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The optimization problem is, in general, to find the optimum (max-
imum or minimum) value of a function in a given domain and to find
the values of the variables where the optimum is reached in this do-
main. Global optimization means to solve the optimization problem in
an area given by a real-world problem. Local optimization means to
solve the optimization problem locally, that is, in the neighborhood of
a given point. Local optimization has been investigated in depth; it
has a rich theory and many excellent numerical methods and recipes
are available. Global optimization, on the other hand, is a recent area
which has only been partially researched. Many theories have to be de-
veloped and many numerical experiments have to be performed before
the area would be considered reasonably well developed. This research
and development is, however, of the greatest importance since many
real-world problems are global rather than local problems.

If an average user - not too experienced - wants to solve a global
optimization problem, he faces two difficulties: The first is that the
scope of many books on nonlinear optimization is the development of
local methods. To use a local solution as a global solution can - ac-
cidentally - lead to a correct result; however, in most cases it will be
totally wrong. What shall the user do in order that his local knowl-
edge becomes global? Very few books consider this problem. Indeed
too many books suppress the global standpoint because ”if one has
the local solutions one can easily get the global solution”. How can
one get “the” local solutions. What happens if the "right” local so-
lution is missing or lost? How can one organize the local information
in order to get the global information? To decide which local method
shall be chosen in the first place constitutes a further difficulty. There
is a beautiful variety of methods discussed in the books, such as lin-
earization methods, penalty and barrier methods, quadratic sequential
search methods, methods involving Kuhn-Tucker conditions, clustering
and statistical methods, parameter methods, tunnelling and trust re-
gion methods, etc. Which method is recommended? Which method is
appropriate when searching for the global solution? One certainly can-
not give a definite answer since the answer would depend too much on
the particular problem of the user: Is the problem large or small, what
is known about the problem, how are the differentiability conditions,



does he have to solve one problem or many, are then the problems sim-
ilar or not, has the user plenty of time available or is he busy (wanting
the computer to work for him), how is the user’s mathematical back-
ground, how are the computer costs? Additionally, even the state of
art in local optimization has not advanced so far that a generally best
method can be given. Thus, the books cannot give a recommendation
as to a best method. In spite of this the user has to make a decision if
he wishes to solve his problem!

Accordingly, the scope of our book is twofold. The first aim is to
focus on the global problem and to give precise and computationally
reliable instructions on how to organize the relationship between local
information and global needs. Some choices of local methods are made
which may be combined with the global strategy. The second aim is to
favor interval methods and to demonstrate that they are excellent tools
for handling global problems, i.e., global optimization problems.

Let us make our intentions more clear. First of all, we emphasize a
very thorough treatment of the global point of view. The global access
we follow is mainly based on the work of Moore, Hansen, Skelboe and of
the authors. We give careful convergence theorems of the methods, and
we develop the necessary interval analysis background in detail which is
necessary in order to understand and apply the global methods. Loosely
spoken, a branch and bound principle is used where the bounds can be
determined by a computer almost automatically.

Since each global access requires a computationally intensive check-
ing of the whole area (no solution is allowed to be lost), it is necessary to
combine the global access with local methods. These local methods can
speed up the computation considerably. We will give some examples of
how the global access may be combined with local methods depending
on the differentiability conditions of the problem (conjugate gradients,
Newton methods, etc.) The purpose of these examples is twofold: The
more experienced reader can see how interval and non-interval methods
are merged and he may then apply knowledge and techniques from his
favorite local method as part of the global access. The less experienced
reader who does not have the large overview of local methods may use
our choices for a complete program. However, we do not discuss the lo-
cal methods too extensively since they are covered in every monograph



on nonlinear optimization. We also do not include linear optimization
which is a particular subtopic of its own. Certainly linear programming
problems could be solved with our approach, but this would not be very
effective.

We have chosen a combination of methods which are characterized
to be

e very stable and robust,
e universally applicable,
e 100% reliable,

e flexible and modular,
e convenient,

e applicable without supplying a starting box that usually must
contain the set of global minimizers.

The high level of reliability is achieved since safe bounds for the
solutions are provided. Further, the algorithms converge to the solu-
tions as far as the assumptions are satisfied. If there is no convergence
to the solution then at least inclusions of the solution sets are deter-
mined such that the approximation error can be computed easily. It
can never happen that the algorithms converge to a wrong result or
that they diverge.

Flexibility is provided, as the user may incorporate as much infor-
mation as he wants to or as he is able to. If he is not willing to provide
particular information the program will still reach the solution, but in
this case, very slowly.

It is one of the curiosities of global optimization that a starting box
must be known which contains the solution even if the problem is so-
called unconstrained. We will show how this restriction can be dropped
using infinite interval arithmetic.

The number of variables which occur in the optimization problem is
practically limited only by storage and computer time. If the number
is too large then the problem itself has to be studied first in order to
reduce the high computational complexity.



The second aim of this book is to demonstrate that intervals are ex-
cellent tools for handling global optimization problems and for supple-
menting standard techniques. This is because an interval, even though
representable by only two points, is an infinite set and is thus a carrier
of an infinite amount of information which means global information.
On the contrary, standard optimization methods depend on, and pro-
cess, local information. For instance, they may evaluate the slope of
the objective function at one point x, that is f’(z) which is used to
approximate also - more or less reliable - the directions of f in some
neighborhood of z. Interval arithmetic can however handle expressions
like f'(X) for an interval X (which can be m-dimensional) which means
that f'(X) collects the information f'(z) for any x € X, independent
of the size of X.

For example if 0 ¢ f'(X) - which can be checked automatically dur-
ing the execution of the program - then one knows that f'(x) # 0 for all
z € X and that X does not contain a local minimizer (with exemption
of the edge). This is global information! Interval arithmetic is therefore
particularly suited to dealing with global problems. For example, inter-
val algorithms can determine (enclose) all zeros of a function, or they
can determine all solutions of an optimization problem, and that with
arbitrary accuracy. This last point has to be emphasized since many
people believe that interval methods would lead to unrealistically large
intervals.

On the other hand, it can be advantageous to combine interval with
non-interval methods, because the latter are frequently local methods
and thus faster. For example, if v = — f’(z)t is the direction of steepest
descent, then v gives us a local information valid only for x or some
neighborhood of z. If instead of v an interval V' containing v would
be used then V is a direction bundle, and contains clearly the steepest
direction v. V will also contain other directions, which may be quite
ineffective. As one can see, V collects too much information, which pre-
vents a fast processing such that - in some situations - the computation
with the local information, v, will be preferred.

In order to avoid misunderstandings which occur sometimes in con-
nection with the use of interval arithmetic we keep in mind that it is not
the aim of this monograph to present well-known optimization meth-



ods in an interval arithmetical guise in order to control the rounding
errors and to generate safe bounds for the errors. The intervals are - as
discussed extensively - used as a methodical means for keeping global
information. The error control is only a side effect and just sketched in
this book.

Necessary background. This monograph is kept on such a math-
ematical level that readers with a year of calculus, with some basic
experience in numerical analysis, and with the intention of thinking in
interval dimensions, will not have too much difficulty in reading it.

Abridge of the contents.

Chapter 1 gives a very short introduction to nonlinear optimization.
Only a few methods worth combining with interval tools are considered
in outline. We prefer standard methods rather than latest developments
since the aim of this monograph is to show the applications of intervals
to optimization and not to present the state of the art. It is simpler for
the reader to understand how the two areas - optimization and intervals
- fit together, if techniques that are not too sophisticated are used. The
experienced reader, however, who has mastered the merging principles
shall not hesitate to apply them to his favorite optimization algorithm
if this is possible.

Chapter 2. The interval arithmetical tools are presented as far
as they are needed in the main parts of the monograph. Since the
computation with intervals and the thinking in intervals are not too
widespread, the progress of this chapter is quite gentle, and we tried
to make it self-contained. However, we did not include all the proofs
which were necessary for a complete treatment.

Chapter 3. Algorithms for the unconstrained optimization problem
and their properties are considered. Complete proofs of the conver-
gence theorems are enclosed. The algorithms presented are based on
the branch and bound principle. The bounds required are won from an
interval arithmetical evaluation of the functions occurring in the prob-
lems which implies that the solution data (minimum values, minimum
points) is included in boxes at any stage of the algorithms. These algo-
rithms aim to get the including boxes as small as possible or as small as
required. Even though the branch and bound principle can be slower
than a uniform subdivision method in awkward cases, the interval al-



gorithms compete practically with any other method for solving global
problems because of their ability to collect information over arbitrarily
large areas.

Chapter 4. The methods and the theory which are developed in
Chapter 3 are applied to optimization problems which are unconstrained
in the literal sense of the word. This means that the usual assumptions
i.e. that the problem is restricted to a compact domain and that the
global minimizers are contained - hopefully - in the domain or in its
interior, are dropped. Such a generalization is made possible by an
appropriate compactification of the real space and by an appropriate
realization of infinity arguments on a computer. Complete proofs of
the convergence theorems are included.

Chapter 5. The techniques as used for the unconstrained case are
mainly provided for the constrained case. The treatment of problems
where poor differentiability conditions prevent the application of La-
grangian multiplier methods is emphasized. The algorithms discussed
are an interesting combination of interval and non-interval methods.
Interval methods are used for exhausting and rejecting unfeasible ar-
eas and also for processing global information; non-interval methods
are used locally, i.e. for improving the globally obtained information
with not too much computational effort. It is, for instance, especially
important to find feasible points as fast as possible since the full power
of interval methods only comes to play within the feasible domain.
This task is also done using interval methods. In contrast, non-interval
methods are suggested for finding feasible points taking low function
values. The knowledge of such values helps to accelerate the computa-
tion considerably. As in the other chapters, a thorough discussion of
the convergence properties of the algorithms is included.

Acknowledgements. Thanks are due to the National Sciences and En-
gineering Research Council of Canada and the Killam Foundation for
financial support.



Chapter 1

Some Principles of
Optimization Theory

1.1 Introduction

Physicists, chemists, mathematicians, engineers, economists, opera-
tions researchers, managers, and practicing computer scientists are
often interested in achieving optimal solutions to their problems. These
problems may be to determine designs, programs, trajectories, alloca-
tion of resources, or approximations of functions. Frequently, different
designs or programs, all satisfying the conditions arising from the actual
situation, are compared, and one is chosen that also is best in terms of
an optimality criterion. Optimization techniques, if properly applied,
will automatically examine different designs or plans and select an op-
timum. Sometimes this is done without solving the complete design or
planning problem at every step. But sometimes all possible designs or
plans are taken into consideration and a ”global” optimum is selected.

A typical and simple problem is the following taken from Simmons
(1975):

A chemical company must send 1000 cubic meters of chlorine gas to
its research laboratory in another state. Because the gas is extremely
dangerous, a special hermetically sealed rectangular railroad car must
be built for transporting it. The material from which the top and bot-
tom must be constructed costs $200 per square meter, while the siding

7



8 Ch. 1: Some Principles of Optimization Theory

material costs half as much; however, only 50 square meters of siding
can be obtained. Moreover, the maximum height of the car permitted
by tunnels and other overhead clearances is 3 meters. Regardless of
the car’s dimensions each round trip to the laboratory will cost $800.
Assuming no time limit on the overall procedure, what dimensions min-
imize the total cost of constructing the car and delivering the gas?

Let d, w, and h be the car’s length, width, and height. The objective
is to minimize overall cost; that is, minimize

1000
SOO(W) + 2dw(200) + (2dh + 2wh)(100),
w
where the three terms are contributed by transportation cost, top-and-
bottom material, and siding, respectively. The constraints mentioned
in the problem are
2dh + 2wh < 50

and
h < 3.

Finally, we must eliminate the possibility of negative dimensions:
d,w,h > 0.

How can such problems be solved in general?

Classical optimization formulas of differential calculus and calculus
of variations can be applied to certain optimization problems. There
are, however, many problems for which classical formulae are not suit-
able or may be too cumbersome to apply. For such problems iterative
techniques may be appropriate. Optimization problems requiring iter-
ative techniques were practically insurmountable before the advent of
modern computers, because of their complexity and the vast amount
of computation required. Recently, however, interest in optimization
techniques and their application has been considerable, primarily as a
result of the developments in computing technology over the last four
decades.

Let a theoretic, technical or some other real-world system be given.
The elements normally involved in the optimization of this system in-
clude a system model, an optimality criterion, and an optimization



Problem Statement 9

technique. System models of interest here are mathematical models.
In order to obtain a mathematical model, the parameters of the system
or the independent variables are identified. Then functions of these
variables are determined, which represent the different characteristics
of the system. The mathematical model is the set of these functions
that describes the behavior of the system. The optimality criterion,
or objective function, is a measure of merit or cost. It is a function
of the same independent variables and yields a number corresponding
to each setting of these variables. There exist different optimization
techniques, which are applicable to mathematical models and objective
functions of different types. It is usually not practical to use the same,
very general, optimization technique for all problems.

It is also not the aim of this book to cover all possible optimization
techniques available nor to cover some or many of them. In order to get
such an overview the reader is referred to the numerous existing excel-
lent textbooks about optimization. It is rather our aim to demonstrate
how the tool of interval arithmetic can be used to solve optimization
problems. Thus a new class of optimization methods is created. Some
of them are independent of the well-known non-interval techniques and
some of them are dependent on and related to famous formulas such
as the Kuhn-Tucker conditions or to popular iterative approaches like
Newton methods.

In this chapter a short summary of such classical non-interval formu-
las and techniques is given as far as they will be combined with interval
tools in this text. For an extensive treatment of this classical mate-
rial the reader is again referred to general textbooks of nonlinear opti-
mization, for example, Bertsekas (1982), Blum-Oettli (1975), Dennis-
Schnabel (1983), Evtushenko (1985), Fiacco-McCormick (1968), Fletcher
(1980, 1981, 1987b), Gill-Murray-Wright (1981), Hestenes (1975), Him-
melblau (1972), Horst (1979), Mangasarian (1969), McCormick (1983),
Minoux (1986), Wolfe, M.A. (1978), Zangwill (1969).

1.2 Problem Statement

In this section we present a precise statement of the problems for which
solution techniques are proposed in this book. A general optimization
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problem (sometimes called also a mathematical or nonlinear program-
ming problem) can be formulated as follows: Find the values of m vari-
ables z1, 9, ..., %, denoted for brevity by x, which satisfy the given
constraints, that is, a given set of equations or inequalities, or both, and
optimize (minimize or maximize) the objective function f(z). Since the
problems of minimizing f(z) and maximizing — f(z) are equivalent, the
general optimization problem can be written as:

37
subject to
gi(z) <0, i=1,...,k,
hi(x) =0, i=k+1,...,r,

where R denotes the set of real numbers.
In vector notation this general problem is written as

Iléllillrln f(z) s.t. g(x) <0, h(z) =0 (1.1)

where g(x) = (g1(x), ..., gx(z))’ and h(x) = (hgs1(z), ..., h(z))T. By
the superscript ”I"” we mean the transpose of a vector such that we are
dealing with column vectors. If there are no constraints (r = 0), the
problem is said to be unconstrained. The constraints may also include
as a special case, lower or upper bounds on the variables, that is,

a; <xz; or x;<b, 1=1,...,m.

For practical and computational reasons the unconstrained problem
is also assumed to involve lower and upper bounds on the variables.
These bounds should be chosen so that the solutions do not occur at
the bounds, i.e. it is expected that a; < x; < b; for t = 1,...,m. An
optimization problem is said to be linear if the objective function f(x)
and all the constraint functions are linear in the variables xy, ..., z,.
Otherwise, the optimization problem is said to be nonlinear. A problem
is said to be quadratic if the objective function is quadratic,

1
f@)=a+b"z+ ixTAx
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where a is a constant, b an m-dimensional column vector, and A an
m X m matrix, and if the constraints are linear (as in the case of a
linear problem). If some (or all) of the variables are restricted to a set
of integer (or discrete) values, the problem is said to be an integer (or
a discrete) optimization problem.

We assume that the problem statement is formulated such that any
set of values of the variables z = (z1,...,7,,)" can be interpreted as
a point in the m-dimensional column space R™. By writing down the
problem statement in the form (1.1) it is already understood implicitly
that the function values f(z), g;(x) and h;(x) are real numbers, i.e.,
using the vector notation, that g(z) € R*, h(z) € R"*.

A point z € R™ satisfying the constraints, that is, g(z) < 0 and
h(z) = 01is called a feasible point. A set U C R™ is called a feasible set
if all points of U are feasible. The set of all feasible points of problem
(1.1) is called the feasible set or the feasible region of problem (1.1). An
inequality constraint g;(z) < 0 is called active if g;(x) = 0, otherwise
inactive (1 = 1,..., k). If the problem is unconstrained then there are
no constraints and every point is feasible (with respect to the empty
set of constraints). However, the attribute feasible is usually dropped
in these cases.

A feasible point z* is called a local minimum point or a local mini-
mizer for the problem (1.1) if a real number € > 0 exists such that

f(@*) < f(z) for all feasible points z

with || z —z* ||< e. The norm || || used can be any norm, for example,
maximum norm, Euclidean norm, etc. The value f(z*) is then called a
local minimum or a local minimum value. A feasible point z* is called
a global minimum point or a global minimizer for the problem (1.1) if

f(z*) < f(x) for all feasible points z.

The value f(z*) is then called the global minimum or the global mini-
mum value. Clearly, a global minimum is a local one, but the converse
is generally not true. The concepts local maximum points, local mazx-
imizer, etc. are defined analogously. By local optimum points, etc.,
we mean either local minimum or maximum points, depending on the
context.



12 Ch. 1: Some Principles of Optimization Theory

Even if one is only interested in methods for solving the global
optimization problem (that is, to find global solutions such as global
minimizers or global minimum values) one has to pay attention to the
local problem. The reason is that several techniques for solving the
global problem involve local solutions and local techniques.

1.3 Optimality Conditions

In this section, we summarize some well-known conditions for a point
x to be a local minimizer.

The most general optimality condition for problem (1.1) is the John
criterion. It is essential to distinguish between equality and inequality
constraints for this criterion and it is assumed that the objective and
constraint functions are differentiable. The criterion says that, if z* is
a local minimizer of (1.1) then vectors u = (ug,...,u;)T € R¥ and
v = (Vgs1,...,0,)7 € R"7F exist such that = = z* satisfies

uof' (@) + Sy uigl(z) + iy vibl(z) =0, )
Sk uigi(x) =0,
u> 0, > (1.2)

(v) ,

Oxy 7 Oy

Here

f'(a) = (

denotes the gradient of f at z which will be identified with the derivative
of f at . Furthermore

Jo(z) = (91(2), ..., gp(@))"

and
In(@) = (Bgya (), - - - hp(2))"
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will denote the Jacobian matrix of g and h at z, respectively. That is

991 () 991 ()
ox; Ozp
Jo(z) = : :
09k () gk ()
ox; Oz
and
ahk+1 (CE) ahk+1 (.’Z;)
6331 o 8xm
In(z) = : :
Oh,(x) Oh,(x)
0xy o O%m
For unconstrained problems, the conditions (1.2) reduce to
f'(z) =0. (1.3)

The function whose derivative with respect to x occurs in the first
line of (1.2),

U(z,u,v) = uof(z) + (ud,-..,ur)g(x) + v h(z),

is called the generalized Lagrangian function of (1.1).

The necessary conditions of Kuhn-Tucker are better known. They
require a type of condition called a constraint qualification that guaran-
tees that ug > 0in (1.2). Since the known qualifications are rather trou-
blesome to verify in practice they are either more of theoretic interest or
only in special cases of importance. It is again assumed that the objec-
tive and constraint functions are differentiable. A widely used and well-
known version is the following, cf. Horst (1979), Fiacco-McCormick
(1968):

Let x be a feasible point of problem (1.1). Let A(z) = {i : gi(z) =
0, i = 1,...,k} be the so-called active index set. Then z is said to
fulfill the constraint qualification (also: regularity condition) if the set
of gradients g;j(x), h(x) with ¢+ € A(x), j = k+1,...,m is linearly
independent.
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The Kuhn-Tucker criterion, slightly modified, says: If z* is a lo-
cal minimizer of the optimization problem (1.1) and if z* satisfies
the constraint qualification then vectors u = (uq,...,u;)?T € R*¥ v =
(Vks1,---,0,)T € R™F exist such that © = z* satisfies

F'(@) + T8, wigi(x) + oy vilki(z) = 0,
Y uigi(z) =0, (1.4)
u; >0 fori=1,...,k.

The components u;, v; are frequently called the Lagrangian multipliers.
The function whose derivative with respect to x occurs in the first line
of (1.4),

L(z,u,v) = f(z)+ (u1,...,ux)g(z) + v h(z)

is called the Lagrangian function of (1.1).

In order to solve the optimization problem (1.1), the John conditions
and Kuhn-Tucker conditions are used as follows: One tries to solve (1.2)
or (1.4) for x,u,v with feasible z. If solutions are found then they are
checked to see if they are local minimizers of (1.1).

In order to get a sufficient number of equations for z, u, v, conditions
(1.2) and (1.4) are completed by the r — k equations

hz(.T) :0, ’l::k-i-l,...,’f',
and by the k£ equations
uigi(z) =0, i=1,... k. (1.5)

Equations (1.5) are equivalent to -, u;g;(z) = 0 for a feasible point
x which means that the last-mentioned condition can be deleted. That
this condition implies (1.5) can be seen easily: Let us just focus on
one fixed 7, say j. If j is an active index for z, that is, g;(z) = 0, then
u;gj(x) = 0. If j is an inactive index for z, that is, g;(z) < 0, then u; =
0 follows. Otherwise u;g;(x) < 0 which would imply >%_  u;g;(x) < 0
due to the requirements u; > 0, g;(z) < 0.

Thus, in case (1.4), we have m+r equations (plus some restrictions)
for the unknowns z € R™,u € R¥,v € R"*. In case (1.2), we also
have m + r equations (plus some restrictions) for the unknowns z €
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R™ u € R¥! v € R"*. One can obtain the missing (m + r + 1)-th
equation by normalizing the multipliers, for example, by

k r
Zui+ Z ’U?:L
=0

i=k+1

cf. also Hansen-Walster (1987b) for further normalizations.

Both systems are now ready to be solved by classical methods such
as secant methods, gradient methods, Newton methods, etc.

1.4 Penalty Methods

Penalty methods transform a constrained optimization problem into a
sequence of unconstrained optimization problems. The sequence can
be finite or infinite depending on the chosen method. The main ad-
vantages are that the number of variables does not increase with the
transformation, and that the underlying principle is very simple. Disad-
vantages are that the simpler methods are numerically ill-conditioned,
and that the more sophisticated methods lose their simplicity. The rea-
son for this is that these improved versions become effective and avoid
the shortcomings of the simpler versions only if they are combined with
other theories and techniques, such as duality theory, etc. See, for ex-
ample, Fletcher (1983, 1985), Bertsekas (1982), Hestenes (1975), and
others. Since it is not the scope of this text to present the most per-
fect way of applying penalty functions but to discuss how to combine
interval methods with classical optimization ideas, we only give a brief
discussion of exact nondifferentiable penalty functions as a prototype.
This prototype may be integrated into more interesting techniques.

The optimization problem (1.1) is again considered. We introduce
the function

o(@) = L max(0, ) + 3 |lo)|

which takes nonnegative values only. For any z, ¢(z) = 0 iff z is a
feasible point.



16 Ch. 1: Some Principles of Optimization Theory

Thus, the term ¢(z) together with a so-called penalty factor p can
be used to indicate infeasible points and to push z into the feasible
region by increasing p. For this purpose we introduce a new objective
function,

p(z, p) = f(z) + pq(z), (1.6)

which transforms problem (1.1) to the unconstrained optimization prob-
lem

min p(z, p) (1.7)

where p > 0 is seen as being constant for the moment. p(z,p) is
frequently called an [, exact penalty function.

Note that p(x, p) need not be differentiable at the boundary of the
feasible region. The power of the transformation to (1.7) relies on
the fact that if z* is any local minimizer of (1.1) then a threshold
value p exists such that z* is a local minimizer of (1.7) for any p > 4.
Thus z* can be computed with a single unconstrained minimization
if an appropriate value of p is used in (1.7). Otherwise a sequence
of problems minp(z, py) with p; < ps < ... must be computed until
a local minimizer of minp(z, p2) is found which is feasible for (1.1).
Fortunately, one can obtain good approximations to p via estimates of
the Lagrangian multipliers.

1.5 Unconstrained Minimization

If problem (1.1) has no constraints, that is, £ = r = 0, then it is called
an unconstrained minimization problem, written concisely as

i 1.
min f(z) (1.8)
where f : R™ — R. We use R™ as domain of f for simplicity. The
user can adapt it to his special situation.
If f is differentiable, the classical necessary condition for a point x
to be a local minimizer is

f'(z) =0. (1.9)
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A well-known sufficient condition is the following: If (1.9) holds, if f is
twice differentiable in = and if

o= (325)

i=1,...,m ’

=1
7j=1,....m
the Hessian matrix of f at z, is positive definite then z is a local
minimizer.

In connection with interval techniques, we will apply methods for
the unconstrained case when we are going to solve

(1) an unconstrained problem by itself,

(2) a constrained problem when the area being processed is already
within the feasible region.

Applying techniques for unconstrained minimization can mean two dif-
ferent things:

(i) Looking for a way downbhill in order to reach a local minimizer,

(ii) Solving a system of equations, i.e. (1.9), that is the gradient of
the objective function f, in order to obtain the critical points of
f. The local minimizers are then among the solutions.

Even though these two possibilities look different, they are con-
nected together with the structure of the methods available for the so-
lutions. Good overviews of this subject may be found, for example, in
Dennis-Schnabel (1983), Gill-Murray-Wright (1981), Fletcher (1980),
McCormick (1983), Ortega-Rheinboldt (1970).

In the remaining part of this section we give a rudimentary sketch
of some of the most frequently used methods for treating (i) and (ii).

Newton’s Method

Let ¢ : R™ — R™ and ¢ € C! be given. (By C" we mean the
class of functions which are n-times continuously differentiable. C!
functions are also called smooth functions.) We write ¢ but our intent
is to mainly consider f’, c¢f. (1.9). The Jacobian matrix of ¢ at z is
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denoted by J(x). We want to find a solution z* € R™ of the system of
equations

é(x) =0. (1.10)
The prototype steps of Newton’s method are:

1. Choose xqg € R™.

2. Setn:=0.

3. Solve J(xn)sp, = —p(x,)  for s, € R™.
4. Set xpy1 =Ty + Sp.

5. Setn:=n-+1.

6. Return to 3.

Advantages are the quadratic convergence property of the method

if zy is "near” a solution which means that

| @1 — 2" < e || 2 — 2" ||
for some constant ¢ and any norm of the space R™. Disadvantages are
that each step requires both the computation of J(x,) and the solution
of a system of linear equations.

For practical computations it is frequently recommended to replace
the Jacobian matrix of ¢ by finite difference expressions or by secant
formulas, cf. Dennis-Schnabel (1983), and others.

A problem which is frequently discussed is the selection of the appro-
priate strategy when J(z,) becomes ill-conditioned or singular. There
are several ways to overcome this problem. A very promising one, for
example, is the tensor method of Schnabel-Frank (1984), cf. also Schn-
abel (1983). Since the local Newton method is only a tool for speeding
up the computation in this monograph, we are not concerned with this
problem as long as we use interval methods for solving the global prob-
lem (1.1). If the problem occurs then the local search by Newton’s
method is abandoned and global interval techniques are applied.
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If Newton’s method is used to solve problem (1.8) directly, that is,
solutions of

fllz)=0
are looked for (which are called critical points of f), one has to assume
f € C? and one obtains Newton’s method for unconstrained optimiza-

tion as a special case. The Hessian matrix of f at = is denoted by f”(x).
The basic steps are:

1. Choose xqg € R™.

2. Setn:=0.

3. Solve f"(xn)sp = —f'(z,) for s, € R™.
4. Set Tpy1 =T, + Sp.

5. Setn:=n-+1.

6. Return to 3.

The advantages and disadvantages of Newton’s method for uncon-
strained optimization are the same as for the former Newton’s method.
There is however a further point to be mentioned, which is that the
points z,, tend to a critical point of f. This can be a local minimizer,
a local maximizer or a saddle point. Therefore one will apply New-
ton’s method for unconstrained optimization mainly in an area where
f"(z) is positive definite which means 2% f"(z)z > 0 for z € R™, 2z # 0.
There are useful adaptations if f”(z) is not positive definite, cf. Gill-
Murray-Wright (1981), Dennis-Schnabel (1983), McCormick (1983),
Moré-Sorensen (1979), etc. For example, there are good reasons to
take modifications of the form

[ (wn) + pl

instead of f”(x,) in Step 3 where u > 0 is chosen such that positive
definiteness is obtained. I is the identity matrix.

The use of difference schemes and of secant formulas, as mentioned
before, is recommended again in practical computations. Additionally
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because of the symmetry of f”(z) there are further advantages which
lead to interesting developments, such as, for example, the theory of
conic models, first proposed by Davidon (1980).

Quasi Newton Methods

As was just mentioned there are many modifications of Newton’s
method for a variety of reasons. Probably the most important modifi-
cations result in a class of algorithms which are ”similar” to Newton’s
method, that is, the class of quasi Newton methods. Unfortunately ter-
minology is neither unique (also: wvariable metric methods; sometimes
also: secant methods) nor is this class well defined. The first quasi
Newton method was suggested by Davidon (1959), cf. Gill-Murray-
Wright (1981, p. 125) for further historical details. See also Dennis-
Moré (1977).

The key to the success of Newton’s method is the curvature infor-
mation provided by the Hessian matrix which allows a local quadratic
model of f to be developed. The theory of quasi Newton methods is
based on the fact that an approximation to the curvature information
can be obtained without explicitly forming the Hessian matrix, cf. Gill-
Murray-Wright (1981). The general iteration step of a quasi Newton
method for getting a local minimizer of f may be best described by the
rule

Tni1 = Tn — Hof'(20)tn, n=0,1,...

where H,, is an approximation to the inverse of the Hessian matrix and
t, is a step-size scalar, cf. McCormick (1983, p. 180). More restric-
tive are, for instance, Dennis-Schnabel (1983, p. 112), as they use the
name quasi Newton method only if the quasi Newton steps are finally
replaced by Newton’s steps in a sufficiently small neighborhood of the
local minimizer.

It is not the aim of this monograph to investigate the theory of
quasi Newton methods. Instead we restrict ourselves to mentioning
that both the quasi Newton methods and the usual Newton methods
may be incorporated into the global interval arithmetical framework as
described in later sections.
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Steepest Descent and Conjugate Gradient Methods

We will summarize here a few methods for solving the unconstrained
minimization problem (1.8) where only first order information shall or
can be used. Thus we assume f: R™ — R and f € CL.

The steepest descent algorithm (with exact line search) is so simple
in its construction and so widely used that it should at least be men-
tioned, even though other methods are superior. The basic steps of this
algorithm are:

1. Choose xy € R™, set n := 0.
2. If f'(x,) = 0 then stop.
3. Set dp == —f'(zn).

4. Let ay, be a local or global minimizer of the problem
min f(x, + ad,) with respect to o > 0.

5. Set xpi1 = xp + apd,.

6. Setn:=n-+1. Return to 2.

It can be proven that the algorithm either terminates at a critical
point of f or that the sequence (f'(x,)) converges to zero, provided
the set {z : f(x) < ¢} is bounded for any constant c. Unless the
gradient vanishes, the steepest descent direction, d,,, is clearly a descent
direction. However, the number of iterations that are needed to make
| f'(x,) || (with any norm) sufficiently small can be very large, even
in simple situations such as strictly convex quadratic functions, cf. for
example, Powell (1986).

A vast improvement in convergence speed was given by the conjugate
gradient method of Fletcher-Reeves (1964), although the only change
to the above steepest descent steps is Step 3 where the search direction
is altered in the following manner:

—f'(z,), fn=0

3. Set dn = { —fl(l'n) + Bndn—la ifn>0
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where 3, =|| f'(z,) |I> / || f'(zn_1) ||* with the norm being the
Euclidean norm.

The conjugate gradient method of Polak-Ribiére (1969) is also very
successful where 3, for n > 0 is defined by

B = f'(2a)" (f'(@n) = f'(@a-1))/ | (@) |7

An interesting comparison of the conjugate gradient methods just de-
scribed can be found in Powell (1986).

Methods for Nondifferentiable Functions

It would go too far to include methods for nondifferentiable func-
tions to the overview given in this section. We only mention that
two cases are mainly distinguished in practice. In the first case, the
function still offers some first order information such that methods
can be applied which are based on generalized gradients, cf. for ex-
ample, Demyanov-Vasilev (1985), Zowe (1985), Demyanov-Pallaschke
(1985), or the contributions given in Demyanov-Dixon (1986) for a re-
cent overview. In the second case where no appropriate first order in-
formation is available, so-called direct search methods may be applied.
They are based mainly on function value comparisons, cf. for example,
Gill-Murray-Wright (1981). See also the methods mentioned in Sec.
3.12.



Chapter 2

Principles of Interval
Analysis

2.1 Introduction

Most methods for global optimization suffer from at least one of two de-
fects. The first defect is that the method may not be able to guarantee
that the global optimum points have been found to a given tolerance.
This means that the results are subject to doubts as regards to their
validity. The second defect is that the method may only be applicable
under severely restrictive conditions such as the knowledge of a Lips-
chitz constant, convexity, etc.; otherwise it is likely that only a local
minimizer is found instead of a global one. These defects are due to
the difficulty of solving the global optimization problem. Global opti-
mization is therefore considered to be an intractable subject.

The above shortcomings may be avoided through the use of the
tools and techniques of interval analysis. Within the framework of
interval analysis it is possible to develop reliable inclusions for both
the minimum values and the minimum points for a very large class of
functions.

The work in interval arithmetic began especially with the papers
of R.E. Moore, the "father” of interval arithmetic. There are also two
very early papers by W. Warmus (1956) from Poland and T. Sunaga
(1958) from Japan who reported on the first investigations in inter-

23
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val arithmetic. Up to now three monographs introducing this subject
have appeared. These are R.E. Moore’s Interval Analysis (1966), also
available in German translation (1967), G. Alefeld - J. Herzberger’s
FEinfihrung in die Intervallrechnung (1974), also available in English
translation (1983) and R.E. Moore’s Methods and Applications of In-
terval Analysis (1979). Many international conferences have also been
held where the main theme was interval analysis. The first such confer-
ence took place in Oxford, England, in 1968 and the most recent was
held in Columbus, U.S.A., in 1987. Proceedings of the symposia have
been edited by E. Hansen (1969a), K. Nickel (1975), (1980), (1986), J.
Albrycht - H. Wisniewski (1985) and R.E. Moore (1988).

In this chapter some basic tools and techniques of interval analysis
are introduced as applied to the global optimization problem. In Sec.
2.2 we motivate and justify the use of interval arithmetic. In Sec. 2.3,
the interval arithmetic operations and some basic rules and properties
are introduced. In Sec. 2.4, the behavior of interval arithmetic is de-
scribed when it is executed on a computer. The contents of Sec. 2.5 is
mainly concerned with interval arithmetic matrix computations. The
main tool for treating optimization problems, that is the concept of an
inclusion function, is developed in Sec. 2.6. Natural interval extensions
which are also treated in Sec. 2.6 are a constructive means for generat-
ing inclusion functions. Sec. 2.7 presents the centered forms, the most
popular inclusion functions. We recommend two special centered forms;
these are the meanvalue forms and the Taylor forms. These forms can
be understood and applied without too much theoretical background.
For obtaining optimum bounds of the objective function depending on
the information available we give formulas for the developing points
which are the best possible chosen for the meanvalue forms. In Sec.
2.8, interval Hessian matrices are introduced that have as few interval
entries as possible. Their use in Taylor forms or in interval Newton
methods leads to improved approximations. Finally, great care is be-
stowed upon the presentation of the interval Newton method in Sec.
2.9 and 2.10. Many algorithmic details are added in order to facilitate
the implementation of the computational steps of this method.
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2.2 Why Interval Arithmetic?

Present-day computers employ an arithmetic called fixed length floating
point arithmetic or short, floating point arithmetic. In this arithmetic
real numbers are approximated by a subset of the real numbers called
the machine representable numbers (or short machine numbers). Be-
cause of this representation two types of errors are generated. The first
type of error occurs when a real valued input data item is approxi-
mated by a machine number. The second type of error is caused by
intermediate results being approximated by machine numbers.

Interval arithmetic provides a tool for estimating and controlling
these errors automatically. Instead of approximating a real value x by
a machine number, the usually unknown real value x is approximated
by an interval X having machine number upper and lower boundaries.
The interval X contains the value x. The width of this interval may be
used as measure for the quality of the approximation. The calculations
therefore have to be executed using intervals instead of real numbers
and hence the real arithmetic has to be replaced by interval arithmetic.
When computing with the usual machine numbers Z there is no estimate
of the error | Z—x |. The computation with including intervals, however,
provides the following estimate for the absolute error

|z — mid X [<w(X)/2

where mid X denotes the midpoint of the interval X and w(X) denotes
the width of X. An estimate for the relative error is,

if0 ¢ X,

x — midX‘ w(X)
<

x ~ 2min | X |

where | X |={|z |z € X}.

Let us consider an example. The real number 1/3 cannot be rep-
resented by a machine number. It may, however, be enclosed in the
machine representable interval A = [0.33, 0.34] if we assume that the
machine numbers are representable by two digit numbers (without ex-
ponent part). If we now want to multiply 1/3 by a real number b which
we know lies in B = [—0.01, 0.02] then we seek the smallest interval X
which
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(a) contains b/3,

(b) depends only on the intervals A and B, and does not depend on
1/3 and b,

(c) has machine numbers as boundaries.
The realization of these requirements is accomplished by two steps,

(i) operations for intervals are defined which satisfy (a) and (b),

(ii) the application of certain rounding procedures to these operations
yields (c).

By (i), an interval arithmetic is defined, and by (ii) a machine interval
arithmetic is defined.

Let us consider another example where we apply the mean value
formula to gain a local approximation of a continuously differentiable
function f: R — R (R denotes the set of reals) near a point z € R,

fl@+h) = f(z)+ f(E)h (2.1)

For simplicity, we assume that A > 0. Then £ € [z, z + h] =: X. How
can we represent the information given by (2.1) on a computer? How
can we evaluate f(z + h) on the computer via the right side of (2.1)
if x and h are given? Obviously, £ is not assigned a numerical value
which would be necessary if we wish to compute f'(£) automatically
on a computer. How should (2.1) be treated in order that it might be
used for further numerical manipulation as for example if (2.1) is to
be multiplied by a number? The answer is quite simple: Use interval
arithmetic and compute

F(z,h) := f(z) + [(X)h

as will be defined in the sequel. Then F'(z,h) will be an interval, i.e.
representable on the computer, and we will know that f(z+h) € F(z, h)
where f(z 4 h) is unknown and F(z, h) is known.

Such principles have many interesting applications in numerical
analysis. Examples are the computational verification of the existence
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or the uniqueness of solutions of equations in compact domains, cf.
Moore (1977, 1978), strategies for finding safe starting regions for it-
erative methods, cf. Moore-Jones (1977), etc. In this manner one can
provide methods which generate a sequence of multi-dimensional inter-
vals, (Y,), that converges to the set of global minimum points where the
sequence f(Y,) converges to the global minimum of f. A comfortable
side effect of the use of interval arithmetic is that when a theoreti-
cal interval algorithm is implemented using machine intervals via the
so-called outward rounding, the rounding errors are completely under
control and cannot falsify the results, cf. Sec. 2.4.

2.3 Interval Arithmetic Operations

Let I be the set of real compact intervals [a, b], a,b € R (these are the
ones normally considered). Operations in I satisfying the requirements
(a) and (b) of Sec. 2.2 are then defined by the expression

AxB={axb:ac Ajbe B} for A,Bel (2.2)

where the symbol * stands for +, —, -, and /, and where, for the moment,
A/B is only defined if 0 ¢ B.

The definition (2.2) is motivated by the fact that the intervals A
and B include some exact values, a respectively [, of the calculation.
The values o and 3 are generally not known. The only information
which is usually available consists of the including intervals A and B,
ie,a € A, B € B. From (2.2) it follows that

axBeAxB (2.3)

which is called the inclusion principle of interval arithmetic. This
means that the (generally unknown) sum, difference, product, and quo-
tient of the two reals is contained in the (known) sum, difference, prod-
uct, respectively in the quotient of the including intervals. Moreover,
A x B is the smallest known set that contains the real number « * 3.
Moore (1962) proved that Ax B € I'if 0 ¢ B.

It is emphasized that the real and the corresponding interval op-
erations are denoted by the same symbols. So-called point intervals,
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that is intervals consisting of exactly one point, [a, a], are denoted by
a. Expressions like aA,a + A, A/a,(—1)A, etc. for a € R, A € T are
therefore defined. The expression (—1)A is written as —A.

Definition (2.2) is useless in practical calculations. Moore (1962)
proved that (2.2) is equivalent to the following constructive rules,

[a, b]+[c, d = [a+c b+d,

[aa b]_[cﬂ d] = [a_da b—C],

[a, b] - [c, d = [min(ac,ad,bc,bd), max(ac,ad,be,bd)], (2.4)
[a, b] /e, d] = la, b]-[1/d, 1/c] if 0 & [c, d].

(2.4) shows that subtraction and division in I are not the inverse
operations of addition and multiplication respectively as is the case in
R. For example,

[07 1] - [O: 1] = [_17 1]:

[1, 2l/[L, 2] = [1/2, 2].
This property is one of the main differences between interval arithmetic
and real arithmetic. Another main difference is given by the fact that

the distributive law of real arithmetic is not valid in general. Only the
so-called subdistributive law,

A(B+C)C AB+ AC for A,B,C €1 (2.5)
holds in I. For example,
[0, 1][1 — 1] =0,
[0, 1]1 + [0, 1]1 = [-1, 1].
The distributive law is valid in some special cases, for example,
a(B+C)=aB+aCifa€eRand B,C €1.

The following properties follow directly from (2.2): Let A, B,C, D, €1
and * be any interval operation then

A+B=B+ A,

A+ (B+C)=(A+B)+C,

AB = BA, (2.6)
A(BC) = (AB)C,

ACB,C CDimplies AxC C Bx*D (if B * D is defined).



Interval Arithmetic Operations 29

The last property of (2.6) is the inclusion isotonicity of interval
operations.

The usual set theoretic operations, intersection and union, are ap-
plicable for intervals A, B € I, and also for intervals of extended classes
as will be introduced later:

ANB = {z:x€ Aandzx € B},
AUB = {z:x€ Aorxe€ B}

Both of these operations can lead to sets not in I. For instance, AN B
can be empty, and AUB can be a set consisting of two disjoint intervals.

A sophisticated extension of the interval arithmetic operations de-
fined above to unbounded intervals is needed and introduced in Chapter
4. For the moment, a small fragment of such an unbounded arithmetic
is provided as far as it is required for the interval Newton method in
Sec. 2.9. Alefeld (1968) was the first to use infinite intervals in Newton
methods. The following formulas are due to Hansen (1980):

Let 0 € [¢, d] and ¢ < d, then

[a, b]/]c, d] =

([b/c, +00) if b < 0and d =0,
(—o0, b/d]U[b/c, +00) ifb<0,¢<0, and d > 0,
(—o0, b/d] if b <0and c=0,

3 (=00, a/(] if a > 0and d =0, (2.7)
(=00, a/c]Ula/d, +o0) ifa>0,c<0, and d > 0,
[a/d, +00) ifa>0and c=0,

| (—o0, +00) ifa < 0andb>0,

and furthermore [a, b]/0 = (—o0, 00).

These formulas are not applicable to every problem, but they are
appropriate for solving linear equations in connection with the interval
Newton method. There is also no need for implementing the formulas
(2.7) on the machine explicitly since they are finally intersected with
a bounded interval such that the result is always a bounded interval,
a pair of bounded intervals, or the empty set. We also have to shift
unbounded intervals before intersecting them. This means that for
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z,a € R,
z + [a, o0) = [z +a, 00),
T+ (—00, 00) = (—00, ),
z+(—o00, a] = (—o0, z+al.

It is hardly possible to deal with larger interval arithmetic calcula-
tions unless formulas and rules are available for common combinations
of intervals so that it is not necessary to resort to the fundamental
arithmetic rules (2.4) for each calculation. For a good collection of such
formulas and their proofs the reader is referred to Alefeld-Herzberger
(1983). Examples of such formulas are, where w([c, d]) = d — ¢ and
mid [¢, d] = (c+d)/2:

w(@A+bB) = |a|w(A)+|b|w(B),
mid(¢A+bB) = a mid A+bmid B

for a,b € R, A, B € 1. If A is symmetric, that is, A = [—a, a] for some
a >0, and if B = [¢, d] then

AB = Amax(cl,]d])
| Ajcife>0,
AIB =\ A/ditd <o, (28)

w(AB) = 2amax(|c|,|d]),

etc.

2.4 Machine Interval Arithmetic

Let us return to the requirements (c) or (ii) of Sec. 2.2, that is, that
the endpoints of our intervals must be machine numbers. This leads to
a special topic called machine interval arithmetic. It can be considered
as an approximation to interval arithmetic on computer systems.
Machine interval arithmetic is based on the inclusion isotonicity of
the interval operations in the following manner: Let us again assume
that «, 8 are the unknown exact values at any stage of the calculation,
and that only including intervals are known, oo € A, § € B. Then A, B
might not be representable on the machine. Therefore A and B are
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replaced by the smallest machine intervals that contain A and B,
AC Ay, BC By.

A machine interval is an interval which has left and right endpoints
that are machine numbers. From (2.6) it follows that

The interval A,;* Bys need not be a machine interval and it is therefore
approximated by (Aps * Bpr)y which is representable on the machine.
This leads to the inclusion principle of machine interval arithmetic:

a € A, € Bimplies a*x § € (Ay * Bu) - (2.9)

Thus, the basic principle of interval arithmetic is retained in machine
interval arithmetic, that is, the exact unknown result is contained in the
corresponding known interval, and rounding errors are under control.

We sum up: When a concrete problem has to be solved then our
procedure is as follows:

e the theory is done in interval arithmetic;
e the calculation is done in machine interval arithmetic;

e the inclusion principle (2.9) provides the transition from interval
arithmetic to machine interval arithmetic.

There are several software systems and software packages in which
machine interval arithmetic is implemented, for example TRIPLEX-
ALGOL-60, PASCAL-SC, FORTRAN-SC, or ACRITH for some IBM
computers, ARITTHMOS for some Siemens computers, etc.

2.5 Further Notations

The set of real numbers is denoted by R and the set of real compact in-
tervals [a, b],a,b € R by I. If A € T then we also write A = [IbA, ubA]
denoting the lower and upper boundaries of A by IbA and ubA. Inter-
vals of the form [a, a] are called point intervals. These are identified
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with the corresponding reals. The width of an interval A = [a, b] is
denoted by
w(A)=b—a
and the midpoint by
a+b

mid A = 5

If A=la, b],B=]|c, dl €I then
ALBiffb<c

and
A< Biffb<e.

If DCRthen I(D)={Y |Y el Y C D}.

The set of real m-dimensional column vectors is denoted by R™ and
the set of m-dimensional interval column vectors by I"*. The superscript
T means the transpose of a row or a column.

If A= (A,...,A,)T € T™ then A is a right parallelepiped A; x
Ay x ... x A, The vector of left endpoints of A is denoted by IbA =
(IbAy,...,1bA,;,)T and the vector of right endpoints is denoted by ubA =
(ubAy,...,ubA,,)T. Interval vectors are also called intervals when it is
clear from the context whether real intervals or interval vectors are in-
tended. A boz is also a frequently used synonym for an m-dimensional
interval vector in this monograph.

If A= (Ay,...,A,)" € I"™ then the width of A is defined to be
w(A) = max {w(A;):i=1,...,m}
and the midpoint of A to be
mid A = (mid Ay,..., mid A4,,)7.

The set of n x m real matrices is denoted by R"*™ and the set of
n X m interval matrices by I"*™. If A = (A;;) € I"*™ then

is the midpoint of A. Clearly mid A € A.
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A Bel, AABeI™or A,B € I"*™ then
ANB={zx:xz € Aand z € B}
is the intersection of A and B and
AUB={x:x € Aorz € B}

the union of A and B.
If A=|a, b], B =]|c, d| €1Ithen the inclusion of A in B is as usual

ACBife<a<b<d.

If ABeI"or A B € I"™ then A C B means that A; C B; for
t=1,...,mor A; C By fori=1,...,n; j=1,...,m. Similarly, if
reR™ Ael™ orifz e R"™™ A e€I™™ then

rEeA

means z; € A; forv=1,...,morz; € A fori=1,...,n; j =
1,...,m.
Similarly, if A, B € I"™ then

A<B o A<B

means A; < B; fori =1,...,m, or A; < B; fori =1,...,m, respec-
tively. Note that A < B does not mean that A = B or A < B holds as
is the case with inequalities in R.

The interval arithmetic operations are extended to ¢nterval vector
and interval matrix operations in the usual manner:

CL(A,']') = (G,Aij) for a € R, (AZJ) e 1m
(Aij) £ (Byj) = (Aij £ Byj) for (Ay), (By;) € I™™
k
(Ai)(Bij) = (0. AuBy) for (Ai) e IV*, (By;) € TF™.
P}

This definition includes the arithmetic for interval vectors (rows as
well as columns) by setting n =1 or m = 1.
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If A, B, C, D are interval vectors or interval matrices and if x denotes
one of the operations +, —, -, or /, then

ACC, BC Dimplies Ax BCCxD (2.10)

if the operations are defined. Property (2.10) is the extended form of
the inclusion isotonicity of the interval arithmetic operations.

Letting z,y € R, we define (after Sunaga (1958))

=y ifz <y,
xvy_{[y,l“] if y < z.

We see that x V y is the interval spanned by the reals x and y, that
is, the smallest interval that contains z and y. If x = (z1,...,%m,)7,
yv=(y1,---,Ym)" € R™ then we define

VY= (T1Vy,...,ZmVyn) €I™

Clearly, = V y is the interval that is spanned by the vectors x and y. If
X,Y €1 then X VY denotes the smallest interval which contains X
and Y. If X = [a, b] and Y = [¢, d] then

X VY = [min(a, ¢), max(b,d)].

Furthermore, if X = (X1,...,X,)T,Y = (Y3,...,Y,)T € I™ then the
smallest interval Z € I"™ that contains X and Y is denoted by X VY
and it is equal to (X; VYi,..., X, VY,)T.

For D C R™ we denote by I(D) the set of all boxes Y € I"™ with
Y C D. For example, if X € I, and thus X C R™, the set of all
subboxes Y of X is just I(X). In this connection we say that Y is
an interval variable over I(X) which shall mean that Y can take each
box of I(X) as value. This terminology is mainly used when functions
F :I(X) — I etc. are considered.

2.6 Inclusion Functions and Natural In-
terval Extensions
In this section, the inclusion principle for the interval arithmetic op-

erations is extended to more general functions such as programmable
functions.
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In the treatment of optimization problems using interval arithmetic
the main tool is the concept and application of inclusion functions. Let
D CR™and f: D — R. Let furthermore Of(Y) = {f(z) : z € Y}
be the range of f over Y € I(X). A function F' : I(D) — I is called an
inclusion function for f if

Of(Y) CF(Y) foranyY €I(X). (2.11)

Inclusion functions for vector-valued or matrix-valued functions are
defined analogously. The inclusion condition (2.11) must in this case
be satisfied componentwise.

It turns out that interval analysis provides a natural framework for
constructing inclusion functions recursively for a large class of functions.

In order to outline this class of functions it is assumed that some
fundamental functions are available for which inclusion functions are
already known. This assumption is verified by existing computer lan-
guages for interval computations. These languages have pre-declared
functions g (examples are sin, cos, etc.) available. For these functions
it is also assumed that pre-declared inclusion functions G satisfying the
above conditions (2.11) are given. The functions G are easy to construct
since their monotonicity intervals are generally known, such that even
G(Y) = Og(Y) will hold, in general. It is also easy to realize these
inclusion functions G on a computer such that (2.11) is not violated.
In this case the influence of rounding errors is kept under control by
computing

(G(Yar))um instead of G(Y),
cf. Sec. 2.4.

Let f: D — R, D C R™ be a function which may be described
in some programming language as an explicit expression without use of
logical or conditional statements (such as ”if ... then”, ”while”, etc.).
That is, each function value f(z), X € D, can be written down as an

expression (also denoted by f(z)) which is independent of the value of
x and such that this expression consists only of

(1) the variable z (or its components zi, ..., ),

(2) real numbers (coefficients, constants),
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(3) the four arithmetic operations in R,
(4) the pre-declared functions g,
(5) auxiliary symbols (parentheses, brackets, commas, etc.).

Let Y € I(D) then the natural interval extension of f to Y is defined
as that expression which is obtained from the expression f(z) by re-
placing each occurrence of the variable x by the box Y, the arithmetic
operations of R by the corresponding interval arithmetic operations,
and each occurrence of a pre-declared function g by the corresponding
inclusion function G. This definition is due to Moore (1966). The nat-
ural interval extension of f(x) to Y is denoted by f(Y") when defined as
an expression, that is, a string of some specified symbols. The function
value which is obtained by evaluating this expression is also denoted
by f(Y).

It follows from the inclusion isotonicity of the interval operations,
(2.6), and from the properties of the pre-declared inclusions, i.e. the
G's, to be inclusion functions (see (2.11)) that

xz € Y implies f(z) € f(Y). (2.12)

Since property (2.12) is the key to almost all interval arithmetic ap-
plications and results, E. Hansen suggested at an international interval
workshop in Columbus, Ohio, September 1987, that (2.12) should be
called the fundamental property of interval arithmetic. We have just
followed this suggestion.

If f:D— R,D C R™is programmable and can be described by
a function expression as characterized above then the interval function
F :I(D) — I defined by F(Y) = f(Y) is an inclusion function for f.
More importantly we have here an effective constructive means to find
an inclusion function F' for a real function f using the tool of natural
interval extensions.

(Note: Natural interval extensions could only be precisely defined
via a recursion. Further, one would have to distinguish between the
expressions f(z) or f(Y) and the functions defined by these expressions
as mentioned briefly. One would also have to take care of the case
that a forbidden division by 0 could be implied by evaluating f(Y")
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even if 0 ¢ Y € I(D). Although such distinctions are mathematically
unavoidable we prefer omitting them since they would cause confusion
rather than clarity and help. The reader preferring a more precise
presentation is referred to Ratschek-Rokne (1984).

Example. If f(x) = z;sin(ze) — x3 for x € R? and if SIN is the
pre-declared interval function for sin then f(Y) =Y; SIN(Y3) — Y3 is
the natural interval extension of f to Y € I3.

It is one of the large curiosities of interval arithmetic that different
expressions for one and the same function f lead to interval expressions
which are also different as functions:

Example. If fi(z) = z — 2? and fo(z) = z(1 — z) then fi(z)
and fy(x) are different as expressions, but equal as functions. Further,
fi(Y) and fo(Y) are also different as functions, i.e., if Y = [0, 1] then
LHY)=Y-Y?2=[-1,1], o(Y)=Y(1-Y) =0, 1]. For comparison,
afy) =|[o, 1/4].

It is therefore a very important and challenging problem to find
expressions for a given function that lead to the best possible natural
interval extensions, that is, f(Y) shall approximate Of(Y") as well as
possible. Part of the solution to this problem can be found in Ratschek-
Rokne (1984).

Up to now, we have only admitted programmable functions not
containing logical connectives for the application of the natural interval
extension. The reason is that the existence of such connectives can
cause the inclusion isotonicity to fail. This is best shown by an example.

Example. The function f : R — R shall be defined by

f(x):{ z, ifx >0,

0, otherwise.

By automatically applying the principle of natural interval extension,
that is, by replacing = by intervals Y € I, one would get the following
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interval function,

Y, if Y >0,

0, otherwise.

s -

If Y = [-1, 1] then f(Y) = 0 but Of(Y) = [0, 1], and thus, the
function F' : T — I, defined by F(Y) = f(Y) for Y € I, is no longer
an inclusion function of f. After a moment’s reflection it is easily seen
that an appropriate inclusion function may also be found in this case
(and also in other cases). This inclusion function F; : I — I is defined
by

YifY >0,
Fi(Y)=< 0ifY <0,
[0, ubY], otherwise.

This example shows that it is almost always possible to find an inclu-
sion function for a programmable function. (The restriction ”almost”
means that we did not try to prove it. On the other hand, we do not
know a counterexample.) It also shows that inclusion functions for gen-
eral programmable functions cannot be constructed as automatically as
in the case of functions having explicit expressions.

A measure of the quality of an inclusion function F' of f is the
excess-width,

w(f(Y)) —w(@f(Y)) forY e I(D),

introduced by Moore (1966). A measure for the asymptotic decrease
of the excess-width as w(Y") decreases is the so-called order (also: con-
vergence order) of F', due to Moore (1966): An inclusion function F of
f:D—=R,D CR™is called of (convergence) order a > 0 if

w(F(Y)) —w(Of(Y)) = O(w(Y)®),
that is, if there exists a constant ¢ > 0 such that
w(F(Y)) —w(@3f(Y)) <cw(Y)* forY € I(D).

In order to obtain fast computational results it is important to choose
inclusion functions of an order « as high as possible when w(Y") becomes
small. A detailed investigation of the order of inclusion functions is
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given in Ratschek-Rokne (1984). A similarly looking concept, which is
however independent of the order, is the idea of a Lipschitz function.
Let D C R™ and F : I(D) — I*¥. Then F is called Lipschitz if there
exists a real number K (Lipschitz constant) such that

w(F(Y)) < Kw(Y) forY e€I(D).

The Lipschitz property delivers us a frequently used criterion for the
meanvalue form which is a special inclusion function being of conver-
gence order 2, cf. the next section.

2.7 Centered Forms, Meanvalue Forms, Tay-
lor Forms

Centered forms are inclusion functions with special features that were
introduced by Moore (1966). Many important contributions have been
made to the development of centered forms including a general def-
inition. It is not possible to present these contributions here; how-
ever, the interested reader is referred to the monograph by Ratschek-
Rokne (1984). This monograph gives an extensive overview starting
from Moore’s (1966) first historical, rather vague, definition proceed-
ing with the investigation by Krawczyk-Nickel (1982) resulting in an
elegant axiomatic characterization, and ending with the higher order
forms of Cornelius-Lohner (1984).

In order to construct an inclusion function for a given function, one
has two choices in general, i.e. one can choose between natural interval
extensions and centered forms. The most important centered forms are
the meanvalue form and the Taylor form, both of which are described
in this section.

Let f : D — R, D C R™ be differentiable and let F' : I(D) — I"™ be
an inclusion function for the gradient, f’. Then T} : I(D) — I defined
by

T\(Y)=fle)+ (Y —c)"F'(Y) for Y € I(D) (2.13)

where ¢ = mid Y or also some other point of Y is called the meanvalue
form function (or shorter: meanvalue form) of f, cf. Moore (1966),
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(1979). Frequently, F'(Y) can be computed via natural interval exten-
sions or via an automatic differentiation arithmetic, cf. Rall (1981), or
via similar techniques that avoid explicit differentiation. Because of the
meanvalue formula of analysis we have, if Y € I(D) is given, for x € Y,

f@)=f(e)+ (@ =" f() € flO) + (Y =)' F'(Y)

where £ is a point between x and c. It is thus obvious that the mean-
value form is an inclusion function for f. Its importance arises from
its second order property which is obtained with a low computational
effort:

THEOREM 1 (Krawczyk-Nickel (1982)). If F' is Lipschitz then the
meanvalue form Ty is of convergence order 2. O

An extensive proof of this theorem can be found in Ratschek-Rokne
(1984).

Example. Let f(z) = z — 2% be defined on D = {z: 2 > 1} C R.
(D instead of R is chosen for simplicity in order to avoid different cases.)
An inclusion function for f'(z) =1 — 2z is

F'(Y)=1-2Y forY €I(D)
(natural interval extension of f’). The meanvalue form of f is
Ti(Y)=(c=c*)+(y—c)(1-2Y) forY eI(D)
where ¢ = mid Y. The natural interval extension of f(z) to Y is
f(Y)=Y -Y? forY €I(D).
Finally,
Of(Y) = [2* — =z, y* —y] forY = [z, y| € (D).
Let us look at the widths of the inclusion functions:

w@f(Y)) = ¥y’ —y— (" —2)=y"—2> - (y—2)
= wl¥)(y+z—1).
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Using (2.8) and the fact that
max{|1—2z |, |1—-2y|}=2y—1

for Y = [z, y] € I(D) we get

w(hi(Y)) = w[(Y —c)(1 - 2Y)]
= wlY —-¢)(2y—1)
= w(Y)(2y-1).

The width of the natural interval extension is

w(f(Y)) = (y—2)+ @ —127)
= wl)(y+z+1).

A short calculation shows that
w(TL(Y)) < w(f(V)) i w(Y) < 2,

which means that the meanvalue form is superior for smaller intervals
Y. This is consistent with the fact that the meanvalue form is of con-
vergence order 2, but the natural interval extension is only of order
1:

w(Ty(Y)) —w(@f(Y)) = w(Y)i = O(w(Y)?),

w(f(Y)) —w@fY)) = wl)*=0w()).

From this example it is clear that it is not always wise to take
a meanvalue form - especially for boxes Y with larger width - since
its excess-width tends quadratically to oo as w(Y) — oo whereas the
excess-width of the natural interval extension tends only linearly to oco.
This situation is typical for the whole area of inclusion functions such
that meanvalue forms as well as Taylor forms should only be used if
w(Y) < 1/2. This is an average recommendation and results from our
own numerical experience.

Remarks. 1. One obtains, in general, meanvalue forms with
smaller widths if slopes instead of F'(Y') are used in (2.13). The inter-
ested reader is referred to Krawczyk (1983), Alefeld-Herzberger (1974),
Krawczyk-Neumaier (1985), Ratschek-Rokne (1984).
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2. The quality of the chosen centered form, for instance the mean-
value form, depends on the shape of the function being included such

that for special functions special centered forms are superior, cf. for
example Alefeld-Rokne (1981), Rokne (1986).

Let f: D — R,D C R™ be twice differentiable, and let F" :
I(D) — I™*™ be an inclusion function for the Hessian matrix f”. Then
Ty, : I(D) — I defined by

T(Y) = f(e)+ (Y —&)Tf(c)
+ LY —oTF" (Y)Y —¢) forY €I(D),

2

where ¢ = mid Y or any other point in Y, is called a Taylor form
function (or shorter: Taylor form) for f of second order. Because of
the Taylor formula of analysis, 75 is an inclusion function for f. We say
that F" is bounded if a matrix C' € I™*™ exists such that F"(Y) C C
for al Y € I(D).

THEOREM 2 If f is twice differentiable, and if f" has a bounded in-
clusion function F" then the Taylor form function, Ty, is of convergence
order two. O

If m is larger then it is better to avoid the explicit evaluation of
F"(Y) because of the many arithmetic operations one has to perform
in order to obtain T5(Y). In such cases it might be better to compute
(Y —c)TF"(Y) or (Y —e)TF"(Y)(Y — ¢) recursively as is suggested by
McCormick (1983). For such a recursive computation the automatic
differentiation arithmetic is appropriate as well, cf. Rall (1981). Even
if F"(Y) is needed explicitly it may be checked whether the recursive
computation mentioned above is still faster. The tensor methods of
Schnabel-Frank (1984) are also worth considering. Since all these tech-
niques are not typical for the interval approach pursued by us we do
not include a further discussion.

We again return to the meanvalue form (2.13)
Ty(Y,¢) = f(e) + (Y = )" F'(Y),

but we now consider its dependence on the point ¢. We will de-
scribe a nice idea due to Baumann (1986) who provides formulas for
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¢ € Y such that T7(Y,¢) gives optimum lower or upper bounds for
Of(Y) in a sense made precise below. The choice of ¢ = mid YV
is still very popular because of the large saving in computational ef-
fort due to the symmetry of Y — ¢, cf. formulas (2.8), for example.
Baumann’s results which were derived in a more general setting are
as follows: Let YV = (Y1,....Y,)!, Y, = [z, yi] € I, F'(Y) =
(F{(Y),...,FL.(Y), F/(Y) =]l l!]. Wedefine the ”centers” ¢™,c* €
R™ by

Yis if 1L <0
c; =X x;, ifl; >0

(lix; — L) /(1L —1;), otherwise,

C_'F = Y, if lz 2 Oa
(lLiz; — Uy;)/(l; = I}), otherwise,

2

fori=1,...,m. Then

DTy (Y, )
ubT:(Y,c")

< 1T (Y,c),

< ubTi(Y,¢)

for all ¢ € Y. These formulas mean that we may use ¢~ or ¢* instead of
any other ¢ € Y when we are interested in optimum lower or optimum
upper bounds of f in Y, respectively, where F'(Y) is assumed to be
fixed. Our own numerical tests with global optimization problems show
a reduction of the number of inclusion function evaluations by 10-20
percent when using ¢~ or ¢* instead of ¢ = mid Y.

Another subject related to meanvalue forms which is still to be dis-
cussed is their generalizations for applications to nonsmooth optimiza-
tion. A broad spectrum of mathematical programming problems can
be rather easily reduced to the minimization of nondifferentiable func-
tions without constraints or with simple constraints. The use of exact
nonsmooth penalty functions in problems of nonlinear programming,
maximum functions to estimate discrepancies in constraints, piecewise
smooth approximation of technical-economic characteristics in prac-
tical problems of optimal planning and design, minimax compromise
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function in problems of multi-criterion optimization, all of these gen-
erate problems of nondifferentiable optimization. Thus, the objective
function, f, of the optimization problem may look like

f(x) = max{fi(z),..., fa(2)},

where f; € C!, or, as a special case, like

f(@) =l (fu(x); - -5 ful)) ||

where the norm is the maximum norm. Objective functions arising
from penalty methods are typically of the form

F(@) = phole) + 3 max(0, @) + 3 | hula) |

=1 i=k+1

where fo, g;, h; € C! and p > 0 is a (reciprocal) penalty factor, cf. Sec.
1.4.

It turns out that the meanvalue form may also be used in such cases.
One only has to replace the gradient by the generalized gradients which
exist in these cases, cf. Rockafellar (1981). It is as easy or as difficult
to find inclusions for the generalized gradient as for the gradient. Let
f:D—=R,DCR™and x € D. Furthermore let f be Lipschitz near
x, that is, there exists an open neighborhood of z, say U,, in which f
satisfies a Lipschitz condition. It follows by a theorem of Rademacher
that f is differentiable almost everywhere in U,. Let €2 be the set of
points in U, at which f is not differentiable, and let S be any other
set of Lebesgue measure 0. Then the generalized gradient of f at x is
defined as

Of (z) = conv {limy, o f'(2n) : Tn = 2,2, € SUQ}

where conv denotes the convex hull, cf. Clarke (1983). One can im-
mediately see that 0f(x) = f'(x) when f is differentiable at z. Let
(z,y) C R™ denote the open line segment between x and y. A theorem
of Lebourg (1975) says that, if y € U, with (z,y) C U, is given, then
some u € (z,y) exists such that

Fly) = fl@) € (y — 2)"0f (u). (2.14)
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Locally, (2.14) can be approximated by means of the Lipschitz con-
stant. Globally, (2.14) can be used to find inclusion functions of f of a
meanvalue type explicitly: If G(Y) is a - not necessarily bounded - box
that contains 0f (u) for any u € Y, then

FY)=f(e)+ (Y —c)TG(Y) forY €I(X), (2.15)

where ¢ =mid Y, is an inclusion function of f. Furthermore G(Y') can
be used for the monotonicity test: If only one component of G(Y') does
not contain zero, then f is strictly monotone with respect to the corre-
sponding direction. ILe., if G;(Y') denotes the i-th component of G(Y)
then 0 < G4(Y) or G;(Y) < 0 implies that f is strictly monotonically
increasing or decreasing, respectively, in Y with respect to x;.

The optimality of Baumann’s developing points ¢~ and ¢* as defined
above is still preserved in case of (2.15).

Thus, practically, there seems to be no essential difference between
the forms (2.13) and (2.15). There is one, however: (2.15) is not an
inclusion function of second order if f is not differentiable. Still if f is
differentiable in a neighborhood of the global minimizers then the algo-
rithms we will be discussing in this monograph will finally process only
boxes Y in which f is differentiable. Thus (2.15) is finally reduced to a
meanvalue form of quadratic order if G(Y) is chosen in an appropriate
manner.

Example. Let f(z) = z;+ | 2o | for z € R% We get for the
components 0f;(z) of 0f (z),

1if To > 0,
8f1($) =1, 8f2($) = —1if z9 <0,

It is now not difficult to construct an inclusion function G of df as
follows,
(1,7 if 0 < Y5,
GY)=1{ (1,-1)7T if Y5 <0,
(1,[-1, 1T if 0 € Y5,

for Y € I(R?). Considering just G(Y'), one concludes that f is strictly
monotonically increasing with respect to x1, and strictly monotonically
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increasing or decreasing with respect to xo in YV if 0 < Y5 or Y5 < 0,
respectively. Finally,

F(Y) = f(o)+ (Y — o' G(Y)

where ¢ € Y is an inclusion function of f.

Summary. We sum up the contents of this section. There are two
kinds of inclusion functions which can easily be constructed:

(1) Natural interval extensions,
(2) Centered forms:

(a) Meanvalue forms,

(b) Taylor forms (of second order).

Natural interval extensions may be used in general even if f is not
differentiable.

Meanvalue forms may be used if f is differentiable, if f’ has an
inclusion function F’ which is Lipschitz, and if w(Y) < 3.

Meanvalue forms involving generalized gradients may be used if it
cannot be decided from the outset whether f is differentiable or only
generalized differentiable, and if w(Y) < 7. Such an indeterminate
situation occurs, for example, if f(z) = max(fi(x), fo(z)) with fi, fo €
C!. Then the differentiability properties of f at  cannot be determined
before fi(z) and fo(x) are evaluated.

Taylor forms may only be used if a direct computation of the mean-
value form is not possible or if the Hessian inclusion F"(Y") is already
available and can be incorporated without difficulties. f has to be twice
differentiable, f” must have a bounded inclusion function F* and w(Y)
should not be larger than 1/m.

2.8 Improved Interval Hessian Matrices

The computation of f”(z), that is, the Hessian matrix of f at z, is a
frequently disputed topic. f”(x) is simple to understand and to apply
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(from a theoretical point of view), but expensive to compute or to pro-
cess when the dimension m is high and when f”(z) is needed explicitly
or when it is incorporated in terms such as (z — ¢)” f"(£)(x — ¢). A
few references as to how to avoid the high costs were given in the last
section. The use of interval tools does not change this situation where
interval extensions f(Y') of f”(x) to a box Y occur. In this section we
present a method whereby a substitute for f”(Y) is constructed that
will have as many non-interval entries as possible resulting in lower
computational costs and sharper results. The idea is due to Hansen
(1980), cf. also Rokne-Bao (1987).

Let again f: D — R, D C R™ and let f be in C?. Let Y € I(D)
and ¢ € Y be fixed. Expanding f about ¢ the following is obtained,

f@) =fe)+@—c)"f(c)+ %(ac —o)TH(c,z,T)(z —¢). (2.16)

The matrix H(c, z,T") has components H;;(c, z, ') which are defined
in the following manner. First of all ' is a lower triangular matrix
consisting of the meanvalues v;; that arise during the Taylor expansion
as sketched out in the sequel such that

Vi€ VT; CY; i=1,2....m, j=1,2,...,i

and ;; = 0 otherwise. Then let

82
sij<x>=afa(?, i=12...,m j=12. i
[V

The elements of the matrix H(c, z, ") are now

Sii(@1y -y Tio1, Viis Cigs - -+ Cm)y 1 <00
Hii(c,z,T) =< 2s:5(x1, ..., Tic1, Yijs Cit1y- - - > Cm), 1
0 otherwise,

that is, a lower triangular matrix. The reason for this particular def-
inition of the matrix H(c,z,I") is related to the fact that the matrix
should have as few interval variables as possible when evaluated in a
sense to be defined below.
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Since this expansion is not very familiar it is developed in greater
detail for the case m = 3 around ¢ = (c1, ¢z, ¢3)" € Y = (Y1, Y3, Y3)".
The function f is first expanded as a function in x5 around c3 obtaining

f(x1,22,23) = f(x1,%9,¢3) + (23 — 03)87f(371,$2, c3)
3
T T ) (2.17)
B T3 — C3 8:13% T1,T2,733 .

where y33 € c3 V x3. Since c3, r3 € Y3 it also follows that v33 € V3.
The first two terms on the right side of (2.17) are now expanded
around c, getting

Fanases) = o1, cmca) + (2 — ) f (a1, 02, c3)

3:52
+ 1(:16 —0)28—2f($ c3) (2.18)
5 2 2 Eiz*% 1, Y22, C3 .
and
2
6—x3f($1,$2, c3) = a—ng(xh C2,¢3) + (g — 02)6x36$2f($1, Y32, C3)

(2.19)
where y22 € c2 Voo C Yy and 30 € o V2o C V5.
The process is repeated once more for the first two terms on the
right side of (2.18) obtaining

f(ﬂ?l, Co, 03) = f(Cl, Co, 03) -+ (.’L'l — Cl)a—ajlf(Ch Co, 03)

1 2
+ §($1 — Cl)Qa—x%f(%b Ca, 03) (2-20)
and
Ot anyenes) = 0 flersenes) + (@1 = 1) 20 floon, 0 c3)
Y 1,€2,C3) = Y 1,C2,C3 1 1 97201, Y21, C2,C3
(2.21)
and for the first term on the right side of (2.19) getting
0 0 0?
8—ng($1; Co, C3) = a—x?’f(clac%c?») + (21 — Cl)axgaxlf(%”’ Ca,C3)-

(2.22)
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When equations (2.17) to (2.22) are combined the expansion
/ 1
f@)=f)+@=a'f()+ - HezT)e—c) (223
is obtained. Here «;; € Y, for ¢ =1,2,3 and j <4 and

s11(m1,¢2,¢3) 0 0
H(c,z,I') = | 2s91(721,C2,¢3) So2(T1,722,¢3) 0
2531(31, €2, €3)  2832(1, Y32, ¢3)  S33(21, T2, Y33)

Let now the matrix H(c,Y’) be defined by replacing the parameters z;
and v;; in H(c, z,T') by the interval Y;(i = 1,2, 3; j < 4). From inclusion
isotonicity it therefore follows that H(c,z,T') € H(c,Y). In some sense
the matrix H(c,Y) can be interpreted as a remodeled and atrophied
interval Hessian matrix of f.

From (2.23) it now follows that if x € Y then

Fla) € To(¥) = F(0)+ (Y o) 1 ()4 5 (V =0 H(e, Y)(¥ —¢) (2.24)

and hence B
Df(Y) CT(Y).

If the regular Taylor expansion was used to form the interval ex-
pansion which gave the Taylor form of the last section, T5(Y") = f(c) +
(y—)Tf(c)+ 3 —)Tf (Y)Y —c), then an interval Hessian ma-
trix f'(Y) would be used having more interval elements than T5(Y")
resulting in poorer inclusions.

In order to find stationary points of f, interval Newton methods are
applied to g = f’, cf. the next section. The interval Newton method
requires inclusions for the first derivative of the gradient. This inclusion
is best obtained using a similar expansion to (2.23): see Hansen (1968).

For the moment we drop the connection ¢ = f and admit arbitrary
vector-valued functions g : D — R™ with D C R™. Since we again
have to apply the meanvalue formula we first consider the component
functions g; of g instead of g itself.

Let Y € I(D) and z,c € Y. For i = 1,...,m we obtain:

9i(z1,. . xm) = gi(x1, ..., Tmo1,Cm)

0
+ %gi(m, ey Tt &im) (Tm — Cm)



50 Ch. 2: Principles of Interval Analysis

where &, € T, V ¢, Similarly, for j =m —1,...,1,
gi(l'l, - 7xj—17$ja Cj+1, - ,Cm) =
gi(mlv ce. 7$j—17§ijacj+17 tey Cm) + Jij(cvma ‘:'i)

where &;; € 2; V ¢; and
0

Jij(ca x, E) = %gi(xla -y Lj—1, fija Citly---) Cm)
J

with Z; := (&1,...,&m)?. Substituting the first term at the right in
each equation by the related formula recursively we get

gi(x) = gi(e) + (Ju(e, 2, 5y) . . . Tim(c, 2, Z5)) (x — ¢). (2.25)
We are now ready to consider the components gy, ..., g, of g simulta-
neously. First we let the matrix = := (Zy,...,5,,) = (&;) collect all

the meanvalues that have occurred. Then we define the matrix
J(c,z,2) = (Jij(c, z, Zp)).

We note that J(c,z, Z) is the Jacobian matrix of g at z if ¢ = = and
z; =&;(i,7 =1,...,m). The equations of (2.25) are written concisely
as

g(x) =g(c) + J(c,z,Z)(x — ¢).

Let J(c,Y) denote the natural interval extension of J(c, z,Z) where z
and the =;’s are replaced by Y. Thus,

gz) eTi(Y) :=glc) + J(c,Y)(Y —¢) forallzeY

which shows that T} (Y") is an inclusion function of ¢ having components
which are similar to the meanvalue form as defined in Sec. 2.7, but
having a smaller number of intervals which results in better inclusions.

If g = f it is interesting to observe that H(c,Y) is known when
J(c,Y) has been evaluated: In this case we have

_ 0f(=)
B 8:cz ’

9i(7)
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0 0? 0?
a—.Z']gZ(x) N 8x]3x,f(x) N 8:318%
if 4 < j which implies

f(@) = sij()

62
JZ‘]’(C,Y) = 8_’E~8.’E~f(Y17'..7}/}’cj+17..'7cm)
4 J
= Sij(Yla e ,Y},Cj_|_1, ey Cm)-

The connection between H(c,Y) and J(c,Y) is thus given by

) _ ) JuleY)ifi=j
Hzg(ca Y) - { 2Jij(c, Y) it s < j.

2.9 Interval Newton Methods

Interval Newton methods are excellent methods for determining all ze-
ros of a continuously differentiable vector-valued function ¢ : X — R™
where X € I"™. These methods are important tools for nonlinear op-
timization problems since they can be used for computing all critical
points of ¢ by applying the methods to Jy(x), or for solving the Kuhn-
Tucker or John conditions in constrained optimization.

The interval Newton method was introduced by Moore (1966), re-
finements and discussions are due to Krawczyk (1969), Nickel (1971),
Hansen (1978b), Hansen-Sengupta (1981), Hansen-Greenberg (1983),
Alefeld-Herzberger (1983), Krawczyk (1986), Neumaier (1985), Wolfe
(1980), Schrempp (1984), Bao-Rokne (1987) and many others.

Let z,y € X and ¢ = (¢1,...,%n,)T be expanded componentwise
by the meanvalue formula at z,

o(y) = ¢(x) + J(o)(y — 2),

where
J(0) = (¢ (a1), -+, pulom))T

for a matrix o = (01,...,0,),0; € R™ and 0; € 2V y. We define

J(Y), Y eI(X)
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a bit outside our usual convention as the natural interval extension of
J to Y™, that is, each o; is replaced by Y, = 1,..., m. Owing to the
definition of J(o) we obtain

J(Y) = Jy(Y),

such that J(Y) is nothing but a natural interval extension of the Jaco-
bian matrix Jy(z) to Y. Note that J(o) is not a Jacobian matrix. If
y = £ is any zero of ¢ in X then

J(0)(z — &) = o(x).

This equation leads to interval Newton methods, in the the same man-
ner as we get non-interval Newton methods in the non-interval case, cf.
the iteration statement given below.

Before the method is specified we have to define what is meant by
solving a system of linear interval equations. An unfortunate notation
is widely used to describe this situation since it uses the notation of
interval arithmetic in a doubtful manner. This can lead to misunder-
standings. le., let A € I™*™ B € I"™ then the solution of the linear
interval equation (with respect to x or X)

Ar =B or AX =B

is not an interval vector X, that satisfies the equation, AXy = B, as
one would expect. The solution is defined as the set

X ={zreR™:azx =>for some a € A,b € B}.
Thus, for example, the solution of the linear interval equation
1, 2]z =[1, 2]
is X =[1/2, 2|. If we multiply, for comparison, [1, 2] and X we get
1, 2]1X =1, 2|[1/2, 2] =[1/2, 4].

In general, the solution set is not a box. It is therefore the aim of inter-
val arithmetic solution methods to find at least a box which contains
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the solution set. Accordingly, if ¢ € R™, then the solution of the linear
interval equation

Alx —c)=Bor A(X —c)=B
with respect to x or X is defined to be the set
X =c+Y:={ct+y:yeY}

where Y is the solution of the interval equation Ay = B.
The following prototype algorithm aims to determine the zeros of
p: X —>R"in X € I"™.

The Interval Newton Algorithm
1. Set Xy :=X.
2. Forn=0,1,2,...

(i) choose x,, € X,

(i1) determine a superset Z,.1 of the solution Y, 1 of the linear
interval equation with respect to'Y

J(Xn)(xn - Y) = ¢(In),
(11i) set Xpi1:= Zpi1 N X,.

Since we use it later we emphasize that one iteration of the inter-
val Newton Algorithm is just the execution of (i), (ii) and (iii) for a
particular value of n.

The interval Newton methods are distinguished by how (ii) is solved
for Y,,11. Convergence properties exist under certain assumptions. The
following general properties are useful for understanding the principle
of application of the algorithm:

1. If a zero, &, of ¢ exists in X then ¢ € X, for all n, cf. Moore
(1966).

This means that no zero is ever lost! This implies:
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2. If X,, is empty for some n then ¢ has no zeros in X, cf. Moore
(1966).

3. fY,;; C X, for some n then a zero of ¢ exists in X, cf. Bao-
Rokne (1987).

The next section discusses a very effective practical realization of
the Newton algorithm.

2.10 The Hansen-Greenberg Realization

To date, the most promising realization of the interval Newton method
is that developed by Hansen-Greenberg (1983). Many numerical tests
have demonstrated its effectiveness. Neumaier’s (1985) realization is
also remarkable.

Considering the interval Newton Algorithm one notices that its
quality depends mainly on the right choice of a method for solving

the equation
J(X0) (@0 — Y) = §(zn) (2.26)

in the sense defined in the last section. The method of Hansen-Greenberg
uses a combination of iterative and algebraic steps for solving such lin-
ear equations. The goal of their method is to delay the unavoidable
matrix inversion or related costly operations as long as possible as is
also the case in quasi Newton methods. The method is based upon

A) a preconditioning step,

(A)

(B) a relaxation procedure,

(C) a local iteration procedure,
(

D) a Gaussian elimination procedure.

Since we discuss just one iteration of the Hansen-Greenberg variant
in the sequel we suppress the indices n when writing down the formulas
that occur in the n-th iteration. That is, we write

J(X)(z —Y) = ¢(x) (2.27)
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instead of

and, accordingly, we search for a superset Z of the solution set of (2.27),
where X, J(X),z and ¢(z) are given. The solution set of (2.27) is also
denoted by Y. If we want to refer to the former, original box X, we
are more likely to avoid misunderstandings if we speak of the initial
box Xy, reminding us that the box X, was defined as the original box
X. We start with x = mid X. During the iteration, mainly by the
procedures (B) and (D), only z and X will be updated, but not J(X).
By "updating” it is meant that the result of a formula or dependent
variable is improved without a complete recomputation of that formula,
etc. The individual steps of the Hansen-Greenberg variant are now
discussed in some detail.

(A) The preconditioning step

It was argued in Hansen-Smith (1967) that (2.27) was best solved
by pre-multiplying by an approximate inverse of mid J(X). If the
approximate inverse is B then we obtain

BJ(X)(z —Y) = Bé(z)

or

Mz —Y)=b (2.28)

where M = BJ(X) and b = B¢(z). In this manner the system has been
modified to a system that is almost diagonally dominant provided the
widths of the Jacobian entries are not too large. This was also discussed
by Miller (1972a). He showed that if Y = {2 | m(x — 2) = bym €
M} then the superset Z of Y obtained by solving (2.28) by Gaussian
elimination without pivoting satisfies w(Z) = w(Y) + w(J(X))>?.

Such systems are also amenable to Gauss-Seidel type iterations be-
cause of the likely diagonal dominance. This will be discussed below.

It is obvious that the solution set of (2.28) contains the solution set
of (2.27) such that no solution is lost in the above transformation. The

only thing we have to do now is to solve the linear interval equation
(2.28).
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(B) The relaxation procedure

Because of the properties of the interval Newton algorithm cited in
the last section we know that all zeros of ¢ lie in X (where this X
abbreviates the former X,,), and therefore in the solution set of (2.28).
The relaxation procedure tries to update X and z in order to make
the elimination procedure, which will finally be applied, more effective.
By updating it is meant here that a smaller X is obtained as well as
an x nearer to a zero of ¢ such that z is a better developing point for
the methods (C) and (D) which follow later. It can also happen that
when X is made smaller it is split into two or more disconnected boxes,
containing all solutions such that basically the further procedures need
only be applied to these subboxes. In order to avoid an exponential
increase of the number of subboxes the further steps are applied to the
hull of the subboxes in such cases. A splitting into two subboxes is only
done when the current iteration of the Newton method is finished.

The relaxation procedure for linear interval equations was developed
in Hansen-Sengupta (1981). It consists of the application of the Gauss-
Seidel iteration procedure (see for example Conte-de Boor (1980)) in an
interval context (see also the discussion of related methods in Alefeld-
Herzberger (1983)). This relazation procedure is here used to solve
the preconditioned set of equations (2.28) and it is expected that the
procedure will be efficient since the coefficient matrix M will in most
cases contain the identity matrix I due to its construction as BJ(X),
although this is not guaranteed since we only required that B should
be an approximate inverse of mid J(X). It should also be noted that
the matrix M is kept constant throughout the relaxation steps (i.e.
M = BJ(X)) whereas the vector X is updated.

In the relaxation procedure the equation M(z —Y) = b is solved
for the i-th component Y; obtaining a superset of Y,

7j=1
J#i

where z;, etc., denotes the j-th component of z, etc. This interval is



The Hansen-Greenberg Realization 57

immediately used to intersect and update the ¢-th component X,

This calculation is performed for all 7, 1 < ¢ < m, first for the indices
where 0 ¢ M, and then for the remaining indices where 0 € M.
This strategy results from the observation that the updating (2.30)
with components X; where 0 ¢ M;; improves (makes smaller) all the
components Z; via formula (2.29). This does however not hold for
components X; with 0 € M;;.

If the intersection (2.30) is empty for some ¢ then it follows from
the properties cited in the last section that there is no solution in X
and thus no solution in the initial box X,. Therefore the whole interval
Newton algorithm is to be terminated reporting

e 1o zero of ¢ in Xj.

When the intersection is not empty then the iteration process con-
tinues with the next component and the updated X]s.
Ifoe Mzz and if

0€ Z Mij(xj — X]) — bz
j=1
J#i

then we set Z; = (—00,00). In this case the intersection (2.30) does not
result in a narrowing of X;; hence no useful information is obtained.

If
m
0¢ > Mi(z; —X;) — b

j=1

J#i
and 0 € M;; then Z; consists of two non-overlapping semi-infinite inter-
vals separated by an open set (gap) according to the extended interval
arithmetic division given in (2.7). The intersection Z; N X; may now
be empty or consist of one or two intervals. In the first two cases the
iteration proceeds as for the case 0 ¢ M;;.
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If the intersection results in two intervals then the box may be split
normal to this coordinate direction. It might be impractical when the
box is split with respect to several coordinate directions, thus result-
ing in a proliferation of subboxes as mentioned before. A splitting is
therefore only done once during the iteration, i.e. vertical to the di-
rection of the largest gap at the end of the iteration. In practice the
algorithm therefore has to keep track of both the gap and the index of
the coordinate where it occurs.

The gaps are also not used right away; they are saved until the other
techniques have been employed to narrow the current box. It also turns
out that the extended interval arithmetic calculations provide a wider
gap when z is a poor approximation for a zero of ¢. For this reason a
gap is calculated prior to using the remaining techniques for shrinking
the width of a box.

Combining the above steps the following intermediate procedure is
obtained.

Relaxation procedure algorithm

1. Fori=1,2,...,m

(a) set
Zi =i+ My (Y0 Mi(a; — X;) — by)
j=1
J#
and
(b) If X; = 0 then terminate and report

e no solution in X.

2. Fori=1,2,...,m
ZfOEM“ then
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(a) set
Zi=wi+ M () Mij(zy — X;) = by)
j=1
J#
and
(b) If X; =0 then terminate and report
e no solution in X.

(c) If X; has a gap then save i and gap.
(C) The local iteration procedure

The relaxation method is a rather robust step which is applicable
also in unfavorable cases. Thus it is a slow step. In order to apply
methods which are more accurate and faster, like the elimination pro-
cedure (D), it is necessary to be as near as possible to a solution. For
this reason a shift of x = mid X in the direction of a solution, where
X is the resulting interval of the procedure (B), is desirable. This shift
is done by the local iteration procedure discussed here. If the shift is
successful, i.e. || #(x) ||< 1073, then the elimination procedure (D) is
applied. Otherwise, the relaxation procedure is applied in a simplified
manner, that is, only part 1 of the algorithm is used.

For the shift we simply use a non-interval quasi Newton method,

T =  midX,
Tpnr1 = zp, — Bo(xy,)
forn=0,1,...,s. (Here the z,, denote again the iterates of  and not

the coordinates of the vector z.) The number s is determined implicitly
when the termination criterion is satisfied, that is,

I 6(zs41) 1< 107 or || §(wsr) 11> 5 || d(zs) -

The norm used is the Euclidean norm. We set the updated value of x
to whichever =, and =, yields the smaller norm.

If a step from z,, to z, 1 leads out of the current box X, a point on
the boundary of X which is on the line connecting x,, and x,; is used
as a replacement for z,1.
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(D) The elimination procedure

The elimination method (due to Gauss) applied to a uniquely solv-
able system of linear equations gives the exact solution in a finite num-
ber of arithmetic operations assuming exact arithmetic. The elimina-
tion method is thus an ideal means of solving equations. The method
may, however, degrade if rounding errors are involved or if interval
arithmetic is used. In both cases the method works excellently under
certain conditions. Since these conditions are rather restricted or trou-
blesome to verify computationally, especially in the interval case, the
elimination procedure will only be applied if || ¢(z) || is sufficiently
small. This condition indicates that x is near a zero and that, consid-
ering for a moment the equation (2.28) to be solved with respect to
Y,

BJ(X)(z —Y) = Bé(z),

it is plausible that M = BJ(X) is near the identity matrix such that
the elimination procedure may not require the search for pivots, thus
saving row and column permutations.

If the elimination procedure is successful and if X is made smaller
then the conditions for applying the elimination procedure are improved
and the procedure is applied again. Otherwise we return to the re-
laxation procedure or terminate the current iteration of the Newton
procedure.

The elimination procedure uses a LU decomposition of M without
row or column permutations. This means, first in case of non-interval
matrices A € R™*™  that a lower triangular matrix L and an upper
triangular matrix U are determined such that

A=1LU.

The necessary steps can be found in any textbook on numerical analysis
cf. Conte-Boor (1980), p. 161. A LU decomposition of the interval
matrix M means that those arithmetical operations are applied to M
which would be used if M were a non-interval matrix. Owing to interval
arithmetic properties the equality M = LU cannot be obtained, only
the inclusion

M C LU.
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Thus, LU(x —Y) = b instead of M(z —Y) = b is solved. No zero of ¢
is lost by this weakening, however. As already mentioned we terminate
the LU decomposition when a division through an interval containing
0 occurs. The use of the extended division would be possible, but this
would worsen the conditions. In these cases we return, as mentioned,
to the relaxation procedure.

The details of the procedure are given by the following steps, cf.
Hansen-Sengupta (1983):
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Elimination procedure

1.
2.

5.

If 0 € M;; for some i, terminate.

Try to obtain the LU decomposition of M, that ts, M C LU.
Terminate when not successful.

Solve Lw = b with respect to w. Let W € T™ be a box that includes
the solution set. Terminate if a division through a box containing
0 occurs.

. Solve U(z —Y) =W with respect to 'Y as follows:

(a) Seti:=m.

(b) Terminate if 0 € Uy;. Compute Z; := xi—(Wi=3"1, 1 Ui (25—
X;))/Uii (Zi,x;, etc. denote here the coordinates of Z,z,
etc.). Z is a box containing the solution set.

(c) Set X; := X; N Z; (updating of X ).

(d) Seti:=1i—1.
(e) If i # 0 go to (b).
End.

The order of application of the procedures (A) - (D)

The manner in which the steps and procedures (A) - (D) are com-
bined can be seen from Alg. 1 below. It is, nevertheless, appropriate
to describe some of the reasons for the particular choice of order of
sub-algorithms in a less formal language.

The complete procedure for solving J(X)(z —Y) = b with respect
to Y within one iteration of the Hansen-Greenberg realization consists
of the following items:

1.

The preconditioning step transforms this equation to M(z—Y) =
b.
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2. The relaxation procedure is applied in order to improve X and x
which are updated by X := X N Z where Z is a superset of the
solution set of M(zx —Y) = B and by z := mid X. Gaps may
also be found and saved in order that they may be used for the
final splitting in item 7.

3. The local iteration procedure is supposed to improve z (that is,
finding an x nearer to a solution of ¢(z) = 0) and thus b = Bo(z).

4. If || ¢(z) ||< 107 the elimination procedure is applied for im-
proving X. Three possibilities can occur:

(i) The improvement of X is significant. By this we mean that
the ratio of old box width to new box width is smaller than
0.9. (This threshold results from computational experience
and should be higher the larger m is and the more expensive
the recalculation of J(X) is.) In this case the elimination
procedure is applied again (that is, go back to item 4).

(ii) The improvement of X is not significant. In this case the
further improvements are skipped and the splitting of X -
see item 6 - is done.

(iii) The elimination operations require a division by an interval
containing zero. The elimination procedure is then stopped
and the simplified relaxation procedure - see item 5 - is ap-
plied.

If || ¢(z) ||> 102 the simplified relaxation procedure is applied -
see item 5.

5. The simplified relazation procedure performs (2.29), that is the
computation of the Z; only if 0 & M;;. Therefore only part 1 is
executed in the related algorithm for the relaxation procedure.
The Z; with 0 € M;; are not calculated again since they were
already used to find gaps. If X improves significantly (cf. 4(i)),
we set z := mid X then compute b := B¢(z) and the simplified
relaxation procedure is repeated (that is, go back to 5.).

If X does not improve significantly then X is split as in item 6
below.
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6. The splitting of the box is executed at the end when further im-
provement by the other steps is unlikely. There are 2 possibilities:

(i) If gaps were found in item 1 and not eliminated by the fur-
ther improvements of X then a largest gap is used to split
the box. More precisely if this largest gap occurs in direc-
tion 7 the box is split in the i-th direction. (If the boxes
have edges which are very different in size, one can use the
relatively largest gap which results from comparing the ratio
gap width to edge width in each direction.)

(ii) If no gaps were found in item 1 then the box is split at the
midpoint of a largest component.

The bisected boxes are put on a stack where they wait for further
processing. The box with the largest width is taken from the
stack and is denoted by X and a new iteration is done with this
X after checking 7. If the stack has no boxes that can be chosen
as a new X then ¢ has no solution at all in the initially given area
X, and the algorithm is terminated.

7. Termination criteria. If not terminated then start a new iteration
(i.e. go to 1.).

In later sections we will incorporate one iteration of the interval
Newton method into optimization algorithms. By one iteration we then
mean an iteration as described above omitting the artificial bisection
performed in item (ii) of item 6 since this bisection will be executed by
the optimization algorithm.

The reasons for using exactly the above sequence of algorithmic
steps are primarily given on the basis of extensive numerical experience.
One can make this choice of ordering plausible, as we did, but a serious
proof that this order is the best order is missing.

We now give the detailed steps of the interval Newton method where
the input parameters are the function ¢, an inclusion function ® of ¢,
the starting box X in which the solutions (zeros of ¢) are to be found
and some termination parameters.

Interval Newton Algorithm (after Hansen-Greenberg):



The Hansen-Greenberg Realization 65

ALGORITHM 1

10.

11.

12.

13.

1.

15.

16.

. Let X be given.

Initialize list L = (X).

Calculate ®(X). If 0 ¢ ®(X) then go to 21.

. Calculate J(X).

Calculate B, an approzimate inverse of mid J(X).
Set x equal to the midpoint of X, that s x = mid X.
Calculate M := BJ(X), and b := B¢(x).

Perform the relaxzation procedure algorithm. If some X; = () then
go to 21.

Perform the local iteration procedure to improve x.

If || ¢(z) || is not sufficiently small (for applying the elimination
procedure) then go to 16.

Perform the LU decomposition of M if possible. If LU decompo-
sition s not possible go to 16.

Calculate b := Bo(x).

Perform the remaining steps of the elimination procedure (the
LU decomposition has already been terminated successfully). If a
division by an interval containing 0 occurs go to 16.

If X =0 then go to 21.

If X improved significantly in Step 13 set x := mid X and go to
12. Otherwise go to 18.

Perform the simplified relazation procedure. If X = () then go to
21.
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17. If X improved significantly in Step 16 set x := mid X, compute
b := Bo(x) and return to 16.

18. If the gaps together with their coordinate directions were saved in
Step 8 then

- update the gaps (they could increase or even vanish by the con-
tinued shrinking process X; := X; N Z;). Use the coordinate
direction with the largest gap for splitting X using the gap
obtaining boxes Vi and V5. This gap is no longer part of V1
or Va. (The remaining gaps are still included.) Go to 20.

19. If X did not improve significantly in Steps 8 or 13 or 16 then
- choose a coordinate direction v parallel to which Y1 x...xY,, has
an edge of mazimum length, i.e. v € {i : w(Y) = w(¥;)}.

Bisect Y wertical to direction v getting boxes V1, Vo such that
Y=Vul.

20. Enter Vi and V5 onto the list.
21. Remove X from the list. If list is empty, terminate and report
e no solutions.

22. Apply termination criteria. For example: (i) If || ®(X) ||< € for
all bozes X of the list then terminate. Or: (ii) If w(X) < € for
all boxes X of the list then terminate since a continuation seems
to be unsuccessful. Etc.

23. Set X to be the box of the list with the largest width.

24. Return to 3.
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2.11 Numerical Examples Using the In-
terval Newton Method

The interval Newton method described in Alg. 1 was implemented in
Fortran and some test cases were run. The description of the results
uses the same notation as in Hansen-Greenberg (1983) where
the number of iterations of the interval New-
ton algorithm,

the number of ®(X) evaluations,

the number of J(X) evaluations,

the number of inverse matrix evaluations,

the number of interval arithmetic matrix-

matrix products,

the number of ¢(x) evaluations,

the number of interval arithmetic matrix-

vector products,

= n3+ ns+ ne,

ng the number of local iterations,

ns = the number of interval arithmetic LU decom-
position attempts (failing and succeeding),

ns = the number of executions of the elimination
procedure,

ng = the number of executions of the relaxation pro-
cedure for those ¢ with 0 ¢ M;;,

ny = the number of executions of the relaxation pro-
cedure for those ¢ with 0 € M;;,

s = the significant improvement factor.  This
means that a box is considered to be improved
significantly by the relaxation or elimination
procedure if the ratio of new box width to old
box width is smaller than s,

E+n = 10%.
Alg. 1 was then tested on three examples.

I

ni

VIV IV

No

Example 1. In Hansen-Greenberg (1983) the Broyden banded
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function was used to test Alg. 1. This function is defined by

JEJ;
where J; = {j : j # i,max(1,i—5) < j < min(m, i+ 1)}. The function
was chosen by Hansen-Greenberg (1983) for easy programmability in
an arbitrary dimension.

Alg. 1 was executed for this function with m = 3 and with four
different starting boxes X = ([a, b],[a, b],[a, b])T where [a, b] are
given in the table below.

The significant width improvement factor was s = 0.9 and for ter-
mination it was required that each box on the list had width less than
1078,

The statistics for the solution process for ¢(z) = 0 with the different
choices of [a, b] were

Test 1 Test 2 | Test 3 | Test 4
[a, b] | [-1, 1] | [-20, 15] | [-3, 2] | [-1, 2]
ny 15 33 23 16
No 64 169 212 53
n3 19 32 29 21
on 1 0 0 2
ns 17 0 0 4
Ng 28 137 183 28
ny 1 0 0 0

There were 2 adjacent boxes on the final list in Test 1 and the union
of these boxes was the box

[ —.42830257, —.42830256]
[ —.47656629, —.47656628] | .
[ — .47656629, —.47656628]

For the final boxes X on the final list we also have

I (X)) [|<2-107
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where ¢(X) is the natural interval extension of ¢ to X and

| 6X) lI= maxe [1 3]

Test 2 also resulted in two final boxes, whereas Tests 3 and 4 had
only one final box. In all the tests the results were similar to the results
obtained in Test 1.

This example also showed the relative frequencies of execution of
the different components of the algorithm.

Example 2. In Moré-Cosnard (1979) the nonlinear integral equa-
tion
t) + / )+s+1)%ds =0,
with

s(1—1t), s<t,
His,t) = { t(1—s), s>t

was discretized by considering the equation at the points t = #;, k =
1,...,m, and then replacing the integral by an m-point rectangular
rule based on the points {t;}. The resulting system of equations in the
unknowns x; = u(t) was defined by

k
or(z) =z + —{1—tk Z (z;+t;+1)°

+ t i (1 —t)(xj +t; +1)%} (2.31)

where 29 = Tp1 = 0,t; = jh, and h = (m + 1)~*

This is the standard finite difference approach to solving nonlin-
ear integral equations where the solutions of system ¢(z) = 0 provide
approximations to the values of u(t) at to, ..., tp.

The final boxes on the list include the solutions to the finite differ-
ence equations (2.31) but not necessarily to the original integral equa-
tions. However, using known analytic techniques it is also possible to
estimate the error committed by the finite difference approach and thus
provide inclusions to the values of u(t) at to,. .., t, as well.
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Alg. 1 was executed for this function for a varying m with an initial
box having components X; = [—4, 5], i = 1,...,m, in each case. The
significant width improvement factor was s = 0.9 and for termination
it was required that each box on the list had width less than 1075.

The statistics resulting from solving this problem for m = 4,5,6,7
were

m = m = m = m =
nq 1 1 1 1
9 20 22 25 27
N3 1 1 1 1
yz

g 0 0 0 0
Ng 19 21 24 26
nr 0 0 0 0

In each case only one final solution box X remained. These were
for m = 4:

[ — .876487F — 01, —.876483F — 01]
[—.147771E 4+ 00, —.147770E + 00]
[ — .168620F + 00, —.168619FE + 00]
[—.130817E + 00, —.130816E + 00]

with || ¢(X) ||< 0.86 x 1076,
for m = 5:

[— .750223E — 01, —.750216E — 01]
[— .131976E + 00, —.131975E + 00]
[— .164849E + 00, —.164848E + 00]
[ — .164665F + 00, —.164664F + 00]
[ — .117418F + 00, —.117417E + 00]

with || ¢(X) [|< 0.2 x 103,
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for m = 6:
[ — .654636F — 01, —.654632F — 01
[—.118166F 4 00, —.118165E + 00
[ —.154627F 4 00, —.154626E + 00
[—.169992F + 00, —.169991FE + 00
[—.157270F 4 00, —.157269E + 00
[ —.106031F 4+ 00, —.106030E + 00

with || ¢(X) ||< 0.14 x 1075,
form=":

[t R W et st St Y

[—.580146F — 01, —.580143F — 01]
[ —.106539F + 00, —.106538E + 00]
[ — .143383E + 00, —.143382F + 00]
[ — .165632E + 00, —.165631F + 00]
[—.169319E + 00, —.169318E + 00]
[ — .148908F + 00, —.148907E + 00]
[—.964312F — 01, —.964310F — 01]

with || ¢(X) ||< 0.12 x 1075.
We note that in this example the interval Newton method only

required one iteration for each of the cases m = 4,5,6,7 and that the
number of inner iterations only increased slowly with m.

Example 3. A very simple, but troublesome, global optimization
problem was devised to test the effectiveness of this implementation of
the interval Newton method for finding a continuum of zeros.

The problem was simply: Find all the global minimizers of f(z) =
sxir3 in a given box X.

It is immediately obvious that the set of global minimizers is formed
from z; = 0 and x5 = ¢ together with z; = d and x5 = 0 where ¢, d are
arbitrary, but restricted by the box X.

The interval Newton method was applied to the gradient of f in
order to solve this problem thus obtaining a list of final boxes containing
all the zeros of the gradient.

The gradient of f is

of (x

o = iz} = 61(2)

~—
N
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0f (z)
81‘2

Alg. 1 was therefore applied to solve ¢(z) = 0 in the box X =
([-1.0, 0.5], [-0.4, 0.5])T with the significant width improvement fac-
tor s = 0.9. It was also required that the boxes on the final list had
width less than 10! (knowing a priori that the number of boxes would
then be of the order of 25-30).

The results were

= 33%372 = ¢o(x).

ni 94
ny | 107
ny | 41
U 37
Ty 0
T 66
ny 94

There were 25 boxes on the final list. Two representative boxes were

x. — [ [=-91LE+00, —81E+00]
>7 \ [~ 47TE —01, +.50E —01]

with ||f(X,)|| < .10E — 2 and

. [ [—63E=01, +31E—01]
7\ [-.63E—-02, +.50E —01]

with || f(X16)|| < A9E — 5.



Chapter 3

Global Unconstrained
Optimization

3.1 Introduction

In this chapter we consider the global unconstrained optimization (more
precise: minimization) problem: Let R be the set of reals, let X C R™
be a compact right parallelepiped parallel to the axes (abbreviated as a
boz in the sequel), f : X — R any function and Of(X) the range of f
over X, that is the set of all function values, Of(X) = {f(z) : z € X}.
The global "minimum” inf (Of (X)) is denoted by f* if it exists in R,
the set of global minimizers (or global minimum points) by X*. Since
we do not assume the continuity of f at first, we use ”inf” instead of
"min”. The problem mentioned is usually described by

minimize f(z) subject to z € X. (3.1)
We will describe methods which are able to determine
(a) f*, or
(b) f* and X*.

The numerical realization of these methods will be such that - depend-
ing on the properties of f -

73
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lower and upper bounds of f*,

arbitrarily good lower and upper bounds of f*,

inclusions of X*,

arbitrarily good inclusions of X*

will be produced.

If the methods are applied to —f then the methods will obviously
determine the global mazimum and the set of global mazximizers of f
over X.

We will present 3 algorithms for solving (3.1). The first algorithm,
due to Moore (1966) and Skelboe (1974), only aims to determine f*.
The second algorithm, due to Ichida-Fujii (1979), is very similar to the
Moore-Skelboe algorithm and it aims to determine f* and X*. This
algorithm has the problem that convergence to X* is not generally
ensured. Since it is still frequently used we include it into our consider-
ations and we discuss its properties. Finally, the algorithm of Hansen
(1979), (1980) has just f* and X* as the solution set and it is therefore
superior to the algorithm of Ichida-Fujii.

The 3 algorithms are based upon the branch and bound principle.
By this we mean that:

(a) The whole area X is not searched uniformly for the global mini-
mizers; instead some parts (branches) are preferred. The branch-
ing depends on the bounding:

(b) It is required that for any subbox Y C X a lower bound for f
over Y is known or computable.

The process of fitting together the branching and bounding is dis-
cussed later. Here we mention that we use interval arithmetic for the
bounding since it has the tools for obtaining the necessary bounds al-
most automatically.

The 3 algorithms depend on:

(i) Properties of f. Principally, the algorithms work and converge
even if f is not continuous. If f is continuous then it is easier to find
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sound termination criteria. The number of global minimum points can
be unbounded, but f has to be bounded from below in order to have a
global minimum. Lipschitz conditions, differentiability, or smoothness
properties are not needed but the numerical processing is facilitated
and the convergence speed may improve if they are present.

(ii) Inclusion functions. These are the interval valued functions
which enable us to include the whole continuum of function values of f
(and thus f*) or, if desired, certain parts of it in intervals (bounding).
Construction and use of inclusion functions cause no problems. When a
computer system is available equipped with interval arithmetic software
then the construction and arithmetic manipulation of inclusion func-
tions run completely automatically and, further, the lower bounds com-
puted are guaranteed lower bounds since the rounding errors are kept
under control automatically. Majorization resp. minimization methods
based on the knowledge of Lipschitz constants are closest tools to the
inclusion function tool. Nevertheless, inclusion function methods are
preferred since it is nearly always possible to find appropriate inclusion
functions, even if they do not satisfy a Lipschitz condition or are not
continuous.

(iii) A subdivision (bisection) strategy of the domain X. The inclu-
sion function brings about guaranteed inclusions of f*. The subdivision
strategy implies that the inclusion function is evaluated only where it
is really necessary (branching) so that the computational effort is kept
as low as possible. The computation can be terminated when the in-
clusions of f* are sufficiently small.

An effective procedure for a global unconstrained optimization prob-
lem will consist of
(a) the basic steps,

(b) the accelerating devices.

The basic steps are responsible for getting the solution of the problem
or, at least, an approximate solution when the computation is done on
a computer. The accelerating devices aim to get the solution or its
approximation as fast as possible.
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Our presentation of the 3 algorithms will only consist of the ba-
sic steps for two reasons: First, the convergence properties are then
transparent and they can therefore easily be proven. Second, the basic
steps require minimum assumptions for f. If, however, the user wishes
to speed up the computation and if f has the properties required for
speeding up the computations then he may add accelerating devices.
These are described at the end of this chapter.

The organization of this chapter is as follows:

First, the Moore-Skelboe algorithm is presented. Its properties are
discussed in depth since the remaining two algorithms can be seen as
modifications of the above algorithm. Items like the existence of min-
imizers, termination criteria, influence of rounding errors, convergence
properties of the algorithms, etc. are therefore investigated extensively
in connection with the Moore-Skelboe algorithm since these items are
basically valid for all 3 algorithms. When dealing with the properties of
Ichida-Fujii’s and of Hansen’s algorithm it is therefore only necessary
to add a few supplementary remarks. Two sections with numerical ex-
amples demonstrate that the interval methods are far from being mere
theory. Some examples are included which are unsolvable with any
other optimization procedure we know about. Finally, the acceleration
devices are developed, and it is shown how they can be combined with
the 3 prototype algorithms.

3.2 The Moore-Skelboe Algorithm

This algorithm aims to determine f*, the global minimum of the un-
constrained optimization problem, (3.1), that is, to minimize f over the
box X € I"™. Some global minimizers can be located. An error analysis
is possible only for the approximation of f.

The algorithm is credited to Moore and Skelboe because Moore
(1966) was probably the first to discover that interval arithmetic is an
excellent tool for computing the range of a function over a box X, which
is almost the same as to compute f*. Skelboe (1974) combined some
of Moore’s ideas with the branch and bound principle. The resulting
algorithm was again improved by Moore (1976).
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The input data for the algorithm are the dimension m of the problem
(number of variables of f), the box X € I"™ and an inclusion function
F:I(X) — I of f. Termination criteria will be discussed later.

The algorithm works by splitting up the domain X into subboxes
of not necessarily the same size step by step. The search for f* is done
in these subboxes, but not uniformly which would be too expensive.
Here the branching principle is involved: At each iteration the search
is continued in the box Y where f has the smallest lower bound y
(bounding principle), since the chances are best for finding f* in this
box. The lower bounds of f over subboxes Z are determined from the
inclusion function F(Z) such that z = IbF(Z) is a lower bound of f
over /.

ALGORITHM 2 (Moore-Skelboe)
1. SetY = X.

Calculate F(Y).

Set y :=min F(Y).

Initialize list L = (Y, y)).

SAREER IR

Choose a coordinate direction k parallel to whichY = Y1 x...xY,,
has an edge of mazimum length, i.e. k € {i:w(Y) =w(Y;)}.

6. Bisect Y mormal to direction k obtaining boxes Vi,V, such that
Y =Vul.

7. Calculate F(V1), F(Vs).
8. Set v; :=1bF(V;) fori=1,2.
9. Remove (Y,y) from the list L.

10. Enter the pairs (Vi,v1) and (Va,vy) into the list such that the
second members of all pairs of the list do not decrease.

11. Denote the first pair of the list by (Y, y).

12. If termination criteria hold, then go to 14.
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18. Go to 4.
14. End

This algorithm initializes a list L = L; consisting of one pair (Y, y);
see Step 4. The list is then modified and enlarged at each iteration; see
Steps 9 and 10. At the n-th iteration a list L. = L, consisting of n pairs
is present,

Lo = ((Zn1, 201), - - - » (Znns Znn)) Where zpp = min F(Z,).
The leading pair of the list L,, will be denoted by

(Yna yn) = (ana an)-

The boxes Y,, are called the leading bozxes of the algorithm.

Assume, for the moment, that the termination criteria of Step 12 are
not satisfied during the whole computation such that Algorithm 2 will
not stop. In this case an infinite sequence of leading pairs (Y;,, ¥,)52
is produced, and the convergence properties of Algorithm 2 can be
discussed. The set of accumulation points of the sequences (Y;) and
(yn) is then taken as solution set of Algorithm 2.

A point z is an accumulation point of the sequence (Y;,) iff there
exist points n, € Y, for each n such that x is an accumulation point of
the sequence (7,). We can use the Hausdorff-metric, and a weakened
version of it, in order to have a measure for the distance from the boxes
Y, to X*, the set of global minimum points available. Let A, B be
compact subsets of R™ and x € R™; then we define

do(z, B) = min ||z —b
d.(A,B) = max do(a, B),
d(A,B) = max{d,(A, B),d,(B,A)}.

Clearly, d,(z, B) is the distance from z to the nearest point of B, and,
roughly speaking, d,(A, B) is the distance from the farthest point of A
to the nearest point of B. Therefore d,(A, B) # d,(B, A), in general.
If, for example, A C B then d,(A, B) = 0, but d,(B, A) = 0 need not
hold in this case. The Hausdorff-distance d is a metric for the set of
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compact subsets of R™. Thus, d(A, B) = 0 only if A = B. This shows
that convergence of boxes Y,, to a set B via d means that Y,, converges
to B with respect to the shape of B, which is a requirement that is too
strong in many cases. On the contrary, d,(Y,, B) — 0 as n — oo means
that the farthest point of Y,, from B tends to B. This is a realistic way
to describe the kind of convergence we are concerned with in Alg. 2.
We introduce the notation

Y, — B

only for the case d(Y,, B) — 0.

If B consists of just one point, say B = {z}, then Y;, - BorY, — z
means that 7, — z for any sequence (7,) with 7, € Y. Therefore if
Y, = [an, by are intervals (m = 1), then Y, — 2z is equivalent to
a, — z and b, — z.

Three kinds of results can be expected.

1. If any inclusion function F for f is the parameter of Alg. 2 then
the sequence of leading pairs, (Y5, y,))2,, satisfies f* € F(Y},),
ie., y, < f* for any n.

2. If F satisfies an additional property (cf. (3.12) or (3.13)) then the
convergence of the algorithm is guaranteed in the following sense:

F(Y,) — f* as n— oo if f is continuous,
Yo — [ as n — oo if f is discontinuous.

In both cases, estimates of the error are automatically produced.
3. Each accumulation point of (V) is a global minimizer.

These results are discussed in the sequel.

THEOREM 3 Let X C R™ be a boz, let f : X — R be any function,
and let F : I(X) — I be an inclusion function for f. Then the global
"minimum” f* = inf (Of(X)) exists and

frer(y)

holds for all leading boxes Y of the algorithm.
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Proof. The range of f over X is included in the interval F(X)
from the assumption that F' exists. Therefore, inf (Of(z)) exists in R.
The remainder of the theorem follows immediately from the following
formulas which hold for each list L,,:

X = U i (3.2)
0f (%) = U 0f(Zu) € U F(Za), (3.3)
y < f* <ubF(Y).O (3.4)

The relations (3.2), (3.3) show that the algorithm has similarities
with known sequential strategies based on the generation of minorants
which can be found via the knowledge of Lipschitz constants, cf. Ev-
tushenko (1971), Shubert (1971), Mladineo (1986), etc.

Finally, two technical points should be mentioned: First, if f is
monotone in some variable or if some variable occurs only once in the
expression for F'; then no subdivisions are necessary in the related co-
ordinate direction, cf. Nickel (1971), Skelboe (1974), Ratschek-Rokne
(1984).

Second, if a reduction of the list is desired, for instance to avoid
capacity problems when storing the list in a computer, a cut-off process
can be incorporated. This means that if the list L,, is processed and if

max F'(Z,1) < 2, for some j < n,

then all pairs
(Zpiyzni) fori=j,...,n

can be discarded from the list. Such a procedure is justified, since, for
1=174,...,n, the box Z,; does not influence the search for f*. This test
is related to the so-called midpoint test. As we will see it is a basic
step of Ichida-Fujii’s as well as of Hansen’s algorithms where the test
influences the solution sets of the algorithms. The principle of this test
is also used in non-interval optimization algorithms.
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3.3 Termination, Approximation Errors,
Rounding Errors

In order to provide termination criteria, one has to distinguish two
cases: The criteria have to terminate the execution of the algorithm
when

(1) exact computation is assumed (idealized case),
(ii) numerical computation is assumed (real case).

Both criteria are important for our considerations. The first cri-
terion is responsible for the connection to the theory of the algorithm
and the second criterion is responsible for the approximation of the first
such that the connections with the theory are not lost. We start with a
discussion of the criteria for the Moore-Skelboe Algorithm when exact
computation is assumed.

A reasonable criterion is

"If w(F(Y,)) < € then terminate” (3.5)

where € > 0. Since f* € F(Y,,) the number w(F(Y,)) is an upper bound
for the absolute error when f* is approximated by F(Y;,) or any value
n, € F(Y,), for example, 1, := y,.

Practically one obtains better results when the criterion

"If f, — yn < € then terminate” (3.6)

is used. Here f, is the smallest function value (of f) which has been
computed up to the n-th iteration. Since y, < f* < f,, we again have
an upper estimate of the approximation error | y, — f* | or | f, — f* |
by f n — Yn-

The function values f, are in many cases available when the in-
clusion function values F(Y) are computed. For instance, if F(Y) is
obtained via the meanvalue form,

F(Y)=f(o)+ (Y =o' F(Y)



82 Ch. 3: Global Unconstrained Optimization

where ¢ = mid Y and where F’ is an inclusion of the gradient or the
generalized gradient, then f(c) is such a function value. If really no
function value is available then, in general,

fn = min ubF(Y,)

1=1,...,10

will be the smallest upper bound of f* known so far and it may be used
in (3.6).
One also can obtain sharper results if

gn = ma‘X{yla R yn}

is used instead of y,. Clearly f,, — 9, is smaller than f, — y, and we
also have ¢, < f*. In the sequel, we do not mention this possibility
since its use is a programming skill rather than an important step of
Alg. 2 or other algorithms which will be developed in this book.

We can also estimate the relative approximation error. If the com-
putation is terminated by (3.5) then the relative error when f* is ap-
proximated by F(Y,) or by any value 7, € F(Y,) is, maximally,

w(F(Yx))
min(| y, |, | ubF(Yy) |)

If the termination is caused by (3.6) then the relative error of the ap-
proximation of f* by y, or f, is, maximally,

Jn— Yn
min(| yn [,| fa |)

Using (3.5) or (3.6) the termination is guaranteed when F'(Y,) —
fT. Conditions for the convergence properties of this sequence are given
in the next section. If convergence is not given or if rounding errors
prevent the convergence during the numerical computation, then other
criteria have to be incorporated, or additionally used, for security. Two
of them are, for instance,

if 0 ¢ F(Y,). (3.7)

if 0 & [yn, ful (3-8)

"If w(Y,) < €, then terminate”

for some ¢, > 0. This criterion always works since we always have
w(Y,) — 0 as we will see in the next section. Or,

”If n > n, then terminate.”
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The error estimations mentioned above remain valid also under the last
two criteria.

So far we have ignored the effect of rounding errors in order to be
able to study the theoretic properties of Alg. 2. If Alg. 2 is implemented
on a computer then the assertions of Theorem 3 may be wrong. The
inclusion property of f* need no longer be preserved and convergence
properties as they will be presented in the next section are disturbed or
destroyed due to rounding errors. Then instead of the intended values
F(Y), so-called numerical values F(Y) are delivered which approximate
F(Y).

If, however, machine interval arithmetic is implemented on the com-
puter, then one has the rounding errors automatically under control; see
Sec. 2.4. In addition to other advantages, a machine interval arithmetic
causes the inclusion

F(Y)CF(Y) = (F(Y))u
such that the global minimum remains included,
freF(Y)
if Y is a leading box. If § = IbF(Y) and if Y is a leading box then
§<IbFY) < f%

thus the numerical value § of y = IbF'(Y)) is still a lower bound for f*.
The termination condition w(F(Y)) < ¢, cf. (3.5), is then numerically
realized as the condition

w(F(Y)) < e. (3.9)

If (3.9) is satisfied then it also follows that w(F(Y)) < € such that the
termination of the algorithm remains correct, and

w(F(Y)) <e

is an absolute error bound of f* — y such that Theorem 3 is still valid.
It is possible that in a certain phase of the computation the rounding

errors overwhelm the decrease of w(F(Y)), that is, w(F(Y')) does not
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tend to 0 even if w(F(Y)) — 0. Since such cases cannot be excluded,
additional termination criteria are required as mentioned above. The
following two security criteria are also known:

A widely used condition for termination was proposed in Moore
(1966). That is, the termination of Alg. 2 is initiated when

Y1 C Y, does not imply F (Y1) C F(Y,) (3.10)

where Y,, and Y, are the leading boxes of L, and 1,1, respectively.
This criterion, however, presupposes that the inclusion function is iso-
tone. (F is called isotone if Y C Z implies F(Y) C F(Z).) For this
reason the investigation and construction of isotone interval functions
is an important branch of interval analysis.

If f is discontinuous the graph of f may contain jumps and the ter-
mination criterion w(F(Y,)) < € may not work. The criterion (3.10) is
then recommended as an additional termination criterion as well. If F’
is inclusion isotone, then a few occurrences of (3.10) without interrup-
tion will in general suggest that the result cannot be improved. There
is a similar criterion that causes termination if the sequence (y,)5
does not increase during some steps of the algorithm.

Some authors recommend stopping the computation when the con-
dition

Yoi1 C Yy, Yot # Y, implies F(Y, 1) = F(Y,,) (3.11)

occurs during some steps of the algorithm. A class of functions for
which (3.11) provides an optimal termination criterion is described in
Asaithambi-Shen-Moore (1982). When applying (3.11) to other func-
tions one should not stop too early: One can construct examples where
at first (3.11) holds arbitrarily many times without interruptions, but
an improvement is nevertheless possible. For example, if

f(z) =sin(27z) + cos(2rz), F(Y) = Osin(27Y’) + Ocos(27Y),

and X = [0, 219], then Osin(27Y) = Ocos(27Y) = [—1, 1]if w(Y) > 1.
Thus, we will get F(Y,,) = [-1, 1]+[-1, 1] =[-2, 2] and w(F(Y,)) =
4forn=1,...,2" — 1, when applying Alg. 2 to X. Only then is there
a chance that a decreasing w(F(Y,)) is computed.
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3.4 Convergence Conditions for the
Moore-Skelboe Algorithm

It was shown in Sec. 3.3 that Alg. 2 produces intervals F'(Y;) that con-
tain the global minimum f*, such that y, = IbF(Y,) is a lower bound
for f* and w(F(Y,)) is a measure for the quality of the approxima-
tion. In this section we shall first discuss conditions under which Alg. 2
converges, that is, w(F(Y,)) converges to 0 or Y, converges to f* as
n — oo, and then give some hints about the convergence speed. The
results of this section are mainly due to Ratschek (1985a) and Moore-
Ratschek (1987).

Let us first state a key lemma for further investigations. It ex-
presses that for any sequence of intervals generated by Alg. 2, (Y,,)%,,
the corresponding sequence of widths (w(Y},))$2, converges to 0. This
property may seem to be self-evident at first glance. However, the
proof is useful for three reasons. Firstly, there are very similar algo-
rithms that do not have this property, for example algorithms which
use cyclic bisection: see Moore (1979), Asaithambi-Shen-Moore (1982).
Secondly, the sequence (Y;,)%, need not converge. Thirdly, we may
reflect on the possible occurrence of sequences (Y;,)$°; where boxes of
length w(X)/2¥ for v = 1,2,... may arise arbitrarily late. Such a se-
quence arises for example when for each v = 1,2,... a box Y,, exists
with n > 10Y and w(Y,,) = 1/2°.

LEMMA 1 Let (Y,)2, be a sequence generated by Alg. 2. Then
w(Y,) = 0 as n — oc.

Proof. Let X € I"™ be the basis box. Then the construction of the
sequence of leading boxes depends on F' and on the geometry of X,
that is, the length of the edges of X. If X is fixed but another inclusion
function F' is chosen then another sequence of boxes emerges. Let &
be the collection of all boxes that occur if the algorithm is applied to
X and all possible inclusion functions /. Then S contains only finitely
many boxes whose width is larger than any given € > 0. This shall be
shown now.

Let the coordinate directions be numbered in such a way that w; >
wy > ... > Wy where w; = w(X;) and X = Xy X -+ X X, Then
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no box of & has a width larger than w;. Estimating the number of
boxes of S that satisfy w;/2 < w(Y) < w; leads to an upper bound,
«, for this number, which is & = 3™. The number is at most m if
wy > wg >+ -+ > wy, and is equal to « if all the w; are equal. Further,
there are at most a boxes of § with width w, /2. Since this estimate is
independent of the numerical value of w; we can apply it again to at
most a boxes with the edge length w} = w;/2 and w| > wh > --- > w] .
Accordingly, S contains at most o boxes Y of width w,/4 < w(Y) <
wy /2. Continuing this process we see that for each k, the number of
boxes of S with a width larger than w; /2% is at most o+ a2 +-- - + oF,
i.e. finite. Since (w;/2%)2, is a null sequence it follows that, given any
e > 0, there are only finitely many boxes Y of S with w(Y) > e.

The lemma will have been proven when, given an € > 0, there exists
a number ngy such that w(Y,) < e for any n > ny. Let us assume
that there exists an € > 0 such that for any ny an n > ny exists with
w(Yy,) > e. This means that a subsequence (Yj,)52, of (Y,)o°, exists
such that w(Yy,) > € for v = 0,1,... . Since Y}, € S and S contains
only finitely many boxes Y with w(Y’) > € we have a contradiction. O

With this lemma in mind the convergence properties of Alg. 2 can
be shown almost without assumptions. One has only to choose an
inclusion function F' of f with the property

w(F(Y)) —» 0as w(Y) — 0. (3.12)

This is a very natural condition and to find such inclusions causes no
problems at all, not even if f is not explicitly given, which is for example
the case if f is recursively defined or defined via a numerical algorithm.
Let ((Yn,yn))o, be again the sequence of pairs generated by Alg. 2.
Then we have the following result:

THEOREM 4 If the inclusion function F' for f satisfies (3.12), then
the sequence (F(Y,))2, converges to the global minimum f*, i.e., the
sequence (Yn)Se, converges to f* from below.

Proof. By the lemma, w(Y,) — 0 as n — oo. Thus, by (3.12), also
w(F(Yy)) — 0 as n — oo. Since f* € F(Y,) for all n by Theorem 3,
F(Y,) and also y, = IbF(Y},,) tend to f*. O
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Contrary to Theorem 3, Theorem 4 holds only for continuous func-
tions f. The continuity of f is implied by the assumption (3.12). The
convergence property of Alg. 2, however, is not lost if the continuity of
f is dropped, but it is difficult to find a realistic termination criterion.
If f is not continuous, then (3.12) has to be replaced by

w(F(Y)) — w(@f(Y)) = 0 as w(Y) — 0. (3.13)

Since Of(Y") need not be a compact interval we use w(Of(Y)) to denote
the width of the interval hull of Of(Y"), which is the smallest compact
interval that contains Of(Y'). It is obvious that (3.12) and (3.13) are
equivalent if f is continuous. The following assertion describes the
convergence properties of Alg. 2 applied to discontinuous functions.

THEOREM 5 If the inclusion function F for f satisfies (3.13) then
the sequence (y,)3 | converges to f* from below.

Proof. By the lemma, the sequence (w(Y,))2, converges to 0.
Thus, by (3.13), w(F(Y,)) — w(Of(Y,)) — 0 as n — oo. From
Of(Y,) € f(Y,) it follows that inf Of(Y,) —y, — 0 as n — oc.
Together with y,, < f* < inf Of(Y},), the assertion follows. O

Theorem 5 says that (y,,)5°; converges to f*. However, the sequence
(F(Y,))2, need not converge to f* as is the case in Theorem 4 since
it is possible that the intervals F'(Y;,) contain a jump of f.

Although the sequence (w(Y;,))s%, converges to zero, the sequence
of leading intervals, (Y;,)5°,, need not converge in general. If z* is the
only global minimum point of f in X then lim Y,, = x*. If there are
several global minimum points the sequence (Y,,)%°; can converge to
one of them but in most cases there will be subsequences that converge
to some of these minimum points.

Let us now turn to the behaviour of Alg. 2 with respect to X*, the
set, of global minimizers of f over X. The set of accumulation points of
the sequence (Y,,) is denoted by A. More precisely, a point x belongs
to A, if z is an accumulation point of some sequence (7,,) with n, € Y,
for all n. Obviously, X* and A are compact subsets of X.

THEOREM 6 Let f be continuous and let w(F(Y)) — 0 as w(Y) —
0. Then
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(i) A#0D (the set of accumulation points is non-empty),

(i) A C X* (that is, each accumulation point is a global minimum
point),

(i5i) dop(Yn, A) — 0 as n — oo.

Proof. (i) Let (1,)%%, be a sequence such that 7, € Y,. Since
Y, € X and X is compact, that sequence has an accumulation point
because of the Bolzano-Weierstrass theorem.

(ii) Let Z be an accumulation point of the sequence (1,); with
Nn € Y,. Then there exists a subsequence (7,)22; which converges to
Z. Since ng, € Y, and since w(Y,) — 0 as n — oo (see Lemma 1), the
corresponding subsequence (Y}, ) also tends to Z. Since f is continuous,
we get Of(Yy,) — f(Z). Since F(Y,) tends to the global minimum,
f*, see Theorem 4, and since Of (Y, ) C F(Y%,), it also follows that
Of(Yx,) — f*. Therefore, f(Z) = f*, that is, T € X*.

(iii) Since w(Y;) — 0, the assertion is equivalent to d,(c,, A) — 0 as
n — oo where ¢, = mid (Y,,), that is the midpoint of ¥,. In order to get
a proof by contradiction, we assume that d,(c,, A) does not converge
to 0. So an € > 0 and a subsequence (¢, )2 ; of (¢,)2; exists such that

do(ck,, A) = I~n€i}11 | ck, — Z ||2 > € for all n. But (¢, )2, is a sequence
T

in a compact set, X, and so has an accumulation point z€A. O

Remarks. (1) If 7 is the only global minimizer, then the sequence
(Y,) converges to &, since A = X* = {z} by (i) and (ii) of Theorem 6
in this case.

(2) The sets A of accumulation points and X* of global minimizers
can be assumed to be equal from a practical point of view. The reason
is that a point * € X* does not belong to A if and only if there exists
an index n and a nonleading pair (Zn;, zn;) in L, such that

" € Zy; and f* = zy;

and further, that Z,; = Z,,,;,, for all m > n and an appropriate position
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im 10 L,,. This means that the box Z,,; will never be further subdivided.
These three conditions will practically almost never occur (at least, if
trivial functions and sophisticated examples are excluded). The con-
ditions mean that there exist other global minimum points £ which
determine the leading pairs (Y,,, y,) and where y,, < f* = z,,; such that
Zni can never be leading. Nevertheless, the Lebesgue measure A(X*\ A)
may be positive.

(3) Assertion (iii) of the theorem cannot be replaced by d(Y,, A) —
0. This would imply that d,(A4,Y,) — 0 which is only the case if A is
a single point.

(4) No termination criteria exist for Algorithm 2 which are based on
the distance between the global minimizers and their approximations
by the leading intervals Y,,.

(5) A result similar to assertion (ii) of Theorem 6 was derived by
Benson (1982) who studied a prototype branch and bound algorithm
under comparable assumptions.

3.5 Numerical Examples

The Moore-Skelboe Algorithm and its properties are tested first on
two "bad” functions in order to demonstrate the superfluousness of fre-
quently used assumptions for its application. Finally the effect of using
different inclusion functions dealing with the six hump camel back func-
tion will be illustrated. The interested reader will find several further
numerical results which are concerned with differentiable functions in
Skelboe (1974), Asaithambi-Shen-Moore (1982).

The following examples which can be found in Ratschek (1985a)
were calculated on an Apple Ile microcomputer equipped with a PASCAL-
SC software system. The symbols which are used in the sequel mean:
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X = X; x Xy Basic domain (Step 1 of the algorithm).

€ Intended absolute accuracy (Termination cri-
terion (3.6)).

N Number of function evaluations of F' till
termination.

(Y*, y*) Leading pair when terminating, Y* = Y;* x Y5'.

y* As just defined is a lower bound of the global
minimum, f*.

€o Attained absolute accuracy which has been

*

computed as minimum of the values f(z) —y
for the 4 corners z of Y*. Thus, f* —y* < €.
E+k 10%*,
If the functions are not continuous the criterion used ((3.6)) does
not guarantee a termination. Thus we added an emergency termination
criterion as follows where the updated values 9, = max y;, cf. Sec. 3.3,

1=1,...,n
are used:

"1f 9, = Ynioo then terminate.”

This means that the computation stops if the updated lower bound has
not been improved within 20 iterations.

zysin(l/zy) + @ |2 | if 21 #0,
are mainly interested in the case zo > 1 or where zo belongs to a
neighborhood of 1, since the function

f(z1,1) =2y sin(1/z1)+ | 21 |

has infinitely many global minimum points, and 0 which is itself a
global minimum point is an accumulation point of the remaining global
minimum points. The global minimum for f(z;,1) is 0. If x5 is close
to 1 then there are infinitely many local minimum points and most of
the corresponding minimum values are close to zero.

Example 1. f(x1,25) = We

We used the following inclusion function, defined for intervals Y3, Y5 €
I

?

F(W,Y;) =  W(ISIN1/Y)+Ys)  if ¥y > 107,
=  Y(SIN(I/Y})=Ys)  ifV; < —10"%,
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= V1| ((Ya=1)V (Ya+1)) otherwise.

ISIN denotes the inclusion function of the sine function in PASCAL-SC;
see Sec. 2.6.

|'Y] |= max{| z, |: x, € Y1}

is the absolute value of an interval Y, and U V V denotes the interval
hull of two intervals or points, U and V', that is, the smallest interval
containing both U and V. The absolute value of an interval and the
convex hull are pre-declared functions in PASCAL-SC.

We applied the algorithm to F' on four input boxes X. The results
are shown in Tables 3.1 and 3.2.

X; [0, 2] [—100, 100]

X, [0.99999, 2] [~100, 100]

e 1E-6 1E—6

N 72 68

© BE-10 1E -8

y*  —2.12211 609E—6  —9.99900 1E + 3

Yy [2.1220, 2.1222]E—1  [0.99609, 1.0E + 2

Yy [9.9999, 9.99994]E —1 [—1.0, —0.99609]E + 2

Table 3.1.
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X; [0, 1] [0, 1]
X> [1, 1.00000001] [1, 100]
e 1E-6 1E—6
N 240 40

€ 13E—7 0.0

y* 0.0 0.0

Vi [2.12158, 2.12281]E—1  [0.0, 0.25]

Yy [1.0, 1.00000 001] [1.0, 1.38672]

Table 3.2.

The last test in Table 3.2 shows a number N of inclusion function
evaluations of only 40 where the minimum f* = 0 is determined exactly
because of

frely’, v +el =10, 0].

This result may seem surprising; however, it is not since it was caused by
the emergency termination criterion described previous to this example,
i.e. the lower bounds 7, = 0 did not change during a certain number
of iterations.

Example 2. f(zi,23) = 2 + x1 — [1021]/10 + 25 — [1025]/10 —
cos \/([1021]/102 + ([1022]/10)* if 1,2, >0, where [r] denotes
the largest integer smaller than or equal to the real number r. [r]
can be programmed via the standard function trunc in a programming
language if r > 0; for example, [3.5] = 3.

The function f is discontinuous if 1 = 0.1, 0.2, 0.3, etc., or if x5 =
0.1, 0.2, 0.3, etc. This means that there are orbits of discontinuous
points in both coordinate directions. The points (z1, z2) = (k/10,1/10)
are local minimum points if £,/ = 1, 2, 3, etc. The only global minimum
point is (0,0) and the global minimum of f is f* = 1.

We used the following inclusion functions, defined for intervals Y} =
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(Y11, y12] € Tand Yy € I, 113 > 0, min Y5 > 0,

G(Y1) = Y if [10y11] = []—OyIQ]a
= [0, 1/10] otherwise,

H(Y) = y% \ 9%2,
F(Y1,Y3) = 24+GY) +G(Ys) —
ICOS(ISQRT (H (Y1) + H(Y2))/10).

G is an inclusion function for x; — [10x,]/10 if ; > 0, and H is an
inclusion function for [10z]*. The functions ICOS, ISQRT are inclusion
functions for cos, va which are predefined in PASCAL-SC. Thus, F is

an inclusion function for f.

X1 [0, 1]
X2 [0, 1]

€ 1E -6
N 82

€0 2F —11

y*  9.99999 99999E — 1
Yy [0.0, 3.90625]E — 3
Yy  [0.0, 3.90625]E — 3

Table 3.3.

Table 3.3 shows that Alg. 2 had no difficulties at all when applied
to this example.

Example 3. The six hump camel back function is given by
1
f(zy,15) = 42? — 2.127 + gx(f + x119 — 423 + 425,
Since f is a polynomial and thus infinitely often differentiable one ought

to solve the problem using accelerating devices as discussed in the se-
quel. We nevertheless took f as an example, since we wish to compare
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two different inclusion functions for f. The first one is
1
F(Y1,Y5) = YP(4+ Y7 (=214 3V7)) +4Y) (Y7 = 1) + 1Y)

where Y = {y? : y; € Y1}. We note that Y2 # VY] if V1V is formed
as the interval product of Y; by itself using the product rule; however,
Y? C Y1Y; is always valid. The second inclusion function is

GY1,Y2) = flei,e2) + filer,e2) (Y1 — a1) + faler, e2)(Ya — ¢2)
+Hi (Y1, Ys)(Y1 — 1)?/2 + Ho(Y1,Y2)(Ya — ¢2)?/2
+(Y1 —c1)(Y2 — )

where ¢; and ¢, denote the midpoints of the intervals Y; and Y5, resp.,
f1, f4 are the components of f’, and

Hi(Y1,Y2) = 8+Y7(—25.2+10Y7),
Hy(Y1,Y;) = —8+48Y7

G arises by developing f as a Taylor polynomial of second order and
by replacing several parts with inclusion functions. Thus G is a Taylor-
form of second order, cf. Sec. 2.7. In Table 3.4 the difference between
F and G is first illustrated by evaluating them at a few arguments.
Since G is quadratically convergent (see Sec. 2.7) one may expect better
results with small arguments.

Y; [-2.5,25] [-0.5,0.5]  [0.99, 1.01] [8.0, 9.0]E — 2
Y2 [-1.5, 1.5] [=0.5,0.5]  [0.99, 1.01] [-7.2, —T.1]E —1
F(Y1,Ys) [-70, 40]  [-1.25, 1.25] [3.04, 3.43] [—1.068, —0.995]
w[F(Y1,Y3)] 110 2.5 0.39 7.2E —2
G(W1,Ys) [-480, 870] [—1.25, 1.75] [3.11, 3.36] [—1.032, —1.031]
w[G(Y:,Y2)] 1350 3.0 0.25 12E-3

Table 3.4.
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The following numerical test shows the different results when F
and G were used to reach an accuracy of only 10~!. Demanding an
accuracy of 107% was too much for F; we had stack overflow at about
1800 evaluations of F' because the list L. became too long.

F G G
X, [-25, 2.5] [-2.5, 2.5] [-2.5, 2.5]
X, [-15, 1.5] [-1.5, 1.5] [-1.5, 1.5]
e 1E-1 1E—1 1E—6
N 1236 244 664
€0 49E—2 42E -2 1.9E -7
y*  —1.0799 —1.0472 —1.031628585
Yy [-0.977, LIT2JE—1  [0.0, 1.563]E — 1 [8.972, 9.003]E — 2

Yy [-7.266, —7.149)E —1 [-7.5, —6.563|E —1 [—7.1265, —7.1246]E — 1

Table 3.5.

3.6 Convergence Speed of the
Moore-Skelboe Algorithm

We now begin to investigate the convergence speed of the Moore-
Skelboe algorithm. It will be shown in this section that Alg. 2, i.e.
the convergence order of the sequence (y,) where y, = IbF(Y,), can
be as slow as possible although the inclusion functions used are of ar-
bitrarily high order (for a definition see Sec. 2.7). In the next section,
we concentrate on isotone inclusion functions (as defined in the sequel)
and show that the convergence order of the sequence (y,) is reasonable
if Alg. 2 is applied to isotone inclusion functions.
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Formulas for the convergence order are unrealistic in most of the
cases since the formulas have to consider the worst possible case. Thus,
investigations of convergence order are called ”worst case analysis”.
Practically, the worst case will not occur - the more, since Alg. 2 and
also the other algorithms described in this book will be combined with
accelerating devices. These devices will not influence the worst case
analysis of the convergence speed since one can always construct exam-
ples such that the devices do not apply.

If one compares our results with the convergence order of typical
methods for solving nonlinear problems one has to keep in mind that
these methods are global methods and that the typical methods offering
superlinear or quadratic convergence are local methods. We do not
know any other global method which does not depend exponentially
on the dimension, which means that the error of the n-th approximate
is of the form O(n ") where c is a constant and m the dimension.
Thus, the relatively slow speed of the algorithms presented in our book
is caused by the global approach and not by the use of interval tools.
Furthermore in order to have at least the exponential order, one has to
use isotone inclusion functions. This forms the content of this and the
next section. We also learn in the next section that, practically, the
average order is between polynomial and exponential order.

For technical, i.e. for arithmetic, reasons we start the counting of
the lists generated by Alg. 2 by 0 (the formulas then look nicer) in
this and the following section. Thus the starting list is L, consisting of
(Yo,%) = (Zo1, 201). For this reason, the list L, has not only n pairs,
but n 4+ 1 pairs,

Ly = ((Zno, va))gill
since the counting of the pairs which is done by the second subscript,
v, starts - as in the former sections - by 1.

Before we start, the reader should be reminded that an inclusion
function F' : I(X) — I for f : X — R is called of order (also: conver-
gence order) « > 0 if

w(F(Y)) —w(3f(Y)) = O(w(Y)?*) for all Y € I(X),
that is, if there exists a constant ¢ such that

w(F(Y)) = w(@f(Y)) < cw(Y)? for all Y € I(X). (3.14)
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F is called isotone if Y C Z implies F(Y) C F(Z) for all Y, Z €
I(X).

Again, let (y,) be the sequence of (leading) lower bounds if Alg. 2
is applied to X and F'.

LEMMA 2 IfF is isotone the sequence (y,) is monotonically increas-
ng.

Proof. Let us consider the list L, = ((Zp0, 240))"t] with
Yn = 2Zn1 < Zpy < ... < Znm+1-

The bisection of Y,, = Z,; with Y,, = V; U V; gives new lower bounds
v1 = IbF(V}) and v, = IbF(V3). Since F is isotone we get

Un S V1, Yn S V3.

From the way L, is constructed the leading value ¥,,+1 is the smallest
value of z,2,v; and v9. Since these 3 values are larger than or equal to
Yn, We also have y, < ypi1. O

We show that our problem can be transformed to a simpler problem.
Let X € I™ and f : X — R again be given. The function f need not
be continuous; however, we assume that f has a global minimum f* in
X. Let F be an inclusion function for f. Instead of considering f and
F we will consider the constant function h : X — R with A(z) = f*
for all x € X, and

HY) = [bFY),IbFY)+w(F(Y)) —w(@f(Y))] if F) <[
= [/ +wF(Y)) —w@f(Y))] otherwise.

Let N be the set of nonnegative integers.

LEMMA 3 For anyc,a > 0 we have w(F(Y))—w(Of(Y)) < cw(Y)*
for allY € I(X) iff w(H(Y)) —w(Oh(Y)) = w(H(Y)) < cw(Y)* for
allY € I(X). That is, F and H have the same order. O

LEMMA 4 If F s isotone then F' and H generate the same sequence
of lower bounds, (y,), when Alg. 2 is applied.
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Proof. Let L, = ((Zny, Znv))"21 with Zy1 = Yy, 201 =y forn € N
be the lists generated by F and let L, = ((Zyy, Zny))"41 with Z, =
Yo, 2n1 = §n for all n € N be the lists generated by H. Let 7, be
the number of pairs (Z,;, zn;) of L, with z,; < f*. Let 4, be defined
analogously.

Let us look at some properties of F' and H. If v = 0 for some
k, that is, y = f*, then y, = f* and v, = 0 for all n > k. This is
due to the monotonicity of the sequence (y,,) verified in Lemma 2. The
corresponding inclusion function H need not be isotone. If, however,
IbH(Z) = f* for some box Z then IbH(V) = f* for each subbox
V of Z. This also results from the isotonicity of F. Therefore, if

= f* for some k then, considering the order of Ly, we get 3 = f*
for all 7. Further the bisection Y}c V1 U V2 produces lower bounds
=1bH(V;) = f* for j = 1,2 such that finally z,; = f* for all n > k
and all 2. That is, if 3, =0 for some k then v, = 0 for n > k.
We will now prove by induction on the list index n that

(ii) (Zm'a Zm) = (Zm, Em) for 1 < 7,
(il) yp = Gn = f* if 7 = 0.

The lemma will then follow from these items. If n = 0 then (i),
(ii), (iii) are obvious. Let us assume (i) to (iii) to be true for some n.
If v =9, #0 then Y, = ViUV, = ffn = ‘71U‘72Whel'e the boxes
arising by bisection are equal, v; = Vj for j = 1,2. Let v; = IbF(V})
and let #; = IbH(V;). After (Y,,y,) and (Y;,3,) have been discarded
from the list, (V},v;) and (‘7], ;) are inserted at positions that depend
on the size of v;,v; and on the manner by which Alg. 2 handles the
order when some values are equal. If v; < f* then v; = ¥; and the
pairs (V},v;) and (‘7], ;) enter the lists at the same position. If v; > f*
then ¥; = f* and the corresponding pairs need not enter the lists at the
same position. In any case, v,+1 = Yn+1 Where 7,.1 can take one of the
values vy, — 1,7, or v, + 1. If v, =74, = 0 then v,,1 = 41 = 0 and
Yn+1 = Uns1 = f* due to the properties of F' and H mentioned above.
O
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We shall show that the convergence of the sequence (y,) can be
arbitrarily slow even though the convergence order of F' is arbitrarily
high, and even though F' is assumed to satisfy

w(F(Y)) < cw(Y)*or any YV € I(X) (3.15)

for some a,c > 0 instead of (3.14). Condition (3.15) is much stronger
than (3.14). The reason for this behavior is that the sequence (w(Y}))
can converge so slow that a high order of F' cannot restore a reasonable
convergence order of (yy).

It is first necessary to develop some technical preliminaries. For
example, we provide an appropriate expression so that the sequences
(yn) generated by Alg. 2 will have an arbitrarily slow speed of conver-
gence. Let S be a collection of convergent sequences (y,)%,, where
Yn — y*, say. Let Sy be the corresponding collection of null-sequences
(Yn — y*)2, for (y,)22, belonging to S. Let now (z,) be some given
null-sequence (not necessarily belonging to S) and let z,, = max | z, |.

We say that S has the convergence order of (z,) iff for any sequence
(yn) € Sp a p > 0 exists such that | y, |< pZ, for alln € N. This means
that | y, |= O(&,). (If | z,, | instead of Z, is used in this definition
then difficulties could arise if zeros occur in the sequence.)

If there is no null-sequence having the convergence order of S then
we say that S converges arbitrarily slowly. Since S has the convergence
order of (z,,) iff S has the convergence order of (Z,) and since (Z,) \, 0
(that means that (Z,) is a monotonically decreasing null-sequence), we
can restrict ourselves to monotonically decreasing null-sequences ()
as test sequences. A few logical and analytical rearrangements which
will not be repeated here lead to the following lemma:

LEMMA 5 S converges arbitrarily slowly iff given any null-sequence
(n) \¢ 0, a sequence (y,) € S with a subsequence (Y., )52, can be found
such that |y, |> kxy, holds for any k € N. O

The following assertion is also obvious:

LEMMA 6 If (z,) \ 0 then a subsequence (x,,)5%, exists such that
(/n’xvn)zozl \l 0' O
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For technical reasons in the proof, we introduce a property (P) that
is sufficient for S to be arbitrarily slow: We say that S has property
(P) if for any positive reals «, ¢ and any increasing sequence of positive
integers, (sk)52q, a sequence (y,) € S can be found such that, for any
positive integer k, an integer ty, > sy exists so that |y, |> c27ke,

LEMMA 7 If (P) holds for S then S converges arbitrarily slowly.

Proof. The assertion is shown via Lemma 5: Let (x,) N\, 0 be
given. Then, by Lemma 6, a sequence of indices (vy)52, exists, so
that (kz,, )52, \¢ 0. Let o, ¢ > 0 be chosen arbitrarily, and set & =
c27*. Then (&), \ 0. Since (kz,,) is also a null-sequence it has
a subsequence which is majorized by (£;)3°;. That is, there exists a
subsequence (my)32; of (vg)p2, so that & > lz,,, and my = v, where
[ depends on k. That is, we have m; > v, and [ > k. Set s, = my, for
any k. Then, by (P), a sequence (y,) € Sy exists such that for each
k > 1 some t, > s, can be found with | y, |> &. The sequence (y,)
and its subsequence (y:,) are then the sequences required for applying
Lemma 4, since we have

&k 2 1Ty, = lxg, > Loy, > kay,. D

Let us now turn to the main result of this section, which is that Alg. 2
may approach its solution, that is, the global minimum arbitrarily
slowly.

Let X € I and o, ¢ > 0 be given. Let S be the set of all sequences
of lower bounds (y,),, which are generated by applying Alg. 2 to
functions f : X — R and their inclusion functions F' : I(X) — T sat-
isfying (3.15). The functions f are therefore continuous, the inclusion
functions are of order « and satisfy the condition w(F(Y)) — 0 as
w(Y) — 0, and thus all the sequences (y,) converge by Theorem 5.

THEOREM 7 If S is the sequence set defined above then S converges
arbitrarily slowly.

Proof. Without loss of generality, we choose X = [0, 1]. This implies
m = 1. We apply Alg. 2 to the constant function f(z) =0 for z € X.
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Thus, S = Sp. We will show that S has property (P). Then the
theorem follows by Lemma 7.

Let Uy = [1 — 27%,1] and x;, = c* for positive integers k. Let
(sk)$2, be an increasing sequence of positive integers. An inclusion
function satisfying (3.15) is

FY) = [_(;2_"‘(3”%), 0] if Y = Uy for some k > 0
= [—cw(Y)%,0], otherwise.

We will show that S* satisfies (P) where S* consists only of the
sequence of lower bounds generated by F. Then (P) holds also for S
since S* C S.

We first consider the case £k = 1, that is s, = s1,t;, = t;. We
get Yy = X yo = —c. Then Yj is bisected into Y7 = [0,27}] and
U, = [271,1]. Furthermore, we have y; = —¢2™* and u,; := 1bF(U,) =
—comalsity) > y1. Now Alg. 2 induces a uniform subdivision of Y] in
subboxes Y C Y] as long as y = IbF(Y) > wu;. The last box Y with
y < uq has width w(Y) = 271 and thus y = —¢27*%1. This box shall be
indexed by t; — 2. That is, t; can be explicitly counted or determined.
The leading box of the subsequent list is Y;,_; = U; = [27},1] with
Yt -1 = U = —2~%51%3) Then U, is bisected into Uy; = [%, %] and
Upy = Uy with ugy = IbUy; = —c272® and w;y = IbUyy = —27062+2),
Thus, Y;, = Uyy and | yy, |> x4,. Since t; — 2 is the number of all
intervals having the right endpoints smaller than or equal to % and
which have been generated from X by applying at most s; bisections
(X included), we have t; > s;.

Let us now assume that we have already determined #;_; > sp_1
where k£ > 2. In order to get tx > s, we choose the index t; so that
Y;,—1 = Ui. This means that Y;, 5 is the last leading box which arises
from X using s, bisections. Therefore y;, 1 = —02_0‘(5”5), and Y;, ¢
is bisected into

Ui = Y:‘,k = [1 - 2_ka 1- 2_k_1]7 Uge = [1 - 2_k_1’ 1]’

where | y,, |= 27+ > 27k = 5, Since t;, — 2 is larger than the
number of all boxes Y which satisfy ub Y < ¥*_, 27 and arise from
X using at most s bisections we get t; > si. O
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3.7 Convergence Speed with Isotone In-
clusion Functions

In Sec. 3.6 we have seen that the Moore-Skelboe algorithm can be
arbitrarily bad if the inclusion functions are only restricted by order
conditions. In this section it is shown that the use of isotone inclusion
functions leads to reasonable convergence results. First some technical
properties are derived that are needed for the main results. That is, in
order to make assertions about the convergence order of Alg. 2 we have
to study the worst possible case as mentioned in Sec. 3.6.

We begin by showing that isotone inclusion functions causing a uni-
form subdivision of X give the slowest possible approach to f*. For
that reason, two inclusion functions F' and G for f are compared. We
assume that F' and G have been transformed from isotone inclusion
functions of order o by the simplification process described in Sec. 3.6.
According to Lemma 3, the constant function f(z) = 0 for all z € X
can be considered. Thus, f* =0 and w(Of(Y)) =0 for all Y € I(X).
We set

F(Y)=[-cw(Y)*,0] for Y € I(X)

whereas G : I(X) — I is assumed to satisfy
w(G(Y)) < cw(Y)* for Y € I(X).

The algorithm applied to F' and G generates lists that shall be denoted
by

((an, an)),?:—i—ll fOI" F,

(Z i, Zni)) 1 for G.

We set Y, = z,1,yn = 1bF(Y,), Y, = Z,1, 7, = IbG(Y,). We have

(yn) 7 f* and (7,) /[ (3.16)

which follows from Lemma 4 or, in case of F', from the isotonicity of
F directly. The notation (y,)  f* shall mean (y,) is a monotonically
increasing sequence converging to f*.

Considering F' and G, it seems self-evident that F' leads to a worse
convergence approach to f* than G. A proof is, however, necessary

L, =
L=
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since it cannot be excluded in advance that for some n or several n or
infinitely many n,
Yn < Yn,

which could arise if Y}, is small and Y, is large.

LEMMA 8 Let F, G and the lists L,, L, be as defined above. Then
Yn <7, for all n.

Proof. Tt is assumed that ¢ = a = 1 without restricting the gener-
ality. We use mathematical induction with respect to the list indices
n. The case n = 0 is obvious. Let us now assume that

yr <7, forall k <n (3.17)

holds. We have to show that y,.1 <7,,,. Two cases are to be distin-
guished:

(1) w(Yn) = w(¥a1),
(ii) w(Ynt1) < w(Yn)-
Case (i) implies ¥, 11 = yn- Again by (i) and by (3.16) we get

Yn+1 = Un < Un < gn+1,

which proves the assertion in case (i). For dealing with (ii) let (w,)32,
denote the decreasing ordered sequence of different box widths that oc-
cur in the bisection process of X. Thus, for example, wy = w(X), w; =
w(X)/2, etc. At any bisection of a box Y = ViUV, with w(Y) = w,, we
find that w(V;) = w(V3) which is equal to w, or wyy1. If w(V1) = wyyq
we call V] a fresh box. Conversely, if V' arises by bisection from Y, and
w(V) = wy,, then w(Y) = w, 1 if V is fresh, w(Y) = w, otherwise. (ii)
is now equivalent to the existence of a v such that only boxes of widths
w, and w,;1 occur in L,, and all boxes of L, are of width w,,; and
fresh. That is,

L, : Yn = —Wy < Zp2 = ... = Zppyl = —Wyt1, (3.18)
Lovi: Ynp = Zn4+12 = - = Zp4ip42 = Wy
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We will show that the assumption

Yn+1 > Ynp1 (3.19)

leads to a contradiction. (3.19) implies w(Y ,11) > w(Ypi1) = Wyy1-
According to the properties of the widths-sequence, it follows that

’(,U(Yn+1) Z Wy -

Thus, Y,.1 was obtained from X by fewer bisections than each box
of L,,1; see (3.19). Since L, and L,,; are obtained by the same
number of bisections, at least one box of L,,;, say V, is obtained from
X by more bisections than each box of L,, ;. Since each box of L,,,; has
suffered from the same number of bisections, we have either w(V) = w,
or w(V') = w,, 1, but in this second case, V is not fresh. If V is obtained

by (one) bisection of some box U of some former list, we have
w(U) < wyy1.

If w = 1bG(U), then
u > —Wy+1 = Yn+1-

Further, because of (3.19), we have

yn—H < Yn+1 S U
and finally, by (3.16),
U <uforall k <n+1.

This implies that U has never been a leading box, which would have
been necessary to get U bisected as was assumed. This provides the
contradiction. O

In order to further narrow down the worst possible convergence case
we show that among all boxes of constant width, cubes yield the slowest
convergence if Alg. 2 is applied and the worst isotone inclusion function
- see the previous lemma - is used. For this purpose, let X € I™ w(X) =

1 and X = [0,1]™. Let further G : I(X) —» I and F : I(X) — I be
defined formally by the same expression

G(Y) = F(Y) = [—ew(Y)*,0].
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Thus, F' and G are both isotone inclusion functions for the constant
function f(z) = 0. The lists relating to F' and G shall be denoted by
L, = ((Zpi, 20d)) 21 and L, = ((Zni, Zni)) 21, Tespectively, and we set
Yy = Zn1, Yn i= 2n1, Yn i= Zp1, and T, := Zn1. It is necessary to make
Alg. 2 more precise. The order of the lists is regulated by Step 10 of
the algorithm. If Step 10 cannot decide uniquely on the ordering then
the box of larger width shall precede the box of smaller width. If this
does not result in a decision then that box shall precede which has the

larger edge-widths sum.
LEMMA 9 Under the above conditions y, <7, holds for all n € N.

Proof. Tt is shown that for any n € N an ¢ € N exists such that the
relations

?n:7n2 ::7721 QZTL,H—IZ---:ZTL,TL—FI’
Yn:ZnQ ::ZmQZn,z—H:: n,n+1,
Yn g Yn; Zn,i+1 g Zn,i+1

hold. A = B or A C B mean equality or inclusion after an appropri-
ate motion of A or B. If mathematical induction is applied then the
relations are obvious. Then, Lemma 9 follows immediately. O

We can now give sharp upper bounds for the convergence order of
Alg. 2 under the assumption that the inclusion functions are isotone.

Let again X € I, f : X — R and let F': I(X) — I be an inclusion
function for f. Furthermore let w = w(X). Let (Y,,y,) denote the
leading pairs if the algorithm is applied to F' and X.

The following theorem shows that Alg. 2 renders convergence to
f* of the order of the sequence (n_"‘/m);‘;’:0 if a is the order of the
inclusion function. One may notice that the slowness of the algorithm
caused when the dimension m is higher can be compensated — at least
theoretically — by using a higher order inclusion function.

THEOREM 8 Let the inclusion function F' for f be isotone and sat-
isfy wlF(Y)] —w[Of(Y)] < cw(Y)* for all Y € I(X) and some con-
stants c,a > 0. Then

= yn < c(2w)*(n+ 2)_a/m,
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that is, f* — y, = O(n=%/™).

Proof. Referring to the preceding lemmas we can assume that
f(x) = 0 for all z € X, that F(Y) = [—cw(Y)%,0], and that X is
a cube of width w. These assumptions indicate the worst possible case.
Since X is a cube, the maximum box width of the boxes of the lists

is w and therefore y, = —cw® for n = 0,...,2™ — 2. The maximum
box width is w/2 and y, = —cw?®/2% for n = 2™ —1,...,2?™ — 2. In
general, the maximum box width is w/2! and y, = —cw®/2'* for the

lists L,, where n =2 —1,...,204Um _ 92 and [ € N.
F is isotone. The sequence (y,) is therefore increasing. This gives

Yp > —cw?®/2@if p > 2m — 1,
Yo < —cw®/21 if p < 20HDM _ 9

Some rearrangements show that

n > 2m—1iff —¢(n+1)7%/™ > —c/2l
n < 203D)m 9 iff —c(n +2)Y/m2e < —¢/2!,

Therefore, n € [2!™ — 1, 2+D)™ — 2] implies
—c(2w)*(n 4+ 2)"Y™ <y, < —cw(n +1)"™, (3.20)

This implication holds for any [ € N. Conversely, if n € N is given
then there exists exactly one [ such that both parts of the implication
are satisfied. It is defined by y, = —cw®/2'*. Using this formula,
the parameter [ can be eliminated, and (3.20) holds in general. Thus,
constants d and d exist such that

_dn—a/m < Yp = Yn — f* < _Jn—a/m'
That is, f* — y, = O(n=%/™).O
Remark. There exist infinitely many numbers n such that the

left-hand inequality of (3.20) is an equality. In this sense, the order
estimate of Theorem 8 is sharp.

Example for the fastest approach not using acceleration devices.
Theorem 8 gives an upper bound for the convergence speed of the y, to
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f*. Which is the fastest approach that can be expected using Alg. 27
The fastest speed is obviously given if only one global minimizer exists
and if this minimizer is contained in all leading boxes. Let, for simplic-
ity, X again be a cube, and w(X) = w. (A more general shape of X
would only change the multiplicative constant occurring in the order
estimate slightly, but not the exponential term.) In order to eliminate
the direct influence of the special shape of f or F, we only assume
w(F(Y)) < cw(Y)* for Y € I(X) and for some constants ¢, > 0. In
contrast to the rather high number of bisections shown in the proof of
Theorem 8, we have that

Im <n < (I4+1)m — 1 implies w(Y,) = w/2!(l € N).
If [g] denotes the largest integer smaller than or equal to ¢, we get
w(Yy) = w/2m/m™.
If n/m = [n/m] + r, then r, € [0,1 — 1/m]. Finally,

f* =y < w(F()) —w(Bf(Ya)) < cw(Yn)®
— Cwa/2a[n/m] < C(2rnw)a(2a/m)—n.

This leads to the following.

Remark. In general, the fastest convergence speed of (y,) to f*
under the conditions specified above can be estimated by

f* - Yn S C(2rnw)a(2a/m)—n,

that is,
f* =y = O(2%™)™).

Example. If m = 2, = 2 (2 variables, F' is of order 2) then one
can expect the sequence f* — y, to be between d/2™ and cZ/ n for some
constants d,d. f m =1,a = 2 (1 variable, F' is of order 2) then one
can expect the sequence f* —y, to be between d/4™ and d/n? for some
constants d, d.
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3.8 Ichida-Fujii Algorithm and its Con-
vergence Conditions

It was shown in the previous sections that Alg. 2 is a simple method
for approaching some global minimum points. There are two disadvan-
tages: First, there does not exist an error estimate for this approach,
and second, it cannot be guaranteed that all minimum points can be
reached.

In this section, Alg. 3 (Ichida-Fujii (1979)) will be discussed. It is
a modification of Alg. 2 which makes use of a midpoint test and where
all the boxes on the list are employed to include the minimum points.
The convergence properties of this algorithm have been investigated by
Moore-Ratschek (1987). An error estimate for the convergence to the
minimum points via the solution set of this algorithm can be given.

Further, no minimum points are lost as is the case with Alg. 2.
However, it is theoretically possible that a proper superset of X*, the
set. of global minimizers, is gained. This possibility is, in practice,
extremely unlikely.

ALGORITHM 3 arises from Algorithm 2 by inserting the following
step 111 between steps 11 and 12 of Alg. 2:

11*. Discard all pairs (Z, z) from the list that satisfy F(c) < z where
c=midY.

Step 117 is called a midpoint test and is used to reduce the number
of boxes of the lists L,,. Obviously, the test remains valid if F'(¢) < z is
replaced by F(c) < z for any ¢ € Y or by ubF(Y') < z. The updating
of the current values y, and f, is here again recommended, cf. Sec. 3.3.

We again assume that the termination criteria provided in the al-
gorithm are missing or will never cause the algorithm to stop, so that
the convergence properties of Alg. 3 can be studied.

We continue to consider a box X € I, a function f : X — R and
an inclusion function F': I(X) — I for f. Let X* be the set of global
minimizers of f in X and U, the union of all boxes that occur in the
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n-th list L,, generated by Alg. 3, i.e.,

ln

=1

where [, denotes the length (number of pairs) of the list L,,. Clearly we
always have [, < n+1. The unions U,, are compact sets. The following
theorem provides the main property of Alg. 3, that is, the unions U,
converge monotonically to a superset, B, of X* from the exterior. The
convergence is based upon the distance d introduced in Sec. 3.2. Since
Alg. 3 has all the features of Alg. 2, the properties of Alg. 2 mentioned
in the last section are also valid for Alg. 3. Since under very natural
conditions the g, converge to f*, we obtain the solution set of Alg. 3
in B and f*. In contrast to Alg. 2 where the only use of the midpoint
test was to reduce the list, the test is now advanced to be a basic step
of the algorithm, that is, it has an influence on the solution set. The
reason is that Alg. 3 considers all boxes of the list L,, and Alg. 2 only
the leading boxes Y,, which are never touched by the midpoint test.

THEOREM 9 Let the inclusion function F of f satisfy w(F(Y)) — 0
as w(Y) — 0. Then there exists a set B O X* such that U, O B for
all n and U,, — B as n — co. The sequence (U,,) is nested such that

Proof. The assertion of the theorem is satisfied by B = 72, Up.
We first show that X* C U, for any n so that X* C B follows. In Alg.
2 one box was bisected in each iteration and then it was replaced by
its parts. Therefore we had, for any n,

-

=1

After having counted the lists temporarily from 0 in Sec. 3.6 and 3.7
we now revert to counting the lists from n = 1. We now consider Alg.
3. The discarding process which was incorporated, Step 117, removes
a box Z,; when F(c,) = f(cn) < zpi = min F(Z,;) where ¢, is the
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midpoint of the leading box Y. Since f* < f(c,) and Of(Z,;) C
F(Z,;), the box Z,; cannot contain a global minimizer. Thus all boxes
of any list that contain a global minimum point remain in the list, and
X* C U, for any n.

Second, the convergence of the unions U, to B follows directly from
the definition of B and the chain property of these unions, that is,
U1 2 U2 2 .... o

How large is the overestimation of X* by B? The discarding process
seems to be so strong that one would not expect other points than global
minimum points to remain in X*. This view is further strengthened by
the examples of Ichida-Fujii (1979). There is, however, one exception
which may arise, at least theoretically, but this fact prevents writing
X* instead of B in Theorem 9. This exception can occur if there exists
some nonleading box z,; such that

f* = 2y = min F(Z;).

Thus, z,; will almost never be a leading box and has no chance of
getting bisected and producing values strictly larger than f*. Further,
the inequality

F (Cn) < Zni

will never hold, and so z,; will never be discarded by Step 111. There-
fore, z,; is contained in all the lists. This implies Z,; C B.

The choice of termination criteria, error estimations, and the influ-
ence of rounding errors is dealt with in Sec. 3.10.

3.9 Hansen’s Algorithm and its Conver-
gence Conditions

The following modification of Alg. 3 for solving the unconstrained prob-
lem (3.1), due to Hansen, makes it possible to give a mathematically
satisfactory answer to the uncertainty inherent in Algorithms 2 and
3. Hansen does not use an ordering of the list with respect to the
zni = 1bF(Zy,;) as is done in Alg. 2 and Alg 3. He orders the list ei-
ther with respect to the widths of the boxes Z,; or to the age of these
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boxes when the counting of the age begins at the generation of a box
by a bisection. Both versions lead to a uniform subdivision of all boxes
which have not been discarded yet. Error estimation via the Lebesgue
measure of the solution is again possible; see Sec. 3.10.

The input parameters for the algorithm are the box X, the inclusion
function F' of f, and some accuracy parameter etc., which may be
needed for the termination criteria.

ALGORITHM 4 (Hansen)

1.

10.

11.

12.

13.

SetY := X.

Calculate F(Y) and f := ubF(c) where ¢ = mid Y

Set y :=1bF(Y).

Initialize list L := {(Y,y)}.

Choose a coordinate direction k parallel to which Y has an edge

of mazimum length, that is, k € {i : w(Y;) = w(Y)}.

Bisect Y normal to direction k getting boxes Vi, Vs such that Y =
ViuVs.

Calculate F(V1), F(Vs).
Set v; :=1bF(V;) fori=1,2.
Enter the pairs (Vi,v1), (Va,vs) at the end of the list.

Choose a pair (f/', g) of the list which satisfies § < z for all pairs
(Z, z) of the list.

Discard all pairs (Z, z) from the list that satisfy f<z (midpoint
test).

If termination criteria hold go to 15.

Denote the first pair of the list by (Y,y). Set ¢ := mid Y and
f:==min(f,ubF(c)).
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14. Go to 5.
15. End.

As was the case in Algorithm 3, the inequalities F'(¢) < z which
are involved in the midpoint test can be replaced by F(¢') < z for any
¢ € Y. The updating of § is again recommended, cf. Sec. 3.3. An
updating of f is incorporated in the algorithm.

The algorithm uses an ordering of the lists with respect to the age
of their boxes. The ordering with respect to the widths of the boxes
leads to an algorithm, denoted by Algorithm 3", which arises from Alg.
4 by replacing Step 9 by

Step 97. Enter the pairs (V1,v1) and (Va,v9) into the list such that
the widths of the boxes in the list decrease (not necessarily strictly).

Alg. 4 is certainly a special case of Alg. 3" since Step 9" leaves the
ordering open if boxes have the same widths. When however accelera-
tion devices are incorporated, Alg. 4 and 3™ can be essentially different
since these devices can diminish the width of a box.

The crucial point of these two algorithms is that all boxes occurring
on the lists will be bisected periodically or discarded.

The pairs (}7, 7), cf. Step 10, occupy a key position even when they
seem to be without influence on the algorithm. These pairs were the
leading pairs of Alg. 2 and Alg. 3 and they are the only boxes, Z, of the
lists for which f* € F(Z) is guaranteed. If g, is the value that § takes
at the n-th iteration then the sequence (g,) plays the same role in Alg.
4 that the sequence (y,) plays in Alg. 2 and 3. This means that, under
the condition (3.12), we get g, — f* and y,, < f*.

Let Y,, be the leading box and Z,; an arbitrary box of L, which is
the list generated at the n-th iteration of Alg. 4. Not only does the
contraction property

w(Y,) = 0asn— oo
hold in case of Alg. 4, but even

w(Zpi) = 0 as n — oo
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is satisfied. This follows from the fact that the lists are ordered with
respect to the ages or the widths of the boxes.

We keep in mind that (3.12), that is the condition w(F(Y)) — 0 as
w(Y) — 0, implies the continuity of f but not a Lipschitz condition of
f-

The following theorem (due to Moore-Ratschek (1987)) states that
the unions of the boxes of the lists contract to exactly the set of global
minimum points, X* of f on X. So X* and f* is the solution set of
Alg. 4. The notation and assumptions are the same as in Sec. 3.8. The
union of the boxes of the list L,, which is generated by Alg. 4 is again
denoted by U,.

THEOREM 10 Let the inclusion function F of f satisfy w(F(Y)) —
0 as w(Y) — 0. Then U, O X* for all n and U, — X* as n — oc.
The sequence (U,,) is nested and thus X* = N2, U,.

Proof. Since the discarding process is the same as in Theorem 9,
the result (see the proof of Theorem 9)

holds. This inclusion is not affected by the fact that the order of the lists
is not the same as in Theorem 9. The inclusion N>, U, € X* in the
opposite direction remains to be proved: Let w, denote the maximum
width of the boxes of the n-th list, L,,. Then

w, = 0 as n — oo. (3.21)

Now, let us assume that x € U, for all n. We have to show that
xz € X*. It first follows that, for any n, a pair (7}, z/,) occurs in L,, such

that = € Z]. Since this pair has not yet been discarded, the condition

flen) > 21, (3.22)

holds owing to the midpoint test where ¢, = mid Y, and (f’n,gjn) is a
pair with minimal g,. The sequence (Z],) tends to x, since x € Z, for all
n and w(Z]) — 0 as n — oo, due to (3.21). Therefore w(F(Z])) — 0,
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from the assumptions of the theorem. Furthermore, Of(Z)) — f(z),
since f is continuous. Applying the derived convergence properties to

fx) € Bf(Z,) € F(Zy,),

we get
F(Z,) — f(z) as n — oo. (3.23)

Finally we prove
F(Z)) — ffas n — oo;

this implies, together with (3.23), that f* = f(z) and z € X*.
We consider the inequalities

Jn < 28 < flcn) € F(Yy).

The first inequality is due to the definition of the pair (Y,,%,); the
second is (3.22). Since F(Y,) — f* and §, — f* (see Theorem 4),
we have 2/, — f*, which implies, together with w(F(Z])) — 0, the
assertion, that is, F'(Z))) — f*. O

Theorem 10 could also be derived from Basso’s (1982) Theorem 3.
In this case one had first to prove that his assumption (H) is satisfied
by Algorithm 5. In fact, condition (3.23) implies (H).

As we see, the convergence proofs of Theorem 10 and of previous
theorems do not depend on the number of global minimum points of f.
This number may be finite or infinite, and in the second case, the min-
imum points may occur isolated or as continua. Each global minimum
point is contained in at least one box and in at most 2™ - s boxes of
any list. In general, a point is contained in several boxes if it is an edge
point of some box, and it is contained in 2™ - s boxes if it is a corner of
some box. This implies the following statement.

COROLLARY 1 If f has finitely many global minimizers, say s, then
the number of boxes of the lists L., tends to some number k < 2™ - s as
n — oo. Otherwise, the number tends to oc. O

In the case of s global minimum points the probability that a global
minimum point lies on the edge of a box is zero and we therefore have
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k = s, in general. The following version of Corollary 1 avoids such dis-
tinctions by taking the number of connected components of U,, instead
of the number of boxes of the lists. A connected component by U, is
the union of a maximum number of boxes Z,; of the list L,, such that
each two of these boxes can be connected by a (continuous) path which
lies totally in U,,.

COROLLARY 2 If f has s < oo global minimum points and if v,
denotes the number of connected components of U,, then v, — s as
n — oo. O

The meaning of the corollaries for practical calculations should not
be overestimated. The number s (or whether infinitely many minimum
points are present) will not be known during a computation, since each
computation is terminated after finitely many steps and since the num-
ber of minimum points contained in each box of the list when the
calculation is terminated is unknown. Further, the number of boxes of
a list as well as the number of connected components can be smaller
and also be greater than s at any time of the computation. On the
other hand, the error will not be too large if the number of boxes is
identified with s provided the function f is "reasonable” and provided
the boxes are sufficiently small.

Therefore it is only correct to make assertions about the number of
global minimum points if additional information about f is used. See,
for example, the discussion of Shubert’s function,

f(z)=— i ksin(k + (k+ 1)z), z € X =[-10,10]

in Hansen (1979). Hansen’s computation results in three boxes,

7y = [—6.7745 76144, —6.7745 76143,
Zy= [5.7917 89015,  5.7917 99064],
Zy = [~0.49139 21876, —0.49138 95811].

It is tacitly assumed that each of these boxes contains exactly one
global minimizer; however, this is not guaranteed. One may confirm
this assumption in the following manner using periodicity and convexity
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arguments as the additional information mentioned: First, according to
the mathematical conditions of the problem it is obvious that at least
one global minimizer exists which must be located in one of the three
boxes. Second, f is of periodicity 27. So, if zx € X* and 2*+27v € X,
then z* + 2mv € X*, v =1,2,.... Since the distances of the boxes are
about 27, each box contains at least one global minimizer. Third, the
widths of the boxes are so small that it is almost certain that each
box contains just one global minimum point. Nevertheless, in order to
guarantee this, the following convexity test was applied: We chose

F"(Y) — i k(k + 1)2ISIN(1€ + (k + 1)y)

as an inclusion function for f”, where ISIN was an inclusion function
for sin, and obtained

F"(Zs) = [309.91, 309.92].

Therefore f”(x) > 0 for all z € Z3 which means that f is strictly convex
in Z3 and that Z3 cannot contain 2 global minimum points. The same
holds for Z; and Z, because of the periodicity.

3.10 Termination Criteria, Approximation
Errors and Influence of Rounding Er-
rors

The termination of the Moore-Skelboe algorithm via the convergence
to f*, related error estimates, and problems caused by rounding errors
were extensively discussed in Sec. 3.3. These considerations are valid
also for the other algorithms of this chapter, i.e. for the leading pairs
of the Ichida-Fujii algorithm, and for the pairs (Y, ) of the Hansen
algorithm.

A termination of these algorithms via the convergence to global min-
imum points only using the leading boxes is not appropriate because of
the properties discussed in Sec. 3.4. These properties also do not allow
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an error estimation of the approximation of the global minimizers by
the leading boxes.

Therefore we will only be concerned with Alg. 3 and 4 in this section.
For a unified treatment we take B = (2, U, D X* as the solution set
of both algorithms where B = X™* in case of Alg. 4; see Sec. 3.8 and
3.9. The following two termination criteria were provided by Hansen
(1979), (1980). If B is at most denumerable and if B is to be included
in a set with prescribed accuracy, then

w(Zpi) < € (3.24)

or
W(Zpi) <€ fori=1,...1, (3.25)

will do, where [, is the length of L,,. If B is nondenumerable then (3.24)
will fail if the Lebesgue measure of B is at least equal to e. Condition
(3.25) works independently of the measure of B.

It is typical of the global optimization problem that only poor error
estimates for the approach to single global minimizers are available.
That is if one picks out any = € U,, as an approximation for any (un-
known) z* € X* then

Iz —2" floo < max ||z —y [l
n

is the best estimate which can be derived. The error || z—2z* ||« can be
arbitrarily large in spite of the validity of (3.24) or (3.25). For example,
let Z,; = [1,1+ 9] and Z,, = [10,10 + §] with [, = 2 for some small
d <€ Then |z — 2" || = | # — 2" |< 9+ 6§, where equality holds if
r =1 and z* = 10+ 9, etc. If, however, it is known for some reason
that each box Z,; of the final list L,, contains some z* € G, then the
approximation error is
|z — 2" ||oo < max W(Zpi)- (3.26)
Returning to Shubert’s function (see the end of the last section) it is
certain that each box contains a global minimizer.
The influence of rounding errors on the computation of U,, does not
cause any problems if interval software as described in Ch. 2 is used.
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In this case the discarding condition (midpoint test) is executed by the
computer as

ubF(cp) < Zni (3.27)

in the non-updated case of Alg. 3 where F(c,) D F(c,) with f(cn) €
F(c,) is a numerical approximation of f(c,) and Z,; = IbF(Z,;) where

F(Z,;) 2 F(Z,;) is the numerical approximation of F(Z,;). In the
updated case, as in Alg. 4, the discarding condition is

‘min  ubF(c,) < Zy;. (3.28)

i=1,...,n

Since (3.27) or (3.28) implies the exact discarding condition in Alg. 3
or Alg. 4, no logical flaws arise, so that the set of global minimizers,
X*, is still contained in the union of boxes of any one of the lists.
Although rounding errors can prevent the U, from converging to B,
this is not of great practical concern since even with exact arithmetic
B is only obtained, in general, after infinitely many iterations of Alg.
3 or 4. This is another reason that Alg. 3 should not be banned, since
it also computes, at any iteration, an inclusion of X*. By the way,
Eldon Hansen in person told the first author at a meeting in Columbus,
Ohio in September 1987 that for some time he also had been using the
ordering with respect to the z,;.

3.11 Accelerating Devices: An Overview

The 3 algorithms we have treated so far are based on the ezhaustion
principles, that is, the principle of removing areas (subboxes of X)
which cannot contain a global minimizer. In the same manner we realize
that the branch and bound principle forms the overlying structure, that
is, the areas are processed which have the largest chance to contain a
global minimizer. This is a time-consuming process as was evident from
the results in Sec. 3.7. It is therefore very important to combine the
principles mentioned with techniques for speeding up the computation.
In this section we deal with only a few of these techniques in order to
demonstrate how they may be combined with the 3 algorithms. The
most perfect and sophisticated method is probably the one of Hansen
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(1979), (1980) which also has been extensively tested (Walster-Hansen-
Sengupta (1985)) and which will also be discussed in the forthcoming
book by Hansen.

When considering acceleration devices we maintain our modular
system as promised in the Preface: that is, we let the user decide which
improvements and devices he wishes to include in his particular version
of the algorithms.

We mainly recommend the following acceleration devices:

1. Monotonicity test. It is a global technique and discovers boxes
Y where f is strictly monotone. The interior of such a box Y - and in
general, the box itself - cannot contain a global minimizer such that ¥
can be removed .

2. Finding a function value as small as possible. The smaller the
smallest known or computed function value is at the n-th iteration the
more effective is the midpoint test, that is, boxes are removed earlier
before they would otherwise have been processed.

For example, let f, be the smallest function value known up to
the n-th iteration. Let fn < fn be a smaller value found by an addi-
tional procedure. The gain from of this additional effort is that, by the
midpoint test, not only the boxes Z,; with

fn <1bF(Z,;)
can be discarded (cf. Alg. 3 and 4), but also those with
fn <1bF(Zy;).

Thus: the earlier a small function value can be found the more the
computational cost is reduced.

There are many possible techniques for getting lower function val-
ues. Here we mention three well-known and useful techniques depend-
ing on the differentiability properties of f:

(i) search methods,
(ii) descent methods (steepest descent, conjugate gradients, etc.),

(iii) Newton-like methods.
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In order to be complete, one would have to list almost all methods
which are used in nonlinear optimization theory. All these methods are
local methods: One starts with one point and tries to find a point with
a smaller function value.

3. The wnterval Newton method. This is a global method and it
provides a reliable technique for enclosing all critical points of f in X.
Interval Newton methods can be applied in two different manners:

(i) The method is applied (to f" and X) until all critical points of
f are included in sufficiently small boxes Z, say with w(Z) < €
for example. Then the search for the global minimizers may be
restricted to the edge of X and the boxes Z. This approach is
not so effective as the following:

(ii) Each iteration of the interval Newton method is combined with
the monotonicity test and the midpoint test. This means that the
basic steps of the algorithms and the acceleration steps merge.
This procedure avoids superfluous interval Newton iterations in
boxes which are strictly monotone or which have too large func-
tion values.

4. Use of good inclusion functions. The importance of inclusion
functions of a higher order is manifested in Sec. 3.7. Further, if the
meanvalue form is used (which is an inclusion function of order 2) then
the optimum developing point instead of the midpoint of the boxes
should be used. Our tests show a saving of about 10% if that point is
used.

5. Recursive (automatic) differentiation arithmetic (not to be con-
fused with symbolic differentiation). This technique helps to avoid
the large numerical costs when computing derivatives or their inclu-
sion functions, or expressions like (z — ¢)* f'(c),(Y — ¢)f'(YV), (z —
o) f'(Y), (Y = o) f'(Y)(Y — ¢), etc. where z,c € X, Y € I(X). The
recursive differentiation arithmetic is so designed that simultaneously
with the computation of f(x) the derivative values or the values of the
expressions mentioned above are computed. A detailed description of
this fascinating technique is beyond the scope of this book, but see, how-
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ever, McCormick (1983), who calls this technique factorable program-
ming, Rall (1981), (1983), or Kagiwada-Kalaba-Rasakhoo-Spingarn (1986).
In case of non-interval computations we recommend this technique to-
gether with updating methods (cf. for example McCormick (1983))
without restrictions. Our own experiences, however, show that in the
case of interval evaluations like (Y — ¢) f’(Y) or in the case of comput-
ing generalized gradients, it is not always wise to use this arithmetic.
The reason is that in these cases arithmetic information can be lost
and that the widths of the interval values increase unnecessarily, since
the recursive differentiation arithmetic does not consider the special
arithmetical structure of the formulas for the derivates.

Before we discuss the acceleration devices in detail let us give an
overview of the differentiability assumptions which are needed for the
devices.

(a) f continuous:
Search methods.
(b) f has a generalized gradient:

Monotonicity test,
meanvalue form.

(¢) f is continuously differentiable:

descent and gradient methods,
recursive differentiation arithmetic.

(d) f is twice continuously differentiable:

Newton-like methods,
interval Newton methods.



122 Ch. 3: Global Unconstrained Optimization

3.12 Acceleration Devices: Detailed De-
scription

Some of the acceleration devices were discussed in Chs. 1 and 2 and
some are referred to other sources. In this section the monotonicity
test and the devices for finding a lower function value remain to be
described. Furthermore, we devote some space to the problem of where
the devices should be merged among the steps of Alg. 2 to 4.
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The monotonicity test

This is a very effective means for discovering whether f is strictly
monotone in a subbox Y € I(X). If f turns out to be strictly monotone
over Y then the interior of Y cannot contain a global minimizer. The
edge of Y can contain a global minimizer if that part of the edge which
has the smallest function values is also part of the edge of X. Otherwise,
no global minimizer lies in Y.

0
Let @ be the i-th components of f'(x), the gradient of f, at x

and let 0f; (azv) be the i-th component of 0f(x), the generalized gradient
or df;, that is,

of f at . Let F; be an inclusion function for

T

0f (x)
a.’L‘i

€ Fi(Y) or Ofi(z) € Fi(Y) forany z € Y.

Let Y; and X; be the i-th components of Y and X. We set Y; = [a;, b;]
and X; = [¢;,d;]. Clearly, if 0 € F;(Y) then f is strictly monotone
over f with respect to the i-th coordinate direction. This is all that is
required for the test.

The monotonicity test consists of 2 parts and it is destined to be
applied to the boxes Y = Vi, V5 (cf. Step 7 of Alg. 2 and Step 6 of Alg.
3 and Step 6 of Alg. 4):

Test for strictly monotone increasing:
For somei=1,...,m, if 0 <1bF;(Y) then

1. if ¢; < a; then discard the pair (Y,y) from further processing (i.e.
it will not be added to the list in later steps),

2. if ¢; = a; then set

Y' = Vix...xY, 1 xa; XY X... XY,
y' = IbF(Y")

and replace (Y,y) by (Y',y') for further processing. This means
that (Y,y) := (Y',y') in terms of the algorithm.
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Test for strictly monotone decreasing:
For somei=1,...,m, if ubF;(Y) < 0 then

1. if b; < d; then discard the pair (Y,y) from further processing,
2. if b; = d; then set

Y' '= Vix...xY_ 1 xb;xY1 xX...xY,,
y = IbF(Y")

and replace (Y,y) by (Y',y') for further processing (which means,
set (Y, y) == (Y", ).

Remark. One has to be careful using generalized gradients. They
have to be considered with respect to the whole domain of f, that is
X, and not only with respect to Y. For example, let f(z) =| = | for
z e X =[-1,1. If X =Y, UY, where Y] = [-1,0],Y2 = [0, 1] then
one could conclude that df(z) = —1 in Y7 and 0f(z) = 1 in Y3. Thus,
by the monotonicity tests, we can discard Y; and Y, which implies that
also the minimizer, x* = 0, is discarded which gives a wrong result.
The right procedure is first to consider

-1 if x <0,
of(z) =< [-1,1] ifz=0,
1 if z > 0.

Then [—-1,1] C F(Y;),i = 1,2, for any inclusion function F of df in X,
and the monotonicity test will not cause any discarding at this stage of
the algorithm.

Finding a lower function value

(a) Nondifferentiable functions: Since no straight linearization will
be available for the objective function f, points with lower function
values can best be found with line search via difference procedures.
One such simple procedure is given here. Let xq be the initial point,
for instance, the midpoint of the box Y where the procedure shall be
applied. Choose some p > 0 and compute for each coordinate direction ¢
the values f(x¢ F pe;), where e; is the i-th unit vector of R™, provided
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the arguments remain in X. The box Y may be left since, for the
moment, we are only interested in getting low function values and do
not need the connections to the box ¥ where we search. One of the (at
most) 2m arguments will take the lowest function value, and another
search step is started from this point, etc. The search steps should be
continued as long as significant lowering of the values is observed. More
elaborate versions of this technique are found in Aird-Rice (1977) and
in Findler-Lo-Lo (1987).

Locally Lipschitz functions. They have at each point a generalized
gradient. Basically, one can use similar methods as in the smooth case,
but one has to replace the gradient, cf. next item (b), by a subgradient
(which is an element of the generalized gradient) or by a ”bundle”
of subgradients. Their convergence theory is not yet complete, which
does not matter since we do not need convergence but just a few steps
for getting lower function values. A deeper discussion would again be
beyond the scope of this monograph. We refer to Fletcher (1981), Goffin
(1977), Lemaréchal (1980), Mifflin (1977), Shor (1983), Wolfe (1975),
Zowe (1985).

(b) C! functions. The first method is the steepest descent method
due to Cauchy. Even though better methods exist we cite it because it
is widely used, cf. Sec. 1.5. If xy is the initial point (midpoint of some
box Y') the direction of largest decrease is — f'(zo). Then the next point
is given by

1 := xo — pof' (o)
where py is a solution (global or local minimizer) of the one-dimensional
optimization problem

min f(zo — pf'(xo)) subject to p > 0.

If the box X is left by this step then one can reduce the step as is
done in the constrained case, cf. Ch. 5. Since the optimization problem
mentioned is only of secondary importance, a crude approximation to
po will do. If the reduction in function value from f(xy) to f(z1) is
significant then the process should be continued with x.

This method has been subsumed by the conjugate gradient method of
Fletcher-Reeves (1964) where direction information from the previous



126 Ch. 3: Global Unconstrained Optimization

step is taken into consideration, cf. Sec. 1.5. If the box X is left by the
steps, a reduced step width is used as for the constrained problem; see
Ch. 5. In special cases, improvements of the Fletcher-Reeves method
are available, cf. Powell (1986).

(c) C? functions. If the objective function f is C? then Newton-like
methods are commonly favored. The prototype algorithm is described
in Sec. 1.5. If the method does not show convergence one should termi-
nate ”finding a lower function value” in the box under consideration.
When calculating the Hessian, one should not forget that there exist
updating procedures and that one might use other facilities for calcu-
lating derivatives, cf. Sec. 1.5.

The remaining acceleration devices mentioned have already been
discussed in Ch. 2 or they are referred to other sources.

The position of the acceleration devices

Where should the acceleration devices be added to the algorithms
we have treated in this chapter? We recommend to insert them after
Step 6 of Alg. 2, 3, 4 where the leading box Y is bisected into the
subboxes V; and V,. If some or all of the devices are added we suggest
the following order (note that the steps of Alg. 2, 3, 4 are changed
slightly in order to obtain a better fitting):

(i) Fori=1,2 do

(a) apply monotonicity test to V; which results either in the dele-
tion of V; or in the keeping of V;, or in the keeping of an edge
which s also denoted by V;,

(b) determine v; = IbF(V;),
(¢) apply midpoint test to V;,

(d) apply one iteration of interval Newton method to V; getting at
most 2 boxes Wi, Wia. Apply monotonicity test to Wi, Wia,
determine w;; = IbF(W;),j = 1,2, and apply midpoint test
to Wiy, Wia. Enter the pairs (Wij,wij),7 = 1,2 - if not yet
removed - to the list in the right order.
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(i1) If the interval Newton method is not used then apply a technique
for "Finding a lower function value” to Vi if vi < vg, otherwise
to Va (this means: use mid V; or mid Vs as starting point for the
chosen technique).

Remarks. (1) The reason for this ordering is that in most of the
cases the meanvalue form for F' is used,

F(Y)=f(o)+ (Y - o' F(Y),

where Y = V;, and ¢ = mid Y. This means that first of all F'(Y) =
(Fi(Y),...,Fu(Y))T is computed, where F'(Y) is an inclusion of the
gradient of f over Y. Immediately after the computation of F;(Y") the
monotonicity test with respect to the i-th coordinate direction can be
applied (1 =1,...,m) and Y eventually discarded such that the further
processing of Y - for example, the computation of F(Y') - is avoided. If
Y is not discarded the values F'(Y) and y =lbF(Y) are computed and
the midpoint test is next, etc.

(2) If a V; is discarded then V; is no longer on the list and it will not
be further processed by any devices that might have been incorporated
in the algorithm.

(3) If the interval Newton method is incorporated then the last
element x; of the sequence (z);i_, which is generated by the local
iteration procedure shall be used for the updating of f since the chances
are good that f(z,) is near a local minimum. This is also the reason
that the boxes W;; are not used for "finding a lower function value”
since the local quasi Newton process which generates this sequence is
a substitute for a search procedure, cf. Sec. 2.10.

(4) If V; is discarded by the monotonicity test then that edge (hy-
percube of one dimension lower than V;) of V; which has the smaller
function values may also be provided for a ”finding a lower function
value” procedure after comparison with the other provided box or its
edge. See the monotonicity test for the construction of such an edge
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Y’ of Y. However, only the midpoint of the edge is needed for our
purposes.

(5) The "finding of a lower function value” is especially important
at the beginning of the computation as discussed earlier. It is however
not necessary to apply the related procedures in each iteration and it is
quite superfluous at the end of the computation when the monotonicity
situation is stable and the boxes concentrate around local minimizers.
We suggest the following frequency:

(o) Apply a technique after the starting box X has been bisected, to
one of the two parts of X, that is, when list L, is built. The continuation
depends on the ordering used and shall be described recursively:

(8) In case of Alg. 2 and 3: If a technique has been applied in list
L., and if [, is the length of the list, then the technique shall be applied
again after [, iterations, that is, in list L, ,, .

In case of Alg. 4 which is the important case: Always apply a tech-
nique if Y = Y (cf. Alg. 4). The reason is that Y is the box with the
smallest lower bound of f, and thus it is likely that ¥ contains points
with low function values.

(y) If the monotonicity test is used, one may stop looking for smaller
function values when the list lengths, [,,, begin to shrink.

3.13 Numerical Examples

We show the application of Hansen’s algorithm (Alg. 4) to 3 test func-
tions. The results are mainly taken from Moore-Ratschek (1987). The
calculations were done on an Apple Ile microcomputer equipped with
a PASCAL-SC software system and on a Honeywell Multics system
where interval arithmetic was implemented in FORTRAN. The final
representation of the data from the two systems was shortened. Nu-
merical results of Alg. 3 can be found in Ichida-Fujii (1979); further
numerical results of Alg. 4 can be found in Hansen (1979), (1980), Rall
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(1985), Walster-Hansen-Sengupta (1985). The symbols which are used
in the sequel mean:
X = X; x Xy basic domain (Step 1 of Alg. 4)),

€ intended maximum box width (termination
criterion (3.25)),

€0 achieved maximum box width,

N number of inclusion function evaluations,

F* inclusion interval for f*,

l length (number of boxes) of the final list. Each

of these final boxes has width at most ¢, < €,
E+k 10%*.
X, I and € are input data; €5, /N, F™* and [ are output data. The boxes
of the final list are specified later. We used (3.25) as the termination
criterion.

Example 1. Six hump camel back function,
1
f(zy,20) = 42% — 2,127 + gx? + z139 — 425 + 425,

The Taylor form of 2nd order, 75, was taken as an inclusion function
for f; see Sec. 2.7. The monotonicity test was used as a device for
accelerating the calculations. The data are:

X = [-25,2.5]2,

€ = FE —6,

€0 = 7.16E -7,

N = 300,

F* = [—1.03162 845353, —1.03162 845348],
w(F*) = bE —11,

l = 2.

The boxes of the final list are:

Zy = [—8.984 209, —8.984 149|F — 2 x
[7.126 557, 7.126 565|F — 1,
ZQ - _Zl-

Even though the probability is very high that each of the final boxes
contains exactly one global minimizer it cannot be guaranteed. The
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theory says only that X* = N°2, Uy,, i.e. X* C U, if L,, is the final
list before termination. But there is no specific theory of how the
global minimizers are distributed to the final boxes, or, how many global
minimizers do exist. Thus, one has to use more information in order
to analyze the results. This can be done, for instance, in the following
manner: In order to prove that each Z; contains exactly one global
minimum point, we consider the interval matrix

Hy(2) = ( ?(Z) 1—8+48W2 )

where Z =V x W and G(Z) = 8 — 25.2V% + V*. For simplicity, the
components of Z are here denoted by V and W. The matrix H;(Z)
contains the Hessian matrices Hy(z) of f for all z € Z. The principal
minors of Hy(Z) for Z = Z,, Z, are:

G(Z)) = G(Z,) = [1.796660, 7.796664],

and
Det H;(Z1) = Det Hy(Z,) = [18943.44, 18943.45).

They are both positive. Therefore f is strictly convex in Z; and Z5, and
Zy and Zj contain at most one global minimum point each. Finally, Z;
and Z, do in fact contain a global minimum point each, since x* € Z;
implies —z* € Z, and g(z*) = g(—z*), and conversely.

In order to demonstrate the dependency of N on the inclusion func-
tions used we present some further results with different inclusion func-
tions but with the same box X and the same required final box width
e: We obtained

(i) N = 326 when the meanvalue form was used for F,

(ii) N = 274 when the meanvalue form with Baumann’s optimum
developing point was used for F'.

Example 2. Branin’s function,

fz1,22) = (2 — b2 + cxy — d)?> = e(1 — f)cosz; + e,
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with
b=5.1/(4r%),c=5/m,d=6,e =10, f = 1/(87).
The Taylor-form of second order was again used as an inclusion function

for f. Alg. 4 was supplemented by the monotonicity test as in Example
1. The following results were obtained:

X = [-5, 10] x [0, 15],

€ = 1E -6,

€0 = 8.941F -7,

N = 1166,

F* = [3.97887 357712, 3.97887 357770]F — 1,
w(F*) = b5.8F — 11,

[ = 18.

The resulting 18 final boxes, Z;, are not shown here. They are instead
grouped together and included in three boxes Z; as small as possible:

7y = [-3.14159 036, —3.14159 393 x [12.274 9936, 12.275 0035,
Z, = [3.14159 15, 3.14159 34] x [2.274 9987, 2.275 0015,
75 = [9.4247 703, 9.4247 882] x [2.474 998, 2.475 002].

Each of the 3 boxes Z; contains exactly one global minimizer. This
knowledge however must be taken from other sources even if it is indi-
cated by the numerical data.

We again used different inclusion functions and obtained:
(i) N = 1354 when the meanvalue form was used for F,

(ii) N = 1194 when the meanvalue form with Baumann’s optimum
developing point was used for F'.

Example 3. The function

f(z1,20) = xysin(l/xy) 429 | 21 |, ifx; #0,
= 0 lf.’El = 0,

was already discussed in Sec. 3.5. It has infinitely many global minimum
points in the domain

X=[0,1x[1,1+E—8].
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The same inclusion function as in Sec. 3.5 was used. The computations
were terminated by an emergency criterion for avoiding stack overflow
(the list became too long). The maximum box width

€ = 3.81E —6

was attained. The other results were:

N = 2198,
F* = [0, 2.75]E — 10,
I = 522

It is neither possible nor worthwhile to print the 522 boxes of the final
list. Many of them are connected. It may be of interest that the area of
the union of the boxes is about 0.2% of the area of the starting domain
X.



Chapter 4

Unconstrained Optimization
over Unbounded Domains

4.1 Introduction

Almost all of the well-known methods for solving the global uncon-
strained optimization problem involve a bounded subdomain X C R™,
for the function to which the method is applied. Primarily, this is for
computational reasons. Secondarily, the theoretical investigations are
simplified, because of the existence of accumulation points of a sequence
in a compact domain and because of other compactness arguments: see
proof of Theorem 4 of Ch. 3. Therefore, an appropriate bounded area
X must be known a priori or must be determined by means of an anal-
ysis of the problem. If this is not possible, linear substitutions such
as * = 1/s are commonly used to transform unbounded parts of the
domain into bounded areas. These substitutions are however rather
troublesome to program because of the many cases which may arise.
Let, for example, f(z,y) = zy for z,y € R. The plain substitution is
x = 1/s,y = 1/t. This results in the following cases where a fixed or
variable bound k£ > 0 has to be chosen:

(@) |z lyl|<k,
(b) [z |<k<[y],

133
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© [yl<k<lz],
d) k<lz| [yl

Let us consider case (b) for the moment. The necessary substitution
y = 1/t leads to two disjoint areas, i.e. y < —k and y > k which are
maintained as separate areas during the computation. Symmetry ar-
guments are not applicable in general. Similar considerations lead to
two disjoint areas in case (c¢) and to four different areas in case (d).
Finally the function values may also tend to infinity as for example in
case (b) where f(z,y) = x/t. Thus the function needs to be trans-
formed, g(z,y) = 1/f(x,y) = t/x. But what happens when z is near
zero? The list of awkward points could be continued. Certainly, the
situation above is outlined in an exaggerated fashion; however, there is
no guarantee that it can be avoided.

The technique we provide in this chapter is due to Ratschek-Voller
(1988) and it avoids such tortuous paths. It is destined to solve the
global minimization problem for a continuous function, f : R™ — R.
The search for the global minimizers is accomplished in the whole do-
main, R™. Bounds of the global minimum, f*, are generated, and one
or several boxes of prescribed size which include all global minimizers
are produced. It can be detected when f has no global minimum at
all, and further, whether f is bounded from below or not. Examples of
such functions are f(z) = e” and f(z) = z. If the technique is applied
on a computer, the sharpness of these detections is limited by the finite
number representation of computers. The detections - although weak-
ened - remain logically valid in this case such that the user can trust
them.

The technique that we provide to cover the whole space R™ when
looking for global minimizers is best demonstrated by applying it to Alg.
3 of Ch. 3. Similar algorithms such as Alg. 1 of Ch. 3 or Alg. 2 of Ch. 3
as well as the algorithms for solving the constrained problem as they are
developed in the sequel may also be used. The common feature of these
algorithms is that they are based on the branch and bound principle
and that the bounds are determined by means of interval arithmetic
tools.
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In Sec. 4.2 and Sec. 4.3, the optimization problem and Alg. 3 of
Ch. 3 are extended and admitted to functions which are defined on
R™. For this reason, a compactification of the space R™ is introduced,
R™ := (R)™ where R := R U {co, —oc}. The advantages of this
compactification are threefold: (i) The investigation of the convergence
properties can make use of compactness principles. (ii) The interpreta-
tion in R™ of the results obtained in R™ is straightforward and there is
no need to distinguish between the bounded and the unbounded case.
(iii) The step from the exact execution of the algorithm in R™ to its
numerical execution on a computer is small because the latter operates
in [—L, L]™ where L denotes the largest representable number of the
machine under consideration. R™ and [—L, L]™ are topologically very
similar.

In Sec. 4.4, the monotonicity test is carried over to the unbounded
case. The usual assumption for f to be differentiable can be weakened.
It is only necessary that, at any point, a generalized gradient which can
also be unbounded exists in order to apply the test.

In Sec. 4.5 it is shown practically how to get the tools - such as
inclusion functions - which are required for the extended algorithm, i.e.
an arithmetic for unbounded noncompact intervals is introduced. For
several reasons, it is different from Kahan’s (1968) or Laveuve’s (1975)
arithmetic. As a consequence, Moore’s principle of natural interval
extension (cf. Sec. 2.6) can be recursively defined for programmable
functions over unbounded domains. This is important for getting the
inclusion functions mentioned which generate bounds for the objective
function, f, over any subbox ¥ C R™.

In Sec. 4.6, the relationships between the numerical and the exact
realization of the extended algorithm are discussed.

In Sec. 4.7, numerical examples show that the practical computation
involves no difficulties at all.

Comparing Sections 4.2, 4.5, and 4.6, we are faced with 3 kinds of
infinite intervals:

(i) Compactified unbounded intervals such as [a, oo] C R, cf. Sec.
4.2. They are needed both for the execution of the algorithm and
for the discussion of its convergence properties. Since only topological
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arguments and no arithmetic are used for this discussion, no arithmetic
need be defined for compactified unbounded intervals.

(ii) Unbounded noncompactified intervals such as [a, 00) C R, cf.
Sec. 4.5. They occur when the bounds of f over unbounded subdomains
are determined. Thus, an arithmetic for such intervals is defined.

(iii) Both kinds of intervals mentioned in (i) and (ii) must be ap-
proximated by machine intervals such as [a, L] when computing on a
machine, cf. Sec. 4.6. Although they look like bounded intervals, they
are of unbounded character since L represents the numbers from L to
00.

4.2 The Algorithm over Unbounded Do-
mains

We will first provide a compactification R™ of R™. Then Alg. 3 of
Ch. 3 and some convergence theorems of Ch. 3 will be extended to the
compactified case immediately. The results gained in R™ can then be
converted into the originally required results in R™. The compactifica-
tion could be avoided but it simplifies matters considerably.

In order to apply Alg. 3 of Ch. 3 to R™, the midpoint and the width
of boxes in R™ must be defined, and, further, the given function, f,
and its inclusion function, F', must be extended. This requires some
notation.

Let R := RU{—00,00} = [~00, 0] be the two-point compactifica-
tion of R and R™ := R be the m-fold topological product of R. If
A CR™or A C R™, we denote the compact hull of A with respect to
this compactification by A. It is not necessary to describe this topology
in detail. It will be used just for the concept of a compact interval or
box and for the convergence concept.

Let I be the set of compact intervals of R. Thus, I consists of
intervals [a, b], [a, o], [—o0, b], where a,b € R, and of the point
intervals —oo = [—00, —o0], 00 = [00, o0]. A box Y = (Y3,...,Y,) C
R™ is compact iff Y3,...,Y,, € I, by Tychnoff’s theorem in topology.
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When does a sequence (x,) of R converge to a point z € R? There
are two cases: If x € R then z,, — x iff an index z( exists such that the
sequence (Zp)n>n, converges to = (with respect to the natural topology
of R). If z = oo (resp. © = —o0) then x, — z iff to any given real
number £ > 0 an index ng exists such that x, > k (resp. z, < —k)
for all n > ngy. Let now z,, = (z,...,2™) € B™ and z = (z',...,2™).
Then owing to topology, x, — x iff 2t — z' for i =1,...,m.

A point x € R™ is an accumulation point of a sequence (x,) of R™
iff a subsequence of (z,) converges to z. If (,) is a sequence in R then

liminf z,
n—oo

is the smallest accumulation point of (x,,).

Let I, be the set of all closed (but not necessarily bounded) intervals
of R. Thus, the intervals [a, 0], [a, 00), (—00, b], and (—oc0, o0) = R
belong to I, where a,b € R.

Let A C R™, then I,(A) :={Y €I : Y C A} and I(4) :
I":Y C A}. We note that I = I..,(R™) = I,(R™) and T
Further, I(4) :={Y € I™: Y C A}.

Let A€ I7 and f : A — R be given. We want to extend f to a
function f,: A — R : Let 2 € A then

:_{YE
=I(R™).

fo(z) := min{lim inf f(z,) : 2, € A, 2, — x} (4.1)

where the convergence of the sequences (x,) to z is subject to the
topology of R™. Note that f, need not be continuous, even when f is.
For example, if f(z) = e*, z € R, then f,(—o0) = 0 and f,(o0) =
oo. If f(z) = sin z,x € R, then f,(—00) = f,(00) = —1.
Analogously, if F': I(A) — I is an inclusion function for f, we want
to extend F to an inclusion function F, : I(A) — I for f,, that is,

Of,(Y) C F,(Y) for any Y € I,(A). (4.2)

We do not need inclusions of f over boxes Z = Z; X ... X Z,, where
any component Z; is just oo or —oo. Such cases are not considered in
(4.2) and also in the following definition (4.3) which simplifies matters.
Thus we define F, by

Fy(Y) := F(Y) for Y € Lo(A). (4.3)
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We call F and also F, non-wasteful if, given any Y € I(A), a partition
of A into bounded boxes exists, A = U;c;B;, with B; € I(A) and some
index set J, such that

F(Y) C Uie  F(B;). (4.4)

(4.4) is necessary for getting reasonable convergence properties. It is
a very natural condition, since each programmer would automatically
construct non-wasteful inclusions.

For example, let f(z) = 22 + x5, * € R? then F(Y) = Y2 + Y5,
Y € 12, is non-wasteful. If f(z) = sinz, z € R,F(Y) =[-1, 1], if
Yel and F(Y) =[-2, 2],if Y € I, \ I, then F is wasteful. That
the compact hull in (4.4) is necessary is best made clear by another
example: Let A = (—00,0], and f : A — R be defined by f(z) =e®. If
Y = (—00,al,a < 0, then Of(Y) = (0,¢%] is not an interval belonging
to I or Io. This fact has to be considered when an inclusion function is
constructed: Let F(Y) := Of(Y) for Y € I,(A) then F is non-wasteful
but F(Y) C U;esF(B;) does not hold for any partition provided.

Since there is no danger of misunderstanding we also write f and
F instead of f, and F, in the sequel.

Using the notation just introduced, the global unconstrained opti-
mization problem over unbounded domains can be written down con-
cisely as follows:

Let X € I} and f : X — R be continuous. The problem to be
solved is

i ) 4.
min f(z) (4.5)
This means that we expect the program to find out whether the
minimum exists or not. If the minimum does not exist we want to
know whether f is unbounded from below or not. The unbounded
problem, (4.5), is first reduced to the compactified problem, which is

min £(z). (4.6)

zeX

This minimum always exists if the extension of f on X is defined
via (4.1).
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It is now necessary to introduce a width for unbounded boxes in
order to define the global optimization algorithm for unbounded do-
mains. This width may be defined in a variety of ways resulting in
formulas of greater or lesser complexity. We do not expect our formula
to be either elegant or of theoretical interest (like the chordal-distance
on the Riemann sphere); however, it must be simple and appropriate
for our purposes. Our formula depends on a global parameter A\ which
the user or programmer may choose, such that the global minimizers
are suspected to lie in the box [—A, A]™. This choice of A\ which will
also influence the bisection process, forces areas outside of [—\, A]™ to
be cut off as soon as possible. If the user has no conjecture as to the
location of the minimizers and if he does not assign a value to A, then
our program version sets A := 10. If the choice of the user is wrong,
the program is still correct but it is then slower.

The width of an unbounded box Y =Y; x ... x Y,, € I is defined
as follows. Let 0 < A < o0 and a € R. Then

22/a if a > 1071,
w([a, oo]) - { max (1 ’)\2) otherwise,
w([—o0, a]) = w([—a, ),
w([=00, oo) = W10%, w(z[oo, oo]) =0,
w(y) = e w(¥).

The bisection cuts the boxes through the midpoint. According to
our intention not to dissect [—A, A]™ too early, the midpoint of un-
bounded boxes will also be made dependent on A\. Let a € R and
Y € I". Then we set

A ifa <A

mid [a, c0] = 2 if A <a <3,
10a if 3A < a,

mid [—o0, a] = —mid [—a, ]

mid Y ;= (mid Y7, ...,mid Y,,)7T.

If, for example, A = 10, then the interval [30, oo] is bisected into
(30, 60] and [60, oc].

We are now ready to establish the prototype algorithm for un-
bounded domains as follows:
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ALGORITHM 5 shall be syntactically equal to Alg. 3 of Ch. 8, but
now, unbounded compactified bores X of X € I, and inclusion func-
tions F : I(X) — 1 of the functions f : X — R are admitted as
input data. We use the formulas for width and midpoint of unbounded

compact boxes as they have just been introduced.

Algorithm 5 aims to determine the global minimum, f*, and X,
the set of global minimizers, of f over X.

Alg. 5 like Alg. 3 of Ch. 3 produces, at the n-th iteration, a list
L, consisting of pairs (Z;, 2ni),i = 1,...,l,, where [, is the list length
and z,; = IbF(Z,;). The leading pair of L, is denoted by (Y, yn),
and (?n,gjn) denotes a pair of L,, satisfying 3, < z,; for i = 1,...,1,.
The function value f, € R is the lowest value of f produced up to the
n-th iteration. As before U, denotes the union of all boxes of L,,, i.e.
Ul | Z,i, and again (U,) is a nested sequence.

4.3 Convergence Properties

In this section, practically reasonable assumptions are looked for under
which Alg. 5 converges to the solution set of the compactified problem,
(4.6). This solution is used to derive the originally required solution,
of (4.5). Termination criteria are touched upon briefly.
First of all,
w(Y,) = 0 as n — oc. (4.7)

The proof is similar to the proof for the bounded case in Sec. 3.4 and
is suppressed. Also, from the execution of Alg. 5, we have

Un < fT < fy for all n. (4.8)

In order to describe the convergence of U, to X ™ we extend the Hausdorft-
distance, d, as it is introduced in Sec. 3.2, to compact subsets of R™

and denote this extension by d as well. Let a = (ai,...,a,) € R™,
and A, B be compact subsets of R™. We define
L . . ) ) ) 12 %
do(a,B) := I’;%%l(;w([mln (@i, b;), max (ag, b;)]%)2,
do(A,B) = max do(a, B),

d(A,B) = max {d,(A,B),d,(B,A)}.
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The above formula should not astonish the reader. It is simply a means
for making the convergence mentioned precise and controllable. We
write A, — B instead of d(A,,B) — 0 in the sequel. Clearly, if
d(A, B) =0 then A = B.

Let again X € I, f : X — R and F : I(X) — I be an inclusion
function of f. If Alg. 5 is applied to X and F then the behavior and
the output are completely described by:

If

w(F(Y)) = 0asw(Y) =0, for Y € I,(X), (4.9)

then f, — 9, — 0 and U, — X as n — oo. This proposition is
true because the corresponding proposition in the bounded case, cf.
Ch. 3, depends on compactness and a few properties of the width, and
the bounded case can thus be carried straight over to the compactified
case.

The assumption (4.9) is, however, too restrictive. Let, for example,

f(z) =cos z and F(Y) =0Of(Y). Owing to (4.1), (4.3), the extension
to R gives f(doo) = —1,F(Y) = [-1, 1] if 00 € Y. The global
minimum of f over Ris fT = —1, the global minimizers are 7+2k7(k =

0,+1,...) and oo, —o0, but condition (4.9) is not satisfied.
Fortunately, assumption (4.9) can be weakened to

w(F(Y)) > 0asw(Y)— 0, for Y € I(X), (4.10)

if non-wasteful inclusion functions are used. Then again only bounded
boxes Y are involved. (4.10) holds for the function F' of the example
just mentioned.

Let X € IZ, let f: X — R satisfy (4.1) and let F : I(X) — Ibe a
non-wasteful inclusion function of f satisfying (4.3). Then (4.6) has a
solution, i.e. X # (), and f exists. If Alg. 5 is applied to F and X,
then the following holds for the output data:

THEOREM 11 If (4.10) holds then, as n — oo,
(i) f* =Gy — 0 as well as fT —y, — 0,
(i) fu— T =0,
(1) Up — XT.
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Proof. (i) We show that f* — ¢, — 0. The second assertion,
ft =y, — 0, will follow from (ii), since g, < y, < fn holds for any
n.

If f* = —o0 then g, = fT because of (4.8). Let f* € R. We focus
on the n-th iteration for a moment. Since F' is non-wasteful, we have

F(Yn) = Ujes, F'(Bni)

for some partition ¥, N R™ = Ujc ;. By;. Since §, = IbF(Y,,) and since
ft € F(By) or fT <1bF(B,;) for any i € J,, the following choice is
possible:

If §, = —oo we choose B,;, , i, € J,, such that

IbF(By;,) < fT—2" (4.11)

If g, € R we choose By;, ,i, € J,, such that either g, € F(By,;, ) or
both IbF (B, ) — §in < 2" and | IbF (B, ) — f* |< 27" hold.

Now, (4.7) implies w(By;,) — 0. Since B,;, € I(X), we can apply
assumption (4.10) and get w(F(B;,)) — 0. Comparing this property
with (4.11) we see that §, € R holds for sufficiently large n, which
means that ¢, — f7.

(ii) We have to show that f, ~\, f*. Let us, however, assume that
fa \¢ « for some a > f*. Since ft = f(x™) for some z7 € X* and
since f satisfies (4.1) there exists a sequence (&), & € X C R™ such
that

& — 't and f(&) — f(a™) as k — oo.

Let k be fixed such that f(£;) < a. There exists a sequence (Z],) with
& € Z) and Z) belonging to L,, for any n. The existence of (Z))
is guaranteed since & is never excluded by the midpoint test. (4.7)
implies w(Z)) — 0, and further Z!, — &. Thus, Z, € I(X), for
sufficiently large n. We can apply (4.10) and get w(F'(Z))) — 0 and
F(Z!) — f(&). For some large n we thus have ubF(Z]) < «. Since
fn <ubF(Z!), we have a contradiction.

(iii) The assertion is proven when we have shown that X+ C U, for
any n and that N, U, C XT. According to the construction of Alg.
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5, X* C U, is obvious. It remains to show that
z € U,, for all n, implies x € X .

We assume that f(z) > fT in order to get a contradiction. Since
x occurs in every list, a sequence (Z!) exists where z € Z! and Z
belongs to L,. Since F' is non-wasteful a partition of Z), N R™ exists,
Z, NR™ = Uje, Bpi, corresponding to the definition of a non-wasteful
inclusion function. If Z! € I(X), set Z = B, = B,;,. Otherwise
choose i, € J, such that IbF(B,;,) < IbF(Z]) or that IbF(B,;,) is
asymptotically close to IbF(Z)).

Since w(Z]) — 0, it follows that Z — z and thus B,;, — z. Let
&n € By, then f(&,) — a for some o > f(z) due to (4.1).

w(By;,) — 0 implies w(F(By;,)) — 0 and further, F(B,;,) —
a and IbF(By;,) — «. From the choice of B,;, it follows that also
IbF(Z!) — «. By (ii), we have f, < f(z) < « for large n such
that Z/ and thus z is discarded by the midpoint test. This gives the
contradiction. O

Remark. It is important that the midpoint test is done via the
leading boxes, Y,, and not via Y,, which may be promising since Y,
delivers the lowest lower bound, ¢,. But, when doing so, parts of
Theorem 11 cannot be proven.

Condition (4.10) is too restrictive for functions which have un-
bounded ranges. Let, for example, f(z) = z? and F(Y) = Y? be
an inclusion function. Although F' is an optimum inclusion function
because of F(Y) = Of(Y) and although the assertions (i) to (iii) of
Theorem 11 are satisfied, condition (4.10) does not hold. In such cases
the condition

w(F(Y)) —w(Of(Y)) = 0 as w(Y) — 0,

for Y € I(X), could be appropriate. In practice, however, this condition
is too difficult to verify. Therefore we establish a condition with which
we have obtained the best practical results. It combines theoretical as
well as practical requirements where the computer may verify the latter
for us.
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Let X € I, f: X — R, and an inclusion function F : I(X) — I
of f be given. We assume that for any given Z € I(X)

w(F(Y)) > 0asw(Y) —>0forY € I(Z). (4.12)

(Condition (4.12) is very general and not at all restrictive. If, for in-
stance, f is continuous and programmable and if F' is constructed via
natural interval extensions (cf. Sec. 4.5) then (4.12) is already satis-
fied.) Then (4.6) has a solution, i.e. X+ # (), and f* exists. If Alg. 5
is applied to F and X then the following holds for the output data:

THEOREM 12 If (4.12) holds and if there exists a number n such
that the list L,, contains only bounded boxes, that is, boxes of I™, then
the propositions (i), (ii), and (iii) of Theorem 11 are valid.

Proof. Let Z be the smallest box of I which contains the boxes of
L,. That means X+ C U, C Z, due to Alg. 5. We can now think of L,,
as a list created by applying Alg. 3 of Ch. 3 to f, F', and Z, such that
the assertion of the theorem follows from the results of Ch. 3. O

Example. Let us consider the well-known six hump camel back
function,

fz) = 42% — 2127 +25/3 + 12y — 422 + 425, 2 € X = R”
We compare two inclusion functions, F' and Fy, for f over X,

F(Y):=4Y2 + YA(Y?/3 — 2.1) + 1Yo +4Y2(YE — 1),
Fi(Y) :=4Y2 - 21V + Y8 /3 + 1Yo — 4Y2 + 4V, for Y € Io(X).

FY):=F({), F(Y):=F().

Neither F' nor F} satisfies (4.10). Both F' and F} satisfy (4.12). If
Alg. 5 is applied to f (using (4.1)), X and F then, after a few iterations,
the lists L,, do not contain any unbounded boxes. This is not the case if
F} is used instead of F'. The assumptions of Theorem 12 are therefore
computationally verified for F', but not for Fj.

Remarks. (1) It is difficult to present precise conditions for inclu-
sion functions to satisfy the bounded box assumption of Theorem 12.
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In practice, F' satisfied this assumption if F' was constructed using
the following recipe: Let F be so that —oco € F(Y) for all boxes
Y=Y x...xY, € I.(X), where Y; = (—o0, —a] or Y; = [a, 00), for
some arbitrarily large real a > 0.

(2) Alg. 5 might work well even for problems having convergence
properties which are not covered by any convergence theorem, which is
mainly the case if f is not continuous. The reason for this behavior is
that the unions, U,, always form a nested sequence, where X+ C U,
and that (f, —7,) is always a monotonically decreasing sequence where
U < ft < f,. It is not too unlikely that U, or f, — 7, will be
small enough for some reasonable n to establish reasonable solutions of
problem (4.6).

Termination criteria. Theorems 11 and 12 suggest three kinds of
termination criteria. They shall only be dealt with superficially since
they are almost the same as in the bounded case, cf. Sect. 3.10.

Criterion A: Terminate when f,, — 7, < €. This gives an approxi-
mation of f* and an error estimate.

Criterion B: Terminate when A(U,,) < €, where X is any "measure”
of R™. For example, A\(Y) := w(Y}) X...xw(Y,)if Y =V, x...xY,, €
I" and \(U,) = Y, AZy), if U, = U, Z,;. This criterion only
works if the measure of X is 0.

Criterion C: Terminate when w(Z,;) < € for all Z,; of L,,.

Let us return to the problem (4.5) originally posed. Its solution can
easily be derived from the solution of the compactified problem, (4.6).
The solutions of (4.6) are denoted by X, f*, and the solutions of (4.5)
by X*, f* if they exist. Therefore, Alg. 5 is appropriate to solve (4.5)
via (4.6) if the following theorem is used:

THEOREM 13 (i) If f* = —oco then (4.5) has no solution, and f is
unbounded from below in X.
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(i) If f* € R and if X* := XT NR™ is non-empty then X* and
[ = f7T is the solution of (4.5). If X* = 0 then (4.5) has no solution
but f is bounded from below, and f* = lim iriff(mn), z, € X and

Tp—T
xte X,
Proof. Obvious. O

Example. Case (i): f(z) = z will do it. Case (ii): f(z) = cos z
has solutions X* = {(2k + )7 : £k =0,£1,...}, X" = X* U {00, —o0}
and f* = fT = —1. Further f(z) = e” has no solution w.r.t. (4.5), but
Xt ={-o0} and f* =0.

4.4 The Monotonicity Test

The monotonicity test, cf. Sec. 3.12, is a very effective tool for dis-
carding boxes from the lists of interval optimization algorithms. It is
even more important in the unbounded case, as functions defined on
unbounded domains are frequently strictly monotone (with respect to
some coordinate direction) for large values of the variables - like poly-
nomials. Such areas contain no minimizers and can be discarded from
the lists. The unbounded case is thus reduced to the bounded one.
Therefore we recommend that the monotonicity test be incorporated
in the algorithm whenever possible. This test is best positioned between
Steps 6 and 7 of the algorithm. Another feature of the monotonicity
test with respect to the unbounded case is dealt with in Sec. 4.6.

Let X €I f: X — R, let 8£(x)

of the gradient or the generalized grzadient, resp., of f at x.
The generalized gradient of f at r was defined as

or df;(z) be the i-th component

Of(z) = conv {lim, o f'(zn) : Tp = z, 2, ¢ SUQ} (4.13)

if at least one limit did exist, cf. Sec. 2.7. Again, conv denotes the
convex hull, f'(x,) the gradient of f at x,, ) the set of points in some
neighborhood of z at which f is not differentiable, and S any set of
Lebesgue measure 0.
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Let Of or f' exist in X and let F; : I(X) — I be an inclusion

of or of Of; in the sense that
&Ei

function of

of (x)
(93:1-

€ Fi(Y) or 8fi(z) € Fi(Y)

forany z € YNR™Y € I(X). Weset Y; = [a;, b;] € T and X; =
[ci, d;] € I. Further, let Y (i/s) for s € ¥; denote that box which arises
from Y by replacing Y; with s (or more precisely, with [s, s]). Then the
monotonicity test, modified to operate on the unbounded case, consists
of the following two parts (and it is primarily destined to handle the
boxes Y = V;, V5 which arise by bisection in Step 6 of 5):

TEST 1 Test for strictly monotone increasing: For somei=1,...,m,

if 0 <1bF;(Y) then
(1) if ¢; < a; then discard (Y,y) from the list,

(i) if ¢; = a; € R then replace (Y,y) with the pair (Y',y') where
Y'=Y(i/a;) and y' =1bF(Y"),

(i11) if a; = —oo then terminate Alg. 5 (since fT = —oo such that
problem (4.5) has no solution).

TEST 2 Test for strictly monotone decreasing: For somei=1,...,m,
if ubF;(Y) < 0 then

(1) if b; < d; then discard (Y,y) from the list,

(#) if b; = d; € R then replace (Y,y) with the pair (Y',y') where
Y'=Y(i/b;) and y =1bF(Y’),

(#3) if b; = —oo then terminate Alg. 5 (since f+ = —oo such that
problem (4.5) has no solution).

Remarks. (1) It is a consequence of a termination by (iii) that
only one global minimizer of X is found. But, this is sufficient to
guarantee the unsolvability of (4.5), cf. Theorem 13.
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(2) Tt is favorable to admit +oo as values of the limits in the defini-
tion of the generalized gradient, (4.13). This is shown in the following
example where even the bounded case is improved.

Example. Let the semicircle

flz) = (1 —2?)'/?

be defined on X = [-1, 1]. It is obvious that X* = {—1, 1} and that
f* = 0. Standard methods of global optimization have difficulties in
obtaining this result, since f'(z) — Foo as x — £1.

We applied Alg. 5 with monotonicity test to this problem, using the
extended generalized gradient as mentioned in Rem. (2). We took

FY)=(1- Y2)1/2and FlY)=-Y(1-Y?»)'/?

as inclusion functions for f and 0f, resp., and got the exact result
after 3 iterations. F’(Y) has been computed via an infinite interval
arithmetic as described in the next section. The 3 iterations were the
following: List L; contained X only, Ly contained [—1, 0] and [0, 1],
and finally, L3 contained 7, = [—1, —1/2|, Z, = [—3, 0], Z3 = —Z,,
Zy = —Z1. Now, Z; and Z, were replaced with the exact minimizers,
+1, by the monotonicity test, and Zy and Z; were discarded by the
midpoint test.

4.5 Arithmetic in I

This section develops a calculus of how to practically find the inclusions
which are necessary for Alg. 5 to run. In contrast to the former sections,
we no longer focus on topological properties (convergence), but we are
now interested in a practicable arithmetic. The simplest way to get
the inclusions for Alg. 5 is, first, to develop a calculus in I, and to
construct inclusion functions with respect to I, and second, to extend
these inclusion functions to T" by means of (4.3) and (4.4). That is,
we admit only non-wasteful inclusion functions which, after all, is the
natural way to deal with these problems.
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The arithmetic in I, is one with minimum requirements but ad-
justed for our purpose. As opposed to Kahan’s (1968) or Laveuve’s
(1975) arithmetic the values +oo are not accepted as points of in-
tervals but they are used as boundaries of intervals. For instance,
00 € [0, 00) € I. The transition to the case where +oo are points of
intervals is done via the compactification, like co € [0, oo] € I. Thus, if
A, B € I and if the product AB is to be defined, we need not take care
of cases such as 0 € A, 00 € B which would involve defining inclusions
for 0Oco. This would inflate the arithmetic too much. We can therefore
just set 00, o0) = {azy: 2 € R,y €e R,z = 0,0 <y < oo} =0, in
contrast to other infinite arithmetics.

Let A, B € I,,. We expect our arithmetic in I, to satisfy

AxB={axb:a€ Abe B} (4.14)

if % stands for +, —, and -, and A/B to be the smallest interval of 1,
or to be the union of the two smallest intervals of I, such that

A/BD{afb:a€ A be B,b#0}. (4.15)

The case A/0 is excluded. (As usual, we write a instead of [a, a] for
brevity.)

For example, 1/[1, co) = [0, 1], but {1/b:b € [1, c0)} = (0,1] &
Io. Or, 1/[-1, 1] = (—o00, —1] U [1, oo). This means that I is not
closed with respect to division. We do not worry about that and split
up the union that occurs into two intervals of I,, and process the two
intervals separately as long as necessary. For example,

Y :=1/[-1, 1]+ 0, 2]/[1, 2]

may be evaluated in the following manner: Owing to our previous
example and since [0, 2]/[1, 2] = [0, 2], we split up the addition,
Y o= 1/[-1, 1]+[0, 2] = ((—o0, =1] 410, 2]) U ([1, o0) + [0, 2])
= (—o0, 1]+ 1, o0) =R € L.

In order to establish formulas for (4.14) and (4.15) which are usable,
we introduce the following notation which avoids distinctions according
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to compact and non-compact intervals: Let a,b € R,a < b. We set

<a, b> := Ja, b] if a,b € R,
(—o0, b ifa=-00,b€R,
[a, o0) ifaeR,b=o00,
(=00, 00) ifa=—-00, b=oc.

Let now < a,b >, < ¢,d >€ I. Then (4.14) and (4.15) are equivalent

to
<a,b>+<c,d>= <a+c,b+d>,

<a,b>—-<c,d>= <a-—d,b—c>,

<a,b><cd>= < min (ac, ad, be, bd), (4.16)
max (ac, ad, be, bd) >,
1/ <e¢, d>=[1/d, 1/c]if 0 ¢< ¢, d >, )
1/ <0, d>=[1/d, o) if d # 0,
1/ <e¢, 0 >=(—o00, 1/c]if ¢ # 0, > (4.17)

1/ <e¢, d>=(—00, 1/cJU[1/d, o0) if c <0 < d,
<a, b>/<c¢,d>=<a,b>(1/<e¢, d>)
if<ec, d>#0.

7/

Formulas (4.16) and (4.17) are only then well defined when an arith-
metic for the boundaries a, b, ¢, d is given for the case that they are not
finite. This is the usual one:

Foo Foo =Foo, aFoo=Foo+a=Fx ifa € R,
0(Fo0) = (Foo)0 =0, +(Foo) =Foo, —(Foo) = o0,
a(Foo) = (Foo)a = (sgn (a))(Foo) if a #0, a € R,
a/oo=0if a € R.

(Expressions such as 0/0, a/0, oo — 00, etc., do not occur in (4.16) and
(4.17) and need not be defined.)

Example 1. (—o0, 1]+ [2, 00) = (—o0, o0) = R.

Example 2.
[0, 1](—o0, 0] =< min (0,0, —00,0), max (...) > = (—o0,0].
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If f: D — R, D C R*is a function pre-declared in the program-
ming language used (like sin, cos, etc.) and if Y € I% then the natural
interval extension of f to Y denoted by f(Y) is defined as the smallest
interval of I, such that

f(Y)YDof(YynD). (4.18)

Practically, this definition causes no difficulties at all since the mono-
tonicity domains of the functions usually pre-declared are well known
such that the range of f over Y N D can be determined easily. Thus, if
<a, b>€l,,

sin < a, b > = 0Osin<a, b >,

cos<a, b> = Ocos<a, b>,

exp(<a, b>) = <exp(a), exp(b) >, when exp(—o0) :=0,
In(<a, b>) = Oln(<a, b>nN(0, 0)),

sqr(< a, b>) = Osqr(<a, b>),

sqrt(< a, b>) = Osqrt(< a, b > N[0, c0)).

etc.

Therefore, a natural interval extension of any programmable func-
tion f over Y € I,(X),X € IZ, can be defined recursively via (4.14),
(4.15) and (4.18), in the same way as a function value f(z) is defined
recursively via the basic functions (arithmetic operations, pre-declared
functions) - for example, by means of a computer code. The recur-
sive representation of programmable functions is treated in detail by
McCormick (1983), Rall (1981), and others. See also Sec. 2.6.

Example 3. If f(z) = 1/(| sinz | + | cosz |) and if Y = R then the
natural interval extension of f to Ris f(R) =1/(|sinR |+ |cosR |)
= 1/([0, 1] + [0, 1]) = 1/][0, 2] = [1/2, o0). This result certainly
depends on the representation chosen for f(z), cf. Sec. 2.6.

Why is it necessary to admit boxes Y in (4.18) which are not nec-
essarily contained in the domain of f? The reason is that, at each step
of a recursive evaluation of a natural interval extension, an overestima-
tion of the range is possible such that the domain of the function of the
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next recursive step can be exceeded. Such a superfluous overestimate
is prevented in a natural way by the intersection Y N D.

As we already mentioned before it is one of the most fascinat-
ing research areas of interval mathematics to find, given any function
f:x — R, z € I, an inclusion function F' of f as good as possible;
see Sec. 2.6. The same holds for functions f : X -+ R, X € I?. In gen-
eral, reasonable inclusion functions can be obtained by rearranging the
given function expression of f(z) and then by taking the natural inter-
val extension of the rearrangement. The theory of such rearrangements
is beyond our scope, but we emphasize that sometimes such rearrange-
ments are necessary in order to meet the bounded box assumption of
Theorem 12, cf. also the Example and Remark 2 both following Theo-
rem 12.

4.6 Realization on the Computer

Up to now there is no generally widespread programming language in
which an infinite interval arithmetic is incorporated. This is, however,
no real problem for a programmer. In our case, one has to be aware
that both kinds of infinite intervals we deal with must be approximated
by appropriate intervals on the computer.

A simple way which we used and which is consistent with the lan-
guages mentioned above is the following: Intervals of the form [a, L]
and [—L, b] where L is the largest real number representable on the
computer under consideration are chosen to approximate both kinds of
infinite intervals. These intervals get a special treatment.

In order to be more precise, let Ry be the set of machine repre-
sentable real numbers. We assume that, for brevity, —L is the smallest
real number representable on the machine. Let

Iy ={[a, b]:a,b € Ry, a < b}

and
Iyy={la, b €lps:a#—L, b# L}.

We_ call the intervals of I, the machine-finite intervals and the intervals
of Ips \Iss the machine-infinite intervals. Both kinds of intervals consti-
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tute the machine intervals. The machine-finite intervals are interpreted
as usual as sets

[a, b ={z:a <z <b}.

The machine-infinite intervals are interpreted in two different ways de-
pending on their purpose.

If we deal with arithmetic matters, construction of inclusions, etc.,
we want to have

Rifa=—1I,
[a’L]'_{{x:a§x<oo}if—L<a§L,a€RM, (4.19)

[— L, b:={z:—c0o<az<b}if —L<b< L,beRy.

If we deal with topological properties, with the execution of Alg. 5,
etc., we interpret the machine-infinite intervals in I in the following
manner:

Rifa=—L,
[a’L]'_{{x:agxgoo}if—L<a§L,a€RM, (4.20)

[—L, b ={z:—oc0o<z<b}if —-L<b< L,beRy.

The situation seems involved but is not. It even has the great practical
advantage that, when transmitting the inclusions F(Y) to F(Y), the
approximating machine intervals need not be changed. The step from
F(Y) to F(Y) is just the compactification step connecting the arith-
metic construction with the topological treatment by Alg. 5 such that
the final interpretation of the solution set of Alg. 5 is done via (4.20).

An arithmetic % in Iy, where * stands for +, —, -, and / is defined
as follows: Let A, B € I, then A%B is the smallest interval of I; or

the union of the two smallest intervals of I, such that
AxB D A x B. (4.21)

In case of division, B = 0 is excluded. The interpretation of the
machine-infinite intervals is done via (4.19). The requirements (4.21)
can be fulfilled easily. See Kulisch-Miranker (1981) for a general theory
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of such requirements. It would be boring to give the precise instruc-
tions of how to implement (4.21) on the computer; rather, we give some
examples, 5

[2’ L]+[_L7 L] = [_L: L],

[—2, L|+[L, L] =[L -2, L],

[2, L]t[_La _2] = [_La _4]7

17[_17 1] = [_L7 _1] U [17 L]

The approximation of the interval values for the functions pre-

declared by intervals of I, is done analogously; for instance,

In[-1, L] =[-L, L],
sin[1, L] = [-1, 1],

etc.

If, now, Alg. 5 runs on a machine then, after the computation is
terminated, either the information f* = —oco (due to the monotonicity
test) will be delivered or a machine interval A D [¢,, f.] and machine
boxes W,; O Zp;,1i = 1,...,1,, will be the output data. Here n is the
final iteration index and [, is the length of the list L,. In general,
we get inclusions A and W,; instead of [§,, f.] and Z,; because of
the common outward rounding when a machine interval arithmetic is
used. Owing to the execution of Alg. 5, we have ft* € [§,, f.] and
Xt CW :=Ur, W,

Using (4.20) and Theorem 13, the output data of the computation
with Alg. 5 have to be interpreted as follows in order to get the required
solution of problem (4.5):

1. If f* = —oo then f is unbounded from below and (4.5) has no
solution.

2. If A is machine-finite and W,,; € I7,,i = 1,...,[, (regular case),
then problem (4.5) has a solution, f* and X*, and

fred XTCW.

3. If A is machine-infinite or if W,; € I, \ I%; for at least one
i € {1,...,l,} then a decision has not been possible whether a
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solution of (4.5) does exist or not. However, if a solution exists,
#* and X*, then

ffeAnRand X* CWNR™.

Considering 1., one notices that the result f© = —oo is sharp, al-
though the points from —oo to —L cannot be distinguished on the
computer. This is due to the monotonicity test which asserts that, if f
is strictly monotonically increasing over the machine interval [—L, a]
representing [—oo, al, then, clearly, f* = —o0o, and no tolerance occurs.

4.7 Numerical Results

The following examples, taken from Ratschek-Voller (1988), were com-

puted on an Apple ITe microcomputer. The programming language was
PASCAL-SC.

Example 1. We consider the six hump camel back function, f(z) =
47?2 — 2121 +2%/3+ 2119 — 423+ 425 for x € R?. The inclusion function
F as described in the Example after Theorem 12 (Sec. 4.3) was used
for larger boxes Y and the meanvalue form (cf. Sec. 2.7) for F' for the
boxes Y which were machine-finite with w(Y’) < 1. When the starting
box was R resp. [—L, L]?> we needed 213 iterations of Alg. 5 with the
monotonicity test (which is about 426 interval function evaluations of
F(Y)) in order to get the intended absolute accuracy of 107% for the

solution,
f* € —1.03162 84535 8 + [0, 5]10711,

X* g Wl U W?a
where
W; = [-8.98426 8, —8.98414 8]10*2><
[7.12655 78, 7.12656 98]10’1,
W2 == _Wl-

Wi as well as W, contain exactly one global minimizer each (Moore-
Ratschek (1987)).

By contrast, when Alg. 5 (also with monotonicity test) was applied
to the same function with nearly the same inclusion function, but with
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the bounded box [—2.5, 2.5]?, then 163 iterations (about 326 evalua-
tions of F(Y)) were required in order to get a comparable result.

Example 2. P. Wolfe’s (1975) function modified by Zowe (1985) is
defined as

5(922 + 1622)Y2  if 2p >| 2y |,
f(z) =4 921+ 16| x4 | if 0 <2y <| 2y |,
921 +16 | 2o | —2f if 21 <0,

where z € R?. The only global minimizer of f with respect to R? is
z* = (—1,0) and f* = —8. The function is convex, and f fails to be
differentiable only on the ray z; < 0,z = 0. Zowe demonstrates that
steepest descent with exact line search generates points convergent to
the nonminimizer (0,0) when the starting point is chosen anywhere in
the region z; >| x5 |> (9/16)% | z; |.

Let Dy ={z€R?:2; >z |},De={z €eR?*: 0 < 11 <| 7o |},
and Dy = {x € R? : 7; < 0}. Let the functions F; : I, —»1,i=1,2,3,
be defined as

Fi(Y) = 5(9Y7 +16Y7)'/,
B(Y) = 91 +16|Y; |,
F(Y) = 9Y1+16|Y, | —Y?.

We extend f from X = R? to X = R_ by “means of (4.1) and con-
sider the following inclusion function F of f on X: Let Y € I(X),w(Y) >
1/2. Then

Fi(Y) if Y C Dy,
Fy(Y) ifY C D,
F(Y) ={ F3(Y) if Y C Ds,
E(Y)UFJ(Y) ingDiUDj,Y@Di,Yng(i,j:1,2,3),
UL, F(Y) if Y ¢ Dj U Dyfor 5,k = 1,2,3,
F{Y) :=F().

For Y € I(X),w(Y) < 1/2, we use the meanvalue form of f on Y
as inclusion function value F(Y'), cf. Sec. 2.7, where inclusions of the
generalized gradient instead of inclusions of the derivative are taken if
no derivative is available.
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When Alg. 5 (with monotonicity test) was applied to F' and X = I_{Q,
then 104 iterations (about 208 evaluations of F'(Y)) were needed in

order to determine the solutions z* and f* within an absolute accuracy
of 21076,

Example 3. Let X = [-1, 1] x [-1, 1] x [0, c0o) C R? and
f X — R be defined by

flz)y=(01- x%)l/Z coszz + (1 — x%)lp/(l +23) + 2z36 ",

There exist 4 global minimizers of f in X having the coordinates
r1 = *1,29 = £1,23 = 0. The objective function, f, is differentiable
in the interior of X, continuous - but not Lipschitz - on X. How-
ever, f is generalized differentiable (when infinite values are admitted)
on the edge of X which contains the four minimizers, such that the
monotonicity test can be performed and the meanvalue form of f can
be constructed when inclusions of the generalized gradients are used
instead of inclusions of non-existing derivatives.

As inclusion function F(Y) of f on X (extended by means of (4.1))
the plain natural interval extension of f on Y was used if Y € I,(X) or
if w(Y) > 1 and further, F(Y) = F(Y), in these cases. For Y € I(X)
and w(Y) < 1 the meanvalue form of f on Y was taken for F(Y).

Alg. 5 (with monotonicity test) needed 31 iterations (which makes
about 62 evaluations of F'(Y')) in order to achieve the intended absolute
accuracy of about 1076 for X* and f*.
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Chapter 5

Constrained Optimization

5.1 Introduction

It is frequently the case that a mathematical model of a system contains
limitations on the acceptable values of the parameters of the system in-
duced by the particular configuration considered. This is, for example,
often the case in engineering design, chemical equilibrium calculations,
agricultural models, economic models and so on. The limitations or
constraints may be nonlinear. This leads to the most general global
optimization topic, namely the global nonlinear constrained optimiza-
tion problem.

In this chapter this general problem will be dealt with. We keep in
mind that it is not our aim to discuss all possible or ”best” methods for
solving this problem. Rather we want to give a sample of how several
interval and non-interval methods fit together and can be combined to
an effective and reliable algorithm.

The reader may also have a look at the algorithms of Sengupta
(1981), Hansen-Sengupta (1980), (1983), Hansen-Walster (1987a,b).
These algorithms are interesting and highly sophisticated alternatives
which try to process as much information as possible.

An effective procedure for the global constrained optimization prob-
lem will consist of

(i) the basic algorithm,

159
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(ii) the accelerating devices.

The basic algorithm is mainly responsible for getting the solution of the
problem or, at least, an approximate solution when the computation is
done on a computer. The accelerating devices aim to get the solution
or its approximation as fast as possible.

As in the unconstrained case, the midpoint test is included in the
basic algorithm since this test is responsible for the fact that the so-
lution can be obtained as sharply as desired. The midpoint test also
speeds up the computation since it protects the algorithm from process-
ing superfluous areas. Therefore the midpoint test should be applied
as early as possible in the computation. Since the midpoint test can
only be applied if feasible points are known we focus on methods which
create primarily a feasible point. Therefore, the algorithm we discuss
will consist of the following:

(a) an initial search for a feasible point,

(b) starting from a feasible point a search is initiated for a local min-
imum or for feasible points with lower values of the objective
function,

(c) the basic algorithm which mainly consists of the exhaustion prin-
ciple (areas are exhausted that cannot contain the solution) which
needs no differentiability assumptions,

(d) if appropriate differentiability or generalized differentiability con-
ditions are given then gradient methods or Newton techniques
can be applied to discover areas where the function is monotone,
or to localize local minimizers.

The chapter is organized in the following manner. The global con-
straint minimization problem is defined and the notation is given (Sec.
5.2). An algorithm for finding the feasible domain is given (Sec. 5.3).
An exact solution cannot be found in some cases owing to the algorith-
mic approach. In order to overcome the related difficulties a relaxed
algorithm is established (Sec. 5.4). The algorithm for finding a feasi-
ble domain is combined with the basic algorithm for the unconstrained



Problem Statement 161

case in order to have an always working reliable basic algorithm for the
constrained case (Sec. 5.5). The constraint conditions are sometimes
not given precisely. This leads to interval constraints (Sec. 5.6). The
convergence properties of the basic algorithms are developed in Sec.
5.7. Finally, the accelerating devices are discussed depending on the
differentiability conditions of the functions of the problem (Sec. 5.8 -
5.11).

5.2 Problem Statement

For convenience we repeat some of the definitions of Sec. 1.2. Let
X € I"™ be the domain where the optimization problem is discussed.
Let f,g;, h; be real-valued functions defined on X, where i =1,...,k
and j = k+ 1,...,r. The global constrained optimization problem
(better: minimization problem) consists of

(i) finding the minimum value, f*, of f over X when the arguments
x satisfy the restrictions

gi(z) <0, i=1,...,k (5.1)

and
hj(X)=0, j=k+1,...,m, (5.2)

and of

(ii) finding the set X* of arguments z* satisfying (5.1), (5.2) and
f(z*) = f*. Instead of (5.1) and (5.2) we sometimes prefer the
vector notation, g(z) < 0 and h(z) = 0, where the constraint

functions g; and h; are seen as components of the vector-valued
functions g: X - R¥and h: X — R"*.

f is called the objective function of the problem; the conditions
(5.1) and (5.2) are called the inequality constraints and the equality
constraints of the problem. Accordingly, g; and h; are the inequality
resp. equality constraint functions. The set D of all z € X satisfying
(5.1) and (5.2) is called the feasible set of the problem. The points of
D are called feasible points. Points which are not feasible are called



162 Ch. 5: Constrained Optimization

infeasible. An area which only consists of feasible [infeasible| points is
called feasible [infeasible]. The value f* is called the global minimum
and the points z* € X* are called the global minimizers or the global
minimum points.
The global constrained minimization problem is usually written in
the following form,
rxrg)r(l f(z) subject to g(z) <0, h(z)=0. (5.3)

A point z € X is called a local minimizer or a local minimum point
of problem (5.3) if z is feasible and if there exists an € > 0 such that

f(z) < f(y) for any feasible y with ||y —z ||< €

where any norm || || of R™ can be chosen. If z is a local minimizer of
(5.3) then f(x) is called a local minimum of (5.3).

5.3 Constraints and Exhaustion Principle

The global constrained optimization problem, (5.3), involves both in-
equality and equality constraints.

If g is a set of linear inequalities and if there are no equality con-
straints then it is well-known that D is a convex polygon. If in addition
the objective function f is linear then a linear programming problem is
obtained whose solution is normally found at a vertex of the polygon.
We do not discuss this special problem.

In general the set D may take an arbitrary non-convex shape when
the constraints g and h are non-linear which means that D can not in
general be calculated exactly in a finite number of steps.

There are many methods that can be used to solve the constraint
problem. Four favorite approaches are

(i) Kuhn-Tucker and related methods,
(ii) penalty methods,

(iii) exhaustion methods,
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(iv) statistical methods.

The Kuhn-Tucker methods aim to solve the Kuhn-Tucker condi-
tions, cf. (1.4) and (1.5), in order to obtain the local minimizers which
include the global minimizers.

Penalty methods reduce the constrained case to a sequence of un-
constrained problems.

Exhaustion methods check the whole area under consideration piece-
wise for a certain property, for example, whether the points are feasible
or not. The area can thus be reduced to a smaller one by eliminat-
ing the pieces with the unwanted property, for example, the infeasible
pieces.

Statistical methods are very effective, but there is only a certain
percentage of reliability on the result. The percentage may tend to 100
as the number of steps of the computation grows.

The choice of the method will depend on the dimension of the prob-
lem, the differentiability and stability conditions, the shape of D and
other data, and on the personal preference. Finally, the chosen method
will be supported by additional techniques such as local information,
accelerating devices, etc.

We use the exhausting principle as the underlying approach for solv-
ing the constrained problem. The reasons are that the exhausting prin-
ciple makes it possible to check the whole box systematically, it needs
no differentiability assumptions and it is easy to combine with acceler-
ating techniques if available.

The exhaustion principle is applied twice: First, it is used to discard
infeasible areas. This is discussed in this section. Second, it is used to
discard areas that cannot contain the global minimizer. This is done
in Sec. 5.5. The main tool that makes it possible to use the exhaustion
principle in a very effective manner is interval arithmetic.

It is assumed that g and h have inclusion functions G' and H, that
is, Og(Y) C G(Y) and Oh(Y) C H(Y) for each Y € I(X).

The aim of this section is to determine D, the feasible set. Al-
though D will not be needed explicitly in this monograph we develop
the computation of D thoroughly in order that the reader should be-
come familiar with the exhaustion principle. As we can see in Sec. 5.7,
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Alg. 6 which is introduced below has D as solution set under very mild
conditions, that is, g and h are continuous, and w(G(Y)) — 0 as well
as w(H(Y)) — 0 when w(Y) — 0. Practically, Alg. 6 will stop after a
finite number of calculations, and D cannot be reached. In this case,
however, an approximating set U is produced which has the following
properties:

1) DCU,

2 _1 Z; where Z; € I(X) for some index [,

Ib ()<07,_1 ")

4) 0 € H(Z;),i=1,...,1,

(

2) U
(3)
(4)
(5) U\ D is smaller than a given tolerance.

The boxes Z;, cf. (2), are stored in a list by the algorithm. Thus, [
is the length of this list.

The set U is restricted to a finite union of boxes by (2). Hence
U # D in general.

Since the set U contains the feasible set it follows that the set
V = X \ U, the complement of the set U in X, is included in the
infeasible set X \ D. This means that the set V' is an infeasible set
which may be excluded from further considerations in the global con-
strained minimization problem.

Suppose now that a feasible inclusion U has been computed. Then
the set U \ D is an infeasible region included in U, the estimate of the
feasible region. The set U \ D is an overestimate region.

This region may in general not be reduced to the empty set without
further assumptions for G and H. The reason for this is that inde-
pendently of the subdivision technique the inclusion functions G and
H may also introduce an uncertainty by overestimation since Og(Y) C
G(Y), Or(Y) C H(Y) and 0 < ubG(Y) or H(Y) # 0 can occur even if
Y is feasible.

The region of uncertainty clearly leads to a termination criterion:
For this let

= (J{Z; € UbG;(Z;) <0 < ubG;(Z;) for some i =1,...,k



Constraints and Exhaustion Principle 165

or 0 € Hi(Z;) #0 forsome i =k+1,...,7}.

Then if w(Z*) < € for some predefined € the computation shall stop.
Such a termination criterion makes sense if the assumptions for G and
H mentioned above hold.

If the assumptions mentioned are not fulfilled, the properties (1) to
(4) still hold.

The algorithm is initialized with the box X and G, H. It then subdi-
vides X and tests whether the inequality and equality constraints hold
in each box created by the subdivision. Hence the name ”exhausting
principle”.

When a box Y has been created by subdivision the inequality con-
straint inclusions G;(Y), i = 1,2,...,k, and the equality constraint
inclusions H;(Y), i =k+1,...,r, are computed. The feasibility or the
infeasibility of boxes Y can only be determined via the inclusions G
and H:

(i) G(Y) <0,H(Y) =0 then Y is feasible,
(ii) if G;(Y) > 0 for some 7 then Y is infeasible,
(iii) if 0 ¢ H;(Y) for some ¢ then Y is infeasible.

In all the other cases, a decision cannot yet be made. Thus, we call a
box Y indeterminate (subject to G and H) if (i) to (iii) do not hold.

Alg. 6 stores a box Y if it satisfies (i) since Y is feasible. Together
with Alg. 7, cf. Sec. 5.5, it can be checked whether Y contains any
global minimizers. Box Y is discarded if it satisfies (ii) or (iii) since Y
is infeasible; in this case Y cannot contain any minimizers such that
we need not store Y for later use. If Y is indeterminate, ¥ will be
subdivided such that a decision may be possible for subregions of Y.

If G;(Y) < 0 for some i then g;(z) < 0 for z € Y, that is, the i-th
constraint is satisfied in Y. Thus, for any subbox Y, C Y, G;(Y,) need
not be computed again, since g;(z) < 0 for z € Y,. The same holds for
H;. Such an information is handled via flags. Thus, a flag vector

R=(Ri,...,R,)

is attached to each box under consideration where the components R;
take the values 0 or 1. The vector R is used as follows:
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R; =1 indicates that g;(x) < 0, ifi = 1,...,k, or that h;(z) = 0, if
i=k+1,...,r,foranyz €Y.

R; = 0 indicates that, up to the current state of the computation,
gi(z) < 0 resp. h;(z) = 0 for any z has not been verified.

In later subdivisions of Y, the flags R; = 1 are transferred to the
subboxes, and recalculations of G;(Y,) or H;(Y,) need only take place
if R; =0.

The algorithm generates and manipulates a list L of pairs (Y, R)
where R is the flag vector which describes the current feasibility situ-
ation for Y. R = (1,...,1) means that Y is feasible, and Y is inde-
terminate if R; = 0 for at least one index 7. If boxes Y are recognized
as infeasible they are discarded so there is no need for a flag to denote
such boxes.

The algorithm works by always subdividing the first indeterminate
box on the list (having a flag vector where R; = 0, for some 1) if it
exists. This box is the oldest indeterminate box of the list. After the
subdivision there are three possibilities for each of the two new boxes.
If a new box is feasible it is added to the end of the list with a flag
vector R = (1,...,1). If the box is indeterminate then it is entered
onto the list immediately after all the indeterminate boxes on the list.
Infeasible boxes are discarded.

The following algorithm contains a relaxation parameter ¢; > 0.
First we admit no freedom and set e; = 0. In this case the algorithm
works as explained. The impact of values ¢; > 0 is explained in the
next section.

ALGORITHM 6 The computation of a set including the feasible re-

gion.
1. SetY = X.
2. Set R=(Ry,...,R;) :=(0,...,0).
3. Initialize list L := ((Y, R)).
4. Choose a coordinate direction v parallel to which Y1 X ... X Y,

has an edge of mazimum length, i.e. v € {i: w(Y) = w(Y;)}.
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b. Bisect Y normal to direction v, getting boxes Vi,Vy such that
Y=Vul.

6. Remove (Y, R) from the list L while retaining R. { Remark: R; =
0 for some i .}

7. Forj=1,2

(a) Set R = (RJ,...,R}) :=R.
(b) Fori=1,2,....k if R; = 0 then
i. Calculate G;(V;).
w. If G;(V;) > 0 then go to (e).
ii. If Gi(V;) <0 then set R? := 1.
(¢) Fori=k+1,k+2,....7 if R; =0 then
i. Calculate H;(V}).
w. If 0 ¢ H;(V;) then go to (e).
. If Hi(V;) C [—er, €] then set R! :=1.

(d) Enter (V;, R?) onto the list after all the items having flag
vectors R # (1,...,1) and in front of the items having flag
vectors R = (1,...,1).

(e) end (of j-loop).
8. If list is empty then terminate with output:
« D£0.
9. Denote the first pair of the list by (Y, R).
10. If the termination criteria hold then go to 12.
11. Go to 4.

12. There are two possibilities for the bores Zi,...,Z; on the final
list:

A: If no flag vector R on the final list is equal to (1,...,1) then
the output is:
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e It was not possible to decide whether D (the feasible do-
main) is empty or not.
o If it is the case that D # () then D C U\_, Zi.
B: If at least one flag vector R is (1,...,1) then the output is:

e DA
e DC U, Z.

13. End.

At termination the list contains some boxes that are feasible and
some boxes that are indeterminate.

This algorithm has been presented in order to demonstrate the prin-
ciple of the basic subdivision and exhaustion method for solving a set
of constraints having only an inclusion function. It is, however, only
computationally meaningful in combination with other algorithms. The
separate description of Alg. 6 is also necessary for its convergence the-
ory; see Sec. 5.7. The exhaustion principle of Alg. 6 is also applied if
nonlinear equations are being solved that have curves, surfaces or other
geometrical figures as a solution set, cf. Neumaier (1988).

5.4 Trouble with Constraints

Relaxing the constraints

If the optimization problem one has to solve involves equality con-
straints then no matter how long the computation lasts the algorithm
may fail to produce even one feasible box Y. That is, in such cases

HY)=0

must be verified which is mathematically as well as computationally al-
most impossible. For example, let X = [0,1] x [0, 1], and let the feasible
points z = (x1,22) € X be characterized by x; = 5. Thus, the feasible
domain D is the diagonal of X. Alg. 6 will never produce a feasible box.
This example indicates a typical situation and is no exemption. If the
algorithm runs on a computer then, additionally, rounding errors will
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also prevent obtaining a result like H(Y') = 0. There is no general way
out of this disaster. Nevertheless, a very important and far-reaching
exception of this embarrassing situation is described in the second part
of this section.

These circumstances are usually ignored by books on optimization.
The general strategy is that, if a point x satisfies the constraints within
a certain tolerance, x is accepted as a feasible point. Alg. 6 does not ig-
nore these facts, and no uncertain points are accepted as feasible points,
but the user gets the message that the existence of feasible points can-
not be proven wvia the computation. If the user, however, knows that
D # () (may be, due to theoretical investigations, or topological or
analytical considerations, or due to practical reasons such as physical
observations) then he is correct when using the result that D is included
in the union of the remaining boxes Z;, cf. Step 12 of Alg. 6.

If the user does not intend to check whether a feasible point exists
or not, but if he only requires some properties of the feasible points
then the user may, assuming D # (), relax the equality constraints and
replace them with

—6 <hi(z)<egforzeX,i=k+1,...,r,

for some €; > 0. Thus the equality constraints are replaced by pairs
of inequality constraints. The advantage of their use is that the algo-
rithm may sooner find a ”feasible” area which is of importance for the
combined algorithms described in the sequel since the midpoint test
can then be applied. The inequality constraints may also be relaxed
in such cases. This could be done automatically by the program if no
feasible box has been produced after a reasonable amount of computa-
tion has been done. This indicates that the feasible domain is probably
of a lower dimension like a surface, hyperplane, etc., or of small size.
Relaxations such as

gi(x) — e, <0, i=1,...,k,

are reasonable.

If the algorithm is applied to the relaxed problem then the existence
of feasible points can result. These feasible points are related to the
relaxed and not to the original problem. However, the resulting unions,
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Uézl Z;, are inclusions of the set of feasible points of the original problem
too.

Let us finally return to the termination criterion of Alg. 6 mentioned
in the last section. The criterion is based upon the assumption that the
area of Z*, which is the set of indeterminate points, tends to 0 as the
computation continues. For conditions implying this assumption, see
Sec. 5.7. There are rare cases where this assumption is not satisfied.
To avoid such cases one can incorporate a side termination criterion
which always causes a stop of the computation, for example:

Terminate when w(Y') < € for all indeterminate boxes Y of a current
list.

Certainly, the printouts and results of Alg. 6 remain valid under
this criterion.

One way out

As mentioned before there is one way to overcome the difficulties
arising by lower-dimensional feasible areas, that is the application of
Moore’s (1977) test for the existence of solutions of equations. Hansen-
Walster (1987a) were the first to suggest that this test should be applied
to constrained optimization. The assumptions under which this test
works are that

(i) the constraint functions which cause problems are of C',

(ii) there are not too many troublesome constraints.

Let Y be an indeterminate box. In order to prove that Y con-
tains a feasible point we proceed as follows: Without restriction of the
generality, let

IbG;(Y) <0 < ubG;(Y) fori=1,...,k(< k),
0eH(Y)#O0fori=k+1,....k+p(< 1),
S =K+ p.
The remaining constraints shall not be violated,
Gi(Y)<0 fori=k+1,...,k,
H(Y)=0 fori=k+p+1,...,7.

We need the following assumptions:
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(i) g1y- -+ 9rs Pty - - -, hitp are C'-functions,
(ii) s < m.

We choose s components of Y - for simplicity the first s - and build
a subbox of Y, 5
Y =Y, x...xY,.

If s < m then Y is part of the edge of Y. Let further ¢ := mid Y, ¢; :=
mid Y; fori =s+1,...,r, and

The assignments

¢(j) — gi(j:’l:cs—f—la"'acm)’ 1=1,...,K,
’ ' hi—l—lifk(jacs-f-l;--'acm)a Z:k+1:ak+p

for # € Y define an s-dimensional vector-valued function

¢:(¢la"':¢s)T:}~/_>Rs-

Let J4(%) denote the Jacobian matrix of ¢ at & € Y, and J(Y) € I***
be an interval matrix that contains the matrices Jy(7) for all & € Y.
For instance, J(Y) could be the natural interval extension of J4(%) to
Y, or J~(}~/) could be constructed using the methods of Sec. 2.8 such

that J(Y) has a smaller number of interval entries.
We consider the equation

¢(@) +J(Y)(& —¢)=0

with respect to the variable 7 € Y. Let S be the solution set of this
equation as defined in Sec. 2.9. A theorem of Bao-Rokne (1987), which
is a generalization of Moore’s (1977) existence theorem, says that if
S C Y then ¢ has a solution % in Y, that is ¢(Zy) = 0. In practice
it does not matter that neither S nor Z; is known. In order to verify
S C Y it is sufficient, for instance, to apply one iteration of the interval
Newton method to ¢ in Y, that is Step 2 of the algorithm as presented
in Sec. 2.9. (This step can be executed, for instance, with the relaxation
procedure of Sec. 2.10, with the elimination procedure of Sec. 2.10, or
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even with one iteration of the complete Hansen-Greenberg realization.)
The iteration will yield a superset Z of S. Ilf now Z C Y then SCY
and the assumption is verified. In this case we know that a feasible point
To = (L9, Cs11,---,Cm)" exists in YV, that is, g(zo) < 0 and h(zy) = 0.
Therefore, D is not empty.

Owing to the construction of ¢ we know that this feasible point
xo has g1, ..., gx as active constraints and g1, ..., gx as inactive con-
straints. If therefore the interval Newton iteration results in ZNY = ()
which means that ¢ has no solution in Y (cf. Sec. 2.9), then one cannot
conclude that Y has no feasible point. One can only conclude that
there is no feasible point in Y having ¢, ..., g, as active constraints.

The knowledge that Y has a feasible point and that D is not empty
has no direct influence on Alg. 6, but it is of importance in the sequel
when the existence of feasible points is necessary for the application of
the midpoint test and other accelerating devices. Therefore one will
not apply the existence test in connection with Alg. 6 too early since
the smaller the box Y is the likelier the existence test yields a positive
result. One will further choose a box for the test which has a flag vector
R with as few zero components as possible.

5.5 The Basic Algorithm

In this section the basic algorithm for solving the constrained problem
(5.3) is developed. It is a minimum algorithm and it is recommended
that it is combined with steps that accelerate the speed of the com-
putation. The algorithm is, however, described separately in order to
make the influence of interval arithmetic more transparent, in order to
give the reader the possibility of combining the basic algorithm with his
special choice of accelerating devices - a few of which are described in
the following sections - and, finally, since the convergence properties,
cf. Theorem 15, are addressed exactly to this algorithm due to our
notation of a basic algorithm in Sec. 5.1.

The following Alg. 7 combines Alg. 6 (for obtaining the feasible
domain) with Alg. 3 of Ch. 3 (Hansen’s basic algorithm for solving the
global unconstrained case). Since Alg. 6 as well as Alg. 3 of Ch. 3 use
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the exhaustion principle, Alg. 7 does as well. Alg. 7 is, however, not
constructed by appending Alg. 3 of Ch. 3 to Alg. 6. Instead the steps of
the two contributing algorithms are merged together in order to avoid
repeated processing of one and the same box. The main features of
Alg. 7 are:

e It uses subdivision (exhaustion principle) for the localization of
the global minimizers and global minimum (Step 6 of Alg. 7).

e It discards both feasible and infeasible boxes using the midpoint
test (Step 11 of Alg. 7).

e It uses interval evaluation of the constraints to discard infeasi-
ble boxes (one constraint violated) or to find feasible boxes (all
constraints satisfied). It only recalculates constraints previously
undecided (Step 8 of Alg. 7).

The aim of Alg. 2 is to determine X*, the set of global minimizers,
and f*, the global minimum of the constraint problem (5.3). As we can
see in Sec. 5.7, Alg. 7 has X* and f* as solution set under very mild
conditions, that is, f, g, and h are continuous, the inclusion functions
F, G, and H of f, g, and h resp. satisfy the usual contraction conditions,
w(F(Y)) = 0, w(G(Y)) = 0 and w(H(Y)) — 0 as w(Y) — 0, and
further, some topological conditions. Practically, Alg. 7 will stop after a
finite number of operations, and X*, f* cannot be reached. In this case,
approximating data (U, 7, f) are produced which have the following
properties:

1

2 —1 Z; where Z; € I(X) for some index [,

4

(1)
2) U
(3) U\ X* is smaller than a given tolerance,
(4) § < f* < f if a solution exists,

(5)

5) The difference f — i (error estimate) is smaller than a given tol-
erance, if D # (), where D denotes the feasible region.
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The boxes Z;, cf. (2), are just the boxes which are in the list at the
termination. Thus, [ is the length of the final list. The value gy arises
from Step 10 of Alg. 7. It is the only lower bound v;, cf. Step 8(b),
guaranteed to be an underestimate of f*. The value f arises from Steps
2 and 8(f). It is the smallest function value of a feasible point which
has been computed. If D = () then f = oo.

If the assumptions mentioned above do not hold, properties (1), (2)
and (4) are nevertheless valid. Also (3) and (5) remain frequently valid.

Points (3) and (5) can be used for termination criteria, as extensively
discussed in the unconstrained case. Possible termination criteria are
thus:

(i) Terminate if f — § < e.

(ii) Terminate if 3!, w(Z;) < € where Z; are the boxes of the final
list and [ its length.

(iii) Terminate if w(Z;) < € where Z; are as in (ii).

Criterion (i) causes a stop if the convergence assumptions are ful-
filled. Criterion (ii) causes a stop if the convergence assumptions are
satisfied and the m-dimensional Lebesgue measure of X* is smaller
than e. Criterion (iii) always works. At numerical computation it can
happen that (i) and (ii) do not work because of an accumulation of
rounding errors. In such cases € has to be chosen larger or (iii) may be
used.

The following basic algorithm for solving the global constraint mini-
mization problem (5.3) has as input data the dimension of the problem,
m, the domain X of the problem, inclusion functions F,G, and H of
f,9, and h, and a feasible point z if available. Finally a relazation
parameter €; > 0 is provided. If ¢, = 0 then problem (5.3) is solved.
If ¢, > 0 then the relaxed problem is solved which arises from (5.3)
by replacing the equality constraints hj(z) = 0, z € X, by inequality
constraints h;(z) € [—e, €],z € X, for j=k+1,...,r, cf. Sec. 5.4.

ALGORITHM 7 The basic algorithm for solving the global constrained
optimization problem.
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Set Y := X.

If a feasible point & is given set f := ubF(Z) else set f = .
Set R=(Ry,...,R,) :=(0,...,0); set y :=1bF(Y).

Initialize list L .= ((Y,y, R)).

Choose a coordinate direction v parallel to which Y1 X --- X Y,

has an edge of mazimum length, i.e. v € {i: w(Y) =w(Y;)}.

Bisect Y normal to direction v, getting boxes Vi,V, such that
Y=V ul.

Remove (Y,y, R) from the list L. while retaining R.
Forj=1,2

(a) Set R = (R],...,R}) :=R.
(b) Calculate F(V;) and set v; = IbF(V}).
(¢) If f < w; then go to (h).
(d) Fori=1,2,...,k if Ri =0 then
i. Calculate G;(V;).
w. If G;(V;) > 0 then go to (h).
. If G;(V;) <0 then set R! := 1.
(e) Fori=k+1,k+2,...,7 if R; =0 then
i. Calculate H;(V}).
w. If 0 & H;(V;) then go to (h).
. If Hi(V;) C [—€1, €] then set R} :=1.

(f) If RI = (1,...,1) then set f := min(f,ubF(c;)) where c; =
mid V.

(g9) Enter (V;,v;, R?) onto end of list.
(h) End (of j-loop).

9. If list L. is empty then terminate with output:

e D =10 (no feasible point).
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10.

11.

12.
13,
1.
15.

Ch. 5: Constrained Optimization

Choose a triple (Y, 7, R) from the list which satisfies § < z for all
triples (Z,z, R).

(Midpoint test). Discard all triples (Z, z, R) on the list that satisfy

<z

Denote the first pair of the list by (Y,y, R).
If termination criteria hold go to 15.

Go to 5.

There are two possibilities for the boxes Z,...,7Z; on the final
lust:

A: If no flag vector R on the final list is equal to (1,...,1) then
the output 1s:

e [t was not possible to decide whether D (the feasible do-
main) is empty or not.
e If it is the case that D # () then

X*CDC LlJ Z;,
i=1
y<f
B: If at least one flag vector R is (1,...,1) then the output is:
e DA
o X*C Ué:1 Z;
ey fr<f.

16. End.

If the number of indeterminate boxes does not shrink during the
continued course of the algorithm and if the difference f — § does not
decrease, it is likely that some region is left for which it cannot be
decided whether it is feasible or not in spite of the repeatedly executed
bisections. These phenomena are mainly due to the geometric shape of
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D and they will almost always occur if equality constraints are involved
in the optimization problem.

By assigning a positive value to the relaxation parameter €; results
may be obtained that might be useful for the user. In this case one must
again be aware that the solutions refer to the relaxed and not to the
originally posed problem. Nevertheless such solutions are frequently
more helpful than results which are too far from the correct solution to
be realistic.

Therefore we recommend to incorporate the ezxistence test described
in Sec. 5.4 whenever possible. It is reasonable to submit the box Y to
the test or another box Z having a low value z = 1bF(Z). If the test
confirms the existence of a feasible point in a box Z then the value

ubF(Z)
is a reliable upper bound of f* and appropriate for updating f by
F = min(f, F(2)).

The test and the subsequent updating are best inserted between Steps
10 and 11 of the algorithm. The midpoint test (Step 11) following the

test can then already use the hopefully improved value f.

If the existence test is applied periodically, convergence can be ob-
tained even though the conditions for convergence, cf. Sec. 5.7, do not
hold.

5.6 Optimization Problems with Inexact
Data

Frequently, the functions f, g, and h which occur in problem (5.3) can-
not be given exactly. This may be the case when they originate from
observations, measurements, physical experiments, or even from pre-
vious numerical computations. For example, if the earth acceleration,
light velocity, etc. are part of such functions, the function values will
not be real numbers but tolerances of real numbers. This means that
the function values are intervals, a situation which may arise for all
functions involved in (5.3).
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In this section we show how one can solve such ill-posed problems
and subordinate them to our general approach for solving (5.3). See
also Hansen (1984).

Our inexactly posed problem is the following: Solve (5.3), that is,
solve

Ixrél)l(lf(l‘) subject to g(z) < 0,h(z) =0

where f, g, and h are not exactly known. The assumption is that instead
of f,g and h tolerance functions

p: X =>Ly: X ->TFand y: X - TF
are known where

f(z) € ¢(z), g(x) € ¥(z) and h(z) € x(z)

forall z € X.

Certainly, owing to the ill-posed problem statement, an exact solu-
tion cannot be expected even with an ”ideal” algorithm. Since, how-
ever, ¢,% and x act in some manner as inclusion functions for f,g,
and h one can apply the logical relationships between functions and
inclusion functions as in the previous sections. Thus, if x € X and if

ubip(z) < 0, x(z) = 0
then z is feasible (with respect to problem (5.3), naturally). If

Iby;(z) >0 forsomei=1,...,k or
0 ¢ xi(z) forsomei=k+1,...,7

then z is infeasible. If z satisfies none of these conditions then a de-
cision as to whether x is feasible or not is not possible, and x remains
indeterminate.

In order to make the ill-posed problem accessible to Alg. 6 and Alg.
7, we need inclusion functions F, G, and H for ¢, v, and x. This means
that

Ogp(Y) C F(Y), Op(Y) CG(Y), Ox(Y)C H(Y)

for any Y € I(X). This implies that F,G, and H are also inclusion
functions for f, g, and h and the methods and algorithms of this chapter
can be applied directly.
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That is, if Alg. 6 is applied to X, F, G, and H, then D or inclusions
U of D will be produced. Also the results are possible that no feasible
point exists or that a decision whether a feasible point exists cannot
be given and an inclusion for the eventually existing feasible set D is
given. Analogously, if Alg. 7 is applied.

Since ¢(z) C F(x), etc., for z € X, which means that, in general,
w(F (X)) > 0 even though w(Y) = 0 for Y = z, the convergence
conditions w(F(Y)) — 0 as w(Y") etc. will not be satisfied, cf. Sec. 5.7.
Thus, the feasible set D or f* and X* cannot be approximated as well
as one would have wished.

5.7 Convergence Properties

In this section the mathematical background for Alg. 6 and Alg. 7 is
given. We supply sufficient conditions under which the solution set of
Alg. 6 is D, the set of feasible points of the global constraint optimiza-
tion problem, and under which the solution set of Alg. 7 is the set of
global minimizers, X*, and the global minimum, f*, of problem (5.3).
The accelerating devices of the following sections have no influence on
the solution sets of the algorithms.

The main assumptions we need are the contraction properties of the
inclusion functions in the same manner as in the unconstrained case. If
again F) G and H are the inclusion functions of f, g, and h, as defined
in (5.3), we consider the following assumptions,

w(F(Y)) > 0as w(Y) — 0 for Y € I(X), (5.4)

w(G(Y)) =0, wHY)) »0asw(lY)—>0forY e I(X). (5.5)

(5.4) implies the continuity of f, and (5.5) implies the continuity of
g and h.

Notation like U, — D means d(U,, D) — 0 where U, and D are
non-empty compact sets and d is the Hausdorff-metric of compact sets;
see Sec. 3.2.

Let us start with Alg. 6. We use the notation of Sec. 5.3 but add
subscripts where necessary. Let Z,i,..., Z,, be the boxes which are
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in L,, that is, the list at the n-th iteration. Let

We then have the following theorem.

THEOREM 14 Let Alg. 6 be applied to the bor X, the relaration
parameter e, = 0 and the inclusion functions G and H of g and h. If

the contraction assumptions (5.5) hold, then the sequence (U,) forms a
nested sequence and N>, U, = D which means that U, — D if D # ().

Proof. 1t is obvious that (U,) is nested. In order to get a contra-
diction for the remaining assertion we assume that the point z € X
is infeasible but that x € U, for all n. Let W, be one box of the list
L, that contains x. Since the bisection of a box is done normal to
the direction of a largest edge, one gets w(WW,) — 0 as n — oo, cf.
Lemma 1 of Ch. 3. This implies W,, — = as n — oo. Since g;(z) > 0
for some i = 1,...,k or h;(x) # 0 for some i = k+ 1,...,r, we have
G;(W,) — g¢i(x) resp. H;(W,) — h;i(z) as n — oo due to (5.5). This
means that for some n,1bG;(W,) > 0 resp. 0 ¢ H;(W,,) such that the
algorithm recognizes W, as infeasible and deletes W,,. Thus W,, cannot
be a box of list L,. This gives the contradiction. O

Let us now investigate how Alg. 7 works. Again let Z,;,..., Z, be
the boxes of list L,, and U,, = Ué’;l Zn; where [, is the length of L,;; see
Sec. 5.5. Let ¢, be the current value of 7 in list L,,, and let f,, be the
current value of f in list L,,.

The convergence properties of Alg. 7 depend on the possibility of
applying the midpoint test as often as desired in order to exhaust all
points which are not global minimizers. This leads to the following
assumption which is mainly of a topological character:

There exists a sequence of points x,, lying in
the interior of the feasible domain D and (T)
converging to some global minimizer z* € X*.

It is certainly difficult to verify (T) a priori since neither D nor X*
is known. The disadvantage of such assumptions is, however, shared
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by convergence proofs of other, also non-interval, algorithms for global
constraint problems. A sufficient condition for (T) is, for example, that
D # () is connected and that the closure of the interior of D contains
D. Another sufficient condition is that at least one global minimizer
lies in the interior of D, etc.

The following theorem discusses the convergence properties of Alg. 7.

THEOREM 15 Let Alg. 7 be applied to the boxr X, the relaration
parameter e, = 0 and the inclusion functions F,G, and H of f, g, and
h, resp. Let the contraction assumptions (5.4), (5.5) and condition (T)
be satisfied. Then the sequence (U,,) is nested and N, U, = D which
means that U, — D. Furthermore, 3, — f* with y, < f* and f, \( f*
as n — 0.

Proof. 1t follows directly from the construction of Alg. 7 that (U,)
is nested and that U, O D for all n. It is further obvious that, for any
n’

Un < f7, (5.6)
5 < fa, (5.7)

Since the bisection of the boxes is executed in the same way as in
the unconstrained case we have

w(Y,) = 0 as n — oc;

see proof of Lemma 1 of Ch. 3. Furthermore since w(Y;) > w(Z,;) for
1=1,...,10,, we get

wW(Zpi) — 0 as n — o0 (5.9)

independent of .
We will first show that

Un = [ (5.10)

Now, g, = 1bF(Y,) < zy; for alli =1,...,1,. Since w(Y,) — 0 due

to (5.9), it follows from (5.4) that w(F(Y,)) — 0. Since f* € F(Y,) we
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get (5.10). We justify the use of f* € F(Y,) later. If this formula was
not true then we would have gy, — f° < f* for some f° € R because
of (5.6). This would imply F(Y;) — f° which would finally mean

ubF(Y,) < f*, that is, ¥, would be infeasible for sufficiently large n.
Since w(G(Y,)) — 0 as well as w(H (Y,)) — 0 and since f is continuous
which is implied by (5.4), ¥,, would have been discarded for large n by
the exhaustion of infeasible domains. This proves (5.10). Note that for
the proof of (5.10) the midpoint test and thus assumption (T) are not
needed.
We show next that
Ja NS

Owing to (5.8) it suffices to show that
fo— . (5.11)

Let (x,) be a sequence converging to some z* € X* as is specified by
(T). We can find a subsequence (fx,)%2; of (f)5, that satisfies

n=1 n=1
fr,, < f(xy,) for each n (5.12)

as follows:
Given x,, there are two possibilities: Either

(i) there exists a box Zj, of list Ly, such that z,, € Z;,, and ubG(Z,) <
0,H(Z,) =0 or

(ii) there does not exist such a box as described in (i).

In case (i) we have fy, < 1bF(Z;,) < f(z,) owing to the updating
procedure of f in Alg. 7. In case (i), we consider (5.5) and (5.9) which
implies that a list L, exists such that no box on the list contains z,.
Since x,, is feasible the boxes of the former lists that contained x,, must
have been discarded by the midpoint test, i.e. fx, < f(z,), owing to
(5.8). Thus, in both cases we have shown that

Since z,, — z* we get f(z,) — f* owing to the continuity of f. This
shows, together with f* < fr < f(x,) and (5.8), the assertion (5.11).
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It remains to show that N>, U, = X*. In order to get a contra-
diction let us assume that, for some x ¢ X*, we have = € U, for all
n. This means that for any n a box Z, belonging to a list L, exists
with z € Z,. Since w(Z,) — 0 by (5.5), we get Z, — x and further,
F(Z,) = f(x). Since f, \( f* and f(z) > f*, the boxes Z, are thus
discarded for large n by the midpoint test. This gives the contradiction.
O

Remarks. (1) The convergence property
Un /7

does not depend on the midpoint test and hence on (T). Only the
contraction assumptions (5.4) and (5.5) are necessary for the proof.

(2) If the optimization problem involves equality constraints then
the feasible domain will in general be a hypersurface with an empty
interior with respect to the m-dimensional topology. The condition (T)
therefore does not apply. Accordingly the relaxation is an important
means for reestablishing a reasonable topological situation in the form
of (T). If relaxation is undesirable or not possible then the periodical
application of the existence test will frequently force convergence even
under unfavorable circumstances.

5.8 Accelerating Devices: Overview

The basic algorithm given in Sec. 5.5 may be modified in a variety of
ways by the incorporation of acceleration devices as discussed in the
introduction to this chapter. We distinguish two types of acceleration
devices:

e preprocessing devices,
e internal devices.

The purpose of the preprocessing devices is to prepare a good start-
ing position for the basic algorithm and they are applied to the input
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data before the basic algorithm starts. The internal devices are added
within the iterations of the basic algorithm such that they are called
up repeatedly.

The first preprocessing device is the search for an initial feasible
point. If such a feasible point is known prior to the basic algorithm
(Alg. 7) then the computation will be much more effective. The reason
for this is that the initial minimum function value is then set to the
value of f at the feasible point (or an upper bound of the objective
function at the feasible point - see Step 2 of Alg. 7). This value is
then used in the midpoint test to eliminate boxes that may not contain
any global minimizers thus preventing superfluous processing. If such
a value is not known then the midpoint test cannot be applied.

Finding a feasible point is in itself a nonlinear programming problem
where numerical difficulties may be encountered if the set of constraints
is ill-conditioned. For example, if the constraints are

g(z)=214+0—22<0

and
gg(x) = —.Z'1+5+$2 S 0

then there are no feasible points (z1,22) if 6 > 0, one feasible point
(x1,22) if § = 0, and a continuum of feasible points if § < 0. If |J|
is small or zero then it might be difficult to decide whether a feasible
point exists or not.

For this reason it is recommended that the initial search for a feasible
point be terminated whenever

e a feasible point has been found or
e it has been shown that there are no feasible points or

e it has not been possible to decide whether a feasible point exists
or not, but enough effort has been spent on this initial search.

The reason for terminating the process with an undetermined result
is that although knowledge of an initial feasible point speeds up the
computation it is not essential for the functioning (and correctness) of
Alg. 7.

The precise statement of the search for a feasible point is:
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Given a box X € I™ and constraint functions g, h as in
problem (5.3), find a point € X such that g(Z) < 0 and
h(Z) = 0 or prove that such a point does exist in some
subbox Y of X.

There are a number of techniques for computing such a point (if
it exists). Some of these techniques which fit nicely into our interval
arithmetic approach are discussed in the sequel depending on the dif-
ferentiability of the objective function and the constraints. The value
at the feasible point will be denoted by f and it may be used directly
in the midpoint test or may be used as a starting point for the devices
mentioned in the next paragraph.

The second set of preprocessing devices consists of techniques for
finding new feasible points # with f(#) < f in order to increase the
effectiveness of the midpoint test. For this purpose we choose a few
methods for finding a local minimizer for unconstrained optimization,
as in Ch. 3, in the sequel. These methods typically determine a di-
rection and a steplength from an initial point with the hope that the
new point will provide a smaller function value. For the purpose of
remaining in the feasible domain the methods are enhanced with a test
for feasibility. If the new point is infeasible the stepsize is reduced in
an iterative manner using a bisection procedure.

The internal devices include the procedures used to improve fea-
sible points in order to enlarge the effectiveness of the midpoint test
as in the preprocessing case. Tests for discarding subboxes directly
(monotonicity test, interval Newton method) are counted as internal
devices.

We further distinguish between

e local devices,
e global devices.

The local devices use point information and consist of classical non-
interval procedures (search methods, gradient methods, Newton-like
methods). They are used to improve the feasible points locally, that
is, in a neighborhood of some feasible point already known. The global
devices use the whole information available in a current subbox and
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thus they are interval procedures. They are mainly used to discard
subboxes directly or to determine all local and hence the global min-
imizers (interval Newton method). It is typical of the global devices
that they can only be merged with the basic algorithm if the area to
which they are applied is feasible.

Several devices were already treated in Chs. 2 and 3 such that our
representation can be shortened in these cases.

5.9 Devices for Functions without Differ-
entiability Properties

It is assumed here that both the objective function f and the constraint
functions g, h are nonsmooth or not even continuous. This precludes
the use of simple linearization techniques and all the more popular
enhancements are therefore not available. If either f or g and h are
nonsmooth one may combine appropriate devices from the following
overview.

(A) Finding a feasible point

In the absence of smoothness of the constraint functions it is reason-
able to focus on exhaustion techniques in connection with a branching
— but no bounding — principle and the use of inclusion functions for the
constraint functions.

We therefore propose a preprocessing exhaustion algorithm for find-
ing a feasible point. It is applied to the box X and the constraint
functions g and h of problem (5.3). This algorithm is positioned be-
fore the basic algorithm (Alg. 7). The preprocessing algorithm works
in the following manner: By repeated bisection of the indeterminate
boxes (these are the boxes which have not been computationally rec-
ognized as feasible or as infeasible) and the deletion of infeasible boxes
the chances of finding a feasible point increase. In contrast to Alg. 6
we are not interested in having convergence to the feasible domain of
the given problem; instead we wish to pick out just one feasible point
as soon as possible.
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Technically, this algorithm maintains a list of indeterminate boxes
starting with a list of one box, the problem area X. With each box
the flag vector R as introduced for Alg. 6 is attached. R keeps track
of which constraints are satisfied. The computation is finished when a
feasible point is found or when it does not make sense to continue the
iterations, cf. the termination criteria discussed below.

In order to reach a feasible point as fast as possible we search for it
in boxes where the chances are optimal for finding one. The chances are
obviously best in boxes which satisfy a maximal number of constraints,
and if there are several boxes with the same maximal number we take
that box which violates the remaining constraints minimally. This is
the branching idea which we will pursue. It can be realized in the
following manner:

A counter x keeping track of the number of satisfied constraints is
maintained for each box. If several boxes have the same number of
satisfied constraints then a measure due to Hansen-Sengupta (1983)
will decide the priority and is computed as follows. If the current box
is Y then for each ¢ with R; = 0 (meaning Y is indeterminate)

o = UbGZ(Y)

= w(GY))

. ubHy(Y)
P = w(E(Y)

is computed. The measure « for the box Y is now defined as the
maximum of the computed values o; and ;. A box with the smallest
« is selected among the boxes with the same maximum « for further
processing.

Each time a box is chosen from the list L for processing, a test is
made to see if the midpoint is feasible. If so, the algorithm terminates
with this point and the list of indeterminate boxes as output data.

Further, an input parameter €5 is provided. Its value may be chosen
with the intention that boxes of width less than e; are not to be sub-
divided further. The reason for this is that a box may contain points
that satisfy k constraints for some x < r, but never satisfy further con-
straints, which means that the subdivisions should be stopped for that
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box if the width is too small. The box will be processed further in the
main algorithm in any case such that no information is lost.

The algorithm also terminates if a prescribed number of iterations
has been reached. The reason for this is that the main algorithm will
continue the processing in a different manner and possibly report the
case A in Step 15 of Alg. 7.

The algorithm will therefore be terminated if either

e a feasible point has been found or

e a limiting number of iterations has been reached or

e the boxes of the list have width smaller than some value €;, as

discussed above.

The input parameter ¢; has the same meaning as in Algs. 6 and 7
and one has to set €, = 0 if completely reliable results are required.
This results in the following algorithm.

ALGORITHM 8 Preprocessing for getting a feasible point for the
global constrained optimization algorithm.

1.

2.

3.

SetY := X.
Set R=(Ry,...,R,):=(0,...,0), k=0, a =0.
Initialize list L .= ((Y, R, k, ).

Choose a coordinate direction v parallel to which Y1 X --- x Y,
has an edge of mazimum length, i.e. v € {i: w(Y) = w(Y;)}.

Bisect Y normal to direction v getting boxes Vi, Vo such that' Y =
ViuVs.

Remove (Y, R, k, ) from the list L. while retaining R and k.
Forj=1,2

(a) Set R = (R],...,R}) :=R, k; = k.
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10.
11.

(b) If w(V;) < ey then set aj = —1 and k; = 0 and enter
(Vj, R, kj, ;) onto end of list and go to (g).
(c) Set a:=0.

(d) Fori=1,2,...,k if R; =0 then
i. Calculate Gi(V;).
w. If G;(V;) > 0 then go to (g).
iii. If Gi(V;) < 0 then set Rl :=1 and k; := r; + 1.
ubG;(Y) )
w(Gi(Y))™
(e) Fori=k+1,k+2,...,7 if R; =0 then
i. Calculate H;(V}).
w. If 0 ¢ H;(V;) then go to (g).
iii. If Hy(V;) C [—€1, €1 then set R :==1 and k; = k; + 1.

w. If sz = 0 then set o := max(a, %)

w. If R = 0 then set a := max(a,

(f) Enter (V;, R?, k;, ) onto the list as the first element if r; >
K; otherwise enter onto list in order of decreasing k. If sev-
eral elements on resulting list have same k then order these
with respect to decreasing c.

(9) End (of j-loop).

If list L is empty then terminate with output:
e D =10 (no feasible point exists).

Denote the first pair of the list by (Y, R, k, @).

Set c=mid Y.

If c s feasible then terminate with output:
e c is feasible.

or if « = —1 then terminate with output:

e No feasible point found and all boxes on list L have width
less than es.
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or if iteration limit exceeded then terminate with output:
e No feasible point found and iteration limit exceeded.

12. Go to 4.
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(B) Improving the feasible point

We propose here the same primitive search procedure as in the un-
constrained case, cf. Sec. 3.12. The starting point is either the midpoint
of the current (feasible) box Y or the feasible point produced by the
preprocessing algorithm for finding a feasible point. Again, it does not
matter if the current box Y is left by the search, but we are not allowed
to leave the feasible domain D C X. In the case where the search in
a certain direction leads outside of D one can repeat the search a few
times in this direction with reduced steplengths.

As in the unconstrained case, subgradient or bundle methods etc.
are available if f is locally Lipschitz in D.

(C) Further improvements

The only advice we can give is to invest as much work as possible
in order to construct a good inclusion function.

If, however, f is locally Lipschitz the monotonicity test is applicable
and the meanvalue form can be chosen as an inclusion function for F.
The latter is also possible for g and A when these functions are locally
Lipschitz.

5.10 Devices for C!' Functions

It is now assumed that the objective function f or the constraints g and
h are C! functions. This opens up the possibility of using a number of
techniques based on linearization.

(A) Finding a feasible point

Since the constraints may be linearized it is possible to use an ex-
tension of the usual Newton method for finding zeros of a nonlinear
equation to search for a feasible point. This extension was suggested
by Robinson (1972) and Daniel (1973) and it results in the following
method.
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The Robinson-Daniel Method

1. Choose xy € X.
2. Forn=0,1,2,...

(a) Choose xny1 to minimize ||y — x,|| over the set S, of points
y satisfying

9(wn) + Jg(fn)(y —zp) <
h(xn) + Jn(@0)(y — 20) =

(b) If x,1 is feasible then go to 3.
(¢) If other terminating conditions hold then go to 3.

3. End.

The norm used in the minimization procedure is the Euclidean
norm. With this assumption a unique solution x,.; exists since S,
is defined via linear equalities and linear inequalities, provided S, # §.
The finding of a feasible point is thus referred to the solving of a se-
quence of so-called convez-simplex problems (c.f. for instance Zangwill
(1969)). Such problems are reduced to linear programming problems
via the linearization of the convex objective function ¢(y) = ||y — .||

Another approach which is quite attractive because of its simplicity
is the approach via a smooth penalty function where the objective func-
tion part is dropped, cf. Sec. 1.4. In the simplest case one computes
one zero I of the function

k

(z) = Y (max(gi(),0)° + 3 (ha(a))?

i=1 i=k+1

using Newton’s method or related methods. This zero 7 is certainly a
feasible point. If several attempts to get a feasible point with a non-
interval Newton algorithm fail, Alg. 8 together with the existence test
(cf. Sec. 5.4 and 5.5) has the best chance of finding a feasible point
or to prove its existence in a subbox sufficiently small. In general,
a failure of local methods to get a feasible point will be observed if
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equality constraints are involved in the optimization problem (5.3). In
this case it will also be difficult to improve feasible points with local
methods since these are based on linearizations which will lead out
of the feasible domain. This makes the repeated application of the
existence test necessary, which may prove the existence of improved
feasible points.

Nevertheless, trouble as described in the previous paragraph can
be avoided if the whole optimization problem (5.3) is reduced to the
unconstrained optimization problem (3.1) by using the penalty model
approach of Sec. 1.4.

(B) Improving a feasible point

As in the unconstrained case we propose gradient based methods
for finding a lower function value. One only has to take care that the
feasible domain D is not left when iteratively constructing the next
point. Reducing the stepwidth is a simple means for staying within
D. The Fletcher-Reeves algorithm, for instance, is then modified as
follows:

The Fletcher-Reeves Method

1. Given xy € D and set pg := —f'(xy).
2. Forn=0,1,2,...
(a) Let p, be a solution of the problem m>1(1)1 f(zn — ppn).
p>

(b) Set xpi1 = Ty + PrPn-
(¢) If x,41 is feasible then go to (e).
(d) If xp41 is infeasible then set p, = pn/2 and go to (b).

! 2
(e) Set ppy1:= —f"(Tnt1) + Bupn where B, = %

(f) If f'(xns1) is small enough then go to 3.

3. End.
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Certainly, Step 2(d) should be executed only a few times.
(C) Further improvements

The meanvalue form is suggested for all kinds of inclusions needed
whenever the box width is small. Tt is applied independently of the
feasibility of the boxes since good inclusions are required in all cases.

The monotonicity test is applicable for feasible boxes only. There
is no need to apply it to infeasible boxes since infeasible boxes are
discarded anyway. Applying this test to indeterminate boxes can lead to
wrong results since a strictly monotone f can take its global minimum
when descending from a feasible part to an infeasible part.

5.11 Devices for C? Functions

First of all, the techniques for C! functions are available and they can
be combined with the techniques of this section. Second, if equality
constraints occur in the optimization problem (5.3), the best way to
solve (5.3) is to apply the interval Newton method to the Fritz John
or to the Kuhn-Tucker conditions. This approach is to be combined
with the midpoint test in order to exclude solutions of these conditions
which are not global minimizers. The interval Newton method will
produce subboxes Y of X, the union of which contains the solutions.
In order to guarantee the existence of solutions in the individual boxes
the existence test of Sec. 5.4 and 5.5 may be applied to the boxes Y
singly. Thus one obtains comparative values which are necessary for
the midpoint test. The existence test needs no extra numerical effort
since the data which are involved in the test are a by-product of the
iterations of the Newton algorithm.

The first to apply the interval Newton method to the John condi-
tions were Hansen-Walster (1987b). They report that a very effective
procedure results, which is superior if the global minimizers are edge
points of the feasible domain or near the edge.

If equality constraints are missing or if it is preferred to solve the
problem (5.3) in a relaxed manner, cf. Sec. 5.3, the following devices
are useful:
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(A) Finding a feasible point

There are several possibilities for finding a feasible point:

If the constraint functions are not too involved then the solving
of the Kuhn-Tucker or Fritz John conditions is promising, when the
objective function f is set as identically zero, cf. Sec. 1.3.

For example, owing to the theory of Lagrangian multipliers, each
feasible point solves the Fritz John conditions, that is, is a solution of
the equations (1.2) where f' = 0.

Newton-like methods may be used to solve these equations. Cer-
tainly they can fail. In this case we do not recommend the interval
Newton method since the organizational effort is too high, and it would
be better if interval Newton methods are used to solve the Fritz John
conditions with the original objective function f and, not as we do here,
with vanishing f.

If f, g and h are not too complicated one would also apply the
local Newton method to the complete John conditions to get a local
minimizer. Then one can skip the ”improving the feasible point” part
since nothing could be improved locally.

If one insists that a feasible point should be found while not wishing
to use interval methods then one should consider Schnabel’s (1982)
paper where an interesting method for C? functions is developed.

(B) Improving a feasible point

Typically, Newton’s method for obtaining a local minimizer or one
of its variants may be used. The advantage of these methods is that
both a direction and a displacement are computed directly and may
be used immediately without further calculations if the new point is
feasible. A further advantage is the high rate of local convergence.

The Newton method for improving a feasible point
1. Given xq (feasible).
2. Forn=0,1,2,...

(a) solve f'(xn) + f"(xn)(Tnt1 — xn) = 0 with respect to Tpy1.
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(b) If x4 is feasible go to (d).

(c) If x,11 is not feasible then set x,1 = Ty + (Tpi1 — Ty) /2
and go to (b).

(d) End (of the n-loop).

If, for some n, a certain number of stepwidth reductions in (c) is not
successful then the computation should be stopped. One may also stop
the computation if it turns out that the z,,’s tend to a local maximizer
by checking the function values f(z,). Further if zq is not close to a
local minimizer the method can encounter considerable difficulties.

(C) Further improvements

Best results have been obtained if — as in the unconstrained case —
each iteration of the basic algorithm was combined with just one itera-
tion of the interval Newton method when the current box was feasible.
As mentioned in (B), this approach is slow if the global minimizers are
near the edge of the feasible domain. In this case the approach via the
Fritz John conditions is preferable.

5.12 Numerical Examples

Example 1. (Levy-Gomez (1985), p. 243, Problem 2). We consider
the two-dimensional problem

minimize f(x) := 0.1(z3 + x3)

s. t.
g1(z) = 2sin(27zy) — sin(4rz1) <0

over the domain ([—1, 1],[—1, 1])¥. The problem has at least 24 local
minima. The feasible domain is also not connected. There is exactly
one global minimizer z* = (0,0)” with f(z*) = 0.

The problem was solved using the basic algorithm Alg. 2 for the
constrained problem. The inclusions for f and g; were computed using
natural interval extensions.
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The input data were:

X = ([-1, 1],[-1, 1T as starting domain,

e=F—-4 as termination parameter (when alle
boxes of the list have a width less than
¢, the computation stops).

After 175 iterations of Alg. 2 the computations terminated with a
lower bound of f* of —3.7252F — 10 and an upper bound of 1.8626F —
10. The global minimizer was included in 4 boxes whose union was
([-.6104E — 04, .6104E — 04], [—.6104E — 04, .6104F — 04])”.

The algorithm required N = 686 inclusion function evaluations
where 415 evaluations were used to construct inclusions for the objective
function and 271 were used to construct inclusions for the constraint
function.

By comparison, the tunnelling algorithm in Levy-Gomez (1985) re-
quired Ny = 12495 and N, = 16704 where N is the number of objective
function evaluations and N, is the number of constraint function eval-
uations which were needed for 20 runs of this problem. The 20 starting
points were randomly chosen. Let L,(z,u,v) be the derivative of the
Lagrangian function of the problem with respect to z, that is the vector
which occurs as the left-hand side of the first line of (1.4). Then a point
x is accepted as a local minimizer in Levy-Gomez when

Ly (z,u,v) Ly(z,u,v) < 1.0E — 9.

(Originally, Levy-Gomez used an augmented Lagrangian function in-
stead of L. For simplicity, we provide the above acceptance criterion
which does not deviate essentially from the one of Levy-Gomez.)

Example 2. (Levy-Gomez (1985), p. 243, Problem 2). This exam-
ple is Example 1 solved using Alg. 2 with the preprocessing provided
by Alg. 3.

The input data were the same as for Example 1.

After 1 iteration of Alg. 3 a feasible point, the zero vector, was
found. With this initial point Alg. 2 required 114 iterations before
it terminated with a lower bound of f* of 0.0 and an upper bound
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of 1.8626E — 10. The global minimizer was included in 4 boxes whose
union was ([—.6104E—04, .6104E—04], [—-.6104E—04, .6104E—04])7.
The algorithm required N = 351 inclusion function evaluations
where 256 evaluations were used to construct inclusions for the objec-
tive function and 95 were used to construct inclusions for the constraint
function.
Comparison data were given in Example 1.

Example 3. (Levy-Gomez(1985), p. 243, Problem 2). Again we
consider the constrained problem of Exs. 1 and 2. Here, Alg. 2 combined
with the interval Newton method and the monotonicity test was applied
as described on page 195. That is, if the box treated was feasible, each
iteration of Alg. 2 was supplemented by the monotonicity test and by
one iteration of the interval Newton algorithm, as it was the case with
the accelerated treatment of unconstrained problems, cf. page 125 ff.

The input data was the same as for Exs. 1 and 2, with the exception
that, additionally, the algorithm was supplied with one feasible point,
which was already known from Ex. 2.

Alg. 2 required 62 iterations before it terminated delivering about
the same output data as in Ex. 2. The algorithm needed 166 inclusion
function evaluations where 134 evaluations were used to compute inclu-
sions for the objective function and 32 were used to compute inclusions
for the constrained function.

Example 4. (Zowe (1985), p. 350). We consider the following
two-dimensional problem:

minimize f(x) := (21 — 2)* + (22 — 1)?
s. t.

() =22 — 2, <0,
go(z) =21 4+22—2<0
for z € R% The global minimizer is z* = (1,1)? which is an edge

point of the feasible domain. Both constraints are active. The global
minimum is f* = 1.
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We transformed the problem to an unconstrained but nonsmooth
problem by using the penalty function (1.6). This penalty approach
was combined with Alg. 1 in order to discard infeasible areas. Such a
combination makes it unnecessary to use a sequence of penalty factors
pn to get convergence, cf. Sec. 1.4, because Alg. 1 causes the necessary
push of the solution into the feasible domain. The algorithm for un-
bounded domains (Alg. 1 of Sec. 4.2) was then applied, incorporating
the monotonicity test, to enclose the solutions of the problem. As in-
clusion function we took natural interval extensions and, for smaller
boxes, meanvalue forms.

The input data were:

X=R as starting domain,

A=5 as boundary parameters, cf. Sec. 4.2,

e=E—-6 as termination parameter (when alle boxes of the list
have a width less than €, the computation stops),

P =1, 1.1, 2, 10, 100, 1000, 10000 as penalty factors.

The output data are described using

N the number of inclusion function evaluations of (1.6),
N the number of final boxes (they are all of width smaller than
e and their union includes X* = {z*}).

The following results were obtained as a function of the penalty
factor p, where f* was included in an interval of width 5.97F — 7 in
each case:

pl N | Ny

11| 252 3

1.1 1260 3
21340 | 3
10384 | 6
100 | 390 | 6
1000 | 390 | 6
10000 | 390 | 6
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Notation

Rk><l

I{k ::I{kxl

Ikxl

Ilc — Ik><1
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8

|
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Set of reals, 10, 26

Set of non-negative integers, 98

Set of k x [-matrices over R, 32

Set of k-vectors (column vectors) over R, 11, 32

Set of real compact intervals, that is, [a, b], etc.,
27

Set of k x [ - matrices over I, 32
Set of k-vectors (column vectors) over R, 32

Set of all closed intervals (bounded or not), that is,
[a, b] (bounded), [a, 00),(—00, c0) (unbounded),
etc., 137

The two-point compactified real line, 136

Set of all compact intervals over R, for example,
[a, 0o],00 = |00, oo], R = [—00, o], etc., 136

The m-fold topological product of R, 136
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anXn

J?T, XT

Cn

ubA

IbA
ubA

0< A

Notation

{y eI™:Y C D}
{yeT":YCD} ; for DCRm™ 32, 137

{YelI™:Y C D}

Denote both iterates as well as components of z =
(1, x) T or X = (Xy,..., X7, 11

Transpose of x or X, 32

Denotes the components of x in exceptional cases
when misunderstandings with iterates can occur,
59

Class of functions which have a n-th continuous
derivative or partial derivatives. C'-functions are
also called smooth functions, 17

Width of intervals and boxes, 25, 31, 32
Midpoint of intervals and boxes, 25, 31, 32

Left endpoint (lower boundary) of an interval A €
1,31

Right endpoint (upper boundary) of an interval
Acl, 31

Vector of left endpoints of a box A € I™, 32
Vector of right endpoints of a box A € 1™, 32

0<l1bA;,i=1,...,mfor AeI™ 33



Notation

0<A
A< B
A<B

TVy

XVY

f:R™ 5> R

X*
f*
f’(a:) € Rmxl

fll(x) E Rme
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0<1bA;,i=1,...,mfor A €I™ etc., 33
ubA; <1bB;,i=1,...,mfor A,B € I™, 33
ubA; <1bB;,i=1,...,m for A, B € I"™, 33

Smallest interval vector which contains z,y € R™,
34

Smallest interval vector (or interval matrix) which
contains X, Y € I™ (or X,Y € I™*™), 34, 91

Mainly the objective function (function to be min-
imized), 10

Any global minimizer, 11
Set of all global minimizers, 73
Global minimum, 11, 73

Gradient of f at z

) = (2L OF oy
f@) = (@), @) 12
Hessian matrix of f at z
f(z) = 62]"(30) itym y 17
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0f (x)

h:R™ > R'*

Jh(ﬂf)

Df(Y)
f(Y)
Y, - A

d(A, B)

Exk

Notation

Generalized gradient of f at z

0f (@) = ((0f)1(@),- -, (0f )m(2))", 44

Inequality constraints, 7 =1,...,k, 10

Inequality constraint functions (vector notation),
10

= (g1(x),...,q.(z))" Jacobian matrix of g at ,
12

Equality constraints, : =k +1,...,r, 10
Equality constraint functions (vector notation), 10

= (i1 (2), ..., hi(2))" Jacobian matrix of h at
z, 12

Range of f over Y, 34
Natural interval extension of f at Y, 35

Convergence of Y, to A with respect to the
Hausdorff-metric of compact sets, 78

Hausdorff-metric of compact sets, 78, 140
Identity matrix, 19, 56

10+ &, 67, 90



Index

accumulation point of an inter-
val sequence 78

active index set 13

active inequality constraint 11

automatic differentiation 120

bisection strategy 75

bounding principle 77

box 32, 73

branch and bound principle 74

branching principle 77

compactified problem 138

compactified unbounded intervals
135

conjugate gradient methods 20
ff

constraint qualification 13

constraints 10

convergence order 38

convergence order of a set of se-
quences 99

converges arbitrarily slowly 99

convex-simplex problem 191

direct search methods 21

discrete optimization problem 11

distributive law 28

equality constraint functions 161

equality constraints 161

exact penalty function 15
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exhaustion principle 118

factorable programming 120
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feasible point 11
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fundamental property of inter-
val arithmetic 36
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global constrained optimization
problem 161
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tion problem 1
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Hansen’s algorithm 110 ff
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Ichida-Fujii algorithm 108 ff
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inclusion principle of interval arith-
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inclusion principle of machine in-
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indeterminate 165

inequality constraint functions 161

inequality constraints 161

infeasible area 161
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integer optimization problem 11

interval Newton algorithm 52 ff

interval Newton algorithm, one
iteration of 53

interval arithmetic operations 27
ff

interval matrix operations 33

interval variable 34

interval vector operations 33

John criterion 12

Kuhn-Tucker conditions 13

Lagrangian function 13

Lagrangian multiplier 13

leading box 78

leading pair 78

linear interval equation 52

linear optimization problem 10

Lipschitz constant 38
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Lipschitz inclusion function 38

local maximum 12

local maximum point 12

local minimizer 11, 162

local minimum 11

local minimum point 11, 162

local minimum value 11

local optimum 12

machine interval arithmetic 30 ff

machine intervals 136

machine-finite intervals 152

machine-infinite intervals 152

mathematical programming prob-
lem 10

meanvalue form 39

meanvalue form function 39

midpoint 32, 139

midpoint test 108

monotonicity test 44, 122, 146 ff

Moore’s existence test 170

Moore-Skelboe algorithm 77

natural interval extension 36, 151

Newton method 194

Newton’s method 17

Newton’s method for unconstrained

optimization 18
non-wasteful 138
noncompactified unbounded in-

tervals 136
nonlinear programming problem

10
objective function 10, 161
optimality conditions 13 ff
optimization problem 10
order 38
penalty factor 15
point intervals 27
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preprocessing exhaustion algorithm
186

quadratic optimization problem
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quasi Newton methods 19 ff

range 35

recursive differentiation 120

regularity condition 13

relaxation parameter 174

Robinson-Daniel method 191

secant methods 20

steepest descent algorithm 20

steepest descent methods 20 ff

subdistributive law 28

subdivision strategy 75

symmetric interval 30

Taylor form 39

Taylor form function 39

unconstrained minimization 16
ff

unconstrained minimization prob-
lem 16

unconstrained problem 10

variable metric methods 19

width 32, 139

229



	cover
	RatschekRokne2

