
Computing Rigorous Bounds on the Solution of an Initial

Value Problem for an Ordinary Differential Equation

by

Nedialko Stoyanov Nedialkov

A thesis submitted in conformity with the requirements

for the degree of Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

Copyright c� ���� by Nedialko Stoyanov Nedialkov

Abstract

Computing Rigorous Bounds on the Solution of an Initial Value Problem for an

Ordinary Di�erential Equation

Nedialko Stoyanov Nedialkov

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

����

Compared to standard numerical methods for initial value problems �IVPs� for ordi�

nary di�erential equations �ODEs�� validated �also called interval� methods for IVPs for

ODEs have two important advantages	 if they return a solution to a problem� then ���

the problem is guaranteed to have a unique solution� and �
� an enclosure of the true

solution is produced�

To date� the only e�ective approach for computing guaranteed enclosures of the solu�

tion of an IVP for an ODE has been interval methods based on Taylor series� This thesis

derives a new approach� an interval Hermite�Obreschko� �IHO� method� for computing

such enclosures�

Compared to interval Taylor series �ITS� methods� for the same order and stepsize�

our IHO scheme has a smaller truncation error and better stability� As a result� the

IHO method allows larger stepsizes than the corresponding ITS methods� thus saving

computation time� In addition� since fewer Taylor coe�cients are required by IHO than

ITS methods� the IHO method performs better than the ITS methods when the function

for computing the right side contains many terms�

The stability properties of the ITS and IHO methods are investigated� We show

as an important by�product of this analysis that the stability of an interval method is

determined not only by the stability function of the underlying formula� as in a standard

ii

method for an IVP for an ODE� but also by the associated formula for the truncation

error�

This thesis also proposes a Taylor series method for validating existence and unique�

ness of the solution� a simple stepsize control� and a program structure appropriate for a

large class of validated ODE solvers�

iii

Acknowledgements

My special thanks to Professors Ken Jackson and George Corliss� Ken was my su�

pervisor during my Ph�D� studies� He had many valuable suggestions and was always

available to discuss my work� George helped us to get started in this area� read many of

my drafts� and constantly encouraged me� Although he could not be o�cially a member

of my committee� I consider him as such�

I want to thank my committee members	 Professors Christina Christara� Wayne

Enright� Rudi Mathon� and Tom Fairgrieve for their helpful suggestions and prompt

reading of my proposals� Thanks to Professor Luis Seco for his participation as an

external committee member during my senate exam�

I am thankful to my external examiner Dr� John Pryce� His comments and questions

forced me to understand even better some of the issues in validated ODE solving�

I must acknowledge Ole Stauning� Ron van Iwaarden� and Wayne Hayes� Ole and

Ron provided two di�erent interval automatic di�erentiation packages� which helped me

to move on quickly in my software development and numerical experiments� Wayne had

many good comments on the material and the validated solver that I am developing�

The late Professor Tom Hull is an unfading presence in my life�

I am grateful to my spouse Heidi for her belief in me� patience� and support�

My son Stoyan brought happiness to my work� He has already expressed interest in

my thesis� but realizes he must grow up before he understands it�

I am grateful to my parents for encouraging my endless studies�

I gratefully acknowledge the
nancial support from the Department of Computer

Science at the University of Toronto�

iv

Contents

� Introduction �

��� The Initial Value Problem �

��
 Contributions �

��� Thesis Outline �

� Preliminaries �

�� Interval Arithmetic �

�
 Interval Vectors and Matrices ��

�� Interval�Valued Functions ��

�� Automatic Generation of Taylor Coe�cients � � � � � � � � � � � � � � � � ��

� Taylor Series Methods for IVPs for ODEs ��

��� Validating Existence and Uniqueness of the Solution	

The Constant Enclosure Method ��

��
 Computing a Tight Enclosure �
�

��
�� The Wrapping E�ect �

��
�
 The Direct Method �
�

��
�� Wrapping E�ect in Generating Interval Taylor Coe�cients � � � �
�

��
�� Local Excess in Taylor Series Methods � � � � � � � � � � � � � � �
�

��
�� Lohner�s Method ��

v

� An Interval Hermite�Obreschko� Method ��

��� Derivation of the Interval Hermite�Obreschko� Method � � � � � � � � � � ��

����� The Point Method ��

����
 An Outline of the Interval Method � � � � � � � � � � � � � � � � � ��

����� The Interval Method ��

��
 Algorithmic Description of the Interval Hermite�Obreschko� Method � � ��

��
�� Computing the Coe�cients cp�qi and cq�pi � � � � � � � � � � � � � � ��

��
�
 Predicting an Enclosure ��

��
�� Improving the Predicted Enclosure � � � � � � � � � � � � � � � � � ��

��� Comparison with Interval Taylor Series Methods � � � � � � � � � � � � � � ��

����� The One�Dimensional Constant Coe�cient Case�

Instability Results ��

����
 The n�Dimensional Constant Coe�cient Case � � � � � � � � � � � ��

����� The General Case ��

����� Work per Step ��

	 A Taylor Series Method for Validation

��� The Validation Problem ��

��
 Guessing an Initial Enclosure ��

��� Algorithmic Description of the Validation Method � � � � � � � � � � � � � �

 Estimating and Controlling the Excess �	

��� Local and Global Excess ��

����� Controlling the Global Excess ��

����
 Estimating the Local Excess ��

����� Worst Case Example ��

��
 A Simple Stepsize Control ��

��
�� Predicting a Stepsize after an Accepted Step � � � � � � � � � � � � ��

vi

��
�
 Computing a Stepsize after a Rejected Step � � � � � � � � � � � � ��

� A Program Structure for Computing Validated Solutions ��

��� Problem Speci
cation �

��
 One Step of a Validated Method ��

� Numerical Results ��

��� Description of the Tables and Assumptions � � � � � � � � � � � � � � � � � ��

��
 Observed Orders ��

��
�� Nonlinear Scalar Problem ��

��
�
 Nonlinear Two�Dimensional Problem � � � � � � � � � � � � � � � � ��

��� Interval Hermite�Obreschko� versus Interval Taylor Series Methods � � � ��

����� Constant Coe�cient Problems ��

����
 Nonlinear Problems ���

��� Taylor Series versus Constant Enclosure Method � � � � � � � � � � � � � � ���

� Conclusions and Directions for Further Research ���

A Operations for Generating Taylor Coe
cients ���

B A Validated Object�Oriented Solver ���

B�� Objectives �
�

B�
 Background �
�

B�� Object�Oriented Concepts �
�

B�� Choice of Language	 C�� versus Fortran �� � � � � � � � � � � � � � � � � �
�

B���� Software for Automatic Generation of Interval Taylor Coe�cients �
�

B���
 Interval Arithmetic Packages ���

B���� E�ciency ���

B���� Support of Object�Oriented Concepts � � � � � � � � � � � � � � � � ��

B�� The VNODE package ��

vii

B���� Structure ��

B���
 An Example Illustrating the Use of VNODE � � � � � � � � � � � ���

Bibliography ���

viii

List of Algorithms

��� Direct Method �
�

��
 Lohner�s Method �

��� Compute the coe�cients cp�qi and cq�pi ��

��
 Predictor	 compute an enclosure with order q � �� � � � � � � � � � � � � � ��

��� Corrector	 improve the enclosure and prepare for the next step� � � � � � ��

��� Validate existence and uniqueness with Taylor series� � � � � � � � � � � � ��

��� One step of a validated method� ��

ix

List of Tables

��� Approximate values for �p�q� p � �� �� � � � ��� q � fp� p � �� p�
g� � � � � � ��

��� ITS��� and IHO��� �� on y� � �y�� y��� � �� t � ��� �
�� � � � � � � � � � � �

��
 ITS���� and IHO��� �� on y� � �y�� y��� � �� t � ��� �
�� � � � � � � � � � �

��� Error constants and orders of the ITS and IHO methods on y� � �y��
y��� � �� t � ��� �
�� ��

��� ITS��� and IHO��� �� on ���
��� with ���
�
�� � � � � � � � � � � � � � � � � ��

��� Error constant and order of the ITS and IHO methods on ���
��� with

���
�
�� ��

��� ITS���� and IHO��� �� on y� � ���y� y��� � �� t � ��� ���� � � � � � � � � � ��

��� ITS���� and IHO��� �� on y� � ���y� y��� � ����� ����� t � ��� ���� � � � � � ��

��� ITS���� and IHO��� �� on �����
�� y��� � ������T � t � ��� ���� � � � � � � � ���

��� ITS���� and IHO��� �� on �����
�� y��� � ������ ����� ������ �����T � t � ��� ���� ��

���� ITS���� and IHO��� �� on y� � t��� y� � ��� t�e�t� y��� � �� t � ���
��� ���

���� ITS���� and IHO��� �� on y� � t��� y� � �� � t�e�t� y��� � ������� �������

t � ���
��� ���

���
 ITS���� and IHO��� �� on y� � t��� y� � �� � t�e�t� y��� � ������� �������

t � ���
��� QR�factorization� ���

���� ITS���� and IHO��� �� on the two�body problem� constant enclosure method����

���� ITS���� and IHO��� �� on the Lorenz system� constant enclosure method� ���

x

���� ITS���� and IHO��� �� on Van der Pol�s equation� Taylor series for valida�

tion� variable stepsize control� ���

���� ITS���� and IHO��� �� on Sti� DETEST D�� Taylor series for validation�

variable stepsize control� ���

���� TSE and CE methods� ITS method� variable stepsize control with

Tol � ������ ���

���� TSE and CE methods� IHO method� variable stepsize control with

Tol � ������ ���

A�� Number of additions� multiplications� and divisions for computing �f�y��i� �
�

xi

List of Figures

��� Wrapping of a rectangle speci
ed by an interval vector � � � � � � � � � �
�

��
 Local excess in one step of an interval Taylor series method � � � � � � � � ��

��� Wrapping in a local coordinate system ��

��� Worst case of overestimation ��

��� ITS and IHO on y� � �y�� y��� � �� t � ��� �
�� � � � � � � � � � � � � � � � ��

��
 ITS��� and IHO��� �� on ���
��� with ���
�
�� � � � � � � � � � � � � � � � � ��

��� ITS���� and IHO��� �� on y� � ���y� y��� � �� t � ��� ���� � � � � � � � � � ��

��� ITS���� and IHO��� �� on y� � ���y� y��� � �� t � ��� ����� variable

stepsize control with Tol � ������ ��

��� ITS���� and IHO��� �� on �����
�� y��� � ������T � t � ��� ���� � � � � � � � ���

��� ITS���� and IHO��� �� on �����
�� y��� � ���� ��� t � ��� ����� variable

stepsize control with Tol � ������ ���

��� ITS���� and IHO��� �� on y� � t��� y� � ��� t�e�t� y��� � �� t � ���
��� ���

��� ITS���� and IHO��� �� on the two�body problem� constant enclosure method����

��� ITS���� and IHO��� �� on the Lorenz system� constant enclosure method� ���

���� ITS���� and IHO��� �� on Van der Pol�s equation� Taylor series for valida�

tion� variable stepsize control with Tol � ����� ����� � � � � ������ � � � � � � ���

���� ITS and IHO with orders �� �� ��� ���
�� ��� ��� ��� and �� on Van der Pol�s

equation� ���

xii

���
 ITS���� and IHO��� �� on Sti� DETEST D�� Taylor series for validation�

variable stepsize control with Tol � ����� ����� � � � � ������ � � � � � � � � � ���

���� TSE and CE methods� ITS method� variable stepsize control with

Tol � ������ ���

���� TSE and CE methods� IHO method� variable stepsize control with

Tol � ������ ���

B�� Problem classes� ���

B�
 Method classes� ���

B�� The test code� ���

xiii

Chapter �

Introduction

��� The Initial Value Problem

We consider the set of autonomous initial value problems �IVPs�

y��t� � f�y� �������

y�t�� � �y��� �����
�

where t � �t�� T � for some T � t�� Here t� and T � R� f � Ck���D�� D � Rn is open�

f 	 D � Rn� and �y�� � D� The condition �����
� permits the initial value y�t�� to be in

an interval� rather than specifying a particular value� We assume that the representation

of f contains only a
nite number of constants� variables� elementary operations� and

standard functions� Since we assume f � Ck���D�� we exclude functions that contain�

for example� branches� abs� or min� For expositional convenience� we consider only

autonomous systems� This is not a restriction of consequence since a nonautonomous

system of ordinary di�erential equations �ODEs� can be converted into an autonomous

system� Moreover� the methods discussed here can be extended easily to nonautonomous

systems�

We consider a grid t� � t� � � � � � tm � T � which is not necessarily equally spaced�

and denote the stepsize from tj to tj�� by hj �hj � tj�� � tj�� The step from tj to tj��

�

Chapter �� Introduction

is referred to as the �j � ��st step� We denote the solution of ������� with an initial

condition yj at tj by y�t� tj� yj�� For an interval� or an interval vector in general� �yj�� we

denote by y�t� tj� �yj�� the set of solutions

�
y�t� tj� yj� j yj � �yj�

�
�

Our goal is to compute interval vectors� �yj�� j � ��
� � � � �m� that are guaranteed to

contain the solution of �����������
� at t�� t�� � � � � tm� That is�

y�tj� t�� �y��� � �yj� � for j � ��
� � � � �m�

Standard numerical methods for IVPs for ODEs attempt to compute an approximate

solution that satis
es a user�speci
ed tolerance� These methods are usually robust and

reliable for most applications� but it is possible to
nd examples for which they return

inaccurate results� On the other hand� if a validated method �also called an interval

method� for IVPs for ODEs returns successfully� it not only produces a guaranteed bound

for the true solution� but also veri
es that a unique solution to the problem exists�

There are situations when guaranteed bounds are desired or needed� For example�

a guaranteed bound of the solution could be used to prove a theorem ����� Also� some

calculations may be critical to the safety or reliability of a system� Therefore� it may be

necessary or desirable to ensure that the true solution is within the computed bounds�

One reason why validated solutions to IVPs for ODEs have not been popular in the

past is that their computation typically requires considerably more time and memory

than the computation of standard methods� However� now that �chips are cheap�� it

seems natural to shift the burden of determining the reliability of a numerical solution

from the user to the computer�

In addition� there are situations where interval methods for IVPs for ODEs may not

be computationally more expensive than standard methods� For example� many ODEs

arising in practical applications contain parameters� Often these parameters cannot be

measured exactly� but are known to lie in certain intervals� as for example� in economic

Chapter �� Introduction �

models or in robot control problems� In these situations� a user might want to compute

solutions for ranges of parameters� If a standard numerical method is used� it has to

be executed many times with di�erent parameters� while an interval method can easily

�capture� all the solutions at essentially no extra cost�

Signi
cant developments in the area of validated solutions of IVPs for ODEs are

the interval methods of Moore ����� ����� ����� Kr�uckeberg ����� Eijgenraam ����� and

Lohner ���� ����� ����� All these methods are based on Taylor series� One reason for the

popularity of the Taylor series approach is the simple form of the error term� In addition�

the Taylor series coe�cients can be readily generated by automatic di�erentiation� the

order of the method can be changed easily by adding or deleting Taylor series terms�

and the stepsize can be changed without doing extra work for recomputing Taylor series

coe�cients�

Usually� Taylor series methods for IVPs for ODEs are one�step methods� where each

step consists of two phases	 ��� validate existence and uniqueness of the solution with

some stepsize� and �
� compute a tight enclosure for the solution� An algorithm to

validate the existence of a unique solution typically uses the Picard�Lindel�of operator

and the Banach
xed�point theorem� The computation of a tight enclosure is usually

based on Taylor series plus remainder� the mean�value theorem� and various interval

transformations�

The main di�culty in the
rst phase is how to validate existence and uniqueness with

a given stepsize� The constant enclosure method ���� is the most commonly used method

for validation ����� ����� However� the stepsizes allowed by this method are restricted to

�Euler steps�� thus� reducing the e�ciency of any method using it� The main obstacle in

the second phase is how to reduce the so�called �wrapping e�ect�� Currently� Lohner�s

QR�factorization method is the standard scheme for reducing it�

Recently� Berz and Makino ��� proposed a method based on high�order Taylor se�

ries expansions with respect to time and the initial conditions that substantially reduces

Chapter �� Introduction �

the wrapping e�ect �see also ����� Their approach uses Taylor polynomials with real

�oating�point coe�cients and a guaranteed error bound for the remainder term� Then�

the arithmetic operations and standard functions are executed with such Taylor polyno�

mials as operands� thus establishing a functional dependency between initial and
nal

conditions� This dependency can be used to reduce the wrapping e�ect�

��� Contributions

This thesis makes the following contributions to the area of computing guaranteed bounds

on the solution of an IVP for an ODE�

Method Development

� Taylor series has been the only e�ective approach for implementing interval methods

for IVPs for ODEs� We have developed an interval Hermite�Obreschko� �IHO�

method for computing tight enclosures of the solution� Validated methods based on

the Hermite�Obreschko� formula �
��� ����� ���� have not been derived or considered

before� Although explicit Taylor series methods can be viewed as a special case

of the more general Hermite�Obreschko� methods� the method we propose is an

implicit method with predictor and corrector phases�

� We have devised a method for validating existence and uniqueness of the solution

based on the Taylor series approach proposed by Moore ���� and revisited by Corliss

and Rihm ����� While the underlying idea is not new� there has not been an

implementation in the framework of a complete validated ODE solver� with a good

method for computing tight enclosures�

� We suggest a simple stepsize control strategy and a structure of a program for com�

puting validated solutions of IVPs for ODEs� This structure combines algorithms

Chapter �� Introduction �

for validation� computing a tight enclosure� and selecting a stepsize� However� the

methods we propose are still constant order�

Theoretical and Empirical Studies

We have studied and compared� both theoretically and empirically� our new interval

Hermite�Obreschko� method with the Taylor series based interval methods�

� We show that compared with ITS methods� for the same stepsize and order� our IHO

scheme has a smaller truncation error� better stability� and may be less expensive

for many problems� particularly when the code list of f�y� contains many arithmetic

operations and elementary functions�

� We believe that we have made an important step towards a better understanding of

the stability of interval methods for IVPs for ODEs� We show that the stability of

the ITS and IHO methods depends not only on the stability function of the under�

lying formula� as in the standard numerical methods for IVPs for ODEs� but also

on the associated formula for the truncation error� In standard numerical methods�

Hermite�Obreschko� methods are known to be suitable for sti� systems �

�� �
���

����� ����� but in the interval case� they still have a restriction on the stepsize� To

develop an interval method for sti� problems� we need not only a stable formula for

advancing the step� but also a stable associated formula for the truncation error�

� We have shown empirically that a solver with a Taylor series method for validating

existence and uniqueness of the solution can reduce the total number of steps�

compared to the constant enclosure method used in the past�

Software Development

� We have implemented an object�oriented design of a validated solver� called

VNODE �Validated Numerical ODE�� for IVPs for ODEs� This design embod�

Chapter �� Introduction �

ies the current developments in object�oriented technology for numerical software�

The VNODE package incorporates di�erent techniques used in validated ODE solv�

ing in a systematic and �exible way� The structure of VNODE is modular� thus�

allowing us to change the code easily and to experiment conveniently with di�erent

methods�

��� Thesis Outline

An outline of this thesis follows�

Chapter
 contains background material that we need later� We introduce interval�

arithmetic operations on real intervals� interval vectors� and interval matrices� We also

de
ne interval�valued functions� interval integration� and discuss a method for e�cient

generation of Taylor series coe�cients�

In Chapter �� we brie�y survey Taylor series methods for computing guaranteed

bounds on the solution of an IVP for an ODE� We consider the constant enclosure

method for validating existence and uniqueness� explain the wrapping e�ect� and describe

Lohner�s algorithm for computing a tight enclosure of the solution� We also discuss the

wrapping e�ect in generating Taylor coe�cients and the overestimation in one step of

interval Taylor series methods�

In Chapter �� we derive the interval Hermite�Obreschko� method for computing a

tight enclosure of the solution and give an algorithmic description of this method� Then�

we study it theoretically in the constant coe�cient and general cases and compare it with

interval Taylor series methods� We also discuss the stability of these methods�

Chapter � presents a Taylor series method for validating existence and uniqueness of

the solution�

Chapter � discusses estimating and controlling the overestimation of the interval

containing the solution in the methods considered in this thesis and proposes a simple

Chapter �� Introduction �

stepsize control�

Chapter � describes the structure of a program that incorporates algorithms for vali�

dating existence and uniqueness� computing a tight enclosure of the solution� and select�

ing a stepsize�

Chapter � contains numerical results� First� we compare the IHO method with ITS

methods on both constant coe�cient and nonlinear problems� Then� we show numerical

results comparing these methods when the validation phase uses constant enclosure and

Taylor series methods�

Conclusions and directions for further research are given in Chapter ��

Appendix A provides estimates for the number of arithmetic operations required to

generate Taylor coe�cients�

Appendix B presents the design of VNODE� First� we discuss the goals that we have

set to achieve with the design of VNODE� software issues related to the implementation�

and the choice of C�� to implement VNODE� Then� we describe the structure of

VNODE and illustrate how it can be used�

Chapter �

Preliminaries

��� Interval Arithmetic

The set of intervals on the real line R is de
ned by

IR�
�
�a� � �a

� a� j a

� a � R� a

� a

�
�

If a

� a then �a� is a thin interval� if a

� � then �a� is nonnegative ��a� � ��� and if a

� � a

then �a� is symmetric� Two intervals �a� and �b� are equal if a

� b

and a � b�

Let �a� and �b� � IR and 	 � f����
� �g� The interval�arithmetic operations are

de
ned ���� pp� ���� by

�a� 	 �b� � fx 	 y j x � �a� � y � �b�g � � �� �b� when 	 � ��

which can be written in the equivalent form �we omit
 in the notation�	

�a� � �b� �
�
a

� b

� a� b

�
�

�a�� �b� �
�
a

� b� a� b

�
�

�a� �b� �
�
min

�
a

b

� a

 b� ab

� a b
�
� max

�
a

b

� a

 b� ab

� a b
��

�

�a� � �b� � �a

� a�
�
�� b� ��b

�
� � �� �b� �

We have an inclusion of intervals

�a� � �b� �� a

� b

and a � b�

�

Chapter �� Preliminaries �

We also de
ne the following quantities for intervals ����	

� width w ��a�� � a� a

�

� midpoint m ��a�� � � a� a

��
�

� magnitude j�a�j � maxfj aj� ja

jg�

The interval�arithmetic operations are inclusion monotone� That is� for real intervals

�a�� �a��� �b�� and �b�� such that �a� � �a�� and �b� � �b��� we have

�a� 	 �b� � �a�� 	 �b�� � 	 � f���
� �g �

Although interval addition and multiplication are associative� the distributive law

does not hold in general �
� pp� ����� That is� we can easily
nd three intervals �a�� �b��

and �c�� for which

�a���b� � �c��
� �a��b� � �a��c��

However� for any three intervals �a�� �b�� and �c�� the subdistributive law

�a� ��b� � �c�� � �a� �b� � �a� �c� �

does hold� Moreover� there are important cases in which the distributive law

�a� ��b� � �c�� � �a� �b� � �a� �c�

does hold� For example� it holds if �b� �c� � �� if �a� is a thin interval� or if �b� and �c� are

symmetric�

Some other useful results for interval arithmetic follow� For �a� and �b� � IR�

j�a� � �b�j � j�a�j� j�b�j � �
�����

j�a� �b�j � j�a�j j�b�j � �
���
�

w ��a�� �b�� � w ��a�� � w ��b�� � �
�����

w ��a� �b�� � maxfj�a�jw ��b�� � w ��a�� j�b�jg � and �
�����

w ��a� �b�� � j�a�jw ��b�� � w ��a�� j�b�j �
�����

Chapter �� Preliminaries ��

�
� pp� ������� If �a� is symmetric� then

w ��a� �b�� � j�b�jw ��a�� � �
�����

From �
����� and �
������ if �a� is a symmetric interval� then

w ��a� �b�� � w ��a�� �b�� �

for any �a�� with w ��a��� � w ��a���

��� Interval Vectors and Matrices

By an interval vector we mean a vector with interval components� By an interval matrix

we mean a matrix with interval components� We denote the set of n�dimensional real

interval vectors by IRn and the set of n � m real interval matrices by IRn�m� The

arithmetic operations involving interval vectors and matrices are de
ned by using the

same formulas as in the scalar case� except that scalars are replaced by intervals� For

example� if �A� � IRn�n has components �aij�� and �b� � IRn has components �bk�� then

the components of �c� � �A� �b� are given by

�ci� �
nX

k��

�aik� �bk� �

An inclusion for interval matrices �and vectors� is de
ned component�wise by

�A� � �B� �� �aij� � �bij� �for all i� j��

The maximum norm of an interval vector �a� � IRn is given by

k�a�k � max
��i�n

fj�ai�jg �

and of a matrix �A� by

k�A�k � max
��i�n

nX
j��

j�aij�j �

Chapter �� Preliminaries ��

We also use the symbol k�k to denote the maximum norm of scalar vectors� scalar ma�

trices� and functions�

Let A and B � Rn be compact non�empty sets� Let q �A�B� denote the Hausdor�

distance between A and B	

q �A�B� � max

�
max
x�A

min
y�B

kx� yk� max
y�B

min
x�A

kx� yk
�
� �
�
���

The distance between two intervals �a� and �b� is

q ��a�� �b�� � max
�ja

� b

j� j a� bj� � �
�
�
�

and the distance between two interval vectors �u� and �v� � IRn is

q ��u�� �v�� � max
��i�n

fq ��ui�� �vi��g � �
�
���

Let �A� � IR
n�m� We de
ne the following quantities component�wise for interval

matrices �and vectors�	

� width

w ��A�� �

�BBBB�
w ��a���� � � � w ��a�m��

���
���

w ��an��� � � � w ��anm��

	CCCCA �

� midpoint

m ��A�� �

�BBBB�
m ��a���� � � � m ��a�m��

���
���

m ��an��� � � � m ��anm��

	CCCCA �

� magnitude

j�A�j �

�BBBB�
j�a���j � � � j�a�m�j

���
���

j�an��j � � � j�anm�j

	CCCCA �

Chapter �� Preliminaries �

Addition of interval matrices is associative� but multiplication of interval matrices is

not associative in general ���� pp� ������� Also� the distributive law does not hold in

general for interval matrices ���� p� ���� That is� we can easily
nd �A� � IRn�m and �B�

and �C� � IRm�p� for which

�A� ��B� � �C��
� �A� �B� � �A� �C� �

However� for any �A� � IRn�m and �B� and �C� � IRm�p� the subdistributive law

�A� ��B� � �C�� � �A� �B� � �A� �C� �
�
���

does hold� Moreover� there are important cases in which

�A� ��B� � �C�� � �A� �B� � �A� �C�

does hold� For example� the distributive law holds if �bij� �cij� � � �for all i� j�� if �A� is a

point matrix� or if all components of �B� and �C� are symmetric intervals�

Some other useful results for interval matrices follow� Let �A� and �B� � IRn�n� Then

j�A� � �B�j � j�A�j� j�B�j � �
�
���

j�A� �B�j � j�A�j j�B�j � �
�
���

w ��A�� �B�� � w ��A�� � w ��B�� � �
�
���

w ��A� �B�� � maxfj�A�jw ��B�� � w ��A�� j�B�jg � and �
�
���

w ��A� �B�� � j�A�jw ��B�� � w ��A�� j�B�j �
�
���

�
� pp� �
���
��� Let the components of �B� be symmetric intervals� Then

w ��A� �B�� � j�A�jw ��B�� and

w ��A� �B�� � w ��A� �B���

�
�
����

for any �B �� with w ��B ��� � w ��B���

Let �c� � IRn be a symmetric vector �all components of �c� are symmetric intervals��

Then

w

��A� �B�� �c��

�
� j�A� �B�jw��c��

� j�A�j j�B�jw��c�� � w

�A� ��B� �c��

�
� �
�
����

Chapter �� Preliminaries ��

Throughout this thesis� we assume exact real interval arithmetic� as described in this

subsection� In �oating�point implementation� if one or both end�points of a real interval

are not representable �which is often the case�� then they must be rounded outward to

the closest representable �oating�point numbers� Interval arithmetic is often called a

machine� or rounded� interval arithmetic� A discussion of its properties can be found in

�����

��� Interval�Valued Functions

Let f 	 Rn� R be a continuous function on D � Rn� We consider functions whose rep�

resentations contain only a
nite number of constants� variables� arithmetic operations�

and standard functions �sin� cos� log� exp� etc���

We de
ne the range of f over an interval vector �a� � D by

R �f � �a�� �
�
f�x� j x � �a�

�
�

A fundamental problem in interval arithmetic is to compute an enclosure for R �f � �a���

We want this enclosure to be as tight as possible� For example� in our work� we are

interested in f being the right side of a di�erential equation� The naive interval�arithmetic

evaluation of f on �a�� which we denote by f��a��� is obtained by replacing each occurrence

of a real variable with a corresponding interval� by replacing the standard functions with

enclosures of their ranges� and by performing interval�arithmetic operations instead of the

real operations� In practice� f��a�� is not unique� because it depends on how f is evaluated

in interval arithmetic� For example� expressions that are mathematically equivalent for

scalars� such as x�y�z� and xy�xz� may have di�erent values if x� y� and z are intervals�

However� since we are interested in the interval�arithmetic evaluation of f on a computer�

we can assume that f��a�� is uniquely de
ned by the code list� or computational graph�

of f � No matter how f��a�� is evaluated� it follows from the inclusion monotone property

Chapter �� Preliminaries ��

of the the interval operations that

R �f � �a�� � f��a���

If f satis
es a Lipschitz condition on D � Rn� then for any �a� � D�

q �R �f � �a��� f��a��� � c� kw ��a��k �
����
�

for some constant c� � � independent of �a�� where q ��� �� is de
ned by �
�
�
�� ���� p�

��� �
��

Mean�value form

If f 	 Rn � R is continuously di�erentiable on D � Rn and �a� � D� then for any y and

b � �a��

f�y� � fM��a� � b� � f�b� � f ���a����a�� b� �
������

���� p� ���� The expression f�b� � f ���a����a� � b� is called the mean�value form of f �

Mathematically� fM is not uniquely de
ned� but it is uniquely determined by the code

list of f � and the choice of b� If� in addition� f � satis
es a Lipschitz condition on D� then

for any �a� � D�

q �R �f � �a��� fM ��a� � b�� � c� kw ��a��k�

for some constant c� � � independent of �a�� ���� pp� ������� Therefore� the mean�value

evaluation is quadratically convergent in the sense that the distance between R �f � �a��

and fM��a� � b� approaches zero as the square of kw ��a��k� as kw ��a��k approaches zero�

Similar results apply to functions from Rn to Rn�

Integration

Let f 	 D � R
n be a continuous function on D � R and �a� � D� Then�Z 	a

a

f�t�dt � � a� a

�f��a�� � w ��a�� f��a��� �
������

Chapter �� Preliminaries ��

��� Automatic Generation of Taylor Coe�cients

Moore ���� pp� �������� presents a method for e�cient generation of Taylor coe�cients�

Rall ���� describes in detail algorithms for automatic di�erentiation and generation of

Taylor coe�cients� He also considers applications of automatic di�erentiation� includ�

ing applications to ordinary di�erential equations� Two books containing papers and

extensive bibliographies on automatic di�erentiation are ��� and �
���

Since we need point and interval Taylor coe�cients� we brie�y describe the idea of

their recursive generation� Denote the ith Taylor coe�cient of u�t� evaluated at some

point tj by

�uj�i �
u
i��tj�

i!
�

where u
i��t� is the ith derivative of u�t�� Let �uj�i and �vj�i be the ith Taylor coe�cients

of u�t� and v�t� at tj� It can be shown that

�uj � vj�i � �uj�i � �vj�i � �
������

�ujvj�i �
iX

r��

�uj�r �vj�i�r � and �
������

�
uj
vj

i

�
�

vj

�
�uj�i �

iX
r��

�vj�r

�
uj
vj

i�r

�
� �
������

Similar formulas can be derived for the generation of Taylor coe�cients for the standard

functions ���� p� �����

Consider the autonomous di�erential system

y��t� � f�y�� y�tj� � yj� �
������

We introduce the sequence of functions

f ��
�y� � y� �
������

f �i
�y� �
�

i

�
�f �i��

�y
f

�y�� for i � �� �
���
��

Chapter �� Preliminaries ��

Using �
������
���
��� the Taylor coe�cients of y�t� at tj satisfy

�yj�� � f ��
�yj� � yj� and �
���
��

�yj�i � f �i
�yj� �
�

i

�
�f �i��

�y
f

�yj�

�
�

i

f�yj�

�
i��

� for i � ��

�
���

�

where

f�yj�

�
i��

is the �i���st coe�cient of f evaluated at yj� By using �
������
�������

similar formulas for the Taylor coe�cients of the standard functions� and �
���

�� we can

recursively evaluate �yj�i� for i � �� It can be shown that if the number of the arithmetic

operations in the code list of f is N � then the number of arithmetic operations required

for the generation of k Taylor coe�cients is between Nk and Nk�k � ���
� depending

on the ratio of additions� multiplications� and divisions in the code list for f � ���� pp�

������
� �see also Appendix A��

Let y�tj� � yj � �yj�� If we have a procedure to compute the point Taylor coe�cients

of y�t� and perform the computations in interval arithmetic with �yj� instead of yj� we

obtain a procedure to compute the interval Taylor coe�cients of y�t�� We denote the ith

interval Taylor coe�cient of y�t� at tj by �yj�i � f �i
��yj���

Chapter �

Taylor Series Methods for IVPs for

ODEs

In most validated methods for IVPs for ODEs� each integration step consists of two

phases ��
�	

Algorithm I� Compute a stepsize hj and an a priori enclosure �"yj� of the solution such

that y�t� tj� yj� is guaranteed to exist for all t � �tj� tj��� and all yj � �yj�� and

y�t� tj� �yj�� � �"yj� for all t � �tj� tj��� �

Algorithm II� Using �"yj�� compute a tighter enclosure �yj��� of y�tj��� t�� �y����

Usually� the algorithm to validate the existence of a unique solution uses the Picard�

Lindel�of operator and the Banach
xed�point theorem� In Taylor series methods� the

computation of a tighter enclosure is based on Taylor series plus remainder� the mean�

value theorem� and various interval transformations�

We discuss a constant enclosure method for implementing Algorithm I in x���� In

x��
� we present the basis of the ITS methods for implementing Algorithm II� illustrate

the wrapping e�ect� and explain Lohner�s method for reducing it� We also consider the

��

Chapter �� Taylor Series Methods for IVPs for ODEs ��

wrapping e�ect in generating interval Taylor coe�cients and the overestimation in one

step of ITS methods�

Surveys of Taylor series and other interval methods can be found in ���� ����� �����

����� ����� ����� ����� and ����� These papers give a �high�level� description of existing

methods� A more detailed discussion of Taylor series methods can be found in ��
��

��� Validating Existence and Uniqueness of the

Solution	 The Constant Enclosure Method

Suppose that at tj we have an enclosure �yj� of y�tj� t�� �y���� In this section� we consider

how to
nd a stepsize hj � � and an a priori enclosure �"yj� such that for any yj � �yj�

y��t� � f�y�� y�tj� � yj �������

has a unique solution y�t� tj� yj� � �"yj� for t � �tj� tj����

The constant enclosure method ���� pp� ������� ���� pp�
����� for validating exis�

tence and uniqueness of the solution is based on the application of the Picard�Lindel�of

operator

�Ty��t� � yj �

Z t

tj

f�y�s�� ds �����
�

to an appropriate set of functions and the Banach
xed�point theorem�

Theorem ��� Banach
xed�point theorem� Let # 	 Y � Y be de�ned on a complete

non�empty metric space Y with a metric d ��� ��� Let � satisfy � � � � �� and let

d �#�x��#�y�� � �d �x� y� �������

for all x and y � Y � Then # has a unique �xed�point y� � Y �

Let hj � tj�� � tj and �"yj� be such that

yj � ��� hj�f ��"yj�� � �"yj� �������

Chapter �� Taylor Series Methods for IVPs for ODEs ��

�yj � �yj��� Consider the set of continuous functions on �tj� tj��� with ranges in �"yj��

U �
�
u j u � C���tj� tj���� and u�t� � �"yj� for t � �tj� tj���

�
�

For 	j � �� the exponential norm of a function u � C��tj� tj��� is de
ned by

kuk�j
� max

t��tj�tj��

e��j
t�tj�ku�t�k� �

The set U is complete in the maximum norm and therefore in the exponential norm�

By applying the Picard�Lindel�of operator �����
� to u � U and using �������� we

obtain

v�t� � �Tu��t� � yj �

Z t

tj

f�u�s�� ds

� yj �

Z t

tj

f��"yj�� ds

� yj � ��� hj�f��"yj�� � �"yj��

�������

Since v�t� � C��tj� tj��� and v�t� � �"yj� for all t � �tj� tj���� v � U � Hence� if ������� holds�

T maps U into itself�

Let Lj � k�f��"yj����yk � It can be shown that the Picard�Lindel�of operator is a

contraction on U in the exponential norm with 	j � Lj � which implies � � Lj�	j � ��

���� pp� ������ �see also ���� pp�
��
����

Therefore� if ������� holds� and we can compute �f��"yj����y� then T has a unique

xed point in U � This
xed point� which we denote by y�t� tj� yj�� satis
es ������� and

y�t� tj� yj� � �"yj� for t � �tj� tj���� Note that to prove existence and uniqueness of the

solution of �������� we do not have to compute � � � such that the operator T is a

contraction� Note also that in bounding the kth Taylor coe�cient over �"yj� in Algorithm II

�see x��
�� we evaluate f �k
��"yj��� Because of the relation �
���

�� if we cannot evaluate

�f��"yj����y� then we are not able to evaluate f �k
��"yj���

Let hj and �"yj� be such that�

�"y�j � � �yj� � ��� hj�f ��"yj�� � �"yj�� �������

�We use superscripts on vectors to indicate di�erent vectors� not powers�

Chapter �� Taylor Series Methods for IVPs for ODEs
�

Then ������� holds for any yj � �yj�� and ������� has a unique solution y�t� tj� yj� that

satis
es

y�t� tj� yj� � �"yj�

for all t � �tj� tj��� and all yj � �yj�� Furthermore� since f��"y�j �� � f��"yj��� we have

y�t� tj� yj� � �yj� � ��� hj�f��"y
�
j ��

for all t � �tj� tj��� and all yj � �yj��

In �������� we should require �yj� � �"yj� and �yj�
� �"yj�� If �yj� � �"yj�� then �������

becomes

�"y�j � � �yj� � ��� hj�f��yj�� � �yj��

which implies either hj � � or f��yj�� � ��� ��� If none of the corresponding endpoints of

�yj� and �"yj� are equal� the stepsize� hj� can always be taken small enough such that the

inclusion in ������� holds� In some cases� such a stepsize can be taken when some of the

endpoints of �yj� and �"yj� coincide�

The inclusion in ������� can be easily veri
ed� However� a serious disadvantage of the

method is that the stepsize is restricted to Euler steps� even when high�order methods are

used in Algorithm II to tighten the a priori enclosure� One can obtain better methods by

using polynomial enclosures ���� or more terms in the Taylor series for validation ���� pp�

��������� ����� ��
�� We do not discuss the polynomial enclosure method in this thesis�

but propose in Chapter � a Taylor series method for validating existence and uniqueness�

In x���� we show by numerical experiments that our Taylor series method for validation

enables larger stepsizes than the constant enclosure method�

Chapter �� Taylor Series Methods for IVPs for ODEs
�

��� Computing a Tight Enclosure

Suppose that at the �j ���st step we have computed an a priori enclosure �"yj� such that

y�t� tj� �yj�� � �"yj� � for all t � �tj� tj����

In this section� we show how to compute in Algorithm II a tighter enclosure �yj��� � �"yj��

for which y�tj��� t�� �y��� � �yj��� �

Consider the Taylor expansion

yj�� � yj �
k��X
i��

hijf
�i
�yj� � hkj f

�k
�y� tj� tj���� ���
���

where yj � �yj� and f �k
�y� tj� tj��� denotes f �k
 with its lth component evaluated at y�
jl��

for some
jl � �tj� tj���� If ���
��� is evaluated in interval arithmetic with yj replaced by

�yj�� and f �k
�y� tj� tj��� replaced by f �k
��"yj��� we obtain

�yj��� � �yj� �
k��X
i��

hijf
�i
��yj�� � hkjf

�k
��"yj��� ���
�
�

With ���
�
�� we can compute enclosures of the solution� but the width of �yj� always

increases with j� even if the true solution contracts� This follows from property �
�����

applied to ���
�
��

w ��yj���� � w ��yj�� �
k��X
i��

hijw

f �i
��yj��

�
� hkjw

f �k
��"yj��

� � w ��yj�� �

where an equality is possible only in the trivial cases hj � � or w�f �i
��yj��� � ��

i � �� � � � k � �� and w�f �k
��"yj��� � ��

If we use the mean�value evaluation �
������ for computing the enclosures of the ranges

R

f �i
� �yj�

�
� i � �� � � � � k��� instead of the direct evaluation f �i
��yj��� we can often obtain

enclosures with smaller widths than in ���
�
� ����� By applying the mean�value theorem

to f �i
 at some $yj � �yj�� we have

f �i
�yj� � f �i
�$yj� � J

f �i
� yj� $yj

�
�yj � $yj�� ���
���

Chapter �� Taylor Series Methods for IVPs for ODEs

where J

f �i
� yj� $yj

�
is the Jacobian of f �i
 with its lth row evaluated at yj � �il�$yj � yj�

for some �il � ��� �� �l � �� � � � � n�� Then from ���
��� and ���
����

yj�� � $yj�
k��X
i��

hijf
�i
�$yj� � hkjf

�k
�y� tj� tj���

�

�
I �

k��X
i��

hijJ

f �i
� yj� $yj

��
�yj � $yj��

���
���

This formula is the basis of the interval Taylor series methods of Moore ����� ����� �����

Eijgenraam ����� Lohner ���� ����� ����� and Rihm ���� �see also ��
��� Before we explain

how ���
��� can be used� we consider in x��
�� a major di�culty in interval methods	 the

wrapping e�ect�

����� The Wrapping E�ect

The wrapping e�ect is clearly illustrated by Moore�s example �����

y�� � y�

y�� � �y��
���
���

The solution of ���
��� with an initial condition y� is given by y�t� � A�t�y�� where

A�t� �

�B� cos t sin t

� sin t cos t

	CA �

Let y� � �y��� The interval vector �y�� � IR� can be viewed as a rectangle in the �y�� y��

plane� At t� � t�� �y�� is mapped by A�t�� into a rectangle of the same size� as shown in

Figure ���� If we want to enclose this rectangle in an interval vector� we have to wrap it by

another rectangle with sides parallel to the y� and y� axes� This larger rectangle is rotated

on the next step� and so must be enclosed in a still larger rectangle� Thus� at each step�

the enclosing rectangles become larger and larger� but the set fA�t�y� j y� � �y�� � t � t�g
remains a rectangle of the same size� Moore ���� p� ���� showed that at t �
�� the

interval inclusion is in�ated by a factor of e�� � ���� as the stepsize approaches zero�

Chapter �� Taylor Series Methods for IVPs for ODEs
�

-10

-5

0

5

10

-2 0 2 4 6 8 10 12

Figure ���	 Wrapping of a rectangle speci
ed by the interval vector ����� ��� ���� ����T �

The rotated rectangle is wrapped at t � �
�n� where n � �� � � � � ��

Jackson ��
� gives a de
nition of wrapping�

Definition ��� Let T � Rn�n� �x� � IR
n� and c � Rn� Then the wrapping of the

parallelepiped

P �
�
Tx� c j x � �x�

�
is the tightest interval vector containing P �

It can be easily seen that the wrapping of the set fTx� c j x � �x�g is given by T �x�� c�

where
�
T �x�

�
i
�
Pn

k�� Tik �xk��

����� The Direct Method

A straightforward method for computing a tight enclosure �yj��� at tj�� is based on the

evaluation of ���
��� in interval arithmetic� From ���
���� since

f �k
�y� tj� tj��� � f �k
��"yj���

Chapter �� Taylor Series Methods for IVPs for ODEs
�

J

f �i
� yj� $yj

� � J

f �i
� �yj�

�
�i � ��
� � � � � k � ��� and

yj� $yj � �yj� �

we have

y�tj��� t�� �y��� � �yj��� � $yj�
k��X
i��

hijf
�i
�$yj� � hkj f

�k
��"yj ��

�

�
I �

k��X
i��

hijJ

f �i
� �yj�

��
��yj�� $yj��

���
���

Here� �"yj� is an a priori enclosure of y�t� tj� �yj�� for all t � �tj� tj���� �yj� is a tight enclosure

of the solution at tj� and J

f �i
� �yj�

�
is the Jacobian of f �i
 evaluated at �yj�� We choose

$y� to be the midpoint �we explain later why� of the initial interval �y��� Then� we choose

$yj�� � m

�
$yj �

k��X
i��

hijf
�i
�$yj� � hkjf

�k
��"yj��

�
� ���
���

That is� $yj�� is the midpoint of the enclosure of the point solution at tj�� starting from

$yj� For convenience� we introduce the notation �j � ��

�vj��� � $yj �
k��X
i��

hijf
�i
�$yj� � hkj f

�k
��"yj�� and ���
���

�Sj� � I �

k��X
i��

hijJ

f �i
� �yj�

�
� ���
���

Using ���
�����
���� ���
��� can be written in the form

�yj��� � �vj��� � �Sj � ��yj�� $yj�� ���
����

By a direct method we mean one using ���
���� or ���
����� to compute a tight enclosure

of the solution� This method is summarized in Algorithm ���� Note that from ���
���

��
��� and ���
����� $yj�� � m ��vj���� � m ��yj����� This equality holds because the

interval vector �Sj���yj�� $yj� is symmetric�

Chapter �� Taylor Series Methods for IVPs for ODEs
�

Algorithm ��� Direct Method

Input�

��yj �� hj � �yj �� �yj �

Compute�

�vj��� �� �yj 	
Pk��

i�� h
i
jf

�i

�yj� 	 hkj f
�k

��yj ���

�Sj � �� I 	
Pk��

i�� h
i
jJ
�
f �i
� �yj �

�
�

�yj��� �� �vj��� 	 �Sj �
�yj �� �yj��

�yj�� �� m
�vj����
� m
�yj������

Output�

�yj���� �yj���

Computing �Sj�

We show how the matrices �Sj � can be computed ���� Consider the variational equation

%� � J �f � y�%� %�tj� � I� ���
����

It can be shown that

%
i��t�

i!
� J

f �i
� y

�
%�t�� ���
��
�

where f �i
 is de
ned in �
������
���
��� and J

f �i
� y

�
is the Jacobian of f �i
� Then� from

the Taylor series expansion of %�t� and ���
������
��
�� we have

%�tj��� � I �
k��X
i��

hijJ

f �i
� y �tj�

�
� �Remainder Term�� ���
����

Since in ���
�����

I �
k��X
i��

hijJ

f �i
� y �tj�

� � I �
k��X
i��

hijJ

f �i
� �yj�

�
� �Sj� � ���
����

the interval matrices �Sj � can be computed by computing the interval Taylor series ���
����

for the variational equation ���
�����

Alternatively� the Jacobians in ���
���� can be computed by di�erentiating the code

list of the corresponding f �i
� ���� ����

Chapter �� Taylor Series Methods for IVPs for ODEs
�

Wrapping E�ect in the Direct Method

If we use the direct method to compute the enclosures �yj�� we might obtain unacceptably

large interval vectors� This can be seen from the following considerations �����

Using ���
����� we compute

�y�� � �v�� � �S�� ��y��� $y���

�y�� � �v�� � �S�� ��y��� $y��

� �v�� � �S�� ���v��� $y�� � �S�� ��y��� $y���

� �v�� � �S�� ��v��� $y�� � �S�� ��S�� ��y��� $y����

���
����

���

�yj��� � �vj��� � �Sj � ��yj�� $yj�

� �vj��� � �Sj � ��vj�� $yj�

� �Sj� ��Sj��� ��vj���� $yj����

� � � �

� �Sj� ��Sj��� � � � ��S�� ��S�� ��v��� $y���� � � � ��

���
����

where �v�� � �y��� Note that the interval vectors �vl� � $yl �l � �� � � � � j� are symmetric�

and denote them by �
l� � �vl�� $yl� Let us consider one of the summands in ���
����� for

example� the last one�

�Sj � ��Sj��� � � � ��S�� ��S�� �
���� � � � �� ���
����

To simplify our discussion� we assume that the matrices in ���
���� are point matrices

and denote them by Sj� Sj��� � � � � S�� We wish to compute the tightest interval vector

that contains the set�
Sj�Sj�� � � � �S��S�
��� � � � � j
� � �
��

�
�

This set is the same as�
�SjSj�� � � �S�S��
� j
� � �
��

�
�

Chapter �� Taylor Series Methods for IVPs for ODEs
�

which is wrapped by the interval vector

�SjSj�� � � �S�S�� �
�� ���
����

�see x��
���� In practice� though� we compute

Sj�Sj�� � � � �S��S� �
���� � � � �� ���
����

and we can have wrapping at each step� That is� we
rst compute S� �
��� resulting in

one wrapping� then we compute S��S� �
���� resulting in another wrapping� and so on�

We can also see the result of the wrapping e�ect if we express the widths of the interval

vectors in ���
���� and ���
����	

w ��SjSj�� � � �S�S�� �
��� � jSjSj�� � � �S�S�jw ��
���

� jSjj jSj��j � � � jS�j jS�jw ��
���

� w �Sj�Sj�� � � � �S��S� �
���� � � � �� �

Frequently� w ��SjSj�� � � �S�S�� �
��� � w �Sj�Sj�� � � � �S��S� �
���� � � � �� for j large� and

the direct method often produces enclosures with increasing widths�

By choosing the vectors $yl � m ��vl��� we provide symmetric intervals �vl� � $yl� and

by �
�
����� we should have smaller overestimations in the evaluations of the enclosures

than if we were to use nonsymmetric interval vectors�

Contracting Bounds

Here� we consider one of the best cases that can occur� If the diagonal elements of

J

f ��
� �yj�

�
are negative� then� in many cases� we can choose hj such that���Sj��� �
���I � k��X

i��

hijJ

f �i
� �yj�

���� � ��

If $yj � m ��yj��� then��w
�Sj���yj�� $yj�
��� �

��j�Sj�jw
�yj�� $yj
��� � ��w
�yj�� $yj

��� �
��w
�yj�����

That is� �yj�� $yj propagates to a vector �Sj���yj� � $yj� at tj�� with smaller norm of the

width than kw��yj��k�

Chapter �� Taylor Series Methods for IVPs for ODEs
�

����� Wrapping E�ect in Generating Interval Taylor

Coe�cients

Consider the constant coe�cient problem

y� � By� y��� � �y��� ���
�
��

In practice� the relation �
���

� is used for generating interval Taylor coe�cients� With

this relation� we compute interval Taylor coe�cients for the problem ���
�
�� as follows	

�y�� � B�y���

�y�� �
�

B�y�� �

�

B �B�y��� �

���

�y�i �
�

i
B�y�i�� �

�

i!
B

B � � �
B �B�y���

� � � � ��
���
�
��

Therefore� the computation of the ith Taylor coe�cient may involve i wrappings� In

general� this implies that the computed enclosure of the kth Taylor coe�cient� f �k
��"yj���

on �tj� tj��� may be a signi
cant overestimation of the range of y
k��t��k! on �tj� tj���� As

a result� a variable stepsize control that controls the width of hkjf
�k
��"yj� may impose a

stepsize limitation much smaller than one would expect� In this example� it would be

preferable to compute the coe�cients directly by

�y�i �
�

i!
Bi�y��� ���
�

�

which involves at most one wrapping�

In the constant coe�cient case� we can easily avoid the evaluation ���
�
�� by using

���
�

�� but generally� we do not know how to reduce the overestimation due to the

wrapping e�ect in generating interval Taylor coe�cients�

Chapter �� Taylor Series Methods for IVPs for ODEs
�

����� Local Excess in Taylor Series Methods

We consider the overestimation in one step of a Taylor series method based on ���
����

The Taylor coe�cient f �k
�y� tj� tj��� is enclosed by f �k
��"yj ��� If �"yj� is a good enclosure

of y�t� tj� �yj�� on �tj� tj���� then kw ��"yj�� k � O�hj�� assuming that kw��yj��k � O�hrj � for

some r � �� From �
����
�� the overestimation in f �k
��"yj�� of the range of f �k
 over �"yj� is

O�kw ��"yj�� k� � O�hj�� Therefore� the overestimation in hkj f
�k
��"yj�� is O�hk��

j ��

The matrices J

f �i
� yj� $yj

�
are enclosed by J

f �i
� �yj�

�
� That is� by evaluating the

Jacobian of f �i
 on the interval �yj�� As a result� the overestimation from the second line

in ���
��� is of order O�hjkw��yj��k��� ���� pp� ������� This may be a major di�culty

for problems with interval initial conditions� but should be insigni
cant for point initial

conditions or interval initial conditions with small widths� provided that the widths of

the computed enclosures remain su�ciently small throughout the computation�

Hence� if f �k
�y� tj� tj��� and J

f �i
� yj� $yj

�
are enclosed by f �k
��"yj�� and J

f �i
� �yj�

�
�

respectively� the overestimation in one step of Taylor series methods is given by

O�hjkw��yj��k�� �O�hk��
j � � �higher�order terms�� ���
�
��

We refer to this overestimation as local excess and de
ne it more formally in x���� Ad�

vancing the solution in one step of Taylor series methods usually introduces such an

excess �see Figure ��
��

We should point out that by computing hkj f
�k
��"yj��� we bound the local truncation

error in ITS methods for all solutions y�t� tj� yj� with yj � �yj�� Since this includes all

solutions y�t� t�� y�� with y� � �y��� we are in e�ect bounding the global truncation error

too� Thus� the distinction between the local and global truncation errors is somewhat

blurred� In this thesis� we call hkj f
�k
��"yj�� the truncation error� A similar use of the

truncation error holds for the IHO method discussed later�

Chapter �� Taylor Series Methods for IVPs for ODEs ��

Local Excess

y�t� tj� �yj��

�yj���

tj tj��

�yj�

Figure ��
	 If �yj� is an enclosure of the solution at tj� then the enclosure �yj��� at tj��

contains y�tj��� tj� �yj�� and the local excess�

����	 Lohner
s Method

We derive Lohner�s method from ���
��� in a di�erent way than in ���� ����� and ����� We

show how �y�� and �y�� are computed and then give the algorithm for any �yj��

Let

zj�� � hkjf
�k
�y� tj� tj��� � hkj f

�k
��"yj�� � �zj��� � ���
�
��

sj�� � m ��zj���� � ���
�
��

$yj�� � $yj �
k��X
i��

hijf
�i
�$yj� � sj��� and ���
�
��

Sj � I �
k��X
i��

hijJ

f �i
� yj� $yj

� � �Sj� � ���
�
��

where �Sj � is de
ned in ���
���� Also let

A� � I� $y� � m ��y��� � and r� � y� � $y� � �r�� � �y��� $y�� ���
�
��

where I is the identity matrix�

Using the notation ���
�
����
�
��� we obtain from ���
���

Chapter �� Taylor Series Methods for IVPs for ODEs ��

y� � $y� � S��y� � $y�� � z� � s�

� $y� � ��S��A�� �r�� � �z��� s�

� �y��� and

y� � $y� � S��y� � $y�� � z� � s�

� $y� �A�

A��

� S�A�

�
r� �A��

� �z� � s��
�

� �$y� �A�r� j r� � �r��
�
�

where A� � Rn�n is nonsingular and

�r�� �

A��

� ��S��A��
�
�r�� �A��

� ��z��� s���

We explain later how the matrices Aj �j � �� can be chosen�

Similarly�

y� � $y� � S��y� � $y�� � z� � s�

� $y� � �S�A��r� � z� � s�

� $y� � ��S��A�� �r�� � �z��� s�

� �y��� and

y� � $y� � S��y� � $y�� � z� � s�

� $y� �A�

A��

� S�A�

�
r� �A��

� �z� � s��
�

� �$y� �A�r� j r� � �r��
�
�

where A� � Rn�n is nonsingular and

�r�� �

A��

� ��S��A��
�
�r�� �A��

� ��z��� s���

Continuing in this fashion� we obtain Lohner�s method�

Chapter �� Taylor Series Methods for IVPs for ODEs �

Algorithm ��� Lohner�s Method

Input�

��yj �� hj �

�yj �� �yj � Aj � �rj ��

Compute�

�zj��� �� hkj f
�k

��yj ���

sj�� �� m
�zj�����

�yj�� �� �yj 	
Pk��

i�� h
i
jf

�i

�yj� 	 sj���

�Sj � �� I 	
Pk��

i�� h
i
jJ
�
f �i
� �yj �

�
�

Choose Aj�� as discussed below�

�yj��� �� �yj�� 	
�Sj �Aj� �rj� 	 �zj���� sj���

�rj��� ��
�
A��
j��
�Sj �Aj�

�
�rj � 	A��

j��
�zj���� sj����

Output�

�yj���� �yj��� Aj��� �rj����

The Parallelepiped Method

If Aj�� � m ��Sj�Aj�� then we have the parallelepiped method for reducing the wrapping

e�ect� Let bSj � m ��Sj�� and �Sj� � bSj � �Ej�� Then

Aj�� � bSjAj and

A��
j����Sj �Aj� � A��

j
bS��j �bSjAj � �Ej�Aj�

� I �A��
j
bS��j �Ej�Aj�

Since

��A��
j
bS��j �Ej�Aj

�� � cond�Aj�
��bS��j �Ej�

���
if
��bS��j �Ej�

�� is small and cond�Aj� is not too large� then A��
j����Sj �Aj� � I� As a result�

there is no large overestimation in the evaluation of

A��
j����Sj�Aj�

�
�rj�� However� the

choice of Aj�� does not guarantee that it is well conditioned or even nonsingular� In fact�

Aj�� may be ill conditioned� and a large overestimation may arise in this evaluation�

Chapter �� Taylor Series Methods for IVPs for ODEs ��

The QR�factorization Method

We describe Lohner�s QR�factorization method� explain how it works� and illustrate it

with a simple example�

Let eAj�� � �Sj�Aj� and let bAj�� � eAj��Pj��� where Pj�� is a permutation matrix�

We explain later in this subsection how Pj�� is chosen� We perform the QR�factorizationbAj�� � Qj��Rj��� where Qj�� is an orthogonal matrix� and Rj�� is an upper triangular

matrix� If Aj�� is chosen to be Qj�� in Algorithm ��
� we have the QR�factorization

method for computing a tight enclosure of the solution�

We now give an intuitive explanation of how this method works� At each step� we

want to compute an enclosure of the set

�

A��
j��SjAj

�
rj �A��

j�� �zj�� � sj��� j Sj � �Sj� � rj � �rj� � zj�� � �zj���
�

���
�
��

that is as tight as possible� Consider
rst the set

�
A��
j�� �zj�� � sj��� j zj�� � �zj���

�
� ���
����

If kA��
j��k is not much larger than �� then

��w
A��
j�� ��zj���� sj���

��� �
��jA��

j��jw ��zj����
�� � ��A��

j��

�� � ��w ��zj����
��

will not be much larger than kw ��zj���� k� In this method� A��
j�� � Q��

j�� � QT
j�� is

orthogonal� so kA��
j��k �

p
n� In addition� w ��zj���� can be made small by reducing the

stepsize or changing the order of the Taylor series� Therefore� the set ���
���� can be

enclosed in the interval vector

A��
j�� ��zj���� sj����

whose width can be kept small�

Consider now the set

�

A��
j��SjAj

�
rj j Sj � �Sj� � rj � �rj�

�
���
����

Chapter �� Taylor Series Methods for IVPs for ODEs ��

in ���
�
��� If eAj�� �
�
SjAj j Sj � �Sj �

� � �Sj �Aj and w ��Sj�� is small� then

�
�SjAj�rj j Sj � �Sj � � rj � �rj�

� � � eAj��rj j rj � �rj�
�
� ���
��
�

From ���
���� and ���
��
�� we have

�
�A��

j��SjAj�rj j Sj� �Sj � � rj � �rj�
�

�
�
�Q��

j���SjAj��rj j Sj � �Sj� � rj � �rj�
�

� ��Q��
j��
eAj���rj j rj � �rj �

�
� �Q��

j��
eAj����rj��

���
����

Note that eAj���rj� is the wrapping of the set

� eAj��rj j rj � �rj�
�
� ���
����

while �Q��
j��

eAj����rj� is the wrapping of the set

�
�Q��

j��
eAj���rj j rj � �rj�

�
�
�
Q��

j���
eAj��rj� j rj � �rj�

�
� ���
����

which is the set frj � �rj �g mapped by eAj�� and then the result mapped by Q��
j���

The vector corresponding to the
rst column of Qj�� is parallel to the vector corre�

sponding to the
rst column of bAj��� The matrix Qj�� induces an orthogonal coordinate

system� where the axis corresponding to the
rst column of Qj�� is parallel to those edges

of the parallelepiped ���
���� that are parallel to the
rst column of bAj��� Intuitively�

we can expect an enclosure with less overestimation in the coordinate system induced by

Qj�� than in the original coordinate system� Furthermore� if the
rst column of Qj�� is

parallel to the longest edge of the parallelepiped in ���
����� we can expect a better result

than if this column were parallel to a shorter edge� This is the reason for rearranging the

columns of eAj�� by the permutation matrix Pj��� Lohner suggests that Pj�� be chosen

such that the
rst column of bAj�� corresponds to the longest edge of ���
����� the second

column to the second longest and so on�

Chapter �� Taylor Series Methods for IVPs for ODEs ��

If k � k� is the Euclidean norm of a vector� eAj���i is the ith column of eAj��� and �rj�i

is the ith component of �rj�� then the lengths of the edges of ���
���� are given by

li � k eAj���ik� � w ��rj�i� � for i � �� � � � � n�

Let l � �l�� l�� � � � � ln�T � The matrix Pj�� is such that the components of lTPj�� are

in non�increasing order �from � to n�� As a result� the vector corresponding to the
rst

column of bAj�� � eAj��Pj�� is parallel to the longest edge of ���
����� and the
rst column

of Qj�� is parallel to that edge as well�

Example Let

A �

�B�� �

 �

	CA and �r� �

�B����
�

��� ��

	CA �

The QR�factorization of A is

A �

������ �p
�

�B��

 ��

	CA
�����
������ �p

�

�B�� �

� �

	CA
����� � QR ���
����

Consider the set

�
Ar j r � �r�

�
� ���
����

The parallelepiped speci
ed by �r� �see Figure ����a�� is mapped by A into the paral�

lelepiped shown in Figure ����b�� The
lled part in Figure ����b� is the overestimation

of ���
���� by A�r�� However� if the set in ���
���� is wrapped in the coordinate sys�

tem induced by Q� we obtain a better enclosure �less overestimation� of this set �see

Figure ����c���

Consider now the set

�
Q��Ar j r � �r�

�
� ���
����

The matrix Q�� maps ���
���� into a parallelepiped with its shorter edge parallel to the

original x axis� As a result� the wrapping of ���
���� is �Q��A��r� �see Figure ����d���

Chapter �� Taylor Series Methods for IVPs for ODEs ��

Qy

y

y

a�

c�

y

y

n

 bQ��A�r j r � �r

o

 bQ��A��r

fr j r � �r
g

Q��A��r

�

Q��A�r j r � �r

�

x

d�

f�

y

e�
bQx

bQy

Qx

x x

x x

b�

fAr j r � �r
g

A �r

y

x

fAr j r � �r
g

fAr j r � �r
g

Figure ���	 �a� The set
�
r j r � �r�

�
�

�b�
�
Ar j r � �r�

�
enclosed by A �r��

�c�
�
Ar j r � �r�

�
enclosed in the coordinate system induced by Q�

�d�
�
�Q��A�r j r � �r�

�
enclosed by �Q��A� �r��

�e�
�
Ar j r � �r�

�
enclosed in the coordinate system induced by bQ�

�f�
�
� bQ��A�r j r � �r�

�
enclosed by � bQ��A� �r��

Chapter �� Taylor Series Methods for IVPs for ODEs ��

Now� interchange the columns of A� denote the new matrix by bA� and compute the

QR�factorization

bA �

�B�� �

�

	CA �

������ �p

�B�� �

� ��

	CA
�����
������ �p

�B�
 �

� ��

	CA
����� � bQ bR� ���
����

If we wrap the set ���
���� in the coordinate system induced by bQ �see Figure ����e��� we

obtain a better enclosure than in the coordinate system induced by Q� In Figure ����f��

the parallelepiped
�
Ar j r � �r�

�
is rotated by bQ��� The longest edge of the rotated

parallelepiped is parallel to the x axis� and the overestimation in � bQ��A��r� is smaller

than in �Q��A��r� and A�r��

To summarize� let A � Rn�n� �r� � IR
n� and A � QR� where Q is an orthogonal

matrix and R is an upper triangular matrix� Normally� if we wrap the parallelepiped

fAr j r � �r�g in the coordinate system induced byQ� we obtain a better enclosure than in

the original coordinate system� Moreover� if we rearrange the columns of A� as described

in this subsection� before computingQ� we usually obtain a better enclosure than without

rearranging those columns�

Chapter �

An Interval Hermite�Obreschko�

Method

In this chapter� we derive an interval Hermite�Obreschko� �IHO� method and compare

it with the �standard� interval Taylor series methods�

Hermite�Obreschko� methods are usually considered for computing an approximate

solution of a sti� problem �

�� �
��� ����� ����� Here� we are not interested in obtaining

a method that is targeted speci
cally to solving sti� problems&our purpose is to obtain

a general�purpose method that produces better enclosures at a smaller cost than the

explicit validated methods based on Taylor series�

Hermite�Obreschko� methods have smaller truncation errors and better stability than

Taylor series methods with the same stepsize and order� Also� for the same order� the

IHO method needs fewer Taylor coe�cients for the solution to the IVP and its variational

equation than an ITS method� However� the former requires that we enclose the solution

of a generally nonlinear system� while the latter does not� The extra cost of enclosing

such a solution includes one matrix inversion and a few matrix�matrix multiplications�

The method that we propose consists of two phases� which can be considered as a

predictor and a corrector� The predictor computes an enclosure �y
��j��� of the solution at

��

Chapter �� An Interval Hermite�Obreschkoff Method ��

tj��� Using �y
��j���� the corrector computes a tighter enclosure �yj��� � �y
��j��� at tj���

In the next section� we derive the interval Hermite�Obreschko� method� in x��
� we
give an algorithmic description of it� and in x���� we explain why the IHO method may

perform better than ITS methods�

��� Derivation of the Interval Hermite�Obreschko

Method

First� in x������ we show how the point Hermite�Obreschko� method can be obtained�

Then in x����
� we outline our new IHO method� Finally� in x������ we derive it	 we

describe how to improve the predicted enclosure and how to represent the improved

enclosure in a manner that reduces the wrapping e�ect in propagating the solution�

����� The Point Method

Let

Pp�q�s� �
sq�s� ��p

�p� q�!
� �������

cq�pi �
q!

�p � q�!

�q � p � i�!

�q � i�!
� and �����
�

gi�s� �
g
i��s�

i!
� �������

where p � �� q � �� � � i � q� and g�t� is any �p � q � �� times di�erentiable function�

If we integrate
R �

� Pp�q�s�g

p�q����s� ds repeatedly by parts� we
nd�

����
p�q�
Z �

�

Pp�q�s�g

p�q����s� ds �

qX
i��

����icq�pi gi����
pX
i��

cp�qi gi���� �������

If y�t� is the solution to the IVP

y� � f�y�� y�tj� � yj � �������

�This derivation is sometimes attributed to Darboux ���� and Hermite �	
��

Chapter �� An Interval Hermite�Obreschkoff Method ��

and we set g�s� � y�tj � shj�� then

g
p�q����s� � hp�q��
j y
p�q����tj � shj�� �������

gi��� �
g
i����

i!
� hij

y
i��tj�

i!
� hijf

�i
�yj�� and �������

gi��� �
g
i����

i!
� hij

y
i��tj � hj�

i!
� hijf

�i
�yj���� �������

where yj�� � y�tj � hj�� and the functions f �i
 are de
ned in �
������
���
��� Also�

����p�q
Z �

�

Pp�q�s�g

p�q����s� ds

� ����p�qhp�q��
j

Z �

�

Pp�q�s�y

p�q����tj � shj� ds

� ����q
q!p!

�p � q�!
hp�q��
j

y
p�q����t� tj� tj���

�p � q � ��!
�

�������

where the lth component of y
p�q����t� tj� tj��� is evaluated at some
jl � �tj� tj����

From ������� and ��������������

qX
i��

����icq�pi hijf
�i
�yj��� �

pX
i��

cp�qi hijf
�i
�yj�

�����q
q!p!

�p� q�!
hp�q��
j

y
p�q����t� tj� tj���

�p� q � ��!
� ��������

For a given yj� if we solve the nonlinear �in general� system of equations

qX
i��

����icq�pi hijf
�i
�yj��� �

pX
i��

cp�qi hijf
�i
�yj� ��������

for yj��� we obtain an approximation of local order O�hp�q��
j � to the solution of ��������

The system �������� de
nes the point �q� p� Hermite�Obreschko� method �

�� �
��� �
��

p�
���� ����� �����

Remarks

�� If p � � and q � �� we obtain an explicit Taylor series formula	

yj�� �

pX
i��

hijf
�i
�yj� �

hp��
j

�p � ��!
y
p����t� tj� tj����

Chapter �� An Interval Hermite�Obreschkoff Method ��

� If p � � and q � �� then �������� becomes an implicit Taylor series formula	

yj �

qX
i��

����ihijf
�i
�yj��� � ����q��

hq��
j

�q � ��!
y
q����t� tj� tj����

Therefore� we can consider the Hermite�Obreschko�methods that we obtain from ��������

as a generalization of Taylor series methods�

����� An Outline of the Interval Method

Suppose that we have computed an enclosure of the solution at tj� The idea behind our

IHO method is to compute bounds on the solution at tj��� for all yj in the solution set at

tj� by enclosing the solution of the generally nonlinear system ��������� We enclose this

solution in two phases� which we denote as a predictor and a corrector�

Predictor� Compute an enclosure of the solution at tj�� using an interval Taylor

series method of order �q � ���

Corrector� Improve this enclosure by enclosing the solution of ���������

In the corrector� we perform a Newton�like step to tighten the bounds computed by

the predictor� From ��������� we have to bound the �p � q � ��st Taylor coe�cient on

�tj� tj���� We can enclose this coe�cient by generating it with the a priori enclosure

computed in Algorithm I� This computation is the same as enclosing the remainder term

in ITS methods �see x��
��

����� The Interval Method

Suppose that we have computed �yj�� $yj� Aj� and �rj� at tj such that

y�tj� t�� �y��� � �yj� and ������
�

y�tj� t�� �y��� �
�
$yj �Ajrj j rj � �rj�

�
� ��������

Chapter �� An Interval Hermite�Obreschkoff Method �

where $yj � m ��yj��� Aj � Rn�n is nonsingular� and �rj� � IRn� The interval vectors �yj�

and $yj �Aj�rj� are not necessarily the same� We use the representation
�
$yj �Ajrj j rj �

�rj�
�
to reduce the wrapping e�ect in propagating the solution and the representation

�yj� to compute the coe�cients for the solution to the variational equation �see x��
�
��
Suppose also that we have veri
ed existence and uniqueness of the solution on �tj� tj���

and have computed an a priori enclosure �"yj� on �tj� tj��� and an enclosure �y

��
j��� � �"yj� at

tj��� We show in x��
�
 how to compute �y
��j��� in the predictor� Here� we describe how

to construct a corrector based on ���������

Our goal is to compute �at tj��� a tighter enclosure �yj��� of the solution than �y
��j���

and a representation of the enclosure set in the form

�
$yj�� �Aj��rj�� j rj�� � �rj���

�
�

That is� we have to compute �yj���� $yj��� Aj��� and �rj��� for the next step�

Let

yj � y�tj� t�� y�� and yj�� � y�tj��� t�� y��

for some y� � �y��� and $y
��j�� � m

�y
��j���

�
� Since

yj��� $y

��
j�� � �y

��
j��� and yj� $yj � �yj��

we can apply the mean�value theorem to the two sums in �������� to obtain

qX
i��

����icq�pi hijf
�i
�$y
��j��� �

�
qX

i��

����icq�pi hijJ
�
f �i
� yj��� $y

��
j��

��
�yj�� � $y
��j���

�

pX
i��

cp�qi hijf
�i
�$yj� �

�
pX
i��

cp�qi hijJ

f �i
� yj� $yj

��
�yj � $yj�

� ����q
q!p!

�p � q�!
hp�q��
j

y
p�q����t� tj� tj���

�p � q � ��!
�

��������

where J
�
f �i
� yj��� $y

��
j��

�
is the Jacobian of f �i
 with its lth row evaluated at yj�� �

�il�$y

��
j�� � yj��� for some �il � ��� ��� and J

f �i
� yj� $yj

�
is the Jacobian of f �i
 with its lth

row evaluated at yj � �il�$yj � yj� for some �il � ��� ��� l � �� � � � � n�

Chapter �� An Interval Hermite�Obreschkoff Method ��

Using ��������� we show how to compute a tighter enclosure than �y
��j��� at tj���

Let

Sj���� �

qX
i��

����icq�pi hijJ
�
f �i
� yj��� $y

��
j��

�
�

qX
i��

����icq�pi hijJ
�
f �i
� �y
��j���

�
� �Sj������

��������

bSj���� � m ��Sj������ � ��������

Sj�� �

pX
i��

cp�qi hijJ

f �i
� yj� $yj

�
�

pX
i��

cp�qi hijJ

f �i
� �yj�

� � �Sj����

��������

�Bj� �

bS��j�����Sj���

�
Aj� ��������

�Cj� � I � bS��j�����Sj������ ��������

�vj� � �y
��j���� $y
��j��� �����
��

�j�� � ����q
q!p!

�p � q�!
hp�q��
j

y
p�q����t� tj� tj���

�p � q � ��!

� ����q
q!p!

�p � q�!
hp�q��
j f �p�q��
��"yj�� � ��j����

�����
��

gj�� �

pX
i��

cp�qi hijf
�i
�$yj��

qX
i��

����icq�pi hijf
�i
�$y

��
j���� and

�����

�

j�� � gj�� � �j�� � gj�� � ��j��� � �
j���� �����
��

With the notation ������������
��� we write �������� as

bSj�����yj�� � $y
��j��� � Sj���yj � $yj� �
j��

� �Sj���� � bSj������yj�� � $y

��
j����

�����
��

Since

yj � $yj �
�
Ajrj j rj � �rj�

�
�

there exists rj � �rj� such that yj � $yj � Ajrj� Therefore� we can transform �����
�� into

bSj�����yj�� � $y
��j��� � �Sj��Aj�rj �
j�� � �Sj���� � bSj������yj�� � $y
��j���� �����
��

Chapter �� An Interval Hermite�Obreschkoff Method ��

For small hj � we can compute the inverse of bSj����� Then from �����
�� and using ��������

����
���

yj�� � $y

��
j�� �

�
bS��j����Sj��
�
Aj

�
rj � bS��j����
j�� � �I � bS��j����Sj������yj�� � $y

��
j���

�
�
bS��j�����Sj���

�
Aj

�
�rj� � bS��j�����
j���

� �I � bS��j�����Sj��������y

��
j���� $y

��
j���

� �Bj��rj� � �Cj��vj� � bS��j�����
j���� �����
��

Since

yj�� � y�tj��� t�� y�� � $y
��j�� � �Bj��rj� � �Cj��vj� � bS��j�����
j���

for an arbitrary y� � �y��� then

y�tj��� t�� �y��� � $y

��
j�� � �Bj��rj� � �Cj��vj� � bS��j�����
j����

We compute an interval vector that is a tight enclosure of the solution at tj�� by

�yj��� �
�
$y

��
j�� � �Bj��rj� � �Cj��vj� � bS��j�����
j���

�
� �y

��
j���� �����
��

where ��� denotes intersection of interval vectors� For the next step� we propagate

$yj�� � m ��yj���� � �����
��

Aj��� which is the Q�factor from the QR�factorization of m ��Bj��� and

�rj��� � �A��
j���Bj���rj� � �A��

j���Cj���vj�

� �A��
j��
bS��j������
j��� �A��

j���$y

��
j�� � $yj����

�����
��

Remarks

�� Since we enclose the Taylor coe�cient

y
p�q����t� tj� tj���

�p � q � ��!
by f �p�q��
��"yj���

Chapter �� An Interval Hermite�Obreschkoff Method ��

the overestimation in the term hp�q��
j f �p�q��
��"yj�� is of O�hp�q��

j �� provided that

kw��"yj��k � O�hj�� see x��
��� Therefore� the order of the IHO method is �p�q����

Note that in the point case� the order of an Hermite�Obreschko� method is �p� q��

In x��
� we verify empirically that the order of an IHO method with p and q is

indeed �p � q � ���

� We have explicitly used the inverse of bSj���� in our method� This is due in part

to the software available to us� It may be useful to consider other ways to perform

this computation at a later date�

�� We could use the inverse of the interval matrix �Sj����� instead of bS��j����� However�

it is easier to compute the enclosure of the inverse of a point matrix than of an

interval matrix� In fact� computing a tight enclosure of the inverse of an interval

matrix is NP hard in general �����

�� In �����
��� we intersect $y

��
j�� � �Bj��rj� � �Cj��vj� � bS��j�����
j��� and �y

��
j���� As a

result� the computed enclosure� �yj���� is always contained in

�y
��j��� and $y
��j�� � �Bj��rj� � �Cj��vj� � bS��j�����
j����

Therefore� we can never compute a wider enclosure than �y
��j����

�� Once we obtain �yj���� we can set �y

��
j��� � �yj��� and compute another enclosure�

hopefully tighter than �yj���� by repeating the same procedure� Thus� we can

improve this enclosure iteratively� The experiments that we have performed show�

however� that this iteration does not improve the results signi
cantly� but increases

the cost�

�� If we intersect the computed enclosure as in �����
��� it is important to choose

$yj�� � �yj���� If we set $yj�� � $y
��j��� it might happen that $yj�� � $y
��j�� �� �yj����

Chapter �� An Interval Hermite�Obreschkoff Method ��

because $y
��j�� is the midpoint of �y
��j���� which is generally a wider enclosure than

�yj����

�� The interval vectors �rj� �j � �� are not symmetric in general� but they are sym�

metric in Lohner�s method �see x��
����

��� Algorithmic Description of the Interval Hermite�

Obreschko
 Method

In this section� we show how to compute the coe�cients cp�qi and cq�pi � Then� we describe

the predictor and corrector phases of the IHO method in a form suitable for implemen�

tation�

����� Computing the Coe�cients c
p�q
i and c

q�p
i

From �����
�

cq�pi �
q!

�p � q�!

�q � p � i�!

�q � i�!
�

q!

�p � q�!

�q � p� i� ��!

�q � i� ��!

q � i� �

q � p � i� �

� cq�pi��
q � i� �

q � p� i� �
�

���
���

Since cq�p� � �� we can compute the coe�cients cq�pi for i � �� � � � � q by ���
���� In a similar

way� we compute cp�qi for i � �� � � � � p�

����� Predicting an Enclosure

We compute an enclosure �y

��
j��� for the solution at tj�� by Algorithm ��
� which is part

of Lohner�s method �see x��
����

Chapter �� An Interval Hermite�Obreschkoff Method ��

Algorithm ��� Compute the coe�cients cp�qi and cq�pi �

Input�

p� q�

Compute�

cq�p� ��
�

for i ��
 to q

c
q�p
i �� c

q�p
i��
q � i	
��
q 	 p� i	
��

end

cp�q� ��
�

for i ��
 to p

cp�qi �� cp�qi��
p� i	
��
q 	 p� i	
��

end

Output�

cp�qi � for i � �� � � � � p�

cq�pi � for i � �� � � � � q�

Algorithm ��� Predictor	 compute an enclosure with order q � ��

Input�

q� hj � �zj��� �� hq��
j f �q��

��yj ���

�yj � Aj � �rj�� �yj ��

Compute�

f�j�i �� hijf
�i

�yj�� for i �
� � � � � q�

�uj��� �� �yj 	
Pq

i�� f
�
j�i 	 �zj����

�F�
j�i� �� hijJ

�
f �i
� �yj �

�
� for i �
� � � � � q�

�Sj � �� I 	
Pq

i���F
�
j�i��

�y

��
j��� �� �uj��� 	 �zj��� 	
�Sj�Aj��rj��

Output�

�y

��
j����

f�j�i� �F
�
j�i�� for i �
� � � � � q�

Chapter �� An Interval Hermite�Obreschkoff Method ��

����� Improving the Predicted Enclosure

Suppose that we have computed an enclosure �y
��j��� of y�tj��� t�� �y��� with Algorithm ��
�

In Algorithm ���� we describe an algorithm based on the derivations in x����� for improv�

ing �y
��j����

Remarks

�� We could use the a priori enclosure �"yj� from Algorithm I instead of computing

�y

��
j���� We brie�y explain the reasons for computing �y

��
j����

�a� The a priori enclosure �"yj� may be too wide and the corrector phase may not

produce a tight enough enclosure in one iteration� As a result� the corrector�

which is the expensive part� may need more than one iteration to obtain a

tight enough enclosure �see x����
� p� �����

�b� Predicting a reasonably tight enclosure �y
��j��� is not expensive	 we need to

generate the terms �fj�i� and �Fj�i�� for i � �� � � � � q� We need them in the cor�

rector� but for i � �� � � � � p� Usually� a good choice for q is q � fp� p � �� p �
g
�see x������� Therefore� we do not create much extra work when generating

these terms in Algorithm ��
�

� Algorithm ��� describes a general method� If� for example� the problem being

solved does not exhibit exponential growth of the widths of the enclosures due to

the wrapping e�ect� we do not have to compute a QR�factorization and represent

the enclosure as in ���������

�� The matrix Aj�� is a �oating�point approximation to an orthogonal matrix� Since

A��
j�� is not necessarily equal to the transpose of Aj��� A

��
j�� must be enclosed in

interval arithmetic�

Chapter �� An Interval Hermite�Obreschkoff Method ��

Algorithm ��� Corrector	 improve the enclosure and prepare for the next step�

Input�

p� q� cp�qi for i � �� � � � � p� cq�pi for i � �� � � � � q�

hj � �yj � Aj � �rj�� �y

��
j����

fj�i� �Fj�i�� for i �
� � � � � q�

�zj��� �� hp�q��
j f �p�q��

��yj ���

Compute�

�y

��
j�� �� m

�
�y

��
j���

�
�

f�j���i �� hijf
�i

�y

��
j���� for i �
� � � � � q�

gj�� �� �yj � �y

��
j�� 	

Pp
i�� c

p�q
i fj�i �

Pq
i��
�
�

icq�pi f�j���i�

� ��
�
�qq�p��
p	 q���

��j��� �� gj�� 	 ��zj����

�Sj��� �� I 	
Pp

i�� c
p�q
i �Fj�i��

�F�
j���i� �� hijJ

�
f �i
� �y

��
j���

�
� for i �
� � � � � q�

�Sj����� �� I 	
Pq

i��
�
�
icq�pi �F�

j���i��

bSj���� �� m
�Sj�������

�Bj � ��
bS��j�����Sj����Aj�

�Cj � �� I � bS��j�����Sj������

�vj � �� �y

��
j���� �y

��
j���

�yj��� ��
�
�y

��
j�� 	 �Bj ��rj� 	 �Cj��vj � 	 bS��j������j���

�
� �y

��
j����

bAj�� �� m
�Bj ���

Aj�� �� Q factor of the QR�factorization of bAj���

�yj�� �� m
�yj�����

�rj��� ��
A��
j���Bj ���rj� 	
A��

j���Cj ���vj� 	
A��
j��

bS��j�������j��� 	 A��
j��
�y

��
j�� � �yj����

Output�

�yj��� Aj��� �rj���� �yj����

Chapter �� An Interval Hermite�Obreschkoff Method ��

�� It is convenient to compute the terms hijf
�i
��"yj�� for i � ��
� � � � � �p � q � �� in

Algorithm I �see Chapter ��� Then� we do not have to recompute hq��
j f �q��
��"yj��

in the predictor and hp�q��
j f �p�q��
��"yj�� in the corrector�

��� Comparison with Interval Taylor Series Methods

We explain why the IHO method may perform better than the ITS methods� First� in

x����� and x����
� we show that on constant coe�cient problems� the IHO method is more

stable and produces smaller enclosures than an ITS method with the same stepsize and

order� Then� in x������ we study one step of these methods in the general case and show

again that the IHO should produce smaller enclosures than the ITS methods� Finally� in

x������ we consider the amount of work in one step of each of these methods�

In this section� we assume that both methods have the same order of the truncation

error� That is� if the order of the Taylor series is k� we consider an IHO method with p

and q such that p � q � � � k�

����� The One�Dimensional Constant Coe�cient Case�

Instability Results

Consider the problem

y� � �y� y��� � �y��� �������

where � � R and � � ���

Definition ��� We say that an interval method for enclosing the solution of �����	

with a constant stepsize is asymptotically unstable� if

w��yj����� as j ���

�Since we have not de�ned complex interval arithmetic� we do not consider problems with � complex�

Chapter �� An Interval Hermite�Obreschkoff Method ��

In this and in the next subsection� we consider methods with constant stepsize h for

simplicity of analysis�

The Interval Taylor series method

Suppose that at tj � �� we have computed a tight enclosure �yITSj � of the solution with

an ITS method� and �"yITSj � is an a priori enclosure of the solution on �tj� tj���� for all

yj � �yITSj �� where �yITS� � � �y��� Denote

�zITSj�� � �
��h�k

k!
�"yITSj � �j � �� �����
�

and let

Tr�z� �

rX
i��

zi

i!
� �������

Using �����
�������� an interval Taylor series method for computing tight enclosures of

the solution to ������� can be written as

�yITSj�� � � Tk����h��y
ITS
j � � �zITSj�� �� �������

cf� ���
���� Since w��"yITSj �� � w��yITSj ��� we derive from �����
�������

w��yITSj�� �� � jTk����h�jw��yITSj �� �
j�hjk
k!

w��"yITSj ��

� jTk����h�jw��yITSj �� �
j�hjk
k!

w��yITSj ��

�

�
jTk����h�j� j�hjk

k!

w��yITSj ���

Therefore� the ITS method given by ������� is asymptotically unstable for stepsizes h

such that

jTk����h�j� j�hjk
k!

� �� �������

This result implies that we have restrictions on the stepsize not only from the function

Tk����h�� as in point methods for IVPs for ODEs� but also from the factor j�hjk�k! in

Chapter �� An Interval Hermite�Obreschkoff Method �

the remainder term� Note also that the stepsize restriction arising from ������� is more

severe than the one that would arise from the standard Taylor series methods of order k

or k � ��

The Interval Hermite�Obreschko� method

Let yj � �yIHO
j �� where we assume that �yIHO

j � is computed with an IHO method and

�yIHO
� � � �y��� From ��������� the true solution yj�� corresponding to the point yj satis
es�

qX
i��

����icq�pi
��h�i

i!

�
yj�� �

�
pX

i��

cp�qi
��h�i

i!

�
yj

� ����q
q!p!

�p� q�!

��h�p�q��

�p � q � ��!
y�
�� �������

where
 � �tj� tj���� Let

Rp�q�z� �

Pp
i�� c

p�q
i

zi

i�Pq
i�� c

q�p
i

�z�i

i�

and �������

Qp�q�z� �

qX
i��

cq�pi
��z�i
i!

� �������

where cq�pi �cp�qi � are de
ned in �����
�� Also let

�zIHO
j�� � �

��h�k

k!
�"yIHO
j � �������

�k � p � q � ��� where �"yIHO
j � is an a priori enclosure of the solution on �tj� tj��� for any

yj � �yIHO
j ��

Let �p�q � q!p!��p� q�!� From �������������� we compute a tight enclosure �yIHO
j�� � by

�yIHO
j�� � � Rp�q��h��y

IHO
j � � ����q

�p�q
Qp�q��h�

�zIHO
j�� �� ��������

From ���������������

w��yIHO
j�� �� � jRp�q��h�jw��yIHO

j �� �
�p�q

jQp�q��h�j
j�hjk
k!

w��"yIHO
j ��

� jRp�q��h�jw��yIHO
j �� �

�p�q
jQp�q��h�j

j�hjk
k!

w��yIHO
j ��

�

�
jRp�q��h�j� �p�q

jQp�q��h�j
j�hjk
k!

w��yIHO

j ���

Chapter �� An Interval Hermite�Obreschkoff Method ��

Therefore� the IHO method is asymptotically unstable for h such that

jRp�q��h�j � �p�q
jQp�q��h�j

j�hjk
k!

� �� ��������

In ������� and ���������

Tk���z� � ez �O�zk� and Rp�q�z� � ez �O�zp�q��� � ez �O�zk�

are approximations to ez of the same order� However� Rp�q�z� is a rational Pad'e approxi�

mation to ez �see for example ������ If z is complex with Re�z� � �� the following results

are known	

� if p � q� then jRp�q�z�j � �� and jRp�q�z�j � � as jzj � � �����

� if q � p� � or q � p�
� then jRp�q�z�j � �� and Rp�q�z�� � as jzj � � ����� and

� if q � p and z � R� z � �� then jRp�q�z�j � �� and Rp�q�z�� � as jzj � � ����

�see also ��
� pp�
���
����� Consider ������� and ��������� For the ITS method�

jTk����h�j � � when �h is in the stability region of Tk���z�� However� for the IHO

method with � � R� � � �� jRp�q��h�j � � for any h � � when q � p� and Rp�q��h� � �

as �h� �� when q � p� Roughly speaking� the stepsize in the ITS method is restricted

by both

jTk����h�j and
j�hjk
k!

�

while in the IHO method� the stepsize is limited mainly by

�p�q
jQp�q��h�j

j�hjk
k!

� ������
�

Since �p�q� jQp�q��h�j is usually much smaller than one� j�hjk�k! � � implies a more severe

restriction on the stepsize than ������
�� Thus� the stepsize limit for the IHO method is

usually much larger than for the ITS method�

An important point to note here is that an interval version of a standard numerical

method that is suitable for sti� problems may still have a restriction on the stepsize� To

Chapter �� An Interval Hermite�Obreschkoff Method ��

obtain an interval method without a stepsize restriction� we must
nd a stable formula

not only for advancing the step� but also for the associated truncation error�

Consider again ������� and ��������� From �������� we can derive

�yITSj�� � �

Tk����h�

�j��
�y�� �

j��X
i��

Tk����h�

�j���i
�zITSi ��

The width of �yITSj�� � is

w��yITSj�� �� �
��
Tk����h��j����w��y��� � j��X

i��

��
Tk����h��j���i��w��zITSi ��� ��������

We derive from ���������

�yIHO
j�� � �

Rp�q��h�

�j��
�y�� � ����q

�p�q
Qp�q��h�

j��X
i��

Rp�q��h�

�j���i
�zIHO
i ��

The width of �yIHO
j�� � is

w��yIHO
j�� �� �

��
Rp�q��h�
�j����w��y���

�
�p�q

jQp�q��h�j
j��X
i��

��
Rp�q��h�
�j���i��w��zIHO

i ���
��������

If h is such that

Tk����h� � Rp�q��h� and
��Tk����h��� � ��

and if we assume that

w��y��� � � and �zIHO
i � � �zITSi �� for i � ��
� � � � j � ��

then from �������� and ���������

w��yIHO
j�� �� � �p�q

jQp�q��h�jw��y
ITS
j�� ��� ��������

That is� for � � � and small h� the widths of the intervals in the IHO method are ap�

proximately �p�q�jQp�q��h�j � � times the corresponding widths of the intervals produced

by the ITS method� As the stepsize increases�
��Tk����h��� � j�hjk�k! becomes greater

Chapter �� An Interval Hermite�Obreschkoff Method ��

than one� Then� the ITS method is asymptotically unstable and produces intervals with

increasing widths� For the same stepsizes� the IHO method may produce intervals with

decreasing widths when q � p�

In Table ���� we give approximate values for �p�q � q!p!��p� q�!� for p � �� �� � � � � � ��

and q � fp� p � �� p �
g� As can be seen from this table� the error constant q!p!��p� q�!

becomes very small as p and q increase�

In x������ we show numerical results comparing the ITS and IHO methods on �������

for � � ����

p �p�p �p�p�� �p�p��

� ��� � ����
��� ���� ��� � ����

� ��� � ���� ���� ���� ��� � ����

� ��� � ����
�
� ���� ��� � ����

� ��� � ���� ���� ���� ��� � ����

�
�� � ���� ���� ���� ��� � ����

� ��� � ���� ���� ����
�� � ����

�
�� � ���� ���� ���� ��� � ����

�� ��� � ����
��� ���� ��� � ����

�� ��� � ���� ���� ���� ��� � ����

�
 ��� � ���� ���� ���� ��� � ����

�� ��� � ���� ���� ����
�� � ����

Table ���	 Approximate values for �p�q� p � �� �� � � � ��� q � fp� p � �� p�
g�

Chapter �� An Interval Hermite�Obreschkoff Method ��

����� The n�Dimensional Constant Coe�cient Case

Consider the IVP

y� � By� y� � �y��� ��������

where B � Rn�n and n � ��

We compare one step of an ITS method� which uses Lohner�s technique for reducing

the wrapping e�ect� and one step of the IHO method� which uses a similar technique

for reducing the wrapping e�ect� Then� we compare the enclosures after several steps of

these methods� We assume that in addition to an enclosure �yj� of the solution at tj� we

also have a representation of the enclosure in the form

�
$yj �Ajrj j rj � �rj�

�
� ��������

where $yj � �yj�� Aj � Rn�n is nonsingular� and �rj� � IRn� We also assume that we have

an a priori enclosure �"yj� of the solution on �tj� tj���� where h � tj�� � tj�

Enclosures after One Step

The Interval Taylor Series Method Using �������� we can write an ITS method�

with Lohner�s coordinate transformation� as

�yITSj�� � � Tk���hB�$yj �

Tk���hB�Aj

�
�rj� � �zj���� ��������

where

�zj��� �
hk

k!
Bk �"yj� � ��������

The width of �yITSj�� � is

w��yITSj�� �� �
��Tk���hB�Aj

��w��rj�� � w��zj����� �����
��

Chapter �� An Interval Hermite�Obreschkoff Method ��

The Interval Hermite�Obreschko� method Using ������������� and ��������� the

IHO method can be expressed by

�yIHO
j�� � � Rp�q�hB�$yj �

Rp�q�hB�Aj

�
�rj� � ����q�p�q

Qp�q�hB�

���
�zj����

�Note that for h small� we can compute the inverse of the matrix Qp�q�hB��� The width

of �yIHO
j�� � is given by

w��yIHO
j�� �� �

��Rp�q�hB�Aj

��w��rj�� � �p�q
��
Qp�q�hB�

�����w��zj����� �����
��

Comparing �����
�� and �����
��� we see that in the IHO method we multiply the

width of the error term� w��zj����� from the ITS method by �p�q
��
Qp�q�hB�

������ If� for
example� p � q � �� then

���� � ���� ����

�see Table ����� Consider

Qp�q�hB�

���
and suppose that q � �� For small h�

Qp�q�hB�
��� � �I � cq�p� hB��� � I � cq�p� hB�

This implies that for small h� multiplying by the matrix
��
Qp�q�hB�

����� does not sig�

ni
cantly increase w��zj����� Furthermore� it often happens that k
Qp�q�hB�
���k � ��

Hence� multiplying by this matrix may reduce w��zj���� still further�

In Lohner�s method� we propagate

Tk���hB�Aj

�
�rj�� where Tk���hB� is an approxi�

mation of the matrix exponential of order k	

Tk���hB� � ehB �O�hk��

In the IHO method� we propagate

Rp�q�hB�Aj

�
�rj�� where Rp�q�hB� is a rational approx�

imation to the matrix exponential of order k	

Rp�q�hB� � ehB �O�hp�q��� � ehB �O�hk��

If hB is small� then��Tk���hB�Aj

��w��rj�� � ��Rp�q�hB�Aj

��w��rj��
in �����
�� and �����
���

Chapter �� An Interval Hermite�Obreschkoff Method ��

Enclosures after Several Steps

Now� we study how the enclosures propagate after several steps in the ITS and the IHO

methods� For simplicity� we assume that the matrix B in �������� is diagonalizable and

can be represented in the form

B � X��DX�

where D � diag���� ��� � � � � �n� and
�
��� ��� � � � � �n

�
are the eigenvalues of B�

Definition ��� We say that an interval method for enclosing the solution of �����	�

with a constant stepsize is asymptotically unstable� if

kw��yj��k � �� as j ���

The Interval Taylor series method We compute �yITS� � by

�yITS� � � Tk���hB��y�� � �zITS� ��

where

�zITSi�� � �
hk

k!
�"yITSi � �i � ���

and �"yITSi � is an a priori enclosure of the solution on �ti� ti��� for all yi � �yITSi �� Then�

instead of representing the enclosure at t� in the form of a parallelepiped as in ��������

and computing an enclosure at t� by the formula ��������� we assume that we compute

�yITS� � �

Tk���hB�

��
�y�� � Tk���hB��zITS� � � �zITS� ��

where there may be wrappings in the evaluation of

Tk���hB�

��
�y�� and Tk���hB��z���

Following this procedure� we assume that we compute �yITSj�� � by

�yITSj�� � �

Tk���hB�

�j��
�y�� �

j��X
i��

Tk���hB�

�j���i
�zITSi �

�
�
X��

Tk���hD�

�j��
X
�
�y��

�

j��X
i��

�
X��

Tk���hD�

�j���i
X
�
�zITSi ��

�����

�

Chapter �� An Interval Hermite�Obreschkoff Method ��

We make this assumption to obtain a simple formula for �yITSj�� � in terms of �y�� and �zITSi ��

i � �� � � � � �j ���� Otherwise� if we had used ��������� we would have products involving

the transformation matricesAj and a more complicated formula to analyze� The formula

�����

� gives� in general� tighter enclosures than �������� �see x��
�
��
The width of �yITSj�� � is given by

w��yITSj�� �� �
��X��

Tk���hD�

�j��
X
��w��y���

�

j��X
i��

��X��

Tk���hD�

�j���i
X
��w��zITSi ���

�����
��

The Interval Hermite�Obreschko� method Similar to the considerations in x�����
and in the previous paragraph� we can derive for the IHO method

�yIHO
j�� � �

Rp�q�hB�

�j��
�y�� � ����q�p�q

j��X
i��

Rp�q�hB�

�j���i
�

Qp�q�hB�

���
�zIHO
i �

�
�
�
X��

Rp�q�hD�

�j��
X
�
�y��

� ����q�p�q

j��X
i��

�
X��

Rp�q�hD�

�j���i
X
��

Qp�q�hB�
���

�zIHO
i �

�
where

�zIHO
i�� � �

hk

k!
Bk�"yIHO

i ��

and �"yIHO
i � is an a priori enclosure on �ti� ti��� for yi � �yIHO

i �� The width of �yIHO
j�� � is

w��yIHO
j�� �� �

��X��

Rp�q�hD�

�j��
X
��w��y���

� �p�q

j��X
i��

��X��

Rp�q�hD�

�j���i
X
����
Qp�q�hB�

�����w��zIHO
i ���

�����
��

Consider �����
�� and �����
�� and suppose that Re��i� � � for i � �� ���� n� The

matrices Tk���hD� and Rp�q�hD� are diagonal with diagonal elements Tk���h�i� and

Rp�q�h�i�� respectively� where �i is an eigenvalue of B� As h increases� kTk���hD�k will

eventually become greater than one� and then the ITS method is asymptotically unstable�

However� for any h � �� kRp�q�hD�k � � for q � p� p � �� or p �
� and kRp�q�hD�k � �

Chapter �� An Interval Hermite�Obreschkoff Method ��

as h� � for q � p � � or q � p �
 �see x������� Therefore� if we ignore the wrapping

e�ect� the IHO method does not have stability restrictions from the associated stability

function Rp�q�z� when q � fp� p � �� p �
g� However� it still has a restriction from the

formula for the truncation error�

We can show for the ITS method that

w��yITSj�� �� �
hk

k!

��Bk
��w��yITSj ���

and for the IHO method that

w��yIHO
j�� �� � hk

k!
�p�q
��
Qp�q�hB�

�������Bk
��w��yIHO

j ���

These two inequalities suggest that the restriction on the stepsize in the IHO method

occurs at values signi
cantly larger than in ITS methods�

As in the previous subsection� if w��y��� � �� then for small stepsizes and small hB�

we should expect

kw��yIHO
j�� ��k � �p�qk

Qp�q�hB�

���k kw��yITSj�� ��k� �����
��

Moreover� for larger stepsizes and eigenvalues satisfying Re��i� � �� i � �� ���� n� the IHO

with q � p� p � �� or p�
 is more stable than the ITS method�

In x������ we show numerical results comparing the two methods on a two�dimensional

constant coe�cient problem�

����� The General Case

Comparing an ITS method with the IHO method in the nonlinear case is not as simple

as in the constant coe�cient case� We can easily compare the corresponding remainder

terms on each step� but we cannot make precise conclusions� as in the constant coe�cient

case� about the propagation of the set
�
Ajrj j rj � �rj�

�
� However� we show by numerical

experiments in x����
 the advantages of the IHO method over ITS methods on some

nonlinear problems�

Chapter �� An Interval Hermite�Obreschkoff Method ��

The Interval Taylor Series Method

In Lohner�s method�

�yITSj�� � � $yj �

k��X
i��

hijf
�i
�$yj� � ��Sj�Aj��rj� � hkj f

�k
��"yj ��

�see x��
���� and

w��yITSj�� �� � j�Sj�Ajjw��rj�� � hkjw�f
�k
��"yj���� �����
��

The Interval Hermite�Obreschko� Method

From �����
��� we compute a tight enclosure by the formula

�yIHO
j�� � � $y

��
j�� �

�bS��j�����Sj����Aj

�
�rj� � bS��j�����
j���

� �I � bS��j�����Sj��������y

��
j���� $y
��j����

For simplicity in the discussion� we do not intersect �yIHO
j�� � with �y
��j��� as in �����
��� such

an intersection produces an enclosure �yj��� � �yIHO
j�� �� Therefore� our conclusions are

valid for �yj���� The width of �yIHO
j�� � is�

w

�yIHO
j�� �

�
� j
bS��j�����Sj���

�
Aj

��w��rj�� � jbS��j����jw��
j����

� jI � bS��j�����Sj�����jw��y
��j�����

�����
��

Let again k � p � q � � and consider the terms in �����
���

The term jbS��j����jw��
j����� Since w��
j���� � w���j����� �see �����
����

jbS��j����jw��
j���� � jbS��j����jw���j���� �

�p�qjbS��j����j

�
hkjw�f

�k
��"yj���� �����
��

Comparing the terms involving hkjw�f
�k
��"yj��� in �����
�� and �����
��� we see that

in �����
�� the reduction is roughly �p�q� assuming that the components of jbS��j����j
are not large �which is the case if hj is su�ciently small�� This situation is similar

to the n�dimensional constant coe�cient case�

�If �rj� is symmetric� then for an interval matrix �A�� w��A��rj�
 � j�A�jw��rj�
 �cf� �	�	���

� The
interval vector �rj� �j � �
 is symmetric in Lohner�s method� but it is generally nonsymmetric in the
IHO method� Assuming �rj� symmetric� we obtain a simple formula as in �����	�
�

Chapter �� An Interval Hermite�Obreschkoff Method �

The term jI � bS��j�����Sj�����jw��y
��j����� Let

�Sj����� � bSj���� � ��Ej��� Ej����

where Ej�� is a point matrix� and bSj���� � m ��Sj������� cf� ��������� Then

jI � bS��j�����Sj�����j � jI � bS��j�����bSj���� � ��Ej��� Ej����j

� jbS��j������Ej��� Ej���j

� jbS��j����j � j��Ej��� Ej���j

�
�

jbS��j����jw���Ej��� Ej����

�
�

jbS��j����jw��Sj������

� �

hjjbS��j����jw

�
�f

�y
��y
��j����

� O�hjkw��y
��j����k��

If kw��y
��j����k � O�hq��
j � �see Algorithm ��
 and x��
��� then

jI � bS��j�����Sj�����jw��y
��j���� � O�hjkw��y
��j����k�� � O�h�q��
j �� �����
��

If� for example� p � q � �k � ���
� then O�h�q��
j � � O�hk��

j �� which is two orders

higher than the order of the truncation error in the ITS method�

The term j
bS��j�����Sj���
�
Ajjw��rj��� In the IHO method�

bS��j�����Sj��� �
�
I �m

�
cq�p� hj

�f

�y
��y
��j����

�
I � cp�q� hj

�f

�y
��yj��

� I � cq�p� hj m

�
�f

�y
��y
��j����

� cp�q� hj

�f

�y
��yj�� �O�h�j �� ��������

while in the ITS method�

�Sj� � I � hj
�f

�y
��yj�� �O�h�j �� ��������

Assuming that the Jacobian �f��y does not change signi
cantly from step to step�

we have from �������� and ���������

bS��j�����Sj��� � I � cq�p� hj
�f

�y
��yj�� � cp�q� hj

�f

�y
��yj�� �O�h�j � � �Sj�

Chapter �� An Interval Hermite�Obreschkoff Method ��

�cq�p� � cp�q� � ��� Therefore� we should expect

�Sj� � bS��j�����Sj���� ������
�

Comparing �����
�� and �����
��� and taking into account �����
��� �����
��� and ������
��

we conclude that the propagation of the set fyj � $yj � Ajrj j rj � �rj�g is similar in the

IHO and Lohner�s methods� but the truncation error can be much smaller in the former

than in the latter�

����� Work per Step

We brie�y discuss the most expensive parts of the ITS and IHO methods	 generating

high�order Jacobians� matrix�matrix multiplications� and enclosing the inverse of a point

matrix� We measure the work by the number of �oating�point operations� However� the

time spent on memory operations may not be insigni
cant for the following reasons�

� The packages for automatic di�erentiation are often implemented through oper�

ator overloading ���� ���� �
��� which may involve many memory allocations and

deallocations�

� In generating Taylor coe�cients� there may be a signi
cant overhead caused by

reading and storing the Taylor coe�cients� f �i
� and their Jacobians �

��

Generating High�Order Jacobians

To obtain an approximate bound for the number of �oating point operations to generate

�k � �� Jacobians� �f �i
��y for i � �� � � � � �k � ��� we assume that they are computed

by di�erentiating the code list of the corresponding f �i
 and using information from the

previously computed �f �l
��y� for l � �� � � � � �i� ��� The FADBAD(TADIFF ���� ��� and

IADOL�C ���� packages compute �f �i
��y by di�erentiating the code list of f �i
 �IADOL�

C is an interval version of ADOL�C �
���� We also assume that the cost of evaluating

�f �i
��y is roughly n times the cost of evaluating f �i
� �

��

Chapter �� An Interval Hermite�Obreschkoff Method ��

For simplicity� suppose that f contains only arithmetic operations� If N is the number

of operations� and cf � � is the ratio of multiplications and divisions to additions and

subtractions in these N operations� then to generate k coe�cients f �i
� i � �� � � � � k� we

need cfNk� �O�Nk� operations ���� pp� ������
� �see Appendix A��

Let Ops

f �i

�
be the number of arithmetic operations in the code list for evaluating

f �i
 from the already computed Taylor coe�cients� In Appendix A� we show that

Ops

f �i

�
�
cfNi�O�N�� for i � ��

Since

k��X
i��

nOps

f �i

�
� n

k��X
i��

cfNi�O�N�

�
� cfnNk� �O�nNk��

to generate k � � Jacobians in an ITS method� we use

cfnNk� �O�nNk� ��������

arithmetic operations� Let p � q and k � p � q � �� In the IHO method we generate

p � �k����
 terms for the forward solution and q � p � �k����
 terms for the backward

one� The corresponding work is

cfnNk��
 �O�nNk�� ��������

That is� the IHO method requires about half as much work as the ITS method of the

same order to generate high�order Jacobians�

Matrix Inverses and Matrix�Matrix Multiplications

In Lohner�s method and in the IHO method with the QR�factorization technique� we

compute an enclosure of the inverse of a point matrix� which is a �oating�point approx�

imation to an orthogonal matrix� However� in the IHO method� we also enclose the

inverse of a point matrix �see x������� In general� enclosing the inverse of an arbitrary

Chapter �� An Interval Hermite�Obreschkoff Method ��

point matrix is more expensive than enclosing the inverse of a �oating�point approxima�

tion to an orthogonal matrix� However� we can still enclose the inverse of an arbitrary

point matrix in O�n�� operations �
��

Lohner�s method has
 matrix�matrix multiplications� while the IHO method has �

matrix�matrix multiplications�

To summarize� in the IHO method� we reduce the work for generating Jacobians� but

increase the number of matrix operations� Suppose that N � n�� This number can be

easily achieved if each component of f contains approximately n operations� as happens�

for example� in N�body problems� Then� �������� and �������� become

cfn
�k� �O�n�k� and cfn

�k��
 �O�n�k��

Therefore� we should expect the IHO method to outperform ITS methods in terms of

the amount of work per step when the right side of the problem contains many terms� If

the right side contains a few terms only� an ITS method may be less expensive for low

orders� but we expect that the IHO method will perform better for higher orders� Note

also that we expect the IHO method to allow larger stepsizes for methods of the same

order� thus saving computation time during the whole integration� In addition� the IHO

method �with p � q� needs half the memory for storing the point Taylor coe�cients and

the high�order Jacobians�

In x����
� we study empirically the amount of work per step on Van der Pol�s equation�

Chapter �

A Taylor Series Method for

Validation

We introduce a Taylor series method that is based on the validation test suggested by

Moore ���� pp� �������� �see also ���� and ��
�� for proving existence and uniqueness

of the solution� Our goal is to obtain a method that validates existence and uniqueness

with the supplied stepsize� if possible� or a stepsize that is not much smaller than the

supplied one� Furthermore� we want to avoid as many stepsize reductions in this method

as possible�

Usually� a Taylor series method for validation enables larger stepsizes than the con�

stant enclosure method� which has been used in the past ����� ����� As we pointed out

in x���� the constant enclosure method restricts the stepsizes to Euler steps� We also

combine better algorithms for computing tight enclosures� such as Lohner�s method and

the IHOmethod� with our algorithm for validating existence and uniqueness� As a result�

we obtain a method that behaves similarly to the traditional numerical methods for IVPs

for ODEs in the sense that the stepsize is controlled more by the accuracy requirements

of Algorithm II than by restrictions imposed by Algorithm I�

Section ��� de
nes the validation problem� Section ��
 describes how to compute an

��

Chapter 	� A Taylor Series Method for Validation ��

initial guess for the a priori enclosure� and Section ��� gives an algorithmic description

of the method we propose�

��� The Validation Problem

Let yj � �"yj� and no component of yj is an endpoint of the corresponding component of

�"yj�� If

yj �
k��X
i��

�t� tj�
if �i
�yj� � �t� tj�

kf �k
��"yj�� � �"yj� �������

for t � �tj� tj���� it can be shown ���� that the problem y��t� � f�y�� y�tj� � yj has a

unique solution

y�t� tj� yj� � yj �
k��X
i��

�t� tj�
if �i
�yj� � �t� tj�

kf �k
��"yj�� for t � �tj� tj����

For an interval �yj�� the condition ������� translates to

�yj� �

k��X
i��

�t� tj�
if �i
��yj�� � �t� tj�

kf �k
��"yj�� � �"yj�� �����
�

To
nd the largest tj�� � tj such that �����
� holds for all t � �tj� tj���� we have

to compute rigorous lower bounds for the positive real roots of
n algebraic equations�

which are determined from �����
�� This task is not trivial to carry out�

However� since t� tj � ��� hj� for t � �tj� tj���� if hj is such that

�yj� �
k��X
i��

��� hij�f
�i
��yj�� � ��� hkj �f

�k
��"yj�� � �"yj� �������

holds� then �����
� holds for all t � �tj� tj���� Verifying ������� is not di�cult� and our

validation procedure is based on �������� Given �yj� at tj and a stepsize hj� we want to

nd �"yj� such that ������� is satis
ed� Usually� hj is predicted from the previous step� In

the validation step� we try to verify existence and uniqueness with this hj� If we cannot

verify with hj� we try to verify with a smaller stepsize than hj�

Chapter 	� A Taylor Series Method for Validation ��

Before we consider how to implement a method based on �������� we illustrate this

approach with a few examples�

Consider

y� � y� y��� � � �������

and let �"y�� � ���
�� Then ������� on ������� with �"y�� � ���
� gives

� � ��� h�� � ��� h���
� � � � �� ��� hk��� ��k � ��!� � ��� hk��k!����
� � ���
��

which is satis
ed if

� � h� � h���
 � � � �� hk��� ��k � ��! �
hk��k! �
� �������

For k � � and �� ������� holds for h� � ��� and h� � ����� respectively�

Now� let �"y�� � ��� ��� The inclusion ������� holds if

� � h� � h���
 � � � �� hk��� ��k � ��! � �hk��k! � �� �������

For k � � and �� ������� holds for h� � ����� and h� � ����� respectively�

Here� we can compute larger stepsizes with wider a priori bounds� With a variable

stepsize control� we normally control the local excess per unit step �LEPUS�� such that

LEPUS is less than some tolerance �see Chapter ��� Depending on the tolerance� we

can a�ord wider a priori bounds� For example� suppose that Algorithm II uses Taylor

series of order k � ��� Then� LEPUS is given by �h��� ���!�w��"y���� With h� � ����

and �"y�� � ���
�� LEPUS � ��
 � ������ and with h� � ���� and �"y�� � ��� ��� LEPUS

� ���� ����� If the tolerance is ����� we can use h� � ���� and �"y�� � ��� ���

Consider

y� � �y� y��� � � �������

and let �"y�� � ����� ����� For k � �� we obtain from ������� the constant enclosure method	

� � ��� h������������� � ����� �����

Chapter 	� A Taylor Series Method for Validation ��

from which we determine h� � ����

For k �
� ������� becomes

�� ��� h�� � ��� h���
������ ���� � ����� �����

which is satis
ed for h� � ����

For k � �� ������� becomes

�� ��� h�� � ��� h���
�� ��� h���������� ���� � ����� �����

which is satis
ed for h� � �����

In this example� the maximum stepsize with k � � is smaller than with k �
� The

reason is that we ensure ������� by verifying �������� If we solve ������� directly� then we

are often able to verify existence and uniqueness on larger intervals� For example� �������

for problem ������� and k � � reduces to

�� t� t��
 � ����t���� ���t���� � ����� �����

which holds for t satisfying

�� t� t��
 � ���t��� � ��� and � � t� t��
 � ���t��� � ���� �������

These inequalities are true for t � ����� Note that the inequalities in ������� are more

similar to stability conditions than Euler�type stepsize restrictions�

To summarize� by computing tj�� such that �����
� holds for all t � �tj� tj���� we

can often take larger stepsizes than with the constant enclosure method� The stepsize

restriction imposed by �����
� is more a �stability�type� than an Euler�type restriction�

To implement �����
� is more di�cult than to implement �������� The latter often allows

larger stepsizes than the constant enclosure method� although the stepsizes are generally

smaller than the ones permitted by �����
��

Chapter 	� A Taylor Series Method for Validation ��

��� Guessing an Initial Enclosure

Suppose that we have computed ��j� such that

f �k
��"yj�� � f �k

�
�yj� �

k��X
i��

��� hij�f
�i
��yj�� � ��� hkj ���j�

�
� ��j�� ���
���

where

�"yj � � �yj� �
k��X
i��

��� hij�f
�i
��yj�� � ��� hkj ���j�� ���
�
�

Then� using ������� and ���
����

�yj��
k��X
i��

��� hij�f
�i
��yj�� � ��� hkj �f

�k
��"yj��

� �yj� �

k��X
i��

��� hij�f
�i
��yj�� � ��� hkj ���j�

� �"yj� �

Therefore� if ��j� is such that ���
��� holds� then �����
� is satis
ed� and there exists a

unique solution

y�t� tj� yj� � �yj� �
k��X
i��

�t� tj�
if �i
��yj�� � �t� tj�

kf �k
��"yj��

to the problem y��t� � f�y�� y�tj� � yj� for any yj � �yj� and all t � �tj� tj����

How to compute an approximation for ��j�

Let yj � �yj� and t � ��� hj�� Consider the nonlinear system of equations for �j�

f �k

�
yj �

k��X
i��

tif �i
�yj� � tk�j

�
� �j� ���
���

Ideally� we want to
nd an enclosure of the set of values for �j such that ���
��� holds for

all yj � �yj� and t � ��� hj �� In practice� computing such a set may be expensive�

Chapter 	� A Taylor Series Method for Validation ��

Here� we suggest a simple method for computing an approximation to this set� From

���
����

�j � f �k

�
yj �

k��X
i��

tif �i
�yj� � tk�j

�

� f �k
�yj� �
�f �k
�yj�

�y

�
k��X
i��

tif �i
�yj� � tk�j

�

� f �k
�yj� �
�f �k
�yj�

�y

k��X
i��

tif �i
�yj� �
�f �k
�yj�

�y
tk�j

���
���

and therefore�

�
I � tk

�f �k
�yj�

�y

�j � f �k
�yj� �

�f �k
�yj�

�y

k��X
i��

tif �i
�yj�� ���
���

Since we are interested in computing an approximation to the set containing �j� we

can compute from ���
����

��j� �

�
I � ��� hkj �

�f �k
��yj��

�y

�
f �k
��yj�� �

�f �k
��yj��

�y

k��X
i��

��� hij�f
�i
��yj��

�
�

Since ��j� is an approximation�� in the algorithm that we describe in the next section� we

in�ate ��j� to reduce the likelihood of failure in ���
����

In ���
���� we could have used the approximation

f �k

�
yj �

k��X
i��

tif �i
�yj� � tk�j

�
� f �k

�
yj �

k��X
i��

tif �i
�yj�

�

�
�f �k

�y

�
yj �

k��X
i��

tif �i
�yj�

�
tk�j� ���
���

which is perhaps a better approximation than ���
���� However� if we use ���
���� we

have to generate the coe�cients �f �i
��y evaluated at �yj� �
Pk��

i�� ��� h
i
j�f

�i
��yj��� for i �

�� � � � � k� while in ���
���� we need f �k
��y evaluated at �yj�� which coe�cients can be

reused in Algorithm II �see the next section��

�Note that ��j� is a guess for the enclosure of the kth Taylor coe�cient� not a rigorous enclosure�

Chapter 	� A Taylor Series Method for Validation �

��� Algorithmic Description of the Validation

Method

The method that we propose is described in Algorithm ���� Here� we explain some of the

decisions we have made in designing it�

Input part If we use an ITS method with order k of the Taylor series� we have to

compute the coe�cients f �i
��yj�� and �f �i
��yj����y� for i � �� � � � � k� �� in Algorithm II�

Therefore� we can use f �i
��yj��� for i � �� � � � � k � �� in Algorithm I without doing addi�

tional work to generate them� However� we have to compute f �k
��yj�� and �f �k
��yj����y�

If we use a �p� q� IHO method� we have to generate� in addition to the coe�cients

f �i
��yj�� for i � �� � � � � q� the coe�cients f �i
��yj�� for q � i� �� � � � � k and �f �k
��yj����y�

Compute part In line �� we in�ate ��j�� Since it is already an approximation to the

enclosure of the kth Taylor coe�cient on �tj� tj���� by in�ating ��j�� we hope to enclose

this coe�cient on �tj� tj���� We choose � � �� but we can use other values instead� With

� � �� we add �� j�jj � j�jj� to ��j�� Since ��j� is multiplied by ��� hkj �� adding �� j�jj � j�jj�
to ��j� does not contribute signi
cantly to the widths of the components of �"y
��j ��

If the condition in line �� is satis
ed� then we have veri
ed existence and uniqueness

with the computed �"y�j � in line �� Otherwise� in line ��� we compute a new guess �"y�j � for

the initial enclosure� Then� in the second while loop �line ���� we try to validate with

order s 	� l � k� If we succeed� then in the third while loop �line
��� we try to improve

the enclosure with the order s� with which we have veri
ed existence and uniqueness�

Otherwise� in line ��� we reduce the stepsize� If this is the second reduction� we start

the computations from the beginning �line ��� otherwise� we repeat the while loop at line

�� with a smaller stepsize� The reason for starting the computations at line � after the

second stepsize reduction is to try with a new guess for the a priori enclosure� before

continuing with further stepsize reductions�

Chapter 	� A Taylor Series Method for Validation ��

Algorithm 	�� Validate existence and uniqueness with Taylor series�

Input�

 �yj �� hj � k� hmin� � � ���� � �
�

�
�f �k�
�yj
�

�y � f �i

�yj ��� for i �
� � � � �
k�
��

Compute�

� Verified �� false �

� while hj � hmin and not Verified do

� �vj � ��
Pk��

i�� ��� h
i
j�f

�i

�yj ���

� �	j � ��
�
I 	 ��� hkj �

�f �k�
�yj
�
�y

��
f �k

�yj �� 	

�f �k�
�yj
�
�y �vj �

�
�

� �	j � �� �	j � 	 ���� �� � j�	j�j�

� �uj � �� �yj � 	 �vj ��

� ��y

��
j � �� �uj � 	 ��� hkj ��	j��

� Generate f �i

��y

��
j ��� for i �
� � � � � k�

 if f �k

��y

��
j �� � �	j� then

� ��yj � �� �uj � 	 ��� hkj �f
�k

��y

��
j ���

� break �

� end�if

� ��y

��
j � �� �uj � 	 ��� hkj �f

�k

��y

��
j ���

� Generate f �i

��y

��
j ��� for i �
� � � � � k�

� Reduced �� ��

� while not Verified and Reduced
 � do

� for l �
 to k do

�� �vj � �� �yj � 	
Pl��

i����� h
i
j�f

�i

�yj���

�
 ��yj � �� �vj � 	 ��� hlj�f
�l
��y

��
j ��

�� if ��yj � � ��y

��
j � then

�� Verified �� true � s �� l�

�� break �

�� end�if

�� end�for

Continued on the next page���

Chapter 	� A Taylor Series Method for Validation ��

Algorithm 	�� Continued

�� if Verified then

�� Improving �� true �

�� while Improving do

�� Generate f �i

��yj ��� for i �
� � � � � s�

�
 ��y

��
j � �� �vj� 	 ��� hsj�f

�s

��yj ���

�� if kw
��yj ��k�kw
��y

��
j ��k �
��
 then

�� ��yj � �� ��y

��
j ��

�� else

�� Improving �� false �

�� end

end�while

�� else

�� hj �� �hj �

�� Reduced �� Reduced 	
�

�� end�if

�
 end�while

�� if hj
 hmin then

�� print �Stepsize too small� cannot verify existence and uniqueness��

�� exit �

�� end�if

�� Compute hijf
�i

��yj ��� for i �
� � � � � k�

Output�

�� ��yj �� hj �

�� hijf
�i

��yj ��� for i �
� � � � � k�

We do not halve the stepsize� but reduce it by multiplying by 	� which we choose to

be ���� As with �� the value that we choose for 	 is somewhat arbitrary� but we want it

to be closer to � than to ���� We have not thoroughly studied the in�uence of the choice

for � and 	 on the performance of Algorithm ����

Chapter 	

Estimating and Controlling the

Excess

In x��
��� we considered the local excess in one step of the ITS methods discussed in this

thesis� The IHO method has the same sources of local excess as the ITS methods� but in

the IHO method� we also enclose the solution of the nonlinear system ��������� Since the

excess that arises from enclosing the solution of this nonlinear system is usually small

�see x������� we do not discuss the local excess in the IHO method�

In x���� we de
ne local and global excess and discuss controlling the global and

estimating the local excess� In x��
� we propose a simple stepsize control based on

controlling an approximation of the local excess�

��� Local and Global Excess

Let the set Uj be an enclosure of the solution at tj� In this thesis� Uj is represented by

an interval vector or a parallelepiped� We de
ne local and global excess by

�j � q�Uj� y�tj� tj���Uj���� and �������

�j � q�Uj� y�tj� t�� �y����� �����
�

��

Chapter
� Estimating and Controlling the Excess ��

respectively ���� p� ��� p� ����� ����� where q��� �� is the Hausdor� distance between two

sets given by �
�
����

����� Controlling the Global Excess

Similar to the standard numerical methods for IVPs for ODEs� our approach in VNODE

is to allow the user to specify a tolerance Tol� Then the code tries to produce enclosures�

at points tj� such that

�j � CjTol for j � �� �������

where Cj is an unknown constant that depends on the problem and the length of the

interval of integration� but not Tol� We try to achieve ������� by controlling the local

excess per unit step �LEPUS� ����� That is� we require

�j � hj��Tol �������

on each step� Eijgenraam shows ���� p� ���� that

�j �
jX

r��

e�
tj�tr��r� �������

where 	 is a constant depending on the problem� This constant may be negative since

the logarithmic norm is used in its de
nition ���� p� ���� Using �������� we obtain from

������� that

�j �

�������
e�
tj�t���tj � t��Tol� if 	 � ��

�tj � t��Tol� if 	 � ��

�������

Therefore� by controlling LEPUS� we can obtain a bound for the global excess� In this

sense� by reducing Tol� we should compute tighter bounds�

����� Estimating the Local Excess

From x��
��� the local excess in an ITS method is given by

O�hjkw��yj��k�� �O�hk��
j � � �higher�order terms�� �������

Chapter
� Estimating and Controlling the Excess ��

To compute an estimate of the local excess� we have to determine the dominating term in

�������� Obviously� if point initial conditions are speci
ed� w��y��� � �� the excess in each

component of the computed solution at t� is at most hk�kw�f �k
��"y���k� Unfortunately� even

if we start the integration with point initial conditions� �yj� is usually a non�degenerate

interval vector �kw ��yj�� k � �� on the second and all succeeding steps� If kw��yj��k is not
small� then hjkw��yj��k� may be the dominating term in �������� Because of this term�

the methods discussed in this thesis are
rst order methods if hjkw��yj��k� is dominating�

Eijgenraam shows an example for which the overestimation on each step is at least

chjkw��yj��k�� for some constant c � � ���� pp� �
���
��� We discuss his example in the

next subsection�

����� Worst Case Example

Consider the IVP problem

y�� � �

y�� � y��

�������

with initial conditions

y��� � �y�� �

�B����� ��
�

	CA � � � � � ��� �������

At t � h� � �� the set of solutions of ������������� is

y�h�� �� �y��� �

�����
�B� �

h��
�

	CA j � � ���� ��

�����
�see Figure ����� Suppose that we use a convex set Y� to enclose y�h�� �� �y���� Since for

each two points in a convex set� the line connecting them must be in the set too� we have

�

�B� ��
h��

�

	CA�
�

�B� �

h��
�

	CA �

�B� �

h��
�

	CA � Y��

Chapter
� Estimating and Controlling the Excess ��

��

�
� �

h��
�

�
A

�
� �

h��
�

�
A

�
y�

y�

h��
�

�y��

Figure ���	 If we use an interval vector to enclose the solution� the overestimation mea�

sured in the Hausdor� distance is at least ch�kw��y���k��

It can be shown that

q �Y�� y�h�� �� �y���� � q

�B�
�B� �

h��
�

	CA�
�����
�B� �

h��
�

	CA j � � ���� ��

�����
	CA

� min
�������

k���� h��� � h��
��Tk

� min
�����

max��� h��
� � h��

��

�

� �
p

� � �h���
�
h��

�

� �

�
� �

p
� � �h�max�

�
�

�h�kw��y���k�
� ch�kw��y���k��

��������

where h� � hmax� and hmax is the maximum stepsize taken during the integration� There�

fore� if we use a convex set to enclose the set of solutions at t � h� � �� we have an

overestimation that is at least ch�kw��y���k�� independently of the method used for com�

puting the enclosing set�

If we use an interval vector to enclose the solution of ������������� at h�� the tightest

enclosure we can have is

�y�� �

�B� ���� ��
h���� ���

	CA � ��������

Chapter
� Estimating and Controlling the Excess ��

which gives an overestimation of at least ch�kw��y���k�� The reason for this pessimistic

result is that by using intervals� we treat each of the components of the solution of �������

������ independently� while the second component of the true solution depends on the

rst one�

The approach of Berz ��� uses multivariate high�order Taylor series with respect to

time and the initial conditions to keep functional dependencies� As a result� his method

is a higher order method with respect to the propagated enclosures� However� it requires

arithmetic with Taylor polynomials� which involves signi
cantly more work and memory�

In the example discussed� we cannot control LEPUS based on estimating the local

excess in the Hausdor� distance� For example� if hmax � h� � ��� and �� � ���� then

using ��������� LEPUS at h� is

q �Y�� y�h�� �� �y����

h�
� �����

independently of the stepsize h�� Here� if the tolerance is small� an interval method may

give up�

��� A Simple Stepsize Control

We assume that we solve problems with either point initial conditions or interval initial

conditions with su�ciently small widths�

Let the enclosure of the remainder term on the jth step be given by

�hkj��f
�k
��"yj�����

where � � � is a constant� �� � � for ITS methods� and � � � for the IHO method��

Then� we approximate the local excess on each step by

errj � �hkj��kw�f �k
��"yj�����k� ���
���

Given a tolerance Tol� we try to control LEPUS by requiring

errj � hj��Tol ���
�
�

Chapter
� Estimating and Controlling the Excess ��

on each step�

����� Predicting a Stepsize after an Accepted Step

Suppose that the jth step was accepted� and we predict a stepsize for the next step by

hj�� � hj��

�
hj��Tol

errj

��
k���

� ���
���

Assuming that

kw�f �k
��"yj�����k � kw�f �k
��"yj���k�

and using ���
���� we have for the excess with hj���

errj���� � �hkj��kw�f �k
��"yj���k � �hj��h
k��
j��

hj��Tol

errj
kw�f �k
��"yj���k

� hj��h
k��
j��

�hj��Tol

errj
kw�f �k
��"yj�����k

� hj��Tol
�hkj��kw�f �k
��"yj�����k

errj

� hj��Tol�

In practice� we predict the stepsize by

hj�� � ���hj��

�
���hj��Tol

errj

��
k���

� ���
���

where we aim at ���Tol and choose a �safety� factor of ����

Algorithm I may reduce the stepsize hj��� In which case� Algorithm II has to use a

smaller stepsize hj � hj���

����� Computing a Stepsize after a Rejected Step

If errj � hj��Tol� we compute a new stepsize hj���� by using the equality

�hkj����kw�f �k
��"yj�����k � hj����Tol� ���
���

Chapter
� Estimating and Controlling the Excess ��

from which we determine�

hj���� �

�
Tol

�kw�f �k
��"yj�����k

��
k���

�

�
hkj��Tol

�hkj��kw�f �k
��"yj�����k

���
k���

� hj��

�
hj��Tol

errj

��
k���

�

Therefore� if the stepsize is rejected� we compute a new stepsize by

hj���� � hj��

�
hj��Tol

errj

��
k���

� ���
���

Since we reduce the stepsize� we can use the same f �k
��"yj����	 it is an enclosure on

the interval ��� hj��� and so must also be an enclosure over the smaller interval ��� hj������

Therefore� we can compute a tight enclosure with hj����� Because of ���
���� we know

that ���
�
� holds�

Remark

If we want the inequality ���
�
� to hold rigorously� we have to use directed roundings

or interval arithmetic to compute ���
�
� and ���
���� Otherwise� we can execute ���
�
�

and ���
��� in �regular� �oating�point arithmetic�

Chapter

A Program Structure for Computing

Validated Solutions

In this chapter� we describe a program structure for computing validated solutions of IVPs

for ODEs� It combines algorithms for validating existence and uniqueness� computing a

tight enclosure� and selecting a stepsize�

First� in x���� we specify the ODE problem� Then� in x��
� we describe one step of

an integration procedure� A problem can be integrated by a repeated execution of the

code implementing one step� The structure that we propose in x��
 is somewhat similar

to the one discussed in �
���

�� Problem Speci�cation

As in the classical methods� we have to specify the problem we want to integrate� A

minimum set of parameters is	

n & number of equations�

f & function for computing the right side�

t� & initial point�

�

Chapter �� Program Structure for Computing Validated Solutions ��

�y�� & initial condition at t��

T & end of the interval of integration� and

Tol & tolerance�

In addition to specifying the problem being integrated� we need functions for com�

puting the Taylor coe�cients f �i
 and their Jacobians �f �i
��y� for i � �� In VNODE�

such functions are generated by an automatic di�erentiation package �see Appendix B��

�� One Step of a Validated Method

Our goal is to structure the integrator function such that parts of it can be replaced

without changing the rest� In Algorithm ���� we show a general structure of a program

for implementing one step of a validated method� Functionally� we divide our program

into three modules� which are responsible for the following tasks�

Module �� Validating existence and uniqueness and simultaneously computing an a

priori enclosure of the solution on �tj� tj��� �Algorithm I��

Module �� Tightening the enclosure at tj�� �Algorithm II��

Module �� Preparing for the next step� which includes estimating the excess� accepting

or rejecting a step� and predicting a new order and stepsize�

At this stage� we do not have an order control strategy� but we include �order� in Module �

to show where an order selection method would
t�

The VNODE package described in Appendix B implements the structure in Figure ����

Here� we brie�y describe the modular structure�

Chapter �� Program Structure for Computing Validated Solutions ��

Algorithm ��� One step of a validated method�

Input�

tj � hj��� hmin� �yj �� �yj � Aj � �rj ��

Tol� k
p and q in an IHO method� k � p	 q 	
��

Compute�

Module ��

Try to validate existence and uniqueness with hj�� and k�

if successful then

return hj � hj��� ��yj �� �zj��� �� hkj f
�k

��yj ���

end�if

while hj � hmin do

Module ��

Compute �yj���� �yj��� Aj��� and �rj����

Module ��

Estimate the excess�

if the excess is acceptable then

select hj���� for the next step�

break �

else

select new hj��
 hj �

�z�j��� ��
hj���hj�
k�zj����

hj �� hj���

�zj��� �� �z�j����

end�if

end�while

if hj
 hmin then

print �Stepsize too small��

exit �

end�if

Output�

tj��� hj����� �yj���� �yj��� Aj��� �rj����

Chapter �� Program Structure for Computing Validated Solutions ��

Module �

We try to validate existence and uniqueness with a stepsize hj��� If the validation is

successful� we have as an output of this procedure a stepsize hj � which can be smaller

than hj��� an enclosure �"yj� of the solution on �tj� tj�hj�� and an enclosure of the kth Taylor

coe�cient multiplied by hkj � �zj��� � hkjf
�k
��"yj��� In our implementation� hj � hj�� since

hj�� is predicted such that the predicted error satis
es some tolerance� If the validation is

unsuccessful� the code should print a message and exit the integration� For example� on

the problem y� � y�� y��� � �� a method for validating existence and uniqueness would

normally start taking smaller and smaller stepsizes as t approaches �� When the stepsize

becomes smaller than a prescribed minimum� this method should stop and inform the

user that it cannot continue �see Algorithm �����

Remarks

�� If it is a
rst step� h��� is a predicted initial stepsize� otherwise� hj�� is selected from

the previous step� The algorithms for predicting an initial stepsize and selecting

one after a successful step may di�er�

� It is convenient to return hkjf
�k
��"yj�� since it is used in computing �yj���� In addition�

if the stepsize is rejected� and we compute a new one hj�� � hj� we can make the

excess term smaller by the scaling �z�j��� � �hj���hj�k�zj����

�� It is also convenient to have the terms hijf
�i
��"yj��� for i � �� � � � k� available to

Module
� For example� the predictor and the corrector in the IHO method need

hq��
j f �q��
��"yj�� and hkj f

�k
��"yj��� respectively�

Module �

We use �"yj� and �zj���� from Module �� to compute a tight enclosure of the solution at

tj�� � tj�hj � In the ITS methods� the local excess is approximated by hkjkw�f �k
��"yj���k�

Chapter �� Program Structure for Computing Validated Solutions ��

In the IHO method� it is approximated by �hkjkw�f �k
��"yj���k� for some constant �� which

depends on the p and q of the method� In the latter case� forming the term �hkj f
�k
��"yj��

in this module is more convenient than in the
rst one�

Module �

In VNODE� we estimate the local excess and compute new stepsizes as discussed in x��
�
Note that� if the step is not successful� we repeat the computation� but starting from

Module
� The reason is that we have already validated existence and uniqueness� and

we have to compute an enclosure with a smaller stepsize� That is� we can use the output

hkjf
�k
��"yj�� and scale it to hkj��f

�k
��"yj��� where hj�� � hj �

Chapter �

Numerical Results

With the numerical experiments described in this chapter� we study the behavior of our

IHO method and compare it with the ITS methods�

In x���� we describe the tables shown in this chapter and introduce some assumptions�

In x��
� we verify empirically that the order of the IHO method is p � q � �� which

is the order of the truncation error� We also show empirically that the order of an ITS

method with k � p � q � � terms is k�

In x���� we examine the stability of these two methods on constant coe�cient prob�

lems� Then� we compare the methods on nonlinear problems�

In x���� we compare the ITS and IHO methods again	
rst� by using a constant

enclosure method in Algorithm I� and second� by using the Taylor series enclosure method

�from Chapter ��� We also show that the Taylor series enclosure method enables larger

stepsizes than the constant enclosure method�

��� Description of the Tables and Assumptions

Description of the Tables

We describe brie�y some of the columns of the tables shown in this chapter�

��

Chapter �� Numerical Results ��

h constant stepsize used during the integration�

Excess global excess at the end of the interval of integration�

If a point initial condition is speci
ed� the global excess �j at a point tj is measured

by the norm of the width of the enclosure� that is�

�j � kw��yj��k

�j � ��� If an interval initial condition is given� and a closed form solution is known�

then

�j � q

�yj�� �y

exact
j �

�
�

where q

�yj�� �yexactj �

�
is de
ned in �
�
���� That is� we measure the global excess

by the distance between �yj� and �yexactj �� where �yexactj � is computed from the true

solution� We assume that �yexactj � is the tightest interval enclosure of the solution

that can be obtained�

Time Total CPU time in seconds spent in Algorithm II� Since we are mainly interested

in the performance of the methods implementing Algorithm II� we report only this

time� Note that if the timing results are of order ���� or ����� they may not be

accurate� We have not measured the performance of Algorithm I because we have

not yet optimized the Taylor series method from Chapter � to reuse the coe�cients

needed in Algorithm II�

H constant stepsize that is an input on each step to Algorithm I� This algorithm may

reduce the stepsize in order to verify existence and uniqueness�

Steps number of steps used during the integration�

Chapter �� Numerical Results ��

Assumptions

� We denote an ITS method with k terms by ITS�k� and an IHO method with

parameters p and q by IHO�q� p�� In all of the examples in this chapter� we use

p � q with k � p� q��� Thus� we compare methods with truncation errors of the

same order�

� If necessary� both methods use Lohner�s QR�factorization technique to reduce the

wrapping e�ect� The ITS method with the QR�factorization is essentially Lohner�s

method�

� In the experiments with a variable stepsize control� we use Eijgenraam�s method ����

pp� �
������ for selecting initial stepsize�

� The implementation of the constant enclosure method �in Algorithm I� is as de�

scribed in ���� pp� ������� This implementation uses the Jacobian of f for com�

puting an initial guess for the a priori enclosure�

� We compiled VNODE with the GNU C�� compiler version
���
 on a Sun Ultra

(
��� workstation with an ��� MHz UltraSPARC CPU� The underlying interval�

arithmetic and automatic di�erentiation packages are PROFIL(BIAS ���� and

FADBAD(TADIFF ���� ���� respectively �see xB���� and xB���
��

��� Observed Orders

In this section� we determine empirically the error constants and orders of the ITS and

IHO methods on a scalar �x��
��� and two�dimensional �x��
�
� nonlinear problem� We

have chosen nonlinear problems� because in the IHO method we have to enclose the

solution of a nonlinear system� while we do not have to do that in the constant coe�cient

case� Our goal is to verify that the excess arising from solving such a system �see x������
does not reduce the order of the method�

Chapter �� Numerical Results ��

For simplicity� we consider the case with point initial conditions� If �"yj� is a good

enclosure of y�t� tj� �yj�� on �tj� tj���� then the overestimation in hkj f
�k
��"yj�� is of order

O�hk��� �see x��
���� Assuming that the computed intervals are small� the local excess

in an ITS method and in an IHO method� with k � p� q� �� is O�hk��� and the global

excess should be O�hk��

For a given problem and method� we compute an error constant c and order r by a

linear least squares
t determined from the conditions

log�Excessi� u log c � r log hi� i � �� � � � � s�

where Excessi is the global excess at the endpoint obtained by integrating the problem

with constant stepsizes hi� i � ��
� � � � � s�

Before we present our numerical results� we should note that the order of a validated

method can be sensitive to the tightness of the a priori bounds� That is� for the same

order of the truncation error of the underlying formula and ranges of stepsizes� depending

on how tight the a priori bounds are� we may obtain di�erent values for the order� For

example� we may compute an order that is higher by two or three than that predicted

theoretically�

To make the procedure for computing the order more deterministic� we can assume

that we can obtain the tightest possible a priori bounds� Since in this thesis we use

constant enclosures for the solution� the tightest constant enclosure on �tj� tj��� has com�

ponents

� min
t��tj�tj��
� yj��yj

yi�t� tj� yj�� max
t��tj�tj��
 yj��yj

yi�t� tj� yj��� for i � �� � � � � n�

Note that in practice� it is normally di�cult to compute such bounds� However� for the

examples in the next two subsections� we use such optimal bounds�

Chapter �� Numerical Results ��

���� Nonlinear Scalar Problem

We integrated

y� � �y�� y��� � �

on ��� �
� with an ITS method with k � � and k � �� and with an IHO method with

p � q � � and p � q � �� respectively �k � p� q � ��� We computed a priori enclosures

of the solution on each step by the formula

�"yj� � ����h� ��y
 j
�� yj��

which is obtained from the true solution� and used constant stepsizes h � ���� ��
� � � � � ����

Here and in x��
�
� we select the endpoint� T � to be a multiple of the stepsizes� By

computing a priori enclosures from the formula for the true solution� we eliminate the

need to reduce the stepsize or to compute too wide �for this problem� a priori enclosures

in Algorithm I�

Tables ��� and ��
 show the excess at T � �
� the excess divided by h� and h���

respectively� and the CPU time used in the ITS and IHO methods� By using a least

squares
t� we have computed in Table ��� the error constants and orders corresponding

to k � � and k � ��� For k � � and k � ��� we compute the base��� logarithm of the

data and plot in Figure ��� the excess versus the stepsize and the time versus the excess�

From Table ���� we observe higher orders for both methods than we would expect�

Moreover� the observed orders of the IHO method on this example are bigger than the

corresponding orders of the ITS method �for k � � and ���� From Figures ����a� and

����b�� we see that for the same stepsizes� the IHO method produces enclosures that are

of order ���� times tighter than the enclosures produced by the ITS method�

Chapter �� Numerical Results �

h Excess Excess(h� Time

ITS IHO ITS IHO ITS IHO

���� ��
� �����
�� � ����� ��
 � ����
��� ���� ��
� ���� ��
� ����

��
� ���� ���� ��� � ���� ��� � ����
��� ���� ���� ���� ���� ����

���� ���� ���� ��� � ���� ��� � ���� ���� ���� ���� ���� ���� ����

���� ���� ���� ��� � ���� ��� � ���� ��
� ���� ���� ���� ���� ����

���� ��
� ���� ��� � ���� ��
 � ���� ���� ����
��� ����
��� ����

����
��� ����
�� � ���� ��� � ���� ���� ����
��� ����
��� ����

Table ���	 ITS��� and IHO��� �� on y� � �y�� y��� � �� t � ��� �
��

h Excess Excess(h�� Time

ITS IHO ITS IHO ITS IHO

���� ���� ����� ��� � ����� ��� � ���� ���� ����
��� ���� ���� ����

��
� ���� ����� ��� � ����� ��� � ����
��� ���� ��
� ���� ���� ����

���� ���� ���� ��
 � ����� ��� � ���� ���� ���� ���� ���� ���� ����

���� ���� ���� ��� � ���� ��� � ���� ���� ���� ���� ���� ���� ����

���� ���� ���� ��
 � ���� ��� � ���� ���� ���� ���� ���� ���� ����

���� ���� ���� ��� � ���� ��� � ���� ���� ���� ���� ���� ���� ����

Table ��
	 ITS���� and IHO��� �� on y� � �y�� y��� � �� t � ��� �
��

Chapter �� Numerical Results ��

k chr

ITS IHO

� ������������ h�	�� ���
�������� h�	��

�� ������������h��	�� �
����������h��	��

Table ���	 Error constants and orders of the ITS and IHOmethods on y� � �y�� y��� � ��

t � ��� �
�� The excess and stepsizes used in the least squares
ts are from Tables ���

�k � �� and ��
 �k � ����

-11

-10

-9

-8

-7

-6

-5

-4

-3

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2

E
xc

es
s

Stepsize

ITS
IHO

�a
 ITS��
� IHO��� �

-16

-14

-12

-10

-8

-6

-4

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2

E
xc

es
s

Stepsize

ITS
IHO

�b
 ITS���
� IHO��� �

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-1

-0.9

-11 -10 -9 -8 -7 -6 -5 -4 -3

T
im

e

Excess

ITS
IHO

�c
 ITS��
� IHO��� �

-1.5

-1.4

-1.3

-1.2

-1.1

-1

-0.9

-0.8

-0.7

-0.6

-16 -14 -12 -10 -8 -6 -4

T
im

e

Excess

ITS
IHO

�d
 ITS���
� IHO��� �

Figure ���	 ITS and IHO on y� � �y�� y��� � �� t � ��� �
��

Chapter �� Numerical Results ��

���� Nonlinear Two�Dimensional Problem

We integrated

y�� � y� � y��� � y�� � y���

y�� � �y� � y���� y�� � y���

���
���

���� p� ��� for

y��� � ��� ��T � t � ��� ����� ���
�
�

with the ITS��� and IHO��� �� methods� We used a constant enclosure method for

validating existence and uniqueness of the solution and stepsizes h � ���� ��
� ���� and ����

We could have computed a priori bounds from the formula for the true solution� but in

this case� the constant enclosure method does not reduce the input stepsizes� Moreover�

it produces tighter a priori bounds than if these bounds were computed by evaluating the

formula for the true solution in interval arithmetic� Since the solution rotates in phase

space� both methods use QR�factorization to reduce the wrapping e�ect�

Table ��� shows the excess at T � ����� the excess divided by h�� and the CPU time�

In Figure ��
� we plot �by
rst computing log �� of all relevant values� the excess versus

the stepsize and the CPU time spent in these methods versus the excess� In Table ����

we have computed a least squares
t to the error constants and orders�

h Excess Excess(h� Time

ITS IHO ITS IHO ITS IHO

���� ��� � ����� ���� ����� ���� ��� ���� ���
�� � ���� ��� � ����

���
 ��� � ����� ���� ����� ���� ��� ���� ��� ��� � ���� ��� � ����

���� ��� � ���� ���� ���� ���� ��� ��
� ��� ��� � ���� ��� � ����

����
�� � ���� ���� ���� ��
� ��� ���� ��� ��� � ���� ��� � ����

Table ���	 ITS��� and IHO��� �� on ���
��� with ���
�
��

Chapter �� Numerical Results ��

k chr

ITS IHO

� �
��
������h�	�� �����������h�	��

Table ���	 Error constant and order of the ITS and IHO methods on ���
��� with ���
�
��

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

-2 -1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1

E
xc

es
s

Stepsize

ITS
IHO

�a

-1.5
-1.4
-1.3
-1.2
-1.1

-1
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4

-13 -12 -11 -10 -9 -8 -7 -6 -5 -4

T
im

e

Excess

ITS
IHO

�b

Figure ��
	 ITS��� and IHO��� �� on ���
��� with ���
�
��

In this example� we have a behavior similar to the one from the previous example	

slightly higher orders of both methods� than the expected k � �� and slightly higher

order of the IHO method than of the ITS method �see Table ����� In both examples� we

computed tighter enclosures with the IHO method than with the ITS method� for the

same stepsizes and orders of the truncations error�

For the same stepsizes� the IHO method is more expensive than the ITS method�

but produces smaller excess �see Table ����� As a result� the IHO method is slightly less

expensive for the same excess �see Figure ��
�b��� As we shall see later� the ITS method

can be less expensive for low orders if the work is measured per step�

Chapter �� Numerical Results ��

��� Interval Hermite�Obreschko
 versus Interval

Taylor Series Methods

���� Constant Coe�cient Problems

Scalar Problem� Constant Stepsizes

We integrated

y� � ���y� �������

rst with y��� � � and then with y��� � ����� ���� for t � ��� ���� �At t � ��� the true

solution of ������� with y��� � � is e���� � ��� � ������� To avoid possible stepsize

reductions in Algorithm I� we computed a priori enclosures on each step by

�"yj� � �e���hy
 j
� yj��

In Algorithm II� we used the ITS���� and IHO��� �� methods�

For constant stepsizes ��
� ���� � � � � ���� Tables ��� and ��� show the excess at T � ���

the ratio of the excess of the IHO method to the excess of the ITS method�
���
Q���
���h�

�

and the CPU time spent in Algorithm II �Qp�q�z� is de
ned in ��������� We compute the

base��� logarithm of the data and plot in Figure ��� the excess versus the stepsize and

the time versus the excess� We do not show the corresponding graphs for Table ��� since

they are almost the same as in Figure ����

Consider Table ��� and Figure ����a�� For �small� stepsizes� h � ��
� ���� ���� the

excess in the IHO method is approximately �����Q�������h� � ���� times the excess in

the ITS method� which con
rms the theory in x������ As h increases beyond ���� the

ITS method produces enclosures with rapidly increasing widths� while the IHO method

computes good enclosures for those stepsizes�

Chapter �� Numerical Results ��

h Excess Reductions Time

ITS IHO IHO(ITS
���
Q���
���h�

ITS IHO

��
 ��� � ����� ���� ����� ��� � ���� ���� ���� ��� � ����
��� ����

��� ��� � ����� ���� ����� ��� � ���� ���� ����
�� � ���� ���� ����

���
�� � �����
��� ����� ��� � ���� ��
� ���� ��� � ���� ���� ����

��� ��
 � ����� ���� ����� ��� � ���� ���� ���� ��� � ���� ���� ����

��� ��� � ����� ���� ����� ��� � ����� ��
� ���� ��� � ���� ���� ����

��� ��� � ���� ���� ����� ��
 � ����� ���� ���� ��� � ���� ���� ����

���
�� � ����
��� ����� ��� � �����
��� ���� ��� � ���� ���� ����

Table ���	 ITS���� and IHO��� �� on y� � ���y� y��� � �� t � ��� ����

h Excess Reductions Time

ITS IHO IHO(ITS
���
Q���
���h�

ITS IHO

��
 ��� � ����� ��
� �����
�� � ���� ���� ���� ��� � ����
��� ����

��� ��� � ����� ���� ����� ��� � ���� ���� ����
�� � ���� ���� ����

���
�
 � �����
��� ����� ��� � ���� ��
� ���� ��� � ���� ��
� ����

��� ��� � ����� ���� �����
�� � ���� ���� ���� ��� � ���� ���� ����

��� ��� � ����� ��
� ����� ��� � ����� ��
� ���� ��� � ���� ���� ����

���
�� � ���� ���� ����� ��� � ����� ���� ���� ��� � ���� ���� ����

��� ��� � ����
�
� ����� ��� � �����
��� ���� ��� � ���� ���� ����

Table ���	 ITS���� and IHO��� �� on y� � ���y� y��� � ����� ����� t � ��� ����

Chapter �� Numerical Results ��

-60

-50

-40

-30

-20

-10

0

10

20

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

E
xc

es
s

Stepsize

ITS
IHO

�a

-2.3

-2.2

-2.1

-2

-1.9

-1.8

-1.7

-1.6

-1.5

-1.4

-60 -50 -40 -30 -20 -10 0 10 20

T
im

e

Excess

ITS
IHO

�b

Figure ���	 ITS���� and IHO��� �� on y� � ���y� y��� � �� t � ��� ����

Variable Stepsizes

We integrated ������� with y��� � � for t � ��� ���� with the stepsize selection scheme

from x��
� We used an absolute tolerance of ������ In Figure ���� we plot the stepsizes

against the step number for the two methods� With the ITS method� the solver takes a

small stepsize in the last step to hit the endpoint exactly�

The ITS method is asymptotically unstable for stepsizes h such that

jT������h�j� ���h���

��!
� �

�see x������� For h � ������

jT������h�j� ���h���

��!
� ������

For the IHO method� the stepsize oscillates around ������ which is about
�� times bigger

than ������ the stepsize limit for the ITS method� For h � ������

jR�������h�j� ����
jQ�������h�j

���h���

��!
� ������

Although the IHO method permits larger stepsizes� they are still limited by its local error

term� This observation con
rms the theory in x������

Chapter �� Numerical Results ��

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100 120 140 160
S

te
ps

iz
e

Step number

ITS
IHO

0.695
1.875

Figure ���	 ITS���� and IHO��� �� on y� � ���y� y��� � �� t � ��� ����� variable stepsize

control with Tol � ������

Two�Dimensional Problem

We compare the ITS���� and IHO��� �� methods on the system

y� � By �

�B�� �

� ��

	CA y �����
�

����� This system is interesting because the solution components tend to zero rapidly�

but still� we have to deal with the wrapping e�ect� For example� if

y��� � ������T � �������

then the true solution of �����
������� is given by

y��t� � �e�t � �e��t

y��t� � �e�t � �e��t�

As t increases� both y��t� and y��t� become approximately �e�t� In the phase plane�

the solution becomes almost parallel to the line y� � y�� If the solution is enclosed by a

parallelepiped� as in the direct method �see x��
�
�� there is a large overestimation� which

increases with the steps taken�

Constant Stepsizes We integrated �����
� on ��� ���
rst with an initial condition

y��� � ������T and then with an initial condition y��� � ������ ����� ������ �����T � We

Chapter �� Numerical Results ���

used constant stepsizes h � ��
� ���� � � � � ��� and computed a priori enclosures of the

solution on each step by

�"yj � �

�B��e����h
 �
e�����h
 �
e����h
 �
e�����h

�e����h
 � �e�����h
 �
e����h
 � �e�����h

	CA �yj�� �������

which is obtained from the true solution

y�t� �

�B�e�t
e��t

e�t �e��t

	CA
�B� � �

�� �

	CA y����

The results are shown in Tables ��� and ���� Corresponding to Table ���� we compute

the base��� logarithm of the data and plot in Figure ��� the excess versus the stepsize

and the CPU time spent in Algorithm II versus the excess� Since the results for Table ���

are similar� we do not show the corresponding graphs�

In the ITS method� the widths of the computed enclosures increase rapidly with h

for h �
��� We would expect a blow up to occur for stepsizes not much smaller than

����� which is determined from the condition jT����
h�j � � �The eigenvalues of B are

�� and �
��� The reason for this �early� blow up is that the a priori enclosures are

not tight enough� and as a result� the local excess in the ITS method is not as small

as it should be� However� the IHO method produces good enclosures for all stepsizes

considered �h � ��
� ���� � � � � ����� From the fourth column in Table ���� the excess in

the IHO method is �roughly� at least ���� times the excess in the ITS method �see also

x����
� �����
����

Chapter �� Numerical Results ���

h Excess Reductions Time

ITS IHO IHO(ITS Q�hB� ITS IHO

��

�� � ����� ���� ����� ��� � ���� ��
 � ���� ��
 � ����
��� ����

��� ��� � ����� ��
� ����� ��� � ���� ��� � ���� ��� � ���� ���� ����

��� ��� � ����� ��
� �����
�� � ���� ��� � ���� ��� � ���� ���� ����

��� ��� � ����� ���� �����
�� � ���� ��� � ���� ��
 � ���� ���� ����

�� ��� � ����� ���� ����� ��� � ���� ��� � ���� ��� � ���� ���� ����

�

�� � �����
��� ����� ��� � ���� ��� � ���� ��� � ���� ���� ����

�� ��� � ����� ��
� ����� ��� � ����� ��� � ���� ��
 � ���� ���� ����

�� ��� � ����� ���� ����� ��� � ����� ��� � ���� ��� � ���� ���� ����

�� ��� � ���� ���� ����� ��
 � ����� ��� � ���� ��� � ���� ���� ����

���
�
 � ��� ��
� �����
�� � ����� ��� � ���� ��� � ���� ���� ����

��

�� � ���
��� ����� ��� � ����� ��� � ���� ��� � ���� ���� ����

��� ��� � ���� ���� �����
�� � ����� ��� � ���� ��� � ���� ���� ����

Table ���	 ITS���� and IHO��� �� on �����
�� y��� � ������T � t � ��� ����

Q�hB� � ����k

Q����hB�

���k�

-30

-25

-20

-15

-10

-5

0

5

10

15

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

E
xc

es
s

Stepsize

ITS
IHO

�a

-1.4

-1.3

-1.2

-1.1

-1

-0.9

-0.8

-0.7

-0.6

-30 -25 -20 -15 -10 -5 0 5 10 15

T
im

e

Excess

ITS
IHO

�b

Figure ���	 ITS���� and IHO��� �� on �����
�� y��� � ������T � t � ��� ����

Chapter �� Numerical Results ��

h Excess Reductions Time

ITS IHO IHO(ITS Q�hB� ITS IHO

��
 ��� � ����� ���� ����� ��� � ���� ��
 � ���� ��
 � ����
��� ����

���
�� � ����� ���� ����� ��� � ���� ��� � ���� ��� � ���� ���� ����

���
�
 � ����� ���� �����
�� � ���� ��� � ���� ��� � ���� ���� ����

���
�� � ����� ���� �����
�� � ���� ��� � ���� ��� � ���� ���� ����

��
�� � �����
��� ����� ��� � ���� ��� � ���� ��� � ���� ���� ����

�
 ��� � ����� ���� ����� ��� � ���� ��� � ���� ��� � ���� ���� ����

�� ��� � ����� ���� ����� ��� � ����� ��� � ���� ��� � ���� ���� ����

��
�� � �����
��� ����� ��� � ����� ��� � ���� ��� � ���� ���� ����

�� ��� � ���� ���� ����� ��
 � ����� ��� � ���� ��� � ���� ���� ����

��� ��
 � ��� ���� �����
�� � ����� ��� � ���� ��� � ���� ���� ����

��
 ��� � ��� ���� ����� ��� � ����� ��� � ���� ��� � ���� ���� ����

��� ��� � ���� ���� �����
�� � ����� ��� � ���� ��� � ���� ��
� ����

Table ���	 ITS���� and IHO��� �� on �����
�� y��� � ������ ����� ������ �����T � t � ��� ����

Q�hB� � ����k

Q����hB�

���k�
Variable Stepsizes We integrated �����
� with y��� � ������T for t � ��� ���� with

a variable step control with Tol � ������ In Figures ����a�d�� we show how the stepsize

depends on how the a priori bounds are computed and whether they are intersected with

the tight bounds�

If the a priori enclosures are computed from �������� then these enclosures are normally

wider than the tight bounds� Since the intersection of the a priori and tight enclosures

produces intervals that are the same �or almost the same� as the tight bounds� the stepsize

shows similar behavior� whether or not these bounds are intersected� see Figures ����a�

b�� Because of the additional stability restriction from the remainder term� the stepsize

in the ITS cannot reach the value ���� and oscillates around
��� Recall that ���� is

Chapter �� Numerical Results ���

determined from jTk����
h�j � �� The stepsize in the IHO method is restricted mainly

by the associated formula for the truncation error� If the a priori bounds are computed

by

�"yj � �

���������������

�BB��e����h
 �
e�����h
 �
e����h
 �
e�����h

�e����h
 � �e�����h
 �
e����h
 � �e�����h

	CCA �yj�� if t � �

��� yj� otherwise�
�������

we observe a di�erent behavior� see Figures ����c�d�� With �������� we compute tighter a

priori bounds for t � � than with ��������

In Figure ����c�� the stepsize in the ITS method oscillates slightly below ����� In a

standard method with a stability restriction on the stepsize of ����� we would expect

these oscillations to occur at about ����� but here� they are shifted down because of the

restriction on the stepsize from the remainder term� In this
gure� the oscillations of the

stepsizes in the ITS method and the IHO method occur at larger values of h than in

Figure ����a�� The reason is that we compute tighter bounds for the truncation error�

In Figure ����d�� the stepsize in the ITS method reaches a value greater than ����

and then stays at this value� Taking stepsizes outside the stability region of Tk���hB�

seems strange� but this phenomenon can be explained as follows�

As the stepsize increases towards ����� the ITS method becomes unstable for some

hj � ����� Suppose that the solver has accepted �yj� at tj � � and computes �yj���

with the ITS method and such hj� Because of instability� w��yj���� � w��yj��� Since the

true solution components tend to zero as t increases� we can assume that �yj��� contains

��� ��T � Then the tight and a priori bounds are intersected� and the solver accepts

�y�j��� � �yj��� � �"yj� � �yj��� � ��� yj� � ��� yj��

For the next step� it determines a stepsize so that ��� yj� satis
es the tolerance require�

ment� In our example� such a stepsize is greater than ����� The ITS produces again a

tight bound that is wider than the a priori one� which is again ��� yj�� Thus� the solver

Chapter �� Numerical Results ���

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120 140 160

S
te

ps
iz

e

Step number

ITS
IHO
3.66

5.5

�a
 Tight and a priori enclosures are not

intersected� a priori enclosures computed

from �
����
�

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120 140 160

S
te

ps
iz

e

Step number

ITS
IHO
3.66

5.5

�b
 Tight and a priori enclosures are inter�

sected� a priori enclosures computed from

�
����
�

0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100 120 140 160

S
te

ps
iz

e

Step number

ITS
IHO
3.66

6.2

�c
 Tight and a priori enclosures are not

intersected� a priori enclosures computed

from �
����
�

0

2

4

6

8

10

0 20 40 60 80 100 120 140

S
te

ps
iz

e

Step number

ITS
IHO
3.66

�d
 Tight and a priori enclosures are inter�

sected� a priori enclosures computed from

�
����
�

Figure ���	 ITS���� and IHO��� �� on �����
�� y��� � ���� ��� t � ��� ����� variable stepsize

control with Tol � ������

keeps taking the same stepsize and accepting ��� yj�� which satis
es the accuracy require�

ment� The situation is similar with the IHO method� except that the stepsize reaches a

much larger value and stays at it�

It is important to note on this example that although Algorithm II becomes unstable�

the integration essentially continues with Algorithm I� Here� we knew how to compute

good a priori bounds in Algorithm I for large stepsizes� but this is rarely the case�

Chapter �� Numerical Results ���

���� Nonlinear Problems

Example � We integrated ����

y� � t��� y� � �� � t�e�t� �������

with constant stepsizes ��
� ���� ���� and ���� In autonomous form� this equation is

y�� � �

y�� � y���� y�� � �� � y��e
�y� �

We computed a priori enclosures from

�"yj��� � �yj��� � ��� h�

�"yj��� � � � e���yj��
 � e���y
�
j��
��

�yj���� � � e�tj

e�t
�
j��

�

which is determined from the true solution

y�t� � �� e�t �
e�t

����yj � � � e�tj�

e�t
�
j��

� where y�tj� � yj�

and used the ITS���� and IHO��� �� methods with the direct method� described in x��
�

�without the QR�factorization� described in x��
����

As can be seen from the results in Tables ���� and ���� and Figure ���� for the same

stepsizes� the IHO method produces much better enclosures in less time than the ITS

method� In these tables� we have also shown the maximum excess during the integration�

In Table ���
� we show results produced with the ITS���� and IHO��� �� methods with

the QR�factorization and without rearranging the columns of the transformation matrix

�see x��
���� It is interesting to note that in this case� the solver computed wider bounds

than the ones reported in Table ����� which are obtained without QR�factorization� The

reason is that by computing the interval vectors �rj�� j � � �see x��
�� and x������� the
initial excess in the second component of the solution is introduced into the
rst one�

Then� the excess in the
rst component propagates� as we integrate towards the endpoint�

Chapter �� Numerical Results ���

h Excess Max Excess Time

ITS IHO ITS IHO ITS IHO

��
 ��� � ����� ��� � ����� ��� � �����
�
� ����� ��� � ��� ���� ���

��� ��
 � ����� ��� � ����� ��� � ����� ���� ����� ��
 � ���� ���� ����

��� ��� � ���� ��� � ����� ��� � ���� ���� ����� ��� � ���� ���� ����

���
�� � ���� ��� � �����
�� � ���� ���� ����� ��� � ���� ���� ����

Table ����	 ITS���� and IHO��� �� on y� � t��� y� � ��� t�e�t� y��� � �� t � ���
���

-16
-15
-14
-13
-12
-11
-10

-9
-8
-7
-6
-5

-0.7 -0.65 -0.6 -0.55 -0.5 -0.45 -0.4 -0.35 -0.3

E
rr

or

Stepsize

ITS
IHO

-0.35
-0.3

-0.25
-0.2

-0.15
-0.1

-0.05
0

0.05
0.1

0.15

-16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5

T
im

e

Error

ITS
IHO

Figure ���	 ITS���� and IHO��� �� on y� � t��� y� � �� � t�e�t� y��� � �� t � ���
���

Chapter �� Numerical Results ���

h Excess Max Excess Time

ITS IHO ITS IHO ITS IHO

��
 ��� � ����� ��� � ����� ��� � ����� ���� ����� ��� � ��� ���� ���

��� ��� � ����� ��� � ����� ��� � ����� ���� ����� ��� � ���� ���� ����

��� ��� � ����
�
 � ����� ��� � ���� ���� ����� ��� � ���� ���� ����

���
�� � ���� ��� � �����
�� � ����
��� ����� ��� � ���� ���� ����

Table ����	 ITS���� and IHO��� �� on y� � t�� � y� � �� � t�e�t� y��� � ������� �������

t � ���
���

h Excess Max Excess Time

ITS IHO ITS IHO ITS IHO

��
 ��� � ���� ��� � ���� ��� � ���� ���� ���� ���� ��� ��
� ���

��� ��� � ���� ��� � ���� ��� � ���� ���� ���� ���� ���� ���� ����

��� ��� � ���� ��� � ���� ��� � ���� ���� ���� ��
� ���� ���� ����

��� ��� � ���� ��� � ���� ��� � ���� ���� ���� ���� ���� ���� ����

Table ���
	 ITS���� and IHO��� �� on y� � t�� � y� � �� � t�e�t� y��� � ������� �������

t � ���
��� QR�factorization�

Chapter �� Numerical Results ���

Example � Two�Body Problem

We integrated the two�body problem

y�� � y�

y�� � y�

y�� � � y�

�y�� � y���
���

y�� � � y�

�y�� � y���
���

�

y��� � ��� �� �� ��T � t � ���
��

with the ITS���� and IHO��� �� methods� We used a constant enclosure method in

Algorithm I and input stepsizes ���� ����� ��
 to this method� For input stepsize ��� to

the validation procedure� the IHO method produces slightly better enclosures for slightly

less work� Table ����� However� when the stepsize is ���� or ��
� the excess of the IHO

method is signi
cantly smaller than the excess of the ITS method�

H Steps Excess Time

ITS IHO ITS IHO ITS IHO

����
��
�� ��
� ����� ��� � ����� ��� ���

���� ��� ��� ���� ����
�� � ����� ��� ���

��
� ��� ��� ���� ���� ���� ���� ��� ���

Table ����	 ITS���� and IHO��� �� on the two�body problem� constant enclosure method�

Since Algorithm I usually reduces the input stepsize� in Figure ���� we plot the stepsize

against the step number� The stepsizes reductions at the end of the plots occurs because

the solver takes a small stepsize to hit the endpoint �in time� exactly�

Chapter �� Numerical Results ���

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1
0.11

0 50 100 150 200 250

S
te

ps
iz

e

Step number

�a
 Input stepsize ���� ITS

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1
0.11

0 50 100 150 200 250

S
te

ps
iz

e

Step number

�b
 Input stepsize ���� IHO

0.05
0.06
0.07
0.08
0.09

0.1
0.11
0.12
0.13
0.14
0.15

0 20 40 60 80 100 120 140 160

S
te

ps
iz

e

Step number

�c
 Input stepsize ����� ITS

0.05
0.06
0.07
0.08
0.09

0.1
0.11
0.12
0.13
0.14
0.15

0 20 40 60 80 100 120 140 160

S
te

ps
iz

e

Step number

�d
 Input stepsize ����� IHO

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 20 40 60 80 100 120 140 160 180

S
te

ps
iz

e

Step number

�e
 Input stepsize ��	� ITS

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 20 40 60 80 100 120 140 160 180

S
te

ps
iz

e

Step number

�f
 Input stepsize ��	� IHO

Figure ���	 ITS���� and IHO��� �� on the two�body problem� constant enclosure method�

Chapter �� Numerical Results ���

Example � Lorenz system

We integrated

y�� � ��y� � y��

y�� � y���� y��� y�

y�� � y�y� � �y��

y��� � ���� ��� ���T � t � ��� ����

where � � ��� � �
�� and � � ���� with the ITS���� and IHO��� �� methods and used

a constant enclosure method in Algorithm I� The input stepsizes for Algorithm I are

����� ����� ���� The results are shown in Table ����� and the stepsizes versus step number

are shown in Figure ���� As in the two�body problem� the IHO method produces tighter

enclosures in less time� than the ITS method�

H Steps Excess Time

ITS IHO ITS IHO ITS IHO

���� ���� ���� ��� � ���� ���� ���� ��� � ��� ��
 � ���

����
��
��
�� � ���� ���� ���� ��� � ��� ��� � ���

����
�

�

�� � ����
��� ���� ��� � ��� ��� � ���

Table ����	 ITS���� and IHO��� �� on the Lorenz system� constant enclosure method�

We also tried the IHO method with the a priori bounds from Algorithm I as an input

to the corrector� instead of computing bounds with the predictor from x��
�
� With

H � ���� and T � ���� the excess at T � ��� was
���� Therefore� if we want to eliminate

the predictor step� we have to perform at least one more step of the corrector� which is

more expensive than the predictor�

In the next two examples� we compare the ITS and IHO methods with a variable step�

size control �see x��
� and our version of a Taylor series method for validating existence

and uniqueness of the solution �see Chapter ���

Chapter �� Numerical Results ���

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

0.01
0.011

0 200 400 600 800 1000 1200

S
te

ps
iz

e

Step number

�a
 Input stepsize ����� ITS

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

0.01
0.011

0 200 400 600 800 1000 1200

S
te

ps
iz

e

Step number

�b
 Input stepsize ����� IHO

0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0.045
0.05

0.055

0 50 100 150 200 250 300

S
te

ps
iz

e

Step number

�c
 Input stepsize ����� ITS

0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0.045
0.05

0.055

0 50 100 150 200 250 300

S
te

ps
iz

e

Step number

�d
 Input stepsize ����� IHO

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0 50 100 150 200 250 300

S
te

ps
iz

e

Step number

�e
 Input stepsize ���� ITS

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0 50 100 150 200 250 300

S
te

ps
iz

e

Step number

�f
 Input stepsize ���� IHO

Figure ���	 ITS���� and IHO��� �� on the Lorenz system� constant enclosure method�

Chapter �� Numerical Results ��

Example � Van der Pol�s equation

We integrated Van der Pol�s equation� written as a system�

y�� � y�

y�� � ��� � y���y� � y�� �������

with

y��� � �
� ��T � �������

for t � ���
��� where � � �� We used the ITS���� and IHO��� �� methods and tolerances

����� ����� � � � � ������

From Table ���� and Figure ����� we see that� for approximately the same excess�

VNODE using the IHO method took fewer steps than it did using the ITS method� thus

saving computation time� In Figure ����� we plot the logarithms of the excess� time� and

tolerance� In Figure �����d�� the stepsize corresponding to the IHO method is not as

smooth as the one corresponding to the ITS method� In the regions where the stepsize

is not smooth� the Taylor series method for validation could not verify existence and

uniqueness with the supplied stepsizes� but veri
ed with reduced stepsizes� Note also

that we control the local excess per unit step and report the global excess in Table �����

Thus the global excess can be larger than the tolerance�

We also integrated ������������� on ��� ���� with an input stepsize of ���� to Algo�

rithm I� We used orders k � �� �� ��� ���
�� ��� ��� ��� and �� for the ITS method and

p � q � �k����
 for the IHO method� Algorithm I did not reduce the input stepsize� As

a result� the solver could take the same number of steps with the ITS and IHO methods�

In Figure ����� we plot the logarithm of the CPU time against the logarithm of the order

for these two methods� Although on this problem� the IHO method is more expensive

for �low� orders� including k � ��� we still have savings in time �for the same excess�

due to the fewer steps taken�

Chapter �� Numerical Results ���

0

0.1

0.2

0.3

0.4

0.5

0.6

-12 -11 -10 -9 -8 -7 -6

T
im

e

Excess

ITS
IHO

�a

-12

-11

-10

-9

-8

-7

-6

-12 -11 -10 -9 -8 -7

E
xc

es
s

Tol

ITS
IHO

�b

200

300

400

500

600

700

800

900

1000

-12 -11 -10 -9 -8 -7 -6

S
te

ps

Excess

ITS
IHO

�c

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1

0 50 100 150 200 250 300 350 400 450 500

S
te

ps
iz

e

Step number

ITS
IHO

�d
 Tol � ����

Figure ����	 ITS���� and IHO��� �� on Van der Pol�s equation� Taylor series for validation�

variable stepsize control with Tol � ����� ����� � � � � ������

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

T
im

e

Order

ITS
IHO

log10(11)

Figure ����	 ITS and IHO with orders �� �� ��� ���
�� ��� ��� ��� and �� on Van der Pol�s

equation�

Chapter �� Numerical Results ���

Tol Excess Steps Time

ITS IHO ITS IHO ITS IHO

���� ���� ����
��� ���� ��

�� ��� ���

���� ���� ���� ���� ���� ���
�� ��� ���

���� ��
� ���� ���� ���� ��� �
�
�� ���

����� ���� ����� ���� ����� ��� ��

�� ���

����� ���� ����� ���� ����� ��� �
� ���
��

����� ���� ����� ���� ����� ��
 ��� ���
��

Table ����	 ITS���� and IHO��� �� on Van der Pol�s equation� Taylor series for validation�

variable stepsize control�

Example 	 Sti� DETEST Problem D�

We integrated the Sti� DETEST problem D� �
���

y�� � ��
�y� � y��

y�� � ��y� � ���� ���
�y��y� � ���
�y� �������

y�� � ��

with

y��� � ��� �� ��T � for t � ��� ����� ��������

Here� we used the ITS���� and IHO��� �� methods� Taylor series for validation� and a

variable stepsize control with tolerances ����� ����� � � � � ������

With the IHO method� we computed tighter bounds with fewer stepsizes� than with

the ITS method� see Table ���� and Figure ���
� The reduction in the stepsize on the

last step for the IHO method seen in Figure ���
�d� is a result of our program reducing

the stepsize to hit the endpoint exactly�

Chapter �� Numerical Results ���

Tol Excess Steps Time

ITS IHO ITS IHO ITS IHO

���� ��� � ���� ��
� ���� ���� ��

 ��� � ��� ���� ���

����
�� � ���� ��
� ���� ��
� ��
� ��� � ��� ���� ���

����
�� � ���� ��
� ����� ���� ���� ��� � ��� ���� ���

����
�� � ���� ���� ����� ���
 ���
 ��� � ��� ���� ���

�����
�� � ����� ���� ����� ���� ���� ��� � ��� ��
� ���

Table ����	 ITS���� and IHO��� �� on Sti� DETEST D�� Taylor series for validation�

variable stepsize control�

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

-10.5 -10 -9.5 -9 -8.5 -8 -7.5 -7 -6.5 -6 -5.5

T
im

e

Excess

ITS
IHO

�a

-10.5
-10
-9.5

-9
-8.5

-8
-7.5

-7
-6.5

-6
-5.5

-10 -9.5 -9 -8.5 -8 -7.5 -7 -6.5 -6

E
xc

es
s

Tol

ITS
IHO

�b

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

-10.5 -10 -9.5 -9 -8.5 -8 -7.5 -7 -6.5 -6 -5.5

S
te

ps

Excess

ITS
IHO

�c

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1000 2000 3000 4000 5000 6000 7000 8000

S
te

ps
iz

e

Step number

ITS
IHO

�d
 Tol � �����

Figure ���
	 ITS���� and IHO��� �� on Sti� DETEST D�� Taylor series for validation�

variable stepsize control with Tol � ����� ����� � � � � ������

Chapter �� Numerical Results ���

��� Taylor Series versus Constant Enclosure Method

We integrated the following problems� which we denote by P�� P
� P�� and P��

P�� ������� with y��� � �� for t � ���
���

P�� y�� � y�� y
�
� � �y�� with y��� � ��� ��T � for t � ��� �����

P�� �����
� with y��� � ������T � for t � ��� ���� and

P�� ������� with y��� � ��� �� ��T � for t � ��� ����

For all of these tests� we used order k � �� for the ITS method and p � q � � for the

IHO method� and LEPUS error control with Tol � ������

Tables ���� and ���� show the number of steps taken by VNODE� when Algorithm I

uses a constant enclosure �CE� method �see x���� and our Taylor series enclosure �TSE�

method �see Chapter ��� and the corresponding excess and times� The results in Ta�

ble ���� are produced with the ITS method� and the results in Table ���� are produced

with the IHO method� In Figures ���� and ����� we plot the stepsizes against the step

number�

From Table ����� we see that if we use a Taylor series enclosure method� we have

a signi
cant reduction in the number of steps �with Tol � ������� Furthermore� from

the obtained excess� we see that with a Taylor series enclosure method the stepsize is

controlled from the accuracy requirements� In the constant enclosure method� we achieve

more accuracy than we have asked for� implying that the stepsize was controlled from

Algorithm I in that case� We should note� though� that the TSE method may still reduce

the stepsizes determined from the stepsize control mechanism�

In Table ����� we see a further reduction in the number of steps with the TSE method�

while the number of steps with the CE method remains the same �except for a slight

di�erence for P��� Note also that with the IHO method� we generally compute smaller

enclosures in less time� cf� Tables ���� and �����

Chapter �� Numerical Results ���

Problem Steps Excess Time

TSE CE TSE CE TSE CE

P� ��
�� ���� ����� ���� ����� ���� ���
�� � ���

P
 �� ��� ��
 � ���� ���� ����� ���� ����
�� � ����

P� �� ��� ��
� ����� ���� �����
��� ���� ��� � ���

P� ���
 ����
��� ����� ���� ����� ���� ���
�� � ���

Table ����	 TSE and CE methods� ITS method� variable stepsize control with

Tol � ������

Problem Steps Excess Time

TSE CE TSE CE TSE CE

P� ��
��
��� ����� ���� ����� ���� ����
�� � ���

P
 �� ��� ��� � ���� ���� ����� ���� ���� ��� � ����

P� �
 ��� ���� ����� ���� ����� ���� ���� ��� � ���

P� ��� ���� ���� �����
��� ����� ���� ��� ��� � ���

Table ����	 TSE and CE methods� IHO method� variable stepsize control with

Tol � ������

Chapter �� Numerical Results ���

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250

S
te

ps
iz

e

Step number

TE
CE

�a
 P�

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 20 40 60 80 100 120 140 160 180

S
te

ps
iz

e

Step number

TSE
CE

�b
 P	

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300 350 400

S
te

ps
iz

e

Step number

TSE
CE

�c
 P�

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 500 1000 1500 2000 2500 3000 3500

S
te

ps
iz

e

Step number

TSE
CE

�d
 P�

Figure ����	 TSE and CE methods� ITS method� variable stepsize control with

Tol � ������

Chapter �� Numerical Results ���

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150 200 250

S
te

ps
iz

e

Step number

TE
CE

�a
 P�

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100 120 140 160 180

S
te

ps
iz

e

Step number

TSE
CE

�b
 P	

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200 250 300 350 400

S
te

ps
iz

e

Step number

TSE
CE

�c
 P�

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0 500 1000 1500 2000 2500 3000 3500

S
te

ps
iz

e

Step number

TSE
CE

�d
 P�

Figure ����	 TSE and CE methods� IHO method� variable stepsize control with

Tol � ������

Chapter �

Conclusions and Directions for

Further Research

We have developed and studied an interval Hermite�Obreschko� method for computing

rigorous bounds on the solution of an IVP for an ODE� Compared to interval Taylor

series methods with the same order and stepsize� our method has a smaller truncation

error� better stability� and is usually less expensive for ODEs for which the right side

contains many terms� Although Taylor series methods can be considered as a special

case of the more general Hermite�Obreschko� methods� we have developed a di�erent

approach �from Taylor series� to compute bounds for the solution of an IVP for an ODE�

While our study was not directed towards producing an interval method for sti�

problems� we have shown that an interval version of a scheme suitable for sti� problems

�in traditional numerical methods� may still have a restriction on the stepsize� To obtain

an interval method without stepsize limitations� we need to
nd a scheme with a stable

formula not only for advancing the step but also for the truncation error�

We proposed a Taylor series method for validating existence and uniqueness of the

solution� This method was designed to ameliorate the stepsize restriction imposed by

Algorithm I� but we have not tried to produce an algorithm that always veri
es existence

�
�

Chapter
� Conclusions and Directions for Further Research �
�

and uniqueness �if possible� with the supplied stepsize� Further work is necessary to

produce a very good implementation of Algorithm I� Such an implementation can be

considered as an optimization problem	 maximize the step length� subject to a tolerance

restriction�

Our stepsize control mechanism is relatively simple� It worked well for our tests�

but we have not performed a thorough empirical investigation� Further studies may

be necessary� New developments on stepsize selection for standard and validated ODE

methods might be appropriate for considerations in a validated solver� see for example

�
�� and �����

There has not been a comprehensive study of order control heuristics� Eijgenraam ����

pp� �
������ describes the only order selection scheme known to the author� Some in�

sights into the problem of order control are given in ���� pp� �������� and ����� To

develop an order control strategy based on the amount of work per step� we need to

estimate this work� Obtaining a theoretical bound for the number of arithmetic oper�

ations in generating Taylor coe�cients for the solution is not di�cult� but obtaining a

reasonably accurate formula for the number of arithmetic operations in generating their

Jacobians is more complex� These Jacobians can be computed by a forward �TADIFF�

or a reverse mode �IADOL�C� of automatic di�erentiation ����� sparsity may or may not

be exploited� and di�erent packages may implement the same method di�erently� for

example� with a tape in ADOL�C or using only the main memory as in TADIFF� In ad�

dition to estimating the number of �oating�point operations� the time spent on memory

operations may be nonnegligible�

As the area of validated ODE solving develops� we will need a methodology for as�

sessing validated methods� A part of such a methodology should be an estimate of the

amount of work� It may be possible to express it as a number of function and Jaco�

bian evaluations� Then� we may compare validated methods in a framework similar to

DETEST ���� or Sti� DETEST �
���

Appendix A

Number of Operations for

Generating Taylor Coe
cients

We obtain formulas for the number of arithmetic operations for generating one Taylor

coe�cient and k Taylor coe�cients for the solution to y� � f�y�� y�t�� � y�� For simplic�

ity� we assume that the code list of f contains only arithmetic operations� Let N�� N�

and N� be� respectively� the number of additions �we count subtractions as additions��

multiplications� and divisions in the code list of f � If we have computed the Taylor

coe�cients �y��� �y��� � � � � �y�i� we can compute the �i� ���st coe�cient from

f �i��
�y� � �y�i�� �
�

i� �
�f�y��i � �A���

where �f�y��i is the ith Taylor coe�cient of f�y� �see x
���� The number of arithmetic

operations required for computing �f�y��i� using �y��� �y��� � � � � �y�i� are calculated in

Table A��� If Ops �g� denotes the number of arithmetic operations for computing some

function g� then from Table A��� the number of arithmetic operations to compute �f�y��i

is

Ops ��f�y��i� �
�N� �N��i�N� �N� �N�

�
cfNi�N�

�A�
�

�

Appendix A� Operations for Generating Taylor Coefficients �
�

Op�) Formula Number of

�
 �

� N� �u� v�i � �u�i � �v�i N� � �

 N� �uv�i �

Pi
r�� �u�r �v�i�r N�i N�i�N� �

� N�

u
v

�
i
� �

v

�
�u�i �

Pi
r�� �v�r

u
v

�
i�r

�
N�i N�i N�

Table A��	 Number of additions� multiplications� and divisions for computing �f�y��i�

where N � N� �N� �N� and cf � �N� �N���N � Because of �A���� �A�
� also gives the

number of operations for computing f �i��
�y� � �y�i���
� Therefore�

Ops

f �i
�y�

�
�
cfN�i� �� �N �
cfNi� �� �
cf �N

�
cfNi�O�N��

�A���

The total number of arithmetic operations to compute k � � Taylor coe�cients� �y���

�y��� � � � � �y�k� can be obtained by summing the number of arithmetic operations to

compute �f�y��i for i � �� � � � � k � �	

k��X
i��

Ops ��f�y��i� �
k��X
i��

�
cfNi�N�

�
cf
�k � ��k

N � kN � cf�k � ��kN � kN

� cfNk� �O�Nk��

�A���

�We do not count the multiplication �

i��
� �f�y

i�

Appendix B

A Validated Object�Oriented Solver

B�� Objectives

Our primary goal is to provide a program environment that will assist researchers in the

numerical study and comparison of schemes and heuristics used in computing validated

solutions of IVPs for ODEs� The VNODE �Validated Numerical ODE� package that we

are developing is intended to be a uniform implementation of a generic validated solver for

IVPs for ODEs� Uniform means that the design and implementation of VNODE follow

well�de
ned patterns� As a result� implementing� modifying� and using methods can

be done systematically� Generic means that the user can construct solvers by choosing

appropriate methods from sets of methods� This property enables us to isolate and

compare methods implementing the same part of a solver� For example� we can assemble

two solvers that di�er only in the module implementingAlgorithm II� Then� the di�erence

in the numerical results obtained by executing the two solvers will indicate the di�erence

in the performance of Algorithm II� Since we would like to investigate algorithms� being

able to isolate them is an important feature of such an environment�

We list and brie�y explain some of the goals we have tried to achieve with the design of

VNODE� Provided that a validated method for IVPs for ODEs is implemented correctly�

�
�

Appendix B� A Validated Object�Oriented Solver �
�

the reliability issue does not exist	 if a validated solver returns an enclosure of the

solution� then the solution is guaranteed to exist within the computed bounds�

Modularity The solver should be organized as a set of modules with well�de
ned inter�

faces� The implementation of each module should be hidden� but if necessary� the

user should be able to modify the implementation�

Flexibility Since we require well�de
ned interfaces� we should be able to replace a

method� inside a solver� without a�ecting the rest of it� Furthermore� we should

be able to add methods following the established structure and without modifying

the existing code�

E
ciency The methods incorporated in VNODE do not have theoretical limits� How�

ever� these methods require the computation of high�order Taylor coe�cients and

Jacobians of Taylor coe�cients� As a result� the e�ciency of a validated solver

is determined mainly by the e�ciency of the underlying automatic di�erentiation

package� Other factors that contribute to the performance are	 the e�ciency of

the interval�arithmetic package� the programming language� and the actual im�

plementation of the methods� To achieve �exibility� we may need to repeat the

same calculations in two parts of a solver� For example� to separate Algorithm I

and Algorithm II� we may need to generate the same Taylor coe�cients in both

algorithms� However� the repetition of such computations should be avoided�

Since VNODE is to be used for comparing and assessing methods� it has to contain the

existing ones� Moreover� VNODE should support rapid prototyping�

Appendix B� A Validated Object�Oriented Solver �
�

B�� Background

The area of computing validated solutions of IVPs for ODEs is not as developed as the

area of computing approximate solutions� Some of the di�culties that arise in interval

methods are discussed in Chapter � and ��
�� With respect to the tools involved� a

validated solver is inherently more complex than a classical ODE solver� In addition to

an interval�arithmetic package� a major component of a validated solver is the module

for automatic generation of interval Taylor coe�cients �see xB����

Currently� there are three available packages for computing guaranteed bounds on the

solution of an IVP for an ODE	 AWA ����� ADIODES ���� and COSY INFINITY ���� We

brie�y summarize each in turn�

AWA is an implementation of Lohner�s method �x��
��� and the constant enclosure

approach �x����� This package is written in Pascal�XSC ����� an extension of Pascal for

scienti
c computing�

ADIODES is a C�� implementation of a solver using the constant enclosure method

in Algorithm I and Lohner�s method in Algorithm II� The stepsizes in both ADIODES

and AWA is restricted to Euler steps by Algorithm I�

COSY INFINITY is a Fortran�based code for study and design of beam physics sys�

tems� The method used for veri
ed integration of ODEs is based on high�order Taylor

polynomials with respect to time and the initial conditions� The wrapping e�ect is re�

duced by establishing functional dependency between initial and
nal conditions �see �����

For that purpose� the computations are carried out with Taylor polynomials with real

�oating�point coe�cients and a guaranteed error bound for the remainder term� Thus�

the arithmetic operations and standard functions are executed with such Taylor polyno�

mials as operands� Although the approach described in ��� reduces the wrapping e�ect

substantially� working with polynomials is signi
cantly more expensive than working with

intervals�

Appendix B� A Validated Object�Oriented Solver �
�

B�� Object�Oriented Concepts

Since our goal is to build a �exible� easy�to�use� and easy�to�extend package� we have

chosen an object�oriented approach in designing VNODE� This is not the
rst object�

oriented design of an ODE solver� The Godess project ���� o�ers a generic ODE solver

that implements traditional methods for IVPs for ODEs� Another successful package is

Di�pack ����� which is devised for solving partial di�erential equations� In ����� there is

also an example of how to construct an object�oriented ODE solver�

In this section� we review some object�oriented concepts supported in C��� A good

discussion of object�oriented concepts� analysis� and design can be found in ����� An

excellent book on advanced C�� styles and idioms is ��
�� A study of nonprocedural

paradigms for numerical analysis� including object�oriented ones� is presented in ��
��

Data Abstraction

In the object model� a software system can be viewed as a collection of objects that

interact with each other to achieve a desired functionality� An object is an instance of

a class� which de
nes the structure and behavior of its objects� By grouping data and

methods inside a class and specifying its interface� we achieve encapsulation� separating

the interface from the implementation� Hence� the user can change the data represen�

tation and the implementation of a method� �or methods� of a class without modifying

the software that uses it� By encapsulating data� we can avoid function calls with long

parameter lists� which are intrinsic to procedural languages like Fortran ��� A class can

encapsulate data or algorithms� or both�

�We use method in two di�erent contexts� to denote a member function of a class or a method in
VNODE�

Appendix B� A Validated Object�Oriented Solver �
�

Inheritance and Polymorphism

Inheritance and polymorphism are powerful features of object�oriented languages� In�

heritance allows code reuse	 the derived class can use the data and functions of its base

class�es�� Polymorphism serves to apply a given function to di�erent types of objects�

Often polymorphism and inheritance are used with abstract classes� An abstract class

de
nes abstract operations� which are implemented in its subclasses� it has no instances

and an object of such a class cannot be created�

Operator Overloading

Operator overloading allows the operators of the language to be overloaded for user de�

ned types� To program interval operations without explicit function calls� we have to

use a language that supports operator overloading� Without it� programming interval�

arithmetic expressions is cumbersome� Both C�� and Fortran �� provide operator over�

loading� This feature is used to build interval�arithmetic libraries like PROFIL(BIAS

���� �C��� and INTLIB �Fortran ��� �����

B�� Choice of Language	 C�� versus Fortran ��

We have chosen C�� �
�� over Fortran �� ���� to implement VNODE� Procedural lan�

guages like C or Fortran �� can be used to implement an object�oriented design ����

However� using a language that supports object�oriented programming usually reduces

the e�ort for implementing object�oriented software� Our choice was determined by the

following considerations� listed in order of importance	

�� availability of software for automatic generation of interval Taylor coe�cients�

� performance and built�in functions of the available interval�arithmetic packages�

�� support of object�oriented concepts� and

Appendix B� A Validated Object�Oriented Solver �
�

�� e�ciency�

In this section� we discuss each in turn�

B���� Software for Automatic Generation of Interval Taylor

Coe�cients

Although packages for automatic di�erentiation �AD� are available �see for example ����

and ������ to date� only two free packages for automatic generation of interval Taylor

coe�cients for the solution of an ODE and the Jacobians of these coe�cients are known

to the author� These are the FADBAD(TADIFF ���� ��� and IADOL�C ���� packages�

They are written in C�� and implement AD through operator overloading�

TADIFF and FADBAD are two di�erent packages� TADIFF can generate Taylor

coe�cients with respect to time� Then� FADBAD can be used to compute Jacobians

of Taylor coe�cients by applying the forward mode of AD ���� to these coe�cients�

FADBAD and TADIFF are not optimized to handle large and sparse systems� Also�

they perform all the work in the main memory�

The IADOL�C package is an extension of ADOL�C �
�� that allows generic data

types� ADOL�C can compute Taylor coe�cients by using the forward mode and their

Jacobians by applying the reverse mode ���� to these coe�cients� The basic data type

of ADOL�C is double� To use a new data type in IADOL�C� the user has to overload

the arithmetic and comparison operations and the standard functions for that data type�

Then� using IADOL�C is essentially the same as using ADOL�C� Since IADOL�C replaces

only the double data type of ADOL�C� IADOL�C inherits all the functionality of ADOL�

C� However� it was reported that the operator overloading� in IADOL�C� for a basic data

type incurs about a three times speed penalty over ADOL�C ����� This appears to be a

phenomenon of the C�� compilers rather than the AD package �����

The ADOL�C package records the computation graph on a so�called tape� This tape

Appendix B� A Validated Object�Oriented Solver ���

is stored in the main memory� but� when necessary� is paged to disk� When generating

Jacobians of Taylor coe�cients� ADOL�C exploits the sparsity structure of the Jacobian

of the function for computing the right side� Since optimization techniques are used

in ADOL�C� we expect the interval version� IADOL�C� to perform better than FAD�

BAD(TADIFF on large and complex problems� But� still� FADBAD(TADIFF should

perform well on small to medium�sized problems�

Currently� VNODE is con
gured with FADBAD(TADIFF� but we have also used

IADOL�C� VNODE with these AD packages is based on the INTERVAL data type from

the PROFIL(BIAS package� which we discuss in xB���
 and xB�����

B���� Interval Arithmetic Packages

The most popular and free interval�arithmetic packages are PROFIL(BIAS ����� written

in C��� and INTLIB ����� written in Fortran �� and available with a Fortran �� interface

����� The Fortran �� version of INTLIB uses operator overloading� For references and

comments on other available packages� see for example ���� or ����� Recently� an interval

extension of the Gnu Fortran compiler was reported ����� where intervals are supported

as an intrinsic data type�

PROFIL(BIAS seems to be the fastest interval package� In comparison with other

such packages� including INTLIB� PROFIL(BIAS is about one order of magnitude faster

����� Also� PROFIL(BIAS is easy�to�use� and provides matrix and vector operations

and essential routines� for example� guaranteed linear equation solvers and optimization

routines� For e�ciency� it uses the rounding mode of the processor on the machines on

which it is installed� Portability is provided by isolating the machine dependent code in

small assembler
les� which are distributed with the package�

Appendix B� A Validated Object�Oriented Solver ���

B���� E�ciency

Compared to Fortran� C�� has been criticized for its poor performance for scienti
c

computing� Here� we discuss an important performance problem	 the pairwise evaluation

of arithmetic expression with arguments of array types �e�g�� matrices and vectors�� More

detailed treatment of this and other problems can be found in ��
�� ����� and �����

In C��� executing overloaded arithmetic operations between array data types creates

temporaries� which can introduce a signi
cant overhead� particularly for small objects�

For example� if A� B� C� and D are vectors� the evaluation of the expression

D � A � B � C

creates two temporaries	 one to hold the result of A � B� and another to hold the result

of �A � B� � C� Furthermore� this execution introduces three loops� Clearly� it would be

better to compute this sum in one loop without temporaries� In Fortran ��� mathematical

arrays are represented as elementary types and optimization is possible at the compiler

level�

Because of better optimizing compilers and template techniques ����� ����� C�� is

becoming more competitive for scienti
c computing� A good technique for reducing the

overhead in the pairwise evaluation of expressions involving arrays is to use expression

templates ����� The expression template technique is based on performing compile�time

transformation of the code using templates� With this technique� expressions containing

vectors and matrices can be evaluated in a single pass without allocating temporaries� For

example� with expression templates� it is possible to achieve a loop fusion ����� allowing

the above sum to be evaluated in a single loop	

for � int i � �� i 	� N� i�� �

D�i� � A�i� � B�i� � C�i��

However� executing this loop in interval arithmetic may not be the best solution for the

following reason� Each interval addition in this loop involves two changes of the rounding

Appendix B� A Validated Object�Oriented Solver ��

mode� In modern RISC architectures� rounding mode switches cost nearly the same or

even more than �oating�point operations ����� ����� The approach of PROFIL(BIAS is

to minimize these switches� Suppose that we want to compute in PROFIL(BIAS

C � A � B�

where A� B� and C are vectors of the same dimensions� If we denote the components of

A� B� and C by ai� bi� and ci� respectively� PROFIL(BIAS changes the rounding mode

downwards and computes c
 i

� a
 i

� b
 i
� for i � ��
� � � � � n� Then� this package changes

the rounding mode upwards and computes ci � ai � bi� for i � ��
� � � � n� Therefore� the

result of A � B is computed with two rounding mode switches� However� PROFIL(BIAS

still creates temporaries�

B���� Support of Object�Oriented Concepts

C�� is a fully object�oriented language� while Fortran �� is not� because it does not

support inheritance and polymorphism� The features of C�� �e�g�� data abstraction� op�

erator overloading� inheritance� and polymorphism� allow the goals in xB�� to be achieved

in a relatively simple way� Inheritance and polymorphism can be simulated in Fortran

�� ����� but this is cumbersome�

B�� The VNODE package

B�	�� Structure

From an object�oriented perspective� it is useful to think of a numerical problem as an

object containing all the information necessary to compute its solution� Also� we can

think of a particular method� or a solver� as an object containing the necessary data and

functions to perform the integration of a given problem� Then� we can compute a solution

by �applying� a method object to a problem object� Most functions in VNODE have

Appendix B� A Validated Object�Oriented Solver ���

has-a

is-a

abstract class

ODE_SOLUTION

ODE_PROBLEM

P1

PROBLEM_INFO

P2 P3

ODE_NUMERIC

Figure B��	 Problem classes�

such objects as parameters� The description of the numerical problem and the methods

in VNODE are implemented as classes in C���

The problem classes are shown in Figure B��� and the method classes are shown in

Figure B�
� A box in Figures B�� and B�
 denotes a class� the rounded�
lled boxes

denote abstract classes� Each of them declares one or more virtual functions� which are

not de
ned in the corresponding abstract class� but must be de
ned in the derived classes�

The lines with � indicate an is�a relationship� which can be interpreted as a derived class

or as a specialization of a base class� the lines with � indicate a has�a relationship� It is

realized either by a complete containment of an object Y within another object X or by

a pointer from X to Y� The notation in these
gures is similar to that suggested in �����

In the next two subsections� we list the problem and method classes and provide brief

explanations� Here� we do not discuss the classes for generating Taylor coe�cients in

VNODE� A detailed description of VNODE will be given in the documentation of the

code at http
��www�cs�toronto�edu�NA�

Problem Classes Class ODE PROBLEM speci
es the mathematical problem� that is� t��

�y��� T � and a pointer to a function to compute the right side of the ODE� It also contains

a pointer to a class PROBLEM INFO� It indicates� for example� if the problem is constant

coe�cient� scalar� has a closed form solution� or has a point initial condition� Such

information is useful since the solver can determine from it which part of the code to

Appendix B� A Validated Object�Oriented Solver ���

L
O

H
N

E
R

_T
IG

H
T

_E
N

C
L

P
1I

ni
tE

nc
l

P
2I

ni
tE

nc
l

F
IX

E
D

_I
N

IT
_E

N
C

L

O
B

R
E

SC
H

K
O

F
F
_T

IG
H

T
_E

N
C

L

T
IG

H
T

_E
N

C
L

IN
IT

_E
N

C
L

T
A

Y
L

_I
N

IT
_E

N
C

L
C

O
N

ST
_I

N
IT

_E
N

C
L

O
R

D
E

R
_C

O
N

T
R

O
L

C
O

N
ST

_S
T

E
P

C
O

N
ST

_O
R

D
E

R

ST
E

P
_C

O
N

T
R

O
L

O
D

E
_N

U
M

E
R

IC
M

E
T

H
O

D
_C

O
N

T
R

O
L

F
L

A
G

S
ST

A
T

IS
T

IC
S

D
A

T
A

_R
E

P
R

O
D

E
_S

O
L

V
E

R

V
O

D
E

_S
O

L
V

E
R

V
A

R
_S

T
E

P
_C

O
N

T
R

O
L

F
ig
u
re
B
�

	
M
et
h
od
cl
as
se
s�

Appendix B� A Validated Object�Oriented Solver ���

execute�

ODE NUMERIC speci
es the numerical problem� This class contains data such as abso�

lute and relative� error tolerances� and a pointer to a class ODE NUMERIC representing a

solution� The user�de
ned problems� P�� P
� and P� in Figure B�� are derived from this

class� New problems can be added by deriving them from ODE NUMERIC�

ODE SOLUTION contains the last obtained a priori and tight enclosures of the solution

and the value of t where the tight enclosure is computed� ODE SOLUTION contains also a

pointer to a
le that stores information from the preceding steps �e�g�� enclosures of the

solution and stepsizes��

Method Classes Class ODE SOLVER is a general description of a solver that �solves�

an ODE NUMERIC problem� ODE SOLVER declares the pure virtual function Integrate� Its

de
nition is not provided in this class� As a result� instances of ODE SOLVER cannot be

created� This class also contains the class METHOD CONTROL� which includes di�erent �ags

�encapsulated in FLAGS� and statistics collected during the integration �encapsulated in

STATISTICS��

Class VODE SOLVER implements a general validated solver by de
ning the Integrate

function� We have divided this solver into four abstract methods	 for selecting an order�

selecting a stepsize� and computing initial and tight enclosures of the solution� These

methods are realized by the abstract classes ORDER CONTROL� STEP CONTROL� INIT ENCL�

and TIGHT ENCL� respectively� Their purpose is to provide general interfaces to partic�

ular methods� A new method can be added by deriving it from these abstract classes�

Integrate performs the integrations by calling objects that are instances of classes de�

rived from ORDER CONTROL� STEP CONTROL� INIT ENCL� and TIGHT ENCL�

ORDER CONTROL has only one derived class� CONST ORDER� whose role is to return a

constant order� Currently� VNODE does not implement variable�order methods�

�How to specify and interpret relative error tolerance will be discussed in the documentation of
VNODE�

Appendix B� A Validated Object�Oriented Solver ���

For selecting a stepsize� CONST STEP returns a constant stepsize on each step� and

VAR STEP CONTROL implements the stepsize selection scheme from x��
�
There are two methods for validating existence and uniqueness of the solution in

VNODE	 a constant enclosure method �CONST INIT ENCL� and a Taylor series method

�TAYL INIT ENCL�� The purpose of the FIXED INIT ENCL class is to compute a priori

enclosures of the solution from the formula for the true solution� if the problem has a

closed form solution� This class turns out to be helpful when we want to isolate the

in�uence of Algorithm I� because this algorithm often reduces the input stepsize�

There are two methods for computing a tight enclosure of the solution	 an in�

terval Hermite�Obreschko� method �OBRESCHKOFF TIGHT ENCL� and Lohner�s method

�LOHNER TIGHT ENCL�� The VODE SOLVER class has also a pointer to DATA REPR� which is

responsible for generating and storing Taylor coe�cients and their Jacobians�

B�	�� An Example Illustrating the Use of VNODE

Suppose that we want to compare two solvers that di�er only in the method implementing

Algorithm II� In addition� we want to compare them with a constant enclosure method

and then with a Taylor series enclosure method in Algorithm I� Here� we show and discuss

part of the VNODE code that can be employed for this study� As an example of an ODE�

we use Van der Pol�s equation� written as a system�

y�� � y�

y�� � ��� � y���y� � y��

�B�����

In a traditional ODE solver� we provide a function for computing the right side� In a

validated solver� we have to provide also functions for generating Taylor coe�cients and

their Jacobians� Since we use an AD package for generating such coe�cients� we have to

specify a function for computing the right side of �B����� for this package� We write the

template function

Appendix B� A Validated Object�Oriented Solver ���

template 	class YTYPE� void VDPtemplate�YTYPE �yp� const YTYPE �y�

�

yp��� � y����

yp��� � MU����sqr�y������y��� � y����

�

which is used by FADBAD(TADIFF and IADOL�C to store the computation graph� and

by VNODE to create a function for computing the right side� Then we derive a class

VDP from ODE NUMERIC� Since the details about the declaration of VDP are not essential

to understand our example� we omit this declaration�

Figure B�� shows a typical use of VNODE classes� First� we create an ODE NUMERIC

object�� VDP� and load the initial condition� the interval of integration� and tolerance by

calling the function LoadProblemParam �Part A�� For testing� it is convenient to have a

function that supplies di�erent sets of data depending on the parameter to this function�

Then� we create methods and return pointers to them �Part B�� as described below�

ITS and IHO are pointers to objects for computing enclosures using Lohner�s and the

IHO methods� respectively� InitEncl is a pointer to an object for validating existence

and uniqueness of the solution with the constant enclosure method� StepControl refers

to an object that implements a variable stepsize control� and OrderControl points to an

an object that provides a constant value for the order�

The purpose of class TAYLOR EXPANSION is to generate and store Taylor coe�cients

and their Jacobians� It is a template class� for which instances are created by specifying

a class for generating Taylor coe�cients and a class for generating Jacobians of Tay�

lor coe�cients� Here� we create such an instance with parameters VDPTaylGenODE and

VDPTaylGenVar� which are classes� for generating Taylor coe�cients and their Jacobians

for �B������

�In Figure B��� Ptr stands for pointer in PtrODENumeric� PtrTightEncl� etc�
�We do not describe these classes here�

Appendix B� A Validated Object�Oriented Solver ���

In part C� we create two solvers� SolverITS and SolverIHO and integrate the problem

by calling the Integrate function on these solvers�� Note that they di�er only in the

method for computing a tight enclosure of the solution� Thus� we can isolate and compare

the two methods implementing Algorithm II�

Now� in part D� we want to replace the constant enclosure method for validating

existence and uniqueness of the solution with a Taylor series method and repeat the

same integrations� We create an instance of TAYL INIT ENCL by

InitEncl �

new TAYL�INIT�ENCL�ODE��Size�new VDPTaylGenODE�new VDPTaylGenVAR��

set it by calling the SetInitEncl function� and integrate�

We explain how class INIT ENCL works� the same idea is used in the other abstract

classes� INIT ENCL is an abstract class since it contains the pure virtual function

virtual void Validate� ��� � � ��

�for simplicity� we leave out the parameters�� Each of the derived classes of INIT ENCL

must declare a function with the same name and parameters and specify the body of

the function� In Integrate� there is a call to Validate� During execution� depending

on the object set� the appropriate Validate function will be called� We use dynamic

or late binding	 the function that is called is determined by the type of object during

the execution of the program� In our example� the method for validating existence and

uniqueness is replaced� but the integrator function is not changed� If the user wants to

implement his(her own Algorithm I� he(she has to de
ne a derived class of INIT ENCL

and an associate Validate function�

�We omit the details about extracting data after an integration�

Appendix B� A Validated Object�Oriented Solver ���

�� ���

�� A� Create the ODE problem�

PtrODENumeric ODE � new VDP�

ODE��LoadProblemParam����

�� B� Create the methods�

int K� P� Q�

K � ��� �� order

P � Q � �K����
�

PtrTightEncl ITS � new LOHNER�TIGHT�ENCL�K��

PtrTightEncl IHO � new OBRESCHKOFF�TIGHT�ENCL�P�Q��

PtrInitEncl InitEncl � new CONST�INIT�ENCL�ODE��Size� new VDPTaylGenVAR��

PtrStepCtrl StepCtrl � new VAR�STEP�CONTROL�ODE��Size��

PtrOrderCtrl OrderCtrl � new CONST�ORDER�K��

PtrDataRepr DataRepr � new TAYLOR�EXPANSION	VDPTaylGenODE�VDPTaylGenVAR��

�� Part C� Create the solvers and integrate�

PtrVODESolver SolverITS � new

VODE�SOLVER�ODE� DataRepr� OrderCtrl� StepCtrl� InitEncl� ITS��

PtrVODESolver SolverIHO � new

VODE�SOLVER�ODE� DataRepr� OrderCtrl� StepCtrl� InitEncl� IHO��

SolverITS��Integrate���

SolverIHO��Integrate���

�� Part D� Replace the method implementing Algorithm I and integrate�

InitEncl �

new TAYL�INIT�ENCL�ODE��Size� new VDPTaylGenODE� new VDPTaylGenVAR��

SolverITS��SetInitEncl�InitEncl��

SolverIHO��SetInitEncl�InitEncl��

SolverITS��Integrate���

SolverIHO��Integrate���

�� ���

Figure B��	 The test code�

Bibliography

��� E� Adams� D� Cordes� and R� Lohner� Enclosure of solutions of ordinary initial value

problems and applications� In E� Adams� R� Ansorge� Chr� Gro*mann� and H� G�

Roos� editors� Discretization in Di�erential Equations and Enclosures� pages ��
��

Akademie�Verlag� Berlin� �����

�
� G� Alefeld and J� Herzberger� Introduction to Interval Computations� Academic

Press� New York� �����

��� S� Balay� W� D� Gropp� L� C� McInnes� and B� F� Smith� Parallelism in object�

oriented numerical software libraries� In Erlend Arge� Are Magnus Bruaset� and

Hans Petter Langtangen� editors� Modern Software Tools in Scienti�c Computing�

pages ����
�
� Birkh�auser� Boston� ����� See http	((www�mcs�anl�gov(petsc(�

��� H� Bauch and W� Kimmel� Solving ordinary initial value problems with guaranteed

bounds� Z� angew� Math� Mech�� ��	T����T��
� �����

��� Claus Bendsten and Ole Stauning� FADBAD� a �exible C�� package for automatic

di�erentiation using the forward and backward methods� Technical Report �����

x����� Department of Mathematical Modelling� Technical University of Denmark�

DK�
���� Lyngby� Denmark� August ����� FADBAD is available at

http	((www�imm�dtu�dk(fadbad�html�

��� Claus Bendsten and Ole Stauning� TADIFF� a �exible C�� package for automatic

di�erentiation using Taylor series� Technical Report �����x����� Department of

���

Bibliography ���

Mathematical Modelling� Technical University of Denmark� DK�
���� Lyngby� Den�

mark� April ����� TADIFF is available at http	((www�imm�dtu�dk(fadbad�html�

��� M� Berz and K� Makino� Veri
ed integration of ODEs and �ows using di�erential

algebraic methods on high�order Taylor models� Reliable Computing� �	��������

�����

��� Martin Berz� COSY INFINITY version � reference manual� Technical Report

MSUCL������ National Superconducting Cyclotron Lab�� Michigan State Univer�

sity� East Lansing� Mich�� ����� COSY INFINITY is available at

http	((www�beamtheory�nscl�msu�edu(cosy(�

��� Martin Berz� Christian Bischof� and George F� Corliss� editors� Computational Dif�

ferentiation
 Techniques� Applications� and Tools� SIAM� Philadelphia� Penn�� �����

���� G� Birkho� and R� S� Varga� Discretization errors for well�set Cauchy problems	 I�

J� Math� and Phys�� ��	��
�� �����

���� Grady Booch� Object�Oriented Analysis and Design� The Benjamin(Cummings

Publishing Company Inc�� Rational� Santa Clara� California�
nd edition� �����

��
� James O� Coplien� Advanced C�� Programming Styles and Idioms� Addison�Wesley�

AT+T Bell Laboratories� ���
�

���� G� F� Corliss and R� Rihm� Validating an a priori enclosure using high�order Taylor

series� In G� Alefeld and A� Frommer� editors� Scienti�c Computing� Computer

Arithmetic� and Validated Numerics� pages

��
��� Akademie Verlag� Berlin� �����

���� George F� Corliss� Survey of interval algorithms for ordinary di�erential equations�

Appl� Math� Comput�� ��	��
��
�� �����

���� George F� Corliss� Guaranteed error bounds for ordinary di�erential equations� In

M� Ainsworth� J� Levesley� W� A� Light� and M� Marletta� editors� Theory of Numer�

Bibliography ��

ics in Ordinary and Partial Di�erential Equations� pages ����� Oxford University

Press� �����

���� G� Darboux� Sur les d,eveloppements en s'erie des fonctions d�une seule variable� J�

des Math�ematique pures et appl�� pages
�����
� ����� �,eme s'erie� t� II�

���� Viktor K� Decyk� Charles D� Norton� and Boleslaw K� Szymanski� Expressing object�

oriented concepts in Fortran ��� ACM Fortran Forum� �����	������ April �����

���� B� L� Ehle� On Pad'e approximations to the exponential function and A�stable

methods for the numerical solution of initial value problems� SIAM J� Math� Anal��

�	�������� �����

���� P� Eijgenraam� The Solution of Initial Value Problems Using Interval Arithmetic�

Mathematical Centre Tracts No� ���� StichtingMathematisch Centrum� Amsterdam�

�����

�
�� Margaret A� Ellis and B� Stroustrup� The Annotated C�� Reference Manual�

Addison�Wesley� �����

�
�� W� H� Enright� T� E� Hull� and B� Lindberg� Comparing numerical methods for sti�

systems of ODEs� BIT� ��	������ �����

�

� Andreas Griewank� ODE solving via automatic di�erentiation and rational predic�

tion� In D� F� Gri�ths and G� A� Watson� editors� Numerical Analysis 	���� volume

��� of Pitman Research Notes in Mathematics Series� Addison�Wesley Longman

Ltd� �����

�
�� Andreas Griewank and George F� Corliss� editors� Automatic Di�erentiation of

Algorithms
 Theory� Implementation� and Application� SIAM� Philadelphia� Penn��

�����

Bibliography ���

�
�� Andreas Griewank� George F� Corliss� Petra Henneberger� Gabriella Kirlinger� Flo�

rain A� Potra� and Hans J� Stetter� High�order sti� ODE solvers via automatic

di�erentiation and rational prediction� In Lecture Notes in Comput� Sci�� 		���

pages �����
�� Springer� Berlin� �����

�
�� Andreas Griewank� David Juedes� and Jean Utke� ADOL�C� a package for the auto�

matic di�erentiation of algorithms written in C(C��� ACM Trans� Math� Software�

�
�	�������� June �����

�
�� Kjell Gustafsson� Michael Lundh� and Gustaf S�oderlind� A PI stepsize control for

the numerical solution of ordinary di�erential equations� BIT�
��
�	
���
��� �����

�
�� E� Hairer� S� P� N-rsett� and G� Wanner� Solving Ordinary Di�erential Equations I�

Nonsti� Problems� Springer�Verlag�
nd revised edition� �����

�
�� Ch� Hermite� Extrait d�une lettre de M� Ch� Hermite ,a M� Borchardt sur la formule

d�interpolation de Lagrange� J� de Crelle� ������	��� ����� Oeuvres� tome III� p�

��
�����

�
�� T� E� Hull and W� H� Enright� A structure for programs that solve ordinary di�er�

ential equations� Technical Report ��� Department of Computer Science� University

of Toronto� May �����

���� T� E� Hull� W� H� Enright� B� M� Fellen� and A� E� Sedgwick� Comparing numer�

ical methods for ordinary di�erential equations� SIAM J� on Numerical Analysis�

����	�������� December ���
�

���� Ronald Van Iwaarden� IADOL�C� personal communications� ����� IADOL�C is

available through the author� E�mail vaniwaar.metsci�com�

��
� L� W� Jackson� Interval arithmetic error�bounding algorithms� SIAM J� Numer�

Anal�� �
�
�	

��
��� �����

Bibliography ���

���� David Juedes� A taxonomy of automatic di�erentiation tools� In Andreas Griewank

and George F� Corliss� editors� Automatic Di�erentiation of Algorithms
 Theory�

Implementation� and Application� pages �����
�� SIAM� Philadelphia� Penn�� �����

���� R� B� Kearfott� INTERVAL ARITHMETIC	 A Fortran �� module for an interval

data type� ACM Trans� Math� Software�

���	������
� �����

���� R� B� Kearfott� M� Dawande� K� Du� and C� Hu� Algorithm ���	 INTLIB	 A

portable Fortran �� interval standard function library� ACM Trans� Math� Softw��

����	�������� December �����

���� Monika Kerbl� Stepsize strategies for inclusion algorithms for ODE�s� In E� Kaucher�

S� M� Markov� and G� Mayer� editors� Computer Arithmetic� Scienti�c Computation�

and Mathematical Modelling� IMACS Annals on Computing and Appl� Math� �
�

J�C� Baltzer� Basel� �����

���� Rudi Klatte� Ulrich Kulisch� Michael Neaga� Dietmar Ratz� and Christian Ullrich�

Pascal�XSC
 Language Reference with Examples� Springer�Verlag� Berlin� ���
�

���� O� Kn�uppel� PROFIL(BIAS � a fast interval library� Computing� �������	
���
���

����� PROFIL(BIAS is available at

http	((www�ti��tu�harburg�de(Software(PROFIL(Pro
l�texinfo ��html�

���� Fred T� Krogh� On testing a subroutine for the numerical integration of ordinary

di�erential equations� J� Assoc� Comput� Mach��
����	������
� October �����

���� F� Kr�uckeberg� Ordinary di�erential equations� In Eldon Hansen� editor� Topics in

Interval Analysis� pages ������ Clarendon Press� Oxford� �����

���� Ulrich W� Kulisch and Willard L� Miranker� Computer Arithmetic in Theory and

Practice� Academic Press� New York� �����

Bibliography ���

��
� J� D� Lambert� Computational Methods in Ordinary Di�erential Equations� John

Wiley + Sons� �����

���� Hans Petter Langtangen� Di�pack� Technical report� SINTEF� Oslo� Norway� June

����� See http	((www�oslo�sintef�no(di�pack(reports(�

���� Rudolf J� Lohner� Einschlie�ung der L�osung gew�ohnlicher Anfangs� und Randw�

ertaufgaben und Anwendungen� PhD thesis� Universit�at Karlsruhe� ����� AWA is

available at ftp	((iamk�����mathematik�uni�karlsruhe�de(pub(awa(�

���� Rudolf J� Lohner� Step size and order control in the veri
ed solution of IVP with

ODE�s� ����� SciCADE��� International Conference on Scienti
c Computation and

Di�erential Equations� Stanford University� Calif�� March
� � April �� �����

���� Rudolph J� Lohner� Enclosing the solutions of ordinary initial and boundary value

problems� In Edgar W� Kaucher� Ulrich W� Kulisch� and Christian Ullrich� editors�

Computer Arithmetic
 Scienti�c Computation and Programming Languages� pages

���
��� Wiley�Teubner Series in Computer Science� Stuttgart� �����

���� M� Metcalf and J� Reid� Fortran �� Explained� Oxford University Press� Oxford�

England� �����

���� Ramon E� Moore� The automatic analysis and control of error in digital computation

based on the use of interval numbers� In Louis B� Rall� editor� Error in Digital

Computation� Vol� I� pages ������� Wiley� New York� �����

���� Ramon E� Moore� Automatic local coordinate transformations to reduce the growth

of error bounds in interval computation of solutions of ordinary di�erential equations�

In Louis B� Rall� editor� Error in Digital Computation� Vol� II� pages �������� Wiley�

New York� �����

���� Ramon E� Moore� Interval Analysis� Prentice�Hall� Englewood Cli�s� N�J�� �����

Bibliography ���

���� Ramon E� Moore� A survey of interval methods for di�erential equations� In Pro�

ceedings of the ��rd Conference on Decision and Control �Las Vegas� 	���
� pages

��
������� IEEE� �����

��
� N� S� Nedialkov� K� R� Jackson� and G� F� Corliss� Validated solutions of initial

value problems for ordinary di�erential equations� Appl� Math� Comp�� �To appear��

Available at http	((www�cs�toronto�edu(NA(reports�html�

���� Arnold Neumaier� Interval Methods for Systems of Equations� Cambridge University

Press� Cambridge� �����

���� K� L� E� Nickel� Using interval methods for the numerical solution of ODE�s� Z�

angew� Math� Mech�� ��	�����
�� �����

���� N� Obreschko�� Neue Quadraturformeln� Abh� Preuss� Akad� Wiss� Math� Nat� Kl��

�� �����

���� N� Obreschko�� Sur le quadrature mecaniques� Spisanie Bulgar� Akad� Nauk� �Jour�

nal of the Bulgarian Academy of Sciences
� ��	����
��� ���
�

���� Hans Olson� Documentation of the structure of Godess� Technical report� Computer

Science� Lund Institute of Technology� S�

� �� Lund� Sweden� November �����

���� Louis B� Rall� Automatic Di�erentiation
 Techniques and Applications� volume �
�

of Lecture Notes in Computer Science� Springer Verlag� Berlin� �����

���� A� Ralston� A First Course in Numerical Analysis� McGraw�Hill� New York�
nd

edition� �����

���� Robert Rihm� Interval methods for initial value problems in ODEs� In J�urgen

Herzberger� editor� Topics in Validated Computations
 Proceedings of the IMACS�

GAMM International Workshop on Validated Computations� University of Olden�

Bibliography ���

burg� Elsevier Studies in Computational Mathematics� pages ����
��� Elsevier� Am�

sterdam� New York� �����

���� Robert Rihm� On a class of enclosure methods for initial value problems� Computing�

��	�������� �����

��
� Arch D� Robinson� C�� gets faster for scienti
c computing� Computers in Physics�

�����	������
� Sep(Oct �����

���� J� Rohn� NP�hardness results for linear algebraic problems with interval data� In

J� Herzberger� editor� Topics in Validated Computations� volume � of Studies in

Computational Mathematics� pages �������� North�Holland� Amsterdam� �����

���� James Rumbaugh� Michael Blaha� WilliamPremerlani� Frederick Eddy� and William

Lorensen� Object�Oriented Modeling and Design� Prentice Hall� New York� �����

���� Michael J� Schulte� Vitaly Zelov� Ahmet Akkas� and James Craig Burley� The

interval�enhanced GNU Fortran compiler� Reliable Computing� �Submitted�� Octo�

ber �����

���� Lawrence F� Shampine� Numerical solution of ordinary di�erential equations� Chap�

man + Hall� New York� �����

���� B� Speelpenning� Compiling Fast Partial Derivatives of Functions Given by Al�

gorithms� PhD thesis� Department of Computer Science� University of Illinois at

Urbana�Champaign� January �����

���� H� Spreuer and E� Adams� On the existence and the veri
ed determination of

homoclinic and heteroclinic orbits of the origin for the Lorenz system� Computing

Suppl�� �	
���
��� �����

Bibliography ���

���� Ole Stauning� Automatic validation of numerical solutions� Technical Report IMM�

PHD��������� IMM� Lyngby� Denmark� October ����� ADIODES is available at

http	((www�imm�dtu�dk(�os(ADIODES�tar�gz�

���� Hans J� Stetter� Algorithms for the inclusion of solutions of ordinary initial value

problems� In Jaram'ir Vosmansk'y and Mil/os Zl'amal� editors� Equadi� �
 Proceedings

of the International Conference on Di�erential Equations and Their Applications

�Brno� 	���
� volume ���
 of Lecture Notes in Mathematics� pages ������ Springer

Verlag� Berlin� �����

���� Hans J� Stetter� Validated solution of initial value problems for ODEs� In Christian

Ullrich� editor� Computer Arithmetic and Self�Validating Numerical Methods� pages

�������� Academic Press� New York� �����

��
� Stephen J� Sullivan and Benjamon G� Zorn� Numerical analysis using nonprocedural

paradigms� ACM TOMS�
����	
���
��� Sept �����

���� R� S� Varga� On higher order stable implicit methods for solving parabolic di�erential

equations� J� Math� and Phys�� ��	

��
��� �����

���� T� Veldhuizen� Expression templates� C�� Report� ����	
����� June �����

���� T� Veldhuizen� Scienti
c computing	 C�� versus Fortran� Dr� Dobb�s Journal� ���

November �����

���� T� L� Veldhuizen and M� E� Jernigan� Will C�� be faster than Fortran0 In

Proceedings of the 	st International Scienti�c Computing in Object�Oriented Parallel

Environments �ISCOPE���
� Lecture Notes in Computer Science� Springer�Verlag�

�����

Bibliography ���

���� G� Wanner� On the integration of sti� di�erential equations� Technical report�

Universit'e de Gen'eve� Section de Mathematique� �
�� Gen'eve
�th� Suisse� October

�����

���� G� Wanner� On the integration of sti� di�erential equations� In Proceedings of the

Colloquium on Numerical Analysis� volume �� of Internat� Ser� Numer� Math�� pages

���

�� Basel� ����� Birkh�auser�

���� Wenhong Yang and George Corliss� Bibliography of computational di�erentiation�

In Martin Berz� Christian H� Bischof� George F� Corliss� and Andreas Griewank�

editors� Computational Di�erentiation
 Techniques� Applications� and Tools� pages

�������� SIAM� Philadelphia� Penn�� �����

