E.: An improved interval global optimization algo-
rithm and its application to price management problem. In: PARA 2006 Proceedings. Lecture
Notes in Computer Science, vol. 4699, pp. 1055–1064 (2007)

66. Kubica, B.J., Pownuk, A., Kreinovich, V.: What decision to make in a conflict situation
under interval uncertainty: efficient algorithms for the Hurwicz approach. In: PPAM 2017
Proceedings. Lecture Notes in Computer Science, vol. 10778, pp. 402–411 (2018)

67. Kubica, B.J., Szynkiewicz, W.: CuikSLAM with unknown correspondence-preliminary
results. Prace Naukowe Politechniki Warszawskiej. Elektronika 160, 143–151 (2007)

68. Kubica, B.J.,Woźniak, A.: Applying an interval method for a four agent economy analysis. In:
PPAM 2011 (9th International Conference on Parallel Processing and Applied Mathematics)
Proceedings. Lecture Notes in Computer Science, vol. 7204, pp. 477–483 (2012)

69. Kubica, B.J., Woźniak, A.: Tuning the interval algorithm for seeking Pareto sets of multi-
criteria problems. In: PARA 2012 Proceedings. Lecture Notes in Computer Science, vol.
7782, pp. 504–517 (2013)

http://dx.doi.org/10.1007/s11075-015-9980-y
http://dx.doi.org/10.1007/s11075-015-9980-y
https://doi.org/10.1016/j.jpdc.2017.03.009
https://doi.org/10.1016/j.jpdc.2017.03.009

References 129

70. Kurek, J., Kruk, M., Osowski, S., Hoser, P., Wieczorek, G., Jegorowa, A., Górski, J.,
Wilkowski, J., Śmietańsk, K., Kossakowska, J.: Developing automatic recognition system
of drill wear in standard laminated chipboard drilling process. Bull. Pol. Acad. Sci. Techn.
Sci. 64(3), 633–640 (2016)

71. Kurek, J., Osowski, S.: Support Vector Machine for diagnosis of the bars of cage inductance
motor. In: 15th IEEE International Conference on Electronics, Circuits and Systems, 2008.
ICECS 2008, pp. 1022–1025 (2008)

72. Kurek, J., Osowski, S.: Support vector machine for fault diagnosis of the broken rotor bars of
squirrel-cage induction motor. Neural Comput. Appl. 19(4), 557–564 (2010)

73. Kurek, J., Swiderski, B., Jegorova, A., Kruk, M., Osowski, S.: Deep learning in assessment
of drill condition on the basis of images of drilled holes. In: Proceedings ICGIP 2016 (Eighth
International Conference on Graphic and Image Processing), p. 10225 (2017)

74. Lüthi, J., Haring, G.:Mean value analysis for queueing networkmodels with intervals as input
parameters. Perform. Eval. 32(3), 185–215 (1998)

75. Lüthi, J., Lladó, C.M.: Splitting techniques for interval parameters and their application to
performance models. Perform. Eval. 51(1), 47–74 (2003)

76. Majumdar, S.: Application of relational interval arithmetic to computer performance analysis:
a survey. Constraints 2(2), 215–235 (1997)

77. Makino, K., Berz, M.: Efficient control of the dependency problem based on Taylor model
methods. Reliab. Comput. 5(1), 3–12 (1999)

78. McCulloch,W.S., Pitts,W.: A logical calculus of the ideas immanent in nervous activity. Bull.
Math. Biophys. 5(4), 115–133 (1943)

79. Meizel, D., Preciado-Ruiz, A., Halbwachs, E.: Estimation of mobile robot localization: Geo-
metric approaches. In: Milanese, M., Norton, J., Piet-Lahanier, H., Walter, É. (eds.) Bounding
Approaches to System Identification, pp. 463–489. Springer (1996)

80. Merlet, J.P.: Solving the forward kinematics of aGough-type parallelmanipulatorwith interval
analysis. Int. J. Robot. Res. 23(3), 221–235 (2004)

81. Merlet, J.P.: Kinematics of the wire-driven parallel robot MARIONET using linear actuators.
In: IEEE International Conference on Robotics and Automation, 2008. ICRA 2008, pp. 3857–
3862. IEEE (2008)

82. Merlet, J.P.: Interval analysis for certified numerical solution of problems in robotics. Int. J.
Appl. Math. Comput. Sci. 19(3), 399–412 (2009)

83. Merlet, J.P., Gosselin, C.: Parallelmechanisms and robots. In: SpringerHandbook ofRobotics,
pp. 269–285. Springer (2008)

84. Mitra, S., Keel, L., Bhattacharyya, S.: Data-robust design of PID controllers via interval linear
programming. IFAC Proc. 40(20), 632–636 (2007)

85. Monnet,D.,Ninin, J.,Clement,B.:Global optimizationofH∞ problems:Application to robust
control synthesis under structural constraints. In: International Conference on Mathematical
Aspects of Computer and Information Sciences, pp. 550–554. Springer (2015)

86. Nagatou, K.: A numerical method to verify the elliptic eigenvalue problems including a
uniqueness property. Computing 63(2), 109–130 (1999)

87. Neumaier, A.: IntervalMethods for Systems of Equations. CambridgeUniversity Press (1990)
88. Piegat, A., Tomaszewska, K.: Decision-making under uncertainty using info-gap theory and

a new multidimensional RDM interval-arithmetic. Electr. Rev. 88(8), 71–76 (2013)
89. Porta, J.M.: CuikSlam: A kinematics-based approach to SLAM. In: Proceedings of the 2005

IEEE International Conference on Robotics and Automation, 2005. ICRA 2005, pp. 2425–
2431. IEEE (2005)

90. Prade, H.M.: An outline of fuzzy or possibilistic models for queuing systems. In: Fuzzy sets,
pp. 147–153. Springer (1980)

91. Rauh, A., Hofer, E.P.: Interval methods for optimal control. In: Variational Analysis and
Aerospace Engineering, pp. 397–418. Springer (2009)

92. Rauh, A., Senkel, L., Kersten, J., Aschemann, H.: Interval methods for sensitivity-based
model-predictive control of solid oxide fuel cell systems. Reliab. Comput. 19(4), 361–384
(2014)

130 9 Applications of Interval B&BT Methods

93. Rodríguez, J.J., Alonso, C.J., Maestro, J.A.: Support vector machines of interval-based fea-
tures for time series classification. Knowl. Based Syst. 18(4–5), 171–178 (2005)

94. Rohn, J.: Input-output model with interval data. Econom. J. Econom. Soc. 767–769 (1980)
95. Saraev, P.V.: Numerical methods of interval analysis in learning neural network. Autom.

Remote Control 73(11), 1865–1876 (2012)
96. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117

(2015)
97. Sevastjanov, P., Dymova, L.: Fuzzy solution of interval linear equations. In: PPAM 2007

Proceedings. Lecture Notes in Computer Science, vol. 4967, pp. 1392–1399 (2009)
98. Sevastjanov, P., Tikhonenko, A.: Direct interval extension of TOPSISmethod. In: PPAM2011

(9th International Conference on Parallel Processing and Applied Mathematics) Proceedings.
Lecture Notes in Computer Science, vol. 7204, pp. 504–512 (2012)

99. Sharaya, I.A.: On maximal inner estimation of the solution sets of linear systems with interval
parameters. Reliab. Comput. 7(5), 409–424 (2001)

100. Shary, S.P.:Algebraic approach to the interval linear static identification, tolerance, and control
problems, or one more application of kaucher arithmetic. Reliab. Comput. 2(1), 3–33 (1996)

101. Shary, S.P.: Finite-Dimensional Interval Analysis. Institute of Computational Technologies,
SB RAS, Novosibirsk (2013)

102. Shary, S.P.: Strong compatibility in data fitting problem under interval data uncertainty. Com-
put. Technol. 22(2), 150–172 (2017)

103. Skalna, I.: On checking the monotonicity of parametric interval solution of linear structural
systems. In: PPAM 2007 Proceedings. Lecture Notes in Computer Science, vol. 4967, pp.
1400–1409 (2009)

104. Skalna, I., Hladík, M.: A new method for computing a p-solution to parametric interval linear
systems with affine-linear and nonlinear dependencies. BIT Numer. Math. 57(4), 1109–1136
(2017)

105. Škulj, D.: Finite discrete time Markov chains with interval probabilities. In: Soft Methods for
Integrated Uncertainty Modelling, pp. 299–306. Springer (2006)

106. Sliwka, J., Bar, F.L., Reynet, O., Jaulin, L.: Using interval methods in the context of robust
localization of underwater robots. In: 2011 Annual Meeting of the North American on Fuzzy
Information Processing Society (NAFIPS), pp. 1–6. IEEE (2011)

107. Stewart, W.J.: Probability, Markov Chains, Queues, and Simulation: The Mathematical Basis
of Performance Modeling. Princeton University Press (2009)

108. Swiderski, B., Kurek, J., Osowski, S.: Multistage classification by using logistic regression
and neural networks for assessment of financial condition of company. Decis. Support Syst.
52(2), 539–547 (2012)

109. Swiderski, B., Osowski, S., Kurek, J., Kruk, M., Lugowska, I., Rutkowski, P., Barhoumi, W.:
Novelmethods of image description and ensemble of classifiers in application tomammogram
analysis. Expert Syst. Appl. 81, 67–78 (2017)

110. Tomaszewska, K., Piegat, A.: Uncertainty analysis for efficient fuel allocation using info-gap
theory. Inf. Syst. Manag. 4, (2015)

111. Utkin, L.V., Chekh, A.I.: A new robust model of one-class classification by interval-valued
training data using the triangular kernel. Neural Netw. 69, 99–110 (2015)

112. Vehí, J., Ferrer, I., Sainz, M.Á.: A survey of applications of interval analysis to robust control.
IFAC Proc. 35(1), 389–400 (2002)

113. Vehí, J., Rodellar, J., Sainz, M., Armengol, J.: Analysis of the robustness of predictive con-
trollers via modal intervals. Reliab. Comput. 6(3), 281–301 (2000)

114. Watanabe, Y., Nagatou, K., Plum, M., Nakao, M.T.: Verified computations of eigenvalue
exclosures for eigenvalue problems in Hilbert spaces. SIAM J. Numer. Anal. 52(2), 975–992
(2014)

115. Weinhofer, J.K., Haas, W.C.: H∞-control using polynomial matrices and interval arithmetic.
Reliab. Comput. 3(3), 229–237 (1997)

116. Wilinski, A., Osowski, S., Siwek, K.: Gene selection for cancer classification through ensem-
ble of methods. In: International Conference onAdaptive andNatural ComputingAlgorithms,
pp. 507–516. Springer (2009)

References 131

117. Woodside, C.M., Majumdar, S., Neilson, J.E.: Interval arithmetic for computing performance
guarantees in client-server software. In: International Conference on Computing and Infor-
mation, pp. 535–546. Springer (1991)

118. Yager, R.R., Kreinovich, V.: Fair division under interval uncertainty. Int. J. Uncertain. Fuzzi-
ness Knowl. Based Syst. 8(5), 611–618 (2000)

Appendix A
Notation

In general, the notation follows conventions from [1].

A.1 General Notions

Sets are (as usually) denoted by capital letters. The difference from other notions
denoted by capital letters (like matrices) should be clear from the context.
#A—number of elements of the (finite) set A;
∂ f (x0,y)

∂x —a short notation for ∂ f (x,y)
∂x

∣
∣
∣
x=x0

;

R—the set of real numbers.

The interval notation from [1] discourages using the “⊂” sign for “⊆”. The author
follows it, but making some exceptions: when it is absolutely impossible that A = B,
using A ⊆ B, instead of A ⊂ B would bemisleading. A good example is Proposition
5.3. In such cases, the author uses the “⊂” sign, not following [1].

The Imaginary Unit

Following the engineering tradition, the imaginary unit is denoted as j and not i .
Obviously, this is such a number that j2 = −1.

A.2 Interval Analysis Notions

A closed interval is denoted using brackets: [x, x] = {x ∈ R | x ≤ x ≤ x}. Open or
half-open intervals are denoted using obverse brackets:]x, x[, [x, x[,]x, x]. Par-
enteses are popular to denote such intervals, but they can also have several other
meanings (pairs, vectors, etc.), so we avoid using them for intervals.

© Springer Nature Switzerland AG 2019
B. J. Kubica, Interval Methods for Solving Nonlinear Constraint Satisfaction,
Optimization and Similar Problems, Studies in Computational Intelligence 805,
https://doi.org/10.1007/978-3-030-13795-3

133

https://doi.org/10.1007/978-3-030-13795-3

134 Appendix A: Notation

The following notation is used for interval-related quantities:
x , y, z, …(italic small letters)—real-valued variables and real-valued vector vari-
ables;
x, y, z, …(boldface small letters)—interval variables and interval vector variables
(boxes);
x—the lower bound of the interval x = [x, x];
x—the upper bound of the interval x = [x, x];

wid x—width (diameter) of the interval x;
mid x—midpoint of the interval x;

A, B, C , …(italic capital letters)—real-valued matrices;
A, B, C, …(boldface capital letters)—interval-valued matrices;
Ai :—i-th row of a matrix;
A: j— j-th column of a matrix;

f (x), g(x)—real-valued functions;
f(x), g(x)—(interval) inclusion functions;
f ′(x)—the derivative of a function f : R → R;
∇ f (x)—the gradient of a function f : Rn → R;
∇f(x)—inclusion function of the gradient;

�S—interval hull of the set S ⊆ R
n; smallest box x ∈ IR

n such that x ⊇ S;

IR—the set of intervals of real numbers;
KR—the set of extended (Kaucher) intervals.

Reference

1. Kearfott, R.B., Nakao, M.T., Neumaier, A., Rump, S.M., Shary, S.P., van Hen-
tenryck, P.: Standardized notation in interval analysis. Vychislennyie Tiehnologii
(Computational Technologies) 15(1), 7–13 (2010)

Appendix B
Standards for Numerical Computation

To perform computations on intervals, we need some representation of real numbers.
Currently, the most commonly used representation of real numbers are floating-point
numbers. They have a commonly accepted standard: IEEE 754 [7]; also the interval
standard IEEE 1788-2015 assumes its use.

However, this is not the only possibility of real numbers representation. As we
can possibly neglect other standards for floating-point computations (although there
are certainly devices—for instance older GPUs—that are not compatible with the
IEEE 754 guideline), there are at least two other important approximations of real
numbers: fixed-point numbers and a new format of so-called unums.

In this appendix, all three formats are going to be briefly reviewed.

B.1 IEEE 754 Standard for Floating-Point Arithmetic

As it has already been stated elsewhere, this standard has been published in 1985
and the last revision has been done in 2008.

The standard defines the representation of floating-point numbers [7] (Fig.B.1):
This encodes the number:

(−1)(sign) · (significand) · (base)(exponent) .

The size of the sign is always one bit: 0 for positive and 1 for negative numbers.
Sizes of the exponent and significand depend on a specific format. For instance, for

sign exponent significand

Fig. B.1 The IEEE 754 format

© Springer Nature Switzerland AG 2019
B. J. Kubica, Interval Methods for Solving Nonlinear Constraint Satisfaction,
Optimization and Similar Problems, Studies in Computational Intelligence 805,
https://doi.org/10.1007/978-3-030-13795-3

135

https://doi.org/10.1007/978-3-030-13795-3

136 Appendix B: Standards for Numerical Computation

single-precision numbers, they have values 8 and 24 respectively, while for double-
precision numbers: 11 and 53.

What is the meaning of these values? Let us describe them subsequently.
The base is usually equal to 2; these are binary formats. Decimal formats, with

base 10 are also defined by the standard; yet, they are less frequently used. The base
is the part of the datatype and does not have to be stored.

The exponent is an integer number. It is stored in the form of a biased exponent,
that is always positive. The unbiased exponent is the difference of the stored value and
some number typical for a specific representation, e.g., 127 for the single-precision
number (binary32) or 1023 for the double-precision one (binary64).

The significand, also called “coefficient” or, less precisely, “mantissa” is a non-
integer of the form: bn+1.bnbn−1 . . . b1b0. The integer-part bit bn+1 is usually equal to
one and, as we shall see, it is not stored explicitly. The other bits fit in the remaining
part of the data field.

Let us consider an example, to make the things more clear.
The number 1 has sign zero, significand 1.0000 . . . 0 and unbiased exponent one.

So for the double-precision number, we shall represent it as follows:

• the sign bit: 0,
• the biased exponent: 1024 (stored on 11 bits), so that the unbiased exponent was:
1024 − 1023 = 1,

• the mantissa of the significand: 52 zero bits, the leading 53rd bit equal to one is
not explicitly stored.

What are the feasible ranges of the exponent and significand? This is related to the
size of these fields. For double-precision numbers, the (unbiased) exponent can have
values from the interval [−1023..1024], but the extreme values have specialmeaning:

• the maximal possible value denotes infinities and NaNs,
• the minimal possible value denotes zeros and so-called subnormal numbers.

Infinities (+∞ and −∞) have the significand filled with zeros, and NaNs—with
ones; these are the values that have the maximal possible exponent (1024 for the
double numbers).

Also zeros have a special representation, as the assumption of the leading bit of
the significand being equal to one, does not allow explicitly representing zeros. But
when the exponent is minimal (-1023 for the double-precision), this leading bit is
assumed to be equal to zero. This is true for zeros and so-called subnormal numbers,
also called denormal or denormalized numbers. Unlike zeros, they have a non-zero
significand: 0.bnbn−1 . . . b1b0. Operations on subnormals are less precise than on
“normal” numbers, yet still possible.

The above considerations show yet another peculiar feature of IEEE 754 floating-
point number, called the signed zero concept: we have distinctly represented numbers
+0.0 and −0.0! To make the things even more complicated, the standard requires
them to be considered equal by comparison operators. Consequently, the following
C++ program:

Appendix B: Standards for Numerical Computation 137

#include <iostream>
#include <cmath>

using namespace std;

int main() {
double x{0.0};
double y{-0.0};
cout << boolalpha;
cout << (x == y) << "\n"; //true
cout << (signbit(x) == signbit(y)) << "\n"; //false

}

will print “true” in the first output operation, but false in the second one, which is far
from being intuitive, but consistent and justified.

There are also several NaN values, as all non-zero significands (and both signs) for
the maximal exponent value represents a NaN. This is also consistent, as—according
to the standard—the comparison (NaN == NaN) should return false.

These andmany other interesting features of IEEE 754 arithmetic have fortunately
little influence on the implementation of interval arithmetic. More important are
rounding modes, but they have been described earlier in the monograph (Chap.8).
Also, Chap. 10 of [9] discusses several interesting issues of using the IEEE 754
format in interval arithmetic.

B.2 Fixed-Point Formats

Current processors typically have a built-in floating-point unit (FPU); this makes
operations on such data relatively efficient. Nevertheless, there are still several
devices—like microcontrollers or other CPUs devoted to embedded systems—that
lack such a component. Using floating-point computations on this sort of hardware
may be pretty expensive: not only with respect to time, but also energy consumption.
As we have already stated in Chap. 9, interval algorithms have found several—actual
and potential—applications in robotics, control, and measurement systems; hence,
the possibility of their efficient execution in embedded systems is quite important.
To the best knowledge of the author, such implementation of interval arithmetic has
not been explicitly considered, yet.

There are a few formats for fixed-point computations; one of the most popular
is the Q-format [15]. The idea is simple: numbers are stored as signed integers. We
specify the number of bits that represent the fractional part (Qm) and (optionally)
also the number of bits in the integer part (Qn.m). For instance: “Q16.16” means
that the number will consist of 32 bits: 16 bits to store the integer part and 16—the
fractional part. Please note that what is stored are just integer numbers; parameters
n and m are part of the type, not of a specific fixed-point number.

138 Appendix B: Standards for Numerical Computation

Other words: we explicitly store integer nominators and denominators of type 2m

are implicit.
Thanks to the representation, three of the arithmetic operations: addition, subtrac-

tion and multiplication, can be performed by the direct use of their integer counter-
parts. Specifically:

K1

2m
+ K2

2m
= K1 + K2

2m
,

K1

2m
− K2

2m
= K1 − K2

2m
,

K1

2m
· K2

2m
= int(K1 · K2 · 2−m)

2m
.

By int(·) we mean casting to integers: either �·� or
·�, depending on if we want to
round downwards or upwards. Obviously, multiplication by powers of two can be
performed using a bit shift of the number.

Only the division has to be implemented in a more sophisticated manner, as we
need to deal with division of nominators:

K1

2m
÷ K2

2m
= int(K1

K2
· 2m)

2m
. (B.1)

If we are to preform interval computations, outward rounding for addition and sub-
traction should be simple; for multiplication and division, the key is proper casting
to integers. Obviously, proper rounding has to be performed also for the operators
casting the Qn.m type to/from floating-point or integer numbers.

Neither the Q format nor any other fixed-point format is the part of current C++
standards, but there are third-party implementations, like the libraries [8, 10], to
name just modern C++11 packages. Several other ones can easily be found on the
web—for instance the Java package [2].

B.3 A New Format—Unums

The term unum stands for “universal number”; this format has been developed by
Gustafson in his 2015 book “The End of Error” [3]. The book sorely criticizes the
existing representation of floating-point numbers, proposing a quite different format.

It is compatible with the IEEE floating-point standard, described earlier, but—as
explained in [13]—some concepts form IEEE 754 are not necessary for unums.

Appendix B: Standards for Numerical Computation 139

The basic ideas can be formulated as follows:

1. The IEEE floating-point numbers have fixed sizes of the exponent and significand
fields; by giving these fields variable sizes, we can highly increase the precision,
using the same or smaller number of bits.

2. The IEEEfloating-point numbers are a discrete subset ofR; unums instead contain
either a precise number from a similar discrete set or an open interval between
such numbers.

Thanks to the second “trick”, unums are able (at least, in a certain sense) to represent
all number from R—not only from its discrete subset.

The format proposed in the book [3] has six fields, as in Fig.B.2.
The first three are similar to the IEEE 754 floating-point format, but—in contrast

to the former—the exponent and significand may have various size. Then, we have
the bit u, that indicates whether the unum represents an exact number (u = 0) or
an open interval between the representable numbers (u = 1). Finally, the sizes of
significand and exponent are stored. As we can observe, the format does not have a
fixed size, which is its clear drawback. Nevertheless, the number of bits required to
achieve a given precision is typically smaller, than for IEEE 74 floats.

Signed infinities can be represented for unums, as for floating-point numbers;
there is also a NaN (not for unum 2.0 and 3.0 representations!), but it has a single
representation only (and, according to [13], it is not necessary at all, only introduced
for compatibility reasons).

The Gustafson’s web page [6] contains several more papers and presentations,
elaborating many more details of unums, including their new versions.

The unum approach has been criticized by William Kahan [11]. In response,
Gustafson proposed a new version: unums 2.0, breaking the compatibility with IEEE
754 format, but fixing several of the drawbacks.

The latest version, unum 3.0 [5], is supposed to be hardware-friendly, as it has a
fixed size of the overall data record and it allows implementing several operations
using hardware-encoded integer procedures (and hence, very efficiently). The format
for unum 3.0 has been presented in Fig.B.3.

Only the (single-bit) sign and (variable-sized) regime are mandatory. The regime
either occupies the rest of the record or stops at some place, leaving some place for
the other two fields.

The regime contains an integer number, coded in unary: it is a bit-string containing
of identical bits. The regime field ends when either a bit with different value is

sign exponent significand u exponent’s size significand’s size

Fig. B.2 The unum 1.0 format

sign regime exponent fraction

Fig. B.3 The unum 3.0 format

140 Appendix B: Standards for Numerical Computation

encountered or the whole record ends. Thanks to this representation, the regime
field can have a variable length, not coded elsewhere. The regime bit string can
consist either of zeros followed by a one or by ones followed by a zero. These two
possibilities allow to code the sign of the encoded number: k = −m, for the first
case, and k = m − 1, for the second one. This value defines the scaling factor.

If there are free bits after the regime field, there is an exponent; it has a fixed size
es in this format. The exponent is not biased, neither has it a sign: it is always a
positive number, encoded in binary.

The overall encoded number is:

(−1)(sign) · 2k·2es · 2(exponent) · (1.fraction) .

There is noNaN for this representation, as special values can be represented as sets of
numbers (so-called valids, in contrast with precise unums—posits), e.g.,

√−1 = ∅,
0/0 = [−∞,+∞], 1∞ = [0,+∞], etc.; cf. [4].
Ubounds

Intervals having unums as their endpoints are called ubounds [6]. There is an inter-
esting subtlety with this representation: when the bounds are, e.g., type 1.0 unums
with the u-bit set to 1—open sets of “non-representable” numbers—the whole inter-
val becomes open, also. A discussed in Sect. 1.11B of [18] (cf. also Sect. 2.8 of this
monograph), using non-closed intervals in the interval calculus may lead to various
mathematical difficulties.

On the other hand, we can restrict the bounds of such intervals to “precise” unums
(posits), only. The problems seems to require further studies and achieving some
concensus in the community.

Use of Unums

As stated above, the unum approach has been criticized, but also it has its advocates.
Kulisch in [13] encourages their use, claiming that (as IEEE floating-points) they are
compatible with the theory of rounded computations [12].

Currently, to the best knowledge of the author, experimental implementations
for the Julia [1] and Matlab [14] languages have been introduced. Also, Ruffaldi
implemented Python 3.5 [17] and C++11 [16] packages. Yet it remains to be seen,
if the idea will get universally accepted or not.

References

1. Unums.jl Julia library (2016). https://github.com/JuliaComputing/Unums.jl
2. Garcia, M.: Q-Number-Format for Java (2018). https://github.com/mgarcia

01752/Q-Number-Format
3. Gustafson, J.L.: The End of Error: Unum Computing. Chapman and Hall/CRC

(2015)

https://github.com/JuliaComputing/Unums.jl
https://github.com/mgarcia01752/Q-Number-Format
https://github.com/mgarcia01752/Q-Number-Format

Appendix B: Standards for Numerical Computation 141

4. Gustafson, J.L.: A radical approach to computation with real numbers (2016).
http://www.johngustafson.net/presentations/Multicore2016-JLG.pdf

5. Gustafson, J.L.: Beating floating point at its won game: Posit arithmetic (2017).
http://www.johngustafson.net/pdfs/BeatingFloatingPoint.pdf

6. Gustafson, J.L.: Web page (2018). http://www.johngustafson.net/unums.html
7. IEEE: 754-2008–IEEE standard for floating-point arithmetic (2008). http://

ieeexplore.ieee.org/document/4610935/
8. Ikkala, J.: Fixed-point numbers C++11 library (2018). https://github.com/

juliusikkala/Fixed-point
9. Jaulin, L., Kieffer,M., Didrit, O.,Walter, É.: Applied Interval Analysis. Springer,

London (2001)
10. Johnston, P.: C++11 Fixed Point Arithmetic Library (2018). https://embed-

dedartistry.com/blog/2017/8/25/c11-fixed-point-arithemetic-library
11. Kahan, W.: A critique of John L. Gustafson’s The End of Error–Unum Compu-

tation and his a radical approach to computation with real numbers (2016)
12. Kulisch, U.: An axiomatic approach to computer arithmetic with an appendix

on interval hardware. In: PPAM 2011 (9th International Conference on Parallel
Processing and Applied Mathematics) Proceedings. Lecture Notes in Computer
Science, vol. 7204, pp. 484–495 (2012)

13. Kulisch, U.: Up-to-date interval arithmetic: from closed intervals to connected
sets of real numbers. In: PPAM 2015 Proceedings. Lecture Notes in Computer
Science, vol. 9574, pp. 413–434 (2016)

14. Kvasnica,M.:MUNUMMatlab package (2018). https://bitbucket.org/kvasnica/
munum

15. Oberstar, E.L.: Fixed-point representation & fractional math. In: Oberstar Con-
sulting, vol. 9 (2007)

16. Ruffaldi, E.: The cppunum2 C++ unum 2.0 library (2018). https://github.com/
eruffaldi/cppunum2

17. Ruffaldi, E.: The pypnunum Python 3.5 unum 2.0 library (2018). https://github.
com/eruffaldi/pyunum2

18. Shary, S.P.: Finite-dimensional Interval Analysis. Institute of Computational
Technologies, SB RAS, Novosibirsk (2013)

http://www.johngustafson.net/presentations/Multicore2016-JLG.pdf
http://www.johngustafson.net/pdfs/BeatingFloatingPoint.pdf
http://www.johngustafson.net/unums.html
http://ieeexplore.ieee.org/document/4610935/
http://ieeexplore.ieee.org/document/4610935/
https://github.com/juliusikkala/Fixed-point
https://github.com/juliusikkala/Fixed-point
https://embeddedartistry.com/blog/2017/8/25/c11-fixed-point-arithemetic-library
https://embeddedartistry.com/blog/2017/8/25/c11-fixed-point-arithemetic-library
https://bitbucket.org/kvasnica/munum
https://bitbucket.org/kvasnica/munum
https://github.com/eruffaldi/cppunum2
https://github.com/eruffaldi/cppunum2
https://github.com/eruffaldi/pyunum2
https://github.com/eruffaldi/pyunum2

Appendix C
Implementations of the Interval Class in Various
Languages

Various implementations, in several programming languages, can be provided. As
indicated elsewhere, we can find several C and C++ libraries (cf. Chap. 8) and, e.g.,
some Julia [2] and OCaml codes [3].

In this Appendix, let us present a few toy implementations for some other popular
languages. They will not be complete: to spare space, we shall only define the format
for printing intervals and two arithmetic operations: addition and multiplication.
Subtraction and division can easily be added, for all presented implementations.

Despite their simplicity, the presented interval data types are not completely use-
less. Not only can they be used for educational purposes, but also they may find
applications in distributed systems, where various components are written in dif-
ferent languages. Such heterogeneous, multi-language systems are usually based
on some message-oriented middleware (the simple ZeroMQ [13] or more advanced
RabbitMQ [11], possibly Kafka [7] or yet another message broker) or remote pro-
cedure call (SOAP, XML-RPC, JSON-RPC, etc.). In such distributed applications,
the core computations would probably be performed by C, C++, Fortran or another
high-performance language, but the user interface is likely to be manufactured in
some web technology, like JavaScript. Also, gathering and reduction of the data will
possibly require less computational efficiency.

Obviously, just for the data transfer and user experience, we need only the repre-
sentation of an interval, using a pair of numbers. But other operations will be handy
not only for the debugging purposes, but also, as already indicated, for data reduction.

Python, which we present first, is particularly often used as a “glue” for sev-
eral technologies in Web services and similar frameworks. Hence, the Python-based
implementation of the interval data type might turn out to be particularly useful.

© Springer Nature Switzerland AG 2019
B. J. Kubica, Interval Methods for Solving Nonlinear Constraint Satisfaction,
Optimization and Similar Problems, Studies in Computational Intelligence 805,
https://doi.org/10.1007/978-3-030-13795-3

143

https://doi.org/10.1007/978-3-030-13795-3

144 Appendix C: Implementations of the Interval Class in Various Languages

C.1 Python 3

The language created by Guido van Rossum is pretty popular in the scientific com-
puting community. There exist (or at least have existed) proficient implementations
of the interval calculus in Python, e.g., in the Sage package, currently renamed to
SageMath [12].

Here, let us present a simple class in Python 3:

class Interval:
def __init__(self, lb, ub):

self.lb, self.ub = lb, ub

def __str__(self):
return "[" + str(self.lb) + ", " + str(self.ub) + "]"

def __add__(self, a):
return Interval(self.lb + a.lb, self.ub + a.ub)

def __mul__(self, a):
lb = min(self.lb*a.lb, self.lb*a.ub, self.ub*a.lb, self.ub*a.ub)
ub = max(self.lb*a.lb, self.lb*a.ub, self.ub*a.lb, self.ub*a.ub)
return Interval(lb, ub)

... (insert other arithmetic operations here) ...

def __pow__(self, n):
if (n % 2 != 0):

return Interval(self.lb ** n, self.ub ** n)
else:

a, b = self.lb ** n, self.ub ** n
if self.lb > 0 or self.ub < 0:

if a <= b:
return Interval(a, b)

else:
return Interval(b, a)

else:
the interval contains zero
return Interval(0, max(a, b))

if __name__ == "__main__":
x = Interval(1.0, 2.0)
y = Interval(2.0, 4.0)
z = x + y
print(z)

In addition to the two arithmetic operations, we have defined the power function,
also. Python has the operator ** for computing the power of an argument. In the
above implementation, n is assumed to be an integer number.

If we wanted to have directed rounding in Python, we could use, in particular, the
mpmath package, allowing operations, like:

lb = fadd(a.lb, b.lb, rounding=’d’)
ub = fadd(a.ub, b.ub, rounding=’u’)

Appendix C: Implementations of the Interval Class in Various Languages 145

It is worth noting, that switching the rounding mode may not be supported in some
of the Python runtime environments; and example is Jython, as described below. Yet,
the most popular ones: CPython and PyPy should handle such operations properly.

Python provides us also several other tools, like the Decimal type, various exten-
sions of the NumPy package (including the nextafter() function) or possibility
to run C code [4]; they are beyond the scope of this survey.

C.2 C#

An analogous C# class can be defined in the following manner:

using System;

class Interval {
public double lb;
public double ub;

public Interval(double lb_=0.0, double ub_=0.0) {
lb = lb_;
ub = ub_;

}

public override string ToString() {
return "[" + lb.ToString() + ", " + ub.ToString() + "]";

}

public static Interval operator+ (Interval a, Interval b) {
Interval result = new Interval();
result.lb = a.lb + b.lb;
result.ub = a.ub + b.ub;
return result;

}

public static Interval operator* (Interval a, Interval b) {
Interval result = new Interval();
result.lb = Math.Min(a.lb*b.lb, a.lb*b.ub, a.ub*b.lb, a.ub*b.ub);
result.ub = Math.Max(a.lb*b.lb, a.lb*b.ub, a.ub*b.lb, a.ub*b.ub);
return result;

}

// ... (insert other arithmetic operations here) ...
}

public class Example {
static void Main(string[] args) {

Interval x = new Interval(1.0, 2.0);
Interval y = new Interval(2.0, 4.0);
Interval z = x + y;
Console.WriteLine(z);

}
}

146 Appendix C: Implementations of the Interval Class in Various Languages

ProficientC# programmerswould probably implement fieldslb andub as private,
and provide setters and getters for them, but let us stick to the presented version for
simplicity.

If we wanted to use directed rounding, it is possible, also—at least since .NET
framework 2.0—yet not very convenient. The Math.Round() method allows us
to choose the rounding mode. Precisely, we have the following syntax:

public static double Round (double value,
int digits,
MidpointRounding mode)

where themode can have values:AwayFromZero or ToEven [10]. Explicit round-
ing towards +∞ or −∞ is, to the best knowledge of the author, not possible—at
least not in a simple manner.

Another solution is to use the nextafter() function (from the math package),
that returns the next representable number towards a give direction. We shall not
discuss the details here, as an analogous solution is available for Java, Scala, Golang,
etc.; so, we refer to the sections devoted to these languages.

Yet another possibility is to use the Decimal type – different from IEEEfloating-
point types.

C# is not the only language working in the .NET runtime environment. It is
worthwhile to mention at least two other languages: F# and Visual Basic. The former
is similar to OCaml, so the aforementioned library in this programming language
[3] could possibly be translated to F#. As for the latter one, it is rarely used by
the scientific computing community, and we shall not discuss it. Other languages,
working on the CLR (in Particular IronPython and IronRuby), have not gained much
popularity.

Python and C# have allowed us to overload operators, making the implementation
of the interval data type quite nice and easy to use. We get the same freedom in Ruby
or Scala, but not in all languages.

C.3 Java

Java is similar to C#, but, as we shall see, there are various differences. In particular:

• operators cannot be overloaded,
• there are no default values of function arguments,
• some other operations are less convenient, e.g., computing the minimum or max-
imum of a sequence.

Appendix C: Implementations of the Interval Class in Various Languages 147

class Interval {
public double lb;
public double ub;

public Interval(double lb_, double ub_) {
lb = lb_;
ub = ub_;

}

public Interval() {}

public String toString() {
return "[" + lb + ", " + ub + "]";

}

public static Interval add (Interval a, Interval b) {
Interval result = new Interval();
result.lb = a.lb + b.lb;
result.ub = a.ub + b.ub;
return result;

}

public static Interval mult (Interval a, Interval b) {
Interval result = new Interval();
result.lb = Math.min(a.lb*b.lb, Math.min(a.lb*b.ub,

Math.min(a.ub*b.lb, a.ub*b.ub)));
result.ub = Math.max(a.lb*b.lb, Math.max(a.lb*b.ub,

Math.max(a.ub*b.lb, a.ub*b.ub)));
return result;

}

// ... (insert other arithmetic operations here) ...
}

public class IntervalExample {
public static void main(String[] args) {

Interval x = new Interval(1.0, 2.0);
Interval y = new Interval(2.0, 4.0);
Interval z = Interval.add(x, y);
System.out.println("" + z);

}
}

As for C#, Java programmers would probably prefer to implement fields lb and
ub as private, and provide setters and getters for them.

It has to be noted that for Java, we cannot change the rounding mode. The point
2.8.1 of the Oracle’s documentation makes it clear: “The rounding operations of the
Java Virtual Machine always use IEEE 754 round to nearest mode. Inexact results
are rounded to the nearest representable value, with ties going to the value with a zero
least-significant bit. This is the IEEE 754 default mode. But Java Virtual Machine
instructions that convert values of floating-point types to values of integral types

148 Appendix C: Implementations of the Interval Class in Various Languages

round toward zero. The Java Virtual Machine does not give any means to change the
floating-point rounding mode.” [6].

This property of JVM has been severely criticized [5]. Probably, we can still
enforce switching the rounding mode, by calling C functions from Java.

Yet another possibility is to use the functionnextAfter() from thejava.lang.Math
package to extend the lower bound downwards and the upper bound upwards. Such
an interval will be more overestimated than in case of using the properly rounded
arithmetic operation, but will be guaranteed to contain the actual value. For instance,
the method add() of the Interval class could look as follows:

public static Interval add (Interval a, Interval b) {
Interval result = new Interval();
result.lb = java.lang.Math.nextAfter(a.lb + b.lb,

Double.NEGATIVE_INFINITY);
result.ub = java.lang.Math.nextAfter(a.ub + b.ub,

Double.POSITIVE_INFINITY);
return result;

}

As the former version of the presented Java application prints:

[3.0, 6.0]

after the change we obtain:

[2.9999999999999996, 6.000000000000001]

Also, it is worth noting that, in the past, some effort has been put to incorporate
intervals in the Java standard library (the names ofWilliamWalster andDavid Hough
have to be mentioned here) [9]. Unfortunately, to the best knowledge of the author,
these efforts have not been successful.

C.4 Scala

Java is not the only language working on the JVM (Java Virtual Machine). Another
one, that has been continuously becoming more and more popular, is Scala. Not only
is it much more succinct than Java, but also it allows operator overloading.

Programs can be written in Scala in various manners; in particular, they can adopt
several features of functional programming. Here let us show a simple sample class,
representing an interval:

class Interval(val lba: Double, val uba: Double) {
var lb: Double = lba
var ub: Double = uba

def this() = this(0.0, 0.0)

Appendix C: Implementations of the Interval Class in Various Languages 149

override def toString = "[" + lb + ", " + ub + "]"

def +(x: Interval) = new Interval(lb + x.lb, ub + x.ub)

def *(x: Interval) = new Interval(math.min(lb*x.lb,
math.min(lb*x.ub, math.min(ub*x.lb, ub*x.ub))),

math.max(lb*x.lb, math.max(lb*x.ub,
math.max(ub*x.lb, ub*x.ub))))

// ... (insert other arithmetic operations here) ...
}

object IntervalExample extends App {
val a = new Interval(1.0, 2.0)
val b = new Interval(2.0, 4.0)
val c = a + b
println(c)

}

As in Scala the “underline” sign has a special meaning, we had to change the
convention of naming the constructor’s arguments, that we had used for C# and Java.

Despite its elegance, Scala suffers all the limitations of the JVM, described in the
previous section. And, obviously, this applies to all other languages working on the
JVM: Jython, Groovy, Clojure, Kotlin, etc.

Nevertheless, we can apply the same remedy, as for Java—function nextAfter.
The modified plus operator is presented by the following code:

def +(x: Interval) : Interval = {
val resultlb: Double = java.lang.Math.nextAfter(lb + x.lb,

Double.NegativeInfinity)
val resultub: Double = java.lang.Math.nextAfter(ub + x.ub,

Double.PositiveInfinity)
return new Interval(resultlb, resultub)

}

C.5 Golang

Another language that has been gaining growing popularity in the recent years is the
Google’s Golang. The name is sometimes abbreviated simply as “Go”; we shall not
use this version of the name, to avoid confusion with Go!, the agent-based language
of Francis McCabe and Keith Clark and other tools.

Golang is simple and elegant, yet pretty different from other languages presented
in this chapter. It is not “essentially” object-oriented, yet it makes use of several
object-like concepts. We do not define “classes” in Golang, yet we can define struc-
tures. All functions and “methods” are defined outside the structure, but the structure
can implement an interface.

150 Appendix C: Implementations of the Interval Class in Various Languages

In particular, our structure namedInterval implements the interfaceStringer.
However, please note, we nowhere have any “implements” declaration as we
would have in Java or C#. The relation between these two entities is deduced by
the compiler from the fact that the function String() is used for the structure
Interval (actually, it is used implicitly, in our program).

Thename“Stringer” refers to “the interface that contains themethodString()”.
This is awidely accepted convention inGolang that an interface contains only a single
method and its name is identical to the method’s name with suffix “-er”.

All details can be found in the on-line documentation for Golang and several
tutorials available [8].

package main

import "fmt"
import "math"

type Interval struct {
lb float64
ub float64

}

func (x Interval) String() string {
return fmt.Sprintf("[%v, %v]", x.lb, x.ub)

}

func (a Interval) add (b Interval) Interval {
result := Interval{0, 0}
result.lb = a.lb + b.lb
result.ub = a.ub + b.ub
return result

}

func (a Interval) mult (b Interval) Interval {
result := Interval{0, 0}
result.lb = math.Min(a.lb*b.lb, math.Min(a.lb*b.ub,

math.Min(a.ub*b.lb, a.ub*b.ub)))
result.ub = math.Max(a.lb*b.lb, math.Max(a.lb*b.ub,

math.Max(a.ub*b.lb, a.ub*b.ub)))
return result

}

func main() {
a := Interval{1.0, 2.0}
b := Interval{2.0, 4.0}
c := a.add(b)
fmt.Println(c)

}

There is no operator overloading (nor even function overloading!) in Golang, so
we cannot define arithmetic operators for the interval type.

Appendix C: Implementations of the Interval Class in Various Languages 151

The inconvenient computation of minimum and maximum of several numbers
can be improved by defining, e.g., the following function:

func min(args ...float64) float64 {
min := args[0]
for _, x := range args[1:] {

min = math.Min(min, x)
}
return min

}

Now, we can simply write:

result.lb = min(a.lb*b.lb, a.lb*b.ub, a.ub*b.lb, a.ub*b.ub)

The author has not been able to track down any information about switching the
rounding modes in Golang. However, in the math package, we have a convenient
function Nextafter(), analogous to previously discussed languages. It allows,
in particular, the following implementation of addition:

func (a Interval) add (b Interval) Interval {
result := Interval{0, 0}
result.lb = math.Nextafter(a.lb + b.lb, math.Inf(-1))
result.ub = math.Nextafter(a.ub + b.ub, math.Inf(1))
return result

}

Obviously, multiplication and other arithmetic operations can be written in a similar
manner.

C.6 JavaScript

Let us finish this short survey with a JavaScript implementation sample. It is interest-
ing, as this language (prior to ECMAScript 6 specification) followed a pretty unique
variant of object-oriented programming: it had no “classes”, understood as other
object-oriented languages have, but only objects.

The below code should illustrate this idea:

function Interval (lb, ub) {
this.lb = lb;
this.ub = ub;
this.show = showInterval;
this.add = addIntervals;
// ... (insert other interval operations here) ...

}

function showInterval() {
document.write ("[" + this.lb + ", " + this.ub + "]");

}

152 Appendix C: Implementations of the Interval Class in Various Languages

function addIntervals(a, b) {
return new Interval(a.lb + b.lb, a.ub + b.ub);

}

var a = new Interval (1.0, 2.0); var b = new Interval (2.0, 4.0);
var c = a.add(b); c.show();

JavaScript does not support operator overloading; there are some tricks to fake it,
but they do not seem applicable to our case.

It is not surprising that JavaScript does not seem to allow control of the rounding
mode or functions like nextAfter(): numerical computations are not the focus
of this language. Yet, the implementation is, in the opinion of the author, significant,
as JavaScript is ubiquitous in today web development: both on client and server
(node.js) sides; hence it is likely to be used as a web interface to our interval solver:
both for data input and results presentation.

C.7 Summary

We have presented some basic implementations of the interval data type in a few
popular programming languages. The author had also two other implementations: in
PHP and Fortran 95, but decided against presenting them. PHP seems too irrelevant
for scientific computing and Fortran is too verbose. It is also worth noting that there
exist proficient implementations of the interval arithmetic in Fortran, like GlobSol,
mentioned in Chap.8 (see also [1]).

It would be worthwhile to provide such implementations for many other tech-
nologies. Kotlin and F# have already been mentioned. Other tools worth attention
are functional languages, like the famous Haskell.

References

1. GlobSol solver (2015). https://interval.louisiana.edu/GlobSol/
2. ValidatedNumerics package (2016). https://github.com/JuliaIntervals/Validated-

Numerics.jl
3. Alliot, J.M., Gotteland, J.B., Vanaret, C., Durand, N., Gianazza, D.: Implement-

ing an interval computation library for OCaml on x86/amd64 architectures. In:
OUD 2012, OCaml Users and Developers workshop (2012)

4. Gorelick, M., Ozsvald, I.: High Performance Python: Practical Performant Pro-
gramming for Humans. O’Reilly Media, Inc. (2014)

5. Kahan, W., Darcy, J.D.: How Java’s floating-point hurts everyone everywhere.
In: ACM 1998 workshop on Java for high-performance network computing,
p. 81. Stanford University (1998)

https://interval.louisiana.edu/GlobSol/
https://github.com/JuliaIntervals/ValidatedNumerics.jl
https://github.com/JuliaIntervals/ValidatedNumerics.jl

Appendix C: Implementations of the Interval Class in Various Languages 153

6. Lindholm, T., Yellin, F., Bracha, G., Buckley, A.: The Java Virtual Machine
specification (2015). https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-
2.html#jvms-2.8.1

7. Apache kafka: A distributed streaming platform (2018). https://kafka.apache.
org

8. Golang documentation (2018). https://golang.org/doc/
9. Let’s add intervals to Java (a proposal) (2018). http://www.cs.utep.edu/interval-

comp/java.html
10. Math.Round C# documentation (2018). https://msdn.microsoft.com/en-us/

library/system.midpointrounding%28v=vs.80%29.aspx
11. RabbitMQ (2018). https://www.rabbitmq.com
12. SageMath (2018). http://www.sagemath.org
13. ZeroMQ (2018). http://zeromq.org

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.8.1
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.8.1
https://kafka.apache.org
https://kafka.apache.org
https://golang.org/doc/
http://www.cs.utep.edu/interval-comp/java.html
http://www.cs.utep.edu/interval-comp/java.html
https://msdn.microsoft.com/en-us/library/system.midpointrounding%28v=vs.80%29.aspx
https://msdn.microsoft.com/en-us/library/system.midpointrounding%28v=vs.80%29.aspx
https://www.rabbitmq.com
http://www.sagemath.org
http://zeromq.org

Solutions

Problems of Chap. 2

2.1 f
([−2,−1]) = [−7, 3] ⊃ [−4, 0] = range

(

f, [−2,−1])
f
([1, 2]) = [2, 12] = range

(

f, [1, 2])
f
([−2, 2]) = [−8, 12] ⊃ [−4, 12] = range

(

f, [−2, 2])

2.2 Distributivity of interval multiplication
(a) Yes. (b) Yes. (c) Yes. (d) Yes. (e) No. (f) No.

2.3 Consider x = [0, 5] and y = [1, 3]. We have three possibilities:

(a) H1 = {X ∈ [0, 1] and Y ∈ [1, 3]},
(b) H2 = {X ∈ [1, 3] and Y ∈ [1, 3]},
(c) H3 = {X ∈ [3, 5] and Y ∈ [1, 3]}.
Please note that X ≤ Y is certain for H1, possible for H2 and has probability zero
(only the unlikely case of X = Y = 3) for H3. The basic probability assignment to
these events are:

P(H1) = 1 − 0

5 − 0
· 3 − 1

3 − 1
= 1

5
= 0.2 ,

P(H2) = 3 − 1

5 − 0
· 3 − 1

3 − 1
= 2

5
= 0.4 ,

P(H3) = 5 − 3

5 − 0
· 3 − 1

3 − 1
= 2

5
= 0.4 .

And we obtain:

Bel
({X ≤ Y }) = P(H1) = 0.2 ,

Pl
({X ≤ Y }) = P(H1) + P(H2) = 0.6 .

© Springer Nature Switzerland AG 2019
B. J. Kubica, Interval Methods for Solving Nonlinear Constraint Satisfaction,
Optimization and Similar Problems, Studies in Computational Intelligence 805,
https://doi.org/10.1007/978-3-030-13795-3

155

https://doi.org/10.1007/978-3-030-13795-3

156 Solutions

Obviously, for x = [0, 3] and y = [3, 5], we have:

Bel
({X ≤ Y }) = Pl

({X ≤ Y }) = 1 .

2.4 Various implementations, in several programming languages, can be provided.
On the web we can find several C and C++ libraries (cf. Chap. 8) and, e.g.,
some OCaml codes [1]. We present implementations in a few other languages in
Appendix C.

Yet, it isworth noting that, to obtain auseful code, onehas to implementmanymore
functions. We need not only operations on two intervals, but also, e.g., operations on
an interval and a number. Covering all necessary cases (not to mention compatibility
with the IEEE Std 1788-2015) may be quite cumbersome and in some languages,
the programmer might face some limitations, e.g., in Lua, the operands should be of
the same type.

This exercise shows, it is worthwhile to use third-party libraries for the interval
calculus; cf. Chap. 8.

Reference

1. Alliot, J.M.,Gotteland, J.B.,Vanaret, C.,Durand,N.,Gianazza,D.: Implementing
an interval computation library for OCaml on x86/amd64 architectures. In: OUD
2012, OCaml Users and Developers workshop (2012)

	Preface
	Acknowledgements
	Contents
	Acronyms
	List of Figures
	1 Introduction
	References

	2 Interval Calculus
	2.1 Introduction
	2.2 Basics of Interval Computations
	2.3 Operations on Intervals
	2.3.1 Interval Arithmetic
	2.3.2 Interval Enclosures of Other Operations and Functions
	2.3.3 Auxiliary Operations

	2.4 Properties and Features of the Interval Calculus
	2.5 Interval Extension of a Function
	2.5.1 Most Common Forms of Interval Extensions
	2.5.2 How to Construct Formulae for Interval-Valued Functions?

	2.6 Comparison of Intervals
	2.7 A Metric on the Space of Intervals
	2.8 Open or Closed Intervals?
	2.9 Purposes of the Interval Calculus
	References

	3 Bounding Derivatives by Algorithmic Differentiation
	3.1 Interval Algorithms and Derivatives Computation
	3.1.1 Basic Approaches

	3.2 Algorithmic Differentiation
	3.3 Implementation of AD
	3.3.1 Forward AD with Operator Overloading
	3.3.2 Forward AD with Dual Numbers
	3.3.3 Reverse Mode AD

	3.4 State-of-the-Art Libraries
	3.4.1 ADHC Library
	3.4.2 Computing Arbitrary Many Derivatives

	3.5 Summary
	References

	4 Branch-and-Bound-Type Methods
	4.1 Preliminary Remarks
	4.2 Introduction
	4.3 The Solution Set
	4.4 Generic Algorithm
	4.5 Analysis of the B&BT Algorithm
	4.6 The Second Phase—Quantifier Elimination
	4.6.1 Herbrand Expansion
	4.6.2 Shared Quantities
	4.6.3 Existentially Quantified Formulae
	4.6.4 When is the Second Phase Not Necessary?

	4.7 Necessary Conditions
	4.8 Seeking Local Optima of a Function
	4.9 Example Heuristics
	4.10 Conclusions
	References

	5 Solving Equations and Inequalities Systems Using Interval B&Bt Methods
	5.1 Constraint Satisfaction Problems
	5.2 Solving Systems of Nonlinear Equations
	5.3 Interval Newton Operators
	5.4 Other Verification Tests
	5.4.1 Miranda Test
	5.4.2 Using Quadratic Approximation
	5.4.3 Borsuk Test
	5.4.4 Computing Topological Degree
	5.4.5 Obstruction Theory Test

	5.5 Consistency Enforcing
	5.5.1 Hull-Consistency
	5.5.2 Box-Consistency
	5.5.3 Higher-Order Consistencies

	5.6 Heuristics for Choosing and Parameterizing the Tools
	References

	6 Solving Quantified Problems Using Interval Methods
	6.1 Interval Global Optimization
	6.1.1 Branch-and-Bound Algorithm
	6.1.2 Processing a Box in Interval Global Optimization

	6.2 Pareto Sets of Multicritria Problems
	6.2.1 Tools

	6.3 Game Solutions
	6.3.1 Algorithm
	6.3.2 Tools

	6.4 Summary
	References

	7 Parallelization of B&BT Algorithms
	7.1 Introduction
	7.2 Generic Algorithm
	7.3 Basic Implementation Details
	7.3.1 Data Structures
	7.3.2 Memory Management

	7.4 Parallelization of the B&BT Algorithm
	7.5 Shared Memory Implementations
	7.5.1 Storage of L
	7.5.2 Storage of Lver and Lpos
	7.5.3 Shared Quantities

	7.6 Distributed Memory Implementations
	7.6.1 Load Balancing
	7.6.2 Termination Detection
	7.6.3 Advanced Issues

	7.7 Parallelization of Rejection/Reduction Tests
	7.7.1 Parallelization of Existence Tests
	7.7.2 Modern Architectures

	7.8 Summary
	References

	8 Interval Software, Libraries and Standards
	8.1 Main Issues in Implementing Interval Libraries
	8.1.1 IEEE 754 Standard

	8.2 C-XSC
	8.2.1 Basic Types
	8.2.2 The Use of BLAS
	8.2.3 The Toolbox and Additional Software
	8.2.4 Author's Solvers and Libraries

	8.3 Other Libraries
	8.3.1 PROFIL/BIAS
	8.3.2 Boost::Interval
	8.3.3 Other Packages
	8.3.4 GPU Libraries
	8.3.5 IEEE Standard 1788–2015: Standard for Interval Arithmetic

	References

	9 Applications of Interval B&BT Methods
	9.1 Introduction
	9.2 Robotics
	9.2.1 Manipulator Kinematics
	9.2.2 Mobile Robots
	9.2.3 Path Planning

	9.3 Measurements and Estimation
	9.3.1 Parameter Estimation
	9.3.2 State Estimation
	9.3.3 Outliers
	9.3.4 Processing Statistical Samples Under Interval Uncertainty

	9.4 Artificial Intelligence Systems
	9.4.1 Neural Networks
	9.4.2 Support Vector Machines

	9.5 Control Theory
	9.5.1 Stability Checking
	9.5.2 Designing a Controller
	9.5.3 Hinfty-Control
	9.5.4 Model-Predictive-Control

	9.6 Nonlinear Dynamics, Chaos and Differential Equations
	9.7 Economical Modeling and Multiagent Systems
	9.7.1 Economy Modeling
	9.7.2 Queueing Systems
	9.7.3 Decision Making

	9.8 Summary
	References

	A Notation
	A.1 General Notions
	A.2 Interval Analysis Notions

	B Standards for Numerical Computation
	B.1 IEEE 754 Standard for Floating-Point Arithmetic
	B.2 Fixed-Point Formats
	B.3 A New Format—Unums

	C Implementations of the Interval Class in Various Languages
	C.1 Python 3
	C.2 C#
	C.3 Java
	C.4 Scala
	C.5 Golang
	C.6 JavaScript
	C.7 Summary

	 Solutions

