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Preface

If we could make statistics of how computing time is distributed among indi-
vidual mathematical problems, then, not considering database algorithms such
as searching and sorting, the linear programming problem would probably be
positioned on top. Linear programming is a natural and simple problem:

minimize cT x (0.1)

subject to

Ax = b, (0.2)
x ≥ 0. (0.3)

In fact, we look for the minimum of a linear function cT x, called the ob-
jective function, over the solution set of the system (0.2), (0.3), called the
set of feasible solutions. As shown in linear programming textbooks, similar
problems involving maximization or inequality constraints, or those missing
(partly or entirely) the nonnegativity constraint, can be rearranged in the
form (0.1)–(0.3) which we consider standard in the sequel.

It may seem surprising that such an elementary problem had not been
formulated at the early stages of linear algebra in the 19th century. On the
contrary, this is a typical problem of the 20th century, born of practical needs.
As early as in 1902 J. Farkas [34] found a necessary and sufficient condition for
solvability of the system (0.2), (0.3), called now the Farkas lemma. The linear
programming problem attracted the interest of mathematicians during and
just after World War II, when methods for solving large problems of linear
programming were looked for in connection with the needs of logistic support
of U.S. Armed Forces deployed overseas. It was also the time when the first
computers were constructed.

An effective method for solving linear programming problems, the so-called
simplex method, was invented in 1947 by G. Dantzig who also created a unified
theory of linear programming [31]. In this context the name of the Soviet
mathematician L. V. Kantorovich should be mentioned whose fundamental
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work had emerged as early as in 1939; however, it had not become known
to the Western scientists till 1960 [66]. In the ‘fifties, the methods of linear
programming were applied enthusiastically as it was supposed that they could
manage to create and resolve national economy plans. The achieved results,
however, did not satisfy the expectations. This caused some disillusion and in
the ‘sixties a stagnation in development of mathematical methods and models
had occurred which also led to the loss of belief in the power of computers.
There were various reasons for the fact that the results of linear programming
modeling did not often correspond to the expectations of the planners. One
of them, which is the central topic of this book, was inexactness of the data,
a phenomenon inherent in most practical problems.

Before we deal with this problem, let us finalize our historical excursion.
The new wave of interest concerning linear programming emerged at the end of
the ‘seventies and at the beginning of the ‘eighties. By that time, complexity of
the linear programming problem was still unresolved. It was conjectured that
it might be NP-hard in view of the result by V. Klee and G. Minty [72] who had
shown by means of an example that the simplex method may take an expo-
nential number of steps. In 1979, L. G. Khachian [71] disproved this conjecture
by his ellipsoid method which can solve any linear programming problem in
polynomial time. Khachian’s result, however, was still merely of theoretical
importance since in practical problems the simplex method behaved much
better than the ellipsoid method. Later on, in 1984, N. Karmarkar [67] pub-
lished his new polynomial-time algorithm for linear programming problems,
a modification of a nonlinear programming method, which could substitute
the simplex method. Whereas the simplex method begins with finding some
vertex of the convex polyhedron and then proceeds to the neighboring ver-
tices in such a way that the value of the objective function decreases up to the
optimal value, Karmarkar’s method finds an interior point of the polyhedron
and then goes through the interior towards the optimal solution.

Optimization problems in finite-dimensional spaces may be characterized
by a certain number of fixed input parameters that determine the structure
of the problem in question. For instance, in linear programming problems
such fixed input parameters are the coefficients of the objective function,
of the constraint matrix and of the right-hand sides of the constraints. The
solution of such optimization problems consists in finding an optimal solution
for the given fixed input parameters. One of the reasons for the “crisis” of
linear programming in the ‘sixties and ‘seventies was the uselessness of the
computed solutions—results of the linear programming models—for practical
decisions. The coefficients of linear programming models are often not known
exactly, elicited by inexact methods or by expert evaluations, or, in other
words, the nature of the coefficients is vague. For modeling purposes we usually
use “average” values of the coefficients. Then we obtain an optimal solution
of the model that is not always optimal for the original problem itself.

One of the approaches dealing with inexact coefficients in linear program-
ming problems and trying to incorporate the influence of imprecise coefficients
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into the model is stochastic linear programming. The development of this area
belongs to the ‘sixties and ‘seventies and is connected with the names of R.
J. Wets, A. Prékopa and K. Kall.

The stochastic programming approach may have two practical disadvan-
tages. The first one is associated with the numerics of the transformation of
the stochastic linear programming problem to the deterministic problem of
nonlinear programming. It is a well-known fact that nonlinear programming
algorithms are practically applicable only to problems of relatively small di-
mensionality. The basic assumption of stochastic linear programming prob-
lems is that the probability distributions (i.e., distribution functions, or den-
sity functions) are known in advance. This requirement is usually not satis-
fied. The coefficients are imprecise and the supplementary information does
not have a stochastic nature. More often, they are estimated by experts, even-
tually supplemented by the membership grades of inexactness or vagueness in
question.

The problem of linear programming with inexact data is formulated in full
generality as follows,

minimize cT x (0.4)

subject to
Ax = b, x ≥ 0, (0.5)

A ∈ A, b ∈ b, c ∈ c, (0.6)

where A, b and c are subsets of Rm×n, Rm and Rn, respectively, expressing
inexactness of the data, and x is an n-dimensional vector.

Various approaches to this problem have been developed in the past with
different descriptions of changes in the input data. In the frame of this book
we deal with three approaches important from the practical point of view.

One of the basic research tools for investigation of linear optimization
problems with inexact data (0.4)–(0.6) is matrix theory. In Chapter 1 basic
notions on matrices and determinants, as well as on norms and basic numerical
algebra are presented. Special attention is paid to such topics as symmetric
matrices, generalized inverses, nonnegative matrices and M - and P -matrices.

In the literature, sufficient interest has not been devoted to linear program-
ming problems with data given as intervals. The individual results, interesting
by themselves, do not create a unified theory. This is the reason for summa-
rizing existing results and presenting new ones within a unifying framework.
In Chapter 2 solvability and feasibility of systems of interval linear equations
and inequalities are investigated. Weak and strong solvability and feasibility
of linear systems Ax = b and Ax ≤ b, where A ∈ A and b ∈ b, are studied
separately. In this way, combining weak and strong solvability or feasibility of
the above systems we arrive at eight decision problems. It is shown that all of
them can be solved by finite means, however, in half of the cases the number
of steps is exponential in matrix size and the respective problems are proved
to be NP-hard. The other four decision problems can be solved in polynomial
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time. The last part of the chapter is devoted to special types of solutions
(tolerance, control and algebraic solutions), and to the square case.

Chapter 3 deals with the interval linear programming problem (0.4)–(0.6)
where A = [A, A] is an interval matrix and b = [b, b], c = [c, c] are interval
vectors. The main topics of the chapter are computation and properties of the
exact lower and upper bounds of the range of the optimal value of the problem
(0.4)–(0.6) with data varying independently of each other in the prescribed
intervals. It is shown that computing the lower bound of the range can be
performed in polynomial time, whereas computing the upper bound is NP-
hard.

By generalizing linear programming problems with interval data, we ob-
tain problems (0.4)–(0.6) with A, b and c being compact convex sets. Such
problems are studied in Chapter 4. In comparison with Chapter 3, A, b and c
are not necessarily matrix or vector intervals. Such a family of linear program-
ming problems is called a linear programming problem with set coefficients
(LPSC problem). Our interest is focused on the case where A, b and c are ei-
ther compact convex sets or, in particular, convex polytopes. We are interested
primarily in systems of inequalities Ax ≤ b in (0.5) and later also in systems
of equations. Under general assumptions, the usual form of the weak duality
theorem is derived. Based on the previous results, the strong duality theorem
is formulated and proved. The last part of Chapter 4 deals with algorithmic
questions of LPSC problems: two algorithms for solving LPSC problems are
proposed. Both algorithms are in fact generalizations of the simplex method.

A further generalization of linear programming problems with inexact data
is a situation where coefficients of A, b and c are associated with member-
ship functions as a “degree of possibility”, being a value from the unit interval
[0, 1]. Then the sets A, b and c are viewed as fuzzy subsets of the correspond-
ing Euclidean vector spaces and the resulting linear programming problem
is a linear programming problem with fuzzy coefficients. It is clear that the
above linear programming problems with inexact coefficients are particular
cases of problems with fuzzy coefficients. In Chapter 5 we propose a new
general approach to fuzzy single- and multicriteria linear programming prob-
lems. A unifying concept of this approach is the concept of a fuzzy relation,
particularly fuzzy extension of the usual inequality or equality relations. In
fuzzy multicriteria linear programming problems the distinction between cri-
teria and constraints can be modeled by various aggregation operators. The
given goals can be achieved by the criteria whereas the constraints can be
satisfied by the constraint functions. Both the feasible solution and compro-
mise solution of such problems are fuzzy subsets of Rn. On the other hand,
the α-compromise solution is a crisp vector, as well as the max-compromise
solution, which is, in fact, the α-compromise solution with the maximal mem-
bership degree. We show that the class of all multicriteria linear programming
problems with crisp parameters can be naturally embedded into the class of
fuzzy multicriteria linear programming problems with fuzzy parameters. It
is also shown that the feasible and compromise solutions are convex under
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some mild assumptions and that a max-compromise solution can be found as
the usual optimal solution of some classical multicriteria linear programming
problem. The approach is demonstrated on a simple numerical example.

In the previous chapters, mostly linear systems of equations and inequal-
ities as well as linear optimization problems with inexact interval data were
investigated. The investigation took advantage of some well-known properties
of linear systems and linear problems with exact data. Linear optimization
problems are special convex optimization problems in which each local min-
imum is at the same time global. In Chapter 6, we investigate another class
of optimization problems, the special structure of which makes it possible
to find global optimal solutions. These problems form a special class of the
so-called max-separable optimization problems. Functions occurring in these
problems both as objective functions and in the constraints can be treated
as “linear” with respect to a pair of semigroup operations. Properties of such
optimization problems with interval data are presented as well.

In this research monograph we focus primarily on researchers as possible
readers, or, the audience, particularly in the areas of operations research,
optimization theory, linear algebra and eventually, fuzzy sets. However, the
book may also be of some interest to advanced or postgraduate students in
the respective areas.

Similar results to those published in this book, particularly concerning LP
problems with interval uncertainty, have been published by Ben-Tal and Ne-
mirovski et al.; see [14] to [20]. However, most of the results published in this
monograph have been already published independently earlier in various jour-
nals and proceedings mainly between 1994 and 2000; see the list of references
at the end of the book.

Chapter 1 was written by M. Fiedler, Chapters 2 and 3 by J. Rohn,
Chapter 6 by K. Zimmermann, and Chapter 5 by J. Ramı́k who also wrote
the part of Chapter 4 dedicated to the work of our colleague and friend
Dr. Josef Nedoma who had started the work with us but was not able to

conclude it, having passed away in July 2003.
The work on this monograph was supported during the years 2001 through

2003 by the Czech Republic Grant Agency under grant No. 201/01/0343.

Prague and Karviná, Miroslav Fiedler, Jaroslav Ramı́k,
March 2005 Jiř́ı Rohn and Karel Zimmermann





1

Matrices
M. Fiedler

1.1 Basic notions on matrices, determinants

In this introductory chapter we recall some basic notions from matrix theory
that are useful for understanding the more specialized sequel. We do not prove
all assertions. The interested reader may find the omitted proofs in general
matrix theory books, such as [35], [86], and others.

A matrix of type m-by-n or, equivalently, an m × n matrix, is a two-
dimensional array of mn numbers (usually real or complex) arranged in m
rows and n columns (m, n positive integers):




a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

. . . . . . .
am1 am2 am3 . . . amn


 . (1.1)

We call the number aik the entry of the matrix (1.1) in the ith row and the
kth column. It is advantageous to denote the matrix (1.1) by a single symbol,
say A, C, etc. The set of m×n matrices with real entries is denoted by Rm×n.
In some cases, m × n matrices with complex entries will occur and their set
is denoted analogously by Cm×n. In some cases, entries can be polynomials,
variables, functions, etc.

In this terminology, matrices with only one column (thus, n = 1) are called
column vectors, and matrices with only one row (thus, m = 1) row vectors. In
such a case, we write Rm instead of Rm×1 and –unless said otherwise– vectors
are always column vectors.

Matrices of the same type can be added entrywise: if A = (aik), B = (bik),
then A+B is the matrix (aik + bik). We also admit multiplication of a matrix
by a number (real, complex, a parameter, etc.). If A = (aik) and if α is a
number (also called scalar), then αA is the matrix (αaik) of the same type as
A.

An m×n matrix A = (aik) can be multiplied by an n×p matrix B = (bk`)
as follows: it is the m× p matrix C = (ci`), where
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ci` = ai1b1` + ai2b2` + · · ·+ ainbn`.

It is important to notice that the matrices A and B can be multiplied (in
this order) only if the number of columns of A is the same as the number of
rows in B. Also, the entries of A and B should be multiplicable. In general, the
product AB is not equal to BA, even if the multiplication of both products
is possible. On the other hand, the multiplication fulfills the associative law

(AB)C = A(BC)

as well as (in this case, two) distributive laws:

(A + B)C = AC + BC

and
A(B + C) = AB + AC,

whenever multiplications are possible.
Of basic importance are the zero matrices, all entries of which are zeros,

and the identity matrices; these are square matrices, i.e., m = n, and have
ones in the main diagonal and zeros elsewhere. Thus

(1),
(

1 0
0 1

)
,




1 0 0
0 1 0
0 0 1




are identity matrices of order one, two and three. We denote zero matrices sim-
ply by 0, and the identity matrices by I, sometimes with a subscript denoting
the order.

The identity matrices of appropriate orders have the property that

AI = A and IA = A

hold for any matrix A.
Let now A = (aik) be an m × n matrix and let M, N , respectively,

denote the sets {1, . . . ,m}, {1, . . . , n}. If M1 is an ordered subset of M, i.e.,
M1 = {i1, . . . , ir}, i1 < · · · < ir, and N1 = {k1, . . . , ks} an ordered subset
of N , then A(M1,N1) denotes the r × s submatrix of A obtained from A by
leaving the rows with indices in M1 and removing all the remaining rows and
leaving the columns with indices in N1 and removing the remaining columns.

Particularly important are submatrices corresponding to consecutive row
indices as well as consecutive column indices. Such a submatrix is called a
block of the original matrix. We then obtain partitioning of the matrix A into
blocks by splitting the set of row indices into subsets of the first, say, p1

indices, then the set of the next p2 indices, etc., up to the last pu indices,
and similarly splitting the set of column indices into subsets of consecutive
q1, . . . , qv indices. If Ars denotes the block describing the pr × qs submatrix
of A obtained by this procedure, A can be written as
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A =




A11 A12 . . . A1v

A21 A22 . . . A2v

. . . . . .
Au1 Au2 . . . Auv


 .

If, for instance, we partition the 3 × 4 matrix (aik) with p1 = 2, p2 = 1,
q1 = 1, q2 = 2, q3 = 1, we obtain the block matrix

(
A11 A12 A13

A21 A22 A23

)
,

where, say A12 denotes the block
(

a12 a13

a22 a23

)
.

On the other hand, we can form matrices from blocks. We only have to
fulfill the condition that all matrices in each block row must have the same
number of rows and all matrices in each block column must have the same
number of columns.

The importance of block matrices lies in the fact that we can multiply
block matrices in the same way as before:

Let A = (Aik) and B = (Bk`) be block matrices, A with m block rows
and n block columns, and B with n block rows and p block columns. If (and
that is crucial) the first block column of A has the same number of columns
as the first block row of B has the number of rows, the second block column
of A has the same number of columns as the second block row of B has the
number of rows, etc., till the number of columns in the last block column of
A matches the number of rows in the last block row of B, then the product
C = AB is the matrix C = (Ci`), where

Ci` = Ai1B1` + Ai2B2` + · · ·+ AinBn`.

Observe that the products AikBk` exist and can then be added.
Now let A = (aik) be an m × n matrix. The n ×m matrix C = (cpq) for

which cpq = aqp, p = 1, . . . , n, q = 1, . . . , m, is called the transpose matrix to
A. It is denoted by AT . If A and B are matrices that can be multiplied, then

(AB)T = BT AT .

Also,
(AT )T = A

for every matrix A.
This notation is also advantageous for vectors. We usually denote the

column vector u with entries (coordinates) u1, . . . , un as (u1, . . . , un)T .
Of crucial importance are square matrices. If of fixed order, say n, and

over a fixed field, e.g., R or C, they form a set that is closed with respect to
addition and multiplication as well as transposition. Here, closed means that
the result of the operation again belongs to the set.
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Some special types of square matrices are worth mentioning. A square
matrix A = (aik) of order n is called diagonal if aik = 0 whenever i 6= k. Such
a matrix is usually described by its diagonal entries as diag{a11, . . . , ann}.
The matrix A is called lower triangular if aik = 0, whenever i < k, and upper
triangular if aik = 0, whenever i > k. We have then:

Observation 1.1. The set of diagonal (resp., lower triangular, resp., upper
triangular) matrices of fixed order over a fixed field R or C is closed with
respect to both addition and multiplication.

A matrix A (necessarily square!) is called nonsingular if there exists a
matrix C such that AC = CA = I. This matrix C (which can be shown to be
unique) is called the inverse matrix to A and is denoted by A−1. Clearly,

(A−1)−1 = A.

Observation 1.2. If A, B are nonsingular matrices of the same order, then
their product AB is also nonsingular and

(AB)−1 = B−1A−1.

Observation 1.3. If A is nonsingular, then AT is nonsingular and

(AT )−1 = (A−1)T .

Let us recall now the notion of the determinant of a square matrix A =
(aik) of order n. We denote it as detA:

detA =
∑

P=(k1,...,kn)

σ(P )a1k1a2k2 · · · ankn
,

where the sum is taken over all permutations P = (k1, k2, . . . , kn) of the indices
1, 2, . . . , n, and σ(P ), the sign of the permutation P , is 1 or −1, according to
whether the number of pairs (i, j) for which i < j but ki > kj , is even or odd.

We list some important properties of the determinants.

Theorem 1.4. Let A = (aik) be a lower triangular, upper triangular, or di-
agonal matrix of order n. Then

detA = a11a22 . . . ann.

In particular,
det I = 1 (1.2)

for every identity matrix.

We denote here, and in the sequel, the number of elements in a set S by cardS.
Let A be a square matrix of order n. Denote, as before,N = {1, . . . , n}. When-
ever M1 ⊂ N , M2 ⊂ N , cardM1 = cardM2, the submatrix A(M1,M2)
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is square. We then call detA(M1,M2) the subdeterminant or minor of the
matrix A. If M1 = M2, we speak about principal minors of A.

Also, we speak about the complementary submatrix A(N\M1,N\M2) of
the submatrix A(M1,M2) in A. For M ⊂ N , denote by s(M) the sum of
all numbers in M. The determinant of the complementary submatrix mul-
tiplied by (−1)s(M1)+s(M2) is then called the algebraic complement of the
subdeterminant detA(M1,M2). It is advantageous to denote this algebraic
complement as codet A(M1,M2).

Theorem 1.5. (Laplace expansion theorem) Let A be a square matrix of
order n; let S be a subset of N = {1, . . . , n}. Then

detA =
∑

M
detA(S,M) · codet A(S,M),

where the summation is over all subsets M⊂ N such that cardM = cardS.

(Laplace expansion with respect to rows with indices in S.)

Remark 1.6. There is an analogous formula expanding the determinant with
respect to a set of columns.

For simplicity, we denote as Aik the algebraic complement of the entry
aik, in the previous notation, so
Aik = codet A({i}, {k}) = (−1)i+k detA(N\{i},N\{k}). We have then

detA =
n∑

k=1

aikAik, i = 1, . . . , n (1.3)

(expansion along the ith row),

detA =
n∑

i=1

aikAik, k = 1, . . . , n (1.4)

(expansion along the kth column).
Another corollary to Theorem 1.5 is:

Observation 1.7. If a square matrix has two rows or two columns identical,
its determinant is zero.

In particular, this holds for the matrix obtained from A = (aik) by replacing
the jth row by the ith row (i 6= j) of A. Expanding then the (zero) determinant
of the new matrix along the jth row, we obtain

n∑

k=1

aikAjk = 0, (1.5)

and this is true whenever i 6= j. Analogously,
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n∑

k=1

akiAkj = 0, (1.6)

whenever i 6= j.
Using the Laplace expansion theorem recurrently, we get the following:

Theorem 1.8. Let A = (Aik) be a block lower triangular matrix

A =




A11 0 0 . . . 0
A21 A22 0 . . . 0
. . . . . . 0

Ar1 Ar2 Ar3 . . . Arr




with r block rows and such that the diagonal blocks are square (and those above
the diagonal zero). Then

detA = det A11 detA22 · . . . · det Arr.

Let us recall now the important Cauchy–Binet formula (cf. [53], Section
0.8.7).

Theorem 1.9. Let P be an m × n matrix, Q an n ×m matrix, and m ≤ n.
Let M = {1, . . . , m}, and N = {1, . . . , n}. Then

detPQ =
∑

S
detP (M,S) · det Q(S,M),

where the summation is over all subsets S of N with m elements.

For m = n, we obtain:

Corollary 1.10. If P and Q are square matrices of the same order, then

det PQ = det P · detQ.

We have now:

Theorem 1.11. A matrix A = (aik) is nonsingular if and only if it is square
and its determinant is different from zero. In addition, the inverse A−1 =
(αik) where

αik =
Aki

det A
,

Aki being the algebraic complement of aki.

Proof. We present a short proof. If A is nonsingular, then by (1.2) and Corol-
lary 1.10,

det A · detA−1 = 1.

Thus, det A 6= 0. Conversely, if detA 6= 0, equations (1.3) and (1.5) yield that
the matrix C transposed to ( Aik

det A ) satisfies AC = I whereas (1.4) and (1.6)
imply that CA = I. ut
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Remark 1.12. Corollary 1.10 implies that the product of a finite number of
nonsingular matrices of the same order is again nonsingular.

Remark 1.13. Theorem 1.11 implies that for checking that the matrix C is the
inverse of A, only one of the conditions AC = I, CA = I suffices.

Let us return, for a moment, to the block lower triangular matrix in The-
orem 1.8.

Theorem 1.14. A block triangular matrix

A =




A11 0 0 . . . 0
A21 A22 0 . . . 0
. . . . . . 0

Ar1 Ar2 Ar3 . . . Arr




with square diagonal blocks is nonsingular if and only if all the diagonal blocks
are nonsingular. In such a case the inverse A−1 = (Bik) is also lower block
triangular. The diagonal blocks Bii are inverses of Aii and its subdiagonal
blocks Bij, i > j, can be obtained recurrently from

Bij = −A−1
ii

i−1∑

k=j

AikBkj . (1.7)

Proof. The condition on nonsingularity follows from Theorems 1.14 and 1.11.
The blocks Bij can indeed be recurrently obtained, starting with B21, by
increasing the difference i−j, since on the right-hand side of (1.7) only blocks
Bkj with k− j smaller than i− j occur. Then it is easily checked that, setting
all blocks Bik for i < k as zero blocks, and Bii as A−1

ii , all conditions for
AB = I are fulfilled. By Remark 1.13, (Bik) is indeed A−1. ut
Remark 1.15. This theorem applies, of course, also to the simplest case when
the blocks Aik are entries of the lower triangular matrix (aik). An analogous
result on inverting upper triangular matrices, or upper block triangular ma-
trices, follows by transposing the matrix and using Observation 1.3.

Corollary 1.16. The class of lower triangular matrices of the same order is
closed with respect to addition, scalar multiplication, and matrix multiplication
as well as, for nonsingular matrices, to inversion. The same is true for upper
triangular matrices, and also for diagonal matrices.

As we saw, triangular matrices can be inverted rather simply. This enables
us to invert matrices that allow factorization into triangular matrices. This is
possible in the following case.

A square matrix A of order n is called strongly nonsingular if all its prin-
cipal minors det A(Nk,Nk), k = 1, . . . , n, Nk = {1, . . . , k} are different from
zero.
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Theorem 1.17. Let A be a square matrix. Then the following are equivalent:
1. A is strongly nonsingular.
2. A has an LU-decomposition, i.e., there exist a nonsingular lower triangular
matrix L and a nonsingular upper triangular matrix U such that A = LU .

The condition 2 can be formulated in a stronger form.
A = BDC, where B is a lower triangular matrix with ones on the diag-

onal, C is an upper triangular matrix with ones on the diagonal and D is a
nonsingular diagonal matrix. This factorization is uniquely determined. The
diagonal entries dk of D are

d1 = A({1}, {1}), dk =
det A(Nk,Nk)

detA(Nk−1,Nk−1)
, k = 2, . . . , n.

The proof is left to the reader.
Let now

A =
(

A11 A12

A21 A22

)

be a block matrix in which A11 is nonsingular. We then call the matrix

A22 −A21A
−1
11 A12

the Schur complement of the submatrix A11 in A and denote it by [A/A11].
Here, the matrix A22 need not be square.

Theorem 1.18. If the matrix

A =
(

A11 A12

A21 A22

)

is square and A11 is nonsingular, then the matrix A is nonsingular if and only
if the Schur complement [A/A11] is nonsingular. We have then

det A = det A11 det[A/A11],

and if the inverse

A−1 =
(

B11 B12

B21 B22

)

is written in the same block form, then

[A/A11] = B−1
22 .

The proof is simple.
Observe that the system of m linear equations with n unknowns

a11x1 + a12x2 + · · ·+ a1nxn = b1,

a21x1 + a22x2 + · · ·+ a2nxn = b2,

. . .

am1x1 + am2x2 + · · ·+ amnxn = bn
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can be written in the form
Ax = b, (1.8)

where the m × n matrix A = (aik) is the matrix of the system, and x =
(x1, . . . , xn)T , b = (b1, . . . , bm)T are column vectors representing the solution
vector and the vector of the right-hand side, respectively.

Theorem 1.19. If the matrix of a system of n linear equations with n un-
knowns is nonsingular, then the system has a unique solution.

Proof. Indeed, if A in (1.8) is nonsingular, then x = A−1b is the unique
solution. ut
Corollary 1.20. If the system Ax = 0 with a square matrix A has a nonzero
solution, then detA = 0.

To show that the converse also holds, we have to mention the theory on
vector spaces; we suppose that the basic field is that of the real numbers, R.

A vector space V is the set of objects called vectors, for which two op-
erations are defined: addition denoted by + and (sometimes called scalar)
multiplication by a number (in our case, from R) denoted, for the moment,
by ◦.

The following properties have to be fulfilled.

(V1) u + v = v + u for all u,v in V ;
(V2) (u + v) + w = u + (v + w) for all u, v and w in V ;
(V3) There exists a vector 0 ∈ V (the zero vector) such that
u + 0 = u for all u ∈ V ;
(V4) If u ∈ V , then there is in V a vector −u (the opposite vector)
such that u + (−u) = 0;
(V5) α ◦ (u + v) = α ◦ u + α ◦ v for all u ∈ V , v ∈ V , and α ∈ R;
(V6) (α + β) ◦ u = α ◦ u + β ◦ u for all u ∈ V and all α, β in R;
(V7) (αβ) ◦ u = α ◦ (β ◦ u) for all u ∈ V and all α, β in R;
(V8) −u = (−1) ◦ u for all u ∈ V .

Here, the most important case (serving also as an example in the nearest
sequel) is the n-dimensional arithmetic vector space, namely the set Rn of all
real column vectors (a1, . . . , an)T with addition as defined above for matrices
n × 1 and multiplication by a number as scalar multiplication for matrices.
Analogously, if Cn is the set of all complex column vectors with such addition
and scalar multiplication, the scalars are complex.

A finite system of vectors u1, u2, . . . , us in V is called linearly dependent,
if there exist numbers α1, α2, . . . , αs in R not all equal to zero and such that

α1 ◦ u1 + α2 ◦ u2 + · · ·+ αs ◦ us = 0.

Otherwise, the system is called linearly independent.
In the example of the vector space R2, the system of vectors
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(
1
0

)
,

(
0
1

)
,

(
a1

a2

)

is linearly dependent, since

a1

(
1
0

)
+ a2

(
0
1

)
+ (−1)

(
a1

a2

)
=

(
0
0

)
,

and the third coefficient −1 is always different from zero. The system
(

1
0

)
,

(
0
1

)

is linearly independent, since if

α1

(
1
0

)
+ α2

(
0
1

)
=

(
0
0

)

holds, then by comparing the first entries on the left and on the right α1 = 0,
from the second entries α2 = 0 as well; thus, no such nonzero pair of numbers
α1, α2 exists.

If u1, u2, . . . , us is a system of vectors in V and v a vector in V , we say
that v is linearly dependent on (or, equivalently, is a linear combination of)
u1, u2, . . . , us, if there exist numbers α1, α2, . . . , αs in R such that v = α1 ◦
u1 + α2 ◦ u2 + · · ·+ αs ◦ us.

A vector space has finite dimension if there exists a nonnegative integer m
such that every system of vectors in V with more than m vectors is linearly
dependent. The dimension of such V is then the smallest of such numbers m;
in other words, it is a number n with the property that there is a system of
n linearly independent vectors in V , but every system having more than n
vectors is already linearly dependent. Such a system of n linearly independent
vectors of an n-dimensional vector space V is called the basis of V .

The arithmetic vector space Rn then has dimension n since the system
e1 = (1, 0, . . . , 0)T , e2 = (0, 1, . . . , 0)T , . . . , en = (0, 0, . . . , 1)T is a basis of Rn.

Observation 1.21. The set Rm×n of real m × n matrices is also a vector
space; it has dimension mn.

If V1 is a nonempty subset in a vector space V which is closed with respect
to the operations of addition and scalar multiplication in V , then we say that
V1 is a linear subspace of V . It is clear that the intersection of linear subspaces
of V is again a linear subspace of V . In this sense, the set (0) is in fact a linear
subspace contained in all linear subspaces of V .

If S is some set of vectors of a finite-dimensional vector space V , then the
linear subspace of V of smallest dimension that contains the set S is called
the linear hull of S and its dimension (necessarily finite) is called the rank of
S.

We are now able to present, without proof, an important statement about
the rank of a matrix.
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Theorem 1.22. Let A be an m × n matrix. Then the rank of the system of
the columns (as vectors) of A is the same as the rank of the system of the rows
(as vectors) of A. This common number r(A), called the rank of the matrix
A, is equal to the maximum order of all nonsingular submatrices of A. (If A
is the zero matrix, thus containing no nonsingular submatrix, then r(A) = 0.)

We can now complete Theorem 1.11 and Corollary 1.20.

Theorem 1.23. A square matrix A is singular if and only if there exists a
nonzero vector x for which Ax = 0.

Proof. The “if” part is in Corollary 1.20. Let now A of order n be singular.
By Theorem 1.22, r(A) ≤ n− 1 so that the system of columns A1, A2, . . . , An

of A is linearly dependent. If x1, x2, . . . , xn are those (not all zero) coefficients
for which

x1A1 + x2A2 + · · ·+ xnAn = 0,

then indeed Ax = 0 for x = (x1, x2, . . . , xn)T , x 6= 0. ut
The rank function enjoys important properties. We list some:

Theorem 1.24. We have:
1. For any matrix A,

r(AT ) = r(A).

2. If the matrices A and B have the same type, then

r(A + B) ≤ r(A) + r(B).

3. If the matrices A and B can be multiplied, then

r(AB) ≤ min(r(A), r(B)).

4. If A (resp., B) is nonsingular, then r(AB) = r(B) (resp., r(AB) = r(A)).
5. If a matrix A has rank one, then there exist column vectors x and y such
that A = xyT .

We leave the proof to the reader; let us only remark that the following
formula for the determinant of the sum of two square matrices of the same
order n can be used,

det(A + B) =
∑

Mi,Mj

detA(Mi,Mj) · codet B(Mi,Mj),

where the summation is taken over all pairs Mi, Mj of subsets of N =
{1, . . . , n} that satisfy cardMi = cardMj .

For square matrices, the following important notions have to be mentioned.
Let A be a square matrix of order n. A nonzero column vector x is called

the eigenvector of A if Ax = λx for some number (scalar) λ. This number λ
is called the eigenvalue of A corresponding to the eigenvector x.



12 1 Matrices

Theorem 1.25. A necessary and sufficient condition that a number λ is an
eigenvalue of a matrix A is that the matrix A− λI is singular, i.e., that

det(A− λI) = 0.

This formula is equivalent to

(−λ)n + c1(−λ)n−1 + · · ·+ cn−1(−λ) + cn = 0, (1.9)

where ck is the sum of all principal minors of A of order k,

ck =
∑

M⊂N , cardM=k

detA(M,M), N = {1, . . . , n}.

The polynomial on the left-hand side of (1.9) is called the characteristic
polynomial of the matrix A. It has degree n.

We have thus:

Theorem 1.26. A square complex matrix A = (aik) of order n has n eigen-
values (some may coincide). These are all the roots of the characteristic poly-
nomial of A. If we denote them as λ1, . . . , λn, then

n∑

i=1

λi =
n∑

i=1

aii, (1.10)

λ1λ2 · . . . · λn = det A.

The number
∑n

i=1 aii is called the trace of the matrix A. We denote it by
trA. By (1.10), trA is the sum of all eigenvalues of A.

Remark 1.27. A real square matrix need not have real eigenvalues, but as its
characteristic polynomial is real, the nonreal eigenvalues occur in complex
conjugate pairs.

We say that a square matrix B is similar to the matrix A if there exists a
nonsingular matrix P such that B = PAP−1. The relation ∼ of similarity is
reflexive, i.e. A ∼ A, symmetric, i.e. if A ∼ B, then B ∼ A, and transitive ,
i.e. if A ∼ B and B ∼ C, then A ∼ C. Therefore, the set of square matrices of
the same order splits into classes of matrices, each class containing mutually
similar matrices.

The problem of what these classes look like is answered in the following
theorem whose proof is omitted (cf. [53], Section 3.1). We say that a matrix
is in the Jordan normal form if it is block diagonal with Jordan blocks of the
form

Jk(σ) =




σ 1 0 . . . 0 0
0 σ 1 . . . 0 0
0 0 σ . . . 0 0
. . . . . . . .
0 0 0 . . . σ 1
0 0 0 . . . 0 σ




.
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Theorem 1.28. Every real or complex square matrix is in the complex field
similar to a matrix in the Jordan normal form. Moreover, if two matrices have
the same Jordan normal form apart from the ordering of the diagonal blocks,
then they are similar.

Theorem 1.29. A real or complex square matrix is nonsingular if and only
if all its eigenvalues are different from zero. In such case, the inverse has
eigenvalues reciprocal to the eigenvalues of the matrix.

Given a square matrix A and a polynomial f(x) = amxm + am−1x
m−1 +

· · ·+ a1x + a0, we speak about the polynomial f(A) in the matrix A defined
as follows: f(A) = amAm + am−1A

m−1 + · · ·+ a1A + a0I.

Theorem 1.30. If λ is an eigenvalue of A with eigenvector x, then f(λ) is
an eigenvalue of f(A) with eigenvector x.

Similar matrices A and B satisfying B = PAP−1 then have the property
that for every polynomial f(x), f(B) = Pf(A)P−1.

To show the importance of Theorem 1.28, let us first introduce the notion
of the spectral radius of a square matrix A. If λ1, . . . , λn are all eigenvalues
of A, then the spectral radius %(A) of A is

%(A) = max
i=1,...,n

|λi|.

Theorem 1.31. Let A be a square real or complex matrix. If the spectral
radius %(A) is less than 1, then
1. limk→∞Ak = 0.
2. The series

I + A + A2 + · · ·
converges to (I −A)−1.

Proof. By Theorem 1.28, the matrix is similar to a matrix in the Jordan
normal form J :

A = PJP−1.

Since A and J have the same eigenvalues, the spectral radius %(J) < 1. It is
easily seen that then the powers of all Jordan blocks of J converge to zero.
Thus limk→∞ Jk = 0, and since Ak = PJkP−1, limk→∞Ak = 0 as well.

Let us prove assertion 2. By Theorem 1.30, I − A has eigenvalues 1 − λk

where λks are eigenvalues of A. Since |λk| < 1 for all k, I − A is nonsingular
by Theorem 1.29.

Now,
I + A + A2 + · · ·+ Ak = (I −Ak+1)(I −A)−1,

and Ak+1 converges to 0 by assertion 1. The result follows. ut
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1.2 Norms, basic numerical linear algebra

Very often, in particular in applications, we have to add to the vector structure
in a vector space notions allowing us to measure the vectors and the related
objects.

Suppose we have a vector n-dimensional space Vn, real or more generally,
complex. As shown later, the usual approaches to how to assign to a vector x
its magnitude can be embraced by the general definition of a norm.

A norm in Vn is a function g that assigns to every vector x ∈ Vn a non-
negative number g(x) and enjoys the following properties.

N1. g(x + y) ≤ g(x) + g(y) for all x ∈ Vn and y ∈ Vn;
N2. g(λ ◦ x) = |λ|g(x) for all x ∈ Vn and all scalars λ;
N3. g(x) = 0 only if x = 0.
In the example of the vector space Cn the following are the most useful

norms assigned to a column vector x = (x1, . . . , xn)T :

g1(x) =
n∑

i=1

|xi|;

g2(x) =

√√√√
n∑

i=1

|xi|2; (1.11)

g3(x) = max
i
|xi|.

The first norm is sometimes called the octahedric norm or l1-norm, the second
Euclidean norm or l2-norm, and the third max-norm, cubic norm, or l∞-norm.
All these norms satisfy the above properties N1 to N3. We should mention
here that the norm g2(.) is usually denoted by ||.|| in the sequel.

As we know from Observation 1.21, the sets Rm×n and Cm×n of real or
complex m×n matrices form vector spaces of dimension mn. In these spaces,
usually the Frobenius norm is used: If A = (aik), then this norm is defined
analogously to g2 above as

N(A) =

√√√√
m∑

i=1

n∑

k=1

|aik|2.

However, theoretically the most important norms in Rm×n and Cm×n are
the matrix norms subordinate to the vector norms defined below. From now
on we restrict ourselves to the case of square matrices.

Let g be a vector norm in, say, Cn. If A is in Cn×n, then we define

g(A) = sup{g(Ax)|x ∈ Cn, g(x) = 1},

or equivalently,
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g(A) = max
x 6=0, x∈Cn

g(Ax)
g(x)

. (1.12)

It can be proved that (1.12) is indeed a norm on the space of matrices. More-
over, we even have for the product of matrices

g(AB) ≤ g(A)g(B),

and for the identity matrix
g(I) = 1.

Remark 1.32. The last formula shows that the Frobenius norm is not a sub-
ordinate norm for n > 1 since N(I) =

√
n.

In the case of the g1-norm, the corresponding matrix norm of the matrix
A = (aik) is

g1(A) = max
k

∑

i

|aik|,

for the g3-norm,
g3(A) = max

i

∑

k

|aik|.

The matrix norm corresponding to g2(A) is used in Section 3.
There is an important relationship between subordinate matrix norms and

the spectral radius.

Theorem 1.33. For any subordinate norm g and any square matrix A, we
have

%(A) ≤ g(A).

Proof. If %(A) = |λi| for an eigenvalue λi of A, let y be a corresponding
eigenvector. By (1.12), g(A) ≥ g(Ay)

g(y) and the right-hand side is %(A). ut

Let us mention the notion of duality which plays an important role in
linear algebra and linear programming as well as in many other fields. In the
most general case, two vector spaces V and V ′ over the same field F are called
dual if there exists a bilinear form 〈x, x′〉, a function V × V ′ → F satisfying
besides bilinearity:
B1. 〈x1 + x2, x

′〉 = 〈x1, x
′〉+ 〈x2, x

′〉 for all x1 ∈ V, x2 ∈ V, x′ ∈ V ′;
B2. 〈λx, x′〉 = λ〈x, x′〉 for all x ∈ V , x′ ∈ V ′ and λ ∈ F ;
B3. 〈x, x′1 + x′2〉 = 〈x, x′1〉+ 〈x, x′2〉 for all x ∈ V, x′1 ∈ V ′ x′2 ∈ V ′;
B4. 〈x, µx′〉 = µ〈x, x′〉 for all x ∈ V , x′ ∈ V ′ and µ ∈ F ;
the two conditions:
1. For every nonzero vector x ∈ V there exists a vector x′ ∈ V ′ such that
〈x, x′〉 6= 0;
2. For every nonzero vector x′ ∈ V ′ there exists a vector x ∈ V such that
〈x, x′〉 6= 0.
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It can be shown that both spaces V and V ′ have the same dimension and,
in addition, there exist so-called dual bases; for the finite-dimensional case of
dimensions n, these are bases e1, . . . , en in V and e′1, . . . , e

′
n in V ′ for which

〈ei, e
′
j〉 = δij (called the Kronecker delta; i.e., δij = 1 if i = j, δij = 0 if i 6= j).

For example, if V is the vector space of column vectors, V ′ is the vector
space of row vectors of the same dimension with respect to the bilinear form
〈x, x′〉 = x′x, the product of the vectors x′ and x.

However, V ′ can then also be the set of linear functions on V , i.e., functions
f(x) : V → F satisfying f(x + y) = f(x) + f(y) for all x ∈ V , y ∈ V , and
f(λx) = λf(x) for all x ∈ V and all λ ∈ F . These functions can again be added
and multiplied by scalars, as the bilinear form can simply serve 〈x, f〉 = f(x).

Let us return now to solving linear systems. As we observed in (1.8), such
a system has the form Ax = b. The general criterion, which is, however, rather
theoretical, is due to Frobenius.

Theorem 1.34. The linear system

Ax = b

has a solution if and only if both matrices A and the block matrix (A b) have
the same rank. This is always true if A has linearly independent rows.

To present a more practical approach to the problem, observe first that per-
muting the equations of the system does not essentially change the problem.
Algebraically, it means multiplication of (1.8) from the left by a permutation
matrix P , i.e., a square matrix that has in each row as well as in each column
only one entry different from zero, always equal to one. Of course, such a
matrix satisfies

PPT = I. (1.13)

Similarly, we can permute the columns of A and the rows of x, multiplying
A from the right by a permutation matrix Q; i.e., we insert the matrix QQT

between A and x:
(AQ)(QT x) = b.

Thus, in general, systems of linear equations with matrices A and PAQ,
where P and Q are permutation matrices, are trivially equivalent.

Another observation is that a system of linear equations with a square
upper triangular nonsingular matrix of the system is easily solved: we compute
the last unknown from the last equation, substitute the result into the last but
one equation to obtain the last but one unknown, etc., until the whole vector
of the solution is found. This method is called the backward substitution.

A similar procedure can be applied to more general systems whose matrix
has the so-called row echelon form1.

1The first column of zeros need not always be present.
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A =




0 A11 A12 . . . A1r . . . A1s

0 0 A22 . . . A2r . . . A2s

. . . . . . . . . . . .
0 0 0 . . . Arr . . . Ars

0 0 0 . . . 0 . . . 0




,

where r is the rank and Akk are row vectors with the first coordinate equal
to one.

One can show that every matrix can be brought to such form by multiplica-
tion from the left by a nonsingular matrix, i.e., by performing row operations
only. These operations can even be done by stepwise performing elementary
row operations, which are:
1. Multiplication of a row by a nonzero number;
2. Adding a row multiplied by a nonzero number to another row;
3. Exchanging two rows.

If we perform these row operations on the block matrix (A b), until A
reaches such form, it is easy to decide whether the system has a solution and
then find all solutions.

The algorithm that transforms the matrix by row operations into the row
echelon form can be, at least theoretically, done by the Gaussian elimination
method. One finds the first nonzero column, finds the first nonzero entry in it,
by operation 3 puts it into the first place, changes it by operation 1 into one,
eliminates using operation 2 all the remaining nonzero entries in this column,
and continues with the submatrix left after removing the first row, in the same
way, until no row is left.

It might, however, happen that the first nonzero entry (in the first step or
in further steps) is very small in modulus. Then it is better to choose another
entry in the relevant column which has a bigger modulus. This entry is then
called the pivot in the relevant step.

Observe that operation 1 above corresponds to multiplication from the
left by a nonsingular diagonal matrix differing from the identity by just one
diagonal entry. Operation 2 corresponds to multiplication from the left by a
matrix of the form I + αEik, where Eik is the matrix with just one entry
1 in the position (i, k) and zeros elsewhere; here, i 6= k. Operation 3 finally
corresponds to multiplication from the left by a permutation matrix obtained
from the identity by switching just two rows. Thus, altogether, we have:

Theorem 1.35. Every system Ax = b can be transformed into an equiva-
lent system Âx̂ = b̂ in which the matrix (Â b̂) has the row-echelon form by
multiplication from the left by a nonsingular matrix.

Remark 1.36. If the matrix A of such a system is strongly nonsingular, i.e., if
it has an LU-decomposition from Theorem 1.17, we can use the pivots (1,1),
(2,2) etc., and obtain the echelon form as an upper-triangular matrix with ones
on the diagonal. The nonsingular matrix by which we multiply the system is
then the matrix L−1 where A = LU is the decomposition.
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One can also use the more general Gaussian block elimination method.

Theorem 1.37. Let the system Ax = b be in the block form

A11x1 + A12x2 = b1,

A21x1 + A22x2 = b2,

where x1, x2 are vectors.
If A11 is nonsingular, then this system is equivalent to the system

A11x1 + A12x2 = b1,

(A22 −A21A
−1
11 A12)x2 = b2 −A21A

−1
11 b1.

Proof. We perform one step of the Gaussian elimination by multiplying the
first block equation by A−1

11 from the left and subtracting it multiplied by A21

from the left of the second equation. Then the resulting system has a block
echelon form (we left there the block diagonal coefficient matrices). ut
Remark 1.38. In this theorem, the role of the Schur complement [A/A11] =
A22 −A21A

−1
11 A12 for elimination is recognized.

In numerical linear algebra, the so-called iterative methods nowadays play a
very important role, for instance for solving large systems of linear equations.

Let us describe the simplest Jacobi method. Write the given system of
linear equations with a square matrix in the form

(I −A)x = b. (1.14)

We choose an initial vector x0 and set

x1 = Ax0 + b,

x2 = Ax1 + b,

. . . (1.15)
xk+1 = Axk + b,

etc.

If the sequence of the vectors {xk} converges to a vector x̂, then it is clear
that x̂ is a solution of (1.14).

Theorem 1.39. Let the spectral radius %(A) of the matrix A in (1.14) satisfy

%(A) < 1. (1.16)

Then the sequence of vectors formed in (1.15) converges for any initial vector
x0 to the solution of (1.14) which is unique.

A sufficient condition for (1.16) is that for some norm g subordinate to a
vector norm,

g(A) < 1.
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Proof. By induction, the formula

xk = Akx0 + (I + A + A2 + · · ·+ Ak−1)b for k = 1, 2, . . .

is easily proved. By Theorem 1.31, xk converges to (I − A)−1b, which is the
unique solution of (1.14). The last assertion follows from Theorem 1.33. ut

1.3 Symmetric matrices

In this section, we pay attention to a specialized real vector space called
Euclidean vector space in which magnitude (length) of a vector is defined
using the so-called inner product of two vectors.

In a few cases, we also consider complex vector spaces; the interested reader
can find the related theory of the unitary vector space in [35].

A real finite-dimensional vector space E is called a Euclidean vector space
if a function 〈x, y〉 : E × E → R is given that satisfies:
E1. 〈x, y〉 = 〈y, x〉 for all x ∈ E, y ∈ E;
E2. 〈x1 + x2, y〉 = 〈x1, y〉+ 〈x2, y〉 for all x1 ∈ E, x2 ∈ E, and y ∈ E;
E3. 〈αx, y〉 = α〈x, y〉 for all x ∈ E, y ∈ E, and all real α;
E4. 〈x, x〉 ≥ 0 for all x ∈ E, with equality if and only if x = 0.

The property E4 enables us to define the length ||x|| of the vector x as√
〈x, x〉. A vector is called a unit vector if its length is one. Vectors x and

y are orthogonal if 〈x, y〉 = 0. A system u1, . . . , um of vectors in E is called
orthonormal if 〈ui, uj〉 = δij , the Kronecker delta.

It is easily proved that every orthonormal system of vectors is linearly in-
dependent. If the number of vectors in such a system is equal to the dimension
of E, it is called an orthonormal basis of E.

The real vector space Rn of column vectors will become a Euclidean space
if the inner product of the vectors x = (x1, . . . , xn)T and y = (y1, . . . , yn)T is
defined as

〈x, y〉 = x1y1 + · · ·+ xnyn.

An example of an orthonormal basis is the system e1 = (1, 0, . . . , 0)T ,
e2 = (0, 1, . . . , 0)T , . . ., en = (0, 0, . . . , 1)T .

Theorem 1.40. If A = (aik) is in Rn×n, then for x ∈ Rn and y ∈ Rn we
obtain

〈Ax, y〉 = 〈x,AT y〉.
Proof. Indeed, both sides are equal to

∑n
i,k=1 aikxkyi. ut

We now call a matrix A = (aik) in Rn×n symmetric if aik = aki for all i, k,
or equivalently, if A = AT . We call it orthogonal if AAT = I. Thus:
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Theorem 1.41. The sum of two symmetric matrices in Rn×n is symmetric;
the product of two orthogonal matrices in Rn×n is orthogonal. The identity is
orthogonal and the transpose (which is equal to the inverse) of an orthogonal
matrix is orthogonal.

The following theorem on orthogonal matrices holds (see [35]).

Theorem 1.42. Let Q be an n×n real matrix. Then the following are equiv-
alent.
1. Q is orthogonal.
2. For all x ∈ Rn,

||Qx|| = ||x||.
3. For all x ∈ Rn, y ∈ Rn,

〈Qx, Qy〉 = 〈x, y〉.

4. Whenever u1, . . . , un is an orthonormal basis, then Qu1, . . . , Qun is an
orthonormal basis as well.
5. There exists an orthonormal basis v1, . . . , vn such that Qv1, . . . , Qvn is
again an orthonormal basis.

The basic theorem on symmetric matrices can be formulated as follows.

Theorem 1.43. Let A be a real symmetric matrix. Then there exist an or-
thogonal matrix Q and a real diagonal matrix D such that A = QDQT . The
diagonal entries of D are the eigenvalues of A, and the columns of Q eigen-
vectors of A; the kth column corresponds to the kth diagonal entry of D.

Corollary 1.44. All eigenvalues of a real symmetric matrix are real. For
every real symmetric matrix there exists an orthonormal basis of R consisting
of its eigenvectors.

An important subclass of the class of real symmetric matrices is that of
positive definite (resp., positive semidefinite) matrices.

A real symmetric matrix A of order n is called positive definite (resp.,
positive semidefinite) if for every nonzero vector x ∈ Rn, the product xT Ax
is positive (resp., nonnegative).

In the following theorem we collect the basic characteristic properties of
positive definite matrices. For the proof, see [35].

Theorem 1.45. Let A = (aik) be a real symmetric matrix of order n. Then
the following are equivalent.
1. A is positive definite.
2. All principal minors of A are positive.
3. detA(Nk,Nk) > 0 for k = 1, . . . , n, where Nk = {1, . . . , k}. In other words,
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a11 > 0, det
(

a11 a12

a21 a22

)
> 0, det




a11 a12 a13

a21 a22 a23

a31 a32 a33


 > 0, . . . , detA > 0.

4. There exists a nonsingular lower triangular matrix B such that A = BBT .
5. There exists a nonsingular matrix C such that A = CCT .
6. The sum of all principal minors of order k is positive for k = 1, . . . , n.
7. All eigenvalues of A are positive.
8. There exists an orthogonal matrix Q and a diagonal matrix D with positive
diagonal entries such that A = QDQT .

Corollary 1.46. If A is positive definite, then A−1 exists and is positive def-
inite as well.

Remark 1.47. Observe also that the identity matrix is positive definite.

For positive semidefinite matrices, we have:

Theorem 1.48. Let A = (aik) be a real symmetric matrix of order n. Then
the following are equivalent.
1. A is positive semidefinite.
2. The matrix A + εI is positive definite for all ε > 0.
3. All principal minors of A are nonnegative.
4. There exists a square matrix C such that A = CCT .
5. The sum of all principal minors of order k is nonnegative for k = 1, . . . , n.
6. All eigenvalues of A are nonnegative.
7. There exists an orthogonal matrix Q and a diagonal matrix D with non-
negative diagonal entries such that A = QDQT .

Corollary 1.49. A positive semidefinite matrix is positive definite if and only
if it is nonsingular.

Corollary 1.50. If A is positive definite and α a positive number, then αA
is positive definite as well. If A and B are positive definite of the same order,
then A + B is positive definite; this is so, even if one of the matrices A, B is
positive semidefinite.

The expression xT Ax – in the case that A is symmetric – is called the
quadratic form corresponding to the matrix A. It is important that the Raleigh
quotient xT Ax

xT x
for x 6= 0 can be estimated from both sides.

Theorem 1.51. If A is a symmetric matrix of order n with eigenvalues λ1 ≥
λ2 ≥ · · · ≥ λn, then

λn ≤ xT Ax

xT x
≤ λ1

for every nonzero vector x.
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Remark 1.52. All the properties mentioned in this section hold, with appropri-
ate changes, for the more general complex case. One defines, instead of sym-
metric matrices, so called Hermitian matrices, by A = AH , where AH means
transposition and complex conjugacy. Unitary matrices defined by UUH = I
then play the role of orthogonal matrices. It is easily shown that if A is Her-
mitian, xHAx is always real; positive definite is then such an Hermitian matrix
for which xHAx > 0 whenever x is a nonzero vector.

Now, we can fill in the gap left in the preceding section. We left open the
question about the subordinate norm g2 for matrices.

Theorem 1.53. Let A be a (in general complex) square matrix. Then g2(A)
is equal to the square root of the spectral radius %(AHA). In the real case,

g2(A) =
√

%(AT A).

Proof. We prove the real case only. In the notation above, and by Theorem
1.40 we get

g2(Ax) = 〈Ax,Ax〉 1
2

= 〈AT Ax, x〉 1
2

≤ 〈%(AT A)x, x〉 1
2

≤ (%(AT A))
1
2 g2(x);

here, we also used Theorem 1.51 since %(AT A) = λ2
1.

However, if we take an eigenvector of the symmetric positive semidefinite
matrix AT A corresponding to %(AT A) for x, we obtain equality. ut

For general complex matrices, even not necessarily square, the following
factorization (so-called singular value decomposition, SVD for short) general-
izes Theorem 1.43.

Theorem 1.54. Let A be a complex m×n matrix of rank r. Then there exist
unitary matrices U of order m, V of order n, and a diagonal matrix S of
order r with positive diagonal entries such that

A = U

(
S 0
0 0

)
V ; (1.17)

here, the zero blocks complete the matrix to an m × n matrix. The matrix S
is then determined uniquely up to the ordering of the diagonal entries.

Remark 1.55. The diagonal entries s1, . . . , sr of S, usually supposed ordered
as s1 ≥ s2 ≥ · · · ≥ sr, are called singular values of A.

Remark 1.56. For a real matrix A, the singular value decomposition can al-
ways be real; the matrices U and V will be orthogonal.
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Concluding this section, let us notice a close relationship of the class of pos-
itive semidefinite matrices with Euclidean geometry. If u1, . . . , um is a system
of vectors in a Euclidean vector space, then the matrix of the inner products

G(u1, . . . , um) =




〈u1, u1〉 〈u1, u2〉 · · · 〈u1, um〉
〈u2, u1〉 〈u2, u2〉 · · · 〈u2, um〉

. . · · · .
〈um, u1〉 〈um, u2〉 · · · 〈um, um〉


 ,

the so-called Gram matrix of the system, enjoys the following property.

Theorem 1.57. The Gram matrix G(u1, . . . , um) of a system of vectors in a
Euclidean space is always positive semidefinite. Its rank is equal to the dimen-
sion of the linear space of the smallest dimension that contains all vectors of
the system (linear hull of the system).

Conversely, if A is an m×m positive semidefinite matrix of rank r, then
there exists a Euclidean vector space of dimension r and a system of m vectors
in this space the Gram matrix of which coincides with A. In addition, every
linear dependence relation between the rows of A corresponds to the same
linear dependence relation between the vectors of the system and conversely.

Remark 1.58. This theorem shows (in fact, it is equivalent with) that all
Euclidean vector spaces of a fixed dimension are equivalent.

1.4 Generalized inverses

We complete the treatment on general matrix theory with a short section on
generalized inversion.

As we know, for a nonsingular matrix A there exists a unique matrix X
that satisfies AX = I, XA = I, where I is the identity matrix, namely the
inverse matrix to A. Observe that this matrix X also satisfies the following
relations

AXA = A, (1.18)
XAX = X, (1.19)

(AX)T = AX, (1.20)
(XA)T = XA. (1.21)

These relations have also meaning for matrices that are not square. Indeed,
if A is m×n then for an n×m matrix X, formal conditions for multiplication
of matrices are fulfilled. This observation leads to the notions of generalized
inverses of the matrix A as matrices X that satisfy one, two, three or all
conditions in (1.18) to (1.21).
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Remark 1.59. In the case of complex matrices, it is useful to replace conditions
(1.20) and (1.21), similarly as in Remark 1.52, by (AX)H = AX and (XA)H =
XA.

The existence of a generalized inverse satisfying all conditions (1.18) to
(1.21) follows from the following.

Theorem 1.60. Let A = USV be the singular value decomposition (see
(1.17)) of the m× n matrix A, where U , V are orthogonal (if A ∈ Rm×n) or
unitary (if A ∈ Cm×n), and S the matrix

(
S0 0
0 0

)

with diagonal S0 having positive diagonal entries.
Then the matrix X = V T ŜUT (in the complex case X = V H ŜUH), where

Ŝ =
(

S−1
0 0
0 0

)

is n×m, satisfies all conditions (1.18) to (1.21) (in the complex case, replaced
according to Remark 1.59).

We have, however, the following important theorem; if B is a matrix,
we use the symbol B∗ for the more general case of the complex conjugate
transpose. In the real case, one can simply replace it by BT .

Theorem 1.61. In both real and complex cases, there is a unique matrix X
that satisfies all conditions (1.18) to (1.21). In the real case, X is real.

Proof. It suffices to prove the uniqueness. (We use * for both the real and
complex case.) By (1.18), A∗X∗A∗ = A∗. Thus, by (1.20) and (1.21),

A∗AX = A∗ = XAA∗; (1.22)

similarly also
XX∗A∗ = X = A∗X∗X. (1.23)

Now, let both X1 and X2 satisfy (1.18) to (1.21). Then, by (1.22) and
(1.23),

X1 = X1X
∗
1A∗

= X1X
∗
1A∗AX2

= X1AX2

= X1AA∗X∗
2X2

= A∗X∗
2X2

= X2.



1.4 Generalized inverses 25

This unique matrix X is usually called the Moore–Penrose inverse (some-
times pseudoinverse) of A and denoted as A+.

In the following theorem, we list the most important properties of the
Moore–Penrose inverse.

Theorem 1.62. Let A be a matrix. Then

(A+)+ = A,

(A∗)+ = (A+)∗,
(AA∗)+ = (A+)∗A+,

(A∗A)+ = A+(A∗)+,

r(A) = r(A+)
= r(AA+)
= tr(AA+),

where r(.) means the rank and tr(.) the trace.
If λ 6= 0 is a scalar, then (λA)+ = λ−1A+.
If U , V are unitary, then (UAV )+ = V ∗A+U∗.

Corollary 1.63. For any zero matrix, we have 0+ = 0T . If the rows of A
are linearly independent, then A+ = A∗(AA∗)−1. If the columns are linearly
independent, then A+ = (A∗A)−1A∗. Of course, A+ = A−1 for a nonsingular
(thus square) matrix A.

The Moore–Penrose inverse has important applications in statistics as well
as in numerical computations. If we are given a system (obtained, for instance,
by repeated measuring) of m linear equations in n unknowns of the form

Ax = b,

where m is greater than n, there is usually no solution. We can then ask:
Problem. What is the best approximation x0 of the system, i.e., for which

x0 the g2-norm
||Ax− b||

attains its minimum among all vectors x in Rn (or, Cn)?
The solution is given in the theorem:

Theorem 1.64. Let A be an m× n matrix, m ≥ n. Then the solution of the
problem above is given by

x0 = A+b,

where A+ is the Moore–Penrose inverse of A.

Remark 1.65. If m < n, there might be more solutions of such a system of
linear equations. In this case, the vector x0 = A+b has the property that its
norm ||x0|| is minimal among all solutions of the problem.
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There are several ways to compute the Moore–Penrose inverse numeri-
cally. One way was already mentioned in Theorem 1.60 using the singular
value decomposition. Another way is the Greville algorithm which constructs
successively the Moore–Penrose inverses for submatrices Ak formed by the
first k columns of A, k = 1, . . . , n.2 Here, ak denotes the kth column of A.
This means that Ak = (a1, . . . , ak), and A = An.

Theorem 1.66. Let A ∈ Rm×n (or, Cm×n). Set A+
1 = a+

1 , i.e.

A+
1 =

{
(aT

1 a1)−1aT
1 if a1 6= 0,

0 if a1 = 0.

For k = 2, . . . , n, define dk = A+
k−1ak, ck = ak −Ak−1dk, and set

bT
k =

{
c+
k (= (cT

k ck)−1cT
k ) if ck 6= 0,

(1 + dT
k dk)−1dkA+

k−1 if ck = 0.

Then

A+
k =

(
A+

k−1 − dkbT
k

bT
k

)
,

and A+ = A+
n .

Based on this theorem, we can summarize the Greville algorithm in the fol-
lowing form.

c := a1;
if c = 0 then A+ := cT ; else A+ := cT

cT c
; end

for j = 2 to n
d := A+aj ;
c := aj − (a1, . . . , aj−1)d;
if c = 0 then bT := dT A+

1+dT d
; else bT := cT

cT c
; end

A+ :=
(

A+ − dbT

bT

)
;

end

Remark 1.67. The Moore–Penrose inverse A+ is not a continuous function of
the matrix A unless the rank of A is known. This is reflected in the algorithm
by deciding whether ck is (exactly) zero. A similar problem also arises in the
singular value decomposition.

2The Greville algorithm can be recommended for problems of small dimensions;
otherwise, the singular value decomposition is preferable.
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1.5 Nonnegative matrices, M - and P -matrices

Positivity, or more generally, nonnegativity, plays a crucial role in most parts
of this book. In the present section, we always assume that the vectors and
matrices are real.

We denote by the symbols >, ≥ or <, ≤ componentwise comparison of the
vectors or matrices. For instance, for a matrix A, A > 0 means that all entries
of A are positive; the matrix is called positive. A ≥ 0 means nonnegativity of
all entries and the matrix is called nonnegative.

Evidently, the sum of two or more nonnegative matrices of the same type
is again nonnegative, and also the product of nonnegative matrices, if they
can be multiplied, is nonnegative. Sometimes it is necessary to know whether
the result is already positive. Usually, the combinatorial structure of zero and
nonzero entries and not the values themselves decide. In such a case, it is
useful to apply graph theory terminology. We restrict ourselves to the case of
square matrices.

A (finite) directed graph G = (V, E) consists of the set of vertices V and
the set of edges E, a subset of the Cartesian product V ×V . This means that
every edge is an ordered pair of vertices and can thus be depicted in the plane
by an arc with an arrow if the vertices are depicted as points. For our purpose,
V is the set {1, 2, . . . , n} and E the set of entries 1 of an n× n matrix A(G)
in the corresponding positions (i, k); if there is no edge “starting” in i and
“ending” in k, the entry in the position (i, k) is zero.

We have thus assigned to a finite directed graph (usually called a digraph)
a (0, 1)-matrix A(G). Conversely, let C = (cik) be an n × n nonnegative
matrix. We can assign to C a digraph G(C) = (V, E) as follows: V is the set
{1, . . . , n}, and E the set of all pairs (i, k) for which cik is positive.

The graph theory terminology speaks about a path in G from vertex i to
the vertex k if there are vertices j1, . . . , js such that (i, j1), (j1, j2), . . . , (js, k)
are edges in E; s + 1 is then the length of this path. The vertices in the path
need not be distinct. If they are, the path is simple. If i coincides with k, we
speak about a cycle; its length is then again s+1. If all the remaining vertices
are distinct, the cycle is simple. The edges (k, k) themselves are called loops.
The digraph is strongly connected if there is at least one path from any vertex
to any other vertex. Further on, we show an equivalent property for matrices.

Let P be a permutation matrix. By (1.13), we have PPT = I. If C is a
square matrix and P a permutation matrix of the same order, then PCPT

is obtained from C by a simultaneous permutation of rows and columns; the
diagonal entries remain diagonal. Observe that the digraph G(PCPT ) differs
from the digraph G(C) only by different numbering of the vertices.

We say that a square matrix C is reducible if it has the block form

C =
(

C11 C12

0 C22

)
,
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where both matrices C11, C22 are square of order at least one, or if it can be
brought to such form by a simultaneous permutation of rows and columns.

A square matrix is called irreducible if it is not reducible.
This relatively complicated notion is important for nonnegative matrices

and their applications (in probability theory and elsewhere). However, it has
a very simple equivalent in the graph-theoretical setting.

Theorem 1.68. A nonnegative matrix C is irreducible if and only if the di-
graph G(C) is strongly connected.

A more detailed view is given in the following theorem.

Theorem 1.69. Every square nonnegative matrix can be brought by a simul-
taneous permutation of rows and columns to the form




C11 C12 C13 . . . C1r

0 C22 C23 . . . C2r

0 0 C33 . . . C3r

. . . . . . .
0 0 0 . . . Crr




, (1.24)

in which the diagonal blocks are irreducible (thus square) matrices.

This theorem (the proof of which is also omitted) has a counterpart in
graph theory. Every finite digraph has the following structure. It consists of
so-called strong components that are the maximal strongly connected subdi-
graphs; these can then be numbered in such a way that there is no edge from a
vertex with a larger number of the strong component into a vertex belonging
to the strong component with a smaller number.

Remark 1.70. Theorem 1.68 holds also for the case of matrices with entries in
any field. The digraph of such a matrix should distinguish zero and nonzero
entries only.

The importance of irreducibility for nonnegative matrices is particularly
clear if we investigate powers of such a matrix. Whereas every power of a
reducible matrix (1.24) is again reducible even if we add to the matrix the
identity matrix, one can show that the (n− 1)st power of A + I is positive if
A is an irreducible nonnegative matrix of order n.

We now state three main results of the Perron–Frobenius theory. For the
proofs, see, e.g., [35].

Theorem 1.71. Let A be a square nonnegative irreducible matrix of order n >
1. Then the spectral radius %(A) is a positive and simple eigenvalue of A and
the corresponding eigenvector can be made positive by scalar multiplication. A
nonnegative eigenvector corresponds to no other eigenvalue.
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Theorem 1.72. Let A be a nonnegative irreducible matrix of order n > 1; let
m be a positive integer. Then the following are equivalent.
1. There are m eigenvalues of A having modulus %(A).
2. There exists a permutation matrix P such that PAPT has the block form

PAPT =




0 A12 0 . . . 0
0 0 A23 . . . 0
. . . . . . .
0 0 0 . . . Am−1,m

Am1 0 0 . . . 0




with square diagonal blocks, and for no permutation matrix an analogous form
exists with more than m block rows.
3. The greatest common divisor of the lengths of all cycles (equivalently, simple
cycles) in the graph G(A) is m.
4. If (−1)nλn +kn1λ

n1 +kn2λ
n2 + · · ·+kns

λns is the characteristic polynomial
of the matrix A written with nonzero terms only, n > n1 > · · · > ns ≥ 0, then
m is the greatest common divisor of n− n1, n1 − n2,. . . , ns−1 − ns.
5. m is the maximum k having the property that the rotation of the spectrum
S(A) (i.e., the set of the eigenvalues) of A in the complex plane by the angle
2π
k preserves S(A).

Theorem 1.73. Let A be a nonnegative square matrix. Then the spectral ra-
dius %(A) is an eigenvalue of A, and there exists a nonnegative eigenvector of
A corresponding to this eigenvalue.

Remark 1.74. The existence of a nonnegative eigenvector of a nonnegative
(and nonzero) matrix can be deduced from Brouwer’s fixed-point theorem,
see, e.g., [7]. The mapping that maps any nonnegative unit vector x into
the vector ||Ax||−1Ax is continuous and maps the intersection of the unit
sphere with the nonnegative orthant into itself. The existing fixed point x
then corresponds to a nonnegative eigenvector, and ||Ax|| is the respective
eigenvalue.

There is another important class of matrices that is closely related to the
previous class of nonnegative matrices.

A square matrix A is called an M-matrix if it has the form kI −C, where
C is a nonnegative matrix and k > %(C).

Observe that every M -matrix has all off-diagonal entries non-positive. It is
usual to denote the set of such matrices by Z. To characterize matrices from
Z to obtain M -matrices, there exist surprisingly many possibilities. We list
some:

Theorem 1.75. Let A be a matrix in Z of order n. Then the following are
equivalent.
1. A is an M -matrix.
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2. There exists a vector x ≥ 0 such that Ax > 0.
3. All principal minors of A are positive.
4. The sum of all principal minors of order k is positive for k = 1, . . . , n.
5. detA(Nk,Nk) > 0 for k = 1, . . . , n, where Nk = {1, . . . , k}.
6. Every real eigenvalue of A is positive.
7. The real part of every eigenvalue of A is positive.
8. A is nonsingular and A−1 is nonnegative.

The proof and other characteristic properties can be found in [35].

Remark 1.76. Observe the remarkable coincidence of several properties with
those of positive definite matrices in Theorem 1.45. In the next theorem, we
present an analogy of positive semidefinite matrices.

Theorem 1.77. Let A be a matrix in Z of order n. Then the following are
equivalent.
1. A + εI is an M -matrix for all ε > 0.
2. All principal minors of A are nonnegative.
3. The sum of all principal minors of order k is nonnegative for k = 1, . . . , n.
4. Every real eigenvalue of A is nonnegative.
5. The real part of every eigenvalue of A is nonnegative.

We denote matrices satisfying these conditions M0-matrices.

Remark 1.78. As in the case of positive definite matrices, an M0-matrix is an
M -matrix if and only if it is nonsingular.

In the next theorem we list other characteristic properties of the class
of real square matrices having just the property 3 from Theorem 1.75 or
property 2 from Theorem 1.45, namely: All principal minors are positive.
These matrices are called P -matrices (cf. [37], [35]).

Theorem 1.79. Let A be a real square matrix. Then the following are equiv-
alent.
1. A is a P-matrix; i.e., all principal minors of A are positive.
2. Whenever D is a nonnegative diagonal matrix of the same order as A, then
all principal minors of A + D are different from zero.
3. For every nonzero vector x = (xi) there exists an index k such that
xk(Ax)k > 0.
4. Every real eigenvalue of any principal submatrix of A is positive.
5. The implication

z ≥ 0, SAT Sz ≤ 0 implies z = 0

holds for every diagonal matrix S with diagonal entries 1 or −1.
6. To every diagonal matrix S with diagonal entries 1 or −1 there exists a
vector x ≥ 0 such that SASx > 0.



1.6 Examples of other special classes of matrices 31

We omit the proof. Let us just state three corollaries.

Corollary 1.80. Every symmetric P-matrix is positive definite. Every P-
matrix in Z is an M-matrix.

Corollary 1.81. If for a real square matrix A its symmetric part 1
2 (A + AT )

is positive definite, then A ∈ P .

Corollary 1.82. If A ∈ P , then there exists a vector x ≥ 0 such that Ax > 0.

Also in this case, we can define the “topological closure” of P -matrices,
namely the class of real square matrices whose all principal minors are non-
negative. We call them P0-matrices.

Theorem 1.83. Let A be a real square matrix. Then the following are equiv-
alent.
1. A is a P0-matrix; i.e., all principal minors of A are nonnegative.
2. Whenever D is a diagonal matrix of the same order as A with all diagonal
entries positive, then all principal minors of A + D are positive.
3. For every nonzero vector x = (x1, . . . , xn)T there exists an index k such
that xk(Ax)k ≥ 0.
4. Every real eigenvalue of any principal submatrix of A is nonnegative.
5. To every diagonal matrix S with diagonal entries 1, −1, or 0, there exists
a vector y 6= 0 such that Sy ≥ 0, S2y = y, and SAy ≥ 0.

As before, one can formulate some corollaries.

Corollary 1.84. If for a real square matrix A its symmetric part 1
2 (A + AT )

is positive semidefinite, then A ∈ P0.

Corollary 1.85. If A ∈ P0, then there exists a nonzero vector x ≥ 0, such
that Ax ≥ 0.

1.6 Examples of other special classes of matrices

A Hankel matrix of order n is a matrix H of the form H = (hi+j), i, j =
0, . . . , n− 1; i.e.,

H =




h0 h1 h2 . . . hn−1

h1 h2 . . . hn−1 hn

h2 . . .
. . . . . . . . .

hn−1 . . . h2n−3 h2n−2




.

Its entries hk can be real or complex. Let Hn denote the class of all n× n
Hankel matrices. Evidently, Hn is a linear vector space (complex or real) of
dimension 2n−1. It is also clear that an n×n Hankel matrix has rank one if and



32 1 Matrices

only if it is either of the form γ(ti+k) for γ and t fixed (in general, complex),
or if it has a single nonzero entry in the lower-right corner. Hankel matrices
play an important role in approximations, investigation of polynomials, etc.

A closely related class is that of Toeplitz matrices. These are (if of order
n) matrices of the form T = (ti−k), i.e.,




t0 t1 t2 . . . tn−2 tn−1

t−1 t0 t1 . . . tn−3 tn−2

t−2 t−1 t0 . . . tn−4 tn−3

· · · · · · · · · · · · · · · · · ·
t−n+1 t−n+2 t−n+3 . . . t−1 t0




.

Its entries tk can again be real or complex. The class Tn of all n×n Toeplitz
matrices is also a vector space of dimension 2n− 1.

An important subclass of Tn is that of circulant matrices, i.e., matrices of
the form




c0 c1 c2 · · · cn−2 cn−1

cn−1 c0 c1 · · · cn−3 cn−2

cn−2 cn−1 c0 · · · cn−4 cn−3

· · · · · · · · · · · · · · · · · ·
c1 c2 c3 · · · cn−1 c0




.

These matrices also form a vector space, this time of dimension n. Observe
that the matrix above can be expressed as

c0I + c1S + c2S
2 + · · ·+ cn−1S

n−1,

where S is the permutation matrix

S =




0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 1
1 0 0 · · · 0




.

By Theorem 1.30, the spectral properties of a circulant matrix follow eas-
ily from the spectral properties of the matrix S. It is easily checked that
the eigenvalues of S are exactly all nth roots of 1; if ε is such a root, then
(1, ε, ε2, . . . , εn−1)T is the corresponding eigenvector.

A real m × n matrix C = (cik) is called (cf. [52], [23]) a Monge matrix if
it satisfies

cik + cjl ≤ cil + cjk for all i, j, k, l, i < j, k < l. (1.25)

Monge matrices play an important role in assignment and transportation
problems. In the case of such a matrix there is a simple solution. A survey of
Monge matrices and their applications is given in [23].
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In our considerations, it is simpler to consider the class of matrices called
in accordance with [36] anti-Monge. This class is defined by inequalities (1.26)
analogous to (1.25) but with opposite signs of inequalities:

cik + cjl ≥ cil + cjk for all i, j, k, l, i < j, k < l. (1.26)

One can show easily that among
(
m
2

)(
n
2

)
inequalities (1.26) only (m−1)(n−

1) are relevant, namely those for which j = i+1 and l = k+1, i = 1, . . . , m−1,
k = 1, . . . , n− 1. The remaining inequalities are then fulfilled.

In [36], a matrix was called equilibrated if all its row sums and all its
column sums are equal to zero. It was shown there that by appropriately
subtracting constant rows and constant columns, every anti-Monge matrix can
be transformed into an equilibrated anti-Monge matrix; interestingly enough,
the product of such matrices (if they can be multiplied) is also an equilibrated
anti-Monge matrix.
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Solvability of systems of interval linear
equations and inequalities
J. Rohn

2.1 Introduction and notations

This chapter deals with solvability and feasibility (i.e., nonnegative solvability)
of systems of interval linear equations and inequalities. After a few preliminary
sections, we delineate in Section 2.6 eight decision problems (weak solvability
of equations through strong feasibility of inequalities) that are then solved
in eight successive sections 2.7 to 2.14. It turns out that four problems are
solvable in polynomial time and four are NP-hard. Some of the results are
easy (Theorem 2.13), some difficult to prove (Theorem 2.14), and some are
surprising (Theorem 2.24). Although solutions of several of them are already
known, the complete classification of the eight problems given here is new.
Some special cases (tolerance, control and algebraic solutions, systems with
square matrices) are treated in Sections 2.16 to 2.19. The last, Section 2.21
contains additional notes and references to the material of this chapter. Some
of the results find later applications in interval linear programming (Chap-
ter 3).

We use the following notations. The ith row of a matrix A is denoted by Ai·
and the jth column by A·j . For two matrices A,B of the same size, inequalities
like A ≤ B or A < B are understood componentwise. A is called nonnegative
if 0 ≤ A; AT is the transpose of A. The absolute value of a matrix A = (aij)
is defined by |A| = (|aij |). We use the following easy-to-prove properties valid
whenever the respective operations and inequalities are defined.

(i) A ≤ B and 0 ≤ C imply AC ≤ BC.
(ii) A ≤ |A|.
(iii) |A| ≤ B if and only if −B ≤ A ≤ B.
(iv) |A + B| ≤ |A|+ |B|.
(v) ||A| − |B|| ≤ |A−B|.
(vi) |AB| ≤ |A||B|.
The same notations and results also apply to vectors that are always consid-
ered one-column matrices. Hence, for a = (ai) and b = (bi), aT b =

∑
i aibi
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is the scalar product whereas abT is the matrix (aibj). Maximum (or mini-
mum) of two vectors a, b is understood componentwise: i.e., (max{a, b})i =
max{ai, bi} for each i. In particular, for vectors a+, a− defined by a+ =
max{a, 0}, a− = max{−a, 0} we have a = a+ − a−, |a| = a+ + a−, a+ ≥ 0,
a− ≥ 0 and (a+)T a− = 0. I denotes the unit matrix, ej is the jth column of I
and e = (1, . . . , 1)T is the vector of all ones (in these cases we do not designate
explicitly the dimension which can always be inferred from the context). In
our descriptions to follow, an important role is played by the set Ym of all ±1
vectors in Rm; i.e.,

Ym = {y ∈ Rm | |y| = e}.
Obviously, the cardinality of Ym is 2m. For each x ∈ Rm we define its sign
vector sgn x by

(sgnx)i =
{

1 if xi ≥ 0,
−1 if xi < 0 (i = 1, . . . , m),

so that sgn x ∈ Ym. For a given vector y ∈ Rm we denote

Ty = diag (y1, . . . , ym) =




y1 0 . . . 0
0 y2 . . . 0
...

...
. . .

...
0 0 . . . ym


 . (2.1)

With a few exceptions (mainly in the proof of Theorem 2.9), we use the
notation Ty for vectors y ∈ Ym only, in which case we have T−y = −Ty,
T−1

y = Ty and |Ty| = I. For each x ∈ Rm we can write |x| = Tzx, where
z = sgn x; we often use this trick to remove the absolute value of a vector.
Notice that Tzx = (zixi)m

i=1.

2.2 An algorithm for generating Ym

It will prove helpful at a later stage to generate all the ±1-vectors forming the
set Ym systematically one-by-one in such a way that any two successive vectors
differ in exactly one entry. We describe here an algorithm for performing this
task, formulated in terms of generating the whole set Ym; in later applications
the last-but-one line “Y := Y ∪ {y}” is replaced by the respective action on
the current vector y. The algorithm employs an auxiliary (0, 1)-vector z ∈ Rm

used for determining the index k for which the current value of yk should be
changed to −yk, and its description is as follows.
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z := 0 ∈ Rm; select y ∈ Ym; Y := {y};
while z 6= e

k := min{i | zi = 0};
for i := 1 to k − 1, zi := 0; end
zk := 1; yk := −yk;
Y := Y ∪ {y};

end
% Y = Ym

Theorem 2.1. For each m ≥ 1 the algorithm at the output yields the set
Y = Ym independently of the choice of the initial vector y.

Proof. We prove the assertion by induction on m. For m = 1 it is a matter
of simple computation to verify that the algorithm, if started from y = 1,
generates Y = {1,−1}, and if started from y = −1, generates Y = {−1, 1};
in both cases Y = Y1. Thus let the assertion hold for some m− 1 ≥ 1 and let
the algorithm be run for m. To see what is being done in the course of the
algorithm, let us notice that in the main loop the initial string of the form

(1, 1, . . . , 1, 0, . . .)T

of the current vector z is being found, where 0 is at the kth position, and it
is being changed to

(0, 0, . . . , 0, 1, . . .)T

until the vector z of all ones is reached (the last vector preceding it is
(0, 1, . . . , 1, 1)T ). Hence if we start the algorithm for m, then the sequence
of vectors z and y, restricted to their first m− 1 entries, is the same as if the
algorithm were run for m− 1, until vector z of the form

(1, 1, . . . , 1, 0)T (2.2)

is reached. By that time, according to the induction hypothesis, the algorithm
has constructed all the vectors y ∈ Ym with ym being fixed throughout at its
initial value. In the next step the vector (2.2) is switched to

(0, 0, . . . , 0, 1)T

and ym is switched to −ym. Now, from the point of view of the first m − 1
entries, the algorithm again starts from zero vector z and due to the induction
hypothesis it again generates all the (m − 1)-dimensional ±1-vectors in the
first m− 1 entries, this time with the opposite value of ym. This implies that
at the end (when vector z of all ones is reached) the whole set Ym is generated,
which completes the proof by induction. ut

We have needed a description starting from an arbitrary y ∈ Ym for the
purposes of the proof by induction only; in practice we usually start with
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y = e. The performance of the algorithm for m = 3 is illustrated in the
following table. The algorithm is started from z = 0, y = e (the first row)
and the current values of z, y at the end of each pass through the “while . . .
end” loop are given in the next seven rows of the table.

zT yT

(0, 0, 0) (1, 1, 1)
(1, 0, 0) (-1, 1, 1)
(0, 1, 0) (-1, -1, 1)
(1, 1, 0) (1, -1, 1)
(0, 0, 1) (1, -1, -1)
(1, 0, 1) (-1, -1, -1)
(0, 1, 1) (-1, 1, -1)
(1, 1, 1) (1, 1, -1)

2.3 Auxiliary complexity result

Given two vector norms ‖x‖α and ‖x‖β in Rn, a subordinate matrix norm
‖A‖α,β for A ∈ Rn×n is defined by

‖A‖α,β = max
‖x‖α=1

‖Ax‖β (2.3)

(see Higham [51], p. 121). If we use the norms ‖x‖1 = eT |x| =
∑

i |xi|,
‖x‖∞ = maxi |xi|, then from (2.3) we obtain ‖A‖1,1 = maxj

∑
i |aij |,

‖A‖∞,∞ = maxi

∑
j |aij |, and ‖A‖1,∞ = maxij |aij |, so that all three norms

are easy to compute. This, however, is no longer true for the fourth norm
‖A‖∞,1. In [165] it is proved that

‖A‖∞,1 = max
y∈Yn

‖Ay‖1 = max
z,y∈Yn

zT Ay, (2.4)

where the set Yn consists of 2n vectors. One might hope to find an essentially
better formula for ‖A‖∞,1, but such an attempt is not likely to succeed due
to the following complexity result proved again in [165].

Theorem 2.2. The problem of checking whether

‖A‖∞,1 ≥ 1

holds is NP-complete in the set of symmetric rational M -matrices.

A square matrix A = (aij) is called an M -matrix if aij ≤ 0 for i 6= j and
A−1 ≥ 0 (see p. 29). For our purposes it is advantageous to reformulate the
result in terms of systems of inequalities.
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Theorem 2.3. The problem of checking whether a system of inequalities

−e ≤ Ax ≤ e, (2.5)

eT |x| ≥ 1 (2.6)

has a solution is NP-complete in the set of nonnegative positive definite ra-
tional matrices.

Comment. Clearly, eT |x| = ‖x‖1, so that the inequality (2.6) could be equiv-
alently written as

‖x‖1 ≥ 1.

We prefer, however, the formulation given because terms of the form eT |x|
arise quite naturally in the analysis of complexity of interval linear systems.

Proof. Given a symmetric rational M -matrix A ∈ Rn×n, consider the system

−e ≤ A−1x ≤ e, (2.7)

eT |x| ≥ 1 (2.8)

which can be constructed in polynomial time since the same is true for A−1

(see Bareiss [8]). Since A is positive definite ([54], p. 114, assertion 2.5.3.3),
A−1 is rational nonnegative positive definite. Obviously, the system (2.7),
(2.8) has a solution if and only if

1 ≤ max{eT |x| | −e ≤ A−1x ≤ e} = max{eT |Ax′| | −e ≤ x′ ≤ e}
= max{‖Ax′‖1 | −e ≤ x′ ≤ e} = max{‖Ay‖1 | y ∈ Yn} = ‖A‖∞,1

holds, since the function ‖Ax′‖1 is convex over the unit cube {x′ | −e ≤ x′ ≤
e} and therefore its maximum is attained at one of its vertices which are just
the vectors in Yn. Summing up, we have shown that ‖A‖∞,1 ≥ 1 holds if and
only if the system (2.7), (2.8) has a solution. Since the former problem is NP-
complete (Theorem 2.2), the latter one is NP-hard; hence also the problem
(2.5), (2.6) is NP-hard. Moreover, if (2.5), (2.6) has a solution, then, as we
have seen, it also has a rational solution of the form x = Ay for some y ∈ Yn,
and verification whether x solves (2.5), (2.6) can be performed in polynomial
time. Hence the problem of checking solvability of (2.5), (2.6) belongs to the
class NP and therefore it is NP-complete. ut

We later use this result to establish NP-hardness of several decision prob-
lems concerning systems of interval linear equations and inequalities. For a
detailed introduction into complexity theory, see Garey and Johnson [41].
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2.4 Solvability and feasibility

From this section on we consider systems of linear equations Ax = b or systems
of linear inequalities Ax ≤ b. Unless said otherwise, it is always assumed that
A ∈ Rm×n and b ∈ Rm, where m and n are arbitrary positive integers.

A system of linear equations Ax = b is called solvable if it has a solution,
and feasible if it has a nonnegative solution. Throughout this and the next
chapter the reader is kindly asked to bear in mind that feasibility means non-
negative solvability. The basic result concerning feasibility of linear equations
was proved by Farkas [34] in 1902. As it is used at some crucial points in the
sequel, we give here an elementary, but somewhat lengthy proof of it. The
ideas of the proof are not exploited later, so that the reader may skip the
proof without loss of continuity.

Theorem 2.4 (Farkas). A system

Ax = b (2.9)

is feasible if and only if each p with AT p ≥ 0 satisfies bT p ≥ 0.

Proof. (a) If the system (2.9) has a solution x ≥ 0 and if AT p ≥ 0 holds for
some p ∈ Rm, then bT p = (Ax)T p = xT (AT p) ≥ 0. This proves the “only if”
part of the theorem.

(b) We prove the “if” part by contradiction, proving that if the system (2.9)
does not possess a nonnegative solution, then there exists a p ∈ Rm satisfying
AT p ≥ 0 and bT p < 0; for the purposes of the proof it is advantageous to write
down this system in the column form

pTA·j ≥ 0 (j = 1, . . . , n), (2.10)
pT b < 0. (2.11)

We prove this assertion by induction on n.
(b1) If n = 1, then A consists of a single column a. Let W = {αa | α ∈ R}

be the subspace spanned by a. According to the orthogonal decomposition
theorem (Meyer [88], p. 405), b can be written in the form

b = bW + bW⊥ ,

where bW ∈ W and bW⊥ ∈ W⊥, W⊥ being the orthogonal complement of
W . We consider two cases. If bW⊥ = 0, then b ∈ W , so that b = αa for
some α ∈ R. Since Ax = b does not possess a nonnegative solution due to
the assumption, it must be α < 0 and a 6= 0, so that if we put p = a, then
pT a = ‖a‖22 ≥ 0 and pT b = α‖a‖22 < 0; hence p satisfies (2.10), (2.11). If
bW⊥ 6= 0, put p = −bW⊥ ; then pT a = 0 and pT b = −‖bW⊥‖22 < 0, so that p
again satisfies (2.10), (2.11).

(b2) Let the induction hypothesis hold for n − 1 ≥ 1 and let a system
(2.9), where A ∈ Rm×n, possess no nonnegative solution. Then neither does
the system
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n−1∑

j=1

A·jxj = b

(otherwise for xn = 0 we would get a nonnegative solution of (2.9)); hence
according to the induction hypothesis there exists a p ∈ Rm satisfying

pTA·j ≥ 0 (j = 1, . . . , n− 1), (2.12)
pT b < 0. (2.13)

If pTA·n ≥ 0, then p satisfies (2.10), (2.11) and we are done. Thus assume that

pTA·n < 0. (2.14)

Put

αj = pTA·j (j = 1, . . . , n),
β = pT b;

then α1 ≥ 0, . . . , αn−1 ≥ 0, αn < 0 and β < 0. Consider the system

n−1∑

j=1

(αnA·j − αjA·n)xj = αnb− βA·n. (2.15)

If it had a nonnegative solution x1, . . . , xn−1, then we could rearrange it to
the form

n−1∑

j=1

A·jxj + A·nxn = b, (2.16)

where

xn =
β −∑n−1

j=1 αjxj

αn
> 0

due to (2.12), (2.13), (2.14), so that the system (2.16), and thus also (2.9),
would have a nonnegative solution x1, . . . , xn contrary to the assumption.
Therefore the system (2.15) does not possess a nonnegative solution and thus
according to the induction hypothesis there exists a p̃ such that

p̃T (αnA·j − αjA·n) ≥ 0 (j = 1, . . . , n− 1), (2.17)
p̃T (αnb− βA·n) < 0. (2.18)

Now we set
p = αnp̃− (p̃TA·n)p

and we show that p satisfies (2.10), (2.11). For j = 1, . . . , n − 1 we have
according to (2.17),

pTA·j = αnp̃TA·j − (p̃TA·n)pTA·j ≥ αj p̃
TA·n − (p̃TA·n)αj = 0; (2.19)
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for j = n we get

pTA·n = αnp̃TA·n − (p̃TA·n)pTA·n = αnp̃TA·n − (p̃TA·n)αn = 0, (2.20)

and finally from (2.18),

pT b = αnp̃T b− (p̃TA·n)pT b < βp̃TA·n − (p̃TA·n)β = 0, (2.21)

so that (2.19), (2.20), (2.21) imply (2.10) and (2.11); hence p is a vector having
the asserted properties, which completes the proof by induction. ut

With the help of the Farkas theorem we can now characterize solvability
of systems of linear equations.

Theorem 2.5. A system Ax = b is solvable if and only if each p with AT p = 0
satisfies bT p = 0.

Proof. If x solves Ax = b and AT p = 0 holds for some p, then bT p = pT b =
pT Ax = (AT p)T x = 0. Conversely, let the condition hold. Then for each p
such that AT p ≥ 0 and AT p ≤ 0 we have bT p ≥ 0. But this, according to the
Farkas theorem, is just the sufficient condition for the system

Ax1 −Ax2 = b (2.22)

to be feasible. Hence (2.22) has a solution x1 ≥ 0, x2 ≥ 0; thus A(x1−x2) = b
and Ax = b is solvable. ut

For systems of linear inequalities we introduce the notions of solvability
and feasibility in the same way: a system Ax ≤ b is called solvable if it has a
solution, and feasible if it has a nonnegative solution. Again, we can use the
Farkas theorem for characterizing solvability and feasibility.

Theorem 2.6. A system Ax ≤ b is solvable if and only if each p ≥ 0 with
AT p = 0 satisfies bT p ≥ 0.

Proof. If x solves Ax ≤ b and AT p = 0 holds for some p ≥ 0, then bT p =
pT b ≥ pT Ax = 0. Conversely, let the condition hold, so that each p ≥ 0 with
AT p ≥ 0, AT p ≤ 0 satisfies bT p ≥ 0. This, however, in view of the Farkas
theorem means that the system

Ax1 −Ax2 + x3 = b

is feasible. Hence due to the nonnegativity of x3 we have A(x1− x2) ≤ b, and
the system Ax ≤ b is solvable. ut
Theorem 2.7. A system Ax ≤ b is feasible if and only if each p ≥ 0 with
AT p ≥ 0 satisfies bT p ≥ 0.



2.5 Interval matrices and vectors 43

Proof. If x ≥ 0 solves Ax ≤ b and AT p ≥ 0 holds for some p ≥ 0, then
bT p = pT b = pT Ax = (AT p)T x ≥ 0. Conversely, let the condition hold; then
it is exactly the Farkas condition for the system

Ax1 + x2 = b (2.23)

to be feasible. Hence (2.23) has a solution x1 ≥ 0, x2 ≥ 0, which implies
Ax1 ≤ b, so that the system Ax ≤ b is feasible. ut

Finally, we sum up the results achieved in this section in the form of a
table that reveals similarities and differences among the four necessary and
sufficient conditions.

Problem Condition
solvability of Ax = b (∀p)(AT p = 0 ⇒ bT p = 0)
feasibility of Ax = b (∀p)(AT p ≥ 0 ⇒ bT p ≥ 0)
solvability of Ax ≤ b (∀p ≥ 0)(AT p = 0 ⇒ bT p ≥ 0)
feasibility of Ax ≤ b (∀p ≥ 0)(AT p ≥ 0 ⇒ bT p ≥ 0)

An important result published by Khachiyan [71] in 1979 says that feasi-
bility of a system of linear equations can be checked (and a solution to it, if
it exists, found) in polynomial time. Since all three other problems, as shown
in the proofs, can be reduced to this one, it follows that all four problems can
be solved in polynomial time.

2.5 Interval matrices and vectors

There are several ways to express inexactness of the data. One of them, which
has particularly nice properties from the point of view of a user, employs the
so-called interval matrices which we define in this section.

If A, A are two matrices in Rm×n, A ≤ A, then the set of matrices

A = [A, A] = {A | A ≤ A ≤ A}

is called an interval matrix, and the matrices A, A are called its bounds.
Hence, if A = (aij) and A = (aij), then A is the set of all matrices A = (aij)
satisfying

aij ≤ aij ≤ aij (2.24)

for i = 1, . . . , m, j = 1, . . . , n. It is worth noting that each coefficient may
attain any value in its interval (2.24) independently of the values taken on by
other coefficients. Introducing additional relations among different coefficients
makes interval problems much more difficult to solve and we do not follow this
line in this chapter.

As shown later, in many cases it is more advantageous to express the data
in terms of the center matrix
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Ac = 1
2 (A + A) (2.25)

and of the radius matrix
∆ = 1

2 (A−A), (2.26)

which is always nonnegative. From (2.25), (2.26) we easily obtain that

A = Ac −∆,

A = Ac + ∆,

so that A can be given either as [A, A], or as [Ac−∆,Ac+∆], and consequently
we can also write

A = {A | |A−Ac| ≤ ∆}.
In the sequel we employ both forms and we switch freely between them ac-
cording to which one is more useful in the current context. The following
proposition is the first example of usefulness of the center-radius notation.

Proposition 2.8. Let Ã = [Ãc − ∆̃, Ãc + ∆̃] and A = [Ac − ∆,Ac + ∆] be
interval matrices of the same size. Then Ã ⊆ A if and only if

|Ac − Ãc| ≤ ∆− ∆̃

holds.

Proof. If Ã ⊆ A, then from

Ac −∆ ≤ Ãc − ∆̃ ≤ Ãc + ∆̃ ≤ Ac + ∆ (2.27)

we obtain
−(∆− ∆̃) ≤ Ac − Ãc ≤ ∆− ∆̃, (2.28)

which gives
|Ac − Ãc| ≤ ∆− ∆̃. (2.29)

Conversely, (2.29) implies (2.28) and (2.27); hence Ã ⊆ A. ut
For an interval matrix A = [A, A] = [Ac − ∆,Ac + ∆], its transpose

is defined by AT = {AT | A ∈ A}. Obviously, AT = [AT , A
T
] = [AT

c −
∆T , AT

c + ∆T ].
A special case of an interval matrix is an interval vector which is a one-

column interval matrix
b = {b | b ≤ b ≤ b},

where b, b ∈ Rm. We again use the center vector

bc = 1
2 (b + b)

and the nonnegative radius vector



2.6 Weak and strong solvability/feasibility 45

δ = 1
2 (b− b),

and we employ both forms b = [b, b] = [bc − δ, bc + δ]. Notice that interval
matrices and vectors are typeset in boldface letters.

Given an m× n interval matrix A = [Ac −∆,Ac + ∆], we define matrices

Ayz = Ac − Ty∆Tz (2.30)

for each y ∈ Ym and z ∈ Yn (Ty is given by (2.1)). The definition implies that

(Ayz)ij = (Ac)ij − yi∆ijzj =
{

aij if yizj = −1,
aij if yizj = 1

(i = 1, . . . ,m, j = 1, . . . , n), so that Ayz ∈ A for each y ∈ Ym, z ∈ Yn.
This finite set of matrices from A (of cardinality at most 2m+n−1 because
Ayz = A−y,−z for each y ∈ Ym, z ∈ Yn), introduced in [156], plays an im-
portant role because it turns out that many problems with interval-valued
data can be characterized in terms of these matrices, thereby obtaining finite
characterizations of problems involving infinitely many sets of data. In the
theorems to follow we show several examples of this approach, the most strik-
ing one being Theorem 2.14. We write A−yz instead of A−y,z. In particular,
we have Aye = Ac − Ty∆, Aez = Ac −∆Tz, Aee = A and A−ee = A.

For an m-dimensional interval vector b = [bc − δ, bc + δ], in analogy with
matrices Ayz we define vectors

by = bc + Tyδ

for each y ∈ Ym. Then for each such a y we have

(by)i = (bc)i + yiδi =
{

bi if yi = −1,

bi if yi = 1

(i = 1, . . . , m), so that by ∈ b for each y ∈ Ym. In particular, b−e = b and be =
b. Together with matrices Ayz, vectors by are used in finite characterizations
of interval problems having right-hand sides.

2.6 Weak and strong solvability/feasibility

Let A be an m × n interval matrix and b an m-dimensional interval vector.
Under a system of interval linear equations

Ax = b (2.31)

we understand the family of all systems of linear equations

Ax = b (2.32)
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with data satisfying
A ∈ A, b ∈ b, (2.33)

and similarly a system of interval linear inequalities

Ax ≤ b (2.34)

is the family of all systems
Ax ≤ b

whose data satisfy
A ∈ A, b ∈ b.

We introduce the following definitions. A system (2.31) is said to be weakly
solvable (feasible) if some system (2.32) with data (2.33) is solvable (feasible),
and it is called strongly solvable (feasible) if each system (2.32) with data (2.33)
is solvable (feasible). In the same way we define weak and strong solvability
(feasibility) of a system of interval linear inequalities (2.34). Hence, the word
“weakly” refers to validity of the respective property for some system in the
family whereas the word “strongly” refers to its validity for all systems in the
family.

Introduction of weak and strong properties has an obvious motivation.
Assume we are to decide whether some system A0x = b0 is solvable, but
the exact data of this system are not directly available to us (they come
from some measurements, are afflicted with rounding errors, etc.); instead, we
only know that they satisfy A0 ∈ A, b0 ∈ b. Then we can be sure that our
system A0x = b0 is solvable only if we know that the system (2.31) is strongly
solvable, and in a similar way we can be sure that the system A0x = b0 is
not solvable only if we know that the system (2.31) is not weakly solvable. A
similar reasoning also holds for feasibility and for interval linear inequalities.

In this way, combining weak and strong solvability or feasibility of systems
of interval linear equations or inequalities, we arrive at eight decision problems:

• Weak solvability of equations,
• Weak feasibility of equations,
• Strong solvability of equations,
• Strong feasibility of equations,
• Weak solvability of inequalities,
• Weak feasibility of inequalities,
• Strong solvability of inequalities,
• Strong feasibility of inequalities.

We study these problems separately in the next eight sections. It is shown
that all of them can be solved by finite means, however, in half of the cases
the number of steps is exponential in matrix size and the respective problems
are proved to be NP-hard.



2.7 Weak solvability of equations 47

2.7 Weak solvability of equations

In this section we study the first of the eight decision problems delineated in
Section 2.6, namely weak solvability of systems of interval linear equations.
As before, we assume that A is an m × n interval matrix and b is an m-
dimensional interval vector, where m and n are arbitrary positive integers.

First we introduce a useful auxiliary term: a vector x ∈ Rn is called a
weak solution of Ax = b if it satisfies Ax = b for some A ∈ A, b ∈ b.
Oettli and Prager [112] proved in 1964 the following nice and far-reaching
characterization of weak solutions.

Theorem 2.9 (Oettli–Prager). A vector x ∈ Rn is a weak solution of
Ax = b if and only if it satisfies

|Acx− bc| ≤ ∆|x|+ δ. (2.35)

Proof. If x is a weak solution, then Ax = b for some A ∈ A, b ∈ b, which gives
|Acx−bc| = |(Ac−A)x+b−bc| ≤ ∆|x|+δ. Conversely, let |Acx−bc| ≤ ∆|x|+δ
hold for some x. Define y ∈ Rm by

yi =
{ (Acx−bc)i

(∆|x|+δ)i
if (∆|x|+ δ)i > 0,

1 if (∆|x|+ δ)i = 0
(i = 1, . . . ,m), (2.36)

then |y| ≤ e and
Acx− bc = Ty(∆|x|+ δ). (2.37)

Put z = sgn x; then |x| = Tzx and from (2.37) we get

(Ac − Ty∆Tz)x = bc + Tyδ. (2.38)

Since |y| ≤ e and z ∈ Yn, we have |Ty∆Tz| ≤ ∆ and |Tyδ| ≤ δ, so that
Ac− Ty∆Tz ∈ A and bc + Tyδ ∈ b, which implies that x is a weak solution of
Ax = b. ut

The main merit of the Oettli–Prager theorem consists in the fact that it
describes the set of all weak solutions by means of a single, but nonlinear,
inequality (2.35). In the proof we have also established a constructive result
that is worth stating independently.

Proposition 2.10. If x solves (2.35), then it satisfies (2.38), where y is given
by (2.36) and z = sgn x.

Weak solvability of a system Ax = b, as it was defined in Section 2.6,
is equivalent to existence of a weak solution to it. Hence we can employ the
Oettli–Prager theorem to characterize weak solvability of interval linear equa-
tions. Let us recall that in accordance with the general definition (2.30) we
have Aez = Ac −∆Tz and A−ez = Ac + ∆Tz.
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Theorem 2.11. A system Ax = b is weakly solvable if and only if the system

Aezx ≤ b, (2.39)
−A−ezx ≤ −b (2.40)

is solvable for some z ∈ Yn.

Proof. If Ax = b is weakly solvable, then it has a weak solution x that
according to Theorem 2.9 satisfies (2.35) and thus also

−∆|x| − δ ≤ Acx− bc ≤ ∆|x|+ δ. (2.41)

If we put z = sgn x, then |x| = Tzx and (2.41) turns into Aezx = (Ac −
∆Tz)x ≤ bc + δ = b and A−ezx = (Ac + ∆Tz)x ≥ bc − δ = b which shows
that x satisfies (2.39), (2.40). Conversely, let (2.39), (2.40) hold for some x
and z ∈ Yn. Then we have

−∆Tzx− δ ≤ Acx− bc ≤ ∆Tzx + δ

and consequently

|Acx− bc| ≤ ∆Tzx + δ ≤ ∆|x|+ δ;

hence x satisfies (2.35) and therefore it is a weak solution of Ax = b. ut
This result shows that checking weak solvability of interval linear equa-

tions can be in principle performed by finite means by checking solvability
of systems (2.39), (2.40), z ∈ Yn by some finite procedure (e.g., a linear pro-
gramming technique). However, to verify that Ax = b is not weakly solvable,
we have to check all the systems (2.39), (2.40), z ∈ Yn, whose number in the
worst case is 2n. Clearly, this is nearly impossible even for relatively small
values of n (say, n = 30). It turns out that the source of these difficulties does
not lie with inadequateness of our description, but that it is inherently present
in the problem itself which is NP-hard. In the proof of this statement we show
an approach that is also used several times later, namely a polynomial-time
reduction of our standard NP-complete problem from Theorem 2.3 to the
current problem, which proves its NP-hardness.

Theorem 2.12. Checking weak solvability of interval linear equations is NP-
hard.

Proof. Let A be a square matrix. We first prove that the system

−e ≤ Ax ≤ e, (2.42)

eT |x| ≥ 1 (2.43)

has a solution if and only if the system of interval linear equations
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[A, A]x = [−e, e], (2.44)
[−eT , eT ]x = [1, 1] (2.45)

is weakly solvable. If x solves (2.42), (2.43) and if we set x′ = x
eT |x| , then

|Ax′| = 1
eT |x| |Ax| ≤ |Ax| ≤ e and eT |x′| = 1; hence x′ satisfies Ax′ = b,

zT x′ = 1 for some b ∈ [−e, e] and zT = (sgn x′)T ∈ [−eT , eT ], which means
that (2.44), (2.45) is weakly solvable. Conversely, let (2.44), (2.45) have a weak
solution x; then Ax = b and cT x = 1 for some b ∈ [−e, e] and cT ∈ [−eT , eT ];
hence |Ax| ≤ e and 1 = cT x ≤ |c|T |x| ≤ eT |x|, so that x solves (2.42), (2.43).
We have shown that the problem of checking solvability of (2.42), (2.43) can
be reduced in polynomial time to that of checking weak solvability of (2.44),
(2.45). Since the former problem is NP-complete by Theorem 2.3, the latter
one is NP-hard. ut

2.8 Weak feasibility of equations

Using the notion of a weak solution introduced in Section 2.7, we can say
that a system Ax = b is weakly feasible (in the sense of the definition made
in Section 2.6) if and only if it has a nonnegative weak solution. Hence we
can again use the Oettli–Prager theorem to obtain a characterization of weak
feasibility.

Theorem 2.13. A system Ax = b is weakly feasible if and only if the system

Ax ≤ b, (2.46)
−Ax ≤ −b (2.47)

is feasible.

Proof. If Ax = b is weakly feasible, then it possesses a nonnegative weak
solution x that by Theorem 2.9 satisfies

|Acx− bc| ≤ ∆x + δ (2.48)

and thus also
−∆x− δ ≤ Acx− bc ≤ ∆x + δ, (2.49)

which is (2.46), (2.47). Conversely, if (2.46), (2.47) has a nonnegative solution
x, then it satisfies (2.49) and (2.48) and by the same Theorem 2.9 it is a
nonnegative weak solution to Ax = b which means that this system is weakly
feasible. ut

Hence, only one system of linear inequalities (2.46), (2.47) is to be checked
in this case. Referring to the last paragraph of Section 2.4, we can conclude
that checking weak feasibility of interval linear equations can be performed
in polynomial time whereas checking weak solvability, as we have seen in
Theorem 2.12, is NP-hard.
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2.9 Strong solvability of equations

By definition (Section 2.6), Ax = b is strongly solvable if each system Ax = b
with A ∈ A, b ∈ b is solvable. If Aij < Aij for some i, j or bi < bi for some i,
then the family Ax = b consists of infinitely many linear systems. Therefore
the fact that solvability of these infinitely many systems can be characterized
in terms of feasibility of finitely many systems is nontrivial, and so is the proof
of the following theorem which also establishes a useful additional property.
Conv X denotes the convex hull of X, i.e., the intersection of all convex subsets
of Rn containing X.

Theorem 2.14. A system Ax = b is strongly solvable if and only if for each
y ∈ Ym the system

Ayex
1 −A−yex

2 = by, (2.50)

x1 ≥ 0, x2 ≥ 0 (2.51)

has a solution x1
y, x2

y. Moreover, if this is the case, then for each A ∈ A, b ∈ b
the system Ax = b has a solution in the set

Conv{x1
y − x2

y | y ∈ Ym}.

Proof. “Only if”: Let Ax = b be strongly solvable. Assume to the contrary
that (2.50), (2.51) does not have a solution for some y ∈ Ym. Then the Farkas
theorem implies existence of a p ∈ Rm satisfying

(Ac − Ty∆)T p ≥ 0, (2.52)
(Ac + Ty∆)T p ≤ 0, (2.53)

bT
y p < 0. (2.54)

Now (2.52) and (2.53) together give

∆T Typ ≤ AT
c p ≤ −∆T Typ ;

hence
|AT

c p| ≤ −∆T Typ = | −∆T Typ| ≤ ∆T |p|,
and the Oettli–Prager theorem as applied to the system [AT

c − ∆T , AT
c +

∆T ]x = [0, 0] shows that there exists a matrix A ∈ A such that

AT p = 0. (2.55)

In the light of Theorem 2.5, (2.55) and (2.54) mean that the system

Ax = by

has no solution, which contradicts our assumption of strong solvability since
A ∈ A and by ∈ b.
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“If”: Conversely, let for each y ∈ Ym the system (2.50), (2.51) have a
solution x1

y, x2
y. Let A ∈ A and b ∈ b. To prove that the system Ax = b has

a solution, take an arbitrary y ∈ Ym and put xy = x1
y − x2

y. Then we have

Ty(Axy − b) = Ty(Acxy − bc) + Ty(A−Ac)xy + Ty(bc − b)
≥ Ty(Acxy − bc)−∆|xy| − δ

since |Ty(A − Ac)xy| ≤ ∆|xy|, which implies Ty(A − Ac)xy ≥ −∆|xy|, and
similarly |Ty(bc − b)| ≤ δ implies Ty(bc − b) ≥ −δ; thus

Ty(Axy − b) ≥ Ty(Ac(x1
y − x2

y)− bc)−∆|x1
y − x2

y| − δ

≥ Ty(Ac(x1
y − x2

y)− bc)−∆(x1
y + x2

y)− δ

= Ty((Ac − Ty∆)x1
y − (Ac + Ty∆)x2

y − (bc + Tyδ))

= Ty(Ayex
1
y −A−yex

2
y − by)

= 0

since x1
y, x2

y solve (2.50), (2.51). In this way we have proved that for each
y ∈ Ym, xy satisfies

TyAxy ≥ Tyb. (2.56)

Using (2.56), we next prove that the system of linear equations
∑

y∈Ym

λyAxy = b, (2.57)

∑

y∈Ym

λy = 1 (2.58)

has a solution λy ≥ 0, y ∈ Ym. In view of the Farkas theorem, it suffices to
show that for each p ∈ Rm and each p0 ∈ R,

pT Axy + p0 ≥ 0 for each y ∈ Ym (2.59)

implies
pT b + p0 ≥ 0. (2.60)

Thus let p and p0 satisfy (2.59). Put y = −sgn p ; then p = −Ty|p| and from
(2.56), (2.59) we have

pT b + p0 = −|p|T Tyb + p0 ≥ −|p|T TyAxy + p0 = pT Axy + p0 ≥ 0,

which proves (2.60). Hence the system (2.57), (2.58) has a solution λy ≥ 0,
y ∈ Ym. Put x =

∑
y∈Ym

λyxy; then Ax = b by (2.57) and x belongs to the
set Conv{xy | y ∈ Ym} = Conv{x1

y − x2
y | y ∈ Ym} by (2.58). This proves the

“if” part, and also the additional assertion. ut
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Let us have a closer look at the form of the systems (2.50). If yk = 1,
then the kth rows of Aye and A−ye are equal to the kth rows of A and A,
respectively, and (by)k = bk. This means that in this case the kth equation of
(2.50) has the form

(Ax1 −Ax2)k = bk, (2.61)

and similarly in case yk = −1 it is of the form

(Ax1 −Ax2)k = bk. (2.62)

Hence we can see that the family of systems (2.50) for all y ∈ Ym is just the
family of all systems whose kth equations are either of the form (2.61), or of
the form (2.62) for k = 1, . . . , m. Now we can use the algorithm of Section
2.2 to generate the systems Ayex

1−A−yex
2 = by in such a way that any pair

of successive systems differs in exactly one equation. In this way, a feasible
solution x1, x2 of the preceding system satisfies all but at most one of the
equations of the next generated system, so that this solution x1, x2 can be
used as the initial iteration for the procedure for checking feasibility of the
next system (the procedure is not specified in the algorithm; e.g., phase I of
the simplex method may be used for this purpose). The complete description
of the algorithm is as follows.

z := 0; y := e; strosolv := true;
A := A; B := A; b := b;
if Ax1 −Bx2 = b is not feasible then strosolv := false; end
while z 6= e & strosolv

k := min{i | zi = 0};
for i := 1 to k − 1, zi := 0; end
zk := 1; yk := −yk;
if yk = 1 then Ak· := Ak·; Bk· := Ak·; bk := bk;

else Ak· := Ak·; Bk· := Ak·; bk := bk;
end
if Ax1 −Bx2 = b is not feasible then strosolv := false; end

end
% Ax = b is strongly solvable if and only if strosolv = true.

A small change can greatly improve the performance of the algorithm. Observe
that if

Ak· = Ak· and bk = bk (2.63)

hold for some k, then the equations (2.61) and (2.62) are the same and there
is no need to solve the same system anew. Hence only rows satisfying

Ak· 6= Ak· or bk < bk (2.64)

play any role. Let us reorder the equations of Ax = b so that those satisfying
(2.64) go first, followed by those with (2.63). Hence, for the reordered system
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the matrix (∆, δ) has first q nonzero rows, followed by m− q zero rows (0 ≤
q ≤ m). Now we can employ the algorithm in literally the same formulation,
but started with z := 0 ∈ Rq, y := e ∈ Rq (instead of z, y ∈ Rm in the
original version). In this way, in the case of strong solvability 2q systems
Ayex

1 − A−yex
2 = by are to be checked for feasibility. Clearly, the whole

procedure can be considered acceptable for moderate values of q only.
Since the number of systems to be checked is in the worst case exponential

in the matrix size, we may suspect the problem to be NP-hard. It turns out to
be indeed the case, and the NP-complete problem of Theorem 2.3 can again
be used for the purpose of the proof of this result.

Theorem 2.15. Checking strong solvability of interval linear equations is NP-
hard.

Proof. Let A be square n× n. We prove that the system

−e ≤ Ax ≤ e, (2.65)

eT |x| ≥ 1 (2.66)

has a solution if and only if the system of interval linear equations

[A− eeT , A + eeT ]x = [0, e] (2.67)

is not strongly solvable. “If”: Assume that (2.67) is not strongly solvable, so
that A′x = b′ does not have a solution for some A′ ∈ [A− eeT , A + eeT ] and
b′ ∈ [0, e]. Then A′ must be singular; hence A′x′ = 0 for some x′ 6= 0. Then
x′ is a weak solution of the system [A− eeT , A + eeT ]x = [0, 0]; hence |Ax′| ≤
eeT |x′| by the Oettli–Prager theorem. Now if we set x = x′

eT |x′| , then |Ax| ≤ e

and eT |x| = 1, so that x solves (2.65), (2.66). “Only if” by contradiction:
Assume that (2.67) is strongly solvable, and let A′ be an arbitrary matrix in
[A − eeT , A + eeT ]. Then for each j = 1, . . . , n the system A′x = ej (where
ej ∈ [0, e] is the jth column of the unit matrix I) has a solution xj ; hence
the matrix X consisting of columns x1, . . . , xn satisfies A′X = I, so that A′

is nonsingular. Hence, strong solvability of (2.67) implies nonsingularity of
each A′ ∈ [A − eeT , A + eeT ]. Assume now that (2.65), (2.66) has a solution
x. Then |Ax| ≤ e ≤ eeT |x|, and the Oettli–Prager theorem implies that x
solves A′x = 0 for some A′ ∈ [A − eeT , A + eeT ]; hence A′ is singular which
contradicts the above fact that each A′ ∈ [A−eeT , A+eeT ] is nonsingular. This
contradiction shows that strong solvability of (2.67) precludes existence of a
solution to (2.65), (2.66), which proves the “only if” part of the assertion. In
view of the established equivalence, we can see that the problem of checking
solvability of (2.65), (2.66) can be reduced in polynomial time to that of
checking strong solvability of (2.67). By Theorem 2.3, the former problem is
NP-complete; hence the latter one is NP-hard. ut
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In an analogy with weak solutions, we may also introduce strong solutions
of systems of interval linear equations. A vector x is said to be a strong solution
of Ax = b if it satisfies Ax = b for each A ∈ A, b ∈ b. We have this
characterization of strong solutions:

Theorem 2.16. A vector x ∈ Rn is a strong solution of Ax = b if and only
if it satisfies

Acx = bc, (2.68)

∆|x| = δ = 0. (2.69)

Proof. Let x be a strong solution of Ax = b. Put z = sgn x; then |x| = Tzx,
and x satisfies both

Acx = bc (2.70)

and
(Ac + ∆Tz)x = bc − δ. (2.71)

Subtracting (2.70) from (2.71), we obtain

∆|x| = ∆Tzx = −δ,

where ∆|x| ≥ 0 and −δ ≤ 0; hence ∆|x| = δ = 0. Conversely, if (2.68) and
(2.69) hold, then for each A ∈ A, b ∈ b we have

|Ax− b| = |Acx− bc + (A−Ac)x + bc − b| ≤ ∆|x|+ δ = 0,

so that Ax = b; hence x is a strong solution of Ax = b. ut
The condition ∆|x| = 0 in (2.69) says that it must be xj = 0 for each j

with ∆·j 6= 0. Hence, putting J = {j | ∆·j 6= 0}, we may reformulate (2.68),
(2.69) in the form

∑

j /∈J

(Ac)·jxj = bc, (2.72)

xj = 0 (j ∈ J), (2.73)
δ = 0, (2.74)

which shows that checking existence of a strong solution (and, in the positive
case, also computation of it) may be performed by solving a single system
of linear equations (2.72). But on the whole the system (2.72)–(2.74) shows
that strong solutions exist on rare occasions only, as could have been expected
already from the definition.
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2.10 Strong feasibility of equations

By definition in Section 2.6, a system Ax = b is strongly feasible if each system
Ax = b with A ∈ A, b ∈ b is feasible. It turns out that characterization of
strong feasibility can be easily derived from that of strong solvability.

Theorem 2.17. A system Ax = b is strongly feasible if and only if for each
y ∈ Ym the system

Ayex = by (2.75)

has a nonnegative solution xy. Moreover, if this is the case, then for each
A ∈ A, b ∈ b the system Ax = b has a solution in the set

Conv{xy | y ∈ Ym}.

Proof. If Ax = b is strongly feasible, then each system (2.75) has a nonneg-
ative solution since Aye ∈ A and by ∈ b for each y ∈ Ym. Conversely, if for
each y ∈ Ym the system (2.75) has a nonnegative solution xy, then setting
x1

y = xy, x2
y = 0 for each y ∈ Ym, we can see that x1

y, x2
y solve (2.50), (2.51).

This according to Theorem 2.14 means that each system Ax = b, A ∈ A,
b ∈ b has a solution in the set Conv{x1

y − x2
y | y ∈ Ym} = Conv{xy | y ∈ Ym}

which is a part of the nonnegative orthant; hence Ax = b is strongly feasible.
ut

Repeating the argument following the proof of Theorem 2.14, we can say
that the kth row of (2.75) is of the form

(Ax)k = bk

if yk = 1 and of the form
(Ax)k = bk

if yk = −1. Hence, the algorithm for checking strong solvability can be easily
adapted for the present purpose.

z := 0; y := e; strofeas := true;
A := A; b := b;
if Ax = b is not feasible then strofeas := false; end
while z 6= e & strofeas

k := min{i | zi = 0};
for i := 1 to k − 1, zi := 0; end
zk := 1; yk := −yk;
if yk = 1 then Ak· := Ak·; bk := bk; else Ak· := Ak·; bk := bk; end
if Ax = b is not feasible then strofeas := false; end

end
% Ax = b is strongly feasible if and only if strofeas = true.



56 2 Solvability of systems of interval linear equations and inequalities

As in Section 2.9, the equations of Ax = b should be first reordered so that
the first q of them satisfy (2.64) and the last m − q of them are of the form
(2.63). Then the algorithm remains in force if it is initialized with z := 0 ∈ Rq,
y := e ∈ Rq.

In contrast to checking weak feasibility which is polynomial-time (Section
2.8), checking strong feasibility remains NP-hard. The proof, going along sim-
ilar lines as before, is a little bit different since n × 2n matrices are needed
here.

Theorem 2.18. Checking strong feasibility of interval linear equations is NP-
hard.

Proof. Let A be square n× n. We prove that the system

−e ≤ Ax ≤ e, (2.76)

eT |x| ≥ 1 (2.77)

has a solution if and only if the system of interval linear equations

[(AT − eeT ,−AT − eeT ), (AT + eeT ,−AT + eeT )]x = [−e, e] (2.78)

(with an n × 2n interval matrix) is not strongly feasible. “If”: Let (2.78) be
not strongly feasible; then according to Theorem 2.17 there exists a y ∈ Ym

such that the system Ayex = by is not feasible. In our case this system has
the form

(AT − yeT )x1 + (−AT − yeT )x2 = y.

Since it is not feasible, the Farkas theorem assures existence of a vector x′

satisfying

(A− eyT )x′ ≥ 0, (2.79)
(−A− eyT )x′ ≥ 0, (2.80)

yT x′ < 0; (2.81)

then (2.79), (2.80) imply

|Ax′| ≤ −eyT x′ = | − eyT x′| ≤ eeT |x′|,

where x′ 6= 0 by (2.81), hence the vector x = x′
eT |x′| satisfies |Ax| ≤ e and

eT |x| = 1, so that it is a solution to (2.76), (2.77). “Only if” by contradiction:
Assume that (2.78) is strongly feasible. Let A′ ∈ [A − eeT , A + eeT ]; then
A′T ∈ [AT − eeT , AT + eeT ] and −A′T ∈ [−AT − eeT ,−AT + eeT ], so that
strong feasibility of (2.78) implies that for each j = 1, . . . , n the equation

A′T x1 −A′T x2 = ej

is feasible; i.e., the equation A′T x = ej has a solution xj . Then the matrix X
consisting of columns x1, . . . , xn satisfies A′T X = I, which proves that A′T ,
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and thus also A′, is nonsingular. We have proved that strong feasibility of
(2.78) implies nonsingularity of each A′ ∈ [A − eeT , A + eeT ]. As we have
seen in the proof of Theorem 2.15, solvability of (2.76), (2.77) would mean
existence of a singular matrix A′ ∈ [A− eeT , A + eeT ], a contradiction. Hence
(2.76), (2.77) is not solvable, which concludes the proof of the “only if” part. In
view of Theorem 2.3, the established equivalence shows that checking strong
feasibility is NP-hard. ut

Of the four decision problems related to interval linear equations we have
investigated so far, three were found to be NP-hard and only one to be solvable
in polynomial time. In the next four sections we show that this ratio becomes
exactly reciprocal for interval linear inequalities: only one problem is NP-hard,
and three are solvable in polynomial time.

2.11 Weak solvability of inequalities

As in Section 2.7, we first define x ∈ Rn to be a weak solution of a system
of interval linear inequalities Ax ≤ b if it satisfies Ax ≤ b for some A ∈ A,
b ∈ b. Gerlach [43] proved in 1981 an analogue of the Oettli–Prager theorem
for the case of interval linear inequalities.

Theorem 2.19 (Gerlach). A vector x is a weak solution of Ax ≤ b if and
only if it satisfies

Acx−∆|x| ≤ b. (2.82)

Proof. If x solves Ax ≤ b for some A ∈ A and b ∈ b, then

Acx− bc ≤ (Ac −A)x + b− bc ≤ |(Ac −A)x + b− bc| ≤ ∆|x|+ δ,

which is (2.82). Conversely, let (2.82) hold for some x. Put z = sgn x, then
substituting |x| = Tzx into (2.82) leads to

Aezx ≤ b,

where Aez ∈ A and b ∈ b; hence x is a weak solution of Ax ≤ b. ut
A system Ax ≤ b is weakly solvable (Section 2.6) if some system Ax ≤ b,

A ∈ A, b ∈ b is solvable; in other words, weak solvability is equivalent to
existence of a weak solution. Hence, Gerlach’s theorem provides us with the
following characterization.

Theorem 2.20. A system Ax ≤ b is weakly solvable if and only if the system

Aezx ≤ b (2.83)

is solvable for some z ∈ Yn.
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Proof. If x is a weak solution of Ax ≤ b, then, as we have seen in the proof of
the Gerlach theorem, it satisfies (2.83) for z = sgn x. Conversely, if x satisfies
(2.83) for some z ∈ Yn, then it is a weak solution of the system Ax ≤ b which
is then weakly solvable. ut

The description suggests that the problem might be NP-hard, and it turns
out to be again the case.

Theorem 2.21. Checking weak solvability of interval linear inequalities is
NP-hard.

Proof. Given a square matrix A, the system

−e ≤ Ax ≤ e, (2.84)

eT |x| ≥ 1 (2.85)

can be rewritten equivalently as



A
−A
0T


 x−




0
0
eT


 |x| ≤




e
e

−1


 ,

which is just the Gerlach inequality (2.82) for the system

Ax ≤ b, (2.86)

where

Ac =




A
−A
0T


 , ∆ =




0
0
eT


 , b = b =




e
e

−1


 . (2.87)

Hence the system (2.84), (2.85) has a solution if and only if the system of
interval linear inequalities (2.86), (2.87) is weakly solvable. Thus the NP-
complete problem of checking solvability of (2.84), (2.85) (Theorem 2.3) can
be reduced in polynomial time to the problem of checking weak solvability of
interval linear inequalities, which is then NP-hard. ut

2.12 Weak feasibility of inequalities

Weak feasibility of inequalities was defined in Section 2.6 as existence of a
nonnegative weak solution. For nonnegative x we can replace the term |x| in
the Gerlach inequality simply by x, thereby obtaining this characterization:

Theorem 2.22. A system Ax ≤ b is weakly feasible if and only if the system

Ax ≤ b (2.88)

is feasible.
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Proof. If x ≥ 0 satisfies Ax ≤ b for some A ∈ A and b ∈ b, then

Ax ≤ Ax ≤ b ≤ b

and x is a feasible solution to (2.88). Conversely, feasibility of (2.88) obviously
implies weak feasibility of Ax ≤ b. ut

Since feasibility of only one system of linear inequalities is to be checked,
the problem is solvable in polynomial time (see the last paragraph of Section
2.4).

2.13 Strong solvability of inequalities

By definition, a system Ax ≤ b is strongly solvable if each system Ax ≤ b
with A ∈ A, b ∈ b is solvable. Since the problem of checking strong solvability
of interval linear equations is NP-hard (Theorem 2.15), one might expect the
same to be the case for interval linear inequalities. But this analogy is no
longer true, and we have this rather surprising result:

Theorem 2.23. A system Ax ≤ b is strongly solvable if and only if the
system

Ax1 −Ax2 ≤ b (2.89)

is feasible.

Proof. “Only if”: Assume to the contrary that the system (2.89) is not feasible;
then neither is the system

Ax1 −Ax2 + x3 = b,

and the Farkas theorem implies existence of a vector p ∈ Rm satisfying

A
T
p ≥ 0, (2.90)

AT p ≤ 0, (2.91)
p ≥ 0, (2.92)

bT p < 0. (2.93)

Then (2.90) and (2.91) give

−∆T p ≤ −AT
c p ≤ ∆T p ;

hence
|AT

c p| ≤ ∆T p = ∆T |p|
because of (2.92), and the Oettli–Prager theorem as applied to the system

[AT
c −∆T , AT

c + ∆T ]x = [0, 0]
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implies existence of a matrix A ∈ A satisfying

AT p = 0,

which together with (2.92) and (2.93) shows in the light of Theorem 2.6 that
the system

Ax ≤ b

does not have a solution, a contradiction.
“If”: Let x1 ≥ 0, x2 ≥ 0 solve (2.89). Then for each A ∈ A and each b ∈ b

we have
A(x1 − x2) ≤ Ax1 −Ax2 ≤ b ≤ b,

so that x1 − x2 solves Ax ≤ b. Hence Ax ≤ b is strongly solvable; even more,
all the systems Ax ≤ b, A ∈ A, b ∈ b share a common solution x1 − x2. ut

Hence checking strong solvability of inequalities can be performed in poly-
nomial time. Let us call a vector x satisfying Ax ≤ b for each A ∈ A, b ∈ b
a strong solution of Ax ≤ b. We have simultaneously proved the following
result.

Theorem 2.24. If a system Ax ≤ b is strongly solvable, then it has a strong
solution.

In other words, if each system Ax ≤ b with data satisfying A ∈ A, b ∈ b
has a solution of its own (depending on A and b, say x(A, b)), then all these
systems share a common solution. This fact is certainly not obvious.

We have this characterization of strong solutions:

Theorem 2.25. The following assertions are equivalent.

(i) x is a strong solution of Ax ≤ b.
(ii) x satisfies

Acx− bc ≤ −∆|x| − δ. (2.94)

(iii) x = x1 − x2, where x1, x2 satisfy

Ax1 −Ax2 ≤ b, (2.95)

x1 ≥ 0, x2 ≥ 0. (2.96)

Proof. We prove (i)⇒(ii)⇒(iii)⇒(i).
(i)⇒(ii): If Ax ≤ b for each A ∈ A, b ∈ b, then also A−ezx ≤ b, where

z = sgn x; hence

Acx + ∆|x| = (Ac + ∆Tz)x = A−ezx ≤ b = bc − δ,

which implies (2.94).
(ii)⇒(iii): If x satisfies (2.94), then for x1 = x+ = max{x, 0}, x2 = x− =

max{−x, 0} we have x1 ≥ 0, x2 ≥ 0 and
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Ax1 −Ax2 = Ac(x1 − x2) + ∆(x1 + x2) = Acx + ∆|x| ≤ bc − δ = b;

hence x1, x2 solve (2.95), (2.96) and x = x1 − x2.
(iii)⇒(i) was proved in the “if” part of the proof of Theorem 2.23. ut
We can sum up these results in the form of a simple algorithm:

if (2.95), (2.96) has a solution x1, x2

then set x := x1 − x2 and terminate:
x is a strong solution of Ax ≤ b;

else terminate: Ax ≤ b is not strongly solvable;
end

2.14 Strong feasibility of inequalities

Finally, checking strong feasibility of inequalities is easy to characterize and
can be done in polynomial time.

Theorem 2.26. A system Ax ≤ b is strongly feasible if and only if the system

Ax ≤ b (2.97)

is feasible.

Proof. If Ax ≤ b is strongly feasible, then (2.97) is feasible. Conversely, if
(2.97) has a solution x ≥ 0, then for each A ∈ A, b ∈ b we have

Ax ≤ Ax ≤ b ≤ b;

hence Ax ≤ b is strongly feasible. ut

2.15 Summary I: Complexity results

We can now summarize the results of the previous eight sections in the form
of a table.

weak- solvable NP-hard
equat- ly feasible polynomial-time
ions strong- solvable NP-hard

system ly feasible NP-hard
of weak- solvable NP-hard

inequa- ly feasible polynomial-time
lities strong- solvable polynomial-time

ly feasible polynomial-time

We can draw several conclusions from it. For interval problems, on the average:

(i) Properties of equations are more difficult to check than those of
inequalities;

(ii) Checking solvability is more difficult than checking feasibility; and
(iii) There is no such distinction between weak and strong properties.
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2.16 Tolerance solutions

So far we have investigated mainly decision problems and in that frame four
types of solutions (weak and strong solutions of both equations and inequal-
ities) were introduced as auxiliary tools only. In this and in the next two
sections we define three additional types of solutions motivated by some prac-
tical considerations.

In the present section we study tolerance solutions. A vector x ∈ Rn

is said to be a tolerance solution of Ax = b if it satisfies Ax ∈ b for each
A ∈ A. The name of this type of solution reflects the fact that vector Ax stays
within the prescribed tolerance [b, b] independently of the choice of A ∈ A.
Original motivations for introducing and studying tolerance solutions came
from the problem of crane construction (Nuding and Wilhelm [110]) and from
the problem of input–output planning with inexact data [146].

The definition can also be recast by saying that x shall satisfy

{Ax | A ∈ A} ⊆ b. (2.98)

We start therefore with a description of the left-hand-side set in (2.98).

Proposition 2.27. Let A be an m× n interval matrix and let x ∈ Rn. Then
there holds

{Ax | A ∈ A} = [Acx−∆|x|, Acx + ∆|x|]. (2.99)

Proof. If b ∈ {Ax | A ∈ A}, then Ax = b for some A ∈ A; hence x is a weak
solution of

Ax = [b, b] (2.100)

and by the Oettli–Prager theorem it satisfies

|Acx− b| ≤ ∆|x|; (2.101)

hence
−∆|x| ≤ Acx− b ≤ ∆|x| (2.102)

and
Acx−∆|x| ≤ b ≤ Acx + ∆|x|. (2.103)

We have proved that {Ax | A ∈ A} ⊆ [Acx −∆|x|, Acx + ∆|x|]. Conversely,
if b ∈ [Acx −∆|x|, Acx + ∆|x|], then b satisfies (2.103), (2.102), and (2.101);
hence x is a weak solution of (2.100) which gives that b ∈ {Ax | A ∈ A}. This
proves the converse inclusion; hence (2.99) holds. ut

With the help of this auxiliary result we can give two equivalent descrip-
tions of tolerance solutions.

Theorem 2.28. The following assertions are equivalent.

(i) x is a tolerance solution of Ax = b.
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(ii) x satisfies
|Acx− bc| ≤ −∆|x|+ δ. (2.104)

(iii) x = x1 − x2, where x1, x2 satisfy

Ax1 −Ax2 ≤ b, (2.105)

Ax1 −Ax2 ≥ b, (2.106)

x1 ≥ 0, x2 ≥ 0. (2.107)

Proof. We prove (i)⇒(ii)⇒(iii)⇒(i).
(i)⇒(ii): According to Proposition 2.27,

{Ax | A ∈ A} = [Acx−∆|x|, Acx + ∆|x|].
Hence, if x is a tolerance solution, then

[Acx−∆|x|, Acx + ∆|x|] ⊆ [bc − δ, bc + δ],

which implies

bc − δ ≤ Acx−∆|x| ≤ Acx + ∆|x| ≤ bc + δ

and thus also
−(−∆|x|+ δ) ≤ Acx− bc ≤ −∆|x|+ δ, (2.108)

which is (2.104).
(ii)⇒(iii): If x satisfies (2.104), then for x1 = x+, x2 = x− we have x =

x1 − x2, |x| = x1 + x2 and the inequalities (2.108) turn into

∆(x1 + x2)− δ ≤ Ac(x1 − x2)− bc ≤ −∆(x1 + x2) + δ,

which gives (2.105), (2.106), and (2.107) is satisfied because x+ ≥ 0, x− ≥ 0.
(iii)⇒(i): If x1 ≥ 0, x2 ≥ 0 solve (2.105), (2.106), then for x = x1−x2 and

for each A ∈ A we have

Ax = A(x1 − x2) ≤ Ax1 −Ax2 ≤ b

and
Ax = A(x1 − x2) ≥ Ax1 −Ax2 ≥ b

which shows that Ax ∈ b for each A ∈ A, hence x is a tolerance solution. ut
There is a remarkable similarity between the inequality (2.104) and the

Oettli–Prager inequality (2.35): both descriptions differ in the sign preced-
ing the matrix ∆ only. Yet this seemingly small difference has an astounding
impact: although checking the existence of solution of the Oettli–Prager in-
equality is NP-hard (Theorem 2.12), checking the existence of a tolerance
solution can be performed in polynomial time simply by checking solvability
of the system (2.105)–(2.107). The description (iii) also shows that the set
of tolerance solutions is a convex polyhedron; it allows us to compute the
range of components of tolerance solutions by solving the respective linear
programming problems [154], etc.
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2.17 Control solutions

A vector x ∈ Rn is called a control solution of Ax = b if for each b ∈ b there
exists an A ∈ A such that Ax = b holds, in other words, if

b ⊆ {Ax | A ∈ A}.
Control solutions were introduced by Shary [178] in 1992. The choice of the
word “control” was probably motivated by the fact that each vector b ∈ b
can be reached by Ax when properly controlling the coefficients of A within
A. We have this characterization.

Theorem 2.29. The following assertions are equivalent.

(i) x is a control solution of Ax = b.
(ii) x satisfies

|Acx− bc| ≤ ∆|x| − δ. (2.109)

(iii) x solves

Aezx ≤ b, (2.110)
−A−ezx ≤ −b (2.111)

for some z ∈ Yn.

Proof. We prove (i)⇒(ii)⇒(iii)⇒(i).
(i)⇒(ii): If x is a control solution, then by Proposition 2.27 it satisfies

[bc − δ, bc + δ] ⊆ {Ax | A ∈ A} = [Acx−∆|x|, Acx + ∆|x|], which implies

Acx−∆|x| ≤ bc − δ ≤ bc + δ ≤ Acx + ∆|x|
and

−(∆|x| − δ) ≤ Acx− bc ≤ ∆|x| − δ; (2.112)

hence
|Acx− bc| ≤ ∆|x| − δ.

(ii)⇒(iii): If x satisfies (2.109), then (2.112) holds and with z = sgn x we
can substitute |x| = Tzx into (2.112) which leads to (2.110), (2.111).

(iii)⇒(i): If x solves (2.110), (2.111) for some z ∈ Yn, then |∆Tzx| ≤ ∆|x|,
hence

Acx−∆|x| ≤ (Ac −∆Tz)x = Aezx ≤ b ≤ b ≤ A−ezx

= (Ac + ∆Tz)x ≤ Acx + ∆|x|,
which implies

[b, b] ⊆ [Acx−∆|x|, Acx + ∆|x|] = {Ax | A ∈ A}
by Proposition 2.27; hence x is a control solution. ut
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Again, the inequality (2.109) differs from the Oettli–Prager inequality
(2.35) in the sign preceding δ only. But this time the difference does not
affect complexity of the problem.

Theorem 2.30. Checking existence of control solutions is NP-hard.

Proof. For a square matrix A, consider the system

−e ≤ Ax ≤ e, (2.113)

eT |x| ≥ 1, (2.114)

and the inequality
∣∣∣∣
(

A
0T

)
x−

(
0
1

)∣∣∣∣ ≤
(

eeT

eT

)
|x| −

(
0
0

)
. (2.115)

If x solves (2.113), (2.114), then it also solves (2.115). Conversely, if x solves
(2.115), then x 6= 0 and x′ = x

eT |x| solves (2.113), (2.114). Hence, the system
(2.113), (2.114) has a solution if and only if the inequality (2.115) has a
solution. But (2.115) is exactly the inequality (2.109) for the system of interval
linear equations

[A− eeT , A + eeT ]x = [0, 0], (2.116)
[−eT , eT ]x = [1, 1], (2.117)

which gives that (2.113), (2.114) has a solution if and only if (2.116), (2.117)
has a control solution. Now an application of Theorem 2.3 concludes the proof.

ut

2.18 Algebraic solutions

A vector x ∈ Rn is called an algebraic solution of Ax = b if it satisfies

{Ax | A ∈ A} = b. (2.118)

Algebraic solutions were first introduced by Ratschek and Sauer in [138]. This
type of solution is easy to characterize.

Theorem 2.31. x is an algebraic solution of Ax = b if and only if it satisfies

Acx = bc, (2.119)
∆|x| = δ. (2.120)

Proof. By Proposition 2.27, (2.118) is equivalent to

[Acx−∆|x|, Acx + ∆|x|] = [bc − δ, bc + δ], (2.121)

which implies (2.119), (2.120). On the other hand, (2.119) and (2.120) imply
(2.121) and thus also (2.118). ut
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It follows from Theorems 2.28 and 2.29, inequalities (2.104) and (2.109),
that x is an algebraic solution of Ax = b if and only if it is both the tolerance
and control solution of it. If m = n and Ac is nonsingular, then Ax = b has
an algebraic solution if and only if the data satisfy

∆|A−1
c bc| = δ, (2.122)

in which case x = A−1
c bc is the unique algebraic solution of it.

2.19 The square case

In this section we consider systems of interval linear equations Ax = b where
A is square n×n and b is an n-dimensional interval vector. The square case,
which has been a part of the mainstream of interval analysis for the last three
decades, would have deserved a special chapter itself, if not a book. Here we
confine ourselves to the most important theoretical result (Theorem 2.36), its
prerequisites and some of its consequences. Let us repeat that throughout this
section A is square n× n.

As in the noninterval case, nonsingularity plays an important role here.
A square interval matrix A is called regular if each A ∈ A is nonsingular,
and singular in the opposite case (i.e., if A contains a singular matrix). Our
previous results imply the following general characterization.

Theorem 2.32. A is regular if and only if the system

Ayex
1 −A−yex

2 = y (2.123)

is feasible for each y ∈ Yn.

Proof. Consider the system of interval linear equations

Ax = [−e, e]. (2.124)

If A is regular, then (2.124) is strongly solvable and Theorem 2.14 implies that
the system (2.123) is feasible for each y ∈ Yn since in this case by = Tye = y.
Conversely, if (2.123) is feasible for each y ∈ Yn, then (2.124) is strongly
solvable by Theorem 2.14; hence for each A ∈ A the system Ax = ej has a
solution for each j, where ej ∈ [−e, e] is the jth column of the unit matrix I,
which shows that A is invertible and thus nonsingular. ut
Theorem 2.33. Checking regularity of interval matrices is NP-hard.

Proof. Let A be square. From the proof of Theorem 2.30 we can infer that
the system

−e ≤ Ax ≤ e,

eT |x| ≥ 1
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has a solution if and only if the interval matrix

[A− eeT , A + eeT ]

is singular. Now Theorem 2.3 provides for the rest. ut
Fortunately, there exists a verifiable sufficient regularity condition that

covers most practical cases. %(A) denotes the spectral radius of A.

Proposition 2.34. If Ac is nonsingular and

%(|A−1
c |∆) < 1

holds, then A is regular.

Proof. For each A ∈ A we have

%(A−1
c (Ac −A)) ≤ %(|A−1

c (Ac −A)|) ≤ %(|A−1
c |∆) < 1.

Hence by Theorem 1.31 the matrix

I −A−1
c (Ac −A) = A−1

c A

is invertible and thus nonsingular. Then A is nonsingular, and A is regular.
ut

A square matrix A is called a P -matrix if all its principal minors are
positive. In 1962 Fiedler and Pták [37] proved this characterization: A is a
P -matrix if and only if for each x 6= 0 there is an i such that xi(Ax)i > 0
(see Theorem 1.79). With the help of this fact we can prove the next assertion
which forms a bridge towards the main result.

Theorem 2.35. If A is regular, then A−1
1 A2 is a P -matrix for each A1, A2 ∈

A.

Proof. Assume to the contrary that A−1
1 A2 is not a P -matrix for some

A1, A2 ∈ A. Then according to the Fiedler–Pták theorem there exists an x 6= 0
such that xi(A−1

1 A2x)i ≤ 0 for each i. Take x′ = A−1
1 A2x; then xix

′
i ≤ 0 holds

for each i which implies that

|x′|+ |x| = |x′ − x|. (2.125)

Now we have

|Ac(x′ − x)| = |(Ac −A1)x′ + (A2 −Ac)x| ≤ ∆|x′|+ ∆|x| = ∆|x′ − x|

due to (2.125) which also gives that x′ 6= x since x′ = x would imply x = 0
contrary to x 6= 0. Hence by the Oettli–Prager theorem there exists an A ∈ A
with A(x′ − x) = 0 which means that A is singular, a contradiction. ut
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When solving an interval linear system Ax = b with a square interval
matrix A, we are usually interested in the set X of weak solutions of it, i.e.,
in the set

X = {x | Ax = b for some A ∈ A, b ∈ b}. (2.126)

The main result of this section asserts that X contains some uniquely deter-
mined significant points (Conv X denotes the convex hull of X).

Theorem 2.36. Let A be regular and let b be an n-dimensional interval vec-
tor. Then for each y ∈ Yn the equation

Acx− Ty∆|x| = by (2.127)

has a unique solution xy that belongs to X and there holds

Conv X = Conv{xy | y ∈ Yn}. (2.128)

Proof. Consider the system

x1 = A−1
ye A−yex

2 + A−1
ye by, (2.129)

x1 ≥ 0, x2 ≥ 0, (2.130)

(x1)T x2 = 0. (2.131)

We can see that (2.129)–(2.131) is a linear complementarity problem [97]
whose matrix A−1

ye A−ye is a P -matrix due to regularity of A (Theorem 2.35);
hence by the result due to Samelson, Thrall and Wesler [175] (rediscovered
independently by Ingleton [55] and Murty [97]), (2.129)–(2.131) has a unique
solution x1

y, x2
y. Put xy = x1

y − x2
y. Then Ayex

1
y −A−yex

2
y = by and Theorem

2.14 gives that for each A ∈ A and each b ∈ b the unique (because of reg-
ularity) solution of Ax = b belongs to Conv{xy | y ∈ Yn} which means that
X ⊆ Conv{xy | y ∈ Yn} and thus also Conv X ⊆ Conv{xy | y ∈ Yn}. On the
other hand, (2.129)–(2.131) imply

Acxy − bc = Ac(x
1
y − x2

y)− bc = Ty(∆(x1
y + x2

y) + δ) = Ty(∆|xy|+ δ),

so that xy solves (2.127) and

|Acxy − bc| = ∆|xy|+ δ (2.132)

holds, which in the light of the Oettli–Prager theorem means that xy ∈ X for
each y ∈ Yn. Hence Conv{xy | y ∈ Yn} ⊆ Conv X, which proves the converse
inclusion. Finally, if x solves (2.127), then a simple rearrangement shows that
x1 = x+, x2 = x− solve (2.129)–(2.131) and in view of the above-stated
uniqueness of solution of this linear complementarity problem we have

x = x+ − x− = x1
y − x2

y = xy,

so that the solution of (2.127) is unique. ut
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Let us emphasize that whereas in Theorem 2.17 xy denoted an arbitrary
of possibly infinitely many solutions of (2.75), in Theorem 2.36 xy denotes
the unique solution of (2.127). If A is regular, then for each y ∈ Yn the point
xy can be computed by the following finite algorithm, called the sign-accord
algorithm because it works towards achieving a “sign accord” of vectors z
and x (i.e., zjxj ≥ 0 for each j).

z := sgn (A−1
c by);

x := A−1
yz by;

C := A−1
yz Ty∆;

while zjxj < 0 for some j
k := min{j | zjxj < 0};
zk := −zk;
α := 2zk/(1− 2zkCkk);
x := x + αxkC·k;
C := C + αC·kCk·;

end
xy := x.

(C·k and Ck· denote the kth column and the kth row of C, respectively.) We
refrain from including a proof here, which would lead us beyond the scope of
this chapter. We refer an interested reader to [156, p. 48].

The narrowest interval vector [x, x] containing the set X is called the
interval hull of X. From (2.128) we immediately have that

xi = min
y∈Yn

(xy)i, (2.133)

xi = max
y∈Yn

(xy)i (2.134)

(i = 1, . . . , n), which, when combined with the sign-accord algorithm, yields
a finite procedure for computing the interval hull.

Example 2.37. Consider the example by Hansen [47]: A = [A, A], b = [b, b],
where

A =
(

2 0
1 2

)
, A =

(
3 1
2 3

)
, b =

(
0
60

)
, b =

(
120
240

)
.

Since for each z ∈ Y2 the intersection of the set of weak solutions X with the
orthant {x ∈ R2 | Tzx ≥ 0} is described by the system of linear inequalities
(2.39), (2.40), considering separately all four orthants we arrive at this picture
of the set X:
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-

6

-120 90

-60

240

It can be seen that X is nonconvex and the four points xy, y ∈ Y2 are clearly
visible since in view of (2.128) they must be exactly the four vertices of the
convex hull of X. Using the sign-accord algorithm, we obtain

x(−1,−1) = (−12, 24)T ,

x(−1,1) = (−120, 240)T ,

x(1,−1) = (90,−60)T ,

x(1,1) = (60, 90)T ,

and from (2.133), (2.134) we have that the interval hull of X is [x, x], where

x = (−120,−60)T ,

x = (90, 240)T .

Unfortunately, the general problem is again NP-hard:

Theorem 2.38. Computing the interval hull of the set X is NP-hard even for
systems with interval matrices satisfying

%(|A−1
c |∆) = 0.
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Proof. Given a rational n×n matrix A, construct the (n+1)×(n+1) interval
matrix A = [Ac −∆,Ac + ∆] with

Ac =
(

1 0T

0 A

)
, ∆ =

(
0 eT

0 0

)
,

and the (n + 1)-dimensional interval vector b = [bc − δ, bc + δ] with

bc =
(

0
0

)
, δ =

(
0
e

)

(e ∈ Rn). We have

|A−1
c |∆ =

(
0 eT

0 0

)
;

hence
%(|A−1

c |∆) = 0.

Then each system Ax = b with A ∈ A, b ∈ b has the form

x1 + cT x′ = 0,

Ax′ = d

for some c ∈ [−e, e] and d ∈ [−e, e], where x′ = (x2, . . . , xn+1)T . If [x, x] is
the interval hull of (2.126), then for x1 we have

x1 = max{cT x′ | c ∈ [−e, e], −e ≤ Ax′ ≤ e} = max{eT |x′| | −e ≤ Ax′ ≤ e};

hence
x1 ≥ 1

holds if and only if the system

−e ≤ Ax′ ≤ e,

eT |x′| ≥ 1

has a solution. Since the latter problem is NP-complete (Theorem 2.3), x1 is
NP-hard to compute and the same holds for [x, x]. ut

This result shows that we must set the goal differently: instead of trying to
compute the exact interval hull [x, x], we should be satisfied with computing
a possibly narrow enclosure of X, i.e., an interval vector [x, x] satisfying

X ⊆ [x, x].

There is a vast literature dedicated to this theme, comprising a number of inge-
nious enclosure methods, see, e.g., the monographs by Alefeld and Herzberger
[2] or Neumaier [105]. We conclude this section with description of a nontrivial
result that gives explicit formulae for computing an enclosure.
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Theorem 2.39 (Hansen–Bliek–Rohn). Let Ac be nonsingular and let

%(|A−1
c |∆) < 1 (2.135)

hold. Then we have

X ⊆ [min{x
˜
, Tνx

˜
}, max{x̃, Tν x̃}], (2.136)

where

M = (I − |A−1
c |∆)−1,

µ = (M11, . . . , Mnn)T ,

Tν = (2Tµ − I)−1,

xc = A−1
c bc,

x∗ = M(|xc|+ |A−1
c |δ),

x
˜

= −x∗ + Tµ(xc + |xc|),
x̃ = x∗ + Tµ(xc − |xc|).

Proof. First we note that because of (2.135) we have

M =
∞∑

j=0

(|A−1
c |∆)j ≥ I ≥ 0;

thus also 2Tµ − I ≥ I, so that the diagonal matrix Tν = (2Tµ − I)−1 exists
and νi = 1/(2Mii − 1) for each i.

To prove (2.136), take an x ∈ X; then by the Oettli–Prager theorem it
satisfies

|Acx− bc| ≤ ∆|x|+ δ;

hence

|x| − |xc| ≤ |x− xc| = |A−1
c (Acx− bc)| ≤ |A−1

c ||Acx− bc| ≤ |A−1
c |(∆|x|+ δ).

(2.137)
Now, let us fix an i ∈ {1, . . . , n}. Then from (2.137) we have

xi ≤ (xc)i + (|A−1
c |(∆|x|+ δ))i (2.138)

and
|xj | ≤ |xc|j + (|A−1

c |(∆|x|+ δ))j (2.139)

for each j 6= i. Since xi = |xi| + (xi − |xi|) and the same holds for (xc)i, we
can put (2.138) and (2.139) together as

|x|+ (xi − |xi|)ei ≤ |xc|+ ((xc)i − |xc|i)ei + |A−1
c |(∆|x|+ δ),

which implies
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(I − |A−1
c |∆)|x|+ (xi − |xi|)ei ≤ |xc|+ |A−1

c |δ + ((xc)i − |xc|i)ei.

Premultiplying this inequality by the nonnegative vector eT
i M , we finally ob-

tain an inequality containing variable xi only:

|xi|+ (xi − |xi|)Mii ≤ x∗i + ((xc)i − |xc|i)Mii = x̃i.

If xi ≥ 0, then this inequality becomes

xi ≤ x̃i,

and if xi < 0, then it turns into

xi ≤ x̃i/(2Mii − 1) = νix̃i,

in both cases
xi ≤ max{x̃i, νix̃i}.

Since i was arbitrary, we conclude that

x ≤ max{x̃, Tν x̃},
which is the upper bound in (2.136). To prove the lower bound, notice that if
Ax = b for some A ∈ A and b ∈ b, then A(−x) = −b, hence −x belongs to
the solution set of the system Ax = [−bc − δ,−bc + δ], and we can apply the
previous result to this system by setting bc := −bc. In this way we obtain

−x ≤ max{x∗ + Tµ(−xc − |xc|), Tν(x∗ + Tµ(−xc − |xc|))};
hence

x ≥ min{−x∗ + Tµ(xc + |xc|), Tν(−x∗ + Tµ(xc + |xc|))} = min{x
˜
, Tνx

˜
},

which is the lower bound in (2.136). The theorem is proved. ut
This theorem gives an enclosure (2.136) which is fairly good in practical

cases, but generally not optimal (cf. Theorem 2.38). However, it is optimal
(i.e., it yields the interval hull of X) in the case of Ac = I (Hansen [48], Bliek
[21], Rohn [160]).

The result can be easily applied to bound the inverse of an interval matrix.
In the next theorem, the minimum or maximum of two matrices is understood
componentwise.

Theorem 2.40. Let (2.135) hold. Then for each A ∈ A we have

min{B
˜

, TνB
˜
} ≤ A−1 ≤ max{B̃, TνB̃},

where M , µ, and Tν are as in Theorem 2.39 and

B
˜

= −M |A−1
c |+ Tµ(A−1

c + |A−1
c |),

B̃ = M |A−1
c |+ Tµ(A−1

c − |A−1
c |).

Proof. Since (A−1)·j is the solution of the system Ax = ej , we obtain the
result simply by applying Theorem 2.39 to interval linear systems Ax = [ej , ej ]
for j = 1, . . . , n. ut
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2.20 Summary II: Solution types

We have introduced altogether eight types of solutions. We summarize the
results in the following table which clearly illustrates the tiny differences in
their descriptions.

Solution Description Reference
weak solution of Ax = b |Acx− bc| ≤ ∆|x|+ δ (2.35)
strong solution of Ax = b Acx− bc = ∆|x| = δ = 0 (2.68), (2.69)
weak solution of Ax ≤ b Acx− bc ≤ ∆|x|+ δ (2.82)
strong solution of Ax ≤ b Acx− bc ≤ −∆|x| − δ (2.94)

tolerance solution |Acx− bc| ≤ −∆|x|+ δ (2.104)
control solution |Acx− bc| ≤ ∆|x| − δ (2.109)

algebraic solution Acx− bc = ∆|x| − δ = 0 (2.119), (2.120)
xy |Acx− bc| = ∆|x|+ δ (2.132)

2.21 Notes and references

In this section we give some additional notes and references to the material
contained in this chapter.

Section 2.1. We use standard linear algebraic notations except for Ym, Ty

and sgn x (introduced in [156]).
Section 2.2. The algorithm is a variant of the binary reflected Gray code

(Gray [46]), see, e.g., [194].
Section 2.3. The first NP-hardness result for problems with interval-valued

data was published by Poljak and Rohn as a report [116] in 1988 and as a
journal paper [117] in 1993. They showed that for an n×n matrix A the value

max
z,y∈Yn

zT Ay (2.140)

is NP-hard to compute, and they used the result to prove that checking regu-
larity of interval matrices is NP-hard (Theorem 2.33 here). Only in 1995 was
it realized [162] that the value of (2.140) is equal to ‖A‖∞,1 (see (2.4)) which
led to the formulation of Theorem 2.2 ([162], in journal form [165]). Theorem
2.3, which is more useful in the context of interval linear systems, was also
proved in [162]. Notice that all the NP-hardness results of this chapter were
proved with the help of this theorem.

Section 2.4. The word “feasibility”, which is a one-word substitute for non-
negative solvability, was inspired by linear programming terminology. Theo-
rem 2.4, also known as Farkas’ lemma, was proved by Farkas [34] in 1902. It
is an important theoretical result (as evidenced throughout this chapter), but
it does not give a constructive way of checking feasibility which must be done
by another means (usually by a linear programming technique).
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Section 2.5. Matrices Ayz and vectors by were introduced in [156]. The
importance of the finite set of matrices Ayz becomes more apparent with
problems involving square interval matrices only (as regularity, positive defi-
niteness etc.). For example, an interval matrix A is regular (see Section 2.19)
if and only if det(Ayz) is of the same sign for each z, y ∈ Yn (Baumann [10]);
for further results of this type see the monograph by Kreinovich, Lakeyev,
Rohn, and Kahl [80, Chapters 21 and 22]. As we have seen, in the context of
rectangular interval systems typically only matrices of the form Aye or Aez

arise.
Section 2.6. The definition of an interval linear system Ax = b as a family

of systems Ax = b, A ∈ A, b ∈ b makes it possible to define various types
of solutions. The notion of strong feasibility of interval linear equations was
introduced in [149], and weak solvability as a counterpart of strong solvability
was first studied by Rohn and Kreslová in [168]. Formulation and study of
the complete set of the eight decision problems is new and forms the bulk of
this chapter.

Section 2.7. The Oettli–Prager theorem is formulated here in the form
(2.35) which has become standard, although not explicitly present in the
original paper [112] where the authors preferred an entrywise formulation.
The theorem is now considered a basic tool for both backward error analysis
(Golub and van Loan [44], Higham [51]) and interval analysis (Neumaier [105])
of systems of linear equations. Another form of Proposition 2.10 (perhaps more
attractive, but less useful) is described in [153, Theorem 1.2]. NP-hardness of
checking weak solvability of equations was proved by Lakeyev and Noskov
[84] (preliminary announcement without proof in [83]) by another means.
The proof given here employs polynomial reduction of our standard problem
of Theorem 2.3 to the current problem, an approach adhered to throughout
the chapter.

Section 2.8. Theorem 2.13 is a simple consequence of the Oettli–Prager
theorem. It was discovered independently in [145].

Section 2.9. The proof of Theorem 2.14 is not straightforward and neither
is its history. The “if” part was formulated and proved in technical reports
[152], [151] in 1984, but the author refrained from further journal publication
because he considered the sufficient condition too strong. In 1996 he discovered
by chance that it was also necessary (paradoxically, it was the easier part of
the proof), which gave rise to Theorem 2.14 published in [166]. The second
part of the proof of the “if” part (starting from (2.56)) relies in fact on a
new existence theorem for systems of linear equations which was published in
[157] (existence proof, as given here) and in [159] (constructive proof). NP-
hardness of checking strong solvability (Theorem 2.15) is an easy consequence
of the same complexity result for the problem of checking regularity of interval
matrices (Theorem 2.33), but because of the layout of this chapter it had to
be proved independently.

Section 2.10. Characterization of strong feasibility of equations (Theorem
2.17) was published in [149] as part of a study of the interval linear pro-
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gramming problem. Many unsuccessful attempts by the author through the
following years to find a characterization of strong feasibility that would not
be inherently exponential finally led to the NP-hardness conjecture and to the
proof of it in [164] (part 2 of the proof).

Section 2.11. Gerlach [43] initiated the study of systems of interval linear
inequalities by proving Theorem 2.19 as a follow-up of the Oettli–Prager the-
orem. NP-hardness of checking weak solvability of inequalities was proved in
technical report [162] and has not been published in journal form.

Section 2.12. The result of Theorem 2.22 is obvious and is included here
for completeness.

Section 2.13. Both Theorems 2.23 and 2.24 are due to Rohn and Kreslová
[168]. The contrast between the complexity results for strong solvability of
interval linear equations (Theorem 2.15) and inequalities (Theorem 2.23) is
striking and reveals that classical solvability-preserving reductions between
linear equations and linear inequalities are no longer in force when inexact data
are present. In fact, a system of linear equations Ax = b can be equivalently
written as a system if linear inequalities Ax ≤ b,−Ax ≤ −b and solved as such.
But in the case of interval data, the sets of weak solutions of Ax = b and of
Ax ≤ b, −Ax ≤ −b are generally not identical since the latter family contains
systems of inequalities of type Ax ≤ b, −Ãx ≤ −b̃ (A, Ã ∈ A, b, b̃ ∈ b) that
may possess solutions which do not satisfy Ax = b for any A ∈ A, b ∈ b.
Existence of strong solutions in the case of strong solvability (Theorem 2.24)
is a nontrivial fact that can be expected to find some applications, although
none of them have been known to date.

Section 2.14. Theorem 2.26 is again obvious.
Section 2.16. Introduction of the notion of tolerance solutions was moti-

vated by considerations concerning crane construction (Nuding and Wilhelm
[110]) and input–output planning with inexact data of the socialist economy
of the former Czechoslovakia [146]. Descriptions (ii), (iii) of tolerance solutions
in Theorem 2.28 were proved in [154]. Tolerance solutions have been studied
since by Neumaier [104], Deif [32], Kelling and Oelschlägel [70], Kelling [68],
[69], Shaydurov and Shary [185], Shary [176], [179], [180], [181], and Lakeyev
and Noskov [84].

Section 2.17. Control solutions were introduced by Shary [178] and further
studied by him in [181], [183]. The description (2.109) in Theorem 2.29 is due
to Lakeyev and Noskov [84] who in the same paper also proved NP-hardness
of checking the existence of control solutions, as well as of algebraic solutions.
For other possible types of solutions see the survey paper by Shary [184].

Section 2.18. Algebraic solutions were introduced by Ratschek and Sauer
[138], although for the case m = 1 only. The condition (2.122) was proved
in [153]. The topic makes more sense when the problem is formulated as
A · x = b, where x is an interval vector and multiplication is performed in
interval arithmetic. A solution of this problem in full generality is not known
so far; for a partial solution see [158].
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Section 2.19. NP-hardness of checking regularity of square matrices (The-
orem 2.33) was proved by Poljak and Rohn [116], [117] whose work was moti-
vated by the existence at that time of more than ten necessary and sufficient
regularity conditions all of which exhibited exponential complexity (Theorem
5.1 in [156]; one of them is our Theorem 2.32). The sufficient regularity condi-
tion of Proposition 2.34 is usually attributed to Beeck [11], although allegedly
(Neumaier [103]) it was derived earlier by Ris in his unpublished Ph.D. thesis
[143]. The “convex-hull” Theorem 2.36, as well as finiteness of the sign accord
algorithm, were proved in [156]. The NP-hardness result of Theorem 2.38 on
complexity of computing the interval hull of the set X of weak solutions is due
to Rohn and Kreinovich [167]. In 1992 Hansen [48] and Bliek [21] showed al-
most simultaneously that in the case Ac = I the interval hull can be described
by closed-form formulae, but their result lacked a rigorous proof which was
supplied in [160]. The idea can be applied to a preconditioned system, as was
done in the proof of Theorem 2.39, but in this way only an enclosure, not the
interval hull, is obtained (Theorem 2.38 explains why it is so). Computation
of the enclosure requires evaluation of two inverses, A−1

c and (I − |A−1
c |∆)−1;

the main result of [144] shows that we can also do with approximate inverses
R ≈ A−1

c and M ≈ (I−|A−1
c |∆)−1 provided they satisfy certain additional in-

equality. The topic was later studied by Ning and Kearfott [108] and Neumaier
[106]. We refrain here from listing papers dedicated to computing enclosures
since they are simply too many. As for the latest developments,1 we mention
the method of Jansson [64], characterization of feasibility of preconditioned
interval Gaussian algorithm by Mayer and Rohn [87], the techniques by Shary
[177], [182], and a series of papers by Alefeld, Kreinovich, and Mayer [6], [3],
[4], [5] which handle the complicated problem of solving interval systems with
dependent data. An earlier version of this problem (with prescribed bounds
on column sums of A ∈ A) was studied in [148].

Works related to the material of this chapter include (but are not limited
to) Albrecht [1], Coxson [28], Garloff [42], Heindl [49], Herzberger and Bethke
[50], Jahn [60], Moore [89], [90], Nedoma [99], [100], [101], [102], Nickel [107],
Nuding [109], Oettli [111], Rex [140], Rex and Rohn [141], [142], Rump [171],
[172], [173] and Shokin [186], [187].

1Written in Spring 2002.





3

Interval linear programming
J. Rohn

3.1 Linear programming: Duality

We now switch to optimization problems. Given A ∈ Rm×n, b ∈ Rm and
c ∈ Rn, the problem

minimize cT x (3.1)

subject to (s.t.)
Ax = b, x ≥ 0 (3.2)

is called a linear programming problem, or simply a linear program. We write
the problem (3.1), (3.2) briefly as

Min{cT x | Ax = b, x ≥ 0} (3.3)

(notice the use of the upper case in “Min” to denote a problem in contrast to
“min” which denotes minimum when applicable). A vector x satisfying (3.2)
is called a feasible solution of (3.3). A problem (3.3) having a feasible solution
is said to be feasible, and infeasible in the opposite case. Hence, the problem
(3.3) is feasible if and only if the system Ax = b is feasible in the terminology
of Section 2.4.

For a given linear program (3.3) we introduce the value

f(A, b, c) = inf{cT x | Ax = b, x ≥ 0} (3.4)

and we call it the optimal value of (3.3).1 The optimal value can be computed
by any linear programming technique, such as, e.g., the simplex method by
Dantzig [31], or the polynomial-time algorithms by Khachiyan [71], Karmarkar
[67] and others (see Padberg [115]). Exactly one of the following three cases
may occur.

1In linear programming only the finite value of f(A, b, c) is accepted as the opti-
mal value; we use this formulation for the sake of utmost generality of later results.
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(a) If f(A, b, c) is finite, then, as proved in part (a) of the proof of Theorem
3.1 below, the infimum in (3.4) is attained as minimum, so that there exists a
feasible solution x∗ of (3.3) satisfying f(A, b, c) = cT x∗. Such an x∗ is called
an optimal solution of (3.3). In this case we say that the problem (3.3) has an
optimal solution.

(b) If f(A, b, c) = −∞, then the set of feasible solutions of (3.3) contains a
half-line along which the value of cT x tends to −∞ (see part (b) of the proof
of Theorem 3.1); in this case we call the problem (3.3) unbounded.

(c) If f(A, b, c) = ∞, then the set of feasible solutions of (3.3) is empty;
hence the problem (3.3) is infeasible.

Given a problem (3.3) (called “primal” in this context), we can formulate
its dual problem as

maximize bT p (3.5)

s.t.
AT p ≤ c, (3.6)

or briefly
Max{bT p | AT p ≤ c} (3.7)

(notice that the nonnegativity constraint is missing in (3.6)). The dual prob-
lem is called solvable if the system AT p ≤ c is solvable,2 and unsolvable in the
opposite case. In analogy with the primal problem, we introduce for the dual
problem the value

g(A, b, c) = sup{bT p | AT p ≤ c}.
A solution p∗ of AT p ≤ c is called an optimal solution of (3.7) if g(A, b, c) =
bT p∗; if g(A, b, c) = −∞, then the problem (3.7) is unsolvable, and if
g(A, b, c) = ∞, then it is called unbounded. The primal and the dual problem
are connected by the following important result whose proof is included here
for the sake of completeness.

Theorem 3.1 (Duality theorem). If f(A, b, c) < ∞ or g(A, b, c) > −∞,
then

f(A, b, c) = g(A, b, c). (3.8)

Comment. The formal equality (3.8) covers three qualitative issues: (i) if one of
the problems (3.3), (3.7) has an optimal solution, then so does the second one
and the optimal values of both problems are equal; (ii) if the primal problem
(3.3) is unbounded, then the dual problem (3.7) is unsolvable; (iii) if the dual
problem (3.7) is unbounded, then the primal problem (3.3) is infeasible. If the
assumptions of the theorem are not met, then (3.3) is infeasible and (3.7) is
unsolvable, in which case nothing more can be said.

2At this point we must depart from traditional linear programming terminology
where (3.7) is called feasible if AT p ≤ c has a solution; but for us feasibility means
nonnegative solvability, so that we cannot use this term here and we must stick to
terminology introduced in Section 2.4.
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Proof. Three possibilities may occur under our assumptions: (a) f(A, b, c) <
∞ and g(A, b, c) > −∞, (b) f(A, b, c) < ∞ and g(A, b, c) = −∞, and (c)
f(A, b, c) = ∞ and g(A, b, c) > −∞.

(a) Let f(A, b, c) < ∞ and g(A, b, c) > −∞. We first prove that the system

Ax = b, x ≥ 0, (3.9)

AT p ≤ c, (3.10)

cT x ≤ bT p (3.11)

has a solution. Introducing artificial variables, we can write it in the form




A 0 0 0 0
0 AT −AT I 0
cT −bT bT 0 1







x
p1

p2

p3

ξ




=




b
c
0


 , (3.12)

where all the variables are nonnegative. Now we can apply the Farkas theorem
which says that (3.12) has a nonnegative solution if and only if for each t1, t2
and τ ,




AT 0 c
0 A −b
0 −A b
0 I 0
0 0 1







t1
t2
τ


 ≥ 0 implies




b
c
0




T 


t1
t2
τ


 ≥ 0, (3.13)

which means that
AT t1 + τc ≥ 0, (3.14)

At2 = τb, (3.15)

t2 ≥ 0, τ ≥ 0 (3.16)

should imply
bT t1 + cT t2 ≥ 0. (3.17)

To prove the last statement, in view of the nonnegativity of τ we can consider
two cases. If τ > 0, then we have b = 1

τ At2; hence

bT t1 + cT t2 = 1
τ tT2 AT t1 + cT t2 = 1

τ tT2 (AT t1 + τc) ≥ 0

because of (3.14), (3.16), which is (3.17). If τ = 0, then (3.14)–(3.16) turn
into

AT t1 ≥ 0, (3.18)

At2 = 0, (3.19)

t2 ≥ 0. (3.20)
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Since f(A, b, c) < ∞, the system Ax = b is feasible and (3.18) by the Farkas
theorem implies bT t1 ≥ 0; since g(A, b, c) > −∞, the system AT p ≤ c is
solvable and (3.19), (3.20) by Theorem 2.6 imply cT t2 ≥ 0. Hence (3.17)
again holds. In this way we have proved the implication (3.13), which in turn
guarantees existence of a solution x∗, p∗ of the system (3.9)–(3.11). From
(3.9), (3.10) we obtain

cT x∗ = x∗T c ≥ x∗T AT p∗ = (Ax∗)T p∗ = bT p∗,

which together with (3.11) gives cT x∗ = bT p∗. Summing up, we have proved
that there exist x∗, p∗ satisfying

Ax∗ = b, x∗ ≥ 0,

AT p∗ ≤ c,

cT x∗ = bT p∗.

Now, for each feasible solution x of the primal problem we have

cT x = xT c ≥ xT AT p∗ = (Ax)T p∗ = bT p∗ = cT x∗,

which means that

cT x∗ = min{cT x | Ax = b, x ≥ 0} = f(A, b, c),

and similarly for each solution p of the system of constraints AT p ≤ c of the
dual problem we have

bT p = pT b = pT Ax∗ = (AT p)T x∗ ≤ cT x∗ = bT p∗,

which gives that

bT p∗ = max{bT p | AT p ≤ c} = g(A, b, c),

and finally
f(A, b, c) = cT x∗ = bT p∗ = g(A, b, c),

which is (3.8).
(b) Let f(A, b, c) < ∞ and g(A, b, c) = −∞. Then the primal problem has

a feasible solution, say x1, and the dual problem is unsolvable, so that the
system AT p ≤ c has no solution; hence according to Theorem 2.6 there exists
an x0 satisfying Ax0 = 0, x0 ≥ 0 and cT x0 < 0. Then for each α ∈ R, α ≥ 0
we have A(x1 +αx0) = Ax1 = b and x1 +αx0 ≥ 0; hence x1 +αx0 is a feasible
solution of the primal problem for each α ≥ 0 and

lim
α→∞

cT (x1 + αx0) = lim
α→∞

(cT x1 + αcT x0) = −∞

because of cT x0 < 0; hence
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f(A, b, c) = inf{cT x | Ax = b, x ≥ 0} = −∞ = g(A, b, c),

which is (3.8).
(c) Let f(A, b, c) = ∞ and g(A, b, c) > −∞. Then the primal problem is

infeasible and the system of constraints AT p ≤ c of the dual problem has a
solution, say p1. Since the system Ax = b is not feasible, according to the
Farkas theorem there exists a p0 satisfying AT p0 ≥ 0 and bT p0 < 0. Then for
each α ∈ R, α ≥ 0 we have AT (p1 − αp0) ≤ AT p1 ≤ c and

lim
α→∞

bT (p1 − αp0) = lim
α→∞

(bT p1 − αbT p0) = ∞

because of bT p0 < 0; hence

g(A, b, c) = sup{bT p | AT p ≤ c} = ∞ = f(A, b, c),

which is (3.8).
We have proved that in all three cases (a), (b), (c) the equality (3.8) holds.

This concludes the proof. ut

3.2 Interval linear programming problem

Let A = [A, A] = [Ac −∆,Ac + ∆] be an m× n interval matrix and let b =
[b, b] = [bc− δ, bc + δ] and c = [c, c] = [cc− γ, cc + γ] be an m-dimensional and
n-dimensional interval vector, respectively. The family of linear programming
problems

Min{cT x | Ax = b, x ≥ 0} (3.21)

with data satisfying
A ∈ A, b ∈ b, c ∈ c (3.22)

is called an interval linear programming problem. Since for each linear pro-
gramming problem (3.21) we have a uniquely determined optimal value
f(A, b, c), it is natural to consider its range over the data (3.22) by intro-
ducing the values

f(A,b, c) = inf{f(A, b, c) | A ∈ A, b ∈ b, c ∈ c},

f(A,b, c) = sup{f(A, b, c) | A ∈ A, b ∈ b, c ∈ c}.
The interval [f(A,b, c), f(A,b, c)], whose bounds may be infinite, is called
the range of the optimal value of the interval linear programming problem
(3.21), (3.22). In the next section we derive formulae for computing the range
that are the cornerstone of our approach.
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3.3 Range of the optimal value

The following theorem gives explicit formulae for computing the bounds of
the range. Notice that the result holds without any additional assumptions.

Theorem 3.2. We have

f(A,b, c) = inf{cT x | Ax ≤ b, Ax ≥ b, x ≥ 0}, (3.23)

f(A,b, c) = sup
y∈Ym

f(Aye, by, c). (3.24)

Comment. Hence, solving only one linear programming problem is needed to
evaluate f(A,b, c), whereas up to 2m of them are to be solved to compute
f(A,b, c) according to (3.24). Although the set Ym is finite, we use “sup”
here because some of the values may be infinite.

Proof. For given A, b, c denote f := f(A,b, c), f := f(A,b, c).
(a) To prove (3.23), put

ϕ = inf{cT x | Ax ≤ b, Ax ≥ b, x ≥ 0}.

(a.1) First we prove f ≤ ϕ. This is obvious if ϕ = ∞. If ϕ < ∞, then the
linear system

Ax ≤ b, Ax ≥ b (3.25)

is feasible. Let x be a nonnegative solution of it. Then in view of Theorem
2.13, x is a nonnegative weak solution of Ax = b; hence there exist A ∈ A,
b ∈ b such that Ax = b holds. Then f ≤ f(A, b, c) ≤ cT x, and since x is an
arbitrary nonnegative solution of (3.25), we obtain f ≤ ϕ.

(a.2) Second we prove ϕ ≤ f by showing that

ϕ ≤ f(A, b, c) (3.26)

holds for each A ∈ A, b ∈ b, c ∈ c. This is obvious if f(A, b, c) = ∞. If
f(A, b, c) < ∞, then the linear programming problem

Min{cT x | Ax = b, x ≥ 0} (3.27)

is feasible. Let x be any feasible solution of it. Then, according to Theorem
2.13, x is also a nonnegative solution of the system (3.25); hence ϕ ≤ cT x ≤
cT x, which implies (3.26). Thus (3.26) holds for each A ∈ A, b ∈ b, c ∈ c,
which means that ϕ ≤ f . Hence, from (a.1) and (a.2) we obtain f = ϕ, which
is (3.23).

(b) To prove (3.24), put

ϕ = sup
y∈Ym

f(Aye, by, c).
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(b.1) Since Aye ∈ A, by ∈ b for each y ∈ Ym and c ∈ c, we immediately
obtain that

ϕ ≤ sup{f(A, b, c) | A ∈ A, b ∈ b, c ∈ c} = f.

(b.2) Finally we prove f ≤ ϕ by showing that

f(A, b, c) ≤ ϕ (3.28)

holds for each A ∈ A, b ∈ b, c ∈ c. This is obvious if f(A, b, c) = −∞.
If f(A, b, c) = ∞, then the linear programming problem (3.27) is infeasible;
hence the system Ax = b is not strongly feasible, which in view of Theorem
2.17 means that a system Ayex = by is not feasible for some y ∈ Ym, so
that f(Aye, by, c) = ∞; hence ϕ = ∞ and (3.28) holds. Thus we are left with
the case of f(A, b, c) finite. Then by the duality theorem the dual problem to
(3.27)

Max{bT p | AT p ≤ c}
has an optimal solution p∗ and f(A, b, c) = bT p∗ holds. Put y = sgn p∗; then
y ∈ Ym and |p∗| = Typ∗. Consider the linear programming problem

Min{cT x | Ayex = by, x ≥ 0} (3.29)

and its dual problem
Max{bT

y p | AT
yep ≤ c}. (3.30)

The dual problem (3.30) is solvable because p∗ solves AT
yep ≤ c: in fact, since

|(A−Ac)T p∗| ≤ ∆T |p∗|, we have

AT
yep

∗ = (Ac − Ty∆)T p∗ = (AT
c −∆T Ty)p∗ = AT

c p∗ −∆T |p∗|
≤ (Ac + A−Ac)T p∗ = AT p∗ ≤ c ≤ c.

Now, if the primal problem (3.29) is infeasible, then f(Aye, by, c) = ∞; hence
ϕ = ∞ and (3.28) holds. If it is feasible, then f(A, b, c) < ∞ and g(A, b, c) >
−∞, and by the duality theorem the dual problem (3.30) has an optimal
solution p̂ satisfying f(Aye, by, c) = bT

y p̂; hence

f(A, b, c) = bT p∗ = (bc + b− bc)T p∗ ≤ bT
c p∗ + δT |p∗| = (bT

c + δT Ty)p∗

= (bc + Tyδ)T p∗ = bT
y p∗ ≤ bT

y p̂ = f(Aye, by, c) ≤ ϕ,

which is (3.28). This proves that (3.28) holds for each A ∈ A, b ∈ b, c ∈ c,
implying f ≤ ϕ. Hence, (b.1) and (b.2) together give f = ϕ, which proves
(3.24). This completes the proof. ut

In Section 2.10 we presented an algorithm for checking feasibility of the
systems

Ayex = by

for all y ∈ Ym. Since we are now facing a very close problem of solving
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Min{cT x | Ayex = by, x ≥ 0}

for all y ∈ Ym, we can adapt the previous algorithm for the current purpose.
Let us reorder the equations of Ax = b so that those containing at least
one nondegenerate interval coefficient go first. Let q be the number of them,
so that after reordering, the last m − q equations consist only of real (i.e.,
noninterval) data. Then the following algorithm, where z ∈ Rq and y ∈ Rq,
does the job.

compute f by (3.23);
z := 0; y := e;
A := A; b := b; f := f(A, b, c);
while z 6= e & f < ∞

k := min{i | zi = 0};
for i := 1 to k − 1, zi := 0; end
zk := 1; yk := −yk;
if yk = 1 then Ak· := Ak·; bk := bk; else Ak· := Ak·; bk := bk; end
f := max{f, f(A, b, c)};

end
% [f, f ] is the range of the optimal value.

Example 3.3. Let
cc = (−1,−2, 3, 4)T ,

Ac =
(

5 6 −7 8
10 −11 12 13

)
, bc =

(−9
14

)

(the pattern of the absolute values of coefficients is obvious). For each ε > 0
consider the interval data

Aε = [Ac− εeeT , Ac + εeeT ], bε = [bc− εe, bc + εe], cε = [cc− εe, cc + εe].

Using the algorithm, we have computed f(Aε,bε, cε) and f(Aε,bε, cε) for
ε := 0.00, 0.01, . . . , 0.24 with MATLAB 6.0, where we employed the procedure
QP.M for evaluating f(A, b, c). The results, rounded to four decimal places,
are summed up in the following table (the last column brings the values of
f(Aε,bε, cε)− f(Aε,bε, cε), denoted for short as f − f).
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ε f(Aε,bε, cε) f(Aε,bε, cε) f − f

0.00 5.0000 5.0000 0.0000
0.01 4.8085 5.2228 0.4143
0.02 4.6424 5.4847 0.8423
0.03 4.4971 5.7965 1.2994
0.04 4.3692 6.1735 1.8043
0.05 4.2559 6.6375 2.3816
0.06 4.1550 7.2217 3.0667
0.07 4.0647 7.9784 3.9137
0.08 3.9836 8.9955 5.0119
0.09 3.9104 10.4327 6.5223
0.10 3.8442 12.6143 8.7701
0.11 3.7841 16.3131 12.5290
0.12 3.7294 23.9388 20.2094
0.13 3.6796 48.7450 45.0654
0.14 3.6340 ∞ ∞
0.15 3.5923 ∞ ∞
0.16 3.5541 ∞ ∞
0.17 3.5189 ∞ ∞
0.18 3.4866 ∞ ∞
0.19 3.4569 ∞ ∞
0.20 3.4295 ∞ ∞
0.21 3.4043 ∞ ∞
0.22 3.3810 ∞ ∞
0.23 3.3396 ∞ ∞
0.24 −∞ ∞ ∞

As we can see, all the linear programming problems in the family have optimal
solutions for ε up to 0.13, infeasible problems appear from ε = 0.14 on and the
family contains infeasible and unbounded problems (as well as those having
optimal solutions) from ε = 0.24 on.

In the next two sections we study separately properties of the two bounds.

3.4 The lower bound

In this section we derive some consequences of the formula for the lower bound

f(A,b, c) = inf{cT x | Ax ≤ b, Ax ≥ b, x ≥ 0}
in Theorem 3.2. If f(A,b, c) = ∞, then each problem in the family is infea-
sible. Let us first consider the case f(A,b, c) = −∞.

Theorem 3.4. If f(A,b, c) = −∞, then there exists an A0 ∈ A such that

f(A0, b, c) ∈ {−∞,∞} (3.31)

holds for each b ∈ b.



88 3 Interval linear programming

Comment. In other words, none of the problems

Min{cT x | A0x = b, x ≥ 0}, b ∈ b

has an optimal solution.

Proof. If f(A,b, c) = −∞, then by Theorem 3.2 the linear programming
problem

Min{cT x | Ax ≤ b, Ax ≥ b, x ≥ 0}
is unbounded and by the duality theorem its dual problem

Max{bT p1 − b
T
p2 | AT

p1 −AT p2 ≤ c, p1 ≥ 0, p2 ≥ 0}
is infeasible, hence the system

A
T
p1 −AT p2 ≤ c

is infeasible and Theorem 2.7 assures existence of an x0 that satisfies

Ax0 ≤ 0, Ax0 ≥ 0, x0 ≥ 0, cT x0 < 0.

Then Theorem 2.13 gives that x0 is a nonnegative weak solution of the system
[A, A]x = [0, 0]; hence there exists a matrix A0 ∈ A such that

A0x0 = 0, x0 ≥ 0, cT x0 < 0. (3.32)

Now consider the problem

Min{cT x | A0x = b, x ≥ 0} (3.33)

for a b ∈ b. If it is infeasible, then f(A0, b, c) = ∞. If it has a feasible solution
x1, then from (3.32) it follows that x1 +αx0 is a feasible solution of (3.33) for
each α ≥ 0 and

lim
α→∞

cT (x1 + αx0) = lim
α→∞

(cT x1 + αcT x0) = −∞

due to (3.32); hence the problem (3.33) is unbounded and f(A0, b, c) = −∞.
Thus for each b ∈ b we have (3.31), which concludes the proof. ut

However, in the case of f(A,b, c) = −∞ the family need not contain an
unbounded problem.

Example 3.5. Let

A = [0, 1], b = [1, 1], c = [−1,−1]

(i.e., m = n = 1). Then each problem in the family is of the form

Min{−x | ax = 1, x ≥ 0},
it is infeasible for a = 0 and its optimal value is equal to −1/a for a ∈ (0, 1];
hence f(A,b, c) = −∞ but no problem in the family is unbounded.
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If the lower bound f(A,b, c) is finite, then it can be expected that it is
attained as the optimal value of some problem in the family. The following
theorem shows a constructive way to find the data of such a problem.

Theorem 3.6. Let f(A,b, c) be finite and let x∗ be an optimal solution of
the problem

Min{cT x | Ax ≤ b, Ax ≥ b, x ≥ 0}. (3.34)

Then
f(A,b, c) = f(Ac − Ty∆, bc + Tyδ, c), (3.35)

where

yi =
{ (Acx∗−bc)i

(∆x∗+δ)i
if (∆x∗ + δ)i > 0,

1 if (∆x∗ + δ)i = 0
(i = 1, . . . , m). (3.36)

Proof. If f(A,b, c) is finite, then according to (3.23) it is equal to the optimal
value of the problem (3.34); hence f(A,b, c) = cT x∗, where x∗ is an arbitrary
optimal solution of (3.34). Hence x∗ satisfies

Ax∗ ≤ b, Ax∗ ≥ b, x∗ ≥ 0,

which can be equivalently written as

|Acx
∗ − bc| ≤ ∆x∗ + δ, x∗ ≥ 0. (3.37)

Now Proposition 2.10 gives that (Ac−Ty∆)x∗ = bc +Tyδ, where y is given by
(3.36). Then |y| ≤ e because of (3.37); hence Ac−Ty∆ ∈ A and bc +Tyδ ∈ b,
and we have

cT x∗ = f(A,b, c) ≤ f(Ac − Ty∆, bc + Tyδ, c) ≤ cT x∗,

which proves (3.35). ut
Notice that the vector y defined by (3.36) satisfies y /∈ Ym in general (this

is why we wrote Ac − Ty∆, bc + Tyδ instead of Aye, by in (3.35) because Aye,
by are defined for y ∈ Ym only; see Section 2.5). But y can be enforced to
belong to Ym under an additional assumption.

Theorem 3.7. Let the problem

Max{bT p1 − b
T
p2 | AT

p1 −AT p2 ≤ c, p1 ≥ 0, p2 ≥ 0} (3.38)

have an optimal solution p∗1, p∗2 satisfying

p∗1 + p∗2 > 0. (3.39)

Then
f(A,b, c) = f(Aye, by, c), (3.40)

where

yi =
{

1 if (p∗2)i > 0,
−1 if (p∗2)i = 0 (i = 1, . . . ,m). (3.41)
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Proof. If the problem (3.38) has an optimal solution p∗1, p∗2, then its primal
problem

Min{cT x | Ax ≤ b, Ax ≥ b, x ≥ 0}
has an optimal solution x∗, f(A,b, c) = cT x∗ holds by Theorem 3.2 and the
complementary slackness conditions of linear programming [31] give

p∗T1 (Ax∗ − b) = p∗T2 (b−Ax∗) = 0.

Since all four vectors p∗1, Ax∗− b, p∗2 and b−Ax∗ are nonnegative, it must be

(p∗1)i(Ax∗ − b)i = (p∗2)i(b−Ax∗)i = 0 (3.42)

for i = 1, . . . ,m. Now, if (p∗2)i > 0, then (3.42) gives (Ax∗)i = bi; if (p∗2)i = 0,
then (p∗1)i > 0 by (3.39) and (3.42) implies (Ax∗)i = bi (i = 1, . . . ,m). Hence
for the vector y defined by (3.41) we have y ∈ Ym and Ayex

∗ = by, where
Aye ∈ A and by ∈ b. Then

f(Aye, by, c) ≤ cT x∗ = f(A,b, c) ≤ f(Aye, by, c),

which gives (3.40). ut
Finally we prove a kind of duality theorem for f(A,b, c) which shows that

this value, if finite, can be reached via optimization over strong solutions of
AT p ≤ c only (see Theorems 2.24 and 2.25).

Theorem 3.8. If f(A,b, c) is finite, then

f(A,b, c) = max{min
b∈b

bT p | AT p ≤ c for each A ∈ A, c ∈ c}. (3.43)

Proof. The proof consists of three steps.
(a) First we prove a technical result: for each p ∈ Rm there holds

A
T
p+ −AT p− = AT

yep, (3.44)

bT p+ − b
T
p− = bT

y p = min
b∈b

bT p, (3.45)

where y = −sgn p. Indeed, since |p| = −Typ, we have

A
T
p+ −AT p− = (Ac + ∆)T p+ − (Ac −∆)T p−

= AT
c (p+ − p−) + ∆T (p+ + p−)

= AT
c p + ∆T |p| = AT

c p−∆T Typ

= (Ac − Ty∆)T p = AT
yep,

which is (3.44), and

bT p = bT (p+ − p−) ≥ bT p+ − b
T
p− = bT

c (p+ − p−)− δT (p+ + p−)
= bT

c p− δT |p| = bT
c p + δT Typ = (bc + Tyδ)T p = bT

y p
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for each b ∈ b; hence

min
b∈b

bT p ≥ bT p+ − b
T
p− = bT

y p ≥ min
b∈b

bT p,

which is (3.45).
(b) If f(A,b, c) is finite, then by Theorem 3.2 and by the duality theorem

we have

f(A,b, c) = max{bT p1 − b
T
p2 | AT

p1 −AT p2 ≤ c, p1 ≥ 0, p2 ≥ 0}. (3.46)

Let p satisfy AT p ≤ c for each A ∈ A, c ∈ c. Then in particular AT
yep ≤ c,

where y = −sgn p, and (3.44) gives A
T
p+ − AT p− = AT

yep ≤ c; hence from
(3.45), (3.46) we obtain

min
b∈b

bT p = bT p+ − b
T
p−

≤ max{bT p1 − b
T
p2 | AT

p1 −AT p2 ≤ c, p1 ≥ 0, p2 ≥ 0}
= f(A,b, c)

and consequently

sup{min
b∈b

bT p | AT p ≤ c for each A ∈ A, c ∈ c} ≤ f(A,b, c). (3.47)

(c) To prove that equality holds in (3.47), take any optimal solution p∗1,
p∗2 of the problem

Max{bT p1 − b
T
p2 | AT

p1 −AT p2 ≤ c, p1 ≥ 0, p2 ≥ 0} (3.48)

and put p̂1 = p∗1− d, p̂2 = p∗2− d, where d = min{p∗1, p∗2}. Then d ≥ 0, p̂1 ≥ 0,
p̂2 ≥ 0 and p̂T

1 p̂2 = 0. We show that p̂1, p̂2 is again an optimal solution of
(3.48). In fact,

A
T
p̂1 −AT p̂2 = A

T
(p∗1 − d)−AT (p∗2 − d) = A

T
p∗1 −AT p∗2 − (A−A)T d

≤ A
T
p∗1 −AT p∗2 ≤ c (3.49)

since (A−A)T d ≥ 0, and

bT p̂1 − b
T
p̂2 = bT (p∗1 − d)− b

T
(p∗2 − d) = bT p∗1 − b

T
p∗2 + (b− b)T d

≥ bT p∗1 − b
T
p∗2

since (b− b)T d ≥ 0; hence it must be

bT p̂1 − b
T
p̂2 = bT p∗1 − b

T
p∗2 (3.50)

and p̂1, p̂2 is an optimal solution of (3.48). Put p = p̂1 − p̂2. Since p̂T
1 p̂2 = 0,

it follows that p+ = p̂1, p− = p̂2; hence for each A ∈ A, c ∈ c we have
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AT p = AT (p̂1 − p̂2) ≤ A
T
p̂1 −AT p̂2 ≤ c ≤ c

by (3.49), and

min
b∈b

bT p = bT p+ − b
T
p− = bT p̂1 − b

T
p̂2 = bT p∗1 − b

T
p∗2 = f(A,b, c)

by (3.45), (3.50) and (3.46); hence the value f(A,b, c) is attained in (3.47)
and (3.43) holds. ut

3.5 The upper bound

The formula
f(A,b, c) = sup

y∈Ym

f(Aye, by, c)

of Theorem 3.2 requires solving up to 2m linear programs. In this section we
show that the upper bound is closely connected with the optimal value of the
nonlinear program

maximize bT
c p + δT |p| (3.51)

s.t.
AT

c p−∆T |p| ≤ c. (3.52)

Let us denote

ϕ(A,b, c) = sup{bT
c p + δT |p| | AT

c p−∆T |p| ≤ c}. (3.53)

We consider separately the cases of ϕ(A,b, c) = −∞, ϕ(A,b, c) = ∞ and
ϕ(A,b, c) finite.

Proposition 3.9. If ϕ(A,b, c) = −∞, then f(A,b, c) ∈ {−∞,∞}.
Proof. Assume that AT p ≤ c has a solution for some A ∈ A, c ∈ c. Then
AT

c p−∆T |p| ≤ AT p ≤ c ≤ c; hence p solves (3.52) (cf. Theorem 2.19), which
implies that ϕ(A,b, c) > −∞, a contradiction. Hence for each A ∈ A, b ∈ b,
c ∈ c the dual problem

Max{bT p | AT p ≤ c}
is unsolvable, which means that each primal problem

Min{cT x | Ax = b, x ≥ 0}

is either infeasible or unbounded, so that f(A, b, c) ∈ {−∞,∞} for each A ∈
A, b ∈ b, c ∈ c and consequently f(A,b, c) ∈ {−∞,∞}. ut
Proposition 3.10. If ϕ(A,b, c) = ∞, then f(A,b, c) = ∞.
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Proof. If ϕ(A,b, c) = sup{bT
c p+δT |p| | AT

c p−∆T |p| ≤ c} = ∞, then for each
positive integer k there exists a pk ∈ Rm such that

AT
c pk −∆T |pk| ≤ c (3.54)

and
bT
c pk + δT |pk| ≥ k. (3.55)

For each k = 1, 2, . . . put yk = sgn pk. Since yk ∈ Ym for each k and Ym

is finite, the sequence {yk}∞k=1 must contain a member that appears there
infinitely many times; i.e., there exists a subsequence {kj}∞j=1 and a y ∈ Ym

such that sgn pkj = y for each j. Then from (3.54), (3.55) we have

AT
yepkj

= AT
c pkj

−∆T Typkj
= AT

c pkj
−∆T |pkj

| ≤ c,

bT
y pkj

= bT
c pkj

+ δT Typkj
= bT

c pkj
+ δT |pkj

| ≥ kj

for j = 1, 2, . . .. Hence the problem

Max{bT
y p | AT

yep ≤ c}

is unbounded and by the duality theorem the respective primal problem

Min{cT x | Ayex = by, x ≥ 0}

is infeasible; hence f(Aye, by, c) = ∞ and consequently f(A,b, c) = ∞. ut
Theorem 3.11. If ϕ(A,b, c) is finite, then

ϕ(A,b, c) = max{f(A, b, c) | f(A, b, c) < ∞, A ∈ A, b ∈ b, c ∈ c}. (3.56)

Proof. (a) First we prove that if f(A, b, c) < ∞ for some A ∈ A, b ∈ b, c ∈ c,
then

f(A, b, c) ≤ ϕ(A,b, c). (3.57)

This is clearly the case if f(A, b, c) = −∞. Thus let f(A, b, c) be finite. Then
f(A, b, c) = bT p∗, where p∗ is an optimal solution of the dual problem

Max{bT p | AT p ≤ c}.

Since
AT

c p∗ −∆T |p∗| ≤ AT p∗ ≤ c ≤ c,

we can see that p∗ solves (3.52); hence

f(A, b, c) = bT p∗ ≤ sup{bT p | AT
c p−∆T |p| ≤ c}

≤ sup{bT
c p + δT |p| | AT

c p−∆T |p| ≤ c} = ϕ(A,b, c).

This proves (3.57) and hence also
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sup{f(A, b, c) | f(A, b, c) < ∞, A ∈ A, b ∈ b, c ∈ c} ≤ ϕ(A,b, c). (3.58)

(b) To prove that the upper bound is attained in (3.58), we start from the
fact that because of (3.53) for each positive integer k there exists a vector pk

satisfying
AT

c pk −∆T |pk| ≤ c,

ϕ(A,b, c)− 1
k < bT

c pk + δT |pk| ≤ ϕ(A,b, c).

Arguing as in the proof of Proposition 3.10, we can assure existence of a
y ∈ Ym satisfying sgn pkj = y for an infinite subsequence {kj}. For each kj we
then have

AT
yepkj

≤ c, (3.59)

ϕ(A,b, c)− 1
kj

< bT
y pkj

≤ ϕ(A,b, c). (3.60)

Now consider the problem

Max{bT
y p | AT

yep ≤ c}.
From (3.53) we have that its optimal value is bounded by ϕ(A,b, c), and
(3.59), (3.60) show that this bound can be approximated with arbitrary accu-
racy by the value of the objective bT

y p over the solution set of AT
yep ≤ c. This

gives, by the duality theorem,

ϕ(A,b, c) = max{bT
y p | AT

yep ≤ c} = f(Aye, by, c);

hence the upper bound in (3.58) is attained and (3.56) holds. ut
Now we arrive at an important consequence that justifies introduction of

the value ϕ(A,b, c).

Theorem 3.12. If f(A,b, c) is finite, then

f(A,b, c) = ϕ(A,b, c). (3.61)

Proof. Since the possibilities ϕ(A,b, c) = −∞ and ϕ(A,b, c) = ∞ are pre-
cluded by Propositions 3.9 and 3.10, ϕ(A,b, c) must be finite, and Theorem
3.11 gives

ϕ(A,b, c) = max{f(A, b, c) | f(A, b, c) < ∞, A ∈ A, b ∈ b, c ∈ c}
= max{f(A, b, c) | A ∈ A, b ∈ b, c ∈ c} = f(A,b, c).

ut
Hence, if f(A,b, c) is finite, then it can be computed as the optimal value

of a single nonlinear programming problem (3.51), (3.52) by nonlinear pro-
gramming techniques. Moreover, the equality (3.61) yields a computable upper
bound on ϕ(A,b, c). Let us recall that if A has linearly independent rows,
then the matrix AAT is nonsingular and there holds

(A+)T = (AT )+ = (AAT )−1A,

where A+ is the Moore–Penrose inverse of A (Theorem 1.62, Corollary 1.63).
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Theorem 3.13. If Ac has linearly independent rows and if

%(∆|A+
c |) < 1 (3.62)

holds, then
ϕ(A,b, c) ≤ cT |A+

c |(I −∆|A+
c |)−1(|bc|+ δ). (3.63)

Proof. If the inequality (3.52) has no solution, then ϕ(A,b, c) = −∞ and
(3.63) holds. Thus let p be a solution to (3.52). Then we have

|p| = |(AcA
T
c )−1AcA

T
c p| = |(A+

c )T AT
c p| ≤ |A+

c |T |AT
c p|

≤ |A+
c |T (∆T |p|+ c) ≤ (∆|A+

c |)T |p|+ |A+
c |T c;

hence
(I −∆|A+

c |)T |p| ≤ |A+
c |T c. (3.64)

Because of (3.62) the matrix I −∆|A+
c | is nonnegatively invertible and pre-

multiplying (3.64) by its transposed inverse gives

|p| ≤ ((I −∆|A+
c |)−1)T |A+

c |T c

and

bT
c p + δT |p| ≤ (|bc|+ δ)T |p| ≤ (|bc|+ δ)T ((I −∆|A+

c |)−1)T |A+
c |T c

= cT |A+
c |(I −∆|A+

c |)−1(|bc|+ δ),

which yields (3.63). ut
Theorem 3.12 can also be reformulated as a counterpart of Theorem 3.8

of Section 3.4.

Theorem 3.14. If f(A,b, c) is finite, then

f(A,b, c) = max{max
b∈b

bT p | AT p ≤ c for some A ∈ A, c ∈ c}. (3.65)

Proof. By Gerlach’s theorem 2.19, p satisfies (3.52) if and only if it is a weak
solution of the system [AT

c − ∆T , AT
c + ∆T ]p ≤ [c, c], i.e., if and only if it

satisfies AT p ≤ c for some A ∈ A, c ∈ c. Next, as in part (a) of the proof of
Theorem 3.8 we can show that

bT
c p + δT |p| = bT

y p = max
b∈b

bT p,

where y = sgn p. The rest follows from Theorem 3.12. ut
Observe the additional “duality” between quantifiers used in formulae

(3.43) and (3.65): the optimization is performed over strong solutions in (3.43)
and over weak solutions in (3.65).

Finally, we have this complexity result.
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Theorem 3.15. Computing the upper bound f(A,b, c) is NP-hard.

Proof. Given a symmetric M -matrix A, consider the interval linear program-
ming problem with Ac = (A,−A), ∆ = (0, 0), bc = 0, δ = e, cc = (eT , eT )T

and γ = 0. Then each primal problem in the family has the form

Min{eT x1 + eT x2 | A(x1 − x2) = b, x1 ≥ 0, x2 ≥ 0}
and its dual problem is of the form

Max{bT p | −e ≤ Ap ≤ e}
(because A is symmetric by assumption). Each dual problem is solvable (p =
0 solves the system) and each solution p of −e ≤ Ap ≤ e satisfies |p| =
|A−1Ap| ≤ |A−1|e; hence |bT p| ≤ eT |A−1|e, so that each dual problem has an
optimal solution and thus also each primal problem has an optimal solution
and the absolute value of its optimal value is bounded by eT |A−1|e. Hence
f(A,b, c) is finite. Then by Theorem 3.12 we have

f(A,b, c) = ϕ(A,b, c) = max{eT |p| | −e ≤ Ap ≤ e};
hence

f(A,b, c) ≥ 1 (3.66)

holds if and only if the system

−e ≤ Ap ≤ e,

eT |p| ≥ 1

has a solution. Since the latter problem is NP-complete by Theorem 2.3,
the problem of deciding whether (3.66) holds is NP-hard; hence computing
f(A,b, c) is NP-hard. ut

Summing up, we arrive at the following conclusion: computing the lower
bound of the range of the optimal value [f(A,b, c), f(A,b, c)] can be per-
formed in polynomial time, whereas computing the upper bound is NP-hard.

3.6 Finite range

In applications we are mostly interested in linear programming problems hav-
ing optimal solutions. Therefore for problems with inexact data the case when
all problems in the family have optimal solutions is of particular interest. Sev-
eral equivalent conditions are listed in the following theorem.

Theorem 3.16. For an interval linear programming problem with data A, b,
c the following assertions are equivalent.



3.6 Finite range 97

(i) For each A ∈ A, b ∈ b, c ∈ c the problem

Min{cT x | Ax = b, x ≥ 0} (3.67)

has an optimal solution.
(ii) Both f(A,b, c) and f(A,b, c) are finite.
(iii) Both f(A,b, c) and ϕ(A,b, c) are finite.
(iv) The system

A
T
p1 −AT p2 ≤ c (3.68)

is feasible and ϕ(A,b, c) is finite.

In each case the range of the optimal value is given by

[f(A,b, c), ϕ(A,b, c)].

Proof. We prove (i)⇒(ii)⇒(iii)⇒(iv)⇒(i).
(i)⇒(ii): Since each problem (3.67) has an optimal solution, it must be

f(A,b, c) < ∞, and the possibility of f(A,b, c) = −∞ is precluded by The-
orem 3.4. Hence f(A,b, c) is finite, and Theorem 3.2 implies that f(A,b, c)
is also finite.

(ii)⇒(iii) follows directly from Theorem 3.12.
(iii)⇒(iv): If f(A,b, c) is finite, then, as shown in part (b) of the proof of

Theorem 3.8, equation (3.46), there holds

f(A,b, c) = max{bT p1 − b
T
p2 | AT

p1 −AT p2 ≤ c, p1 ≥ 0, p2 ≥ 0};
hence the system (3.68) is feasible.

(iv)⇒(i): Let the system (3.68) have a nonnegative solution p1, p2 and let
A ∈ A, b ∈ b, c ∈ c. Then we have

AT (p1 − p2) ≤ A
T
p1 −AT p2 ≤ c ≤ c,

so that the dual problem to (3.67)

Max{bT p | AT p ≤ c} (3.69)

is solvable, and for each solution p of AT p ≤ c there holds

bT p ≤ sup{bT p | AT p ≤ c} ≤ sup{bT
c p + δT |p| | AT

c p−∆T |p| ≤ c}
= ϕ(A,b, c) < ∞;

hence the objective is bounded, so that the problem (3.69) has an optimal
solution and by the duality theorem the problem (3.67) also has an optimal
solution.

Since in all four cases f(A,b, c) is finite, we have f(A,b, c) = ϕ(A,b, c)
by Theorem 3.12 and the range of the optimal value is equal to

[f(A,b, c), ϕ(A,b, c)],

which concludes the proof. ut
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Finally, we have this complexity result.

Theorem 3.17. Checking whether each problem (3.67) with data satisfying
A ∈ A, b ∈ b, c ∈ c has an optimal solution is NP-hard.

Proof. Since a system Ax = b is feasible if and only if the problem

Min{eT x | Ax = b, x ≥ 0}
has an optimal solution, we have that a system of interval linear equations
Ax = b is strongly feasible if and only if each problem (3.67) with data
satisfying A ∈ A, b ∈ b, c ∈ [e, e] has an optimal solution. Since the former
problem is NP-hard by Theorem 2.18, the latter one is NP-hard as well. ut

3.7 An algorithm for computing the range

Summing up Proposition 3.10 and Theorem 3.16, we can formulate the fol-
lowing alternative algorithm for computing the range which, in contrast to
the algorithm of Section 3.3, requires solving two optimization problems only.

compute the optimal value f of the problem
Min{cT x | Ax ≤ b, Ax ≥ b, x ≥ 0};

compute the optimal value ϕ of the problem
Max{bT

c p + δT |p| | AT
c p−∆T |p| ≤ c};

if f is finite or ϕ = ∞
then [f, ϕ] is the range of the optimal value
end

3.8 Notes and references

In the last section we again give some additional notes and references to the
material of the chapter.

Section 3.1. The duality theorem was published by Gale, Kuhn and Tucker
[40] in 1951. The notion of it appeared earlier in an unpublished manuscript by
J. von Neumann [192] which had evolved from his discussions with G. Dantzig
in the autumn of 1947. Our formulation using functions f(A, b, c) and g(A, b, c)
that may attain infinite values is atypical, but it allows us to formulate the
duality theorem as well as two of its consequences in the form of a single
equality (3.8).

Section 3.2. Although sensitivity analysis forms a standard part of linear
programming textbooks, the interval linear programming problem was seem-
ingly pioneered only in 1970 by Machost in his report [85]. His attempt to
perform the simplex algorithm by replacing standard arithmetic operations
by their interval arithmetic counterparts proved, however, to be ineffective;
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moreover, the report contained some errors ([12, p. 8]). The first paper that
handled the interval linear programming problem systematically was due to
Krawczyk [79], followed by the state-of-the-art report by Beeck [12].

Section 3.3. As we have seen, Theorem 3.2 which gives formulae for com-
puting f(A,b, c) and f(A,b, c) forms the cornerstone of our approach. The
formula (3.23) for computing f(A,b, c), which is an easy consequence of the
description of the set of nonnegative weak solutions of Ax = b by the sys-
tem of inequalities (2.46), (2.47), appeared in [145]. The formula (3.24) for
f(A,b, c) was proved in the report [150] (although for finite values only) and
republished by Mráz in his survey paper [96]. The general treatment that
allows for infinite values of f(A,b, c) presented here is new.

Section 3.4. The lower bound f(A,b, c) can be computed as the optimal
value of the problem

Min{cT x | Ax ≤ b, Ax ≥ b, x ≥ 0},

where the number of constraints is doubled compared to the original problem.
But Theorems 3.6 and 3.7 suggest that one might also succeed with solving a
problem of the original size with properly parameterized constraints. Mráz’s
report [91] is dedicated to this question; these and related results are summed
up in his habilitationsschrift [94]. The “duality theorem” 3.8 for f(A,b, c)
was published in [147] using a burdensome notation that obscured its actual
contents (i.e., optimization over strong solutions of AT p ≤ c).

Section 3.5. While computing f(A,b, c) is easy, computation of f(A,b, c)
is much more involved. Some partial results were achieved by Mráz in [92],
[93], [95]. The treatment via ϕ(A,b, c), as presented in this section, is new.
NP-hardness of computing f(A,b, c) was proved in technical report [162].

Section 3.6. The problem of finite range was first addressed in [149]; the
conditions given in this section are easy consequences of our previous results.
The NP-hardness result (Theorem 3.17) was proved in [164]. Based on the
ideas outlined in this section, a “condition number” for linear programs was
proposed in [155].

Section 3.7. The algorithm reduces the complicated formula (3.24) to solv-
ing only one nonlinear program. However, at the time this text was being
written there was only limited computational experience at our disposal.

In our exposition we have left aside the difficult problem of determining (or
bounding) the set of optimal solutions of all the linear programming problems
contained in the family. A general treatment was done by Jansson [61], [62],
[63], and computational aspects were studied by Jansson and Rump [65]. A
special class is formed by so-called basis stable problems (where each problem
in the family has a unique nondegenerate basic optimal solution with the same
basis index set B) that were introduced by Krawczyk [79], characterized in
[161], [150] and further studied by Końıčková [74], [75]. Basis stable problems
are much easier to handle; but checking basis stability was proved to be NP-
hard in an unpublished manuscript by Rohn.
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Related works include Bauch et al. [9], Filipowski [38], Nedoma [98], Ramı́k
[122], [127], Renegar [139], Vatolin [190] and Vera [191].



4

Linear programming with set coefficients
J. Nedoma and J. Ramı́k

4.1 Introduction

In this chapter we investigate a linear programming problem (LP problem)
already formulated in Chapter 3. Here, we consider a family of linear pro-
gramming problems

maximize cT x
subject to Ax ≤ b,

x ≥ 0,
(4.1)

with data satisfying c ∈ c ⊆ Rn, A ∈ A ⊆ Rm×n, b ∈ b ⊆ Rm, where c, A and
b are preselected sets. In comparison to Chapter 3, here c, A and b are not
necessarily (matrix or vector) intervals and the inequalities are considered
in (4.1). The family of LP problems (4.1) is called the linear programming
problem with set coefficients (LPSC problem). In what follows, our interest is
focused on the case where c, A and b are either compact convex sets or, in
particular, convex polytopes. We are interested primarily in the systems of
inequalities in (4.1); later on we also deal with systems of equations. In the
next section we start with the problem of duality of LPSC problems and later
on we propose an algorithm, a generalized simplex method for solving such
problems.

4.2 LP with set coefficients

Let cT = (c1, . . ., cn)T ∈ c ⊆ Rn, A = (aij)
m,n
i,j=1 ∈ A ⊆ Rm×n, bT =

(b1, . . ., bm)T ∈ b ⊆ Rm, where c, A and b are preselected sets. Then LPSC
problem (4.1) can be rewritten as follows,
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maximize c1x1 + · · ·+ cnxn

subject to ai1x1 + · · ·+ ainxn ≤ bi, i ∈M,
xj ≥ 0, j ∈ N .

(4.2)

Here, M = {1, 2, . . . ,m} and N = {1, 2, . . . , n}.
We write the LPSC problem (4.1) briefly also as

Max{cT x|Ax ≤ b, x ≥ 0} (4.3)

with data satisfying c ∈ c ⊆ Rn, A ∈ A ⊆ Rm×n, b ∈ b ⊆ Rm.
Corresponding to Chapter 2, we consider weak and strong feasibility of

LPSC problem (4.1); moreover, we introduce a new concept: strict feasibility
of the LPSC problem.

Let m be a positive integer and U,V be subsets of Rm. Define the following
“inequality” relations,

U ≤ 1V if ∀ u ∈ U, ∀ v ∈ V : u ≤ u,

U ≤ 2V if ∃ u ∈ U, ∃ v ∈ V : u ≤ v.

For t ∈ {1, 2} we define the following sets,

X≤
t (A,b) = {x ∈ Rn | Ax ≤t b, x ≥ 0}. (4.4)

Here, Ax = {y ∈ Rm|y = Ax,A ∈ A}. The LPSC problem (4.2) is said to be
strictly feasible if

X≤
1 (A,b) 6= ∅.

If
X≤

2 (A,b) 6= ∅,
we say that the LPSC problem (4.2) is weakly feasible. Moreover, we say that
the LPSC problem (4.2) is strongly feasible if for each A ∈ A and each b ∈ b
there exists x ∈ Rn, x ≥ 0, such that Ax ≤ b.

In other words, given A ⊆ Rm×n, b ⊆ Rm an LPSC problem (4.2) is
strictly feasible if there exists a vector x ∈ Rn, x ≥ 0, such that Ax ≤ b
for all A ∈ A and all b ∈ b. On the other hand, an LPSC problem (4.2) is
weakly feasible if there exists a vector x ∈ Rn, x ≥ 0, and there exist some
data A ∈ A and b ∈ b such that Ax ≤ b. An LPSC problem (4.2) is strongly
feasible if for each A ∈ A and each b ∈ b there exists a vector x ∈ Rn, x ≥ 0,
such that Ax ≤ b.

4.2.1 Strict, weak and strong feasibility

In this subsection, sufficient conditions for strong feasibility of the LPSC prob-
lem are derived. We show that in the special case of the interval LP problem
strict feasibility and strong feasibility are equivalent.
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By Rm
+ we denote the usual nonnegative cone (orthant) in Rm. Let U,V

be subsets of Rm. By Max U , Min U, resp, Max V, Min V, we denote the
corresponding sets of maximal and minimal elements of U and V, resp. (with
respect to the usual ordering ≤ in Rm).

We also use the following notation

MinU + Rm
+ = {u|u ∈ Rm, u = u− + u+, u− ∈ MinU, u+ ∈ Rm

+},
and similarly

MaxU + Rm
+ = {u|u ∈ Rm, u = u− + u+, u− ∈ MaxU, u+ ∈ Rm

+}.

The following property is clear. If

U ⊆ (MinU + Rm
+ ) ∩ (MaxU− Rm

+ ), (4.5)

V ⊆ (Min V + Rm
+ ) ∩ (Max V − Rm

+ ),

then

U ≤ 1V if and only if ∀ x ∈ Max U, ∀ y ∈ Min V : x ≤ y,

U ≤ 2V if and only if ∃ x ∈ Min U, ∃ y ∈ Max V : x ≤ y.

Consider now the following LPSC problem

maximize cT x
subject to Ax ≤ b,

x ≥ 0,
(4.6)

with data satisfying A ∈ Max A ⊆ Rm×n, b ∈ Min b ⊆ Rm.

Proposition 4.1. If the following conditions hold

A ⊆ (Min A + Rm×n
+ ) ∩ (Max A− Rm×n

+ ), (4.7)

b ⊆ (Min b + Rm
+ ) ∩ (Max b− Rm

+ ), (4.8)

then

(i) X≤
1 (A,b ) = {x ∈ Rn | ∀ A ∈ Max A, ∀ b ∈ Min b : Ax ≤ b, x ≥ 0}.

(ii) X≤
2 (A,b) = {x ∈ Rn | ∃A ∈ Min A,∃b ∈ Max b : Ax ≤ b, x ≥ 0}.

(iii) Strong feasibility of problem (4.6) is equivalent to strong feasibility of
(4.1).

Proof. (i) Let R1 = {x ∈ Rn | ∀ A ∈ Max A, ∀ b ∈ Min b : Ax ≤ b, x ≥ 0}.
It is evident that X≤

1 (A,b) ⊆ R1. To prove the opposite inclusion, suppose x
∈ R1, and take arbitrary A ∈ A, b ∈ b. By (4.7), (4.8) there are A′ ∈ Max A,
b′ ∈ Min b, with A ≤ A′, b′ ≤ b. As x ∈ R1, we have A′x ≤ b′; consequently,
Ax ≤ A′x ≤ b′ ≤ b, which means that x ∈ X≤

1 (A,b).
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(ii) Set R2 = {x ∈ Rn|∃A ∈ Min A, ∃b ∈ Max b : Ax ≤ b, x ≥ 0}.
Apparently, R2 ⊆ X≤

2 (A,b). In order to prove the opposite inclusion, suppose
that x ∈ X≤

2 (A,b); i.e., there exist A ∈ A, b ∈ b with Ax ≤ b . By (4.7),
(4.8) there are A′ ∈ Min A, b′ ∈ Max b, with A′ ≤ A, b ≤ b′, which implies
A′x ≤ Ax ≤ b ≤ b′; i.e., x ∈ R2.

(iii) 1. Apparently, if (4.1) is strongly feasible, then (4.6) is strongly
feasible, too. 2. Suppose that (4.6) is strongly feasible. Choose arbitrarily
A ∈ A, b ∈ b; then by (4.7) and (4.8) there exist A′ ∈ Max A , b′ ∈ Min
b, such that A ≤ A′, b′ ≤ b. As (4.6) is strongly feasible, there exists
x′ ≥ 0 with A′x′ ≤ b′. Thus, we obtain the following chain of consequences
Ax′ ≤ A′x′ ≤ b′ ≤ b, which means that x′ is a nonnegative solution of (4.1);
i.e., the LPSC problem (4.1) is strongly feasible. ut

Let A be a matrix interval and b be a vector interval; i.e.,

A = {A ∈ Rm×n | A ≤ A ≤ Ā}, (4.9)
b = {b ∈ Rm | b ≤ b ≤ b̄},

where A, Ā, b, b̄ are given lower and upper bounds of the respective inter-
vals. Then clearly, conditions (4.7), (4.8) are satisfied with Min A = A , Max
A = Ā, Min b = b , Max b = b̄. Then Proposition 4.1 can be reformulated as
follows.

X≤
1 (A,b) = {x ∈ Rn|Āx ≤ b, x ≥ 0}, (4.10)

X≤
2 (A,b) = {x ∈ Rn|Ax ≤ b̄, x ≥ 0}. (4.11)

Problem (4.1) is strongly feasible if and only if it is strictly feasible, or, if and
only if

X≤
1 (A,b) 6= ∅. (4.12)

As was noticed in Chapter 3, checking strong feasibility of the LPSC prob-
lem (4.1) is important both from a theoretical and from a practical point of
view. Any strongly feasible problem (4.1) may be solved for any pair of the
data A ∈ A, b ∈ b. In the case of matrix or vector interval parameters A,b,
necessary and sufficient conditions for strong feasibility are relatively simple,
as in (4.12). In a general case, however, the situation is not so simple. Evi-
dently, if problem (4.1) is strictly feasible then it is strongly feasible, but not
vice versa.

4.2.2 Objective function

In the LPSC problem (4.1) the vector coefficient c in objective function z =
cT x is taken from the set c ⊆ Rn. Then we could solve the problem using one
of the following approaches.
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z0(x) = sup{cT x | c ∈ c} (4.13)

called the “optimistic objective function”,

z1(x) = inf{cT x | c ∈ c} (4.14)

called the “pessimistic objective function”, or, a combination of the previous
ones

zs(x) = sz0(x) + (1− s)z1(x) (4.15)

called the “Hurwitz objective function” where s ∈ [0, 1] is a “parameter of
optimism”.

By a combination of objective function zs(x), s ∈ [0, 1], with different types
of feasible solution sets X≤

t (A,b), t = 1, 2, we obtain various optimization
problems:

(Ps,t)
maximize zs(x),
subject to x ∈ X≤

t (A,b).
(4.16)

The above problems have been dealt with by numerous authors; e.g., prob-
lem (P0,2) was formulated originally in [31], problem (P1,1) was analyzed by
[188], [189] and some of the other problems were investigated in [119], [123],
[98], and others.

4.3 Duality

In this section, we deal with the problem of duality in LPSC; see also [189].
Let us start with the definitions of primal LPSC problem (P) and dual LPSC
problem (D). Let c ⊆ Rn, A ⊆ Rm×n, b ⊆ Rm be nonempty sets.

The primal LPSC problem (P) is a family of LP problems

maximize cT x,
subject to Ax ≤ b,

x ≥ 0,
(4.17)

with coefficients satisfying c ∈ c, A ∈ A, b ∈ b.
The dual LPSC problem (D) is a family of LP problems

minimize bT y,
subject to AT y ≥ c,

y ≥ 0,
(4.18)

with coefficients satisfying c ∈ c, A ∈ A, b ∈ b.
As the pair of problems (P), (D) is not the usual primal–dual pair of LP

problems, it is necessary to specify how duality will be understood, particu-
larly, what are the solutions of (P) and (D).
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We define the set of feasible solutions of primal LPSC problem (P) as
X≤

2 (A,b), originally defined by (4.4).
Here, for the sake of simplicity, we omit the subscript 2; then we have

X≤(A,b) = {x ∈ Rn| x ≥ 0, ∃ A ∈ A,∃ b ∈ b : Ax ≤ b}. (4.19)

The set of feasible solutions of the dual LPSC problem (D), denoted by
Y ≥(A, c), is defined as follows.

Y ≥(A, c) = {y ∈ Rm| y ≥ 0, ∀ A ∈ A, ∀ c ∈ c : AT y ≥ c}. (4.20)

Now, the optimal value of the primal LPSC problem (P), denoted by
f(A,b, c), is defined as

f(A,b, c) = sup{cT x | x ∈ X≤(A,b) , c ∈ c}, (4.21)

and the optimal value of the dual LPSC problem (D), denoted by g(A,b, c),
is defined as

g(A,b, c) = inf{bT y | y ∈ Y ≥(A, c) , b ∈ b}. (4.22)

If we have

c∗ ∈ c, x∗ ∈ X≤(A,b) and c∗T x∗ = f(A,b, c),

then x∗ is said to be an optimal solution of the primal LPSC problem (P).
If we have

b∗ ∈ b, y∗ ∈ Y ≥(A, c) and b∗T y∗ = g(A,b, c),

then y∗ is called an optimal solution of the dual LPSC problem (D).
In the next subsections, we investigate relations between problems (P) and

(D) and derive weak and strong duality results.

4.3.1 Weak duality

We begin with the simpler version of the weak duality theorem for the case
that b is a singleton.

Theorem 4.2. Let b = {b}; i.e., b is a singleton in Rm. Then

f(A, {b}, c) ≤ g(A, {b}, c). (4.23)

If there exist c∗ ∈ c, x∗ ∈ X≤(A, {b}), y∗ ∈ Y ≥(A, c) such that

c∗T x∗ = bT y∗, (4.24)

then x∗ is an optimal solution of the primal LPSC problem (P) and y∗ is an
optimal solution of the dual LPSC problem (D).
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Proof. 1. If X≤(A, {b}) = ∅, or Y ≥(A, c) = ∅, then (4.23) trivially holds.
2. Let x ∈ X≤(A, {b}), and choose arbitrarily y ∈ Y ≥(A, c). Then there

is A ∈ A, such that Ax ≤ b . For all c ∈ c we have yT A ≥ cT ; i.e., yT Ax ≥
cT x. Moreover, yT Ax ≤ bT y , consequently, cT x ≤ bT y for all c ∈ c, which
means

f(A, {b}, c) ≤ bT y.

Since y was arbitrary, we obtain the required result (4.23).
3. Apparently,

c∗T x∗ ≤ f(A, {b}, c) ≤ g(A, {b}, c) ≤ bT y∗,

and by (4.24) we obtain equations in the above chain of inequalities. ut
Corollary 4.3. If b consists of more than one element, then

f(A,b, c) ≤ sup{g(A, {b}, c); b ∈ b}, (4.25)

inf{f(A, {b}, c); b ∈ b} ≤ g(A,b, c). (4.26)

Proof. For each b ∈ b we obtain by (4.23) f(A, {b}, c) ≤ g(A, {b}, c). Apply-
ing supremum on both sides, we obtain (4.25); doing infimum, we get (4.26).

ut
In general, the strict inequality “ < ” in (4.24) can occur, as the following

example shows.
Let A be a “matrix segment”

A =
{

Aλ| Aλ =
(

1 −λ
λ 1

)
, 0 ≤ λ ≤ 1

}
,

c = {c} = {(2, 3)T }, b = {b} = {(1, 1)T }. The following statements are clearly
true.

(i) A is regular, convex and compact in R2×2.
(ii) f(A, {b}, {c}) = 5 < 7 = g(A, {b}, {c}).
Here, the regularity of A means that each matrix A ∈ A is nonsingular in
the usual sense. Notice, that A is a square 2 × 2 matrix, and determinant
det(A) = 1 + λ2 for all A ∈ A; hence A is regular.

The above example shows that sufficient conditions which eventually se-
cure strong duality, i.e., equality in (4.24), will not be very simple. For in-
stance, convexity, compactness and regularity of the set A is not sufficient for
strong duality. In the next subsection we look for such sufficient (eventually,
necessary and sufficient) conditions.
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4.3.2 Strong duality

Before formulating the main result, some modifications of the original problem
are useful.

Modification 1.
Using the reformulation of the system of constraints (4.1) by shifting the

right- hand side to the left side and incorporating the set b into the new left
side, we obtain the new right side which is a fixed vector; i.e.,

Ax− bxn+1 ≤ 0,
xn+1 ≤ 1,

−xn+1 ≤ −1,
xj ≥ 0, j = 1, 2, . . . , n, n + 1.

(4.27)

We obtain a new system of constraints (4.1) with b = {b} = {(0, 1,−1)T }.

Modification 2.
From now on, we consider the LPSC problem (4.1), in the standard form;

i.e., we consider the LPSC problem with equalities,

Max{cT x|Ax = b, x ≥ 0}, (4.28)

with coefficients satisfying c ∈ c, A ∈ A, b = {(0, 1,−1)T }. Transforma-
tion from the canonical form (with inequalities “ ≤ ”) to the standard form
makes no difficulties and requires only additional variables supplemented to
the individual rows on the left side of the constraints (4.1).

The dual couple of LPSC problems may be formulated after the above
modifications as follows.

(P∗)

maximize cT x,
subject to Ax = b,

x ≥ 0,
(4.29)

with coefficients satisfying c ∈ c, A ∈ A.

(D∗)

minimize bT y,
subject to AT y ≥ c, (4.30)

with the coefficients satisfying c ∈ c, A ∈ A.
Similarly to the previous subsection (see (4.19), (4.20)) we define the cor-

responding feasible solution sets for (P∗) and (D∗), respectively:

X=(A, {b}) = {x ∈ Rn | x ≥ 0, ∃A ∈ A : Ax = b}, (4.31)
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Y ≥(A, c) = {y ∈ Rm | ∀A ∈ A, ∀c ∈ c : AT y ≥ c}, (4.32)

According to the above modifications, we can redefine the optimal values
of the dual problems as follows.

f(A, {b}, c) = sup{cT x | x ∈ X=(A, {b}), c ∈ c}, (4.33)

g(A, {b}, c) = inf{bT y | y ∈ Y ≥(A, c)}.
Now, we consider the following assumptions.

Assumption I: m = n; i.e., A ⊆ Rn×n.

Assumption II: A is compact and regular.

Assumption III: A = (A1, . . . ,An), where A1 ⊆ Rm, . . . ,An ⊆ Rm;
i.e., A is “columnwise separable” or, in other words, A∈ A,

A =




a11

a21

...
an1

...

...

...

...

a1n

a2n

...
ann


 , if




a11

a21

...
an1


 ∈ A1, . . . ,




a1n

a2n

...
ann


 ∈ An.

Prior to proving the strong duality theorem, we need the following two
lemmas, the first of which is based on the result of [98].

Lemma 4.4. Let Assumptions I, II, III be satisfied; let c ∈ Rn. Then there
exist y∗ ∈ Y ≥(A, c) and A∗ ∈ A such that

A∗T y∗ = c; (4.34)

i.e.,
A∗ = (A∗1, . . . , A

∗
n) and A∗j ∈ Aj , j = 1, . . . , n.

Moreover,
A∗j

T y∗ = cj , for j = 1, . . . , n. (4.35)

Proof. The proof is carried out by induction on k, where

A = Ak = (A1,A2, . . . ,Ak, {Ak+1}, . . . , {An}), (4.36)

i.e. the first k columns of the set A are variable; the rest of then− k columns
are definite vectors.

1. For k = 0 , we have A = {A} = {A}∗, A is regular and equation (4.34)
or (4.35) has a single solution y∗ ∈ Y ≥(A, c).

2. Assume that the lemma holds for k − 1 ≤ n− 1 and consider

A = Ak = (A1,A2, . . . ,Ak, {Ak+1}, . . . , {An}). (4.37)
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For an arbitrary Ak,0 ∈ Ak there exists y0 ∈ Y ≥(A, {c}) and Aj,0 ∈ Aj ,
j = 1, 2, . . . , k − 1 , satisfying

AT
j,0 y0 = cj , for j = 1, . . . , k, and AT

j y0 = cj , for j = k + 1, . . . , n. (4.38)

Define the sequences Ak,n ∈ Ak, yn ∈ Y ≥(A, c) recursively as follows.
If Ak,n−1 ∈ Ak, then there exist yn−1 ∈ Y ≥(A, c), and Aj,n−1 ∈ Aj ,

j = 1, 2, . . . , k − 1 satisfying

AT
j,n−1yn−1 = cj , for j = 1, . . . , k, and AT

j yn−1 = cj , for j = k + 1, . . . , n.
(4.39)

Then Ak,n−1 ∈ Ak is determined by

AT
k,n−1yn−1 = min{AT

k yn−1| Ak ∈ Ak}. (4.40)

The minimum in (4.40) exists, as Ak is compact. Let Āk be an accumulation
point of the sequence {Ak,n}, without loss of generality suppose that Ak,n

→ Āk , as n →∞, apparently; Āk ∈ Ak. There exists a subsequence of {yn},
yn`

→ ȳ, as ` →∞; ȳ ∈ Y ≥(A, c). Since by (4.39) we have AT
k,n`

yn`
= ck , as

` → ∞, we obtain ĀT
k ȳ = ck . It remains to prove that AT

k ȳ ≥ ck for all Ak

∈ Ak.
For any Ak ∈ Ak, the inequalities

AT
k yi−1 ≥ AT

k,i−1yi−1 = ck, i = 1, 2, . . .

hold according to (4.40) and hence

AT
k ȳ ≥ ĀT

k ȳ = ck.

ut
Lemma 4.5. Let Assumption I and Assumption II be satisfied. Then

X=(A, {b}) = {x ∈ En | x ≥ 0,∃A ∈ A : Ax = b}
is compact.

Proof. Let xn ∈ X=(A, b), i = 1, 2, . . .; then there exist An ∈ A with Anxn

= b. Since An is regular and A is compact, there are subsequences Ank
→ Ā

∈ A, and xnk
→ x̄, x̄ ≥ 0 , for k → ∞, and Āx̄ = b . Hence x̄ ∈ X=(A, b).

ut
Theorem 4.6. (Strong duality theorem)

Let Assumptions I, II, III be satisfied, let c be compact and LPSC problem
(4.29) be strongly feasible. Then

f(A, {b}, c) = g(A, {b}, c); (4.41)

moreover, there exist c∗ ∈ c, x∗ ∈ X=(A, {b}), y∗ ∈ Y ≥(A, {c∗}) such that

c∗T x∗ = bT y∗. (4.42)
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Proof. By Lemma 4.4. there exist c∗ ∈ c and x∗ ∈ X=(A, {b}) such that

c∗T x∗ = Max{cT x | x ∈ X=(A, {b}), c ∈ c} = f(A, {b}, c).

By Lemma 4.4 there exist y∗ ∈ Y ≥(A, {c∗}) and A∗ ∈ A with A∗T y∗ = c∗.
Using strong feasibility we obtain x′ ≥ 0 , with A∗x′ = b. Hence

x′T A∗T y∗ = c∗T x′ = bT y∗, (4.43)

giving (4.42). Generally, we have the following chain of inequalities

c∗T x′ ≤ f(A, {b}, c) ≤ g(A, {b}, c) ≤ bT y∗;

hence by (4.43) we obtain (4.41). ut
Theorem 4.7. Let the assumptions of Lemma 4.4 be satisfied, let c = {c}
and let A∗ = (A∗1 , . . . , A∗n) , A∗j ∈ Aj , j = 1, . . . , n, be from Lemma 4.4.
Then the optimal solution of the LP problem:

Max{cT x | A∗x = b, x ≥ 0} (4.44)

is the optimal solution of the LPSC problem (4.29), i.e., problem (P*).

Proof. Let x∗ be an optimal solution of (4.44), and let y∗ ∈ Y ≥(A, {c}) be
from Lemma 4.4. Then

A∗T y∗ = c;

hence
x∗T A∗T y∗ = cT x∗ = bT y∗,

and consequently, x∗ is an optimal solution of (P*). ut
The last theorem gives a simple criterion of how to find an optimal solution

of LPSC problem (4.29), on condition that the matrix A∗ from Lemma 4.4 is
known. The algorithmic problem now is how to find A∗, or, eventually, y∗ ?
This problem is dealt with in the next section.

4.4 Generalized simplex method

The aim of this section is to derive the generalized simplex method for solving
LPSC problem (4.29); see [98]. In the previous section we have derived a
criterion which is, however, applicable only to problems with a square matrix
in the constraints (4.29). In the next subsection we propose an algorithm that
“works” under Assumptions I, II, III and finds the dual optimal solution.
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4.4.1 Finding the dual optimal solution: Algorithm

select y∗ 6= 0;
repeat

y := y∗;
for j := 1 to n

find a∗ ∈ Aj for which yT a∗ = Min{yT a | a ∈ Aj};
A∗j := a∗;

end
y∗ := (A∗T )−1c;

until y∗ = y
% A∗, y∗ is an optimal solution of (D∗).

Theorem 4.8. On the assumptions of the strong duality theorem, Algorithm
4.4.1 generates a sequence {An} with the following property. If A∗is an accu-
mulation point of {An}, then y∗ = (A∗T )−1c is an optimal solution of dual
problem (4.30), i.e., of (D∗).

Proof. Let A ∈ A; then the construction of the innermost optimization prob-
lem in Algorithm (4.4.1) assures that AT y∗ ≥ A∗T y∗ = c. Then by Theorem
4.6, we get f(A, {b}, {c}) = g(A, {b}, {c}). Hence y∗ is an optimal solution of
dual problem (D∗). ut

Let Aj be polyhedrons and j = 1, . . . , n. Then the algorithm converges in
a finite number of iterations.

Example 4.9. Consider the following LPSC problem,
(P*)

maximize 3x1 + x2,
subject to a1x1 + 2x2 = 3,

a2x1 + x2 = 4,
x1, x2 ≥ 0,

where

A1 =
{
a ∈R2 | a = λ

(
1
2

)
+ (1− λ)

(
2
3

)
, λ ∈ [0, 1]

}
,

A2 =
{(

2
1

)}
;

i.e., A = (A1,A2) ⊆ R2×2. The coefficients in the first column of the matrix

belong to the segment A1, whereas the second column is a fixed vector
(

2
1

)
.

Moreover, b =
(

3
4

)
and c =

(
3
1

)
. It is easy to verify that Assumptions I,

II, III are satisfied. The dual problem can be formulated as follows.
(D*)
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minimize 3y1 + 4y2,
subject to a1y1 + a2y2 ≥ 3,

2y1 + y2 ≥ 1.

Let us solve problem (D*) applying Algorithm 4.4.1.

Set y0 =
(

2
3

)
(i.e., the end point of the segment).

Compute A1, y1, such that

A1T
1 y0 = min{AT

1 y0 | A1 ∈ A1},
which is equivalent to finding

min{2a1 + 3a2|
(

a1

a2

)
= λ

(
1
2

)
+ (1− λ)

(
2
3

)
, λ ∈ [0, 1]}

= min{13− 5λ|λ ∈ [0, 1]}.

This minimum is attained at λ = 1; hence A1
1 =

(
1
2

)

and A1T =
(

1 2
2 1

)
. Then

y1 = (A1T )−1c =

(
− 1

3
2
3

2
3 − 1

3

) (
3
1

)
=

(
− 1

3
5
3

)
.

Let y1 6= y0 and then compute

A2T
1 y0 = min{AT

1 y1 | A1 ∈ A1},
which is equivalent to finding

min{− 1
3a1 + 5

3a2|
(

a1

a2

)
= λ

(
1
2

)
+ (1− λ)

(
2
3

)
, λ ∈ [0, 1]}

= min{43
3 − 13

3 λ|λ ∈ [0, 1]}.

This minimum is also attained at λ = 1; hence A2
1 =

(
1
2

)

and A2T =
(

1 2
2 1

)
. Then

y2 = (A2T )−1c =

(
− 1

3
2
3

2
3 − 1

3

) (
3
1

)
=

(
− 1

3
5
3

)
.

If y2i = y1 then

y∗ = y2 =

(
− 1

3
5
3

)
, A∗ = (A2

1, A
2
2) =

(
1 2
2 1

)
.

A∗, y∗ is an optimal solution of dual problem (D*). Substituting A∗ into (P*)

we easily verify that x∗ =

(
5
3
2
3

)
and f(A, {b}, {c}) = g(A, {b}, {c}) = 17

3 .
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4.4.2 Rectangular matrix

Now, we investigate the LPSC problem (4.29) for the more general case of
the rectangular matrix A of the m×n-type in constraints (4.29); particularly,
we consider m < n. Remember that there is a set A = (A1, . . . ,An) , A
⊆ Rm; the columns Aj of the matrix A can be chosen from the sets Aj ,
j = 1, 2, . . . , n.

Suppose the basis B of columns is given. The set of indices I of the columns
can be divided into basic and nonbasic indices B and N , respectively; i.e.

I = {1, 2, . . . , n} = B ∪N,

where B is the set of basic indices and N denotes nonbasic indices. Then the
original constraints of (4.29),

Ax = b, x ≥ 0,

are equivalent to

ABxB + ANxN = b, xB ≥ 0, xN = 0;

i.e.,
ABxB = b, xB ≥ 0, (4.45)

where AB is a square m×m matrix. System (4.45) has been already investi-
gated in the previous sections.

Another problem is the question of how to find “the best basis.” For this
purpose, in the following algorithm we modify the well-known rules of the
simplex method.
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4.4.3 Finding the best basis: Algorithm

select basis B∗ arbitrarily;
repeat

B := B∗;
by Algorithm 4.4.1 find A∗B such that
y∗B = (A∗TB )−1c;
x∗B = (A∗B)−1b;
qj = (A∗TB y∗B)j − cj , j ∈ N ;
if qk < 0 for some k ∈ N then introduce the kth column
into the basis with the usual rules for selecting
the pivot; find a new basis B∗;
end;

until qk ≥ 0 for all k ∈ N
% x∗ = (x∗B , 0) is the optimal solution of the problem:
% Max {cT x|x ∈ X=(A, {b})}
% y∗B is the optimal solution of the dual problem,
% x∗B is the optimal B-basic solution,
% bT y∗B is the corresponding optimal value,
% B is the best basis.

If the above algorithm stops, then the optimal solution has been reached.
However, it is necessary to stress that the above-mentioned algorithms are not
safe methods for solving LPSC problems in general. There are two possible
obstructions.

• It may happen that ABi is not regular; i.e., it contains a singular ma-
trix. Then the algorithm fails due to the nonsolvability of the subproblem,
although it need not necessarily mean that the original problem does not
have an optimal solution.

• If inequality x∗B ≥ 0 is violated for a current basis, we must carry out
necessary steps in order to satisfy nonnegativity of the basic solution. In [98],
it is proposed that the negative components of the basic solution in x∗B are
fixed to the value zero. Of course, such a modification of the algorithm acquires
a heuristic character.

It is an open problem how to resolve the above obstructions. This problem
exceeds, however, the scope of this chapter.

4.5 Conclusion

In this chapter, new problems of linear programming with the coefficients not
given as strict but variable within the given sets have been investigated. Such
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problems—called linear programming problems with set coefficients (LPSC)—
are sometimes referred to as “post-optimal analysis”; sometimes they are in-
cluded in the parametric programming framework. The nature of these prob-
lems is, however, varied. First, we have introduced the linear optimization
problem with set coefficients, then weak, strict and strong feasibility concepts
have been defined and discussed. The major part of the chapter has been
devoted to the problem of duality of LPSC problems. Under general assump-
tions, the usual form of the weak duality theorem has been derived. Based on
the results of [98], the strong duality theorem has also been formulated and
proven. The last part of the work has dealt with methods for solving LPSC
problems. Two such algorithms have been proposed and their efficiency has
been discussed. The proposed algorithms are in fact a generalization of the
well-known simplex method. An illustrative example has been presented and
discussed.



5

Fuzzy linear optimization
J. Ramı́k

5.1 Introduction

In mathematical optimization problems preferences between alternatives are
described by means of objective functions on a given set of alternatives. The
values of the objective function describe effects from the alternatives; the more
preferable alternatives have higher values than the less preferable ones. For
example, in economic problems these values may reflect profits obtained in
various means of production. The set of feasible alternatives in mathemat-
ical optimization problems is described by means of constraints—equations
or inequalities—representing relevant relationships between alternatives. The
results of the analysis depend largely upon how adequately various factors of
the real system are reflected in the description of the objective function(s)
and the constraints.

Mathematical formulation of the objective function and of the constraints
in mathematical optimization problems usually includes some parameters;
e.g., in problems of resource allocation the parameters may represent economic
values such as costs of various types of production, shipment costs, etc.

The values of such parameters depend on multiple factors usually not
included in the formulation of the problem. Trying to make the model more
representative, we often include the corresponding complex relations, causing
the model to become more cumbersome and analytically unsolvable. Some
attempts to increase “precision” of the model will be of no practical value
due to the impossibility of measuring the parameters accurately. On the other
hand, the model with fixed values of its parameters may be too crude, since
these values are often chosen in an arbitrary way.

An alternative approach is based on introducing into the model a more
adequate representation of expert understanding of the nature of the parame-
ters in an adequate form. In Chapters 2 and 3 it has been done in the form
of intervals; in Chapter 4 convex sets or convex polyhedral sets have been
considered. Here, the parameters can be expressed in a more general form of
fuzzy subsets of their possible values. In this way we obtain a new type of
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mathematical optimization problem containing fuzzy parameters. Consider-
ing linear optimization problems such treatment forms the essence of fuzzy
linear programming (FLP) investigated in this chapter. As we show, for a
special form of fuzzy parameters, crisp parameters, i.e. the usual real num-
bers, the formulation of the linear optimization problem coincides with the
corresponding formulations from the preceding chapters.

FLP problems and related ones have been extensively analyzed in many
works published in papers and books displaying a variety of formulations and
approaches. Most approaches to FLP problems are based on the straightfor-
ward use of the intersection of fuzzy sets representing goals and constraints.
The resulting membership function is then maximized. This approach has
been mentioned by Bellman and Zadeh in [13]. Later on many papers were
devoted to the problem of linear programming with fuzzy parameters, known
under different names, mostly as fuzzy linear programming, but sometimes as
possibilistic LP, flexible linear programming, vague linear programming, inex-
act linear programming, etc. For an extensive bibliography, see the overview
in paper [58].

Here we present an approach based on a systematic extension of the tra-
ditional formulation of the LP problem. This approach is based on previous
works of the authors of this book; see [118], [119], [120], [121], [124], [125],
[126], [128], [129], [130], [131], [132], [136], [137], and also on the works of
many other authors, e.g., [22], [26], [27], [33], [57], [58], [59], [76], [77], [78],
[81], [82], [113], [114], [133], [169], [170], [174], [195], [197].

In this chapter, we demonstrate that FLP essentially differs from stochastic
programming; FLP has its own structure and tools for investigating broad
classes of optimization problems. FLP is also different from parametric LP.
Problems of parametric LP are in essence deterministic optimization problems
with special variables called parameters. The main interest in parametric LP
is focused on finding functional relationships between the values of parameters
and optimal solutions of the LP problem.

An appropriate treatment of FLP problems requires proper application
of special tools in a logically consistent manner. An important role in this
treatment is played by generalized concave membership functions and fuzzy
relations. The following treatment is based on the substance partly investi-
gated in [135].

First we formulate an optimization problem and, particularly, the FLP
problem associated with a collection of instances of the classical LP problem.
After that we define a feasible solution of the FLP problem and deal with the
problem of “optimal solution” of FLP problems. Two approaches are intro-
duced: the first one, satisficing solution, is based on external goals modeled
by fuzzy quantities; the second approach is based on the concept of an effi-
cient (nondominated) solution. Then our interest is focused on the problem
of duality in FLP problems. Finally, we also investigate the multicriteria case.
We formulate the fuzzy multicriteria linear programming problem, define a
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compromise solution and derive appropriate results. The chapter closes with
a numerical example.

5.2 Fuzzy sets, fuzzy quantities

In this section we summarize basic notions and results from fuzzy set theory
that are useful in this chapter. Throughout this section, X is a nonempty set.

Definition 5.1. A fuzzy subset A of X is the family of subsets Aα ⊆ X,
where α ∈ [0, 1], satisfying the following properties.

A0 = X, (5.1)
Aβ ⊆ Aα whenever 0 ≤ α < β ≤ 1, (5.2)

Aβ =
⋂

0≤α<β

Aα. (5.3)

A fuzzy subset A of X is called a fuzzy set. The class of all fuzzy subsets of
X is denoted by F(X).

Definition 5.2. Let A be a subset of X. The fuzzy subset {Aα}α∈[0,1] of X
defined by Aα = A for all α ∈ (0, 1] is called a crisp fuzzy subset of X
generated by A. A fuzzy subset of X generated by some A ⊆ X is called a
crisp fuzzy subset of X or briefly a crisp subset of X.

In Definition 5.2 crisp fuzzy subsets of X and “classic” subsets of X are
in one-to-one correspondence. In this way, “classic” subsets of X are isomor-
phically embedded into fuzzy subsets of X.

Definition 5.3. Let A = {Aα}α∈[0,1] be a fuzzy subset of X. The µA : X →
[0, 1] defined by

µA(x) = sup{α | α ∈ [0, 1], x ∈ Aα} (5.4)

is called the membership function of A, and the value µA(x) is called the
membership degree of x in the fuzzy set A.

Notice that the membership function of a crisp fuzzy subset of X is equal
to the characteristic function of the corresponding set.

Definition 5.4. Let A be a fuzzy subset of X. The core of A, Core(A), is
defined by

Core(A) = {x ∈ X | µA(x) = 1}.
The complement of A, CA, is defined by

µCA(x) = 1− µA(x). (5.5)

If the core of A is nonempty, then A is said to be normalized. The support
of A, Supp(A), is defined by
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Supp(A) = Cl({x ∈ X | µA(x) > 0}).

Here, by Cl we denote the topological closure.
The height of A, Hgt(A), is defined by

Hgt(A) = sup{µA(x) | x ∈ X}.

The upper-level set of the membership function µA of A at α ∈ [0, 1] is denoted
by [A]α and called the α-cut of A; that is,

[A]α = {x ∈ X | µA(x) ≥ α}. (5.6)

The strict upper-level set of the membership function µA of A at α ∈ [0, 1) is
denoted by (A)α and called the strict α-cut of A; that is,

(A)α = {x ∈ X | µA(x) > α}. (5.7)

Note that if A is normalized, then Hgt(A) = 1, but not vice versa.

Definition 5.5. Let X ⊆ Rm, the m-dimensional Euclidean space. A fuzzy
subset A = {Aα}α∈[0,1] of X is called closed, bounded, compact or convex if
Aα is a closed, bounded, compact or convex subset of X for every α ∈ (0, 1],
respectively.

In the following two propositions, we show that the family generated by the
upper level sets of a function µ : X → [0, 1], satisfies conditions (5.1)–(5.3);
thus, it generates a fuzzy subset of X and the membership function µA defined
by (5.4) coincides with µ. Moreover, for a given fuzzy set A = {Aα}α∈[0,1],
every α-cut [A]α given by (5.6) coincides with the corresponding Aα. The
proofs are easy and can be found in [135].

Proposition 5.6. Let µ : X → [0, 1] be a function and let A = {Aα}α∈[0,1]

be a family of its upper-level sets. Then A is a fuzzy subset of X and µ is the
membership function of A.

Proposition 5.7. Let A = {Aα}α∈[0,1] be a fuzzy subset of X and let µA :
X → [0, 1] be the membership function of A. Then for each α ∈ [0, 1] the α-cut
[A]α is equal to Aα.

Now, we investigate fuzzy subsets of the real line; we set X = R and
F(X) = F(R).

Definition 5.8.

(i) A fuzzy set A = {Aα}α∈[0,1] is called a fuzzy interval if for all α ∈ [0, 1] :
Aα is nonempty and a convex subset of R. The set of all fuzzy intervals
is denoted by FI(R).

(ii) A fuzzy interval A is called a fuzzy number if its core is a singleton. The
set of all fuzzy numbers is denoted by FN (R).
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Notice that the membership function µA : R→ [0, 1] of a fuzzy interval A
is quasiconcave on R. The following definitions are useful.

Definition 5.9. Let X ⊆ R. A function f : R→ [0, 1] is called

(i) Quasiconcave on X if

f(λx + (1− λ)y) ≥ min{f(x), f(y)},

for every x, y ∈ X and every λ ∈ (0, 1) with λx + (1− λ)y ∈ X;
(ii) Strictly quasiconcave on X if

f(λx + (1− λ)y) > min{f(x), f(y)}, (5.8)

for every x, y ∈ X, x 6= y and every λ ∈ (0, 1) with λx + (1− λ)y ∈ X;
(iii) Semistrictly quasiconcave on X if f is quasiconcave on X and (5.8)

holds for every x, y ∈ X and every λ ∈ (0, 1) with λx + (1 − λ)y ∈ X,
f(λx + (1− λ)y) > 0 and f(x) 6= f(y).

Notice that membership functions of crisp subsets of R are quasiconcave,
but not stricly quasiconcave; they are, however, semistrictly quasiconcave on
R.

Definition 5.10. A fuzzy subset A of R is called the fuzzy quantity if A is
normal and compact with semistrictly quasiconcave membership function µA.
The set of all fuzzy quantities is denoted by F0(R).

By the definition F0(R) ⊆FI(R), moreover, F0(R) contains crisp (real)
numbers, crisp intervals, triangular fuzzy numbers, bell-shaped fuzzy numbers
etc.

Example 5.11. (Gaussian fuzzy number) Let a ∈ R, γ ∈ (0,+∞), and let for
all x ∈ R

G(x) = e−
x2
γ .

Then the function µA given by

µA(x) = G(x− a) = e−
(x−a)2

γ ,

is the membership function of a fuzzy set A where A is a fuzzy number ac-
cording to Definition 5.8. Notice that the Gaussian fuzzy number is compact;
hence it is a fuzzy quantity.
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5.3 Fuzzy relations

Now, let X and Y be nonempty sets. In set theory, a binary relation R between
the elements of the sets X and Y is defined as a subset of the Cartesian product
X × Y ; that is, R ⊆ X × Y .

A valued relation R on X×Y is a fuzzy subset of X×Y . A valued relation
R on X is a valued relation on X ×X.

Any binary relation R, R ⊆ X × Y , is isomorphically embedded into
the class of valued relations by its characteristic function χR, which is its
membership function. In this sense, any binary relation is valued.

Let R be a valued relation on X×Y . In FLP problems, we consider fuzzy
relations assigning to every pair of fuzzy subsets a real number from interval
[0, 1]. In other words, we consider valued relations R̃ on F(X) × F(Y ) such
that µR̃ : F(X)×F(Y ) → [0, 1].

Convention: The elements x ∈ X and y ∈ Y are considered as fuzzy
subsets of X and Y with the characteristic functions χx and χy as the mem-
bership functions. In this way we obtain the isomorphic embedding of X into
F(X) and Y into F(Y ), and in this sense we write X ⊆ F(X) and Y ⊆ F(Y ),
respectively.

Evidently, the usual binary relations =, < and ≤ can be understood as the
valued relations.

Now, we define fuzzy relations that are used for comparing the left and
right sides of the constraints in optimization problems.

Definition 5.12. A fuzzy subset of F(X) × F(Y ) is called a fuzzy relation
on X × Y . The set of all fuzzy relations on F(X) × F(Y ) is denoted by
F(F(X)×F(Y )). A fuzzy relation on X×X is called a fuzzy relation on X.

Definition 5.13. Let R be a valued relation on X×Y . A fuzzy relation R̃ on
X × Y given by the membership function µR̃ : F(X)×F(Y ) → [0, 1] is called
a fuzzy extension of relation R, if for each x ∈ X, y ∈ Y , it holds

µR̃(x, y) = µR (x, y) . (5.9)

On the left side of (5.9), x and y are understood as fuzzy subsets of X
and Y defined by the membership functions identical with the characteristic
functions of singletons {x} and {y}, respectively.

Definition 5.14. Let Ψ : F(X × Y ) → F(F(X)× F(Y )) be a mapping. Let
for all R ∈ F(X × Y ), Ψ(R) be a fuzzy extension of relation R. Then the
mapping Ψ is called a fuzzy extension of valued relations.

Definition 5.15. Let Φ, Ψ : F(X×Y ) → F(F(X)×F(Y )) be mappings. We
say that the mapping Φ is dual to Ψ , if

Φ(CR) = CΨ(R) (5.10)

holds for all R ∈ F(X×Y ). For Φ dual to Ψ , R ∈ F(X×Y ) a valued relation,
the fuzzy relation Φ(R) is called dual to fuzzy relation Ψ(R).
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Proposition 5.16. A mapping Φ is dual to Ψ , if and only if the mapping Ψ
is dual to Φ.

Proof. The proposition follows easily from (5.10), (5.5) and from the identity

CCR = R.

ut
The analogous statement holds for the dual fuzzy relations Φ(R) and Ψ(R).
Now, we define special mappings, important fuzzy extensions of valued

relations. The concept of t-norm, and t-conorm are useful.
A class of functions T : [0, 1]2 → [0, 1] that are commutative, associative,

nondecreasing in every variable and satisfy the following boundary condition

T (a, 1) = a for all a ∈ [0, 1],

is called the triangular norms or t-norms. The four most popular examples of
t-norms are defined as follows.

TM (a, b) = min{a, b},
TP (a, b) = a.b,

TL(a, b) = max{0, a + b− 1}.
TD(a, b) = min{a, b} if max{a, b} = 1

= 0 otherwise.

They are called minimum t-norm TM , product t-norm TP , Lukasiewicz
t-norm TL and drastic product TD.

A class of functions closely related to the class of t-norms is the class of
functions S : [0, 1]2 → [0, 1] that are commutative, associative, nondecreasing
in every variable and satisfy the following boundary condition,

S(a, 0) = a for all a ∈ [0, 1].

The functions that satisfy all these properties are called the triangular
conorms or t-conorms; see, e.g., [73]. For example, the functions SM , SP ,
SL defined for a, b ∈ [0, 1] by

SM (a, b) = max{a, b},
SP (a, b) = a + b− a · b,
SL(a, b) = min{1, a + b},
SD(a, b) =

{
max{a, b} if min{a, b} = 0,
1 otherwise

are the t-conorms. SM , SP , SL and SD are often called the maximum, prob-
abilistic sum, bounded sum and drastic sum, respectively. It can easily be
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verified that for each t-norm T , the function T ∗ : [0, 1]2 → [0, 1] defined for
all a, b ∈ [0, 1] by

T ∗(a, b) = 1− T (1− a, 1− b) (5.11)

is a t-conorm. The converse statement is also true. Namely, if S is a t-conorm,
then the function S∗ : [0, 1]2 → [0, 1] defined for all a, b ∈ [0, 1] by

S∗(a, b) = 1− S(1− a, 1− b) (5.12)

is a t-norm. The t-conorm T ∗ and t-norm S∗, are called dual to the t-norm
T and t-conorm S, respectively. It may easily be verified that

T ∗M = SM , T ∗P = SP , T ∗L = SL, T ∗D = SD.

A triangular norm T is said to be strict if it is continuous and strictly
monotone. It is said to be Archimedean if for all x, y ∈ (0, 1) there exists
a positive integer n such that Tn−1(x, . . . , x) < y. Here, by commutativity
and associativity we can define the extension to more than two arguments by
the formula

Tn−1(x1, x2, . . . , xn) = T (Tn−2(x1, x2, . . . , xn−1), xn), (5.13)

where T 1(x1, x2) = T (x1, x2).
Notice that if T is strict, then T is Archimedean.

Definition 5.17. An additive generator of a t-norm T is a strictly decreasing
function f : [0, 1] → [0,+∞] which is right continuous at 0, satisfies f(1) = 0,
and is such that for all x, y ∈ [0, 1] we have

f(x) + f(y) ∈ Ran(f) ∪ [f(0),+∞], (5.14)
T (x, y) = f (−1)(f(x) + f(y)), (5.15)

where Ran(f) = {y ∈ R |y = f(x), x ∈ [0, 1] }.
Triangular norms (t-conorms) constructed by means of additive (multi-

plicative) generators are always Archimedean. This property and some other
properties of t-norms are summarized in [73].

Definition 5.18. Let T be a t-norm and S be a t-conorm. Let R be a valued
relation on X. Fuzzy extensions ΦT (R) and ΦS(R)of a valued relation R on X
defined for all fuzzy sets A,B with the membership functions µA : X → [0, 1],
µB : Y → [0, 1], respectively, by

µΦT (R)(A, B) = sup{T (µR (x, y) , T (µA (x) , µB (y)))|x, y ∈ X}, (5.16)

µΦS(R)(A,B) = inf {S (S(1− µA (x) , 1− µB (y)), µR (x, y)) |x, y ∈ X} ,
(5.17)

are called a T -fuzzy extension of relation R and S-fuzzy extension of relation
R, respectively.
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It can be easily verified that the T -fuzzy extension of relation R and S-
fuzzy extension of relation R are fuzzy extensions of relation R given by
Definition 5.13.

In the following proposition we prove a duality result between fuzzy exten-
sions of valued relations. In a special case, particularly T = min and S = max,
the analogous results can be also found in [56].

Proposition 5.19. Let T be a t-norm and S be a t-conorm dual to T . Then
ΦT is dual to ΦS.

Proof. Let R ∈ F(X × Y ); we have to prove (5.10); i.e.,

ΦT (CR) = CΦS(R). (5.18)

To prove (5.18), let A ∈ F(X) and B ∈ F(Y ). We have to show that

µΦT (CR)(A,B) = µCΦS(R)(A, B).

By definition (5.16) and by duality of T and S (see (5.11), (5.12)), we obtain

µΦT (CR)(A, B)
= sup{T (T (µA(x), µB(y)), µCR(x, y)) | x ∈ X, y ∈ Y }
= sup{1− S(1− T (µA(x), µB(y)), µR(x, y)) | x ∈ X, y ∈ Y }
= 1− inf{S(S(µCA(x), µCB(y)), µR(x, y)) | x ∈ X, y ∈ Y }
= 1− µΦS(R)(A, B) = µCΦS(R)(A,B).

This is the required result. ut
Definition 5.20. Let R be ≤, i.e., R be a classical binary relation “less or
equal” on R; let T = min and S = max. We denote ΦT (R) and ΦS(R) from
(5.16) and (5.17) by ≤̃min

and ≤̃max
, respectively. From (5.16) and (5.17)

we obtain two fuzzy extensions of relation ≤ by

µ≤̃min(A,B) = sup{min(µA (x) , µB (y) , µR (x, y))|x, y ∈ R}, (5.19)

µ≤̃max(A,B) = inf {max (1− µA (x) , 1− µB (y) , µR (x, y)) |x, y ∈ R} .
(5.20)

We equivalently write A≤̃min
B and A≤̃max

B, instead of µ≤̃min(A, B) and

µ≤̃max(A,B), respectively. By A≥̃min
B we mean B≤̃min

A.

The following results are crucial for studying FLP problems.

Theorem 5.21. Let R be ≤, let T = min and S = max. Let A,B ∈ F(R) be
normal and compact fuzzy sets, α ∈ (0, 1). Then
(i) µ≤̃min(A,B) ≥ α if and only if inf[A]α ≤ sup[B]α,
(ii) µ≤̃max(A,B) ≥ α if and only if sup(A)1−α ≤ inf(B)1−α.
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Proof. First we prove (i). Let α ∈ (0, 1) and µ≤̃min(A,B) ≥ α. Then by (5.19)
we get

sup{min(µA (x) , µB (y))|x ≤ y} ≥ α.

Since [A]α and [B]α are nonempty and compact, we obtain inf[A]α ≤ sup[B]α.
On the other hand, let α ∈ (0, 1) and inf[A]α ≤ sup[B]α. By compactness

there exist x′ ∈ [A]α and y′ ∈ [B]α such that x′ ≤ y′. Then µA (x′) ≥
α, µB (y) ≥ α, min(µA (x′) andµB (y′)) ≥ α; consequently

sup{min(µA (x) , µB (y))|x ≤ y} ≥ α, i.e. µ≤̃min(A,B) ≥ α.

Secondly, we prove (ii).
Let α ∈ (0, 1) and µ≤̃max(A, B) ≥ α. Then by (5.20) we get

inf {max (1− µA (x) , 1− µB (y) , µR (x, y)) |x, y ∈ R} ≥ α.

Clearly, this inequality is equivalent to

sup{min(µA (x) , µB (y))|x > y} ≤ 1− α. (5.21)

Take arbitrary x′ ∈ (A)1−α and y′ ∈ (B)1−α. Assume that x′ > y′; then
min(µA (x′) , µB (y′)) > 1 − α, which contradicts (5.21). Thus x′ ≤ y′ holds
for any couple x′ ∈ (A)1−α, y′ ∈ (B)1−α that gives sup(A)1−α ≤ inf(B)1−α.

On the other hand, let α ∈ (0, 1) and sup(A)1−α ≤ inf(B)1−α. Take
arbitrary x′, y′ ∈ R such that x′ > y′. Then either x′ /∈ (A)1−α or
y′ /∈ (B)1−α; otherwise x′ ≤ y′. Then min(µA (x′) , µB (y′)) ≤ 1 − α; con-
sequently sup{min(µA (x) , µB (y))|x ≤ y} ≤ 1 − α, which is equivalent to
µ≤̃max(A,B) ≥ α. ut

Let T be a t-norm and S be a t-conorm.

Definition 5.22.
(1) A mapping ΨT,S : F(X × Y ) → F(F(X) × F(Y )) is defined for every

valued relation R ∈ F(X×Y ) and for all fuzzy sets A ∈ F(X), B ∈ F(Y )
by

µΨT,S(R)(A,B)
= sup{inf{T (µA(x), S(µCB(y), µR(x, y))) | y ∈ Y } | x ∈ X}.

(5.22)
(2) A mapping ΨT,S : F(X × Y ) → F(F(X) × F(Y )) is defined for every

valued relation R ∈ F(X×Y ) and for all fuzzy sets A ∈ F(X), B ∈ F(Y )
by

µΨT,S(R)(A,B)
= inf{sup{S(T (µA(x), µR(x, y)), µCB(y)) | x ∈ X} | y ∈ Y }.

(5.23)
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(3) A mapping ΨS,T : F(X × Y ) → F(F(X) × F(Y )) is defined for every
valued relation R ∈ F(X×Y ) and for all fuzzy sets A ∈ F(X), B ∈ F(Y )
by

µΨS,T (R)(A,B)
= sup{inf{T (S(µCA(x), µR(x, y)), µB(y)) | x ∈ X} | y ∈ Y }.

(5.24)
(4) A mapping ΨS,T : F(X × Y ) → F(F(X) × F(Y )) is defined for every

valued relation R ∈ F(X×Y ) and for all fuzzy sets A ∈ F(X), B ∈ F(Y )
by

µΨS,T (R)(A,B)
= inf{sup{S(µCA(x), T (µB(y), µR(x, y))) | y ∈ Y } | x ∈ X}.

(5.25)

The previous four fuzzy relations are also fuzzy extensions of valued relations
by Definition 5.14.

5.4 Fuzzy linear optimization problems

Now, we turn to optimization theory and consider the following optimization
problem,

maximize (minimize) f(x)
subject to x ∈ X,

(5.26)

where f is a real-valued function on Rn called the objective function and X is a
nonempty subset of Rn given by means of real-valued functions g1, g2, . . . , gm

on Rn, the set of all solutions of the system

gi(x) = bi, i = 1, 2, . . . ,m1,

gi(x) ≤ bi, i = m1 + 1,m1 + 2, . . . , m,

xj ≥ 0, j = 1, 2, . . . , n,

called the constraints. The elements of X are called feasible solutions of (5.26),
and the feasible solution x∗ where f attains its global maximum (or minimum)
over X is called the optimal solution.

Most frequent optimization problems are linear ones. In this chapter we
are concerned with the fuzzy linear programming problem related to linear
programming problems in the following form.

Let M = {1, 2, . . . , m} and N = {1, 2, . . . , n} where m and n are positive
integers. For each c = (c1, c2, . . . , cn)T ∈ Rn and ai = (ai1, ai2, . . . , ain)T ∈
Rn, i ∈M, the functions f(·, c) and g(·, ai) defined on Rn by

f(x, c1, . . . , cn) = c1x1 + · · ·+ cnxn, (5.27)
gi(x, ai1, . . . , ain) = ai1x1 + · · ·+ ainxn, i ∈M, (5.28)
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are linear on Rn. For each c ∈ Rn and ai ∈ Rn, i ∈M, we consider the linear
programming problem (classical LP),

maximize (minimize) c1x1 + · · ·+ cnxn

subject to ai1x1 + · · ·+ ainxn ≤ bi, i ∈M,
xj ≥ 0, j ∈ N .

(5.29)

The set of all feasible solutions of problem (5.29) is denoted by X; that is,

X = {x ∈ Rn | ai1x1 + · · ·+ ainxn ≤ bi, i ∈M, xj ≥ 0, j ∈ N}. (5.30)

Assumptions and remarks.

1. Let f , gi be linear functions defined by (5.27), (5.28), respectively. From
now on, the parameters cj , aij and bi are considered as fuzzy quantities, that
is, normal and compact fuzzy subsets of the Euclidean space R with semi-
strictly quasiconcave membership function; see Definition 5.10. This assump-
tion makes it possible to include classical LP problems in fuzzy LP ones. The
fuzzy quantities are denoted with the tilde above the corresponding symbol.
We also have µc̃j : R → [0, 1], µãij : R → [0, 1] and µb̃i

: R → [0, 1], i ∈ M,
j ∈ N , membership functions of the fuzzy parameters c̃j , ãij and b̃i, respec-
tively. The crisp quantities are not denoted with the tilde.

2. Let R̃i, i ∈ M, be fuzzy relations on R. They are used for “comparing
the left and right sides” of the constraints. Primarily, we study the case of
R̃i = R̃, for all i ∈M; i.e., all fuzzy relations in the constraints are the same.

3. The “optimization” i.e., “maximization” or “minimization” of the ob-
jective function requires special treatment, as the set of fuzzy values of the
objective function is not linearly ordered. In order to “maximize” the objec-
tive function we define a suitable concept of “optimal solution”. It is done
by two distinct approaches: applying the first approach, an exogenously given
fuzzy goal d̃ ∈ F(R) and special fuzzy relation R̃0 on R is introduced. In the
second approach we define an α-efficient (α-nondominated) solution of the
FLP problem. Some other approaches can be found in the literature; see [39],
[33], [136].

The fuzzy linear programming problem (FLP problem) associated with the
LP problem (5.29) is defined as follows,

“maximize” (“minimize”) c̃1x1+̃ · · · +̃c̃nxn

subject to (ãi1x1+̃ · · · +̃ãinxn)R̃ib̃i, i ∈M,
xj ≥ 0, j ∈ N .

(5.31)

Here, R̃i, i ∈ M, are fuzzy relations on R. The objective function values
and the left-hand side values of the constraints of (5.31) are obtained by the
extension principle:
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For given c̃1, . . . , c̃n ∈ F0(R), f̃(x, c̃1, . . . , c̃n) is the fuzzy extension of
f(x, c1, . . . , cn) with the membership function defined for each t ∈ R by

µf̃ (t) =





sup
{

T (µc̃1(c1), . . . , µc̃n(cn))
∣∣∣∣

c1, . . . , cn ∈ R,
c1x1 + · · ·+ cnxn = t

}

if f−1(x; t) 6= ∅,
0 otherwise,

(5.32)
where f−1(x, t) = {(c1, . . . , cn)T ∈ Rn|f(x, c1, . . . , cn) = t}.

Particularly, for f(x, c1, . . . , cn) = c1x1 + · · ·+ cnxn, the fuzzy set
f̃(x, c̃1, . . . , c̃n) is denoted as c̃1x1+̃ · · · +̃c̃nxn; i.e.,

f̃(x, c̃1, . . . , c̃n) = c̃1x1+̃ · · · +̃c̃nxn. (5.33)

Similarly, the membership function of g̃i(x, ãi1, . . . , ãi1) is defined for each
t ∈ R by

µg̃i
(t) =





sup
{

T (µãi1(a1), . . . , µãin(an))
∣∣∣∣

a1, . . . , an ∈ R,
a1x1 + · · ·+ anxn = t

}

if g−1
i (x; t) 6= ∅,

0 otherwise,
(5.34)

where
g−1

i (x, t) = {(a1, . . . , an)T ∈ Rn|a1x1 + · · ·+ anxn = t}.
Here, the fuzzy set g̃i(x, ãi1, . . . , ãi1) is denoted as ãi1x1+̃ · · · +̃ãinxn, i.e.,

g̃i(x, ãi1, . . . , ãi1) = ãi1x1+̃ · · · +̃ãinxn

for every i ∈M and for each x ∈ Rn. The following proposition can be easily
derived from the definition.

Proposition 5.23. Let ãj ∈ F0(R), xj ≥ 0, j ∈ N . Then ã1x1+̃ · · · +̃ãnxn

defined by the extension principle is again a fuzzy quantity.

In (5.31) the value ãi1x1+̃ · · · +̃ãinxn ∈ F0(R) is “compared to” the fuzzy
quantity b̃i ∈ F0(R) by fuzzy relation R̃i, i ∈M.

Usually, the fuzzy relations R̃i on R for comparing the left and right sides of
the constraints of (5.31) are extensions of a valued relation on R, particularly,
the binary inequality relations “≤” or “≥”.

If R̃i is the T -fuzzy extension of relation Ri, i ∈M, then the membership
function of the ith constraint is as follows,

µR̃i
(ãi1x1+̃ · · · +̃ãinxn, b̃i) = sup{T (µãi1x1+̃···+̃ãinxn

(u), µb̃i
(v))|uRiv}.

For aggregating fuzzy constraints in FLP problem (5.31), we need some
operators with reasonable properties. Such operators should assign to each
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tuple of elements a unique real number. For this purpose, t-norms or t-conorms
can be applied. However, we know some other useful operators generalizing
usual t-norms or t-conorms. Clearly, between arbitrary interval [a, b] in R and
the unit interval [0, 1] there exists a one-to-one correspondence. Hence, each
result for operators on the interval [a, b] can be transformed into a result
for operators on [0, 1] and vice versa. Moreover, the aggregation operators
on [0, 1] should be sufficiently general, at least from a theoretical point of
view. In many cases, general aggregation operators can be derived from n-ary
operations on [0, 1].

Definition 5.24. An aggregation operator G is a sequence {Gn}∞n=1 of map-
pings (called aggregating mappings) Gn : [0, 1]n → [0, 1], satisfying the fol-
lowing properties.

(i) G1(x) = x for each x ∈ [0, 1];
(ii) Gn(x1, x2, . . . , xn) ≤ Gn(y1, y2, . . . , yn), whenever xi ≤ yi for each i =

1, 2, . . . , n, and every n = 2, 3, . . .;
(iii) Gn(0, 0, . . . , 0) = 0 and Gn(1, 1, . . . , 1) = 1 for every n = 2, 3, . . ..

Condition (i) says that G1 is a unary identity operation, (ii) means that
aggregating mapping Gn is monotone, particularly nondecreasing in all of its
arguments xi, and condition (iii) represents the boundary conditions. Here we
have several examples of aggregation operators (see, e.g., [196], [134]):

(1) t-norms and t-conorms;
(2) Usual averages: the arithmetic mean, geometric mean, harmonic mean

and root-power mean;
(3) k-order statistic aggregation operators;
(4) Order weighted averaging (OWA) operators;
(5) Sugeno and Choquet integrals.

5.5 Feasible solution

Let us begin with the concept of feasible solution of an FLP problem (5.31).

Definition 5.25. Let gi, i ∈ M, be linear functions defined by (5.28). Let
µãij : R→ [0, 1] and µb̃i

: R→ [0, 1], i ∈M, j ∈ N , be membership functions
of fuzzy quantities ãij and b̃i, respectively. Let R̃i, i ∈ M, be fuzzy relations
on R. Let GA be an aggregation operator and T be a t-norm.

A fuzzy set X̃, the membership function µX̃ of which is defined for all
x ∈ Rn by

µX̃(x) = GA(µR̃1
(ã11x1+̃ · · · +̃ã1nxn, b̃1), · · · , µR̃m

(ãm1x1+̃ · · · +̃ãmnxn, b̃m))

if xj ≥ 0 for all j ∈ N and by
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µX̃(x) = 0 otherwise, (5.35)

is called the feasible solution of the FLP problem (5.31).
For α ∈ (0, 1], a vector x ∈ [X̃]α is called the α-feasible solution of the

FLP problem (5.31).
A vector x̄ ∈ Rn such that µX̃(x̄) = Hgt(X̃) is called the max-feasible

solution.

By the definition the feasible solution X̃ of an FLP problem is a fuzzy set.
On the other hand, the α-feasible solution is a vector belonging to the α-cut
of the feasible solution X̃ and the same is true for the max-feasible solution,
a special α-feasible solution with α = Hgt(X̃).

Given a feasible solution X̃ and α ∈ (0, 1] (the degree of possibility, fea-
sibility, satisfaction etc.), any vector x ∈ Rn satisfying µX̃(x) ≥ α is the
α-feasible solution of the corresponding FLP problem.

For i ∈ M, X̃i denotes the fuzzy subset of Rn with the membership
function µX̃i

defined for all x ∈ Rn as

µX̃i
(x) = µR̃i

(ãi1x1+̃ . . . +̃ãinxn, b̃i). (5.36)

Fuzzy set (5.36) is interpreted as the ith fuzzy constraint. All fuzzy con-
straints X̃i are aggregated into the feasible solution (5.35) by the aggregation
operator GA. Usually, GA = min is used for aggregating the constraints; sim-
ilarly, the t-norm T = min is used for extending arithmetic operations “+̃”.

Clearly, if aij and bi are crisp parameters (i.e., crisp fuzzy numbers), then
the feasible solution is also crisp. Moreover, if for all i ∈ M, R̃i are T -fuzzy
extensions of valued relations Ri and for two collections of fuzzy parameters it
holds that ã′ij ⊆ ã′′ij and b̃′i ⊆ b̃′′i , then the same holds for the feasible solutions;
i.e., X̃ ′ ⊆ X̃ ′′. See also Proposition 5.30 below.

Now, we derive special formulae that allow for computing an α-feasible
solution x ∈ [X̃]α of the FLP problem (5.31). For this purpose, the following
notation is useful. Given α ∈ (0, 1], i ∈M, j ∈ N , let ã ∈ F0(R). We denote

ãL(α) = inf {t ∈ R|t ∈ [ã]α} = inf[ã]α, ãR(α) = sup {t|t ∈ [ã]α} = sup[ã]α.
(5.37)

Theorem 5.26. Let ãij and b̃i be fuzzy quantities and xj ≥ 0 for all i ∈ M,
j ∈ N , α ∈ (0, 1). Let ≤̃min

and ≤̃max
be fuzzy extensions of the binary relation

≤ . Then for i ∈M it holds that
(i) µ≤̃min(ãi1x1+̃. . .+̃ãinxn, b̃i) ≥ α if and only if

∑

j∈N
ãL

ij(α)xj ≤ b̃R
i (α), (5.38)

(ii) µ≤̃max(ãi1x1+̃. . .+̃ãinxn, b̃i) ≥ α if and only if



132 5 Fuzzy linear optimization

∑

j∈N
ãR

ij(1− α)xj ≤ b̃L
i (1− α). (5.39)

Proof. (i) By Proposition 5.23, definition (5.37) and Theorem 5.21 (i), we
obtain the required result.

(ii) To prove (i), only normality and compactness of ãij and b̃i are utilized;
no assumption of convexity has been necessary. Here, in order to apply again
Theorem 5.21, (ii), it remains to prove that inf[ãij ]α = inf(ãij)α, sup[ãij ]α =
sup(ãij)α, inf[b̃i]α = inf(b̃i)α and sup[b̃i]α = sup(b̃i)α. Remember that by
(5.37) ãL

ij(α) = inf[ãij ]α, etc. Evidently, it is sufficient to prove

inf[ã]α = inf(ã)α, (5.40)
sup[ã]α = sup(ã)α, (5.41)

for any fuzzy quantity ã ∈ F0(R), i.e., the normal, compact fuzzy subset of R
with the semistrictly quasiconcave membership function. Here we prove only
(5.40); identity (5.41) can be proven analogously. Let α ∈ (0, 1).

1. By definition of the α-cut and strict α-cut we have (ã)α ⊆ [ã]α. Then
inf[ã]α ≤ inf(ã)α.

2. Assume inf[ã]α < inf(ã)α. Then there exist x, x0 such that inf[ã]α < x <
x0 < inf(ã)αwith

µã(x) = µã(x0) = α. (5.42)

On the other hand, there exists y such that inf(ã)α < y and µã(y) > α. It
follows that x < x0 < y. Then there is λ ∈ (0, 1) with x0 = λx + (1− λ)y. By
(5.42) we obtain

µã(x0) = α = min{µã(x), µã(y)}. (5.43)

However, since µã(x) < µã(y) and µã(x0) = µã(λx + (1 − λ)y) > 0, by
semistrict quasiconcavity of µã it should be satisfied that

µã(x0) > min{µã(x), µã(y)},
a contradiction to (5.43). Consequently, inf[ã]α ≥ inf(ã)α.

The rest of the proof follows easily from Proposition 5.23 and Theorem 5.21
(ii). ut

Notice that semistrict quasiconcavity of fuzzy quantities is a property se-
curing validity of the equivalence (ii) in Theorem 5.26, which plays a key role
in deriving the duality principle in FLP we deal with later on.

In the following example we apply Theorem 5.26 to a broad and practical
class of so-called (L,R)-fuzzy quantities with membership functions given by
shifts and contractions of special generator functions.
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Example 5.27. Let l, r ∈ R with l ≤ r, let γ, δ ∈ [0, +∞) and let L, R be non-
increasing, upper-semicontinuous, semistrictly quasiconcave functions map-
ping interval [0, +∞) into [0, 1]; i.e., L,R : [0, +∞)→ [0, 1]. Moreover, assume
that L(0) = R(0) = 1 and lim

x→+∞
L(x) = lim

x→+∞
R(x) = 0, for each x ∈ R,

µA(x) =





L
(

l−x
γ

)
if x ∈ (l − γ, l), γ > 0,

1 if x ∈ [l, r],
R (

x−r
δ

)
if x ∈ (r, r + δ), δ > 0,

0 otherwise.

(5.44)

We write A = (l, r, γ, δ)LR, the fuzzy quantity A is called an (L,R)-fuzzy in-
terval and the set of all (L,R)-fuzzy intervals is denoted by FLR(R). Observe
that Core(A) = [l, r] and [A]α is a compact interval for every α ∈ (0, 1]. It is
obvious that the class of (L, R)-fuzzy intervals extends the class of crisp closed
intervals [a, b] ⊆ R including the case a = b, i.e., crisp numbers. Similarly, if
the membership functions of ãij and b̃i are given analytically by

µãij
(x) =





L
(

lij−x
γij

)
if x ∈ [lij − γij , lij), γij > 0,

1 if x ∈ [lij , rij ],
R

(
x−rij

δij

)
if x ∈ (rij , rij + δij ], δij > 0,

0 otherwise,

(5.45)

and

µb̃j
(x) =





L
(

li−x
γi

)
if x ∈ [li − γi, li), γi > 0,

1 if x ∈ [li, ri],
R

(
x−ri

δi

)
if x ∈ (ri, ri + δi], δi > 0,

0 otherwise,

(5.46)

for each x ∈ R, i ∈M, j ∈ N , then the values of (5.37) can be computed as

ãL
ij(α)= lij − γijL(−1)(α), ãR

ij(α)= rij + δijR(−1)(α),

b̃L
i (α)= li − γiL(−1)(α), b̃R

i (α)= ri + δiR(−1)(α),

where L(−1) and R(−1)are pseudo-inverse functions of L and R defined by
L(−1)(α) = sup{x|L(x) ≥ α} and R(−1)(α) = sup{x|R(x) ≥ α}, respectively.
Let GA = min. By Theorem 5.26, the α-cut [X̃]α of the feasible solution of
(5.31) with R̃i = ≤̃min

, i ∈ M, can be obtained by solving the system of
inequalities

∑

j∈N
(lij − γijL(−1)(α))xj ≤ ri + δiR(−1)(α) , i ∈M. (5.47)

On the other hand, the α-cut [X̃]α of the feasible solution of (5.31) with R̃i =
≤̃max

, i ∈M, can be obtained by solving the system of inequalities
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∑

j∈N
(rij + δijR(−1)(α))xj ≤ li − γiL(−1)(α), i ∈M. (5.48)

Moreover, by (5.47), (5.48), [X̃]α is the intersection of a finite number of
halfspaces, hence a convex polyhedral set.

5.6 “Optimal” solution

The “optimization”, i.e., “maximization” or “minimization”, of the objective
function requires a special approach, as the set of fuzzy values of the objective
function is not linearly ordered. In order to “maximize” the objective func-
tion we introduce a suitable concept of “optimal solution”. It is done by two
distinct approaches, namely: (1) satisficing solution or (2) α-efficient solution.

5.6.1 Satisficing solution

We assume the existence of an exogenously given goal d̃ ∈F(R). The fuzzy
value d̃ is compared to fuzzy values c̃1x1+̃ · · · +̃c̃nxn of the objective function
by a given fuzzy relation R̃0. In this way the fuzzy objective function is treated
as another constraint

(c̃1x1+̃ · · · +̃c̃nxn)R̃0 d̃.

The satisficing solution is then obtained by a modification of the definition of
the feasible solution.

Definition 5.28. Let f , gi be linear functions defined by (5.27), (5.28). Let
µc̃j : R → [0, 1], µãij : R → [0, 1] and let µb̃i

: R → [0, 1], i ∈ M, j ∈ N , be
membership functions of fuzzy quantities c̃j, ãij and b̃i, respectively. Moreover,
let d̃ ∈ FI(R) be a fuzzy interval, called the fuzzy goal. Let R̃i, i ∈ {0} ∪M,
be fuzzy relations on R and T be a t-norm and G and GA be aggregation
operators.

A fuzzy set X̃∗ with the membership function µX̃∗ defined for all x ∈ Rn

by
µX̃∗(x) = GA(µR̃0

(c̃1x1+̃ · · · +̃c̃nxn, d̃), µX̃(x)), (5.49)

where µX̃(x) is the membership function of the feasible solution, is called the
satisficing solution of the FLP problem (5.31).

For α ∈ (0, 1] a vector x ∈ [X̃∗]α is called the α-satisficing solution of the
FLP problem (5.31).

A vector x∗ ∈ Rn with the property

µX̃∗(x∗) = Hgt(X̃∗) (5.50)

is called the max-satisficing solution.
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By Definition 5.28 any satisficing solution of the FLP problem is a fuzzy
set. On the other hand, the α-satisficing solution belongs to the α-cut [X̃∗]α.
Likewise, the max-satisficing solution is an α-satisficing solution with α =
Hgt(X̃∗).

The t-norm T is used for extending arithmetic operations, the aggregation
operator G for joining the individual constraints into the feasible solution and
GA is applied for aggregating the fuzzy set of the feasible solution and fuzzy
set of the objective X̃0 defined by the membership function

µX̃0
(x) = µR̃0

(c̃1x1+̃ · · · +̃c̃nxn, d̃), (5.51)

for all x ∈ Rn. The membership function of optimal solution X̃∗ is defined for
all x ∈ Rn by

µX̃∗(x) = GA(µX̃0
(x), µX̃(x)). (5.52)

If (5.31) is a maximization problem “the higher value is better,” then the
membership function µd̃ of the fuzzy goal d̃ is supposed to be increasing or
nondecreasing. If (5.31) is a minimization problem “the lower value is better,”
then the membership function µd̃ of d̃ is decreasing or nonincreasing. The fuzzy
relation R̃0 for comparing c̃1x1+̃ · · · +̃c̃nxn and d̃ is supposed to be a fuzzy
extension of ≥ or ≤.

Formally, Definitions 5.25 and 5.28 are similar. In other words, the concept
of the feasible solution is similar to the concept of optimal solution. Therefore,
we can take advantage of the properties of the feasible solution studied in the
preceding section.

Observe that in the case of crisp parameters cj , aij and bi, the set of all
max-optimal solutions given by (5.50) coincides with the set of all optimal
solutions of the classical LP problem. We have the following result.

Proposition 5.29. Let cj, aij, bi ∈ R be crisp fuzzy numbers for all i ∈ M,
j ∈ N . Let d̃ ∈ F(R) be a fuzzy goal with a strictly increasing membership
function µd̃. Let for i ∈ M, R̃i be a fuzzy extension of relation “≤” on R,
and R̃0 be a T -fuzzy extension of relation “≥”. Let T , G and GA be t-norms.

Then the set of all max-satisficing solutions of (5.31) coincides with the
set of all optimal solutions X∗ of LP problem (5.29).

Proof. Clearly, a feasible solution X̃ of (5.31) is crisp; i.e., µX̃(x) = χX(x)
for all x ∈ Rn, where X is the set of all feasible solutions (5.30) of crisp LP
problem (5.29). Moreover, by (5.51), for crisp c ∈ Rn we obtain

µX̃0
(x) = µR̃0

(f(x, c), d̃) = µd̃(c1x1 + · · ·+ cnxn).

Substituting into (5.52) we get

µX̃∗(x) = GA(µd̃(f(x, c)), χX(x)) =

{
µd̃(c1x1 + · · ·+ cnxn) if x ∈ X,

0 otherwise.
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Since µd̃ is strictly increasing, it follows that

µX̃∗(x∗) = Hgt(X̃∗)

if and only if

µX̃∗(x∗) = sup{µd̃(c1x1 + · · ·+ cnxn) | x ∈ X},

which is the desired result. ut
Proposition 5.30. Let c̃′j, ã′ij and b̃′i and c̃′′j , ã′′ij and b̃′′i be two collections of
fuzzy quantities, parameters of FLP problem (5.31), i ∈M, j ∈ N . Let T , G,
GA be t-norms. Let R̃i, i ∈ {0}∪M, be T -fuzzy extensions of valued relations
Ri on R, and d̃ ∈ FI(R) be a fuzzy goal.

If X̃∗′ is the satisficing solution of FLP problem (5.31) with the parameters
c̃′j, ã′ij and b̃′i, X̃∗′′ is the satisficing solution of the FLP problem with the
parameters c̃′′j , ã′′ij and b̃′′i such that for all i ∈M, j ∈ N ,

c̃′j ⊆ c̃′′j , ã′ij ⊆ ã′′ij and b̃′i ⊆ b̃′′i ,

then it holds
X̃∗′ ⊆ X̃∗′′.

Proof. First, we show that X̃ ′ ⊆ X̃ ′′. Let x ∈ Rn, i ∈M. We must show that

ã′i1x1+̃ · · · +̃ã′inxn ⊆ ã′′i1x1+̃ · · · +̃ã′′inxn.

For each u ∈ R we get

µã′i1x1+̃···+̃ã′inxn
(u)

= sup{T (µã′i1(a1), . . . , µã′in
(an)) | ai1x1 + · · ·+ ainxn = u}

≤ sup{T (µã′′i1(a1), . . . , µã′′in
(an)) | ai1x1 + · · ·+ ainxn = u}

= µã′′i1x1+̃···+̃ã′′inxn
(u).

Now, as b̃′i ⊆ b̃′′i , using monotonicity of T -fuzzy extension R̃i of Ri, we obtain

µR̃i
(ã′i1x1+̃ · · · +̃ã′inxn, b̃′i) ≤ µR̃i

(ã′′i1x1+̃ · · · +̃ã′′inxn, b̃′′i ).

Then, applying again monotonicity of G in (5.35), we obtain X̃ ′ ⊆ X̃ ′′.
It remains to show that X̃ ′

0 ⊆ X̃ ′′
0 , where

µX̃′
0
(x) = µR̃0

(f̃(x, c̃′), d̃), µX̃′′
0
(x) = µR̃0

(f̃(x, c̃′′), d̃).

We show that f̃(x, c̃′) ⊆ f̃(x, c̃′′). Since for all j ∈ N , µc̃′j (c) ≤ µc̃′′j (c) for all
c ∈ R, by (5.32) we obtain for all u ∈ R,
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µc̃′1x1+̃···+̃c̃′nxn
(u)

= sup{T (µc̃′1(c1), . . . , µc̃′n(cn)) | c1x1 + · · ·+ cnxn = u}
≤ sup{T (µc̃′′1 (c1), . . . , µc̃′′n(cn)) | c1x1 + · · ·+ cnxn = u}
= µc̃′′1 x1+̃···+̃c̃′′nxn

(u).

Using monotonicity of R̃0, we have

µR̃0
(c̃′1x1 +̃ · · · +̃ c̃′nxn, d̃) ≤ µR̃0

(c̃′′1x1 +̃ · · · +̃ c̃′′nxn, d̃).

Finally, applying monotonicity of GA in (5.52), we obtain X̃∗′ ⊆ X̃∗′′. ut
Further on, we extend Theorem 5.26 to the case of the satisficing solution

of an FLP problem. For this purpose we introduce the following notation.
Given α ∈ (0, 1], j ∈ N , let

c̃L
j (α) = inf{c | c ∈ [c̃j ]α},

c̃R
j (α) = sup{c | c ∈ [c̃j ]α},

d̃L(α) = inf{d | d ∈ [d̃]α},
d̃R(α) = sup{d | d ∈ [d̃]α}.

Theorem 5.31. Let c̃j, ãij and b̃i be fuzzy quantities, i ∈ M, j ∈ N . Let
d̃ ∈ F(R) be a fuzzy goal with the membership function µd̃ satisfying the
following conditions,

µd̃ is upper semicontinuous,
µd̃ is strictly increasing,
limt→−∞ µd̃(t) = 0.

(5.53)

For i ∈ M, let R̃i be the T -fuzzy extension of the binary relation ≤ on R,
and R̃0 be the T -fuzzy extension of the binary relation ≥ on R. Let T = G =
GA = min. Let X̃∗ be a satisficing solution of FLP problem (5.31) and let
α ∈ (0, 1).
A vector x = (x1, . . . , xn) ≥ 0 belongs to [X̃∗]α if and only if

n∑

j=1

c̃R
j (α)xj ≥ d̃L(α), (5.54)

n∑

j=1

ãL
ij(α)xj ≤ b̃R

i (α), i ∈M. (5.55)

The proof is omitted; it is analogous to the proof of Theorem 5.26, part
(i), with a simple modification: instead of compactness of d̃, we assume (5.53).

If the membership functions of the fuzzy parameters c̃j , ãij and b̃i can be
formulated in an explicit form, e.g., as (L,R)-fuzzy quantities (see (5.46)),
then we can find a max-satisficing solution as the optimal solution of some
associated classical optimization problem.
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Proposition 5.32. Let

µX̃0
(x) = µR̃0

(c̃1x1 +̃ · · · +̃ c̃nxn, d̃)

be the membership function of the fuzzy objective and let

µX̃i
(x) = µR̃i

(ãi1x1 + · · ·+ ãinxn, b̃i), i ∈M,

be the membership functions of the fuzzy constraints, x = (x1, . . . , xn) ∈ Rn.
Let T = G = GA = min and assume that (5.53) holds for fuzzy goal d̃. Then
the vector (t∗, x∗) ∈ Rn+1 is an optimal solution of the optimization problem

maximize t

subject to µX̃i
(x) ≥ t, i ∈ {0} ∪M,

xj ≥ 0, j ∈ N
(5.56)

if and only if x∗ ∈ Rn is a max-satisficing solution of FLP problem (5.31).

Proof. Let (t∗, x∗) ∈ Rn+1 be an optimal solution of problem (5.56). By (5.49)
and (5.50) we obtain

µX̃∗(x∗) = sup{min{µX̃0
(x), µX̃i

(x)}|x ∈ Rn} = Hgt(X̃∗).

Hence, x∗ is a max-satisficing solution.
The proof of the converse statement follows from Definition 5.28. ut

5.6.2 α-efficient solution

Now, let ã and b̃ be fuzzy quantities and R̃ be a fuzzy relation on R, α ∈ (0, 1].
We write

ã -R̃
α b̃, if µR̃(ã, b̃) ≥ α. (5.57)

We also write
ã ≺R̃

α b̃, if ã -R̃
α b̃ and µR̃(b̃, ã) < α. (5.58)

Notice that -R̃
α is a binary relation on the set of all fuzzy quantities F0(R).

If ã and b̃ are crisp fuzzy numbers corresponding to real numbers a and b,
respectively, and R̃ is a fuzzy extension of relation ≤, then ã -R̃

α b̃ if and only
if a ≤ b.

Now, modifying the well-known concept of the efficient (nondominated)
solution of the LP problem we define “maximization” (or “minimization”) of
the objective function of the FLP problem (5.31).

Definition 5.33. Let c̃j, ãij and b̃i, i ∈ M, j ∈ N , be fuzzy quantities
on R. Let R̃i, i ∈ 0, 1, 2, . . . , m, be fuzzy relations on R and α ∈ (0, 1].
Let x = (x1, . . ., xn)T be an α-feasible solution of (5.31) and denote c̃T x =
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c̃1x1 +̃ . . . +̃ c̃nxn. The vector x ∈ Rn is an α-efficient solution of (5.31)
with maximization of the objective function ifthere is no x′ ∈ [X̃]α such that
c̃T x ≺R̃0

α c̃T x′. Similarly, the vector x is an α-efficient solution of (5.31) with
minimization of the objective function if there is no x′ ∈ [X̃]α such that
c̃T x′ ≺R̃0

α c̃T x.

Notice that any α-efficient solution of the FLP problem is an α-feasible
solution of the FLP problem with some additional property. If all coefficients
of FLP problem (5.31) are crisp, then the α-efficient solution of the FLP
problem is equivalent to the classical optimal solution of the corresponding
LP problem.

In the following theorem we show some necessary and sufficient conditions
for an α-efficient solution of (5.31) in the case of special fuzzy extensions of
the binary relation ≤ .

Theorem 5.34. Let c̃j, ãij and b̃i, i ∈ M, j ∈ N , be fuzzy quantities, α ∈
(0, 1).
(i) Let R̃i = ≤̃min

, i.e., R̃i be a fuzzy extension of the binary relation ≤ on
R defined by (5.19), (5.20) for all i ∈ 0, 1, 2, . . . ,m. Let x∗ = (x∗1, . . ., x

∗
n)T ,

x∗j ≥ 0, j ∈ N , be an α-feasible solution of (5.31). Then the vector x∗ ∈ Rn is
an α-efficient solution of (5.31) with maximization of the objective function
if and only if x∗ is an optimal solution of the following LP problem,

maximize c̃R
1 (α)x1 + · · ·+ c̃R

n (α)xn

subject to ãL
i1(α)x1 + · · ·+ ãL

in(α)xn ≤ b̃R
i (α), i ∈M,

xj ≥ 0, j ∈ N .

(5.59)

(ii) Let R̃0 = ≤̃min
, R̃i = ≤̃max

, i ∈ 1, 2, . . . ,m. Let x∗ = (x∗1, . . ., x
∗
n)T ,

x∗j ≥ 0, j ∈ N , be an α-feasible solution of (5.31). Then the vector x∗ ∈ Rn is
an α-efficient solution of (5.31) with maximization of the objective function
if and only if x∗ is an optimal solution of the following LP problem,

maximize c̃R
1 (α)x1 + · · ·+ c̃R

n (α)xn

subject to ãR
i1(α)x1 + · · ·+ ãR

in(α)xn ≤ b̃L
i (α), i ∈M,

xj ≥ 0, j ∈ N .

(5.60)

(iii) Let R̃0 = ≤̃max
, R̃i = ≤̃min

, i ∈ 1, 2, . . . ,m. Let x∗ = (x∗1, . . ., x
∗
n)T ,

x∗j ≥ 0, j ∈ N , be an α-feasible solution of (5.31). Then the vector x∗ ∈ Rn is
an α-efficient solution of (5.31) with maximization of the objective function
if and only if x∗ is an optimal solution of the following LP problem,

maximize c̃L
1 (α)x1 + · · ·+ c̃L

n(α)xn

subject to ãL
i1(α)x1 + · · ·+ ãL

in(α)xn ≤ b̃R
i (α), i ∈M,

xj ≥ 0, j ∈ N .

(5.61)



140 5 Fuzzy linear optimization

(iv) Let R̃i = ≤̃max
, i ∈ 0, 1, 2, . . . , m. Let x∗ = (x∗1, . . ., x

∗
n)T , x∗j ≥ 0, j ∈ N ,

be an α-feasible solution of (5.31). Then the vector x∗ ∈ Rn is an α-efficient
solution of (5.31) with maximization of the objective function if and only if
x∗ is an optimal solution of the following LP problem,

maximize c̃L
1 (α)x1 + · · ·+ c̃L

n(α)xn

subject to ãR
i1(α)x1 + · · ·+ ãR

in(α)xn ≤ b̃L
i (α), i ∈M,

xj ≥ 0, j ∈ N .

(5.62)

Proof. First, we prove part (i). Let x∗ = (x∗1, . . ., x
∗
n)T , x∗j ≥ 0, j ∈ N , be

an α-efficient solution of (5.31) with maximization of the objective function.
By Theorem 5.26 (i), formulae (5.57), (5.58) and Definition 5.33, x∗ is an
optimal solution of the LP problem (5.59). On the other hand, if x∗ is an
optimal solution of the LP problem (5.59), then by Theorem 5.26, x∗ is an
α-feasible solution of the FLP problem (5.31). It is evident that (5.57) and
also (5.58) are satisfied. Hence, x∗ is an α-efficient solution of (5.31) with
maximization of the objective function.
The proof of the other parts is analogous. Here we appropriately use Theorem
5.26 (ii). ut

In the following section we investigate duality, a fundamental concept of
linear optimization. Again we distinguish the above-mentioned two approaches
to “optimality” in FLP.

5.7 Duality

In this section we generalize the well-known concept of duality in LP for FLP
problems. Some results of this section can also be found in [135]. We derive
some weak and strong duality theorems that extend the known results for LP
problems.

Consider the following FLP problem

“maximize” c̃1x1 +̃ · · · +̃ c̃nxn

subject to (ãi1x1 +̃ · · · +̃ ãinxn)R̃b̃i, i ∈M,

xj ≥ 0, j ∈ N ,

(5.63)

where c̃j , ãij and b̃i are normal fuzzy quantities with membership functions
µc̃j : R→ [0, 1], µãij : R→ [0, 1] and µb̃i

: R→ [0, 1], i ∈M, j ∈ N .
Let Φ : F(R×R) → F(F(R)×F(R)) be a mapping and Ψ : F(R×R) →

F(F(R) × F(R)) be the dual mapping to mapping Φ. Let R be a valued
relation on R and let R̃ = Φ(R) and R̃D = Ψ(R); see Definition 5.15. Then R̃
and R̃D are dual fuzzy relations.

FLP problem (5.63) is called the primal FLP problem (P).
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The dual FLP problem (D) is defined as

“minimize” b̃1y1 +̃ · · · +̃ b̃mym

subject to c̃jR̃
D(ã1jy1 +̃ · · · +̃ ãmjym), j ∈ N ,

yi ≥ 0, i ∈M.

(5.64)

The pair of FLP problems (5.63) and (5.64) is called the primal–dual pair of
FLP problems.

Let R be the binary operation ≤, let T = min and S = max. Let ≤̃min

and ≤̃max
be fuzzy extensions defined by (5.19) and (5.20), respectively. Since

T is the dual t-norm to S, by Definition 5.15, ≤̃max
is the dual fuzzy relation

to ≤̃min
. We obtain the primal–dual pair of FLP problems as follows,

(P):

“maximize” c̃1x1 +̃ · · · +̃ c̃nxn

subject to ãi1x1 +̃ · · · +̃ ãinxn≤̃min
b̃i, i ∈M,

xj ≥ 0, j ∈ N .

(5.65)

(D):
“minimize” b̃1y1 +̃ · · · +̃ b̃mym

subject to c̃j≤̃max
ã1jy1 +̃ · · · +̃ ãmjym, j ∈ N ,

yi ≥ 0, i ∈M.

(5.66)

Let the feasible solution of the primal FLP problem (P) be denoted by X̃
and the feasible solution of the dual FLP problem (D) by Ỹ . Clearly, X̃ is a
fuzzy subset of Rn; Ỹ is a fuzzy subset of Rm.

Notice that in the crisp case, i.e., when the parameters c̃j , ãij and b̃i are
crisp fuzzy numbers, by Theorem 5.26 the relations ≤̃min

and ≤̃max
coincide

with ≤ ; hence (P) and (D) are a primal–dual pair of LP problems in the
classical sense. The following proposition is a useful modification of Theorem
5.26.

Proposition 5.35. Let c̃j and ãij be fuzzy quantities and let yi ≥ 0 for all
i ∈M, j ∈ N , α ∈ (0, 1). Let ≥̃max

be a fuzzy extension of the binary relation
≥ defined by Definition 5.20. Then for j ∈ N it holds

µ≥̃max(ã1jy1 +̃ · · · +̃ ãmjym, c̃j) ≥ 1− α if and only if
∑

i∈M
ãL

ij(α)yi ≥ c̃R
j (α). (5.67)

The proof of Proposition 5.35 follows easily from Theorem 5.26. In the
following theorem we prove the weak form of the duality theorem for FLP
problems.
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Theorem 5.36. First Weak Duality Theorem. Let c̃j, ãij and b̃i be fuzzy
quantities for all i ∈ M and j ∈ N . Let A = TM = min, S = SM = max
and α ∈ (0, 1). Let X̃ be a feasible solution of FLP problem (5.63) and Ỹ be
a feasible solution of FLP problem (5.64).

If a vector x = (x1, . . . , xn)T ≥ 0 belongs to [X̃]α and y = (y1, . . . , ym)T ≥
0 belongs to [Ỹ ]1−α, then

∑

j∈N
c̃R
j (α)xj ≤

∑

i∈M
b̃R
i (α)yi. (5.68)

Proof. Let x ∈ [X̃]α and y ∈ [Ỹ ]1−α, xj ≥ 0, yi ≥ 0 for all i ∈ M, j ∈ N .
Then by Proposition 5.35 and by multiplying both sides by xj and summing
up we obtain ∑

j∈N

∑

i∈M
ãL

ij(α)yixj ≥
∑

j∈N
c̃R
j (α)xj . (5.69)

Similarly, by Theorem 5.26 we obtain
∑

j∈N

∑

i∈M
ãL

ij(α)xjyi ≤
∑

i∈M
b̃R
i (α)yi. (5.70)

Combining inequalities (5.69) and (5.70), we obtain
∑

j∈N
c̃R
j (α)xj ≤

∑

j∈N

∑

i∈M
ãL

ij(α)xjyi ≤
∑

i∈M
b̃R
i (α)yi,

which is the desired result. ut
Theorem 5.37. Second Weak Duality Theorem. Let c̃j, ãij and b̃i be fuzzy
quantities for all i ∈ M and j ∈ N . Let A = TM = min, S = SM = max
and α ∈ (0, 1). Let X̃ be a feasible solution of FLP problem (5.63) and Ỹ be
a feasible solution of FLP problem (5.64).

If for some x = (x1, . . . , xn)T ≥ 0 belonging to [X̃]α and y = (y1, . . . , ym)T

≥ 0 belonging to [Ỹ ]1−α it holds
∑

j∈N
c̃R
j (α)xj =

∑

i∈M
b̃R
i (α)yi, (5.71)

then x is an α-efficient solutions of FLP problem (P) and y is a (1 − α)-
efficient solution of FLP problem (D).

Proof. Let x ∈ [X̃]α and y ∈ [Ỹ ]1−α. Then by Proposition 5.35, inequality
(5.68) is satisfied, and, moreover, equality (5.71) holds. Suppose that x ∈ [X̃]α
is not an α-efficient solution of FLP problem (P). Then there exists x′ ∈ [X̃]α
such that c̃T x ≺α c̃T x′. However, by Definition 5.33, (5.57) and (5.58) we
obtain ∑

j∈N
c̃R
j (α)xj <

∑

j∈N
c̃R
j (α)x′j ,
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a contradiction to (5.68). Hence, x is an α-efficient solutions of FLP problem
(P).

The second part of the proposition, saying that y is a (1 − α)-efficient so-
lutions of FLP problem (D) can be proven analogously. ut

Remarks

1. In the crisp case, Theorems 5.36 and 5.37 are standard LP weak duality
theorems.

2. The result of the first weak duality theorem is independent of the “max-
imization” or “minimization” approach.

3. By analogy we can easily formulate the primal–dual pair of FLP prob-
lems interchanging the fuzzy relations ≤̃min

and ≤̃max
in the objective func-

tions and/or constraints of (5.63) and (5.64). Then the weak duality theorems
should be appropriately modified.

4. Let α ≥ 0.5. It is clear that [Ỹ ]α ⊆ [Ỹ ]1−α. In the weak duality theorems
we can change the assumptions as follows: x ∈ [X̃]α and y ∈ [Ỹ ]α. Obviously,
the statements of the theorems will remain unchanged.

Let us turn to the strong duality. We start with the “satisficing” approach
to “maximization” or “minimization”.

For this purpose, we assume the existence of exogenously given additional
fuzzy goals d̃ ∈ F(R) and h̃ ∈ F(R). The fuzzy goal d̃ is compared to fuzzy
values c̃1x1 +̃ · · · +̃ c̃nxn of the objective function of the primal FLP problem
(P) by fuzzy relation ≥̃min

. On the other hand, the fuzzy goal h̃ is compared
to fuzzy values b̃1y1 +̃ · · · +̃ b̃mym of the objective function of the dual FLP
problem (D) by fuzzy relation ≤̃max

. In this way we treat the fuzzy objectives
as constraints

c̃1x1 +̃ · · · +̃ c̃nxn≥̃min
d̃, b̃1y1 +̃ · · · +̃ b̃mym≤̃max

h̃.

By X̃∗ we denote the satisficing solution of the primal FLP problem (P),
defined by Definition 5.28, by Ỹ ∗; the satisficing solution of the dual FLP
problem (D) is denoted. Clearly, X̃∗ is a fuzzy subset of Rn, Ỹ ∗ is a fuzzy
subset of Rm and, moreover, X̃∗ ⊆ X̃ and Ỹ ∗ ⊆ Ỹ .

Theorem 5.38. First Strong Duality Theorem. Let c̃j, ãij and b̃i be fuzzy
quantities for all i ∈ M and j ∈ N . Let d̃, h̃ ∈ F(R) be fuzzy goals with the
membership functions µd̃ and µh̃ satisfying the following conditions,

both µd̃ and µh̃ are upper semicontinuous,
µd̃ is strictly increasing, µh̃ is strictly decreasing,
lim

t→−∞
µd̃(t) = lim

t→+∞
µh̃(t) = 0.

(5.72)
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Let G = T = min and S = max. Let ≤̃min
be the T -fuzzy extension of the

binary relation ≤ on R and ≤̃max
be the S-fuzzy extension of the relation ≤ on

R. Let X̃∗ be a satisficing solution of FLP problem (5.65), Ỹ ∗ be a satisficing
solution of FLP problem (5.66) and α ∈ (0, 1).
If a vector x∗ = (x∗1, . . . , x

∗
n)T ≥ 0 belongs to [X̃∗]α, then there exists a vector

y∗ = (y∗1 , . . . , y∗m)T ≥ 0 that belongs to [Ỹ ∗]1−α, and
∑

j∈N
c̃R
j (α)x∗j =

∑

i∈M
b̃R
i (α)y∗i . (5.73)

Proof. Let x∗ = (x∗1, . . . , x
∗
n)T ≥ 0, x∗ ∈ [X̃∗]α. By Proposition 5.35 and

Theorem 5.26
∑

j∈N
c̃R
j (α)x∗j ≥ d̃L(α), (5.74)

∑

j∈N
ãL

ij(α)x∗j ≤ b̃R
i (α), i ∈M. (5.75)

Consider the following LP problem,
(P1)

maximize
∑

j∈N
c̃R
j (α)xj

subject to
∑

j∈N
ãL

ij(α)xj ≤ b̃R
i (α), i ∈M,

xj ≥ 0, j ∈ N .

By assumptions (5.72) concerning the fuzzy goal d̃, the system of inequalities
(5.74) and (5.75) is satisfied if and only if x∗ is the optimal solution of (P1).
By the standard strong duality theorem for LP, there exists y∗ ∈ R∗ being an
optimal solution of the dual problem

(D1)
minimize

∑
i∈M

b̃R
i (α)yi

subject to c̃R
j (α) ≤ ∑

i∈M
ãL

ij(α)yi, j ∈ N ,

yi ≥ 0, i ∈M,

such that (5.73) holds.
It remains only to prove that y∗ ∈ [Ỹ ∗]1−α. This fact follows from assump-

tions (5.72) concerning the fuzzy goal h̃. ut
Notice that in the crisp case, (5.73) is the standard strong duality result

for LP.
Now we turn to the α-efficient approach to optimization of FLP problems.
By X∗

α we denote the α-efficient solution of the primal FLP problem (P),
defined by Definition 5.33; analogously, by Y ∗

α the α-efficient solution of the
dual FLP problem (D) is denoted.
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Theorem 5.39. Second Strong Duality Theorem. Let c̃j, ãij and b̃i be fuzzy
quantities for all i ∈ M and j ∈ N . Let ≤̃min

and ≥̃max
be fuzzy extensions

of the binary relation ≤, and α ∈ (0, 1). If [X̃]α and [Ỹ ]1−α are nonempty,
then there exist x∗, an α-efficient solution of FLP problem (P), and y∗, a
(1− α)-efficient solution of FLP problem (D) such that

∑

j∈N
c̃R
j (α)x∗j =

∑

i∈M
b̃R
i (α)y∗i . (5.76)

Proof. Consider the following couple of classical LP problems,

maximize
∑

j∈N
c̃R
j (α)xj

subject to
∑

j∈N
ãL

ij(α)xj ≤ b̃R
i (α), i ∈M,

xj ≥ 0, j ∈ N ,

(5.77)

and
minimize

∑
i∈M

b̃R
i (α)yi

subject to c̃R
j (α) ≤ ∑

i∈M
ãL

ij(α)yi, j ∈ N ,

yi ≥ 0, i ∈M.

(5.78)

Evidently, LP problems (5.77) and (5.78) are dual to each other in the usual
sense. Then according to the assumptions both problems (5.77) and (5.78)
are feasible and by the standard duality theorem for the couple of dual LP
problems, there exist x∗, a feasible solution of problem (5.77), and y∗, a fea-
sible solution of problem (5.78), such that (5.73) holds. By Proposition 5.26
it follows that x∗ ∈ [X̃]α and y∗ ∈ [Ỹ ]1−α and by Theorem 5.37, x∗ is an
α-efficient solution of FLP problem (P) and y∗ is a (1 − α)-efficient solution
of FLP problem (D). ut

Particularly, in the crisp case, Theorem 5.39 is in fact the strong duality
result for standard LP. The question arises as to how the theorems could be
modified for more general t-norms and t-conorms.

5.8 Extended addition

Up till now, in Proposition 5.23, formulae (5.33), (5.35) and many others we
have used addition of fuzzy values by the t-norm TM = min. In this section,
we investigate addition of fuzzy quantities using a more general t-norm T ;
particularly we denote

f̃ = c̃1x1 +̃T · · · +̃T c̃nxn, (5.79)

and



146 5 Fuzzy linear optimization

g̃i = ãi1x1 +̃T · · · +̃T ãinxn, (5.80)

for each x ∈ Rn, where c̃j , ãij ∈ F(R), for all i ∈ M, j ∈ N . The extended
addition +̃T in (5.79) and (5.80) is defined by (5.32) and (5.34), respectively,
that is, by using the extension principle. The membership functions of (5.79)
and (5.80) are defined as follows.

µf̃ (t) = sup{T (µc̃1(c1), . . . , µc̃n
(cn))|t = c1x1 + · · ·+ cnxn}, (5.81)

µg̃i
(t) = sup{T (µãi1(ai1), . . . , µãin

(ain))|t = ai1x1 + · · ·+ ainxn}. (5.82)

Formulae (5.79), (5.80) or (5.81), (5.82) can be difficult to obtain, however,
in some special cases analytical formulae can be derived.

For the sake of brevity we deal only with (5.79); formula (5.80) can be
obtained analogously. We derive special formulae for a broad class of fuzzy
values (i.e., coefficients of the FLP problem) generated by the same functions.

Let Φ, Ψ : (0,+∞) → [0, 1] be nonincreasing, semistrictly quasiconcave
and upper-semicontinuous functions. Given γ, δ ∈ (0, +∞), define functions
Φγ , Gδ : (0, +∞) → [0, 1] for x ∈ (0, +∞) by

Φγ(x) = Φ

(
x

γ

)
, Ψδ(x) = Ψ

(x

δ

)
.

Let lj , rj ∈ R such that lj ≤ rj , let γj , δj ∈ (0, +∞) and let

c̃j = (lj , rj , Φγj , Ψδj ), j ∈ N ,

denote fuzzy intervals with the membership functions given by

µc̃j (x) =





Φγj (lj − x) if x ∈ (−∞, lj),
1 if x ∈ [lj , rj ],
Ψδj

(x− rj) if x ∈ (rj ,+∞).
(5.83)

The following proposition shows that c̃1x1 +̃T · · ·+̃T c̃nxn is a closed fuzzy
quantity of the same type for particular t-norms T . The proof is straightfor-
ward and is omitted here.

Proposition 5.40. Let c̃j = (lj , rj , Φγj , Ψδj ), j ∈ N , be fuzzy quantities with
the membership functions given by (5.83). For x = (x1, . . . , xn)T ∈ Rn, xj ≥ 0
for all j ∈ N , define Ix by

Ix = {j | xj > 0, j ∈ N}.

Then

c̃1x1 +̃TM
· · · +̃TM

c̃nxn = (l, r, ΦlM , ΨrM
), (5.84)

c̃1x1 +̃TD
· · · +̃TD

c̃nxn = (l, r, ΦlD , ΨrD
), (5.85)

where TM is the minimum t-norm, TD is the drastic product and
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l =
∑

j∈Ix

ljxj , r =
∑

j∈Ix

rjxj ,

lM =
∑

j∈Ix

γj

xj
, rM =

∑

j∈Ix

δj

xj
,

lD = max
{

γj

xj
| j ∈ Ix

}
, rD = max

{
δj

xj
| j ∈ Ix

}
.

If all c̃j are (L,R)-fuzzy intervals, then an analogous and more specific
result can be obtained. Let lj , rj ∈ R with lj ≤ rj , let γj , δj ∈ [0,+∞) and
let L,R be nonincreasing, semistrictly quasiconcave, upper-semicontinuous
functions from (0, 1] into [0,+∞), Moreover, assume that L(1) = R(1) = 0,
and define L(0) = limx→0 L(x), R(0) = limx→0R(x).

Let
c̃j = (lj , rj , γj , δj)LR

be an (L,R)-fuzzy interval given by the membership function defined for each
x ∈ R and for every j ∈ N , by

µc̃j
(x) =





L(−1)
(

lj−x
γj

)
if x ∈ (lj − γj , lj), γj > 0,

1 if x ∈ [lj , rj ],
R(−1)

(
x−rj

δj

)
if x ∈ (rj , rj + δj), δj > 0,

0 otherwise,

(5.86)

where L(−1),R(−1) are pseudo-inverse functions of L, R, respectively. We
obtain the following result.

Proposition 5.41. Let c̃j = (lj , rj , γj , δj)LR, j ∈ N , be (L,R)-fuzzy inter-
vals with the membership functions given by (5.86) and let x = (x1, . . . , xn)T ∈
Rn, xj ≥ 0 for all j ∈ N . Then

c̃1x1+̃TM · · · +̃TM c̃nxn = (l, r, AM , BM )LR, (5.87)
c̃1x1+̃TD

· · · +̃TD
c̃nxn = (l, r, AD, BD)LR, (5.88)

where TM is the minimum t-norm, TD is the drastic product and

l =
∑

j∈N
ljxj , r =

∑

j∈N
rjxj ,

AM =
∑

j∈N
γjxj , BM =

∑

j∈N
δjxj ,

AD = max{γj | j ∈ N}, BD = max{δj | j ∈ N}.

The results (5.85) and (5.88) in Propositions 5.40 and 5.41, respectively,
can be extended as follows; see also [73].
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Proposition 5.42. Let T be a continuous Archimedean t-norm with an ad-
ditive generator f . Let Φ : (0, +∞) → [0, 1] be defined for each x ∈ (0, +∞)
as

Φ(x) = f (−1)(x).

Let c̃j = (lj , rj , Φγj , Φδj ), j ∈ N , be closed fuzzy intervals with the membership
functions given by (5.83) and let x = (x1, . . . , xn)T ∈ Rn, xj ≥ 0 for all j ∈ N ,
Ix = {j | xj > 0, j ∈ N}. Then

c̃1x1 +̃T · · · +̃T c̃nxn = (l, r, ΦlD , ΦrD
),

where

l =
∑

j∈Ix

ljxj , r =
∑

j∈Ix

rjxj ,

lD = max
{

γj

xj
| j ∈ Ix

}
, quad rD = max

{
δj

xj
| j ∈ Ix

}
.

For a continuous Archimedean t-norm T and closed fuzzy interval c̃j sat-
isfying the assumptions of Proposition 5.42, we obtain easily

c̃1x1 +̃T · · · +̃T c̃nxn = c̃1x1 +̃TD
· · · +̃TD

c̃nxn,

which means that we obtain the same fuzzy linear function based on an arbi-
trary t-norm T ′ such that T ′ ≤ T .

The result that follows generalizes a result concerning the addition of
closed fuzzy intervals based on continuous Archimedean t-norms.

Proposition 5.43. Let T be a continuous Archimedean t-norm with an addi-
tive generator f . Let K : [0, +∞) → [0, +∞) be a continuous convex function
with K(0) = 0. Let α ∈ (0, +∞) and

Φα(x) = f (−1)
(
αK

(x

α

))

for all x ∈ [0, +∞). Let c̃j = (lj , rj , Φγj
, Φδj

), j ∈ N , be closed fuzzy intervals
with the membership functions given by (5.83) and let x = (x1, . . . , xn)T ∈ Rn,
xj ≥ 0 for all j ∈ N , Ix = {j | xj > 0, j ∈ N}. Then

c̃1x1 +̃T · · · +̃T c̃nxn = (l, r, ΦlK , ΦrK
),

where

l =
∑

j∈Ix

ljxj , r =
∑

j∈Ix

rjxj , (5.89)

lK =
∑

j∈Ix

γj

xj
, rK =

∑

j∈Ix

δj

xj
.
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A simple consequence can be obtained from Proposition 5.42.
The sum based on the product t-norm TP of Gaussian fuzzy numbers

is again a Gaussian fuzzy number. Indeed, the additive generator f of the
product t-norm TP is given by f(x) = − log(x). Let K(x) = x2. Then

Φα(x) = f (−1)
(
αK

(x

α

))
= e−

x2
α .

By Proposition 5.43 we obtain the formula.
A similar approach based on centered fuzzy numbers is mentioned later in

this chapter; see also [76], [78] and [135].

5.9 Special models of FLP

Three types of the FLP problem known from the literature are investigated
in this section. We start with the oldest version of FLP problems, originally
called the fuzzy (linear) programming problem; see [197]. Later on (e.g., see
[81]), this problem was named the flexible LP problem.

5.9.1 Flexible linear programming

Flexible linear programming refers to the approach to LP problems allowing
for a kind of flexibility of the objective function and constraints in the standard
LP problem (5.29). Consider

maximize c1x1 + · · ·+ cnxn

subject to ai1x1 + · · ·+ ainxn ≤ bi, i ∈M,

xj ≥ 0, j ∈ N .

(5.90)

The values of parameters cj , aij and bi in (5.90) are supposed to be subjected
to some uncertainty. By nonnegative values pi, i ∈ {0}∪M, admissible viola-
tions of the objective and constraints are (subjectively) chosen and introduced
to the original model (5.90).

An aspiration level d0 ∈ R is (subjectively) determined such that the
decision maker (DM) is fully satisfied on the condition that the value of the
objective function is greater than or equal to d0. On the other hand, if the
objective function attains a value smaller than d0 − p0, then DM is fully
dissatisfied. Within the interval (d0− p0, d0), the satisfaction of DM increases
(e.g., linearly) from 0 to 1. Under these assumptions a membership function
µd̃ of the fuzzy goal d̃ could be defined as follows,

µd̃(t) =





1 if t ≥ d0,

1 + t−d0
p0

if d0 − p0 ≤ t < d0,

0 otherwise.
(5.91)



150 5 Fuzzy linear optimization

Now, let for the ith constraint function of (5.90), i ∈ M; a right-hand
side bi ∈ R is known such that then the decision maker is fully satisfied on
condition that the left-hand side is less than or equal to this value. On the
other hand, if the objective function is greater than bi + pi, then the DM
is fully dissatisfied. Within the interval (bi, bi + pi), the satisfaction of DM
decreases (linearly) from 1 to 0. Under these assumptions the membership
function µb̃i

of the fuzzy right-hand side b̃i is defined as

µb̃i
(t) =





1 if t ≤ bi,

1− t−bi

pi
if bi ≤ t < bi + pi,

0 otherwise.
(5.92)

The relationship between the objective function and constraints in the
flexible LP problem is symmetric; i.e., there is no a difference between the
former and the latter. “Maximization” is understood as finding a vector x ∈
Rn such that the membership grade of the intersection of fuzzy sets (5.91) and
(5.92) is maximized. This problem is equivalent to the following optimization
problem,

maximize λ

subject to µd̃

(∑
j∈N cjxj

)
≥ λ,

µb̃i

(∑
j∈N aijxj

)
≥ λ, i ∈M,

0 ≤ λ ≤ 1,

xj ≥ 0, j ∈ N .

(5.93)

Problem (5.93) can easily be transformed to the equivalent LP problem:

maximize λ

subject to
∑

j∈N cjxj ≥ d0 + λp0,∑
j∈N aijxj ≤ bi + (1− λ)pi, i ∈M,

0 ≤ λ ≤ 1,

xj ≥ 0, j ∈ N .

(5.94)

Now, consider a more specific FLP problem:

maximize c1x1 + · · ·+ cnxn

subject to ai1x1 + · · ·+ ainxn≤̃T
b̃i, i ∈M,

xj ≥ 0, j ∈ N ,

(5.95)

where cj , aij and bi are crisp numbers, whereas d̃ and b̃i are fuzzy quantities
defined by (5.91) and (5.92). Moreover, ≤̃T

is a T -fuzzy extension of the usual
inequality relation ≤, with T = min. It turns out that the vector x ∈ Rn

is an optimal solution of the flexible LP problem (5.94) if and only if it is
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a max-satisficing solution of FLP problem (5.95). This result follows directly
from Proposition 5.32.

5.9.2 Interval linear programming

In this subsection we apply the results of this chapter to a special case of the
FLP problem, the interval linear programming problem investigated already
in Chapters 2, 3 and 4. By interval linear programming problem (ILP) we
understand the following FLP problem,

maximize c̃1x1 +̃ · · · +̃ c̃nxn

subject to ãi1x1 +̃ · · · +̃ ãinxnR̃ b̃i, i ∈M,

xj ≥ 0, j ∈ N ,

(5.96)

where c̃j , ãij and b̃i are considered to be compact intervals in R. I.e., c̃j =
[cj , cj ], ãij = [aij , aij ] and b̃i = [bi, bi], where cj , cj , aij , aij and bi, bi are
lower and upper bounds of the corresponding intervals, respectively (see also
Chapter 2). Let the membership functions of c̃j , ãij and b̃i be the characteristic
functions of the intervals. I.e., χ[cj ,cj ] : R → [0, 1], χ[aij ,aij ] : R → [0, 1] and
χ[bi,bi]

: R→ [0, 1], i ∈M, j ∈ N .

Now, we assume that R is the usual binary relation ≤, and A = T = min,
S = max. The fuzzy relation R̃ is the fuzzy extension of a valued relation ≤.
We consider six fuzzy relations R̃, extensions of the binary relation ≤, defined
by (5.19), (5.20) and by (5.22)–(5.25); i.e.,

R̃ ∈
{
≤̃min

, ≤̃max
, ≤̃T,S

, ≤̃T,S , ≤̃S,T
, ≤̃S,T

}
.

Then by Proposition 5.26 we obtain six types of feasible solutions of ILP
problem (5.96).

(i)

X≤̃min =



x ∈ Rn|

n∑

j=1

aijxj ≤ bi, xj ≥ 0, j ∈ N


 . (5.97)

(ii)

X≤̃max =



x ∈ Rn|

n∑

j=1

aijxj ≤ bi, xj ≥ 0, j ∈ N


 . (5.98)

(iii)

X≤̃T,S = X≤̃T,S
=



x ∈ Rn|

n∑

j=1

aijxj ≤ bi, xj ≥ 0, j ∈ N


 . (5.99)
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(iv)

X≤̃S,T = X≤̃S,T
=



x ∈ Rn|

n∑

j=1

aijxj ≤ bi, xj ≥ 0, j ∈ N


 . (5.100)

Clearly, feasible solutions (5.97)–(5.100) are crisp subsets of Rn; moreover,
they all are polyhedral.

In order to find, e.g., a satisficing solution of ILP problem (5.96), we con-
sider a fuzzy goal d̃ ∈ F(R) and R̃0, a fuzzy extension of the usual binary
relation ≥ for comparing the objective with the fuzzy goal.

In the following proposition we show that if the feasible solution of the
ILP problem is crisp then its max-satisficing solution is the same as the set of
all classical optimal solutions of the LP problem of maximizing a particular
crisp objective over the set of feasible solutions.

Proposition 5.44. Let X be a crisp feasible solution of ILP problem (5.96).
Let d̃ ∈ F(R) be a fuzzy goal with the membership function µd̃ satisfying
conditions (5.53). Let GA = G = T = min and S = max.

(i) If R̃0 is ≥̃min
, then the set of all max-satisficing solutions of ILP problem

(5.96) coincides with the set of all optimal solution of the problem

maximize
∑n

j=1 cjxj

subject to x ∈ X.
(5.101)

(ii) If R̃0 is ≥̃max
, then the set of all max-satisficing solutions of ILP problem

(5.96) coincides with the set of all optimal solution of the problem

maximize
∑n

j=1 cjxj

subject to x ∈ X.

Proof. (i) Let x ∈ X be a max-satisficing solution of ILP problem (5.96),
c =

∑n
j=1 cjxj , c =

∑n
j=1 cjxj . Our assumptions give

µ≥̃T (c̃1x1 +̃ · · · +̃ c̃nxn, d̃)

= sup{min{µc̃1x1+̃···+̃c̃nxn
(u), µd̃(v)} | u ≥ v}

= sup{min{χ[c,c](u), µd̃(v)} | u ≥ v}
= µd̃

(∑n
j=1 cjxj

)
.

Hence, x is an optimal solution of (5.101). Conversely, if x ∈ X is an optimal
solution of (5.101), then by Definition 5.28 and by (5.53), x is a max-satisficing
solution of problem (5.96).

(ii) Analogously to the proof of (i), we have
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µ≥̃S
(c̃1x1 +̃ · · · +̃ c̃nxn, d̃)

= inf{max{1− µc̃1x1+̃···+̃c̃nxn
(u), 1− µd̃(v)} | u ≥ v}

= inf{1−min{χ[c,c](u), µd̃(v)} | u ≤ v}
= µd̃

(∑n
j=1 cjxj

)
.

By the same arguments as in (i) we conclude the proof. ut
We close this section with several observations concerning duality of ILP

problems.
Let the primal ILP problem (P) be problem (5.96) with R̃ be ≤̃min

; i.e.,
(5.65) holds. Then the dual ILP problem (D) is (5.66). Clearly, the feasible
solution X≤̃min of (P) is defined by (5.97) and the feasible solution Y≥̃max of
the dual problem (D) can be derived from (5.98) as

Y≥̃max =

{
y ∈ Rm|

m∑

i=1

aijyi ≥ cj , yi ≥ 0, i ∈M
}

.

Notice that the problems

maximize
∑n

j=1 cjxj

subject to x ∈ X≤̃min

and
minimize

∑m
i=1 b̄iyi

subject to y ∈ Y≥̃max

are dual to each other in the usual sense if and only if cj = cj and bi = bi for
all i ∈M and j ∈ N .

5.9.3 FLP problems with centered parameters

An interesting class of FLP problems can be obtained if the parameters of the
FLP problem are fuzzy sets called B-fuzzy intervals; see [77], [135].

Definition 5.45. A fuzzy set A given by the membership function µA : R →
[0, 1] is called a generator in R if

(i) 0 ∈ Core(A),
(ii) µA is quasiconcave on R.

Notice that each generator is a special fuzzy interval A that satisfies (i).

Definition 5.46. A set B of generators in R is called a basis of generators
in R if
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(i) χ{0} ∈ B, χR ∈ B,
(ii) If f, g ∈ B then max{f, g} ∈ B and min{f, g} ∈ B.

Definition 5.47. Let B be a basis of generators. A fuzzy set A given by the
membership function µA : R→ [0, 1] is called a B-fuzzy interval if there exist
aA ∈ R and gA ∈ B such that for each x ∈ R,

µA(x) = gA(x− aA).

The set of all B-fuzzy intervals is denoted by FB(R). Each A ∈ FB(R) is
represented by a pair (aA, gA); we write A = (aA, gA). An ordering relation
≤B is defined on FB(R) as follows. For A,B ∈ FB(R), A = (aA, gA) and
B = (aB , gB), we write A ≤B B if and only if

(aA < aB) or (aA = aB and gA ≤ gB). (5.102)

Notice that ≤B is a partial ordering on FB(R). The following proposition
is a simple consequence of Definition 5.46.

Proposition 5.48. A pair (B,≤), where B is a basis of generators and ≤ is
the pointwise ordering of functions, is a lattice with the maximal element χR
and minimal element χ{0}.

Example 5.49. The following sets of functions form a basis of generators in R.

(i) BD = {χ{0}, χR}—discrete basis,
(ii) BI = {χ[a,b] | −∞ ≤ a ≤ 0 ≤ b ≤ +∞}—interval basis,
(iii) BG = {µd | µd(x) = g(−1)(|x| /d), x ∈ R, d > 0} ∪ {χ{0}, χR}, where

g : (0, 1] → [0,+∞) is a nonincreasing nonconstant function, g(1) = 0 and
g(0) = limx→0 g(x). Obviously, the relation ≤ between function values is
a linear ordering on BG.

Proposition 5.50. Let FBG
(R) be the set of all BG-fuzzy intervals, where BG

is the basis from Example 5.49. Then the relation ≤BG
is a linear ordering on

FBG(R).

We can extend this result as follows. Let B be a basis of generators and ≤B
be a partial ordering on the set FB(R) defined by (5.102) in Definition 5.47.
If B is linearly ordered by ⊆, then FB(R) is linearly ordered by ≤B. It follows
that each c̃ ∈ FB(R) can be uniquely represented by a pair (c, µ), where c ∈ R
and µ ∈ B such that

µc̃(t) = µ(c− t),

therefore we can write c̃ = (c, µ).
Let ◦ be either addition or multiplication, arithmetic operations on R, and

? be either min or max operations on B. On FB(R) we introduce the following
operations,

(a, f) ◦(?) (b, g) = (a ◦ b, f ? g) (5.103)
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for all (a, f), (b, g) ∈ FB(R).
Evidently, the pairs of operations (+(min), ·(min)), (+(min), ·(max)),

(+(max), ·(min)), and (+(max), ·(max)), are distributive. For more properties,
see [78].

Now, consider B-fuzzy intervals: c̃j = (cj , fj), ãij = (aij , gij), b̃i = (bi, hi),
c̃j , ãij , b̃i ∈ FB(R), i ∈M, j ∈ N . Let ¦ and ? be either min or max operations
on B. Consider the following optimization problem,

maximize c̃1 ·(¦) x̃1 +(?) · · ·+(?) c̃n ·(¦) x̃n

subject to ãi1 ·(¦) x̃1 +(?) · · ·+(?) ãin ·(¦) x̃n ≤B b̃i, i ∈M,

x̃j ≥B 0̃, j ∈ N .

(5.104)

In (5.104), maximization is performed with respect to the ordering ≤B; more-
over, x̃j = (xj , ξj), where xj ∈ R and ξj ∈ B , 0̃ = (0, χ{0}). The inequalities
x̃j ≥B 0̃, j ∈ N , are equivalent to xj ≥ 0, j ∈ N . Now, we define feasible and
optimal solutions.

A feasible solution of the problem (5.104) is a vector

(x̃1, x̃2, . . . , x̃n) ∈ FB(R)×FB(R)× · · · × FB(R),

satisfying the constraints

ãi1 ·(¦) x̃1 +(?) · · ·+(?) ãin ·(¦) x̃n ≤B b̃i, i ∈M,

x̃j ≥B 0̃, j ∈ N .

The set of all feasible solutions of (5.104) is denoted by XB.
An optimal solution of the problem (5.104) is a vector

(x̃∗1, x̃
∗
2, . . . , x̃

∗
n)T ∈ FB(R)×FB(R)× · · · × FB(R)

such that
z̃∗ = c̃1 ·(¦) x̃∗1 +(?) · · ·+(?) c̃n ·(¦) x̃∗n

is the maximal element (with respect to the ordering ≤B) of the set

X∗
B = {z̃ | z̃ = c̃1 ·(¦) x̃1 +(?) · · ·+(?) c̃n ·(¦) x̃n, (x̃1, x̃2, . . . , x̃n)T ∈ XB}.

For each of four combinations of min and max in the operations ·(¦) and
+(?), (5.104) is a particular optimization problem. We can easily derive the
following result.

Proposition 5.51. Let B be a linearly ordered basis of generators. Let (x̃∗1, x̃
∗
2,

. . . , x̃∗n)T ∈ FB(R)n be an optimal solution of (5.104), where x̃∗j = (x∗j , ξ
∗
j ), j ∈

N . Then the vector x∗ = (x∗1, . . . , x
∗
n) is an optimal solution of the following

LP problem,

maximize c1x1 + · · ·+ cnxn

subject to ai1x1 + · · ·+ ainxn ≤ bi, i ∈M,

xj ≥ 0, j ∈ N .

(5.105)
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Now, by Ax we denote the set of indices of all active constraints of (5.105)
at x = (x1, . . . , xn); i.e.,

Ax = {i ∈M | ai1x1 + · · ·+ ainxn = bi}.
The following proposition gives a necessary condition for the existence of a
feasible solution of (5.104). The proof can be found in [77].

Proposition 5.52. Let B be a linearly ordered basis of generators. Let (x̃1, x̃2,
. . . , x̃n)T ∈ FB(R)n be a feasible solution of (5.104), where x̃j = (xj , ξj),
j ∈ N . Then the vector x = (x1, . . . , xn)T is the feasible solution of the LP
problem (5.105) and it holds that

(i) If ¦ = max and ? = min, then

min{aij | j ∈ N} ≤B bi for all i ∈ Ax;

(ii) If ¦ = max and ? = max, then

max{aij | j ∈ N} ≤B bi for all i ∈ Ax.

Notice that in this subsection we have presented an alternative approach
to FLP problems. Compared to the approach presented before, the decision
variables xj considered here have not been nonnegative numbers. They have
been considered as fuzzy intervals of the same type as the corresponding
coefficients of the FLP problem. From the computational point of view this
approach is simple as it requires solving only a classical LP problem.

5.10 Fuzzy multicriteria linear programming problem

Up till now we have investigated fuzzy linear programming problems with
one criterion; the objective function. Our approach can, however, be easily
extended to the multicriteria case. The fuzzy multicriteria linear programming
problem (FMLP problem) associated with FLP problem (5.31) is denoted by:

“maximize” c̃k1x1 +̃ · · · +̃ c̃knxn, k ∈ K,

subject to (ãi1x1 +̃ · · · +̃ ãinxn)R̃ib̃i, i ∈M,
xj ≥ 0, j ∈ N .

(5.106)

where K = {1, 2, . . . , q} is a set of fuzzy criteria and µc̃kj
: R → [0, 1], µãij :

R → [0, 1] and µb̃i
: R → [0, 1], k ∈ K, i ∈ M, j ∈ N , are membership

functions of the fuzzy parameters c̃kj , ãij and b̃i, respectively.
In order to “maximize” the objective functions we can use similar concepts

of “optimal solution” as we have done in the case of one criterion, namely:
(1) the satisficing solution, (2) the α-efficient solution. Here, to define a com-
promise solution of a FMLP problem, we use only the satisficing solution; the
other concept can be used analogously.
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Hence, for each criterion

f̃k(x, c̃k) = c̃k1x1 +̃ · · · +̃ c̃knxn, k ∈ K, (5.107)

we assume the existence of a given additional goal d̃k ∈ F(R), the fuzzy set
of the real line. The determination of the goal can be essential for the quality
of the “optimal” solution. Its meaning, however, depends on the nature of the
criteria being in some sense ideal values of the corresponding criteria. The
fuzzy value f̃k(x, c̃k) of the criteria function is compared to the goal d̃k by
means of a fuzzy relation S̃k, also given exogenously. Then the fuzzy criteria
are treated again as constraints f̃j(x, c̃k) S̃k d̃k.

Definition 5.53. Let fk, k ∈ K, be linear functions (5.107). Let µc̃kj
: R →

[0, 1] be membership functions of fuzzy parameters c̃kj and let d̃k ∈ F(R)
be fuzzy subsets of R called the fuzzy goals, k ∈ K, j ∈ N . Furthermore,
let S̃k, k ∈ K, be fuzzy relations given by the membership functions µS̃k

:
F(R)×F(R) → [0, 1], and let GF be an aggregation operator.
A fuzzy subset F̃ of Rn given by the membership function µF̃ , for all x ∈ Rn

defined as

µF̃ (x) = GF

(
µS̃1

(
f̃1(x, c̃1), d̃1

)
, . . . , µS̃k

(
f̃k(x, c̃k), d̃k

))
(5.108)

is called the criteria fuzzy set of the FMLP problem (5.106).

For k ∈ K, we use the following notation: by F̃k we denote a fuzzy set
given by the membership function µF̃k

, which is defined for all x ∈ Rn as

µF̃k
(x) = µS̃k

(
f̃k(x, c̃k), d̃k

)
. (5.109)

Notice that in the case of the single-criterion problem (i.e., q = 1), the
aggregation operator GF is the identity operator and the membership function
of the criteria fuzzy set is µF̃ (x) = µS̃1

(
f̃1(x, c̃1), d̃1

)
for all x ∈ Rn.

Definition 5.54. Let fk, k ∈ K, gi, i ∈ M, be functions, c̃kj, ãij and b̃i be
fuzzy parameters, and d̃k ∈ F(R) be the fuzzy goals; furthermore, let R̃i, S̃k

be fuzzy relations given by Definitions 5.25 and 5.53. Finally, let GX , GF and
G be aggregation operators.
A fuzzy set X̃∗ given by the membership function µ∗

X̃
for all x ∈ Rn as

µ∗
X̃

(x) = G (µX̃(x), µF̃ (x)) , (5.110)

is called the compromise solution of the FMLP problem (5.106), where µF̃

and µX̃ are the membership functions of the criteria fuzzy set and membership
function of the feasible solution, respectively.
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For α ∈ (0, 1] a vector x ∈ [X̃∗]α is called the α-compromise solution of the
FMLP problem (5.106).
A vector x∗ ∈ Rn with the property µ∗

X̃
(x∗) = Hgt(X̃∗) is called the max-

compromise solution.

Notice that the compromise solution X̃∗ of a FMLP problem is a fuzzy
subset of Rn. In the case of a single criterion the compromise solution is in
fact the satisficing solution by Definition 5.28. Moreover, we obtain X̃∗ ⊆ X̃,
where X̃ is a feasible solution.

On the other hand, the α-compromise solution is a vector, as well as the
max-compromise solution, which is, in fact, the α-compromise solution with
α = Hgt(X̃∗).

In Definition 5.54, we consider three aggregation operators GX , GF and
G. The first operator GX is used for aggregating the individual constraints
into the feasible solution by Definition 5.25, the second one, GF , is used for
aggregating the individual criteria and by the third one, G, the criteria and
constraints are aggregated. It may be difficult or impossible to choose a proper
aggregation operator for combining the criteria and constraints together. In
this case we can apply the well-known concept of Pareto-optimal solution
adapted to the “new criteria” represented by the membership functions µX̃

and µF̃ ; see also [135].

Definition 5.55. Let µF̃ and µX̃ be the membership functions of the criteria
fuzzy set by Definition 5.53 and the membership function of the feasible solu-
tion defined by Definition 5.54, respectively.
A vector xp ∈ Rn is said to be a Pareto-optimal solution of the FMLP problem
(5.106), if there exists no x ∈ Rn such that

µX̃(xp) ≤ µX̃(x) and µF̃ (xp) < µF̃ (x),
or
µX̃(xp) < µX̃(x) and µF̃ (xp) ≤ µF̃ (x).

Notice that the Pareto-optimal solution xp of the FMLP problem (5.106)
is a crisp vector. For more properties and relations between Pareto-optimal
and compromise solutions, see [135].

Since the problem (5.106) is a maximization problem (i.e., “the higher the
values of the criteria the better”), the membership functions µd̃k

of d̃k should
be increasing, or nondecreasing. For the same reason, the fuzzy relations S̃k

for comparing f̃k(x, c̃k) and d̃k should be of the “greater or equal” type. Here,
we consider S̃k as T -fuzzy extensions of the usual binary operation ≥, where
T is a t-norm.

Formally, in Definitions 5.25 and 5.54, the concepts of feasible solution
and compromise solution are similar to each other. Therefore, we can take
advantage of the results derived already in the preceding part of this chapter.
It can be easily shown that in the case of the single-criteria problem and crisp
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vector parameters c1, ai and b, the max-compromise solution coincides with
the optimal solution of the classical LP problem, provided that d̃1 should
be increasing. Moreover, if X̃∗′ is a compromise solution of FMLP problem
(5.106) with the parameters c̃′1, ã′i and b̃′, and X̃∗′′ is a compromise solution of
the FMLP problem with the parameters c̃′′1 , ã′′i and b̃′′ such that for all i ∈M,
c̃′1 ⊆ c̃′′1 , ã′i ⊆ ã′′i and b̃′ ⊆ b̃′′, then X̃∗′ ⊆ X̃∗′′. Particularly, in the case of
the crisp optimal solution vector x of the single-criteria LP problem with
parameters being crisp numbers, the membership degree of the compromise
solution of x (of the associated FMLP problem with fuzzy parameters) is
equal to one. This fact enables a natural embedding of the class of (crisp)
multicriteria LP problems into the class of FMLP problems.

The next proposition is analogous to Proposition 5.32 for a single-criterion
problem.

Proposition 5.56. Let for all x ∈ Rn,

µF̃j
(x) = µS̃j

(
f̃j(x, c̃j), d̃j

)
, j ∈ K,

and
µX̃i

(x) = µR̃i

(
g̃i(x, ãi), b̃i

)
, i ∈M,

be the membership functions of the fuzzy criteria and fuzzy constraints of
the FMLP problem (5.106), respectively. Let GX = GF = G = min and let
d̃k ∈ F(R), k ∈ K, be fuzzy goals.
Then the vector (t∗, x∗) ∈ Rn+1 is an optimal solution of the problem

maximize t
subject to µF̃j

(x) ≥ t, k ∈ K,

µX̃i
(x) ≥ t, i ∈M, x ∈ Rn,

(5.111)

if and only if x∗is the max-compromise solution of the problem (5.106).

Proof. Let x∗be the max-compromise solution of the problem (5.106) and let

t∗ = min{µX̃(x∗), µF̃ (x∗)},

where by (5.108),

µF̃ (x∗) = min
j∈K

{µS̃j

(
f̃j(x∗, c̃j), d̃j

)
}

and by (5.17),
µX̃(x∗) = min

i∈M
{µR̃i

(
g̃i(x∗, ãi), b̃i

)
}.

Then
t∗ = max

x∈Rn
min{µX̃(x), µF̃ (x)},
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µS̃j

(
f̃j(x∗, c̃j), d̃j

)
≥ t∗, j ∈ K

and
µR̃i

(
g̃i(x∗, ãi), b̃i

)
≥ t∗, i ∈M.

Consequently, (t∗, x∗) ∈ Rn+1 is an optimal solution of the problem (5.111).
On the other hand, let (t∗, x∗) ∈ Rn+1 be an optimal solution of the problem
(5.111). Then

t∗ = min
j∈K, i∈M

{µS̃j

(
f̃j(x∗, c̃j), d̃j

)
, µR̃i

(
g̃i(x∗, ãi), b̃i

)
},

which means that x∗is the max-compromise solution of the problem (5.106).
ut

5.11 Numerical example

Let us study the following problem. An investor has a sum of USD 12 mil-
lion at the beginning of a monitored term and decides about participation in
two investment projects. The length of both projects is three years. Leftover
resources in every particular year can be put on time deposit. Returns and
costs considered are uncertain and can be formulated as fuzzy numbers. The
problem is to find a (nonfuzzy) strategy maximizing quantity of resources
at the end of the three-year term. This optimal investment problem can be
formulated by the following FLP model,

maximize c̃1x1+̃c̃2x2+̃(1+̃ũ3)p3

subject to
ã11x1+̃ã12x2 +̃ p1

∼= 12,
ã21x1+̃ã22x2 +̃(1+̃ũ1)p1 −̃p2

∼= 0,
ã31x1+̃ã32x2 +̃(1+̃ũ2)p2−̃p3

∼= 0,
x1, x2 ≤ 1,
x1, x2, p1, p2, p3 ≥ 0,

(5.112)

where we denote

c̃i - fuzzy return of ith project, i = 1, 2,at the end of the period;
ãij - fuzzy return/cost of ith proj. i = 1, 2, in jth year, j = 1, 2, 3;
ũj - fuzzy interest rate in jth year, j = 1, 2, 3;
xi - participation measure in ith project, i = 1, 2;
pj - resource allocation in jth year, j = 1, 2, 3;
∼= - fuzzy equality relation.

Let ã = (aL, aC , aR) be a triangular fuzzy number, aL < aC < aR, where
aL is called the left value of ã, aC is called the central value and aR is the
right value of ã. Then the membership function of ã is given by
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µea(t) = max{0, min{ t− aL

aC − aL
,

aR − t

aR − aC
}}. (5.113)

If aL = aC = aR, we say that ã = (aL; aC ; aR) is crisp (i.e., an ordinary real
number) with the membership function identical to the characteristic function
χaC .

In our problem, the parameters c̃1, c̃2, ã11, ã12, ã21, ã22, ã31, ã32, ũ1, ũ2, ũ3

are supposed to be triangular fuzzy numbers as follows.

c̃1 = (4, 6, 8) ã21 = (−4,−2, 0) ũ1 = (0.01, 0.02, 0.03)
c̃2 = (3, 5, 7) ã22 = (1, 2, 3) ũ2 = (0.01, 0.02, 0.03)
ã11 = (6, 10, 14) ã31 = (6, 8, 10) ũ3 = (0.01, 0.03, 0.05)
ã12 = (3, 6, 9) ã32 = (6, 12, 18).

Let x1, x2 ≥ 0, except x1 = x2 = 0; i.e., we exclude the situation that the
investor will participate in no project.

(a) Membership functions. By the extension principle, the left-hand sides
of the three constraints in (5.112), denoted by L̃1, L̃2, L̃3, are triangular fuzzy
numbers as follows.

L̃1 = (6x1 + 3x2 + p1, 10x1 + 6x2 + p1, 14x1 + 9x2 + p1),
L̃2 = (−4x1 + x2 + 1.01p1 − p2,−2x1 + 2x2 + 1.02p1 − p2,

3x2 + 1.03p1 − p2),
L̃3 = (6x1 + 6x2 + 1.01p2 − p3, 8x1 + 12x2 + 1.02p2 − p3,

10x1 + 18x2 + 1.03p2 − p3).

Applying (5.113), we calculate the membership functions of L̃1, L̃2, L̃3:

µeL1
(t) = max{0, min{ t−6x1−3x2−p1

4x1+3x2
, 14x1+9x2+p1−t

4x1+3x2
}},

µeL2
(t) = max{0, min{ t+4x1−x2−1.01p1+p2

2x1+x2+0.01p1
, 3x2+1.03p1−p2−t

2x1+x2+0.01p1
}},

µeL3
(t) = max{min{0, t−6x1−6x2−1.01p2+p3

2x1+6x2+0.01p2
, 10x1+18x2+1.03p2−p3−t

2x1+6x2+0.01p2
}}.

Now, we calculate the membership function µe= of the fuzzy relation ∼=
being a fuzzy extension of the valued relation “=”:

µe=(L̃i, P̃i) = sup{min{0, µeL(u), µ ePi
(v)}u = v}, i = 1, 2, 3,

where P̃i are crisp numbers given by the membership functions

µ eP1
(t) =

{
1 if t = 12
0 otherwise , µ eP2

(t) =
{

1 if t = 0
0 otherwise ,

µ eP3
(t) =

{
1 if t = 0
0 otherwise .

Particularly,
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µe=(L̃1, P̃1) = µeL1
(12), µe=(L̃i, P̃i) = µeLi

(0), i = 2, 3.

Notice that for crisp numbers the fuzzy relation “∼=” is identical to the ordi-
nary equality relation “=”.

(b) Feasible solution.
By Definition 5.25, using TA = T = min, the feasible solution of FLP

problem (5.112) is a fuzzy set X̃ defined by the membership function:

µ eX(x1, x2, p1, p2, p3) = min{µeL1
(12), µeL2

(0), µeL3
(0)}.

For α ∈ (0, 1], an α-feasible solution is the set of all vectors

x = (x1, x2, p1, p2, p3)

such that

min{µeL1
(12), µeL2

(0), µeL3
(0)} ≥ α. (5.114)

Inequality (5.114) can be expressed equivalently by the following inequal-
ities.

(6 +4α)x1 + (3 + 3α)x2 + p1 ≤ 12,
(14− 4α)x1 + (9− 3α)x2 + p1 ≥ 12,
(4 −2α)x1 − (1 + α)x2 − (1.01 + 0.01α)p1 + p2 ≥ 0,

− 2αx1 + (3− α)x2 + (1.03− 0.01α)p1 − p2 ≥ 0,
(6 + 2α)x1 + (6 + 6α)x2 + (1.01 + 0.01α)p2 − p3 ≤ 0,
(10− 2α)x1 + (18− 6α)x2 + (1.03− 0.01α)p2 − p3 ≥ 0,
x1, x2 ≤ 1,
x1, x2, p1, p2, p3 ≥ 0.

(5.115)

(c) Satisficing solution.
Consider a fuzzy goal d̃ given by the membership function: µd̃(t) =

min{1,max{0, t−21
6 } for all t ≥ 0.

For the membership function of objective Z̃ we have

µeZ(t) = max{0,min{ t− 4x1 − 3x2 − 1.01p3

2x1 + 2x2 + 0.02p3
,
8x1 + 7x2 + 1.05p3 − t

2x1 + 2x2 + 0.02p3
}}.

Now, we calculate the membership function µ≥̃ of the fuzzy relation ≥̃
being a fuzzy extension of the valued relation “≥”:

µ≥̃(Z̃, d̃) = sup{min{0, µeZ(u), µed(v)} | u ≥ v}.
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For the membership function of the objective function we obtain

µ≥̃(Z̃, d̃) = max{0, min{8x1 + 7x2 + 1.05p3 − 21
2x1 + 2x2 + 0.02p3 + 6

, 1}}.

For the optimal solution X̃0 it follows that

µ eX0
(x) = min{µ eX(x1, x2, p1, p2, p3), µe≥(Z̃, d̃)}.

For α ∈ (0, 1], the α-satisficing solution is a set of all vectors x0 =
(x1, x2, p1, p2, p3), such that µ eX0

(x) ≥ α, or, µ eX(x1, x2, p1, p2, p3) ≥ α, and at

the same time µe≥(Z̃, d̃) ≥ α. The former inequality is equivalent to inequali-
ties (5.115); the latter is equivalent to

(8− 2α)x1 + (7− 2α)x2 + (1.05− 0, 02α)p3 ≥ 21 + 6α. (5.116)

Hence, the set of all α-satisficing solutions is a set of all vectors x0 = (x1, x2, p1,
p2, p3) satisfying (5.115) and (5.116).

In order to find a max-satisficing solution of FLP (5.112), we apply Propo-
sition 5.32 by solving the following nonlinear programming problem,

maximize α
subject to (5.115), (5.116),

0 ≤ x1, x2, α ≤ 1,
p1, p2, p3 ≥ 0.

By using Excel Solver, we have calculated the following optimal solution.

x1 = 0.605, x2 = 1, p1 = 0, p2 = 0.811, p3 = 17.741, α = 0.990.

For the crisp problem, i.e., the usual LP problem (5.112), where parameters
c̃i, ãij , ũj are crisp numbers equal to the central values, we obtain the following
optimal solution.

x1 = 0.6, x2 = 1, p1 = 0, p2 = 0.8, p3 = 17.611, z = 26.744.

Both solutions are close to each other, which is natural, as the central
values of the parameters are applied.

On the other hand we could ask for an α-satisficing solution with α < 1,
e.g., α = 0.7, i.e., with a lower level of satisfaction. We have found such a
solution with the additional property that p3 is maximized:

x1 = 0.62, x2 = 1, p1 = 0, p2 = 0.811, α = 0.7 and p3 = 17.744.

Hence, the fuzzy LP problem formulation allows for finding different kinds
of “optimal” solutions in an environment with uncertain parameters of the
model, and also enables us to take into account additional requirements.
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5.12 Conclusion

In this chapter we have proposed a new general approach to fuzzy single and
multicriteria linear programming problems with fuzzy coefficients. A unify-
ing concept of this approach is the concept of a fuzzy relation, particularly
fuzzy extension of the inequality or equality relation and the concept of an
aggregation operator.

We have formulated the FLP problem, defined a feasible solution of the
FLP problem and dealt with the problem of “optimal solution” of FLP prob-
lems. Two approaches have been introduced: the satisficing solution based on
external goals modeled by fuzzy quantities, and the α-efficient (nondominated)
solution. Then our interest has been focused on the problem of duality in FLP.
Finally, we have also dealt with the multicriteria case. We have formulated a
fuzzy multicriteria linear programming problem, defined a compromise solu-
tion and derived basic results. The chapter has been closed with a numerical
example.
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Interval linear systems and optimization
problems over max-algebras
K. Zimmermann

6.1 Introduction

In the previous chapters, mostly linear systems of equations and inequalities
as well as linear optimization problems with inexact data were investigated.
The investigation took advantage of some well-known properties of linear sys-
tems and linear problems with exact data. Linear optimization problems are
special convex optimization problems, each local extremum value of which
(i.e., local maximum or minimum) is at the same time global. In the sequel,
we investigate another class of optimization problems, the special structure of
which makes it possible to find global optimal solutions. These problems are
so-called max-separable optimization problems considered, e.g., in [199]. A
special subclass of the max-separable problems form the problems, the objec-
tive and constraint functions of which can be treated as “linear” with respect
to a pair of operations consisting either of two semigroup operations or of one
semigroup and one group operation. We investigate optimization problems
with such “linear” objective and constraint functions. The properties of such
optimization problems with exact data, which are known from the literature
(see, e.g., [29]) are made use of for investigating these problems with inter-
val data. Since the theoretical results for the “linear” optimization problems
follow from more general results for the so-called max-separable optimization
problems, we derive in the next section these general results and then apply
these results to the “linear” problems.

6.2 Max-separable functions and max-separable
optimization problems

Definition 6.1. A function f(x1, . . . , xn) = max
1≤n

fj(xj), where fj is a real

continuous function defined on (−∞,∞), is called a max-separable function.
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In this section we investigate optimization problems, with a max-separable
objective function and max-separable constraints of the following form (such
problems are called in the sequel max-separable optimization problems).

minimize f(x) = max
1≤j≤n

fj(xj) (6.1)

subject to
ri(x) = max

1≤j≤n
rij(xj) ≥ bi i = 1, . . . ,m (6.2)

ri(x) = max
1≤j≤n

rij(xj) ≤ bi i = m + 1, . . . ,m1 (6.3)

xj ≤ xj ≤ xj j = 1, . . . , n, (6.4)

where for all i, j, xj , xj , bi are given finite numbers and rij are nondecreasing
continuous functions defined on (−∞,∞).

Remark 6.2. The max-separable optimization problems considered in this sec-
tion form a special class of nonconvex problems with a nondifferentiable ob-
jective function and nondifferentiable functions in the constraints. The special
structure of the constraints makes it possible to avoid complications, which
might be caused by local extremal values and find the global extremum (or
more exactly one of the optimal solutions, in which the global minimum or
maximum of the objective function is attained). In the next section, special
subclasses of these problems are considered and solved by making use of the
general scheme described in the sequel in this section. In these problems, func-
tions rij(xj) have a special simple form, namely either rij(xj) = aij + xj or
rij(xj) = min(aij , xj), where aij are given real numbers and xj are variables.
These problems were motivated by some operations research problems (e.g.
machine-time scheduling, reliability of networks) and are interesting also from
a purely theoretical point of view. The investigation of such problems led to
the development of special algebraic structures, so-called extremal algebras,
in which the problems with rij(xj) = aij + xj or rij(xj) = min(aij , xj) can
be viewed as linear problems with respect to a special concept of linearity,
which can be introduced in these structures. The properties of these algebraic
structures and optimization problems are thoroughly investigated in the next
sections. The main results are proved for general max-separable optimization
problems in this section and then, in the next sections, applied to special prob-
lems, which are “linear” with respect to the pair of operations introduced in
the extremal algebras.

Since for any i max
1≤j≤n

rij(xj) ≤ bi if and only if rij(xj) ≤ bi for all j,

the constraints (6.3), (6.4) are equivalent to xj ≤ xj , where xj ≤ xj , we can
assume without loss of generality that the constraints (6.3), (6.4) have already
been replaced by the new upper bounds and consider only problems of the
form (6.1), (6.2), (6.4). Let
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Vij = {xj | rij(xj) ≥ bi, xj ≤ xj ≤ xj} for all i, j. (6.5)

Constraint max
1≤j≤n

rij(xj) ≥ bi can be replaced for any i = 1, . . . , m by the

following equivalent disjunctive constraint,

either x1 ∈ Vi1 or x2 ∈ Vi2 or . . . xn ∈ Vin. (6.6)

Since we assumed that rijs are nondecreasing continuous functions, either
there exists for any i ∈ {1, . . . , m}, j ∈ {1, . . . , n} xij ∈ (−∞,∞) such that
Vij = {xj | xj ≤ xij ≤ xj ≤ xj} or Vij = ∅. Therefore it holds for any fixed
j and two indices i1, i2 ∈ {1, . . . , m} that either Vi1j ⊆ Vi2j or Vi2j ⊆ Vi1j .
This property of the constraints (6.2) (or their reformulation (6.6)) is called
the “chain property”. It follows that if the sets Vij satisfy the chain property,
then for any fixed j ∈ {1, . . . , n}, there exists a permutation {i1, . . . , im} of
{1, . . . , m} such that

Vi1j ⊆ Vi2j ⊆ · · · ⊆ Vimj . (6.7)

We say that the sets Vij , 1 ≤ i ≤ m, form a chain.
As a result of these considerations, we obtain that max-separable optimiza-

tion problems (6.1), (6.2), (6.4) are special cases of the following optimization
problems with special disjunctive constraints of the form

minimize f(x) = max
1≤j≤n

fj(xj) (6.8)

subject to
x1 ∈ Ti1 or x2 ∈ Ti2 or . . . xn ∈ Tin for i = 1, . . . ,m (6.9)
xj ≤ xj ≤ xj for j = 1, . . . , n, (6.10)

where Tij are closed subsets of [xj , xj ] and satisfy for any fixed j ∈ {1, . . . , n}
the chain property (i.e., the sets {Tij | 1 ≤ i ≤ m} form a chain with respect
to the set inclusion).

Example 6.3. Let us consider the problem (6.1), (6.2), (6.4) with rij(xj) =
aij + xj , where aij ∈ (−∞,∞) and let

Tij = {xj | xj ≤ xj ≤ xj , rij(xj) ≥ bi} = {xj | xj ≤ xj ≤ xj , aij + xj ≥ bi} ,

where bi ∈ (−∞,∞) for i = 1, . . . ,m. Let xij = max(bi − aij , xj). Then we
have:

Tij =
{ ∅ ifxij > xj

[xij , xj ] otherwise .

The sets {Tij | 1 ≤ i ≤ m} form a chain and it holds that:

Ti1j ⊆ Ti2j if and only if xi1j ≥ xi2j .
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Example 6.4. Let us consider the problem (6.1), (6.2), (6.4) with
rij(xj) = min(aij , xj), where aij ∈ (−∞,∞) for all i, j and let

Tij = {xj | xj ≤ xj ≤ xj ,min(aij , xj) ≥ bi} ,

where bi ∈ (−∞,∞). Let xij = max{xj , bi} for all i, j. Then we have:

Tij =
{∅ if either aij < bi or xj < bi

[xij , xj ] otherwise

and

Ti1j ⊆ Ti2j if and only if xi1j ≥ xi2j .

Therefore the sets {Tij | 1 ≤ i ≤ m} form for any fixed j ∈ {1, . . . , n} a chain.

We now investigate some properties of the disjunctive optimization prob-
lems (6.8), (6.9), (6.10) under the assumption that the sets Tij , i = 1, . . . ,m,
j = 1, . . . , n satisfy the chain property. Such problems were in a more general
framework studied in [200].

Theorem 6.5. The set of feasible solutions of (6.8), (6.9), (6.10) is nonempty
if and only if for any i ∈ {1, . . . ,m} there exists an index q(i) such that
Tiq(i) 6= ∅.
Proof. Let M denote the set of feasible solutions of (6.8), (6.9), (6.10) and
let us assume that M 6= ∅. Then there exists for each i at least one index q(i)
such that Tiq(i) 6= ∅ (otherwise it would be Tij = ∅ for all j = 1, . . . , n and
the ith constraint from (6.9) could not be satisfied). Let us assume now that
there exists for each i an index q(i), 1 ≤ q(i) ≤ n, such that Tiq(i) 6= ∅. Let Sj

be defined for each j ∈ {1, . . . , n} as follows. Sj = {i | 1 ≤ i ≤ m,Tij 6= ∅}.
We define further sets Tj , j ∈ {1, . . . , n} as follows.

Tj =

{
[xj , xj ] if Sj = ∅⋂
i∈Sj

Tij otherwise, (6.11)

Since we assumed that sets Tij , i = 1, . . . , m form a chain for any fixed j, the
set Tj is equal to one of the sets Tij , i ∈ Sj whenever Sj 6= ∅. Therefore Tj is
nonempty for all j. According to our assumption, for each i there exists q(i)
such that Tiq(i) 6= ∅ so that i ∈ Sq(i) and Tq(i) ⊆ Tiq(i).

Let us choose x̂j ∈ Tj for all j ∈ {1, . . . , n}. We show that x̂T =
(x̂1, . . . , x̂n) ∈ M . Really, for any i, 1 ≤ i ≤ m, we obtain that x̂q(i) ∈ Tq(i) ⊆
Tiq(i) so that the ith constraint of (6.9) is satisfied and it follows from (6.11)
that x̂j ∈ [xj , xj ] for all j = 1, . . . , n, we obtain that x̂ ∈ M and thus M 6= ∅.
2
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Example 6.6. Let us consider the following numerical version of the sys-
tem (6.2), (6.4). Let the set of feasible solutions M be described by the fol-
lowing system of inequalities.

r1(x) = max(−1 + x1, 0 + x2, 1 + x3,−7 + x4) ≥ 0
r2(x) = max(−2 + x1, 3 + x2, 2 + x3,−8 + x4) ≥ 0
r3(x) = max(1 + x1, 5 + x2,−3 + x3,−9 + x4) ≥ 0

0 ≤ xj ≤ 5 for j = 1, 2, . . . , 4.

Let Vij be defined as in (6.5). Then we obtain:

V11 = [1, 5], V21 = [2, 5], V31 = ∅.
Similarly we obtain:

V12 = [0, 5], V22 = [0, 5], V32 = [0, 5] ;
V13 = [0, 5], V23 = [0, 5], V33 = [3, 5] ;
V14 = ∅, V24 = ∅, V34 = ∅ .

If we set Tij = Vij for all i, j, our system of constraints can be replaced by
the following requirements.

For each i ∈ {1, 2, 3}, xj ∈ Tij for at least one j ∈ {1, 2, 3, 4} (6.12)
0 ≤ xj ≤ 5 for all j ∈ {1, 2, 3, 4}

If we define Tj as in (6.11), we have S1 = {1, 2}, S2 = {1, 2, 3}, S3 = {3},
S4 = ∅ and thus

T1 = [2, 5], T2 = [0, 5], T3 = [3, 5], T4 = [0, 5]

It can be easily verified that the necessary and sufficient condition from The-
orem 6.5 is satisfied so that M 6= ∅. If we choose, e.g., x̂j = 3 for j = 1, 2, 3, 4,
we have x̂j ∈ Tj for all j and x̂ ∈ M .

We derive in the sequel an explicit formula for the optimal solution of the
problem (6.8), (6.9), (6.10). Let us remark that we assumed, when formulating
this optimization problem, that the sets Tij , i ∈ {1, . . . ,m} form a chain for
any j ∈ {1, . . . , n} and this assumption is therefore assumed also in the next
theorem. Let us introduce the following notations for any i, j (1 ≤ i ≤ m,
1 ≤ j ≤ n).

x̂
(i)
j ∈ arg min{fj(xj) | xj ∈ Tij}, if Tij 6= ∅, (6.13)

f̂i = min{fj(x̂
(i)
j ) | 1 ≤ j ≤ n, Tij 6= ∅}, (6.14)

Pi = {j | 1 ≤ j ≤ n and fj(x̂
(i)
j ) = f̂i}. (6.15)
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Let us note that (6.13) means that x̂
(i)
j is any element from Tij , at which the

minimum of fj on the set Tij is attained so that it holds:

fj(x̂
(i)
j ) = min

xj∈Tij

fj(xj) . (6.16)

Let us remark that x̂
(i)
j is defined only if Tij 6= ∅.

We now prove the following theorem, which gives us an explicit formula for
obtaining the optimal solution of the optimization problem (6.8), (6.9), (6.10).

Theorem 6.7. Let M be the set of feasible solutions of the optimization prob-
lem (6.8), (6.9), (6.10) and let M 6= ∅. Let the notations (6.13), (6.14), (6.15)
be introduced. Let us define Wj, T̂j as follows.

Wj = {i | j ∈ Pi} , (6.17)

T̂j =

{ ⋂
i∈Wj

Tij if Wj 6= ∅
[xj , xj ] otherwise.

(6.18)

Let x̂j ∈ arg min{fj(xj) | xj ∈ T̂j} for j = 1, . . . , n. Then x̂T = (x̂1, . . . , x̂n)
is the optimal solution of the problem (6.8), (6.9), (6.10).

Proof. Let i ∈ {1, . . . ,m} be arbitrary and q(i) ∈ Pi. Then i ∈ Wq(i) and
T̂q(i) =

⋂
i∈Wq(i)

Tiq(i) ⊆ Tiq(i) so that x̂q(i) ∈ T̂q(i) ⊆ Tiq(i). Therefore for any i,

1 ≤ i ≤ m, we can find q(i) ∈ {1, . . . , n} such that x̂q(i) ∈ T̂iq(i) so that (6.9)
is fulfilled. Since it follows from the definition of T̂j that T̂j ⊆ [xj , xj ] for all j

(compare (6.9) and (6.18)), we have x̂j ∈ T̂j ⊆ [xj , xj ] and (6.10) is satisfied
too. Therefore x̂ is a feasible solution of (6.8), (6.9), (6.10) (i.e., x̂ ∈ M). It
remains to prove that x̂ is the optimal solution of this optimization problem,
i.e., that f(x̂) ≤ f(y) for any y ∈ M .
Let y be an arbitrary element of M and let f(x̂) = fp(x̂p) (i.e., max

1≤j≤n
fj(x̂j) =

fp(x̂p)). Then we have to prove that fp(x̂p) ≤ f(y). If Wp = ∅, then Tp =
[xj , xj ] (see (6.18)) and therefore

fp(x̂p) = min{fp(xp) | xp ∈ [xp, xp]} ≤ fp(yp) ≤ max
1≤j≤n

fj(yj) = f(y). (6.19)

If Wp 6= ∅, and fp(x̂p) ≤ fp(yp), it is again fp(x̂p) ≤ f(y). It remains to
investigate the case that Wp 6= ∅ and at the same time fp(x̂p) > fp(yp) holds.
We show that in this case there exists another index v ∈ {1, . . . , n} such that
fp(x̂p) ≤ fv(yv) so that it will be

fp(x̂p) ≤ fv(yv) ≤ max
1≤j≤n

fj(yj) = f(y) .
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Since Wp 6= ∅ and the sets Tip, i ∈ Wp form a chain, there exists an index
s ∈ Wp such that

T̂p =
⋂

i∈Wp

Tip = Tsp . (6.20)

Since fp(yp) < fp(x̂p) = min{fp(xp) | xp ∈ T̂p}, it must be yp 6∈ T̂p = Tsp.
Since y ∈ M , there exists an index q(s) ∈ {1, . . . , n}, q(s) 6= p, such that
yq(s) ∈ Tsq(s). We have in this case

fq(s)(yq(s)) ≥ min{fq(s)(xq(s)) | xq(s) ∈ Tsq(s)} = fq(s)(x̂q(s)) ≥ f̂s . (6.21)

Since s ∈ Wp, it is p ∈ Ps. We obtain according to (6.13), (6.14), (6.15) and
taking into account that T̂p = Tsp, the following equalities.

f̂s = min{fj(x̂
(s)
j ) | 1 ≤ j ≤ n, Tsj 6= ∅} = fs(x̂(s)

p ) = fp(x̂p) . (6.22)

Therefore according to (6.21), (6.22),

fq(s)(yq(s)) ≥ f̂s = fp(x̂p) (6.23)

and we have:

f(x̂) = fp(x̂p) ≤ fq(s)(yq(s)) ≤ max
1≤j≤n

fj(yj) = f(y) . (6.24)

We obtained in all cases that x̂ ∈ M , f(x̂) ≤ f(y). Since y was an arbi-
trarily chosen element of M , it follows that x̂ is the optimal solution of the
problem (6.8), (6.9), (6.10).2

Example 6.8. Let us consider the problem

minimize f(x) = max(2 + x1, 3 + x2,−4 + x3, x4)
subject to x ∈ M ,

where M is given in the same way as in Example 6.6.
We have according to (6.13), (6.14), (6.15) and taking into account that

Tij = Vij for all i, j:
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x̂
(1)
1 = 1, x̂

(1)
2 = x̂

(1)
3 = 0 ;

f1(x̂
(1)
1 ) = 3, f2(x̂

(1)
2 ) = 3, f3(x̂

(1)
3 ) = −4, T14 = ∅ ;

x̂
(2)
1 = x̂

(2)
2 = x̂

(2)
3 = 0 ;

f1(x̂
(2)
1 ) = 2, f2(x̂

(2)
2 ) = 3, f3(x̂

(2)
3 ) = −4, T2 = ∅ ;

x̂
(3)
1 = x̂

(3)
2 = 0, x̂

(3)
3 = 3 ;

f1(x̂
(3)
1 ) = 2, f2(x̂

(3)
2 ) = 3, f3(x̂

(3)
3 ) = −1, T34 = ∅ ;

f̂1 = min{3, 3,−4} = −4 ;

f̂2 = min{2, 3,−4} = −4 ;

f̂3 = min{2, 3,−1} = −1 ;
P1 = P2 = P3 = {3} .

Therefore W1 = W2 = ∅, W3 = {1, 2, 3}, W4 = ∅ and thus T̂1 = T̂2 = [0, 5],
T̂3 = [3, 5], T̂4 = [0, 5]. The optimal solution is therefore x̂T = (0, 0, 3, 0) with

f(x̂) = max(2, 3,−1, 0) = 3 .

Let us remark that the procedure based in Theorem 6.7 gives us one optimal
solution. The problem can have more optimal solutions. In this example, for
x′ = (1, 0, 5, 1)T we have f(x′) = max(3, 3, 1, 1) = 3, x′ ∈ M and thus x′ is
another optimal solution.

Example 6.9. Let us consider the optimization problem

minimize f(x) = max(2 + x1, 3 + x2,−4 + x3, x4)
subject to

r1(x) = max(−1 + x1, 0 + x2, 1 + x3,−7 + x4) = 0
r2(x) = max(−2 + x1, 3 + x2, 2 + x3,−8 + x4) = 0
r3(x) = max(1 + x1, 5 + x2,−3 + x3,−9 + x4) = 0
−6 ≤ xj ≤ 7 for j = 1, 2, 3, 4 ,

where r1(x), r2(x), r3(x) are defined as in Example 6.6. The system of equality
constraints is equivalent to the system

ri(x) ≥ 0 for i = 1, 2, 3 ,

ri(x) ≤ 0 for i = 1, 2, 3 .

The constraints

ri(x) ≤ 0 for i = 1, 2, 3
−6 ≤ xj ≤ 7 for i = 1, 2, 3, 4
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are equivalent with

−6 ≤ x1 ≤ −1, −6 ≤ x2 ≤ −5, −6 ≤ x3 ≤ −2, −6 ≤ x4 ≤ 7 .

Therefore the set of feasible solutions of the original problem with the equality
constraints is the set of vectors xT = (x1, x2, x3, x4), which satisfy the system

ri(x) ≥ 0 for i = 1, 2, 3
−6 ≤ x1 ≤ −1, −6 ≤ x2 ≤ −5, −6 ≤ x3 ≤ −2, −6 ≤ x4 ≤ 7

It can be easily verified that in this case the set of feasible solutions is non-
empty if the upper-bound vector xT = (−1,−5,−2, 7) is a feasible solution.
Since ri(x) = 0 for i = 1, 2, 3 and −6 ≤ xj ≤ 7 for j = 1, 2, 3, 4, the set of
feasible solutions is nonempty. Therefore, we can apply the procedure from
Theorem 6.7 to solving this optimization problem. We solve the equivalent
problem

minimize f(x) = max(2 + x1, 3 + x2,−4 + x3, x4)
subject to

ri(x) ≥ 0, i = 1, 2, 3 ,

−6 ≤ x1 ≤ −1, −6 ≤ x2 ≤ −5, −6 ≤ x3 ≤ −2, −6 ≤ x4 ≤ 7 .

Following the procedure from Theorem 6.7 (see also the preceding Exam-
ple 6.8) we obtain for

Vij = {xj | rij(xj) ≥ 0}, 1 ≤ i ≤ 3, 1 ≤ j ≤ n :
V11 = ∅, V12 = ∅, V13 = ∅, V14 = {7}
V21 = ∅, V22 = ∅, V23 = {−2}, V24 = ∅
V31 = {−1}, V32 = {−5}, V33 = ∅, V34 = ∅
x̂4 = arg min{f4(x4) | x4 ∈ V14} = 7
x̂3 = arg min{f3(x3) | x3 ∈ V23} = −6 .

Furthermore, since f1(−1) = 1 < f2(−5) = −2, we obtain according to The-
orem 6.7 that q(3) = 1 and thus

x̂2 = arg min{f2(x2) | x2 ∈ [−6,−5]}, f2(−6) = −3
x̂1 = arg min{f1(x1) | x1 ∈ V31}, f1(−1) = 1

so that the optimal value of the objective function is f(x̂) = max(1,−3,−6, 7)
= 7.
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As we have already mentioned, in the following, we investigate the proper-
ties of max-separable systems of equations and inequalities and max-separable
optimization problems of the form (6.1)–(6.4) with special functions rij(xj),
namely either rij(xj) = aij +xj or rij(xj) = min(aij , xj), where aij are given
real numbers. Such problems were motivated in the literature (see, e.g., [29])
by some operations research problems. At the end of this section we give
simplified versions of two such problems as motivating examples. The first
one comes from the machine-time scheduling and the second concerns the
transferability of a network.

Example 6.10. Let us suppose that n operations 1, . . . , n, each of them with
a given deterministic processing time, are carried out in cycles. Let xi(r) be
the release time of operation i (i = 1, . . . , n) in cycle r and no preemption be
allowed. Therefore if operation i is started at a time xi(r), it will be finished
at time xi(r)+pi. We assume that the following technological restrictions are
given.

(1) xi(r) ∈ [hi, hi] for all i ∈ N = {1, . . . , n}, where hi, hi are given numbers
(i.e., each operation must begin within a prescribed time interval).

(2) Operation i in cycle r + 1 can begin only after the operations j ∈ N (i)

have been finished in the preceding cycle r; i.e.,

xi(r + 1) ≥ xj(r) + pj for all j ∈ N (i) , (6.25)

where N (i) is a given subset of N .
(3) Each operation in cycle r + 1 should begin at the earliest possible time

without any delay; i.e., taking into account (6.25), it must be

xi(r + 1) = max
j∈N(i)

(xj(r) + pj) for all i ∈ N . (6.26)

We now reformulate the requirements (1), (2), (3) in such a way that the
connection with max-separable restrictions (6.2), (6.3) can be easily seen. Let
aij be defined for each i, j,∈ N as follows.

aij =
{

pj , if j ∈ N (i)

−∞ otherwise .
(6.27)

System (6.26) can then be rewritten in the form:

xi(r + 1) = max
j∈N(i)

(aij + xj(r)) i ∈ N . (6.28)

We can require, e.g., that for a given fixed r, it is necessary that xi(r + 1) =
bi for all i ∈ N , where bi are given constants. We require further that the
release times xj(r) are as close as possible to some recommended values x̂j

for all j ∈ N , and the distance of time vectors x(r)T = (x1(r), . . . , xn(r)) and
x̂T = (x̂1, . . . , x̂n) is given by
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‖x(r)− x̂‖ = max
j∈N

|xj(r)− x̂j | . (6.29)

Our problem can now be formulated as follows.

minimize max
j∈N

|xj(r)− x̂j | (6.30)

subject to
max

j∈N(i)
(aij + xj(r)) = bi, ∀i ∈ N (6.31)

hj ≤ xj(r) ≤ hj ∀j ∈ N . (6.32)

If we replace each equation in (6.31) with two inequalities and set fj(xj(r))
= |xj(r) − x̂j | and rij(xj(r)) = aij + xj(r), we see that the problem (6.30),
(6.31), (6.32) becomes an optimization problem of the form (6.1)–(6.4) with
variables xj(r), j ∈ N . The functions rij(xj(r)) are continuous and increasing
and fj(xj(r)) are continuous so that we can apply to it the procedure described
by Theorem 6.7.

Example 6.11. Let us consider a network of roads connecting each of the cities
Ai, i = 1, . . . ,m with each of the cities Bj , j = 1, . . . , n; the capacity (trans-
ferability) of the route between Ai and Bj is equal to a given positive number
aij . We want to build n roads, each of them connecting Bj with a final de-
livery point D and a capacity xj . The capacity (transferability) of the route
connecting Ai via Bj with the delivery point D is therefore equal to rij(xj)
= min (aij , xj). The costs connected with building a route with a capacity
xj are given by a continuous function fj(xj). We may require, e.g., that the
capacities xj for j = 1, . . . , n must be chosen in such a way that for each Ai

the maximum capacity among the capacities of the routes AiBjD is at least
equal to a given positive number bi and at the same time xj must lie within
prescribed bounds xj , xj for all j = 1, . . . , n. We want to find capacities xj ,
j = 1, . . . , n minimizing the maximum costs and satisfying the described tech-
nological requirements. Such a problem can be reformulated as the following
max-separable optimization problem,

minimize max
j∈N

fj(xj) (6.33)

subject to
max

j∈N(i)
min(aij , xj) ≥ bi, ∀i ∈ {1, . . . , n} (6.34)

xj ≤ xj ≤ xj ∀j ∈ {1, . . . , n} . (6.35)

6.3 Extremal algebra notation

During the last 40 years special algebraic structures appeared, in which the
usual addition and multiplication of the classical linear algebra were replaced
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by another pair of operations ⊕, ⊗; in these structures operation ⊕ is equal to
one of the extremal operations “maximum” or “minimum” and operation ⊗ is
the addition, multiplication, “minimum” (in the case where ⊕ = “maximum”)
or “maximum” (in the case where ⊕ = “minimum”). An appropriately chosen
subset of real numbers with such two operations can be found in the literature
under various names as, e.g., “extremal algebra” ([163], [193], [198]), max-
algebra [29], fuzzy algebra [30], path algebra [45] etc.

The structures were probably independently rediscovered several times by
several authors. The aim of this chapter is to investigate the properties of
the (⊕,⊗)-linear system of equations and/or inequalities and (⊕,⊗)-linear
optimization problems over (⊕,⊗)-algebras with interval entries. The neces-
sary concepts and notations are introduced in the next section. There are in
principle only two significantly different types of (⊕,⊗)-algebras, namely the
case in which ⊕ is a semigroup and ⊗ a group operation, and the case in
which ⊕ and ⊗ are semigroup operations. For this reason, we confine our-
selves to two cases, which are usually used as principal representatives of the
two types mentioned above, namely (⊕,⊗) = (max, +) for the first type and
(⊕,⊗) = (max, min) for the second type. The corresponding sets of reals with
these operations extended where necessary by the elements {−∞}, {∞} are
denoted R1(max, +,−∞), R2(max, min,−∞,∞). We use mainly the abbrevi-
ated notations R1, R2 so that we have

R1 = R1(max,+,−∞) ,

where α⊕−∞ = max(α,−∞) = α and α⊗ (−∞) = α + (−∞) = −∞ for all
α ∈ R1. Similarly

R2 = R2(max, min,−∞,∞)

with max(α,−∞) = α and min(α,−∞) = −∞ for all α ∈ R2.
We refer in the sequel to R1 as (max,+)-algebra and to R2 as (max, min)-

algebra. When we speak about any of the sets R1, R2, we use the abbreviated
notation R. The set of all m × n-matrices with entries from R1, R2 or R are
denoted Rm×n

1 , Rm×n
2 or Rm×n, respectively.

Let
Rn

1 = R1 × · · · × R1︸ ︷︷ ︸
n times

, Rn
2 = R2 × · · · × R2︸ ︷︷ ︸

n times

.

If x ∈ Rn is a column vector with components x1, . . . , xn, then xT =
(x1, . . . xn) (i.e., xT is the transpose of x). We define:

xT ⊗ y = (x1 ⊗ y1)⊕ · · · ⊕ (xn ⊗ yn) =
n∑

j=1

⊕(xj ⊗ yj)

for any x = (x1, . . . , xn)T , y = (y1, . . . , yn)T ∈ Rn
1 or Rn

2 . We have:
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xT ⊗ y =
n∑

j=1

⊕(xj ⊗ yj) = max
1≤j≤n

(xj + yj) if x, y ∈ Rn
1 ,

xT ⊗ y =
n∑

j=1

⊕(xj ⊗ yj) = max
1≤j≤n

min(xj , yj) if x, y ∈ Rn
2 .

To simplify the formulae, we also use the notation α ∧ β = min(α, β) so that
we can also write for x, y ∈ Rn

2 ,

xT ⊗ y = max
1≤j≤n

(xj ∧ yj).

For an m × n-matrix A ∈ Rm×n and for each i = 1, . . . ,m, j = 1, . . . , n, we
define the product (A⊗ x) ∈ Rm as follows.

(A⊗ x)i =
n∑

j=1

⊕(aij ⊗ xj) for i = 1, . . . , m,

A⊗ x = ((A⊗ x)1, . . . (A⊗ x)m)T
.

It is therefore for i = 1, . . . , m:

(A⊗ x)i =
n∑

j=1

⊕(aij ⊗ xj) = max
1≤j≤n

(aij + xj) if aij ∈ R1, xj ∈ R1

and

(A⊗ x)i =
n∑

j=1

⊕(aij ⊗ xj) = max
1≤j≤n

(aij ∧ xj) if aij ∈ R2, x ∈ Rn
2 .

If Ai· denotes the ith row of the matrix A, it is obvious that (A⊗x)i = Ai·⊗x
for i = 1, . . . ,m. Similarly if A ∈ Rm×n, B ∈ Rn×k, we define the product
A ⊗ B ∈ Rm×k with entries (A ⊗ B)ij defined for i = 1, . . . , m, j = 1, . . . , k
as follows.

(A⊗B)ij =
n∑

p=1

⊕(aip ⊗ bpj) = Ai· ⊗B·j ,

where Ai· denotes the ith row of A and B·j denotes the jth column of B. We
have therefore for all i = 1, . . . , m, j = 1, . . . , k:

(A⊗B)ij = max
1≤p≤n

(aip + bpj) if aip, bpj ∈ R1

and
(A⊗B)ij = max

1≤p≤n
(aip ∧ bpj) if aip, bpj ∈ R2.

It was proved in the literature ([29], [193], [198]) that the operations ⊕, ⊗
introduced above satisfy both distributive and associative laws and the for-
mulae with these operations can be processed as in the usual Euclidean space;
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furthermore, elements −∞, 0 are neutral elements with respect to ⊕, ⊗ in R1

and −∞ and +∞ are neutral elements with respect to ⊕, ⊗ in R2; i.e., we
have

α⊕−∞ = max(α,−∞) = α, α⊗ 0 = α + 0 = α for α ∈ R1

and

α⊕−∞ = max(α,−∞) = α, α⊗(+∞) = min(α, +∞) = α for α ∈ R2.

The introduction of this notation enables us to describe systems of equa-
tions or inequalities using a similar notation and rules as in the classical linear
algebra and in this way makes calculations more transparent.

6.4 Noninterval systems of (⊕, ⊗)-linear equations and
inequalities

We consider systems of (⊕,⊗)-linear equations of the form

A⊗ x = b , (6.36)

where A ∈ Rm×n, b ∈ Rm are given. The system (6.36) can also be written as
follows.

(A⊗ x)i = bi, i = 1, . . . , m (6.37)

or
n∑

j=1

⊕(aij ⊗ xj) = bi, i = 1, . . . , m . (6.38)

Any x satisfying (6.36) is called a solution of system (6.36).
If R = R1, (6.38) can be written as

max
1≤j≤n

(aij + xj) = bi, i = 1, . . . , m (6.39)

and if R = R2, then (6.38) has the form

max
1≤j≤n

(aij ∧ xj) = bi, i = 1, . . . ,m . (6.40)

Since ⊕ is only a semigroup operation, it is not possible to transfer variables
from one side of the equations to the other one. In this chapter, we consider
only systems with variables on one side. Systems with variables on both sides
are not investigated here. For similar reasons, it is necessary to distinguish
two types of systems of (⊕,⊗)-linear inequalities, namely

A⊗ x ≤ b (6.41)

and
A⊗ x ≥ b . (6.42)
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Remark 6.12. Properties of the systems (6.38), (6.41), (6.42) were investigated
in several papers in the literature (see, e.g., [29], [193], [198]). We summarize
only some of them, which are important for further investigations in this
chapter.

Lemma 6.13. Each system (6.41) has a maximum solution x∗(A, b) ∈ Rn

(i.e., such a solution, that if x is any other solution of (6.41), then x ≤
x∗(A, b) holds). We have for all j = 1, . . . , n:

x∗j (A, b) = min
1≤i≤m

(bi − aij), if R = R1 (6.43)

and
x∗j (A, b) = min

1≤i≤m
{bi | aij > bi}, if R = R2 . (6.44)

Proof. Let us first assume that R = R1. Then A⊗ x ≤ b means that

max
1≤j≤n

(aij + xj) ≤ bi ∀i = 1, . . . ,m (6.45)

and thus
aij + xj ≤ bi ∀i = 1, . . . ,m, j = 1, . . . , n . (6.46)

It must be therefore

xj ≤ bi − aij ∀i = 1, . . . , m ; (6.47)

i.e.,
xj ≤ x∗j (A, b) = min

1≤i≤m
(bi − aij) ∀j = 1, . . . , n (6.48)

and x∗(A, b) is the maximum solution of (6.41).
Let now R = R2. Then A⊗ x ≤ b implies

max
1≤j≤n

min(aij , xj) ≤ bi ∀i = 1, . . . , m (6.49)

and thus
min(aij , xj) ≤ bi ∀i = 1, . . . , m , j = 1, . . . n . (6.50)

It must be therefore

xj ≤ x∗j (A, b) = min
i,aij>bi

bi ∀j = 1, . . . , n (6.51)

and x∗(A, b) is the maximum solution of (6.41). ut
Definition 6.14. The element x∗(A, b) is called the principal solution of
(6.41).
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It follows immediately from the proof of Lemma 6.13 that the set of solu-
tions of (6.41) always has the maximum element x∗(A, b). If R = R1, matrix
A has in each row and each column at least one finite element (i.e., an element
different from −∞) and all components of b are finite, then x∗j (A, b) is finite
for all j = 1, . . . , n. If R = R2, {i | aij > bi} 6= ∅ for all j = 1, . . . , n and
all components of b are finite, then x∗j (A, b) is finite for all j = 1, . . . , n. We
assume in the sequel that the matrix A and the vector b fulfill the conditions,
which ensure that x∗(A, b) is finite. Let us remark that it follows from the
proof of Lemma 6.13 that the set of solutions of (6.41) is always nonempty
and x∗(A, b) is one of its solutions.

The following lemma holds ([24]).

Lemma 6.15. Let A1, A2 be two matrices over R and b1, b2 vectors of ap-
propriate dimension. A system of inequalities over R

A1 ⊗ x ≤ b1 (6.52)
A2 ⊗ x ≥ b2 (6.53)

has a solution if and only if the principal solution x∗(A1, b1) fulfills (6.53).

Proof. If A2 ⊗ x∗(A1, b1) ≥ b2, the system (6.52), (6.53) has a solution. For
the converse direction, let us suppose that y is a solution of (6.52), (6.53).
A1⊗y ≤ b1 implies that y ≤ x∗(A1, b1) and x∗(A1, b1) as the principal solution
of (6.52) fulfills (6.52). Furthermore, we have A2 ⊗ x∗(A1, b1) ≥ A2 ⊗ y ≥ b2

and therefore x∗(A1, b1) also fulfills (6.53). ut
Corollary 6.16. A system of equations (6.36) has a solution if and only if
x∗(A, b) fulfills (6.36).

Proof. The system (6.36) is obviously equivalent to the system A ⊗ x ≤ b,
A ⊗ x ≥ b. The assertion then follows immediately from Lemma 6.15 with
A1 = A2 = A, b1 = b2 = b. ut

In general the set of solutions of (6.36) may be empty. The emptiness of this
set depends on the structure of the matrix A and the vector b. We summarize
here some facts, which were proved in the literature (see, e.g., [29], [193], [198]).

Let us introduce the following notations.

S = {1, . . . , m} ,

Sj(xj) = {i | 1 ≤ i ≤ m and aij ⊗ xj = bi} ∀j = 1, . . . , n, xj ∈ R .

It holds then

Lemma 6.17. Let A, b be a m× n-matrix and b ∈ Rm, respectively.

(a)x ∈ R is a solution of (6.36) if and only if x ≤ x∗(A, b) and

S =
n⋃

j=1

Sj(xj) . (6.54)
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(b) If x = (x1, . . . , xn)T is a solution of (6.36), then

Sj(xj) 6= ∅ ⇒ xj = x∗j (A, b)

for all j = 1, . . . , n.

Proof. (a) If x ≤ x∗(A, b) and (6.54) is fulfilled, it means that for any i ∈ S
we have

aij ⊗ xj ≤ aij ⊗ x∗j (A, b) ≤ bi for all j = 1, . . . , n

and there exists j(i) such that i ∈ Sj(i)(xj(i)) and thus aij(i) ⊗ xj(i) = bi;
therefore

n∑

j=1

⊕aij ⊗ xj = aij(i) ⊗ xj(i) = bi ,

so that x = (x1, . . . xn)T is a solution of (6.36). If x = (x1, . . . , xn)T is a
solution of (6.36), it must fulfill the inequality A⊗x ≤ b and therefore also the

inequality x ≤ x∗(A, b). If i 6∈
n⋃

j=1

Sj(xj) (i.e., i 6∈ Sj(xj) for all j = 1, . . . , n),

then it must be aij ⊗ xj < aij ⊗ x∗j (A, b) ≤ bi for all j = 1, . . . , n and thus
n∑

j=1

⊕aij ⊗ xj < bi; therefore x is not a solution of (6.36). 2

(b) If x is a solution of (6.36), it is xj ≤ x∗j (A, b) for all j; if xj < x∗j (A, b),
then aij ⊗ xj < aij ⊗ x∗j (A, b) ≤ bi for all i = 1, . . . ,m. Therefore Sj(xj) = ∅.

ut
The following consequences are implied immediately by Lemma 6.17.

(i) System (6.36) has no solution if and only if
n⋃

j=1

Sj(x∗j (A, b)) 6= S .

(ii) Let cij = bi − aij for i = 1, . . . ,m, j = 1, . . . , n and R = R1; then

Sj(x∗j (A, b)) =
{

s | csj = min
i∈S

cij

}
.

(iii) Let R = R2 and Lj = {i | i ∈ S, aij > bi} for all j = 1, . . . , n; then

Sj(x∗j (A, b)) =
{

s | bs = min
i∈Lj

bi

}
.

Consequences (i), (ii), (iii) make possible an effective algorithmic verifi-
cation of the existence of solutions of a system (6.36) and finding the corre-
sponding principal solution.
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6.5 Noninterval max-separable optimization problems
with (⊕, ⊗)-linear constraints

Let fj : R → R be continuous functions for j = 1, . . . , n and f(x) =
max

1≤j≤n
fj(xj) for any x ∈ Rn, so that f : Rn → R is a max-separable function.

We consider optimization problems with a max-separable objective function
and (⊕,⊗)-linear functions in the constraints of the following form (we assume
x ∈ Rn).

minimize f(x) (6.55)
subject to

A⊗ x = b (6.56)
xj ≥ xj > −∞ ∀j = 1, . . . , n . (6.57)

Remark 6.18. If fj(xj) = cj ⊗ xj for all j ∈ N , the problem considered above
can be called a (⊕,⊗)-linear optimization problem. Since the methods sug-
gested here for solving optimization problems with (⊕,⊗)-linear constraints
with a max-separable objective function are not substantially influenced by
the form of the functions fj in the objective function, we first consider the
solution of the problems with a general max-separable objective function and
then show how to adjust the methods for the case where the objective function
is (⊕,⊗)-linear. Such an approach is chosen for the noninterval problems in
this section as well as for the interval problems in the sequel.

We can assume without the loss of generality in the sequel in this section
that the set of feasible solutions of (6.56) is nonempty, since the nonemptiness
can be easily verified using (i), (ii), (iii) from the preceding section taking
into account (6.57). For the same reason, we can assume that we have at
our disposal the principal solution x∗(A, b) of (6.56). To avoid unnecessary
complications we assume that all aij , bi are finite so that x∗j (A, b) ∈ (−∞,∞).

Remark 6.19. We consider only minimization problems, since the minimiza-
tion problems are the most interesting from the point of view of applications
(see the next section). As far as the maximization is concerned, let us mention
that x∗(A, b) is the optimal solution for any maximization problem with the
constraints (6.56) and objective function satisfying the condition:

x ≤ y ⇒ f(x) ≤ f(y) for all x, y ∈ Rn .

Several procedures were suggested for solving (6.55), (6.56) in the lit-
erature (see [198], [199]). We demonstrate here one procedure following
from [199], [200]. Let us denote for i = 1, . . . ,m, j = 1, . . . , n:

Vij = {xj | aij ⊗ xj = bi and xj ≤ xj(A∗, b)} (6.58)
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Then we have:

Vij =
{ ∅ if aij ⊗ x∗j (A, b) < bi ,
{x∗j (A, b)} otherwise .

(6.59)

Following the procedure from Theorem 6.7, we determine indices k(i) for i ∈ S
as follows,

fk(i)(x∗k(i)(A, b)) = min
j,Vij 6=∅

fj(x∗j (A, b)) (6.60)

and set
Pj = {i | i ∈ S, k(i) = j} . (6.61)

Let us define xopt
j for j = 1, . . . , n as follows.

xopt
j =

{
x∗j (A, b) if Pj 6= ∅ ,
arg min {fj(xj) | xj ∈ [xj , x

∗
j (A, b)]} otherwise .

(6.62)

It follows from 6.7 that xopt = (xopt
1 , . . . , xopt

n )T is the optimal solution
of (6.55)–(6.57).

Remark 6.20. Since fj are continuous, xj > −∞ and x∗j (A, b) < ∞, the
min{fj(xj) | xj ∈ [xj , x

∗
j (A, b)]} always exists.

If fj(xj) = cj ⊗ xj , then optimization problem (6.55), (6.56) is called a
(⊕,⊗)-linear optimization problem and its optimal solution x̃opt is the follow-
ing (compare (6.62)).

x̃opt
j =

{
x∗j (A, b) if Pj 6= ∅

xj otherwise ∀j = 1, . . . , n . (6.63)

We investigate further optimization problems with the objective function
f(x) and (⊕,⊗)-linear inequality constraints:

minimize f(x) = max
1≤j≤n

fj(xj) (6.64)

subject to
A1 ⊗ x ≤ b1 (6.65)
A2 ⊗ x ≥ b2 (6.66)
x ≥ x , (6.67)

where A1 is a m1 × n-matrix and A2 a m2 × n-matrix over R. We again
assume that xj > −∞ ∀j and x∗j (A

1, b1) < ∞ for all j = 1, . . . , n. It can be
easily shown that under these assumptions the set of feasible solutions of this
problem is a compact set. Since f(x) is under our assumptions continuous, the
optimal solution of (6.64)–(6.67) exists, whenever the set of feasible solutions
of this problem is nonempty. We present a procedure for solving (6.64)–(6.67),
which follows again from [199], [200].

Let us denote for all j = 1, . . . , n, i = 1, . . . ,m:

Wij =
{
xj | xj ∈ [xj , x

∗
j (A

1, b1)] and a2
ij ⊗ xj ≥ b2

i

}
. (6.68)
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Lemma 6.21. The set of feasible solutions of (6.64)–(6.67) is empty if and
only if there exists i0 ∈ {1, . . . ,m2} such that Wi0j = ∅ for all j = 1, . . . , n.

Proof. If Wi0j = ∅ for all j = 1, . . . , n, then for any xj ∈ [xj , x
∗
j (A

1, b1)]

a2
i0j⊗xj < b2

i0
for all j and thus

n∑
j=1

⊕a2
i0j⊗xj < bi0 for any x satisfying (6.65).

Therefore (6.66) is not fulfilled and the set of feasible solutions of (6.64)–
(6.67) is empty. Let on the contrary for each i ∈ {1, . . . ,m2} there exist j(i) ∈
{1, . . . , n} such that Wij(i) 6= ∅. Let us note that if for any j ∈ {1, . . . , n},
sets Wi1j , Wi2j i1, i2 ∈ {1, . . . ,m2} are nonempty, then it holds always either
Wi1j ⊆ Wi2j or Wi2j ⊆ Wi1j . Really, if R = R1, it is Wi1j ⊆ Wi2j , if and only
if either Wi1j = ∅ or bi1 − ai1j ≥ bi2 − ai2j . If R = R2, then Wi1j ⊆ Wi2j if
and only if either Wi1j = ∅ or ai2j = bi2 and bi1 ≥ bi2 . Let Pj = {i | 1 ≤ i ≤
m2, j(i) = j}. Then if Pj 6= ∅ there exists i(j) ∈ {1, . . . ,m2} ,

⋂

i∈Pj

Wij(i) = Wi(j)j(i(j)) = Wi(j)j .

Let us define x̃ = (x̃1, . . . , x̃n)T as follows.

x̃j ∈ Wi(j)j if Pj 6= ∅
x̃j ∈ [xj , x

∗
j (A

1, b1)] if Pj = ∅ .

Let i0 ∈ {1, . . . , m2} be arbitrary and Wi0j(i0) = Wi0k 6= ∅; it holds that
i0 ∈ Pk, so that

x̃k ∈ Wi(k)k =
⋂

i∈Pk

Wik ⊆ Wi0k = Wi0j(i0) .

Therefore
n∑

j=1

⊕a2
i0j
⊗ x̃j ≥ ai0k ⊗ x̃k ≥ b2

i0 ;

since i0 was arbitrarily chosen, it follows that A2 ⊗ x̃ ≥ b2; since x ≤ x̃ ≤
x∗(A1, b1), it is also A1 ⊗ x̃ ≤ b1, x̃ ≥ x so that relations (6.65)–(6.67) are
fulfilled and x̃ is a feasible solution of (6.64)–(6.67). ut

We assume in the sequel that the set of feasible solutions of (6.64)–(6.67) is
nonempty and describe a procedure following from Theorem 6.7 for determin-
ing the optimal solution of (6.64)–(6.67). Let us note that the nonemptiness
of the set of feasible solutions of (6.64)–(6.67) can be easily verified by making
use of Lemma 6.21.

Let k(i) ∈ {1, . . . , n} be defined for i = 1, . . . , m2 as follows.

x
(i)
j = arg min{fj(xj) | xj ∈ Wij} for all i, j with Wij 6= ∅ (6.69)
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fj(i)(x
(i)
k(i)) = min

1≤j≤n
fj(x

(i)
j ) . (6.70)

Let
Tj = {i | 1 ≤ i ≤ m2 and k(i) = j} (6.71)

and
Wj =

⋂

i∈Tj

Wij = Wi(j)j , if Tj 6= ∅ . (6.72)

Let us define x̃opt =
(
x̃opt

1 , . . . , x̃opt
n

)T
as follows.

x̃opt
j =

{
arg min{fj(xj) | xj ∈ Wi(j)j} if Tj 6= ∅
arg min{fj(xj) | xj ∈ [xj , x

∗
j (A1, b1)]} otherwise. (6.73)

Then x̃opt =
(
x̃opt

1 , . . . , x̃opt
n

)T
is the optimal solution of (6.64)–(6.67).

If fj(xj) = cj ⊗ xj for all j, we obtain the so-called (⊕,⊗)-linear opti-
mization problem with (⊕,⊗)-linear inequality constraints. It can be easily
verified that since fj is nondecreasing, we have:

x̃opt
j =

{
inf(Wi(j)j), if Tj 6= ∅
xj otherwise ∀j = 1, . . . , n , (6.74)

where inf(Wi(j)j) is the minimum element of Wi(j)j .

Remark 6.22. (6.62) follows from (6.72), if we set in (6.64)–(6.67) A1 = A2 =
A, b1 = b2 = b.

In the following, we use the obtained results to derive new results for
(⊕,⊗)-linear systems of equations and inequalities and (⊕,⊗)-linear opti-
mization problems with interval data. Some of the results and concepts can
be found in [25], [24], [193].

6.6 (⊕, ⊗)-linear systems of equalities and inequalities
with interval coefficients

Let A, A be two matrices from Rm×n, A ≤ A. We define

A = [A,A] = {A | A ≤ A ≤ A} . (6.75)

Similarly for b, b ∈ Rm, b ≤ b we define

b = [b, b] = {b | b ≤ b ≤ b} .

The interval system of (⊕,⊗)-linear equations and/or inequalities is a system
of the form

(A⊗ x)i ∼i bi, i = 1, . . . , k , (6.76)

where ∼i is for all i one of the relations ≤, =, ≥.
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Definition 6.23. We say that the system (6.76) is weakly solvable if there
exist A ∈ A and b ∈ b such that (A⊗ x)i ∼i bi, i = 1, . . . ,m is solvable. The
system is called strongly solvable if (A ⊗ x)i ∼i bi is solvable for all A ∈ A,
b ∈ b.

Definition 6.24. A vector x ∈ Rn is called

(1)A weak solution of (6.76), if there exist A ∈ A and b ∈ b such that
(A⊗ x)i ∼i bi for all i;

(2)A tolerance solution of (6.76), if for each A ∈ A, A⊗ x ∈ b;

(3)A strong solution, if for each A ∈ A, and each b ∈ b (A ⊗ x)i ∼i bi for
all i holds.

Let us consider an interval system of equations of the form

A⊗ x = b , (6.77)

where A ⊆ Rm×n, b ⊆ Rm (i.e., ∼i are equalities ∀i in (6.76)).

Theorem 6.25 ([25]). A vector x is a weak solution of the interval sys-
tem (6.77) if and only if A⊗ x ≤ b and A⊗ x ≥ b.

Proof. Let i = {1, . . . ,m} be an arbitrarily chosen index and x = (x1, . . . , xn)T

∈ Rn fixed; let f
(i)
x (ai1, . . . , ain) be a function of n variables defined as follows.

f (i)
x (ai1, . . . , ain) =

n∑

j=1

⊕(aij ⊗ xj) = (A⊗ x)i . (6.78)

If A ∈ A, then since f
(i)
x (ai1, . . . , ain) is isotone, we have:

f (i)
x (ai1, . . . , ain) = (A⊗ x)i ∈ Ii = [(A⊗ x)i, (A⊗ x)i] ⊆ R . (6.79)

Hence x is a weak solution if and only if

(A⊗ x)i ∈ Ii ∩ [bi, bi] ∀i = 1, . . . , m . (6.80)

Therefore x is a weak solution of (6.77) if and only if Ii ∩ [bi, bi] 6= ∅ for all
i = 1, . . . , m; let bi ∈ Ii ∩ [bi, bi] for all i. Since f

(i)
x (ai1, . . . , ain) is for each i

a continuous function, there exist (ai1(bi), . . . , ain(bi)) such that

n∑

j=1

⊕aij(bi)⊗ xj = bi ∀i = 1, . . . , m , (6.81)

i.e., (ai1(bi), . . . , ain(bi)) is the preimage of bi for the mapping f
(i)
x . Let A(b)

be the matrix with entries aij(bi) from (6.81). Then A(b) ∈ A, A(b) ⊗ x = b
and b ∈ b, which completes the proof. ut
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Corollary 6.26. An interval system (6.78) has a weak solution if and only if
A⊗ x∗(A, b) ≥ b.

Proof. The assertion follows from Theorem 6.25 and Lemma 6.15, if we set in
Lemma 6.15 A1 = A, b1 = b, A2 = A, b2 = b. ut
Theorem 6.27 ([24]). A vector x is a tolerance solution of (6.77) if and only
if

A⊗ x ≥ b , (6.82)
A⊗ x ≤ b . (6.83)

Proof. If x is a tolerance solution, then b ≤ A⊗x ≤ b for all A ∈ A; if A = A
we obtain (6.82) and if A = A, we obtain (6.83).

For the opposite implication, let us suppose that x fulfills (6.82), (6.83),
but it is not a tolerance solution of (6.77); i.e., there exist Ã ∈ A, b̃ ∈ b and
i0 ∈ {1, . . . , m} such that either

n∑

j=1

⊕ãi0j ⊗ xj < bi0
(6.84)

or
n∑

j=1

⊕ãi0j
⊗ xj > bi0 . (6.85)

If (6.84) holds, then it contradicts (6.82) and if (6.85) holds, it contra-
dicts (6.83). Therefore if x satisfies (6.82), (6.83), it is a tolerance solution
of (6.77). ut
Corollary 6.28. A vector x is a tolerance solution of (6.77) if and only if
A⊗ x∗(A, b) ≥ b.

Proof. The assertion follows immediately from Theorem 6.27, if we set in
Lemma 6.15 A1 = A, b1 = b, A2 = A, b2 = b. ut
Theorem 6.29 ([24]). A vector x is a strong solution of (6.77) if and only
if it is a solution of the system

A⊗ x = b , (6.86)
A⊗ x = b . (6.87)

Proof. If x is a strong solution of (6.77), it obviously fulfills (6.86), (6.87).
Conversely, let x fulfill (6.86), (6.87) and let Ã ∈ A, b̃ ∈ A exist such that
Ã ⊗ x 6= b̃. Then, there exists an index i0 ∈ {1, . . . ,m} such that either
(Ã ⊗ x)i0 < b̃i0 or (Ã ⊗ x)i0 > b̃i0 . In the former case. it is (A ⊗ x)i0 ≤
(Ã ⊗ x)i0 < b̃i0 so that (6.87) is violated and in the latter case we have
(A⊗ x)i0 ≥ (Ã⊗ x)i0 > b̃i0 ; i.e., (6.86) is not fulfilled. ut
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Corollary 6.30. An interval system (6.77) has a strong solution if and only

if A⊗ x∗ ≥ b and A⊗ x∗ ≥ b, where x∗ = x∗
((

A
A

)
,

(
b

b

))
is the principal

solution of the inequality system

A⊗ x ≤ b, (6.88)
A⊗ x ≤ b. (6.89)

Remark 6.31. Note that if x∗ in the corollary of Theorem 6.29 satisfies (6.88),
(6.89), then x∗ is a strong solution of (6.77).

Let us consider further an interval system of inequalities of the form

A⊗ x ≤ b . (6.90)

Theorem 6.32. A vector x is a weak solution of (6.90) if and only if it is a
solution of the system A⊗ x ≤ b.

Proof. If A⊗x ≤ b, then x is obviously a weak solution of (6.90). Conversely,
let x be a weak solution of (6.90), i.e., there exist A ∈ A, b ∈ b such that
A⊗ x ≤ b; then we have

A⊗ x ≤ A⊗ x ≤ b ≤ b .

ut
Let us consider an interval system of inequalities of the form

A⊗ x ≥ b . (6.91)

Theorem 6.33. A vector x is a weak solution of (6.91) if and only if A⊗x ≥
b.

Proof. If A⊗x ≥ b, then x is obviously a weak solution of (6.91). Conversely,
if x is a weak solution of (6.91), i.e., there exist A ∈ A, b ∈ b such that
A⊗ x ≥ b, then we have

A⊗ x ≥ A⊗ x ≥ b ≥ b .

ut
Let A1 ∈ Rm1×n, A2 ∈ Rm2×n,

A1 = [A1, A
1
] = {A1 ∈ Rm1×n | A1 ≤ A ≤ A

1},
A2 = [A2, A

2
] = {A2 ∈ Rm2×n | A2 ≤ A2 ≤ A

2} .

Let us consider an interval system of inequalities of the form:

A1 ⊗ x ≤ b1 , (6.92)
A2 ⊗ x ≥ b2 . (6.93)
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Theorem 6.34. A vector x ∈ Rn is a weak solution of (6.92), (6.93) if and
only if

A1 ⊗ x ≤ b
1

, (6.94)

A
2 ⊗ x ≥ b2 . (6.95)

Proof. If (6.94), (6.95) is fulfilled, then x is a weak solution of (6.92), (6.93).
Conversely, let x be a weak solution of (6.92), (6.93); i.e., there exist A1 ∈ A1,
b1 ∈ b1, A2 ∈ A2, b2 ∈ b2 such that

A1 ⊗ x ≤ b1 ,

A2 ⊗ x ≥ b2 .

Then we have:
A1 ⊗ x ≤ A1 ⊗ x ≤ b1 ≤ b

1

and further
A

2 ⊗ x ≥ A2 ⊗ x ≥ b2 ≥ b2

so that x fulfills (6.94), (6.95). ut
Corollary 6.35. A system of the form (6.92), (6.93) has a weak solution if
and only if

A
2 ⊗ x∗(A1, b

1
) ≥ b2 , (6.96)

where x∗(A1, b
1
) is the principal solution of (6.94).

Proof. If (6.96) is fulfilled, then x∗(A1, b
1
) is a weak solution of (6.92), (6.93).

Then it fulfills (6.94) and thus x ≤ x∗(A1, b
1
); since x must fulfill also (6.95),

we obtain:
A

2 ⊗ x∗(A1, b
1
) ≥ A

2 ⊗ x ≥ b2 ,

so that (6.96) is fulfilled. ut
Theorem 6.36. A vector x is a strong solution of (6.92), (6.93) if and only
if it is a solution of the system

A
1 ⊗ x ≤ b1 , (6.97)

A2 ⊗ x ≥ b
2

. (6.98)

Proof. If x a strong solution of (6.92), (6.93), it must obviously fulfill (6.97),
(6.98). Conversely, let x be a solution of (6.97), (6.98) and there exists either
A1 ∈ A1, b1 ∈ b1 such that (6.92) is violated or A2 ∈ A2, b2 ∈ b2 such
that (6.93) does not hold. If (6.92) is not fulfilled, there exists an index i ∈
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{1, . . . , m1} such that
n∑

j=1

⊕a1
ij ⊗ xj > b1

i and thus
n∑

j=1

⊕a1
ij ⊗ xj > b1

i so

that (6.97) is not fulfilled. If (6.93) is not satisfied, then there exists an index

i ∈ {1, . . . , m2} such that
n∑

j=1

⊕a2
ij ⊗ xj < b2

i and thus
n∑

j=1

⊕a2
ij ⊗ xj < b

2

i , so

that (6.98) is not fulfilled. ut
The tolerance solution of (6.92), (6.93) is a vector x, which fulfills the

conditions A1⊗ x ∈ b1, A2⊗ x ∈ b2, for any A1 ∈ A1, A2 ∈ A2. Therefore it
follows from Theorem 6.27 the following.

Theorem 6.37. A vector x is a tolerance solution of (6.92), (6.93) if and
only if

A1 ⊗ x ≥ b1 , (6.99)

A
1 ⊗ x ≤ b

1
, (6.100)

A2 ⊗ x ≥ b2 , (6.101)

A
2 ⊗ x ≤ b

1
. (6.102)

6.7 Optimization problems with (⊕, ⊗)-linear interval
constraints

We consider optimization problems

minimize f(x) =
n∑

j=1

⊕fj(xj) (6.103)

subject to
A1 ⊗ x ≤ b1 , (6.104)
A2 ⊗ x ≥ b2 , (6.105)
x ≥ x ≥ x , (6.106)

where A1 = [A1, A
1
] ⊂ Rm1×n, A2 = [A2, A

2
] ⊂ Rm2×n and −∞ < xj ≤

xj < +∞ for all j = 1, . . . , n, and fj are continuous functions.

Definition 6.38. A vector xopt ∈ Rn is called the optimal weak solution of
(6.103)–(6.106) if there exist A1 ∈ A1, A2 ∈ A2, b1 ∈ b1, b2 ∈ b2 such that

A1 ⊗ xopt ≤ b1 ,

A2 ⊗ xopt ≥ b2 ,

x ≥ xopt ≥ x ,

and f(xopt) ≤ f(x) for any weak solution of (6.104)–(6.106).
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Remark 6.39. In the other words xopt from Definition 6.38 is the optimal so-
lution among all weak solutions satisfying (6.104)-(6.106).

Taking into account Definition 6.38, Remark 6.39 and Theorem 6.34, we
see that xopt is in fact the optimal solution of the problem

minimize f(x)
subject to (6.94), (6.95) and (6.106) .

(6.107)

To find it we can use the method described in Section 6.6.

Definition 6.40. A vector xopt is called the optimal tolerance solution of
(6.103)–(6.106), if it is a tolerance solution of (6.104)–(6.106) and if f(xopt)
≤ f(x) for any tolerance solution of (6.104)–(6.106).

Taking into account Definition 6.40, Remark 6.77 and Theorem 6.27 we see
that the optimal tolerance solution of (6.103)–(6.106) is the optimal solution
of the problem

minimize f(x)
subject to (6.82), (6.83), (6.106) .

(6.108)

This solution can be again obtained by making use of the method described
in Section 6.6.

Definition 6.41. A vector xopt is called the optimal strong solutionstrong
solution of (6.103)–(6.106), if it is a strong solution of (6.104)–(6.106) and
if f(xopt) ≤ f(x) for any strong solution of (6.104)–(6.106).

Taking into account Definition 6.41 and Theorem 6.36, we see that the
optimal strong solution of (6.103)–(6.106) can be found by solving the opti-
mization problem

minimize f(x)
subject to (6.86), (6.87), (6.106) .

(6.109)

We can solve this optimization problem by making use of the method from
Section 6.6.

Remark 6.42. If fj(xj) = cj ⊗ xj , where cj ∈ R, it is f(x) =
n∑

j=1

⊕cj ⊗ xj =

cT ⊗ x and (6.103)–(6.106) can thus be called a (⊕,⊗)-linear optimization
problem. Since fjs are isotone in this case, the minimization procedures from
Section 6.6 can be simplified taking this fact into account (e.g., the minimum
of fj on any closed interval is attained in its left end).

Remark 6.43. It follows immediately from the preceding results that the set of
weak solutions of the interval system (6.77) is equal to the set of weak solutions
of the system (6.82), (6.93) if A1 = A2 = A, b1 = b2 = b, i.e., the system
A⊗x ≤ b, A⊗x ≥ b. Therefore, we do not investigate special algorithms for
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optimization problems with interval (⊕,⊗)-linear equality constraints. In the
sequel we investigate only conditions, which must be fulfilled by the tolerance
and the strong optimal solution of an optimization problem with interval
equality constraints.

Let us consider an optimization problem of the form:

minimize f(x) =
n∑

j=1

⊕fj(xj) (6.110)

subject to
A⊗ x = b , (6.111)
x ≥ x . (6.112)

In order to find the optimal tolerance solution of (6.110)–(6.112), we have
to solve the following optimization problem (compare Definition 6.40 and
Theorem 6.27),

minimize f(x) (6.113)
subject to

A⊗ x ≥ b , (6.114)
A⊗ x ≤ b , (6.115)
x ≥ x . (6.116)

This problem can be solved by making use of the algorithm described in Sec-
tion 6.6. To find the optimal strong solution of (6.110)–(6.112), we have to
solve—taking into account Definition 6.24 and Theorem 6.29—the optimiza-
tion problem of the form

minimize f(x) (6.117)
subject to

A⊗ x = b , (6.118)
A⊗ x = b , (6.119)
x ≥ x . (6.120)

This problem can be solved again by the algorithm from Section 6.6.

Remark 6.44. If fj(xj) = cj ⊗ xj for all j ∈ {1, . . . , n}, we obtain the (⊕,⊗)-
linear optimization problem with (⊕,⊗)-linear interval equality constraints.

There arises a question of how to solve optimization problems with interval
objective function of the form cT ⊗x, where c = [c, c] = {c | c ≤ c ≤ c} ⊆ Rn.

Let us consider the optimization problem,
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minimize cT ⊗ x (6.121)
subject to A1 ⊗ x ≤ b1, A2 ⊗ x ≥ b2, x ≥ x . (6.122)

Let for any c ∈ c element xopt(c) be the optimal weak (or tolerance or
strong) solution of the problem

minimize cT ⊗ x
subject to (6.122) .

(6.123)

We interpret the problem (6.121), (6.122) as follows: Find copt ∈ c such that

copt T ⊗ xopt(copt) ≤ cT ⊗ xopt(c) for any c ∈ c.

We show that copt = c. Since cT ⊗ x is isotone both in x and in c, it holds
for any fixed x and c ∈ c, cT ⊗x ≤ cT ⊗x; suppose that there exists c̃ ∈ c such
that c̃T ⊗xopt(c̃) < cT ⊗xopt(c); it would be then cT ⊗xopt(c) ≤ cT ⊗xopt(c̃) ≤
c̃ ⊗ xopt(c̃) < cT ⊗ xopt(c), which is a contradiction. Therefore (c, xopt(c)) is
the solution of (6.123).

Remark 6.45. If R = R1, i.e., cj⊗xj = cj +xj , then the solution of (6.123) can
be reduced to a problem with a noninterval objective function and interval
(⊕,⊗)-linear constraints by introducing new variables yj = cj + xj . It is then
xj = yj − cj and a

(k)
ij + xj = a

(k)
ij − cj + yj for any k = 1, 2, i ∈ {1, . . . ,m},

j ∈ {1, . . . , n}. Let us define d
(k)
ij = a

(k)
ij − cj , yj

= cj + xj . Then it holds for

aij ∈ [a(k)
ij , a

(k)
ij ], cj ∈ [cj , cj ] that d

(k)
ij ≤ d

(k)
ij ≤ d

(k)

ij , where d
(k)
ij = a

(k)
ij − cj

and d
(k)

ij = a
(k)
ij −cj . The original problem with the interval objective function

can be therefore reduced to the problem

minimize
n∑

j=1

⊕yj = max1≤j≤n yj

subject to D1 ⊗ y ≤ b1, D2 ⊗ y ≥ b2, y ≥ y
j



 . (6.124)

Problem (6.124) is a special problem of the form (6.103)–(6.106) with variables
yj and fj(yj) = yj for all j = 1, . . . , n.

6.8 Conclusion

The results obtained in this chapter extend the possibility of applications
of the (⊕,⊗)-linear systems and optimization problems to cases in which
the data of the problems are inexact and the inexactness is expressed by
replacing the exact coefficients of the (⊕,⊗)-linear functions involved with
interval coefficients. Such problems occur, e.g., in scheduling problems with
inexact processing times, reliability problems with inexact failure probabilities
and others. As we have already mentioned, only problems with variables on
one side of the constraints were considered here. Problems with variables on
both sides of (⊕,⊗)-linear constraints may become the subject of further
research.





References

1. J. Albrecht, Monotone Iterationsfolgen und ihre Verwendung zur Lösung lin-
earer Gleichungssysteme, Numerische Mathematik, 3 (1961), pp. 345–358.

2. G. Alefeld and J. Herzberger, Introduction to Interval Computations, Academic
Press, New York, 1983.

3. G. Alefeld, V. Kreinovich, and G. Mayer, The shape of the symmetric so-
lution set, in Applications of Interval Computations, R. B. Kearfott and
V. Kreinovich, eds., Dordrecht, 1996, Kluwer, pp. 61–79.

4. G. Alefeld, V. Kreinovich, and G. Mayer, On the shape of the symmetric, per-
symmetric, and skew-symmetric solution set, SIAM Journal on Matrix Analysis
and Applications, 18 (1997), pp. 693–705.

5. G. Alefeld, V. Kreinovich, and G. Mayer, The shape of the solution set for
systems of interval linear equations with dependent coefficients, Mathematische
Nachrichten, 192 (1998), pp. 23–36.

6. G. Alefeld and G. Mayer, On the symmetric and unsymmetric solution set
of interval systems, SIAM Journal on Matrix Analysis and Applications, 16
(1995), pp. 1223–1240.

7. P. Alexandroff and H. Hopf, Topologie I., Springer Verlag, Berlin, 1935.
8. E. F. Bareiss, Sylvester’s identity and multistep integer-preserving Gaussian

elimination, Mathematics of Computation, 103 (1968), pp. 565–578.
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List of Symbols

A set of matrices; in particular, an interval matrix
|A| absolute value of a matrix (componentwise)
A lower bound of an interval matrix A = [A,A]
A upper bound of an interval matrix A = [A,A]
[A]α α-cut of fuzzy set A
(A)α strict α-cut of fuzzy set A
Ac midpoint matrix of an interval matrix A = [Ac −∆,Ac + ∆]
α ◦ a scalar multiplication
α ∧ β = min{α, β}
ãL(α), ãR(α) left and right end-point of α-cut of fuzzy quantity ã
Ai· ith row of A
A·j jth column of A
A−1 inverse matrix
A(M,N ) submatrix
A+ the Moore–Penrose inverse of A
[A/A11] Schur complement
AT transpose of A
Ayz = Ac − Ty∆Tz

A ≤ B Aij ≤ Bij for each i, j
A < B Aij < Bij for each i, j
b set of vectors; in particular, an interval vector
b lower bound of an interval vector b = [b, b]
b upper bound of an interval vector b = [b, b]
bc midpoint vector of an interval vector b = [bc − δ, bc + δ]
by = bc + Ty∆
C the set of complex numbers
Cm×n m× n complex matrices
Cn complex vector space
card number of elements
Cl(X) closure of X
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codet codeterminant
Conv X the convex hull of X
Core(A) the core of fuzzy set A
C(S) the complement of the set S
δ radius vector of an interval vector b = [bc − δ, bc + δ]
∆ radius matrix of an interval matrix

A = [Ac −∆,Ac + ∆]
det determinant
e = (1, 1, . . . , 1)T

ej jth column of the unit matrix I
f(A, b, c) optimal value of a linear programming problem
f(A,b, c) lower bound of the range of the optimal value of an

interval linear programming problem
f(A,b, c) upper bound of the range of the optimal value of an

interval linear programming problem
FI(R) set of all fuzzy intervals of R
FN (R) set of all fuzzy numbers of R
F0(R) set of all fuzzy quantities of R
F(X) set of all fuzzy subsets of X
g2 2-norm
H Hankel matrix
Hgt(A) height of fuzzy set A
I unit (or identity) matrix
≤̃min

Min-fuzzy extension of relation ≤
≤̃max

Max-fuzzy extension of relation ≤
< , > bilinear form
L, R generating functions of (L, R)-fuzzy interval
L(−1), R(−1) pseudo-inverse functions of L and R
MaxU, MinU sets of maximal and minimal elements of U in Rm

max{A,B} componentwise maximum of matrices (vectors)
min{A,B} componentwise minimum of matrices (vectors)
µA : Rm → [0, 1] membership function of fuzzy subset A of Rm

⊕, ⊗ extremal algebra operations
‖x‖ length, norm
(x, y) inner product
ϕ(A,b, c) optimal value of an auxiliary problem (p. 92)
R the set of real numbers
Rm×n m× n real matrices
Rn real vector space
Rn

+ nonnegative cone (orthant) in Rn

r(A) rank of A
%(A) spectral radius of A
sgnx sign vector of a vector x
σ(P ) sign of the permutation P
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∼ similar
Supp(A) the support of fuzzy set A
T Toeplitz matrix
TL, SL Lukasiewicz t-norm, bounded sum t-conorm
TM , SM Minimum t-norm, Maximum t-conorm
tr(A) trace of A
Ty diagonal matrix with diagonal vector y
xy unique solution of the equation Acx− Ty∆|x| = by

Ym the set of all ±1-vectors in Rm
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algebraic complement, 5
algebraic solution, see solution,

algebraic
algorithm

generating Ym, 37
example of, 38

range of optimal value, 86, 98
example of, 86

sign accord, 69
strong feasibility of equations, 55
strong solvability of equations, 52
strong solvability of inequalities, 61

alpha-feasible solution of FLP, 131
alpha-satisficing solution of FLP, 134
anti-Monge matrix, 33
arithmetic vector space, 9

backward substitution, 16
basis, 10
basis of generators, 153
basis orthonormal, 19
bilinear form, 15
block matrix, 2

card, 4
Cauchy-Binet formula, 6
chain property, 167, 168
characteristic polynomial, 12
circulant matrix, 32
column vector, 1
complement algebraic, 5
complementary submatrix, 5
complexity

basic result, 39

of computing
f(A,b, c), 96
f(A,b, c), 97
the interval hull, 70

summary of results, 61
complexity of checking

finiteness of the range, 98
strong feasibility

of equations, 56
of inequalities, 61

strong solvability
of equations, 53
of inequalities, 60

weak feasibility
of equations, 49
of inequalities, 59

weak solvability
of equations, 48
of inequalities, 58

compromise solution, 157
constraints, 127
control solution, see solution, control
convex hull, 50
crisp fuzzy subset, 119
crisp set, 119
criteria fuzzy set, 157
cycle, 27
cycle simple, 27

determinant, 4
diagonal, 2
digraph, 27

strongly connected, 27
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dimension, 10
directed graph, 27
disjunctive constraint, 167
disjunctive optimization problems, 168
dual bases, 16
dual LPSC problem, 105
dual problem, 80
duality, 15

between weak and strong solutions,
90

theorem, 80
weak, strong, 143

edge of a graph, 27
eigenvalue, 11
eigenvector, 11
elementary row operation, 17
enclosure, 71

Hansen-Bliek-Rohn, 72
for inverse interval matrix, 73
use of approximate inverses in, 77

optimal, 73
is the interval hull, 73

Euclidean vector space, 19
Euclidian norm, 14
extension principle, 128
extremal algebra, 176

f(A,b, c), 83
formula for, 84

f(A,b, c), 83
formula for, 84

Farkas lemma, see theorem, Farkas
feasibility

means nonnegative solvability, 40
of linear equations

characterization of, 40
definition, 40

of linear inequalities
characterization of, 43
definition, 42

strict, strong, weak, 102
feasibility, strong, see strong feasibility
feasibility, weak, see weak feasibility
feasible solution, see solution, feasible,

127, 168–170, 173, 182–184
feasible solution of FLP, 131
flexible LP problem, 149
FLP with centered parameters, 153

Frobenius norm, 14
fuzzy

goal, 134
interval
B-, 153
generator, 153

linear programming problem, 128
multi-criteria LP problem, 156
number, 120

Gaussian, 121
relation

dual, 122
set, 119
subset, 119

fuzzy algebra, 176

Gaussian elimination, 17
generalized inverse, 23
generalized simplex method, 111
generator

additive, multiplicative, 124
Gerlach theorem, see theorem, Gerlach
Gram matrix, 23
Greville algorithm, 26

Hankel matrix, 31
Hansen-Bliek-Rohn theorem, see

theorem, Hansen-Bliek-Rohn
Hermitian matrix, 22
hull

convex, 50
interval, 69
linear, 10

identity matrix, 2
initial vector, 18
inner product, 19
interval hull, 69

as the optimal enclosure, 73
complexity of, 70

interval linear equations, see system of
interval linear equations

interval linear inequalities, see system
of interval linear inequalities

interval linear programming problem
basis stability of, 100
formulation, 83
lower bound

complexity of, 97
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formula for, 84
properties of, 87–92

range of optimal value
algorithm for, 86, 98
definition of, 83
finite, characterization of, 97
finite, complexity of, 98
formulae for, 84

set of optimal solutions, 100
simplex method in interval arithmetic,

99
upper bound

complexity of, 96
formula for, 84
properties of, 92–97

interval LP problem, 150
interval matrix, 43

inclusion characterization, 44
regular, 66
singular, 66

interval vector, 44
inverse interval matrix

enclosure, 73
inverse matrix, 4
irreducible matrix, 28
iterative method, 18

Jacobi method, 18
Jordan block, 12
Jordan normal form, 12

Kronecker delta, 16

Laplace expansion, 5
length of a path, 27
length of a vector, 19
linear

combination, 10
equation, 8
functional, 16
hull, 10
subspace, 10

linear equations, see system of linear
equations

linear inequalities, see system of linear
inequalities

linear programming problem, 79, 127
condition number for, 100
dual, 80

duality theorem, 80
feasible, 79
infeasible, 79
optimal solution of, 80
optimal value of, 79
primal, 80
unbounded, 80
with set coefficients (LPSC problem),

101
linearly dependent, 9
linearly independent, 9
loop, 27

main diagonal, 2
mapping

dual mapping, 122
matrix, 1

absolute value of, 35
addition, 1
block triangular, 7
column, 1
diagonal, 4
entry, 1
Hermitian, 22
inverse, 4
irreducible, 28
lower triangular, 4
M -matrix, 29, 38
multiplication, 1
nonnegative, 27
nonsingular, 4
norm, 14
norms, 38
of type, 1
orthogonal, 19
P -matrix, 30, 67
positive, 27
positive definite, 20, 39
positive semidefinite, 20
reducible, 27
row, 1
strongly nonsingular, 7
symmetric, 19
unitary, 22

matrix interval, see interval matrix
max-algebra, 176
max-feasible solution of FLP, 131
max-satisficing solution of FLP, 134
max-separable function, 165, 182
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max-separable optimization problems,
165–167, 174, 182

minor, 5
minor principal, 5
M -matrix, 29, 38
M0-matrix, 30
Monge matrix, 33
Moore-Penrose inverse, 25, 95

nonnegative matrix, 27
nonsingular matrix, 4
norm, 14

objective function, 127
optimistic, pessimistic, Hurwitz, 104

octahedric norm, 14
Oettli-Prager

inequality, 47
and description of tolerance

solutions, 63
theorem, 47

(⊕,⊗)-linear constraints, 182
(⊕,⊗)-linear constraints, 193
(⊕,⊗)-linear equations, 178, 186
(⊕,⊗)-linear inequalities, 178, 183, 185
optimal solution, 80, 127

of dual LPSC problem, 106
of primal LPSC problem, 106

optimal value, 79
of dual LPSC problem, 106
of primal LPSC problem, 106

optimization problem, 127
order, 2
ordered, 2
orthogonal matrix, 19
orthogonal vectors, 19
orthonormal basis, 19
orthonormal system, 19

parameter of optimism, 105
Pareto optimal solution, 158
path, 27
path algebra, 176
path simple, 27
permutation, 4
permutation matrix, 16
Perron-Frobenius theory, 28
ϕ(A,b, c), 92

connection with f(A,b, c), 93, 95

pivot, 17
P -matrix, 30, 67
P0-matrix, 31
polynomial characteristic, 12
positive definite matrix, 20
positive matrix, 27
positive semidefinite matrix, 20
primal LPSC problem, 105
primal problem, 80
primal-dual FLP problem, 140
primal-dual pair, 140
principal minor, 5
principal solution, 180–182, 188, 189
pseudoinverse, 25

quadratic form, 21

Raleigh quotient, 21
range of optimal value, 83

formulae for, 84
rank, 10
reducible matrix, 27
reflexive relation, 12
regular set matrix, 107
regularity

and P -matrices, 67
characterization of, 66
complexity of checking, 66
definition of, 66
sufficient condition for, 67

priority of, 77
relation, 12

reflexive, 12
symmetric, 12
transitive, 12

row echelon form, 16
row vector, 1

satisficing solution of FLP, 134
scalar, 1, 9
Schur complement, 8
set

fuzzy, 119
set of feasible solutions

of dual LPSC problem, 105
of primal LPSC problem, 105

sign of permutation, 4
similar matrices, 12
simple cycle, 27
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simple path, 27
singular value, 22
singular value decomposition, 22
singularity, 66
solution

algebraic, 65
definition making more sense, 76

control, 64
feasible, 79
optimal, 80
strong

of interval linear equations, 54
of interval linear inequalities, 60

tolerance, 62
bounds on components of, 63
crane construction, 62, 76
in input-output planning, 62, 76

weak
of interval linear equations, 47
of interval linear inequalities, 57

xy, 68
solution set, square case, 68

example of, 69
solution vector, 9
solvability

of linear equations
characterization of, 42
definition, 40

of linear inequalities
characterization of, 42
definition, 42

solvability, strong, see strong solvability
solvability, weak, see weak solvability
spectral radius, 13, 67
square case

enclosure, 71
Hansen-Bliek-Rohn, 72

main result, 68
sign accord algorithm, 69
significant points, 68

square matrix, 2
strong component, 28
strong duality, 107
strong feasibility

of interval linear equations
characterization, 55
complexity, 56
definition, 46

of interval linear inequalities

characterization, 61

complexity, 61

definition, 46

strong properties

as referring to all systems, 46

strong solution, see solution, strong,
186–188, 190–193

strong solvability

of interval linear equations

characterization, 50

characterization, history of, 75

complexity, 53

definition, 46

of interval linear inequalities

characterization, 59

complexity, 60

definition, 46

implies existence of a strong
solution, 60

strongly connected digraph, 27

strongly nonsingular matrix, 7

subdeterminant, 5

submatrix, 4

subspace linear, 10

summary

of complexity results, 61

of solution types, 74

of solvability/feasibility conditions,
43

symmetric matrix, 19

symmetric relation, 12

system of interval linear equations, 45

strongly feasible, 46

strongly solvable, 46

weakly feasible, 46

weakly solvable, 46

system of interval linear inequalities, 46

strongly feasible, 46

strongly solvable, 46

existence of a strong solution, 60

weakly feasible, 46

weakly solvable, 46

system of linear equations, 8

feasible, 40

solvable, 40

system of linear inequalities

feasible, 42

solvable, 42
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t-conorm
bounded sum, drastic sum, 123
maximum, probabilistic sum, 123

t-norm
Archimedian, strict, nilpotent,

idempotent, 124
dual, 124

theorem
duality

in interval linear programming, 90
in linear programming, 80
in linear programming, authorship

of, 99
Farkas, 40
Fiedler-Pták, 67
Gerlach, 57
Hansen-Bliek-Rohn, 72
Oettli-Prager, 47

Toeplitz matrix, 32
tolerance solution, see solution,

tolerance, 186, 187, 190–193
topological closure, 31
trace, 12
transitive relation, 12
transpose matrix, 3
transposition, 3

unit vector, 19
unitary matrix, 22
unitary vector space, 19
upper triangular, 4

vector, 1, 9

vector interval, see interval vector
vector norms, 38
vector of the right-hand side, 9
vector space, 9

Euclidean, 19
unitary, 19

vertex of a graph, 27

weak duality, 106
weak feasibility

of interval linear equations
characterization, 49
complexity, 49
definition, 46

of interval linear inequalities
characterization, 58
complexity, 59
definition, 46

weak properties
as referring to some system, 46

weak solution, see solution, weak,
186–189, 191, 192

weak solvability
of interval linear equations

characterization, 48
complexity, 48
definition, 46

of interval linear inequalities
characterization, 57
complexity, 58
definition, 46

zero matrix, 2




