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Compared to standard numerical methods for initial value problems (IVPs) for ordi-
nary differential equations (ODEs), validated (also called interval) methods for IVPs for
ODEs have two important advantages: if they return a solution to a problem, then (1)
the problem is guaranteed to have a unique solution, and (2) an enclosure of the true
solution is produced.

To date, the only effective approach for computing guaranteed enclosures of the solu-
tion of an IVP for an ODE has been interval methods based on Taylor series. This thesis
derives a new approach, an interval Hermite-Obreschkoff (IHO) method, for computing
such enclosures.

Compared to interval Taylor series (ITS) methods, for the same order and stepsize,
our THO scheme has a smaller truncation error and better stability. As a result, the
[HO method allows larger stepsizes than the corresponding I'TS methods, thus saving
computation time. In addition, since fewer Taylor coefficients are required by IHO than
ITS methods, the IHO method performs better than the I'TS methods when the function
for computing the right side contains many terms.

The stability properties of the I'TS and THO methods are investigated. We show
as an important by-product of this analysis that the stability of an interval method is

determined not only by the stability function of the underlying formula, as in a standard
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method for an IVP for an ODE, but also by the associated formula for the truncation
error.

This thesis also proposes a Taylor series method for validating existence and unique-
ness of the solution, a simple stepsize control, and a program structure appropriate for a

large class of validated ODE solvers.
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Chapter 1

Introduction

1.1 The Initial Value Problem

We consider the set of autonomous initial value problems (IVPs)

yt) = fly) (1.1.1)
y(to) € [yal, (1.1.2)

where t € [tg, T] for some T' > to. Here to and T € R, f € C*Y(D), D C R is open,
f:D— R" and [yo] € D. The condition (1.1.2) permits the initial value y(¢¢) to be in
an interval, rather than specifying a particular value. We assume that the representation
of f contains only a finite number of constants, variables, elementary operations, and
standard functions. Since we assume f € C*71(D), we exclude functions that contain,
for example, branches, abs, or min. For expositional convenience, we consider only
autonomous systems. This is not a restriction of consequence since a nonautonomous
system of ordinary differential equations (ODEs) can be converted into an autonomous
system. Moreover, the methods discussed here can be extended easily to nonautonomous
systems.

We consider a grid ¢y < t; < --- < t,, = T, which is not necessarily equally spaced,

and denote the stepsize from t; to t;41 by hj (h; = t;41 —t;). The step from ¢; to t;41
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is referred to as the (5 + 1)st step. We denote the solution of (1.1.1) with an initial
condition y; at t; by y(t;¢;,y;). For an interval, or an interval vector in general, [y;], we

denote by y(t;1;,[y,]) the set of solutions

{ytsti, i) Ly; € ly]}-

Our goal is to compute interval vectors, [y;], 7 = 1,2,...,m, that are guaranteed to

contain the solution of (1.1.1-1.1.2) at t1,%q,... ,t,. That is,

y(t]‘;to, [yo]) g [yj]v for .] = 1727' .., Mm.

Standard numerical methods for IVPs for ODEs attempt to compute an approximate
solution that satisfies a user-specified tolerance. These methods are usually robust and
reliable for most applications, but it is possible to find examples for which they return
inaccurate results. On the other hand, if a validated method (also called an interval
method) for IVPs for ODEs returns successfully, it not only produces a guaranteed bound
for the true solution, but also verifies that a unique solution to the problem exists.

There are situations when guaranteed bounds are desired or needed. For example,
a guaranteed bound of the solution could be used to prove a theorem [68]. Also, some
calculations may be critical to the safety or reliability of a system. Therefore, it may be
necessary or desirable to ensure that the true solution is within the computed bounds.

One reason why validated solutions to IVPs for ODEs have not been popular in the
past is that their computation typically requires considerably more time and memory
than the computation of standard methods. However, now that “chips are cheap”, it
seems natural to shift the burden of determining the reliability of a numerical solution
from the user to the computer.

In addition, there are situations where interval methods for IVPs for ODEs may not
be computationally more expensive than standard methods. For example, many ODEs
arising in practical applications contain parameters. Often these parameters cannot be

measured exactly, but are known to lie in certain intervals, as for example, in economic
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models or in robot control problems. In these situations, a user might want to compute
solutions for ranges of parameters. If a standard numerical method is used, it has to
be executed many times with different parameters, while an interval method can easily

“capture” all the solutions at essentially no extra cost.

Significant developments in the area of validated solutions of IVPs for ODEs are
the interval methods of Moore [48], [49], [50], Kriickeberg [40], Eijgenraam [19], and
Lohner [1], [44], [46]. All these methods are based on Taylor series. One reason for the
popularity of the Taylor series approach is the simple form of the error term. In addition,
the Taylor series coefficients can be readily generated by automatic differentiation, the
order of the method can be changed easily by adding or deleting Taylor series terms,
and the stepsize can be changed without doing extra work for recomputing Taylor series
coefficients.

Usually, Taylor series methods for IVPs for ODEs are one-step methods, where each
step consists of two phases: (1) validate existence and uniqueness of the solution with
some stepsize, and (2) compute a tight enclosure for the solution. An algorithm to
validate the existence of a unique solution typically uses the Picard-Lindelof operator
and the Banach fixed-point theorem. The computation of a tight enclosure is usually
based on Taylor series plus remainder, the mean-value theorem, and various interval
transformations.

The main difficulty in the first phase is how to validate existence and uniqueness with
a given stepsize. The constant enclosure method [19] is the most commonly used method
for validation [44], [69]. However, the stepsizes allowed by this method are restricted to
“Fuler steps”; thus, reducing the efficiency of any method using it. The main obstacle in
the second phase is how to reduce the so-called “wrapping effect.” Currently, Lohner’s
QR-factorization method is the standard scheme for reducing it.

Recently, Berz and Makino [7] proposed a method based on high-order Taylor se-

ries expansions with respect to time and the initial conditions that substantially reduces
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the wrapping effect (see also [8]). Their approach uses Taylor polynomials with real
floating-point coefficients and a guaranteed error bound for the remainder term. Then,
the arithmetic operations and standard functions are executed with such Taylor polyno-
mials as operands, thus establishing a functional dependency between initial and final

conditions. This dependency can be used to reduce the wrapping effect.

1.2 Contributions

This thesis makes the following contributions to the area of computing guaranteed bounds

on the solution of an IVP for an ODE.

Method Development

o Taylor series has been the only effective approach for implementing interval methods
for IVPs for ODEs. We have developed an interval Hermite-Obreschkoff (IHO)
method for computing tight enclosures of the solution. Validated methods based on
the Hermite-Obreschkoff formula [28], [55], [56] have not been derived or considered
before. Although explicit Taylor series methods can be viewed as a special case
of the more general Hermite-Obreschkoff methods, the method we propose is an

implicit method with predictor and corrector phases.

o We have devised a method for validating existence and uniqueness of the solution
based on the Taylor series approach proposed by Moore [50] and revisited by Corliss
and Rihm [13]. While the underlying idea is not new, there has not been an
implementation in the framework of a complete validated ODE solver, with a good

method for computing tight enclosures.

o We suggest a simple stepsize control strategy and a structure of a program for com-

puting validated solutions of IVPs for ODEs. This structure combines algorithms
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for validation, computing a tight enclosure, and selecting a stepsize. However, the

methods we propose are still constant order.

Theoretical and Empirical Studies

We have studied and compared, both theoretically and empirically, our new interval

Hermite-Obreschkoff method with the Taylor series based interval methods.

o We show that compared with I'TS methods, for the same stepsize and order, our IHO
scheme has a smaller truncation error, better stability, and may be less expensive
for many problems, particularly when the code list of f(y) contains many arithmetic

operations and elementary functions.

o We believe that we have made an important step towards a better understanding of
the stability of interval methods for IVPs for ODEs. We show that the stability of
the I'TS and THO methods depends not only on the stability function of the under-
lying formula, as in the standard numerical methods for IVPs for ODEs, but also
on the associated formula for the truncation error. In standard numerical methods,
Hermite-Obreschkoff methods are known to be suitable for stiff systems [22], [24],
[77], [78], but in the interval case, they still have a restriction on the stepsize. To
develop an interval method for stiff problems, we need not only a stable formula for

advancing the step, but also a stable associated formula for the truncation error.

o We have shown empirically that a solver with a Taylor series method for validating
existence and uniqueness of the solution can reduce the total number of steps,

compared to the constant enclosure method used in the past.

Software Development

e We have implemented an object-oriented design of a validated solver, called

VNODE (Validated Numerical ODE), for IVPs for ODEs. This design embod-
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ies the current developments in object-oriented technology for numerical software.
The VNODE package incorporates different techniques used in validated ODE solv-
ing in a systematic and flexible way. The structure of VNODE is modular; thus,
allowing us to change the code easily and to experiment conveniently with different

methods.

1.3 Thesis Outline

An outline of this thesis follows.

Chapter 2 contains background material that we need later. We introduce interval-
arithmetic operations on real intervals, interval vectors, and interval matrices. We also
define interval-valued functions, interval integration, and discuss a method for efficient
generation of Taylor series coefficients.

In Chapter 3, we briefly survey Taylor series methods for computing guaranteed
bounds on the solution of an IVP for an ODE. We consider the constant enclosure
method for validating existence and uniqueness, explain the wrapping effect, and describe
Lohner’s algorithm for computing a tight enclosure of the solution. We also discuss the
wrapping effect in generating Taylor coefficients and the overestimation in one step of
interval Taylor series methods.

In Chapter 4, we derive the interval Hermite-Obreschkoff method for computing a
tight enclosure of the solution and give an algorithmic description of this method. Then,
we study it theoretically in the constant coefficient and general cases and compare it with
interval Taylor series methods. We also discuss the stability of these methods.

Chapter 5 presents a Taylor series method for validating existence and uniqueness of
the solution.

Chapter 6 discusses estimating and controlling the overestimation of the interval

containing the solution in the methods considered in this thesis and proposes a simple
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stepsize control.

Chapter 7 describes the structure of a program that incorporates algorithms for vali-
dating existence and uniqueness, computing a tight enclosure of the solution, and select-
ing a stepsize.

Chapter 8 contains numerical results. First, we compare the IHO method with ITS
methods on both constant coefficient and nonlinear problems. Then, we show numerical
results comparing these methods when the validation phase uses constant enclosure and
Taylor series methods.

Conclusions and directions for further research are given in Chapter 9.

Appendix A provides estimates for the number of arithmetic operations required to
generate Taylor coefficients.

Appendix B presents the design of VNODE. First, we discuss the goals that we have
set to achieve with the design of VNODE, software issues related to the implementation,
and the choice of C++4+ to implement VNODE. Then, we describe the structure of

VNODE and illustrate how it can be used.



Chapter 2

Preliminaries

2.1 Interval Arithmetic

The set of intervals on the real line R is defined by

IR = {[a] = [¢,a] | a,a € R, a < a}.
If @ = @ then [a] is a thin interval; if ¢ > 0 then [a] is nonnegative ([a] > 0); and if ¢ = —a
then [a] is symmetric. Two intervals [a] and [b] are equal if « = b and @ = b.

Let [a] and [b] € IR and o € {+,—,%,/}. The interval-arithmetic operations are

defined [50, pp. 8-9] by
[a]o[b] ={zoy |z €ld, ye[b]}, 0¢][b] wheno=/,

which can be written in the equivalent form (we omit * in the notation):

[a]+[6] = [a+0ba+b],
la] =] = [a—0ba—0],

[a][}) = [min{ab,ab,ab,ab}, max{ab,ab,ab,ab}],
[a] /[B] = la,a] [1/b,1/b], 0 ¢][b].

We have an inclusion of intervals

[a] C )] & a>banda<b.
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We also define the following quantities for intervals [50]:
o width w ([a]) = @ — a;
o midpoint m ([a]) = (@ + a)/2;
o magnitude |[a]| = max {|al, |a[}.

The interval-arithmetic operations are inclusion monotone. That is, for real intervals

[a], [a1], [b], and [b;] such that [a] C [a;1] and [b] C [b1], we have
[a] o [b] C lar]ofb], o€ {,—*/}.

Although interval addition and multiplication are associative, the distributive law
does not hold in general [2, pp. 3-5]. That is, we can easily find three intervals [a], [b],
and [c], for which

[a)([6] + [e]) # [a][b] + [a][e].

However, for any three intervals [a], [b], and [c], the subdistributive law
[a] ([6] + [c]) < [a] [B] + [a][c].

does hold. Moreover, there are important cases in which the distributive law
[a] ([6] + [e]) = [a] [B] + [a] [c]

does hold. For example, it holds if [b] [¢] > 0, if [a] is a thin interval, or if [b] and [¢] are
symmetric.

Some other useful results for interval arithmetic follow. For [a] and [b] € IR,

la] + (o]l < |la]| +[[0]] (2.1.1)
[a] o]l = [la][ 121, (2.1.2)
w(la] £[0]) = w([a]) +w([b]), (2.1.3)
w(lalb]) = max{la]|w([o]), w(la]) [[b]]}, and (2.1.4)
w(lal b)) < la]|w ([b]) 4w ([a]) [[0] (2.1.5)
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[2, pp. 14-17]. If [a] is symmetric, then

w ([a] [b]) = [[b]] w ([a]) - (2.1.6)
From (2.1.4) and (2.1.6), if [¢] is a symmetric interval, then

w ([a] [b]) < w ([a'] [b]),

for any [a¢'] with w ([a']) = w ([a]).

2.2 Interval Vectors and Matrices

By an interval vector we mean a vector with interval components. By an interval matriz
we mean a matrix with interval components. We denote the set of n-dimensional real
interval vectors by IR" and the set of n x m real interval matrices by IR"*™. The
arithmetic operations involving interval vectors and matrices are defined by using the
same formulas as in the scalar case, except that scalars are replaced by intervals. For

example, if [A] € IR"*" has components [a;;], and [b] € IR" has components [b;], then

the components of [¢] = [A][b] are given by
lei) =) aa] [bx]

An inclusion for interval matrices (and vectors) is defined component-wise by
[A] - [B] < [aij] - [b”] (fOI’ all Z,])
The mazimum norm of an interval vector [a] € IR" is given by

llalll = max {[[a]]},

1<i<n

and of a matrix [A] by

Alll = 52%2 [a:]
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We also use the symbol ||-|| to denote the maximum norm of scalar vectors, scalar ma-
trices, and functions.
Let A and B C R"™ be compact non-empty sets. Let ¢ (A, B) denote the Hausdorff

distance between A and B:
B)= i — i — . 2.2.1
(AB) = max {mamig o = ol macigle — ]} 22.1)
The distance between two intervals [a] and [b] is
g (a), () = ma {Ja — b, Ja — 5]} (2.2
and the distance between two interval vectors [u] and [v] € IR" is

q([u], [v]) = max {q([ud, [vi])} - (2.2.3)

1<i<n
Let [A] € IR™™™. We define the following quantities component-wise for interval

matrices (and vectors):

o width
w([an]) - w(lam])
w([A]) = : : ;
w(lam]) oo w([anm))
e midpoint
m([an]) ... m([ain])

m ([A]) =

m(lam]) o m([anm])

e magnitude



CHAPTER 2. PRELIMINARIES 12

Addition of interval matrices is associative, but multiplication of interval matrices is
not associative in general [53, pp. 80-81]. Also, the distributive law does not hold in
general for interval matrices [53, p. 79]. That is, we can easily find [A] € IR"*™ and [B]

and [C] € IR™ P for which
[AJ([B] + [C]) # [A] [B] + [A] [C].
However, for any [A] € IR"™ and [B] and [C] € IR™?, the subdistributive law
[A]([B] +[C]) < [A][B] + [A][C] (2.2.4)
does hold. Moreover, there are important cases in which
[A]([B] + [C]) = [A] [B] + [4] [C]

does hold. For example, the distributive law holds if [b;;] [¢;;] > 0 (for all ¢, ), if [A] is a
point matrix, or if all components of [B] and [C] are symmetric intervals.

Some other useful results for interval matrices follow. Let [A] and [B] € IR"*". Then

A+ 18] < (ANl + 1B, (2.2.5)
[ATB] < [AIIIIB], (2.2.6)
w(AJ£[B]) = w([A]) +w([B]), (2.2.7)
w(A][B]) = max{[[A][w([B]), w([A]D[[B]]}, and (2.2.8)
w(Al[B]) < [[Allw([B]) +w ([A) |[B]| (2.2.9)

[2, pp. 125-126]. Let the components of [B] be symmetric intervals. Then

w ([A][B]) = [[A]]w ([B]) and
(2.2.10)
w ([A][B]) < w ([A][B])
for any [B’] with w ([B']) = w ([B]).

Let [¢] € IR" be a symmetric vector (all components of [¢] are symmetric intervals).

Then

w(([Al[B)[e]) = [[A][B]]w([d])
< [AJBw(le]) = w([Al([B] [e])). (2.2.11)
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Throughout this thesis, we assume ezact real interval arithmetic, as described in this
subsection. In floating-point implementation, if one or both end-points of a real interval
are not representable (which is often the case), then they must be rounded outward to
the closest representable floating-point numbers. Interval arithmetic is often called a

machine, or rounded, interval arithmetic. A discussion of its properties can be found in

[41].

2.3 Interval-Valued Functions

Let f: R™ — R be a continuous function on D C R”. We consider functions whose rep-
resentations contain only a finite number of constants, variables, arithmetic operations,
and standard functions (sin, cos, log, exp, etc.).

We define the range of [ over an interval vector [a] C D by

R(fila]) = {f(z) | « € [a]}.

A fundamental problem in interval arithmetic is to compute an enclosure for R (f;][a]).
We want this enclosure to be as tight as possible. For example, in our work, we are
interested in f being the right side of a differential equation. The naive interval-arithmetic
evaluation of f on [a], which we denote by f([a]), is obtained by replacing each occurrence
of a real variable with a corresponding interval, by replacing the standard functions with
enclosures of their ranges, and by performing interval-arithmetic operations instead of the
real operations. In practice, f([a]) is not unique, because it depends on how f is evaluated
in interval arithmetic. For example, expressions that are mathematically equivalent for
scalars, such as x(y+z) and 2y + 2, may have different values if x,y, and z are intervals.
However, since we are interested in the interval-arithmetic evaluation of f on a computer,
we can assume that f([a]) is uniquely defined by the code list, or computational graph,

of f. No matter how f([a]) is evaluated, it follows from the inclusion monotone property
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of the the interval operations that

R (f;[a]) € f([a])-

If f satisfies a Lipschitz condition on D C R™, then for any [a] C D,

q (B (f;a]), f([a])) < e [Jw ([a])] (2.3.12)

for some constant ¢; > 0 independent of [a], where ¢ (-,-) is defined by (2.2.2), [50, p.
24], [2]-

Mean-value form

If f:R"— R is continuously differentiable on D C R" and [a] C D, then for any y and
b [a],
fy) € fulla],b) = f(b) + f'([a])([a] — b) (2.3.13)

[50, p. 47]. The expression f(b) + f'([a])([e] — b) is called the mean-value form of f.
Mathematically, fy; is not uniquely defined, but it is uniquely determined by the code
list of 7 and the choice of b. If, in addition, f’ satisfies a Lipschitz condition on D, then

for any [a] C D,

q(R(f3la)), far(la] b)) < e Jleo ([a])]

for some constant ¢; > 0 independent of [a], [53, pp. 55-56]. Therefore, the mean-value
evaluation is quadratically convergent in the sense that the distance between R (f;[a])
and fas([a],b) approaches zero as the square of ||w ([a])]|, as ||w ([a])|| approaches zero.

Similar results apply to functions from R"™ to R™

Integration

Let f: D — R” be a continuous function on D C R and [a] C D. Then,

/a J)dt € (a—a)[([a]) = w([a]) f([a])- (2.3.14)
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2.4 Automatic Generation of Taylor Coefficients

Moore [50, pp. 107-130] presents a method for efficient generation of Taylor coefficients.
Rall [58] describes in detail algorithms for automatic differentiation and generation of
Taylor coefficients. He also considers applications of automatic differentiation, includ-
ing applications to ordinary differential equations. Two books containing papers and
extensive bibliographies on automatic differentiation are [9] and [23].

Since we need point and interval Taylor coefficients, we briefly describe the idea of
their recursive generation. Denote the ith Taylor coefficient of w(¢) evaluated at some

point ¢; by

W) (¢
(u])i = -(t])v

7!

where u()(t) is the ith derivative of u(t). Let (u;), and (v;), be the ith Taylor coefficients

of u(t) and v(t) at ¢;. It can be shown that

(uj £v;); = (%)Z»i(%‘)m (2.4.15)
(wjvo;), = Y (u), (v;),_,, and (2.4.16)

Similar formulas can be derived for the generation of Taylor coefficients for the standard
functions [50, p. 114].

Consider the autonomous differential system

y'(t) = fly)s  yt) =y;. (2.4.18)

M) =y, (2.4.19)

, o fli—1]
) = (L) iz (2:4.20
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Using (2.4.18-2.4.20), the Taylor coefficients of y(t) at ¢; satisfy

(y3)o = [Ny;) = yj»  and (2.4.21)
N gy o Lot |
(yy)i Jlf (y]) ; ( By f) (y]) (2‘4‘22)

= Z<f(yj)>i_17 for i > 1,

where (f(yj)>2._1 is the (1 — 1)st coefficient of f evaluated at y;. By using (2.4.15-2.4.17),
similar formulas for the Taylor coefficients of the standard functions, and (2.4.22), we can
recursively evaluate (y;),, for ¢ > 1. It can be shown that if the number of the arithmetic
operations in the code list of f is NV, then the number of arithmetic operations required
for the generation of k Taylor coefficients is between Nk and Nk(k — 1)/2, depending
on the ratio of additions, multiplications, and divisions in the code list for f, [50, pp.
111-112] (see also Appendix A).

Let y(t;) = y; € [y;]. If we have a procedure to compute the point Taylor coefficients
of y(t) and perform the computations in interval arithmetic with [y;] instead of y;, we

obtain a procedure to compute the interval Taylor coefficients of y(¢). We denote the ith

interval Taylor coefficient of y(t) at ¢; by [y;]. = FE([y:)).



Chapter 3

Taylor Series Methods for IVPs for
ODEs

In most validated methods for IVPs for ODEs, each integration step consists of two

phases [52]:

ALGORITHM I: Compute a stepsize h; and an a priori enclosure [;] of the solution such

that y(¢;t;,y;) is guaranteed to exist for all ¢ € [t;,¢;41] and all y; € [y;], and

y(tst[y]) € [g5]  for all & € [t),1j44].
ALGORITHM II: Using [g;], compute a tighter enclosure [y;41] of y(¢;+1; o, [yo])-

Usually, the algorithm to validate the existence of a unique solution uses the Picard-
Lindelof operator and the Banach fixed-point theorem. In Taylor series methods, the
computation of a tighter enclosure is based on Taylor series plus remainder, the mean-
value theorem, and various interval transformations.

We discuss a constant enclosure method for implementing Algorithm I in §3.1. In
§3.2, we present the basis of the I'TS methods for implementing Algorithm II, illustrate

the wrapping effect, and explain Lohner’s method for reducing it. We also consider the

17
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wrapping effect in generating interval Taylor coefficients and the overestimation in one
step of ITS methods.

Surveys of Taylor series and other interval methods can be found in [4], [14], [15],
[51], [54], [60], [70], and [71]. These papers give a “high-level” description of existing

methods. A more detailed discussion of Taylor series methods can be found in [52].

3.1 Validating Existence and Uniqueness of the

Solution: The Constant Enclosure Method

Suppose that at ¢; we have an enclosure [y;] of y(¢;; %0, [yo]). In this section, we consider

how to find a stepsize h; > 0 and an a priori enclosure [g;] such that for any y; € [y;]

vt)=fly), oyt =y (3.1.1)

has a unique solution y(¢;¢;,y;) € [y;] for t € [t;,t;41]-
The constant enclosure method [19, pp. 59-67], [44, pp. 27-31] for validating exis-
tence and uniqueness of the solution is based on the application of the Picard-Lindelof

operator

o0 =0+ [ Slots))ds (312)

to an appropriate set of functions and the Banach fixed-point theorem.

THEOREM 3.1 Banach fixed-point theorem. Let ® : Y — Y be defined on a complete

non-empty metric space Y with a metric d(-,-). Let v satisfy 0 <~y < 1, and let
4(®(2),8(y)) < 7d (2, ) (3.1
forall x and y € Y. Then ® has a unique fizred-point y* € Y.
Let hj =t;41 —t; and [§;] be such that

y; + 10, 5] f ([95]) < (9] (3.1.4)
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(y; € ly;]). Consider the set of continuous functions on [t;,;41] with ranges in [g,],
U={ulu€Ct;tj1]) and wu(t) € [g] for t € [tj, ]}
For a; > 0, the exponential norm of a function u € C°[¢;, ;4] is defined by

— —ay(i—t5) { .
full, = s (7 (o))

The set U is complete in the maximum norm and therefore in the exponential norm.
By applying the Picard-Lindelof operator (3.1.2) to v € U and using (3.1.4), we

obtain

ww=www=w+[fW@Ms

€y + /ttf([ﬂj])ds (3.1.5)

Sy + [0, ks ([55]) < [3]-
Since v(t) € Ct;,t;41] and v(t) € [g;] for all ¢ € [¢;,¢;11], v € U. Hence, if (3.1.4) holds,
T maps U into itself.

Let L; = ||0f([g;])/0y|l. It can be shown that the Picard-Lindel6f operator is a
contraction on U in the exponential norm with «; > L;, which implies y = L;/a; < 1,
[19, pp. 66-67] (see also [44, pp. 27-29]).

Therefore, if (3.1.4) holds, and we can compute 9f([y;])/0y, then T has a unique
fixed point in U. This fixed point, which we denote by y(¢;¢;,y;), satisfies (3.1.1) and
y(t;t;,y;) € [y;] for t € [t;,t;41]. Note that to prove existence and uniqueness of the
solution of (3.1.1), we do not have to compute v < 1 such that the operator T is a
contraction. Note also that in bounding the kth Taylor coefficient over [g;] in Algorithm II
(see §3.2), we evaluate fI¥([g;]). Because of the relation (2.4.22), if we cannot evaluate
Of([9;])/ 0y, then we are not able to evaluate fIFI([g;]).

Let h; and [g;] be such that!

(93] = [yil + [0, 21 ([9]) € [55]. (3.1.6)

'We use superscripts on vectors to indicate different vectors, not powers.
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Then (3.1.4) holds for any y; € [y;], and (3.1.1) has a unique solution y(¢;t;,y;) that

satisfies
y(t;t5,y;) € (93]
for all t € [t,1;41] and all y; € [y;]. Furthermore, since f([}]) C f([y;]), we have

y(titj.y;) € [yi] + [0, ki) F([55])

for all t € [tj,t;41] and all y; € [y;].
In (3.1.6), we should require [y;] C [y;] and [y;] # [9;]. If [y;] = [7,], then (3.1.6)

becomes

(9] = [ys] + [0, 1 £ ([ys]) < [l

which implies either h; = 0 or f([y;]) = [0,0]. If none of the corresponding endpoints of
[y;] and [7;] are equal, the stepsize, h;, can always be taken small enough such that the
inclusion in (3.1.6) holds. In some cases, such a stepsize can be taken when some of the
endpoints of [y;] and [7;] coincide.

The inclusion in (3.1.6) can be easily verified. However, a serious disadvantage of the
method is that the stepsize is restricted to Euler steps, even when high-order methods are
used in Algorithm II to tighten the a priori enclosure. One can obtain better methods by
using polynomial enclosures [45] or more terms in the Taylor series for validation [50, pp.
100-103], [13], [52]. We do not discuss the polynomial enclosure method in this thesis,
but propose in Chapter 5 a Taylor series method for validating existence and uniqueness.
In §8.4, we show by numerical experiments that our Taylor series method for validation

enables larger stepsizes than the constant enclosure method.
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3.2 Computing a Tight Enclosure
Suppose that at the (5 + 1)st step we have computed an a priori enclosure [7;] such that

y(tit;, [y;]) € lg;],  forallt € [t),t,44].

In this section, we show how to compute in Algorithm II a tighter enclosure [y;11] C [7;],

for which y(#;11; 10, [vo]) € [yj4+1]-
Consider the Taylor expansion
k-1
yi =i+ > R y) 4+ 0E By, 500, (3.2.1)
i=1
where y; € [y;] and fT(y:¢;,1,41) denotes fI¥l with its [th component evaluated at y(;;),
for some &;; € [t;,t;41]. If (3.2.1) is evaluated in interval arithmetic with y; replaced by

[y;], and fT(y;t;,¢;11) replaced by fH([g;]), we obtain

i) = b+ Y0 RS0 + 17, (3.2:2)

With (3.2.2), we can compute enclosures of the solution, but the width of [y;] always
increases with j, even if the true solution contracts. This follows from property (2.1.3)

applied to (3.2.2),
k-1
w (lyj]) = w () + > ke (FU[y) + b (FO((5,1) = w (),
i=1
where an equality is possible only in the trivial cases h; = 0 or w(fl([y;])) = 0,
i=1,...k—1, and w(f¥([g,])) = 0.
If we use the mean-value evaluation (2.3.13) for computing the enclosures of the ranges
R (f[i]; [ij, i =1,...,k—1, instead of the direct evaluation fll([y;]), we can often obtain
enclosures with smaller widths than in (3.2.2) [60]. By applying the mean-value theorem

to fI at some §; € [y;], we have

) = ) + 7 (P, 95) (w5 — 95),s (3.2.3)
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where J (f[i]; Yi, Q]> is the Jacobian of fll with its /th row evaluated at y; + 0:(4; — y;)

for some 6; € [0,1] (I =1,...,n). Then from (3.2.1) and (3.2.3),

k—1

yirr = G5+ R G) + BByt 140)

=1
k—1
T {[ +> b (1 ymﬁj)} (y; — U;)-
=1

This formula is the basis of the interval Taylor series methods of Moore [48], [49], [50],

(3.2.4)

Eijgenraam [19], Lohner [1], [44], [46], and Rihm [61] (see also [52]). Before we explain
how (3.2.4) can be used, we consider in §3.2.1 a major difficulty in interval methods: the

wrapping effect.

3.2.1 The Wrapping Effect

The wrapping effect is clearly illustrated by Moore’s example [50],

Y1 = Y2
(3.2.5)
yé = —l-

The solution of (3.2.5) with an initial condition yq is given by y(t) = A(t)yo, where

cost sint
Alt) =

—sint cost

Let yo € [yo]. The interval vector [yo] € IR? can be viewed as a rectangle in the (yy, ;)
plane. At t; > tq, [yo] is mapped by A(?;) into a rectangle of the same size, as shown in
Figure 3.1. If we want to enclose this rectangle in an interval vector, we have to wrap it by
another rectangle with sides parallel to the y; and y, axes. This larger rectangle is rotated
on the next step, and so must be enclosed in a still larger rectangle. Thus, at each step,
the enclosing rectangles become larger and larger, but the set {A(t)yo | yo € [yo], t > to}
remains a rectangle of the same size. Moore [50, p. 134] showed that at ¢ = 27, the

interval inclusion is inflated by a factor of €*™ ~ 535, as the stepsize approaches zero.
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Figure 3.1: Wrapping of a rectangle specified by the interval vector ([—1,1],[10,11]).

s

an, wheren =1,...,4.

The rotated rectangle is wrapped at ¢t =
Jackson [32] gives a definition of wrapping.

DEFINITION 3.1 Let T € R"*", [z] € IR", and ¢ € R". Then the wrapping of the

parallelepiped
P=A{Tx+c|zelz]}
is the tightest interval vector containing P.

[t can be easily seen that the wrapping of the set {T'z + ¢ | « € [z]} is given by T'[z] + ¢,

where {T[J}]}Z = > Tig [xx].

3.2.2 The Direct Method

A straightforward method for computing a tight enclosure [y;11] at ¢;41 is based on the

evaluation of (3.2.4) in interval arithmetic. From (3.2.4), since

Uyt tie) € M50,
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J <f[i];yj7yfj> cJ <f[i]; [ij (@ = 1,2,... ,k — 1), and

yi» Ui € [yil,

we have
y(tivi;to, [o]) C [yl = i+ Z R ;) + kY M)
=1

(3.2.6)

+ {[ + Z_:h;ij (f1; [yj])} ([y;] = 45)-

Here, [7,] is an a priori enclosure of y(¢;¢;, [y;]) for all ¢ € [¢;,1;11], [y;] is a tight enclosure
of the solution at ¢;, and J (f[i]; [ij is the Jacobian of fll evaluated at [y;]. We choose
Yo to be the midpoint (we explain later why) of the initial interval [yo]. Then, we choose
k-1
Qﬁlznzéb+§:hﬂmwﬂ+hﬁ“W%D>- (3:2.7)
i=1
That is, ;41 is the midpoint of the enclosure of the point solution at ¢,4; starting from

yj. For convenience, we introduce the notation (j > 0)

k—1

[osa] = 95 + 3 B MG5) + RS F((5]) - and (3.2.8)
k—1

[Si1= 14D by (M5 [y)) - (3.2.9)

Using (3.2.8-3.2.9), (3.2.6) can be written in the form

[ira] = (o] + 193] ([wi] = 45)- (3.2.10)
By a direct method we mean one using (3.2.6), or (3.2.10), to compute a tight enclosure
of the solution. This method is summarized in Algorithm 3.1. Note that from (3.2.7-

3.2.8) and (3.2.10), gj41 = m([vj41]) = m([yj+1]). This equality holds because the

interval vector [S;]([y;] — §;) is symmetric.
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Algorithm 3.1 Direct Method

INpUT:
[95]; R [ys)s 95
COMPUTE:
[oj41] = 95 + S02i R F95) + RS S ([3,);
(] = 1+ 302 Wi (1 [yj));
[j+1] = [oj4a] + [55] (li] = 95);
ivr =m([via]) (= m ([yj4]))-
OuTPUT:

Wit1]s Jj+1-

Computing [5;]
We show how the matrices [S;] can be computed [1]. Consider the variational equation
=J(fiy)¥, V() =1 (3.2.11)

It can be shown that

—J (f[i]; y> W(t), (3.2.12)

where fllis defined in (2.4.19-2.4.20), and .J (f[i]; y) is the Jacobian of ff. Then, from

the Taylor series expansion of W(¢) and (3.2.11-3.2.12), we have
U(tj) =1+ Z h;J (f[i]; Yy (tj)> + (Remainder Term). (3.2.13)
i=1
Since in (3.2.13),

1+§:M £, e[+§:m =[5,], (3.2.14)

the interval matrices [S;] can be computed by computing the interval Taylor series (3.2.14)
for the variational equation (3.2.11).
Alternatively, the Jacobians in (3.2.14) can be computed by differentiating the code

list of the corresponding fI, [5], [6].
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Wrapping Effect in the Direct Method

If we use the direct method to compute the enclosures [y;], we might obtain unacceptably
large interval vectors. This can be seen from the following considerations [60].

Using (3.2.10), we compute

[y1] = [v1] + [So] ([yo] = Jo),
[y2] = [v2] + [S1] ([y1] — 31)
= [va] + [S1] (([v1] = 91) + [So] ([yo] — Do) (3.2.15)

= [v2] + [S1] ([va] = 1) + [S1] ([So] ([yo] — Go));

[Wjr] = [vjma] + [95] ([y;] — 35)
= [vjea] + [S5] ([v5] = 95)

+ [S;] ([Sj=1] ([vj=1] = 9j-1))

4. (3.2.16)
+ [55] ([S5=1] -+ ([S1] ([S0] ([vo] = Go))) -+ ),
where [vg] = [yo]. Note that the interval vectors [v)] — ¢ (I = 0,...,J) are symmetric,

and denote them by [§;] = [v;] — g1 Let us consider one of the summands in (3.2.16), for

example, the last one,

1551 (15a] - - ([51] ([S0] [0])) - - -)- (3.2.17)

To simplify our discussion, we assume that the matrices in (3.2.17) are point matrices
and denote them by S;,5;-1,...,5. We wish to compute the tightest interval vector

that contains the set

{55(8521 -+ (S1(S080)) -+ ) | 6o € [do] -

This set is the same as

{(5151—1 +++5150)d0 | do € [50]}7
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which is wrapped by the interval vector

(5,5, 1 -+ $1.50) [6o] (3.2.18)
(see §3.2.1). Tn practice, though, we compute

Si(Si—1 -+ (51(Sa [6])) -+ ), (3.2.19)

and we can have wrapping at each step. That is, we first compute Sy [dg], resulting in
one wrapping, then we compute S1(Sg[do]), resulting in another wrapping, and so on.
We can also see the result of the wrapping effect if we express the widths of the interval

vectors in (3.2.18) and (3.2.19):
w (5551 515) [d]) = |5;5j-1 - -+ S1.5][ w ([do])
< [8i11Sj=1] -+ - |51} 50| w ([d0])
= w (5;(Sj—1 -+ (51(S0 [do])) -+ )) -
Frequently, w ((S;S;—1 --- S150) [So]) < w (S;(S;—1 - (S1(So [§o])) - )) for j large, and
the direct method often produces enclosures with increasing widths.
By choosing the vectors §; = m ([vr]), we provide symmetric intervals [)] — g, and

by (2.2.10), we should have smaller overestimations in the evaluations of the enclosures

than if we were to use nonsymmetric interval vectors.

Contracting Bounds

Here, we consider one of the best cases that can occur. If the diagonal elements of

J (f[l]' [ij are negative, then, in many cases, we can choose h; such that
\_H[JrZhZ H<1
It §; = m ([y;]), then

e (LS D = Sl val = gi) | < [l (lys] = 3)|| = e ()|

That is, [y;] — y; propagates to a vector [S;]([y;] — ;) at ¢;4+1 with smaller norm of the
width than |[w([y;])]|-
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3.2.3 Wrapping Effect in Generating Interval Taylor

Coefficients

Consider the constant coefficient problem

v =By, y(0) € [yo- (3.2.20)

In practice, the relation (2.4.22) is used for generating interval Taylor coefficients. With

this relation, we compute interval Taylor coefficients for the problem (3.2.20) as follows:

[yl = Blyol,

1 1
2 = =Blyi] = =B (Bly),
vl = 5Bln] = 55 (Blyo) .

[yl = l.B[y]i_l = Z,l—!B(B--- (B(Blyo)) -+ ).

4

Therefore, the computation of the ith Taylor coefficient may involve ¢ wrappings. In
general, this implies that the computed enclosure of the kth Taylor coefficient, fI*([g,]),
on [t;,1;41] may be a significant overestimation of the range of y®(¢)/k! on [t;,1;41]. As
a result, a variable stepsize control that controls the width of h?f[k]([yNj] may impose a
stepsize limitation much smaller than one would expect. In this example, it would be

preferable to compute the coefficients directly by

vl = Z.l—!Bi[yo], (3.2.22)

which involves at most one wrapping.
In the constant coefficient case, we can easily avoid the evaluation (3.2.21) by using
(3.2.22), but generally, we do not know how to reduce the overestimation due to the

wrapping effect in generating interval Taylor coefficients.
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3.2.4 Local Excess in Taylor Series Methods

We consider the overestimation in one step of a Taylor series method based on (3.2.4).

The Taylor coefficient f*1(y;1;,1;11) is enclosed by fH¥([g;]). If [§;] is a good enclosure
of y(t: 15, [y]) on [t 15411, then [[w ([55]) | = O(h), assuming that (g1} = O(7) for
some r > 1. From (2.3.12), the overestimation in fI¥1([7;]) of the range of f¥ over [7;] is
O(Jlw ([g;]) |]) = O(h;). Therefore, the overestimation in hff[k]([yNj]) is O(hf"'l).

The matrices J (f[i]; yj,Qj> are enclosed by J (f[i]; [ij. That is, by evaluating the
Jacobian of fl1 on the interval [y;]. As a result, the overestimation from the second line
in (3.2.4) is of order O(h;||w([y;])||*), [19, pp. 87-90]. This may be a major difficulty
for problems with interval initial conditions, but should be insignificant for point initial
conditions or interval initial conditions with small widths, provided that the widths of
the computed enclosures remain sufficiently small throughout the computation.

Hence, if f¥(y;¢5,t541) and J (f1;y;,9;) are enclosed by f¥([g;]) and J (f1; [y,]),

respectively, the overestimation in one step of Taylor series methods is given by
O(thw([yj])HQ) + O(hf"'l) + (higher-order terms). (3.2.23)

We refer to this overestimation as local excess and define it more formally in §6.1. Ad-
vancing the solution in one step of Taylor series methods usually introduces such an
excess (see Figure 3.2).

We should point out that by computing h?f[k]([gj]), we bound the local truncation
error in I'TS methods for all solutions y(¢;¢;,y;) with y; € [y;]. Since this includes all
solutions y(t;to, yo) with yo € [yo], we are in effect bounding the global truncation error
too. Thus, the distinction between the local and global truncation errors is somewhat
blurred. In this thesis, we call h?f[k]([gj]) the truncation error. A similar use of the

truncation error holds for the IHO method discussed later.
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[Yj+1]

> Local Excess

t]‘ tj-l—l

Figure 3.2: If [y;] is an enclosure of the solution at t;, then the enclosure [y;41] at ¢;41

contains y(t;+1;1;,[y;]) and the local excess.

3.2.5 Lohner’s Method

We derive Lohner’s method from (3.2.4) in a different way than in [1], [44], and [46]. We

show how [y1] and [y2] are computed and then give the algorithm for any [y;].

Let

zim = Ryt t00) € Y FM([9]) = [2i44] (3.2.24)

sivr = m([zn]), (3.2.25)
k-1 ' '

Jivr =0, + > B SU(G;) + 5541, and (3.2.26)
=1
k-1 ' '

S;p=1+ Zh}] (7 y;,95) € 15,1, (3.2.27)

=1

where [S;] is defined in (3.2.9). Also let
Ao =1, Jo = m([yo]), and ro = yo — o € [ro] = [yo] — Do, (3.2.28)

where [ is the identity matrix.

Using the notation (3.2.24-3.2.28), we obtain from (3.2.4)
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Y1 = Y1 + Solyo — Jo) + 21 — 51
€ i1 + ([So]Ao) [ro] + [1] — 51
= [y1], and
Y1 = Y1 + Solyo — Jo) + 21 — 51
=91 + A1 (A7 S040) ro + AT (21 — 51))

€ {ﬁ1 + Ay | € [rl]}v

where A; € R™*” is nonsingular and

[r1] = (ATH([So] Ao)) [ro] + AT ([z1] — 1)

We explain later how the matrices A; (j > 1) can be chosen.

Similarly,

Y2 = Y2 + S1(yr — J1) + 22 — 52
=02+ (S1A1)r1 + 22 — 82
€ g2 + ([S1]Ar) [r1] + [22] — 52
= [y2], and
Y2 = Y2 + S1(yr — J1) + 22 — 52
=02 + Ay ((A7S141) m1 + A7 (22 — 52))

€ {Qz + Agrg |2 € [TQ]}v

where Ay, € R™*" is nonsingular and
[r2] = (AF'([S1]AD) [ri] + A7 ([22] = s2).

Continuing in this fashion, we obtain Lohner’s method.

31
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Algorithm 3.2 Lohner’s Method

INPUT:
(G515 Ry
[yj]7 @jv A]v [T‘]‘].
COMPUTE:
[2i41] == BE SR ([g0);
sj1 = m ([2j41]);
Jiv1 = 05 + 0 R () + 54
[Si] =1+ 35 hid (f1; [y,]);
Choose A1 as discussed below;
[i+1] = i1 + ([S;] 4)) [rj] + [2j41] = sj41
[ria] == (A7 (1S A))[ri) + A7l ([Z54a] = si4)-
OurpuT:

Wit1]s Ji+1 Ajgrs [rj4a]-

The Parallelepiped Method

If A1 =m([S;] A;), then we have the parallelepiped method for reducing the wrapping
effect. Let S/Y\] =m ([5;]) and [9;] = S + [F;]. Then

Aj-l-l == §]‘AJ‘ and

-1
A]-H

([S;] A;) = ATISTH(S;A; + [E)]A;)
= [+ ATISTYES A,

Since
| A7 15 Ej]A;]] < cond( j)“é\;l[Ej]H,

if HSY\J_I[E]]H is small and cond(A;) is not too large, then A7 ([S;] A;) ~ I. As a result,
there is no large overestimation in the evaluation of (A7}, ([S;] A;))[r;]. However, the
choice of A;1; does not guarantee that it is well conditioned or even nonsingular. In fact,

Aj11 may be ill conditioned, and a large overestimation may arise in this evaluation.
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The QR-factorization Method

We describe Lohner’s QR-factorization method, explain how it works, and illustrate it
with a simple example.

Let gﬂ_l € [9;] A, and let A\j_H = gﬂ_leH, where Pjy; is a permutation matrix.
We explain later in this subsection how P, is chosen. We perform the QQR-factorization
A\j_H = Q;4+1j41, where ;41 is an orthogonal matrix, and R,y is an upper triangular
matrix. If A;4; is chosen to be ();1; in Algorithm 3.2, we have the QR-factorization
method for computing a tight enclosure of the solution.

We now give an intuitive explanation of how this method works. At each step, we

want to compute an enclosure of the set

{(A7LS1A)) i+ AT (i1 = sju) | S5 € [S)], vy €[]y 21 € [y} (3.2.29)
that is as tight as possible. Consider first the set

{A7 (i = i) | 21 € [zl ) (3.2.30)

If HA]_-;lH is not much larger than 1, then

[0 (A7 (ziaa] = sia)) | = 147w (2| < AT ([ (D)

will not be much larger than |lw ([z;41])[|. In this method, A7, = Q7L = Q% is
orthogonal, so ||A7}4]| < /n. In addition, w ([zj41]) can be made small by reducing the
stepsize or changing the order of the Taylor series. Therefore, the set (3.2.30) can be

enclosed in the interval vector

A}# ([zj41] = s511),

whose width can be kept small.

Consider now the set

{(A718:4;) i | S5 € [S4], vy €[]} (3.2.31)
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in (3.2.29). It Ajyy € {554, | S; € [S;]} € [9;] A; and w ([S;]) is small, then

{(S45)r5 1 S5 € [S3), ry € ]} = {Ajpary | 75 € 3]} (3.2.32)
From (3.2.31) and (3.2.32), we have

{(ATL S A ) | Sie [S)], ry €[]}
= {(Q71(S;A)ri | S; € [Si], vy e lril}

~ {(Q7h Ay | vy €[]}

(3.2.33)
C Q7 Al
Note that A;4[r;] is the wrapping of the set
{A s | vy €[]}, (3.2.34)
while (Q;ilgj+1)[rj] is the wrapping of the set
{(Q7 Ajr)ry [y €[]} = {Q7L (Ajmary) | vy €[]}, (3.2.35)
which is the set {r; € [r;]} mapped by gﬂ_l and then the result mapped by Q]__il

The vector corresponding to the first column of ();41 is parallel to the vector corre-
sponding to the first column of A\]‘_H. The matrix ¢);4; induces an orthogonal coordinate
system, where the axis corresponding to the first column of ();44 is parallel to those edges
of the parallelepiped (3.2.34) that are parallel to the first column of A\j+1- Intuitively,
we can expect an enclosure with less overestimation in the coordinate system induced by
()41 than in the original coordinate system. Furthermore, if the first column of ;4 is
parallel to the longest edge of the parallelepiped in (3.2.34), we can expect a better result
than if this column were parallel to a shorter edge. This is the reason for rearranging the
columns of AVHI by the permutation matrix Pj;;. Lohner suggests that P;;; be chosen
such that the first column of A\j_H corresponds to the longest edge of (3.2.34), the second

column to the second longest and so on.
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If || - ||2 is the Euclidean norm of a vector, g]’+1,i is the ¢th column of gﬂ_l, and [r];

is the ith component of [r;], then the lengths of the edges of (3.2.34) are given by
L= Ajrallz - w([r]e), fori=1,....n.

Let | = (l1,la,...,0,)T. The matrix P;;; is such that the components of [T P;y; are
in non-increasing order (from 1 to n). As a result, the vector corresponding to the first
column of A\j_H = gﬂ_l P;11 is parallel to the longest edge of (3.2.34), and the first column

of (41 1s parallel to that edge as well.
Example Let
A= and [r] =

2 1 [1,4]

The QR-factorization of A is

A= o _ =0R 3.2.36
Gle (Y AL (5 13:2:30)

Consider the set
{Ar|re[r]}. (3.2.37)

The parallelepiped specified by [r] (see Figure 3.3(a)) is mapped by A into the paral-
lelepiped shown in Figure 3.3(b). The filled part in Figure 3.3(b) is the overestimation
of (3.2.37) by A[r]. However, if the set in (3.2.37) is wrapped in the coordinate sys-
tem induced by Q, we obtain a better enclosure (less overestimation) of this set (see
Figure 3.3(¢)).

Consider now the set
{Q7"Ar | r € [r]}. (3.2.38)

The matrix @' maps (3.2.37) into a parallelepiped with its shorter edge parallel to the
original @ axis. As a result, the wrapping of (3.2.38) is (Q ™' A)[r] (see Figure 3.3(d)).
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{Ar |relr]}

@M L@ 4y | rel])
@ /
ny
Yy
a
Qu (e) (1)

Figure 3.3: (a) The set {r | r € [r]}.

(b) {Ar | r €[]} enclosed by A[r].

(c) {Ar | r € [r]} enclosed in the coordinate system induced by Q.
(d) {(Q " A)r | r € [r]} enclosed by (Q~"A)[r].

(e) {Ar | r € [r]} enclosed in the coordinate system induced by Q.
(f)

f {( Q7' A)r | r € [r]} enclosed by (@_114) [r].
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Now, interchange the columns of A, denote the new matrix by A\, and compute the

QR-factorization

o Lt L% 7 b oan (3.2.39)

1 2 V2 1 -1 V2 0 -1
If we wrap the set (3.2.37) in the coordinate system induced by @ (see Figure 3.3(e)), we
obtain a better enclosure than in the coordinate system induced by Q. In Figure 3.3(f),
the parallelepiped {Ar | r e [r]} is rotated by @_1. The longest edge of the rotated

~

parallelepiped is parallel to the z axis, and the overestimation in (Q~'A)[r] is smaller
than in (Q~*A)[r] and A[r].

To summarize, let A € R"*" [r] € IR", and A = @R, where ) is an orthogonal
matrix and R is an upper triangular matrix. Normally, if we wrap the parallelepiped
{Ar | r € [r]} in the coordinate system induced by @), we obtain a better enclosure than in
the original coordinate system. Moreover, if we rearrange the columns of A, as described
in this subsection, before computing (), we usually obtain a better enclosure than without

rearranging those columns.



Chapter 4

An Interval Hermite-Obreschkoff

Method

In this chapter, we derive an interval Hermite-Obreschkoff (IHO) method and compare

it with the “standard” interval Taylor series methods.

Hermite-Obreschkoff methods are usually considered for computing an approximate
solution of a stiff problem [22], [24], [77], [78]. Here, we are not interested in obtaining
a method that is targeted specifically to solving stiff problems—our purpose is to obtain
a general-purpose method that produces better enclosures at a smaller cost than the

explicit validated methods based on Taylor series.

Hermite-Obreschkoff methods have smaller truncation errors and better stability than
Taylor series methods with the same stepsize and order. Also, for the same order, the
[HO method needs fewer Taylor coefficients for the solution to the IVP and its variational
equation than an ITS method. However, the former requires that we enclose the solution
of a generally nonlinear system, while the latter does not. The extra cost of enclosing
such a solution includes one matrix inversion and a few matrix-matrix multiplications.

The method that we propose consists of two phases, which can be considered as a

(0)

predictor and a corrector. The predictor computes an enclosure [y; /] of the solution at

38
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tit1. Using [y](g_)l], the corrector computes a tighter enclosure [y;11] C [y](g_)l] at tj41.

In the next section, we derive the interval Hermite-Obreschkoff method; in §4.2, we
give an algorithmic description of it; and in §4.3, we explain why the IHO method may

perform better than I'TS methods.

4.1 Derivation of the Interval Hermite-Obreschkoff

Method

First, in §4.1.1, we show how the point Hermite-Obreschkoff method can be obtained.
Then in §4.1.2, we outline our new [HO method. Finally, in §4.1.3, we derive it: we
describe how to improve the predicted enclosure and how to represent the improved

enclosure in a manner that reduces the wrapping effect in propagating the solution.

4.1.1 The Point Method

Let
P, (s) = %, (4.1.1)
. U (g4p—1)
e’ = (p—clz—q)!(q(qﬁi)!) , and (4.1.2)
gi(s) = 900 (4.1.3)

i!
where p >0, ¢ > 0,0 <17 <gq, and ¢(¢) is any (p + g + 1) times differentiable function.

If we integrate fol P, ,(5)g®Pt7)(s) ds repeatedly by parts, we find!

1 q P
(~1)* / Py(s)g® 0 (s) ds = 3 (=1)'el g (1) = Y Fg,(0). (4.1.4)
0 =0 =0
If y(t) is the solution to the IVP
v =T, ) =y (4.1.5)

IThis derivation is sometimes attributed to Darboux [16] and Hermite [28].
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and we set g(s) = y(t; + sh;), then

g (s) = AT PRI 4 shy), (4.1.6)
(0 D (¢ o
gi(0) =7 u( ) _ niZ @(' ) - hefi(y;), and (4.1.7)
g (1) Wt + hy)

Y il
= hy=—2 = h U (yim), (4.1.8)

7! 7!

where y; 11 = y(t; + h;), and the functions f are defined in (2.4.19-2.4.20). Also,
1
07 [ Ble)g ) ds
0
1
= 1 [Ro + sh) ds (1.1.9)
0

= (=1) q'p! hP+q+1y(p+q+1)(t;tjatj+1)
P+l (p+q+1)

Y

where the [th component of y®+1+1(¢;¢;,¢,,,) is evaluated at some &; € [t;,1,41].

From (4.1.4) and (4.1.7-4.1.9),

q P

D (L h P ypaa) = Y e by ()

=0 =0

+(—=1)* AP g YT ) 4.1.1
P+t (p+q+1)! (4.1.10)
For a given y;, if we solve the nonlinear (in general) system of equations
q . . B p . B
D =R i) =D R () (4.1.11)
=0 =0

for y;41, we obtain an approximation of local order O(h§+q+1) to the solution of (4.1.5).
The system (4.1.11) defines the point (¢, p) Hermite-Obreschkoff method [22], [24], [27,

p. 277), [77], [78).

Remarks

1. If p > 0 and ¢ = 0, we obtain an explicit Taylor series formula:

p+1

P
o I
Y = ) WMy + 0 fl— 1)!y(p+1)(t3 Ljs i)
=0




CHAPTER 4. AN INTERVAL HERMITE-OBRESCHKOFF METHOD 41

2. If p=0and ¢ > 0, then (4.1.10) becomes an implicit Taylor series formula:

! . pat!
yi= ) (=1 ym) + (—UWWW“)G; titisn).
1=0 .

Therefore, we can consider the Hermite-Obreschkoff methods that we obtain from (4.1.10)

as a generalization of Taylor series methods.

4.1.2 An Outline of the Interval Method

Suppose that we have computed an enclosure of the solution at ¢;. The idea behind our
IHO method is to compute bounds on the solution at ¢;44, for all y; in the solution set at
tj, by enclosing the solution of the generally nonlinear system (4.1.10). We enclose this

solution in two phases, which we denote as a predictor and a corrector.

PREDICTOR: Compute an enclosure of the solution at ¢;4; using an interval Taylor

series method of order (¢ + 1).

CORRECTOR: Improve this enclosure by enclosing the solution of (4.1.10).

In the corrector, we perform a Newton-like step to tighten the bounds computed by
the predictor. From (4.1.10), we have to bound the (p + ¢ + 1)st Taylor coefficient on
[tj,tj41]. We can enclose this coefficient by generating it with the a priori enclosure

computed in Algorithm I. This computation is the same as enclosing the remainder term

in I'TS methods (see §3.2).

4.1.3 The Interval Method

Suppose that we have computed [y;], 9;, A;, and [r;] at ¢; such that

y(tto, [yo]) € [y;] and (4.1.12)

y(tisto, [yo]) € {85 + Ajry | vy € [ri]}, (4.1.13)
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where §; = m ([y;]), A; € R™*" is nonsingular, and [r;] € IR". The interval vectors [y;]
and §; + A;[r;] are not necessarily the same. We use the representation {Q] + Ajry |y €
[rj]} to reduce the wrapping effect in propagating the solution and the representation
[y;] to compute the coefficients for the solution to the variational equation (see §3.2.2).
Suppose also that we have verified existence and uniqueness of the solution on [t;,;41]
and have computed an a priori enclosure [g;] on [t;,%;41] and an enclosure [y](g_)l] C [gy] at
ti+1. We show in §4.2.2 how to compute [y](g_)l] in the predictor. Here, we describe how
to construct a corrector based on (4.1.10).

(0) ]

Our goal is to compute (at ¢;11) a tighter enclosure [y;11] of the solution than [y;},

and a representation of the enclosure set in the form

{g1+1 + Aj+1rj+1 | rip € [T]‘_H]}.

That is, we have to compute [y;4+1], Jj+1, Aj+1, and [r;41] for the next step.

Let

y; = y(t;ito,yo) and  yi41 = y(tiq1;5to. o)

for some yo € [yo], and Q;(fl = m([y](g_)ID Since

(0) ]

~(0 A
vir, 00 € W] and gy, 95 € [y,

we can apply the mean-value theorem to the two sums in (4.1.10) to obtain

q q
Z(_l)lcg7ph;f[l](ﬁﬁ(fl) + (Z(—l)lcg’ph}J <f[2]§ Yi+1, Q;?1>> (Yj41 — Q;(fl)

P P
=Pl + (Z 5 (fU; ymﬁ;)) (y; — 45)
1=0 1=0

(4.1.14)

q'p! p+q+1y(p+q+1)(t;tj,tj+1)

MR T A

Y

where J <f[i];yj+1,y7;(fl> is the Jacobian of fI! with its /th row evaluated at iy, +
Gil(yf;(fl — yj41) for some 6; € [0,1], and J (f[i]; Yi, Q]> is the Jacobian of fl1 with its (th

row evaluated at y; + n:(y; — y;) for some n; € [0,1], [ =1,...,n.
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Using (4.1.14), we show how to compute a tighter enclosure than [y](g_)l] at tj41.

Let
q
10Dt 3 ~(0
Sppi = D (=D e b (1540, 9%))
o (4.1.15)
€ Z Vet hid (51 ) = [,
Sivre =m (S, (4.1.16)
P
S]-I-_Z pthj<f y],y])
o (4.1.17)
€D, 1) = [Sit).
0
[Bi] = (S7-[954]) As, (4.1.18)
(€3] =T =534 _[Si41.-], (4.1.19)
o] = [\ ] — 4\, (4.1.20)
! (p+q+1) tt. 1.
€41 = (_1)q q'p! ’hf-l— g+1Y ( ’ Ji {-I-l)
b Q) (ptq+ 1) (4.1.21)
_ 9PL ) pratt gl s 1y = 1,
€ (1) T ) = )
P q
givr = D M) = Y (1) R MG, and
=0 =0
(4.1.22)
i1 = Gj+1 T €41 € git1 + [€5401] = [6551]. (4.1.23)

With the notation (4.1.15-4.1.23), we write (4.1.14) as

Sirt—(Yjp1 — Q;?l) =S+ (y; —U;) + 0541
(4.1.24)

~

~(0
~ (Sjr1m = Siwr=)iss — B

Since

;i — ;i € {Ajr; | rj €[]},

there exists r; € [r;] such that y; — y; = A;r;. Therefore, we can transform (4.1.24) into

~ ~

Sivte(Wirr — 90 = (S50 A5)75 4 81 — (Sigre — Sian )i — 950, (4.1.25)
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For small h;, we can compute the inverse of §j+17_. Then from (4.1.25) and using (4.1.15—

4.1.23),

Yi+r — @;?1 = <<S]‘_+11,—SJ,+>AJ> i+ Sj—+11,—5j+1 + - SJ‘_+11,—SJ'+17—)(%+1 - Q;?l)
& (St 18D A, 1) + St _[614]
+ (1= 87 S D] = 955

= [Bllr] + [} + S5, 5541, (4.1.26)
Since
vier = ytaaito,vo) € 9% + [Billrs] + [Cillos] + S7 [6511]
for an arbitrary yo € [yo], then
(i3 to, [uol) € 500 + [Bi]lr) + [Cillos] + S [8)
We compute an interval vector that is a tight enclosure of the solution at ¢;4; by
i) = (3% + [Billr) + (o] + S _8531) 0 [yh), (4.1.27)
where “N” denotes intersection of interval vectors. For the next step, we propagate
i1 = m([yj41]) (4.1.28)
Ajt1, which is the Q-factor from the QR-factorization of m ([B;]), and

(1] = (AZL[B D] + (ATL[C]) )]

+ (A]_ilsj_-l-ll,—)[(sj-l-l] + A;il(ﬁj(fl — g]‘+1).

(4.1.29)

Remarks

1. Since we enclose the Taylor coefficient

yPrED (44 1)

et D) ),




CHAPTER 4. AN INTERVAL HERMITE-OBRESCHKOFF METHOD 45

the overestimation in the term h§+q+1f[p+q+1]([y~j]) is of O(hf-l'q-l'z), provided that
llw([g;)]] = O(h;); see §3.2.4. Therefore, the order of the THO method is (p+¢+1).

Note that in the point case, the order of an Hermite-Obreschkoff method is (p+ ¢).

In §8.2, we verify empirically that the order of an IHO method with p and ¢ is

indeed (p+ ¢+ 1).

2. We have explicitly used the inverse of §j+17_ in our method. This is due in part
to the software available to us. It may be useful to consider other ways to perform

this computation at a later date.

3. We could use the inverse of the interval matrix [S;11 -] instead of §J__|_11_ However,
it is easier to compute the enclosure of the inverse of a point matrix than of an
interval matrix. In fact, computing a tight enclosure of the inverse of an interval

matrix is NP hard in general [63].

o-1

4. In (4.1.27), we intersect yfﬁj}l + [Billr;] + [Cillvi] + S5 _[6;41] and [y](g_)l]. As a

result, the computed enclosure, [y;11], is always contained in

] and 9% + (Bl + 0]+ S5, (ol

(0)

Therefore, we can never compute a wider enclosure than [y;},].

(0)

5. Once we obtain [y;41], we can set [y;/] = [y;11] and compute another enclosure,
hopefully tighter than [y;+1], by repeating the same procedure. Thus, we can
improve this enclosure iteratively. The experiments that we have performed show,
however, that this iteration does not improve the results significantly, but increases

the cost.

6. If we intersect the computed enclosure as in (4.1.27), it is important to choose

~ N ~(0 . . ~ ~(0
Jiv1 € [yjea]. I we set gypq = g7, it might happen that §i11 = 59, € [y41).
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)

because §;/; is the midpoint of [y](g_)l], which is generally a wider enclosure than

[yj+1].

7. The interval vectors [r;] (7 > 0) are not symmetric in general, but they are sym-

metric in Lohner’s method (see §3.2.5).

4.2 Algorithmic Description of the Interval Hermite-

Obreschkoff Method

In this section, we show how to compute the coefficients ¢/

and ¢'. Then, we describe
the predictor and corrector phases of the IHO method in a form suitable for implemen-

tation.

4.2.1 Computing the Coefficients /"’ and ¢!

From (4.1.2)
av_ @ (g+p=9t ¢ (¢+p—it+t D! g—it]
Coptat (e=)t (p+a! (g—i+ D! g+p—it]
_ap 97 141
= ¢ . :
P (4.2.1)
Since ¢} = 1, we can compute the coefficients ¢’ fori = 1,... ,¢ by (4.2.1). In a similar
way, we compute ¢"? fori =1,... ,p.

4.2.2 Predicting an Enclosure

We compute an enclosure [y;(fl] for the solution at ¢;41 by Algorithm 4.2, which is part

of Lohner’s method (see §3.2.5).
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Algorithm 4.1 Compute the coefficients % and ¢!'™*.

INPUT:
P, q.

COMPUTE:

=1
for i:=1to g
= (g — i+ 1) /(g+p—i+1);
end
=1
fori:=1top

A= (p—i+1)/(g+p—i+1);

end

OUTPUT:
o fori=0,...,p;
P fori=0,...,4q.

Algorithm 4.2 Predictor: compute an enclosure with order ¢ + 1.

INpUT:
¢, by, [z41] o= BT A ([));
95> Ajs il [ys)-
COMPUTE:
fr= R (g, fori=1,....q
[ujpr) =05 + 20y [+ [zi4];
[FR] = hid (fy]), fori=1,....¢;
[S5] == T+ 320, [F}]:
[y =[] + [g41] 4+ ([S)4))[r]
OUTPUT:
[y](?r)l]'
[ [FR], fori=1,...,4q
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4.2.3 Improving the Predicted Enclosure

Suppose that we have computed an enclosure [y](g_)l] of y(t;41;to, [yo]) with Algorithm 4.2.

In Algorithm 4.3, we describe an algorithm based on the derivations in §4.1.3 for improv-

ing [y](‘g-)1]-

Remarks

1. We could use the a priori enclosure [g;] from Algorithm I instead of computing

(0)

[yj-|—1

(a)

|. We briefly explain the reasons for computing [y](g_)l].

The a priori enclosure [§;] may be too wide and the corrector phase may not
produce a tight enough enclosure in one iteration. As a result, the corrector,
which is the expensive part, may need more than one iteration to obtain a

tight enough enclosure (see §8.3.2, p. 110).

(0)

Predicting a reasonably tight enclosure [y;/,] is not expensive: we need to
generate the terms [f; ] and [F} ], for i = 1,...,¢g. We need them in the cor-
rector, but for s = 1,... ,p. Usually, a good choice for ¢ is ¢ € {p,p+ 1,p + 2}
(see §4.3.1). Therefore, we do not create much extra work when generating

these terms in Algorithm 4.2.

2. Algorithm 4.3 describes a general method. If, for example, the problem being

solved does not exhibit exponential growth of the widths of the enclosures due to

the wrapping effect, we do not have to compute a QR-factorization and represent

the enclosure as in (4.1.13).

3. The matrix A;4; is a floating-point approximation to an orthogonal matrix. Since

AJ‘_-|}1 is not necessarily equal to the transpose of Aj;;, AJ‘_-|}1 must be enclosed in

interval arithmetic.
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Algorithm 4.3 Corrector: improve the enclosure and prepare for the next step.

INpUT:
p,g  lfori=0,...,p, Pfori=0,...,¢
hjy G5y Ajy [rl, [y](?r)l];
Lo [F]s fori=1,...,¢
(1] s= A PRI ()).
COMPUTE:
g% = m ()
T —hlf[l]( (3_)1) fori=1,...,q;
gj+1 = y]+1 + 2 i (= 1)203@ JESRE
vi=(=1)pl/(p+ @)l
[0;41] := gj+1 + v[z41]:
(i) =T+ 320, ]
Fry )= i (A1), fori=1,.

[Sjr, )= T+ (1) e PIF s
Sit1,— = m ([ j+1,-1);

[B;] = (S _[Si+D) A
[C5) =1 =S5 _[Si1,-];
. 07 _ ( ).
mﬂ] @ﬁ+[]myu@wu+%$¢mﬂnmwﬂh
Aj1 = m ([Bj]);
A1 = @ factor of the () R-factorization of gj+1;

Ji+1 = m ([yj41]);

i) = (ATL B + (AT IO D o] + (ATL S O] + AT (65,

OUuTPUT:

@j+17 Aj-|—17 [7‘]‘4—1]7 [@/H—l]-

— Jj+1)-
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4. It is convenient to compute the terms h;f[l]([yN]]) fori =1,2,...,(p+qg+1)in
Algorithm I (see Chapter 7). Then, we do not have to recompute h;“f[q"'l]([ﬂj])

in the predictor and h§+q+1f[p+q+1]([y~j]) in the corrector.

4.3 Comparison with Interval Taylor Series Methods

We explain why the THO method may perform better than the I'TS methods. First, in
64.3.1 and §4.3.2, we show that on constant coefficient problems, the IHO method is more
stable and produces smaller enclosures than an I'TS method with the same stepsize and
order. Then, in §4.3.3, we study one step of these methods in the general case and show
again that the IHO should produce smaller enclosures than the ITS methods. Finally, in
§4.3.4, we consider the amount of work in one step of each of these methods.

In this section, we assume that both methods have the same order of the truncation
error. That is, if the order of the Taylor series is k, we consider an ITHO method with p

and ¢ such that p+ ¢+ 1 = k.

4.3.1 The One-Dimensional Constant Coefficient Case.

Instability Results
Consider the problem
v =Ny, y(0) € [yol, (4.3.1)

where A € R and X < 0.2

DEFINITION 4.1 We say that an interval method for enclosing the solution of (4.3.1)

with a constant stepsize is asymptotically unstable, if

w([y;]) = o0, asj — oco.

2Since we have not defined complex interval arithmetic, we do not consider problems with A complex.



CHAPTER 4. AN INTERVAL HERMITE-OBRESCHKOFF METHOD 51

In this and in the next subsection, we consider methods with constant stepsize i for

simplicity of analysis.

The Interval Taylor series method

ITS] of the solution with

Suppose that at #; > 0, we have computed a tight enclosure [y;

an I'TS method, and [yNJITS] is an a priori enclosure of the solution on [t;,;41], for all

y; € [yiT°], where [y{"°] = [yo]. Denote
[2j41] = (A;)k[ﬂf”] (j >0) (4.3.2)
and let
To(2) = Z % (4.3.3)
=0

Using (4.3.2-4.3.3), an interval Taylor series method for computing tight enclosures of

the solution to (4.3.1) can be written as

2] = T ARy 7] + 2747 (4.3.4)

J I+
cf. (3.2.4). Since w([71"5]) > w([y/""]), we derive from (4.3.2-4.3.4)

w2 = [T O[] + 2 (3£7)
> [T ()u[5!]) + 2 (/7))

_ <|Tk_1(Ah)| + M]Z' )w([yf”])-

Therefore, the I'TS method given by (4.3.4) is asymptotically unstable for stepsizes h
such that
| AR|*

Ah
[ Th—1(AR)| + o

> 1. (4.3.5)

This result implies that we have restrictions on the stepsize not only from the function

Ty_1(Ah), as in point methods for IVPs for ODEs, but also from the factor |Ah|*/k! in
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the remainder term. Note also that the stepsize restriction arising from (4.3.5) is more
severe than the one that would arise from the standard Taylor series methods of order £

or k+ 1.

The Interval Hermite-Obreschkoff method

1HO)

Let y; € [y][HO], where we assume that [y; is computed with an THO method and

[y27°] = [yo]. From (4.1.10), the true solution y;; corresponding to the point y; satisfies

(SO = (L)

=0

qlp!  (AR)Ptatt

+ (= ) 5 ’
( P+ (p+q+1) @36
where £ € [t;,t;41]. Let
p—O cp,qz'_:
R,,(z) = W and (4.3.7)
1=0 "1 7!
q
2 (=7)
Qi)=Y 439

where ¢ (¢'?) are defined in (4.1.2). Also let

o) = UL o) (139)

[z

(k=p+q+1), where [yN]IHO] is an a priori enclosure of the solution on [t;,¢;41] for any

y; € lyHo].

Let v,.4 = ¢'p!/(p+ ¢)!. From (4.3.6-4.3.9), we compute a tight enclosure [y/{°] by

[y 0] = R, ,(M)[y70) + <—1>qﬁv}fﬂ (4.3.10)

From (4.3.9-4.3.10),
[ARJ*

Wl 01) = [RnaOe ([0 + 1583770
> Ry W) ol 57 + 1 (0]

_ Yoa  |AR[* w( [y HO
= (1)1 + 2 B ) w7,
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Therefore, the IHO method is asymptotically unstable for & such that

Vp.q |)‘h|k
Ryo(MR)] +
Bna A+ 15 O] &

In (4.3.5) and (4.3.11),

> 1. (4.3.11)

Ti1(z) =€ + O(Zk) and R, ,(2) = ¢ + O(PTH) = ¢ + O(Zk)

are approximations to e” of the same order. However, R, ,(z) is a rational Padé approxi-
mation to e” (see for example [59]). If z is complex with Re(z) < 0, the following results

are known:
o if p=gq,then |R,,(2)| <1, and |R,,(2)] = 1 as |z| — oo [10];
e ifg=p+1orqg=p+2, then |R,,(z)| <1, and R,,(z) — 0 as |z] — oo [18]; and
o ifg>pand z € R,z <0, then |R,4(2)] <1, and R, ,(z) = 0 as |z| = oo [73]

(see also [42, pp. 236-237]). Consider (4.3.5) and (4.3.11). For the ITS method,
|Ti—1(AR)| < 1 when Ah is in the stability region of Tj_;(z). However, for the THO
method with A € R, A < 0, |R,,(Ah)| < 1 for any h > 0 when ¢ > p, and R, ,(Ah) — 0
as Ah — —oo when g > p. Roughly speaking, the stepsize in the ITS method is restricted
by both

A"
R

|Ti—1(AR)|  and

while in the IHO method, the stepsize is limited mainly by

Vp.q |)‘h|k
[Qpq(AR)| K

Since v, ./ |Qp.o(AR)| is usually much smaller than one, |[AA|*/Ek! < 1 implies a more severe

(4.3.12)

restriction on the stepsize than (4.3.12). Thus, the stepsize limit for the IHO method is
usually much larger than for the I'TS method.
An important point to note here is that an interval version of a standard numerical

method that is suitable for stiff problems may still have a restriction on the stepsize. To
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obtain an interval method without a stepsize restriction, we must find a stable formula
not only for advancing the step, but also for the associated truncation error.
Consider again (4.3.4) and (4.3.10). From (4.3.4), we can derive

J+1

A7) = (Tema O0) o] + D2 (Tema (W) ).
The width of [y/]7] is
s+l S
w471 = | (Lm0 ollyo]) + D[ (T A (=), (4.3.13)
We derive from (4.3.10),
J+1
THO j+1 g Ipa JHl=ir _THO
[ym]—(f%p,q(xh))*[yo]+<—1>m;<z%p,q<m>>+ [=]7°].

The width of [y/HC] is

w({y!0)) = | (Rpg (M) w([yo])
7 j+1 - (4.3.14)

If A is such that
Tioi(Ah) = Ry (AR)  and |1y (AR)] < 1
and if we assume that

w([yo]) =0 and [ZZ»IHO] ~ [Z»ITS], fori=1,2,...7+1,

K3

then from (4.3.13) and (4.3.14),

IHO Vp.g ITS
w(lyjyn]) = 10, O] w([y;47])- (4.3.15)

That is, for A < 0 and small /&, the widths of the intervals in the IHO method are ap-
proximately v, ,/|@p.4(AR)| < 1 times the corresponding widths of the intervals produced

by the ITS method. As the stepsize increases, ‘Tk_l()\h)‘ + |Ah|*/k! becomes greater
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than one. Then, the ITS method is asymptotically unstable and produces intervals with
increasing widths. For the same stepsizes, the IHO method may produce intervals with
decreasing widths when g > p.

In Table 4.1, we give approximate values for v, , = ¢!p!/(p+ ¢)!, for p=3,4,,...,13
and ¢ € {p,p+1,p+2}. As can be seen from this table, the error constant ¢!p!/(p+ ¢)!

becomes very small as p and ¢ increase.

In §8.3.1, we show numerical results comparing the I'TS and THO methods on (4.3.1)

for A = —10.

p Tpp Vool Tppt2
3 5.0x107% 29x107% 1.8 x1072
4 14x107% 79x%x107° 4.8 x 1073
5 4.0x107% 22x107% 1.3 x107°
6 1.1x107% 58x107* 3.3 x10™*
7029 x107* 1.6 x107* 8.7 x107°
8§ 7.8x107° 4.1 x107° 23 x107°
9 21x107° 1.1x107° 6.0 x107°
10 54x107% 2.8x107% 1.5x107°
11 1.4x107% 74 x1077 4.0 x 1077
12 3.7x1077 1.9%x1077 1.0 x 1077
13 9.6 x10™® 5.0 x107% 2.7 <1078

Table 4.1: Approximate values for v, ,, p =

3,4,...13, g€ {p,p+ 1,p+ 2}.
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4.3.2 The n-Dimensional Constant Coefficient Case

Consider the IVP

y'= By, Yo € [y, (4.3.16)

where B € R™" and n > 1.

We compare one step of an I'TS method, which uses Lohner’s technique for reducing
the wrapping effect, and one step of the IHO method, which uses a similar technique
for reducing the wrapping effect. Then, we compare the enclosures after several steps of
these methods. We assume that in addition to an enclosure [y;] of the solution at ¢;, we

also have a representation of the enclosure in the form
{95+ Agrj | vy €[]}, (4.3.17)

where ; € [y;], A; € R™*" is nonsingular, and [r;] € IR". We also assume that we have

an a priori enclosure [g;] of the solution on [t;,¢;41], where h = t;11 — ;.

Enclosures after One Step

The Interval Taylor Series Method Using (4.3.3), we can write an I'TS method,

with Lohner’s coordinate transformation, as

[yii7] = Ter(hB)g; + (Teea(hB)A) [r] + [2544], (4.3.18)
where
[2j11] = %B’“ [9;] - (4.3.19)

The width of [y/]7] is

w(lyizr)) = |Tior (R B)A; w([r]) + w(lzj41])- (4.3.20)
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The Interval Hermite-Obreschkoff method Using (4.3.7-4.3.8) and (4.3.19), the

IHO method can be expressed by

[y 0] = Ry o (hB)j; + (Ryy(hBYAj) )] + (= 1) (Qpa(hB)) ™ [244]-

(Note that for h small, we can compute the inverse of the matrix @, ,(hB).) The width

of [y!7P] is given by
w([y]lflo]) = ‘Rp,q(hB)Aj‘w([rj]) + 71941‘ <Qp7q(hB)>_1 ‘w([zj-l-l])- (4-3-21)

Comparing (4.3.21) and (4.3.20), we see that in the IHO method we multiply the
width of the error term, w([z;41]), from the ITS method by ’ym‘ (QM(hB))_l‘. If, for

example, p = g = 8, then
Yes A 7.8 x 1077

(see Table 4.1). Consider (Q%q(hB))_l and suppose that ¢ > 0. For small A,
(Qpo(hB)) ™"~ (I = hB)™ ~ [ + "hB.

This implies that for small &, multiplying by the matrix ‘(Q%q(hB))_l‘ does not sig-
nificantly increase w([z;4+1]). Furthermore, it often happens that H(QM(hB)>_1H < 1.
Hence, multiplying by this matrix may reduce w([z;41]) still further.

In Lohner’s method, we propagate (Tk_l(hB)Aj>[rj], where Ty_1(hB) is an approxi-

mation of the matrix exponential of order k:
Ty 1(hB) = "8 + O(h").

In the ITHO method, we propagate (R%q(hB)Aj) [r], where R, ,(hB) is a rational approx-

imation to the matrix exponential of order k:
Ryy(hB) = "B 4 O(hP+1+1) = ¢hB 1 O(h¥).
If hB is small, then
[ Tes(hB)A (1)) ~ | Ry (hB) A |ro([r,])

in (4.3.20) and (4.3.21).
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Enclosures after Several Steps

Now, we study how the enclosures propagate after several steps in the ITS and the THO
methods. For simplicity, we assume that the matrix B in (4.3.16) is diagonalizable and

can be represented in the form
B=X"'DX,
where D = diag(A1, Az, ..., A,) and {)\1, Ao,y ... ,)\n} are the eigenvalues of B.

DEFINITION 4.2 We say that an interval method for enclosing the solution of (4.3.16)

with a constant stepsize is asymptotically unstable, if

lw(ly; DIl = 00, as j — oo.

The Interval Taylor series method We compute [yIT*] by

(15 = Ty (hB)[yo) + [2179),

where
sy _ B rs -
= ) iz o)
and [7/7°] is an a priori enclosure of the solution on [t;,#;41] for all y; € [y!T°]. Then,

instead of representing the enclosure at t; in the form of a parallelepiped as in (4.3.17)

and computing an enclosure at 5 by the formula (4.3.18), we assume that we compute
3" = (Tica (hB)) [yo] + Tica (hB)[="] + [577),

where there may be wrappings in the evaluation of (Tk_l(hB)>2[y0] and Ty_1(hB)[z].

Following this procedure, we assume that we compute [y]IIf] by

, i L
lyi2] = (Tea (hB) ™ o] + D (Tia () ™)
= (X (T (kD)X ) [yo] (4.3.22)

+ gi < Tk 1 hD)y—H_iX) [2179].



CHAPTER 4. AN INTERVAL HERMITE-OBRESCHKOFF METHOD 59

ITs

We make this assumption to obtain a simple formula for [y/{7] in terms of [yo] and [2/77]

Y

i=1,...,(j+1). Otherwise, if we had used (4.3.18), we would have products involving
the transformation matrices A; and a more complicated formula to analyze. The formula
(4.3.22) gives, in general, tighter enclosures than (4.3.18) (see §3.2.2).

The width of [y/]7] is given by

w(ly!T5)) =| XN (Tict (hD)) ™ X |uw([yo))

i1 (4.3.23)
+Z\X (Thr (D)) 7 X |uo([2175)).

The Interval Hermite-Obreschkoff method Similar to the considerations in §4.3.1

and in the previous paragraph, we can derive for the ITHO method
+1 AR +1—i 1
[yjl-ﬁo] = <Rp,q(hB)>] [vo] + (=1)"7p,4 Z(Rp,q(hB)y <<Qp7q(hB)> [ZZIHOD
=1
= (X (R (hD)) ' X) 0]
it

+ (=1 "4 Z <X_1<Rp7q(hD)>j+l_iX> <<Qp,q(hB)>_l[Zz'IHO]>

=1

where

moy _ M o

[zif1 ] = HB [9: 71,
and [g/7°] is an a priori enclosure on [t;, t41] for y; € [yf7°]. The width of [y/i°] is
- j+1
w(ly 1) = [ X7 (B (hD))™ X ([yo])
Jt+1 i )
+’quZ‘X R, 4 hD ! XH quhB)> ‘w([Z’LIHO]) (4.3.24)

Consider (4.3.23) and (4.3.24) and suppose that Re();) < 0 for ¢ = 1,...,n. The
matrices Tp_1(hD) and R,,(hD) are diagonal with diagonal elements Tj_;(hX;) and
R, ,(hA;), respectively, where A; is an eigenvalue of B. As h increases, ||Tp—1(hD)|| will
eventually become greater than one, and then the ITS method is asymptotically unstable.

However, for any h > 0, ||R,,(hD)|| <1 for ¢g=p, p+ 1, or p+ 2, and | R, ,(hD)|| — 0
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as h » oo forg=p+1or ¢g=p+2 (see §4.3.1). Therefore, if we ignore the wrapping
effect, the IHO method does not have stability restrictions from the associated stability
function R, ,(z) when ¢ = {p,p+ 1,p+ 2}. However, it still has a restriction from the

formula for the truncation error.

We can show for the I'TS method that

wlytED) 2 e B e([y7))

and for the IHO method that

w0 2 "l (Quah )™ || B (2).

These two inequalities suggest that the restriction on the stepsize in the IHO method
occurs at values significantly larger than in ITS methods.
As in the previous subsection, if w([yo]) = 0, then for small stepsizes and small h B,

we should expect

(DI S Yol (@pa (0 B)) ™ ([l DI (4.3.25)

Moreover, for larger stepsizes and eigenvalues satisfying Re(X;) < 0, ¢ =1,...,n, the [HO
with g = p, p+ 1, or p+ 2 is more stable than the ITS method.
In §8.3.1, we show numerical results comparing the two methods on a two-dimensional

constant coefficient problem.

4.3.3 The General Case

Comparing an ITS method with the IHO method in the nonlinear case is not as simple
as in the constant coefficient case. We can easily compare the corresponding remainder
terms on each step, but we cannot make precise conclusions, as in the constant coefficient
case, about the propagation of the set {Ajrj | r; € [rj]}. However, we show by numerical
experiments in §8.3.2 the advantages of the THO method over ITS methods on some

nonlinear problems.
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The Interval Taylor Series Method
In Lohner’s method,

i) = 0; + Z b fU Si1A ] + hE(1g,)
(see §3.2.5), and

w(ly 71) = IS4 w([ri]) + A w(FH([5;1). (4.3.26)

The Interval Hermite-Obreschkoff Method

From (4.1.26), we compute a tight enclosure by the formula
) = a5+ (7L (85D A ) + 5734 [54]
+ (= S S D) = 35
For simplicity in the discussion, we do not intersect [ylflo] with [y](g_)l] as in (4.1.27); such

IHO]

an intersection produces an enclosure [y;41] C [y;y,”]. Therefore, our conclusions are

valid for [y;41]. The width of [y/fP] is®

w ([ 20) = 1(SEh - 18540 As [ ([rs]) + 1S5 - [ ([6541])

11— S 1S e[y )).

Let again k = p+ ¢+ 1 and consider the terms in (4.3.27).

(4.3.27)

The term |§]7_|_117_|w([5j+1]). Since w([dj41]) = w([€j41]), (see (4.1.23)),

~

| ]-|-1 (] J+1]):|Sj_+11,—|w([€j+1]) <7pq| ]-|-1 |>hkw(f[k]([y~1])) (4.3.28)

Comparing the terms involving h?w(f[k]([gj])) in (4.3.26) and (4.3.28), we see that
in (4.3.28) the reduction is roughly +, ,, assuming that the components of | P
are not large (which is the case if h; is sufficiently small). This situation is similar

to the n-dimensional constant coeflicient case.

3If [r;] is symmetric, then for an interval matrix [A], w([A][r;]) = |[A]lw([r;]) (cf. (2.2.10)). The
interval vector [r;] (j > 0) is symmetric in Lohner’s method, but it is generally nonsymmetric in the
THO method. Assuming [r;] symmetric, we obtain a simple formula as in (4.3.27).
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The term |/ — ST _[Sj-|—1,—]|w([y](‘3—)1])' Let

[Sjq1,-] = §j+1,— + [=Ej41, Ejpa],
where F;4 is a point matrix, and §j+17_ =m ([Sj1,-]); cf. (4.1.15). Then
= S5 IS Il = 1= S5 (S + [ B, )
- |§;:1,_[—Ej+1, Byl
<87 I % =B, By

|§‘_11,_ [w([=Ejp1, Ejyi])

(Sn)
- o<hjuw<[y§?11>u>.

If Hw([y](g_)l])ﬂ = O(h;“) (see Algorithm 4.2 and §3.2.4) then

2
=
a
£l
[
g

11— S2 1Sl = O ([ DI = O(h3H). (4.3.29)

If, for example, p = ¢ = (k — 1)/2, then O(h?qH) = O(hf"'?’), which is two orders

higher than the order of the truncation error in the I'TS method.

The term | (S5 _[S;4]) A;lw([r,]). Tn the THO method,

Sl = (1+m (@) (1+ a5 )

_ 7 af (0) = af , 2
= L i (GLOED) + S 0,y
while in the I'TS method,
[S;] =1+ h; gf([ yi]) + O(h?). (4.3.31)

Assuming that the Jacobian df/0dy does not change significantly from step to step,
we have from (4.3.30) and (4.3.31),

o-1 af

0
ROy R !

dy

¥a)

() + &hi - ([yi]) + O(hF) = [5]
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(" 4+ ' = 1). Therefore, we should expect

~

¥a)

1S = S _[Sinl- (4.3.32)

J

Comparing (4.3.26) and (4.3.27), and taking into account (4.3.28), (4.3.29), and (4.3.32),
we conclude that the propagation of the set {y; — §; = A;r; | r; € [r;]} is similar in the
IHO and Lohner’s methods, but the truncation error can be much smaller in the former

than in the latter.

4.3.4 Work per Step

We briefly discuss the most expensive parts of the I'TS and IHO methods: generating
high-order Jacobians, matrix-matrix multiplications, and enclosing the inverse of a point
matrix. We measure the work by the number of floating-point operations. However, the

time spent on memory operations may not be insignificant for the following reasons.

o The packages for automatic differentiation are often implemented through oper-
ator overloading [5], [6], [25], which may involve many memory allocations and

deallocations.

o In generating Taylor coefficients, there may be a significant overhead caused by

reading and storing the Taylor coefficients, fIl, and their Jacobians [22].

Generating High-Order Jacobians

To obtain an approximate bound for the number of floating point operations to generate
(k — 1) Jacobians, dfl1/dy for i = 1,...,(k — 1), we assume that they are computed
by differentiating the code list of the corresponding f? and using information from the
previously computed df1/dy, for [ =1,... (i —1). The FADBAD/TADIFF [5], [6] and
IADOL-C [31] packages compute df11/dy by differentiating the code list of fI! (IADOL-
C is an interval version of ADOL-C [25]). We also assume that the cost of evaluating

df1/dy is roughly n times the cost of evaluating f1, [22].
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For simplicity, suppose that f contains only arithmetic operations. If NV is the number
of operations, and ¢; > 0 is the ratio of multiplications and divisions to additions and
subtractions in these N operations, then to generate k coefficients fld, i =1,... [k, we
need ¢; Nk* + O(Nk) operations [50, pp. 111-112] (see Appendix A).

Let Ops (f[i]> be the number of arithmetic operations in the code list for evaluating

f from the already computed Taylor coefficients. In Appendix A, we show that
Ops (f1) = 2¢;Ni + O(N), for i > 0.

Since

k-1 —1
ZnOps (f[i]> =n (20fNi—|—O(N)>:cank2+O(nNk),

1

B

=1 7

to generate k — 1 Jacobians in an I'TS method, we use
cinNEk* + O(nNk) (4.3.33)

arithmetic operations. Let p = ¢ and k = p+ g+ 1. In the IHO method we generate
p = (k—1)/2 terms for the forward solution and ¢ = p = (k—1)/2 terms for the backward

one. The corresponding work is
cnNE* /2 + O(nNk). (4.3.34)

That is, the IHO method requires about half as much work as the I'TS method of the

same order to generate high-order Jacobians.

Matrix Inverses and Matrix-Matrix Multiplications

In Lohner’s method and in the IHO method with the QR-factorization technique, we
compute an enclosure of the inverse of a point matrix, which is a floating-point approx-
imation to an orthogonal matrix. However, in the THO method, we also enclose the

inverse of a point matrix (see §4.1.3). In general, enclosing the inverse of an arbitrary
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point matrix is more expensive than enclosing the inverse of a floating-point approxima-
tion to an orthogonal matrix. However, we can still enclose the inverse of an arbitrary
point matrix in O(n?) operations [2].

Lohner’s method has 2 matrix-matrix multiplications, while the THO method has 6
matrix-matrix multiplications.

To summarize, in the IHO method, we reduce the work for generating Jacobians, but

2

increase the number of matrix operations. Suppose that N ~ n®. This number can be

easily achieved if each component of f contains approximately n operations, as happens,

for example, in N-body problems. Then, (4.3.33) and (4.3.34) become
cfn3k2 + O(n?’k) and cfn3k2/2 + O(nSk).

Therefore, we should expect the IHO method to outperform ITS methods in terms of
the amount of work per step when the right side of the problem contains many terms. If
the right side contains a few terms only, an ITS method may be less expensive for low
orders, but we expect that the IHO method will perform better for higher orders. Note
also that we expect the IHO method to allow larger stepsizes for methods of the same
order, thus saving computation time during the whole integration. In addition, the THO
method (with p = ¢) needs half the memory for storing the point Taylor coefficients and
the high-order Jacobians.

In §8.3.2, we study empirically the amount of work per step on Van der Pol’s equation.



Chapter 5

A Taylor Series Method for

Validation

We introduce a Taylor series method that is based on the validation test suggested by
Moore [50, pp. 100-103] (see also [13] and [52]) for proving existence and uniqueness
of the solution. Our goal is to obtain a method that validates existence and uniqueness
with the supplied stepsize, if possible, or a stepsize that is not much smaller than the
supplied one. Furthermore, we want to avoid as many stepsize reductions in this method

as possible.

Usually, a Taylor series method for validation enables larger stepsizes than the con-
stant enclosure method, which has been used in the past [44], [69]. As we pointed out
in §3.1, the constant enclosure method restricts the stepsizes to Euler steps. We also
combine better algorithms for computing tight enclosures, such as Lohner’s method and
the THO method, with our algorithm for validating existence and uniqueness. As a result,
we obtain a method that behaves similarly to the traditional numerical methods for IVPs
for ODEs in the sense that the stepsize is controlled more by the accuracy requirements

of Algorithm II than by restrictions imposed by Algorithm I.

Section 5.1 defines the validation problem; Section 5.2 describes how to compute an

66
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initial guess for the a priori enclosure; and Section 5.3 gives an algorithmic description

of the method we propose.

5.1 The Validation Problem

Let y; € [§;] and no component of y; is an endpoint of the corresponding component of

[g;]. 1
y; + Z_:(t — ;) ¥ y) + (¢ = ) F((5) < [) (5.1.1)

for t € [tj,t;41], it can be shown [13] that the problem y'(t) = f(y), y(¢;) = y; has a
unique solution

k—1
y(titg,y;) € g+ (=) f0yy) + (= 1) FU([G5) for &€ [t 4534,

=1

For an interval [y;], the condition (5.1.1) translates to

B

-1

il + > (=) U l) + (¢ = ) (@))€ (3], (5.1.2)

=1

To find the largest ;41 > t; such that (5.1.2) holds for all ¢ € [t;,t;41], we have
to compute rigorous lower bounds for the positive real roots of 2n algebraic equations,
which are determined from (5.1.2). This task is not trivial to carry out.

However, since t — t; € [0, h;] for ¢ € [t;,t;41], if h; is such that

B

lyil + ] [0, &) 4Ly + [0, A5 [5,) < (9] (5.1.3)

=1

holds, then (5.1.2) holds for all ¢ € [t;,t;41]. Verifying (5.1.3) is not difficult, and our
validation procedure is based on (5.1.3). Given [y;] at ¢; and a stepsize h;, we want to
find [7;] such that (5.1.3) is satisfied. Usually, &, is predicted from the previous step. In
the validation step, we try to verify existence and uniqueness with this ;. If we cannot

verify with h;, we try to verify with a smaller stepsize than h;.
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Before we consider how to implement a method based on (5.1.3), we illustrate this
approach with a few examples.

Consider
v =y, y(0)=1 (5.1.4)
and let [§o] = [1,2]. Then (5.1.3) on (5.1.4) with [§o] = [1,2] gives
1410, ko] +[0,h3/2] 4+ -+ 4 [0, REH/(k — 1)1 + [0, A /EN[1,2] C [1,2],
which is satisfied if
L4 ho+h2/24 4+ A (b — 1)+ 208 [k < 2. (5.1.5)

For k=1 and 3, (5.1.5) holds for hy < 0.5 and hy < 0.63, respectively.
Now, let [go] = [1,8]. The inclusion (5.1.3) holds if

L+ ho+ha/24 -+ hETV (k=1 +8RE/E! < 8. (5.1.6)

For k=1 and 3, (5.1.6) holds for hy < 0.875 and ho < 1.48, respectively.

Here, we can compute larger stepsizes with wider a priori bounds. With a variable
stepsize control, we normally control the local excess per unit step (LEPUS), such that
LEPUS is less than some tolerance (see Chapter 6). Depending on the tolerance, we
can afford wider a priori bounds. For example, suppose that Algorithm II uses Taylor
series of order k = 15. Then, LEPUS is given by (h{'/150)w([go]). With kg = 0.63
and [Jo] = [1,2], LEPUS =~ 1.2 x 107'*, and with hq = 1.48 and [j] = [1,8], LEPUS
~ 1.3 x 1072, If the tolerance is 10™%, we can use ho = 1.48 and [go] = [1, 8].

Consider
y=—y, y0)=1 (5.1.7)
and let [go] = [0.5, 1.5]. For k = 1, we obtain from (5.1.3) the constant enclosure method:

14 [0, ho][—1.5,—0.5] C [0.5,1.5],



CHAPTER 5. A TAYLOR SERIES METHOD FOR VALIDATION 69

from which we determine hy < 1/3.

For k =2, (5.1.3) becomes

1 — [0, ho] + [0, A3 /2][0.5,1.5] C [0.5,1.5],

which is satisfied for ~Ag < 0.5.

For k =3, (5.1.3) becomes

1 — [0, ho) +[0,h3/2] — [0, hy/6][0.5,1.5] € [0.5,1.5],

which is satisfied for ~Ag < 0.47.
In this example, the maximum stepsize with k£ = 3 is smaller than with & = 2. The
reason is that we ensure (5.1.1) by verifying (5.1.3). If we solve (5.1.1) directly, then we

are often able to verify existence and uniqueness on larger intervals. For example, (5.1.1)

for problem (5.1.7) and k = 3 reduces to

1 —t+*/2 —[0.56°/6,1.5¢°/6] C [0.5,1.5],

which holds for ¢ satisfying

1—t4+132-153/6>05 and 1 —t+1%/2—0.5/6 < 1.5. (5.1.8)

These inequalities are true for ¢ < 0.63. Note that the inequalities in (5.1.8) are more
similar to stability conditions than Euler-type stepsize restrictions.

To summarize, by computing ¢;1; such that (5.1.2) holds for all ¢t € [t;,t;41], we
can often take larger stepsizes than with the constant enclosure method. The stepsize
restriction imposed by (5.1.2) is more a “stability-type” than an Euler-type restriction.
To implement (5.1.2) is more difficult than to implement (5.1.3). The latter often allows
larger stepsizes than the constant enclosure method, although the stepsizes are generally

smaller than the ones permitted by (5.1.2).
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5.2 Guessing an Initial Enclosure

Suppose that we have computed [3;] such that

MMl = ( ]+ Z 0, hy] 1 + [0, hk][ﬁ;]) < 8], (5.2.1)
where
[9;] = [y;] + S [0, 251/ ([y;]) + [0, 311551 (5.2.2)

=1

Then, using (5.1.3) and (5.2.1),

[y;]+ Z_:[Ov R P (Ty,]) + 10, 519 (30
i1+ Z 0,31 ¥ ([y;]) + [0, h3](8]
= [7;].

Therefore, if [3;] is such that (5.2.1) holds, then (5.1.2) is satisfied, and there exists a

unique solution

B

-1

y(tit,y) € [l + > (=) () + (¢ = )" (1))

=1

to the problem y/(t) = f(y), y(t;) = y;, for any y; € [y;] and all t € [¢;,¢;41].

How to compute an approximation for (]

Let y; € [y;] and t € [0, h;]. Consider the nonlinear system of equations for f3;,

k—1
k] (yj +> 0 y,) + tk@) = B;. (5.2.3)

Ideally, we want to find an enclosure of the set of values for 3; such that (5.2.3) holds for

all y; € [y;] and t € [0, hj]. In practice, computing such a set may be expensive.
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Here, we suggest a simple method for computing an approximation to this set. From

(5.2.3),

k—1
B; = ¥ (yj + >ty + tkﬁj)

=1

~ f[k](yj) af (Zt f (yj) + ﬁﬁ]) (5.2.4)
_ K af y] 9 fM(y;)
Myy) Zt S =,

and therefore,
(Hkaf Iy, >>5 ) + af[kuyj)’“itifm( J (525
3y A 3y 2 Yji)- 2.

Since we are interested in computing an approximation to the set containing 3;, we

can compute from (5.2.5),
8f[k] Ys y - 7 2
)= (1 . 20 (a2 D 57 .
=1
Since [3;] is an approximation', in the algorithm that we describe in the next section, we
inflate [3;] to reduce the likelihood of failure in (5.2.1).

In (5.2.4), we could have used the approximation

k—1
(%"’th y] +tkﬁj> (%"’th y])
+ 6— (yj + Ztifm(yj)> t°3;, (5.2.6)

which is perhaps a better approximation than (5.2.4). However, if we use (5.2.6), we
have to generate the coefficients 9 f11/dy evaluated at [y;] + 2520, R ([y,]), for @ =
Jk, while in (5.2.4), we need fl51/9y evaluated at [y;], which coefficients can be

reused in Algorithm II (see the next section).

'Note that [3;] is a guess for the enclosure of the kth Taylor coefficient, not a rigorous enclosure.
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5.3 Algorithmic Description of the Validation

Method

The method that we propose is described in Algorithm 5.1. Here, we explain some of the

decisions we have made in designing it.

Input part If we use an ITS method with order k of the Taylor series, we have to
compute the coefficients fl1([y;]) and dfW([y;])/dy, fori =1,...  k—1, in Algorithm II.
Therefore, we can use fUl([y,]), for i = 1,... ,k — 1, in Algorithm I without doing addi-
tional work to generate them. However, we have to compute fI([y;]) and 9 f([y;])/0y.

If we use a (p,q) IHO method, we have to generate, in addition to the coefficients

Fi([y;]) for i = 1,... ,q, the coefficients fll([y;]) for ¢ =i 4 1,... , k and 9 f¥([y,])/dy.

Compute part In line 7, we inflate [3;]. Since it is already an approximation to the
enclosure of the kth Taylor coefficient on [t;,%;41], by inflating [3;], we hope to enclose
this coefficient on [t;,1;41]. We choose € = 1, but we can use other values instead. With

¢ =1, we add [—[83,],13)]] to [8;]. Since [3;] is multiplied by [0, 2], adding [— |5,], |5l]
(0)]‘

to [3;] does not contribute significantly to the widths of the components of [,

If the condition in line 11 is satisfied, then we have verified existence and uniqueness
with the computed [§?] in line 9. Otherwise, in line 15, we compute a new guess [7?] for
the initial enclosure. Then, in the second while loop (line 18), we try to validate with
order s := 1 < k. If we succeed, then in the third while loop (line 29), we try to improve
the enclosure with the order s, with which we have verified existence and uniqueness.
Otherwise, in line 38, we reduce the stepsize. If this is the second reduction, we start
the computations from the beginning (line 4); otherwise, we repeat the while loop at line
18 with a smaller stepsize. The reason for starting the computations at line 4 after the

second stepsize reduction is to try with a new guess for the a priori enclosure, before

continuing with further stepsize reductions.
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Algorithm 5.1 Validate existence and uniqueness with Taylor series.

INPUT:
1 [y;], Rjs Ky hmin, @ = 0.8, € = 1;
2 D) f([y,)), fori=1,..., (k= 1).
COMPUTE:
3 Verified := false ;
4 while A > hpin and not Verified do
5 (0] = 5210, A1 1 ()
6 [37) = (1 + [0, 1250y (70 gy ) 4 25 )
7 1871 = [8,) + [~e.d - 113,]];
8 [u;] = [y;] + [v5];
9 98] = [ug] + [0, KE1[3,);
10 Generate fI([G"]), fori=1,... k;
11 if f14((7”)) C [8] then
12 (7 := [u] + [0, &5 7 ([5);
13 break :
14 end-if
15 98] = [uy) + [0, R A ([51));
16 Generate fI([5"), fori=1,... K
17 Reduced := 0;
18 while not Verified and Reduced < 2 do
19 for/=1to k do
20 (0] := [y] + SI40, RS A1 ()
21 (7 := [o] + [0, ] F5;
22 if [5;] C [3\"”] then
23 Verified := true ; s:=1;
24 break :
25 end-if
26 end-for

CONTINUED ON THE NEXT PAGE...
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Algorithm 5.1 Continued

27 if Verified then

28 Improving := true ;

29 while Improving do

30 Generate f[i]([yj]), fori=1,...,s;
31 (57 = Lo + 10 131 A ([5):

32 if ([ ([g;)l1/lw([5"DI| > 1.01 then
33 (= 15"}

34 else

35 Improving := false ;

36 end

end-while

37 else

38 h; = ahj;

39 Reduced := Reduced + 1;
40 end-if

41 end-while
42 if h; < hmin then

43 print “Stepsize too small: cannot verify existence and uniqueness”;
44 exit ;
45 end-if

46 Compute h;f[i]([yj]), fori=1,...,k.
OUTPUT:

AT (gl hys

48 e fU([g;]), fori=1,....k.

We do not halve the stepsize, but reduce it by multiplying by «, which we choose to
be 0.8. As with e, the value that we choose for « is somewhat arbitrary, but we want it
to be closer to 1 than to 0.5. We have not thoroughly studied the influence of the choice

for € and o on the performance of Algorithm 5.1.



Chapter 6

Estimating and Controlling the

Excess

In §3.2.4, we considered the local excess in one step of the I'TS methods discussed in this
thesis. The THO method has the same sources of local excess as the I'TS methods, but in
the IHO method, we also enclose the solution of the nonlinear system (4.1.10). Since the
excess that arises from enclosing the solution of this nonlinear system is usually small
(see §4.3.3), we do not discuss the local excess in the IHO method.

In §6.1, we define local and global excess and discuss controlling the global and
estimating the local excess. In §6.2, we propose a simple stepsize control based on

controlling an approximation of the local excess.

6.1 Local and Global Excess

Let the set U, be an enclosure of the solution at ¢;. In this thesis, ¢{; is represented by

an interval vector or a parallelepiped. We define local and global excess by

¢j = qU, y(tj;tj-1,Uj-1)) and (6.1.1)

Vi = q(U;, y(tj;to, [yo])), (6.1.2)
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respectively [19, p. 87, p. 100], [71], where ¢(+,-) is the Hausdorff distance between two

sets given by (2.2.1).

6.1.1 Controlling the Global Excess

Similar to the standard numerical methods for IVPs for ODEs, our approach in VNODE
is to allow the user to specify a tolerance Tol. Then the code tries to produce enclosures,

at points ¢;, such that
v; &= CiTol  forj >1, (6.1.3)

where (; is an unknown constant that depends on the problem and the length of the
interval of integration, but not Tol. We try to achieve (6.1.3) by controlling the local

excess per unit step (LEPUS) [71]. That is, we require
€; S h]‘_lTOl (614)

on each step. Eijgenraam shows [19, p. 115] that

J
Y S Z ea(t]_tr)ér, (615)
r=1

where « is a constant depending on the problem. This constant may be negative since
the logarithmic norm is used in its definition [19, p. 46]. Using (6.1.4), we obtain from
(6.1.5) that

W=t (1, —t)Tol, if a > 0;
Vi < (6.1.6)
(t; —to)Tol, if a <0.
Therefore, by controlling LEPUS, we can obtain a bound for the global excess. In this

sense, by reducing T'ol, we should compute tighter bounds.

6.1.2 Estimating the Local Excess

From §3.2.4, the local excess in an I'TS method is given by

O(thw([yj])HQ) + O(hf"'l) + (higher-order terms). (6.1.7)
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To compute an estimate of the local excess, we have to determine the dominating term in
(6.1.7). Obviously, if point initial conditions are specified, w([yo]) = 0, the excess in each
component of the computed solution at ¢, is at most Af|[w( ¥ ([go])||. Unfortunately, even
if we start the integration with point initial conditions, [y;] is usually a non-degenerate
interval vector (||w ([y;]) || > 0) on the second and all succeeding steps. If ||w([y;])|| is not
small, then A;||w([y;])||* may be the dominating term in (6.1.7). Because of this term,
the methods discussed in this thesis are first order methods if ||w([y;])||* is dominating.

Eijgenraam shows an example for which the overestimation on each step is at least
ch;|lw([y;])]|?, for some constant ¢ > 0 [19, pp. 127-128]. We discuss his example in the

next subsection.

6.1.3 Worst Case Example

Consider the IVP problem

y; =0
(6.1.8)
Yo = Yi
with initial conditions
[_)‘7 )‘]
y(0) € [yo] = , 0< A< (6.1.9)
0

At t = ho > 0, the set of solutions of (6.1.8-6.1.9) is

y(hoi 0.l =4 | | Twe=an

ho/,cz

(see Figure 6.1). Suppose that we use a convex set ) to enclose y(ho; 0, [yo]). Since for

each two points in a convex set, the line connecting them must be in the set too, we have

—A 1 A 0
+ 5 = c .
hoA? hoA? hoA?

[N
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0
Y2
ho)?

hoX? y
[ ,’/ ho[,l2

(1] - |

Figure 6.1: If we use an interval vector to enclose the solution, the overestimation mea-

sured in the Hausdorfl distance is at least chol|w([yo])]|?-

It can be shown that

0 I
q (Y1, y(ho; 0,[yo])) > ¢ ) | € [=A, A
ho)\2 ho/,cz
> mi — 11, ho At — hop)T
> Merﬁlﬂx]”( 1t ho ot )" |l
o 2 2
= nin, max(p, hoA™ — hopt”) (6.1.10)
_ 2 h 2
Tt /1ranaz
> hollw([yo])|I*
2 (1 + Tt 4h3naXAg>
= chollw([yo])|I*,

where hig < hpax, and Ay is the maximum stepsize taken during the integration. There-
fore, if we use a convex set to enclose the set of solutions at ¢ = hg > 0, we have an
overestimation that is at least cho|[w([yo])]|?, independently of the method used for com-
puting the enclosing set.

If we use an interval vector to enclose the solution of (6.1.8-6.1.9) at hg, the tightest

enclosure we can have is

[_)‘7 )‘]
[v1] = , (6.1.11)
hol0, A?]
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which gives an overestimation of at least chgl[w([yo])||*. The reason for this pessimistic
result is that by using intervals, we treat each of the components of the solution of (6.1.8—-
6.1.9) independently, while the second component of the true solution depends on the
first one.

The approach of Berz [7] uses multivariate high-order Taylor series with respect to
time and the initial conditions to keep functional dependencies. As a result, his method
is a higher order method with respect to the propagated enclosures. However, it requires
arithmetic with Taylor polynomials, which involves significantly more work and memory.

In the example discussed, we cannot control LEPUS based on estimating the local
excess in the Hausdorff distance. For example, if hyax = hg = 0.1 and A\g = 0.1, then

using (6.1.10), LEPUS at hg is

q (Y1, y(ho3 0, [yo]))
ho

>0.01,

independently of the stepsize hg. Here, if the tolerance is small, an interval method may

give up.

6.2 A Simple Stepsize Control

We assume that we solve problems with either point initial conditions or interval initial
conditions with sufficiently small widths.

Let the enclosure of the remainder term on the jth step be given by

Vhf—lf[k]([g]—l])v
where v > 0 is a constant. (y = 1 for I'TS methods, and v < 1 for the IHO method.)

Then, we approximate the local excess on each step by

errj = Ry [l (FH((g-D)lI- (6.2.1)

Given a tolerance T'ol, we try to control LEPUS by requiring

err; < hj_Tol (6.2.2)
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on each step.

6.2.1 Predicting a Stepsize after an Accepted Step

Suppose that the jth step was accepted, and we predict a stepsize for the next step by

b Tol 1/(k-1)
hio=h; i ( =19 > . (6.2.3)

erry

Assuming that

oG-I~ o (PG,

and using (6.2.1), we have for the excess with h; 0,

h] 1T0l

erry

o (S GII

errivio = yhjol[w (A (G = vhiohi]

1T0l

h;
~ hiohi 2} = (S [ ])

yhy (M ([g-a)ll

erry

= hmoTOl

~ hmoTOl.
In practice, we predict the stepsize by

0.5h;_y Tol \ "/~
1710> : (6.2.4)

erry

h]‘70 - 09 h]‘_l (

where we aim at 0.570l and choose a “safety” factor of 0.9.
Algorithm I may reduce the stepsize hjo. In which case, Algorithm II has to use a

smaller stepsize h; < hjg.

6.2.2 Computing a Stepsize after a Rejected Step

If err; > hj_1Tol, we compute a new stepsize h;_y 1 by using the equality

YRyl (PRG-I = hjraTol, (6.2.5)



CHAPTER 6. ESTIMATING AND CONTROLLING THE EXCESS 81

from which we determine,

h; _< Tol )1/(’“—1)_ hj_, Tl o
T Ao (B (- )] A\ e (PR

] 1/(k-1)
_ hj_l (h]_1T0l> ‘

erry

Therefore, if the stepsize is rejected, we compute a new stepsize by

b Tol 1/(k-1)
-1 0) . (6.2.6)

hi11=h;_
J=bt -1 ( err;
Since we reduce the stepsize, we can use the same fI¥([§;_,]): it is an enclosure on

the interval [0, h;_1] and so must also be an enclosure over the smaller interval [0, h;_11].

Therefore, we can compute a tight enclosure with hj;_; ;. Because of (6.2.5), we know

that (6.2.2) holds.

Remark

If we want the inequality (6.2.2) to hold rigorously, we have to use directed roundings
or interval arithmetic to compute (6.2.2) and (6.2.6). Otherwise, we can execute (6.2.2)

and (6.2.6) in “regular” floating-point arithmetic.



Chapter 7

A Program Structure for Computing

Validated Solutions

In this chapter, we describe a program structure for computing validated solutions of [VPs
for ODEs. It combines algorithms for validating existence and uniqueness, computing a
tight enclosure, and selecting a stepsize.

First, in §7.1, we specify the ODE problem. Then, in §7.2, we describe one step of
an integration procedure. A problem can be integrated by a repeated execution of the
code implementing one step. The structure that we propose in §7.2 is somewhat similar

to the one discussed in [29].

7.1 Problem Specification

As in the classical methods, we have to specify the problem we want to integrate. A

minimum set of parameters is:

n — number of equations;
f — function for computing the right side;
to — initial point;
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[yo] — initial condition at ¢g;
T"— end of the interval of integration; and
T'ol — tolerance.

In addition to specifying the problem being integrated, we need functions for com-
puting the Taylor coefficients fl and their Jacobians df11/dy, for i > 0. In VNODE,

such functions are generated by an automatic differentiation package (see Appendix B).

7.2 One Step of a Validated Method

Our goal is to structure the integrator function such that parts of it can be replaced
without changing the rest. In Algorithm 7.1, we show a general structure of a program
for implementing one step of a validated method. Functionally, we divide our program

into three modules, which are responsible for the following tasks.

MoODULE 1: Validating existence and uniqueness and simultaneously computing an a

priori enclosure of the solution on [¢;,%;41] (Algorithm I).
MOoODULE 2: Tightening the enclosure at ¢;11 (Algorithm II).

MODULE 3: Preparing for the next step, which includes estimating the excess, accepting

or rejecting a step, and predicting a new order and stepsize.

At this stage, we do not have an order control strategy, but we include “order” in Module 3
to show where an order selection method would fit.
The VNODE package described in Appendix B implements the structure in Figure 7.1.

Here, we briefly describe the modular structure.
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Algorithm 7.1 One step of a validated method.

INPUT:
tjv hj,Ov hmim [yj]v @jv Aj7 [T‘]‘];
Tol, k (pand g in an IHO method, k =p+ ¢+ 1).

COMPUTE:

MobDULE 1:

Try to validate existence and uniqueness with %, and k.

if successful then
return hy < hyo, [35] [z5e1] i= B ([g,0);
end-if
while ; > hpin do
MoDULE 2:
Compute [yj1], Jj+1, Ajs1, and [rj41].
MoDULE 3:
Estimate the excess.
if the excess is acceptable then
select hjy1 0 for the next step;
break ;
else
select new h;q < hj;
(24 1] = (hia/hy)Flzj4a];
h; = h;q1;
[Zj-l—l] = [Zyl‘+1]§
end-if
end-while
if h; < hmin then
print “Stepsize too small”;
exit ;
end-if
OUTPUT:

tivts P00 [Wi1)s Gj41s Ajgrs [rj4]-
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Module 1

We try to validate existence and uniqueness with a stepsize hjo. If the validation is
successful, we have as an output of this procedure a stepsize h;, which can be smaller
than h;, an enclosure [;] of the solution on [¢;,%;+h;], and an enclosure of the kth Taylor
coefficient multiplied by hf, [2j41] = hff[k]([g]]) In our implementation, h; < h;o since
hjo 1s predicted such that the predicted error satisfies some tolerance. If the validation is
unsuccessful, the code should print a message and exit the integration. For example, on
the problem y’ = y?, y(0) = 1, a method for validating existence and uniqueness would
normally start taking smaller and smaller stepsizes as t approaches 1. When the stepsize
becomes smaller than a prescribed minimum, this method should stop and inform the

user that it cannot continue (see Algorithm 5.1).

Remarks

1. If it is a first step, hoo 1s a predicted initial stepsize; otherwise, h; g is selected from
the previous step. The algorithms for predicting an initial stepsize and selecting

one after a successful step may differ.

2. It is convenient to return h?f[k] ([g;]) since it is used in computing [y;41]. In addition,
if the stepsize is rejected, and we compute a new one h;; < h;, we can make the

excess term smaller by the scaling [z}, ;] = (hj1/h;)¥[zj41].

3. It is also convenient to have the terms h;f[i]([yNj]), for © = 1,...k, available to
Module 2. For example, the predictor and the corrector in the IHO method need

h;+1f[q+1]([y~j]) and h?f[k]([gj]), respectively.

Module 2

We use [g;] and [zj11], from Module 1, to compute a tight enclosure of the solution at

tit1 = tj+hj. In the ITS methods, the local excess is approximated by thw(f[k]([yNJ]))H
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In the THO method, it is approximated by ’yh?Hw(f[k]([yNj]))H, for some constant ~, which
depends on the p and ¢ of the method. In the latter case, forming the term ’yh?f[k]([gj])

in this module is more convenient than in the first one.

Module 3

In VNODE, we estimate the local excess and compute new stepsizes as discussed in §6.2.
Note that, if the step is not successful, we repeat the computation, but starting from
Module 2. The reason is that we have already validated existence and uniqueness, and

we have to compute an enclosure with a smaller stepsize. That is, we can use the output

h% fM([g;]) and scale it to h%, f¥([g;]), where h;y < hj.



Chapter 8

Numerical Results

With the numerical experiments described in this chapter, we study the behavior of our
IHO method and compare it with the ITS methods.

In §8.1, we describe the tables shown in this chapter and introduce some assumptions.

In §8.2, we verify empirically that the order of the IHO method is p + ¢ + 1, which
is the order of the truncation error. We also show empirically that the order of an ITS
method with £ = p+ ¢+ 1 terms is k.

In §8.3, we examine the stability of these two methods on constant coefficient prob-
lems. Then, we compare the methods on nonlinear problems.

In §8.4, we compare the ITS and IHO methods again: first, by using a constant
enclosure method in Algorithm I, and second, by using the Taylor series enclosure method
(from Chapter 5). We also show that the Taylor series enclosure method enables larger

stepsizes than the constant enclosure method.

8.1 Description of the Tables and Assumptions

Description of the Tables

We describe briefly some of the columns of the tables shown in this chapter.
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h constant stepsize used during the integration.

Excess global excess at the end of the interval of integration.

If a point initial condition is specified, the global excess v; at a point ; is measured

by the norm of the width of the enclosure; that is,

7 = llwo(lys])l

(j > 1). If an interval initial condition is given, and a closed form solution is known,

then

exact

vi = q(lyil. ly**)

exact

where ¢ ([yj], % ]) is defined in (2.2.3). That is, we measure the global excess

exact

cract] where [y5**“'] is computed from the true

by the distance between [y;] and [y}

exact

7] is the tightest interval enclosure of the solution

solution. We assume that [y

that can be obtained.

Time Total CPU time in seconds spent in Algorithm II. Since we are mainly interested
in the performance of the methods implementing Algorithm II, we report only this
time. Note that if the timing results are of order 1072 or 1072, they may not be
accurate. We have not measured the performance of Algorithm I because we have
not yet optimized the Taylor series method from Chapter 5 to reuse the coefficients

needed in Algorithm II.

H constant stepsize that is an input on each step to Algorithm I. This algorithm may

reduce the stepsize in order to verify existence and uniqueness.

Steps number of steps used during the integration.
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Assumptions

e We denote an ITS method with k terms by ITS(k) and an THO method with
parameters p and ¢ by IHO(gq,p). In all of the examples in this chapter, we use
p=¢q with &k = p+ ¢+ 1. Thus, we compare methods with truncation errors of the

same order.

o If necessary, both methods use Lohner’s QR-factorization technique to reduce the
wrapping effect. The I'TS method with the QR-factorization is essentially Lohner’s

method.

e In the experiments with a variable stepsize control, we use Eijgenraam’s method [19,

pp- 129-136] for selecting initial stepsize.

e The implementation of the constant enclosure method (in Algorithm I) is as de-
scribed in [19, pp. 59-67]. This implementation uses the Jacobian of f for com-

puting an initial guess for the a priori enclosure.

e We compiled VNODE with the GNU C+4++ compiler version 2.7.2 on a Sun Ultra
2/2170 workstation with an 168 MHz UltraSPARC CPU. The underlying interval-
arithmetic and automatic differentiation packages are PROFIL/BIAS [38] and

FADBAD/TADIFF [5], [6], respectively (see §B.4.1 and §B.4.2).

8.2 Observed Orders

In this section, we determine empirically the error constants and orders of the I'TS and
[HO methods on a scalar (§8.2.1) and two-dimensional (§8.2.2) nonlinear problem. We
have chosen nonlinear problems, because in the IHO method we have to enclose the
solution of a nonlinear system, while we do not have to do that in the constant coefficient
case. Our goal is to verify that the excess arising from solving such a system (see §4.3.3)

does not reduce the order of the method.
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For simplicity, we consider the case with point initial conditions. If [7;] is a good
enclosure of y(t;t;,[y;]) on [tj,%;41], then the overestimation in h?f[k]([gj]) is of order
O(h**1) (see §3.2.4). Assuming that the computed intervals are small, the local excess
in an ITS method and in an IHO method, with & = p + ¢+ 1, is O(h**') and the global
excess should be O(h*).

For a given problem and method, we compute an error constant ¢ and order r by a

linear least squares fit determined from the conditions
log(Excess;) & logc+rlogh;,, 1=1,...,s

where Excess; is the global excess at the endpoint obtained by integrating the problem
with constant stepsizes h;, 1 =1,2,...,s.

Before we present our numerical results, we should note that the order of a validated
method can be sensitive to the tightness of the a priori bounds. That is, for the same
order of the truncation error of the underlying formula and ranges of stepsizes, depending
on how tight the a priori bounds are, we may obtain different values for the order. For
example, we may compute an order that is higher by two or three than that predicted
theoretically.

To make the procedure for computing the order more deterministic, we can assume
that we can obtain the tightest possible a priori bounds. Since in this thesis we use
constant enclosures for the solution, the tightest constant enclosure on [t;,%;11] has com-
ponents

min (it ys max (it ys fori=1,... . n.
te[tj,tm],yje[y]]y( ’ ”y])’te[tml] yje[yj]y( i)l T

Note that in practice, it is normally difficult to compute such bounds. However, for the

examples in the next two subsections, we use such optimal bounds.
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8.2.1 Nonlinear Scalar Problem

We integrated

on [0,12] with an ITS method with & = 7 and k& = 11 and with an IHO method with
p=g¢=3and p=q=>5, respectively (k =p+ ¢+ 1). We computed a priori enclosures

of the solution on each step by the formula

53] = [L/(h +1/y,). 5.

which is obtained from the true solution, and used constant stepsizes h = 0.1,0.2,... ,0.6.
Here and in §8.2.2, we select the endpoint, T', to be a multiple of the stepsizes. By
computing a priori enclosures from the formula for the true solution, we eliminate the
need to reduce the stepsize or to compute too wide (for this problem) a priori enclosures
in Algorithm I.

Tables 8.1 and 8.2 show the excess at T = 12, the excess divided by A" and A'!,
respectively, and the CPU time used in the ITS and THO methods. By using a least
squares fit, we have computed in Table 8.3 the error constants and orders corresponding
tok=7and &k =11. For k = 7 and k = 11, we compute the base-10 logarithm of the
data and plot in Figure 8.1 the excess versus the stepsize and the time versus the excess.

From Table 8.3, we observe higher orders for both methods than we would expect.
Moreover, the observed orders of the IHO method on this example are bigger than the
corresponding orders of the ITS method (for &k = 7 and 11). From Figures 8.1(a) and
8.1(b), we see that for the same stepsizes, the IHO method produces enclosures that are

of order 1072 times tighter than the enclosures produced by the I'TS method.
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h Fxcess Excess/h” Time
ITS THO ITS THO ITS THO
0.10 7.2 x 10710 2.3 x 107! 7.2 %1072 2.3 x107* 1.2x 107" 1.2 x 107!
0.20 9.8 x 107 3.6 x107° 7.6 x 1072 2.8 x 107* 6.3 x 1072 6.4 x 1072
0.30 1.8 x107% 7.3 x 1078 8.1 x1072 3.4 x10~* 4.0x 1072 4.0x 1072
0.40 1.4 x 107 6.9 x 1077 8.6 x10™% 4.2 x107* 3.0 x 1072 3.1 x 1072
0.50 7.2 x107° 4.3 x 107 9.2 x 1072 5.5 x107* 2.5 x 1072 2.4 x 1072
0.60 29 x107* 2.1 x107° 1.0 x 1072 74 x 10~ 2.0x 1072 2.1 x 1072
Table 8.1: ITS(7) and THO(3,3) on ' = —y*, y(0) =1, ¢ € [0,12].
h Excess Excess/h'! Time
ITS THO ITS THO ITS THO
0.10 7.0x 107" 1.1 x1071° 70x107% 1.1 x107* 23%x 107" 1.9x 107!
0.20 1.5 x 1071 54 x 10713 7.3 x 1072 2.6 x 107° 1.2 x 1071 9.6 x 1072
0.30 14 x107% 82 x 1071 7.8 x 1072 4.6 x 107° 7.9 x 1072 6.4 x 1072
0.40 3.5 x 1077 3.9 x 1079 8.3 x1072 9.3 x107° 6.1 x 1072 4.8 x 1072
0.50 4.4 %x107% 9.2 x 1078 8.9 x10™2 1.9x10~* 4.6 x 1072 3.8 x 1072
0.60 35x 107 1.3 x107¢ 9.6 x 1072 3.6 x 10~* 4.1 x107% 3.3 x1072

Table 8.2: ITS(11) and THO(5,5) on y' = —y?, y(0) = 1, t € [0,12].
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k ch”
ITS [HO
7 (1.04x107%) x hT1® (8.27x107*) x A™5!
11 (9.94x1073) x 1117 (241 10=4) x 41176

Table 8.3: Error constants and orders of the ITS and THO methods on ' = —y?, y(0) = 1,
t € [0,12]. The excess and stepsizes used in the least squares fits are from Tables 8.1
(k="7)and 8.2 (k= 11).

'3 T T T T T T T
B}
-4 - ITS &~ R
5 IHO —-— = >|
1] 6 I 7 1]
g 7t - 2
d gl ] i
_9 T/ -
-10 | 4
_11 1 1 1 1 1 1 1 _16 1 1 1 1 1 1 1
-1 -09 -08 -07 -06 -05 -04 -03 -02 -1 -09 -08 -07 -06 -05 -04 -03 -02
Stepsize Stepsize
(a) ITS(7), THO(3, 3) (b) ITS(11), IHO(5,5)
-0.6
i -0.7 |
i -0.8 |-
i -09
£ - g 1
[ E 11+
] 2+
7 13
1 -1.4 |
-1.5
3 -16 14 -12 10 8 6 4
Excess Excess
(c) TTS(7), THO(3, 3) (d) ITS(11), IHO(5,5)

Figure 8.1: ITS and THO on y' = —y?, y(0) = 1, ¢t € [0,12].
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8.2.2 Nonlinear Two-Dimensional Problem
We integrated

vi=vy2+ui(l —yi —v3)
vy = —y1 + ya(1 — yi — y3)

[66, p. 41] for

y(0) = (1,1)", ¢ €10,0.48]

94

(8.2.1)

(8.2.2)

with the ITS(7) and THO(3,3) methods. We used a constant enclosure method for

validating existence and uniqueness of the solution and stepsizes h = 0.1,0.2,0.4, and 0.8.

We could have computed a priori bounds from the formula for the true solution, but in

this case, the constant enclosure method does not reduce the input stepsizes. Moreover,

it produces tighter a priori bounds than if these bounds were computed by evaluating the

formula for the true solution in interval arithmetic. Since the solution rotates in phase

space, both methods use QR-factorization to reduce the wrapping effect.

Table 8.4 shows the excess at T = 0.48, the excess divided by A7, and the CPU time.

In Figure 8.2, we plot (by first computing log 10 of all relevant values) the excess versus

the stepsize and the CPU time spent in these methods versus the excess. In Table 8.5,

we have computed a least squares fit to the error constants and orders.

h Excess Excess/h” Time
ITS [HO ITS [HO ITS [HO
0.01 7.3 x 1072 39 x 10713 7.3 x 10 3.9 x 10! 2.6 x 107' 3.7 x 107!
0.02 9.8 x 10719 48 x 107! 7.7 x10% 3.7 x 10! 1.4x 107" 1.9x 107!
0.04 1.4 x 107" 6.9 x 107 8.6 x 107 4.2 x 10! 7.1 x107% 9.9 x 1072
0.08 2.6 x107° 1.6 x10°° 1.2 x 10° 7.7 x 10! 3.8 x107% 5.4 x 1072

Table 8.4: ITS(7) and THO(3,3) on (8.2.1) with (8.2.2).
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ITS [HO

7 (2.12x10%) <A™ (1.44%x10%) x A7

Table 8.5: Error constant and order of the ITS and IHO methods on (8.2.1) with (8.2.2).

T
o N o 0o b

Excess
1 1 1 1 1 1 1 1
Time

A
12

_13 1 1 1 1 1 1 1 1 1 -1.
2 -19-18-17-16-15-14-13-12-11 -1 -3 12 -11 10 9 -8 -7 -6 -5 -4

Stepsize Excess
(a) (b)
Figure 8.2: ITS(7) and THO(3,3) on (8.2.1) with (8.2.2).

In this example, we have a behavior similar to the one from the previous example:
slightly higher orders of both methods, than the expected k = 7, and slightly higher
order of the IHO method than of the ITS method (see Table 8.5). In both examples, we
computed tighter enclosures with the IHO method than with the ITS method, for the
same stepsizes and orders of the truncations error.

For the same stepsizes, the IHO method is more expensive than the ITS method,
but produces smaller excess (see Table 8.5). As a result, the IHO method is slightly less
expensive for the same excess (see Figure 8.2(b)). As we shall see later, the I'TS method

can be less expensive for low orders if the work is measured per step.
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8.3 Interval Hermite-Obreschkoff versus Interval

Taylor Series Methods

8.3.1 Constant Coefficient Problems
Scalar Problem: Constant Stepsizes

We integrated
y' = —10y, (8.3.1)

first with y(0) = 1 and then with y(0) € [0.9,1.1] for ¢ € [0,10]. (At ¢ = 10, the true
solution of (8.3.1) with y(0) = 1 is e™'% ~ 3.7 x 107*%.) To avoid possible stepsize

reductions in Algorithm I, we computed a priori enclosures on each step by

—10h ]‘7 g]]

[9i] = [e

12

In Algorithm II, we used the I'TS(17) and THO(8, 8) methods.

For constant stepsizes 0.2,0.3,... ,0.8, Tables 8.6 and 8.7 show the excess at T' = 10,
the ratio of the excess of the IHO method to the excess of the ITS method, %,
and the CPU time spent in Algorithm II (Q,,(z) is defined in (4.3.8)). We compute the
base-10 logarithm of the data and plot in Figure 8.3 the excess versus the stepsize and
the time versus the excess. We do not show the corresponding graphs for Table 8.7 since
they are almost the same as in Figure 8.3.

Consider Table 8.6 and Figure 8.3(a). For “small” stepsizes, h = 0.2,0.3,0.4, the
excess in the IHO method is approximately vgs/Qss(—10h) &~ 107° times the excess in
the I'TS method, which confirms the theory in §4.3.1. As h increases beyond 0.4, the
ITS method produces enclosures with rapidly increasing widths, while the IHO method

computes good enclosures for those stepsizes.



CHAPTER 8. NUMERICAL RESULTS 97
h Excess Reductions Time
ITS IHO [HO/ITS % ITS IHO
0.2 4.4 x107° 1.3x107% 3.0x107° 3.0x107° 3.5 x 1072 2.1 x 1072
0.3 85 x107® 1.6x107%% 1.9x107° 1.9x107° 23 x107% 1.4 x 1072
0.4 25x107 29x107%° 1.1 x107 1.2x107° 1.8 x1072 1.1 x 1072
0.5 1.2x107 1.8x107™* 1.5x107® 7.8 x107° 1.3 x107% 8.8 x 1073
0.6 85x1072° 59x107* 6.9 x107*® 52x107° 1.1 x107% 7.0x 107
0.7 4.0x107Y 1.3x107* 32x107% 3.5 x107° 1.0 x 1072 6.3 x 1073
0.8 24 x10° 20x107* 84 x107% 24 x107° 8.9 x107% 5.4 x107°
Table 8.6: ITS(17) and ITHO(8,8) on ¢ = —10y, y(0) = 1, ¢ € [0, 10].
h Excess Reductions Time
ITS IHO [HO/ITS % ITS IHO
0.2 4.4 x107° 1.2x107% 2.6 x107 3.0x107° 3.4 x107% 2.1 x 1072
0.3 80x107* 1.5x107°* 1.8x107° 1.9x107° 2.3 x107% 1.4 x 1072
0.4 22x107 28x107% 1.3 x107° 1.2x107° 1.9 1072 1.2x 1072
0.5 7.9x107" 1.9x107*® 24 x107% 7.8 x107° 1.4 %1072 8.3 %1073
0.6 54x1072° 6.2x107%" 1.1 x107?" 52x107° 1.1 x107% 7.0 x 1073
0.7 25x107Y 1.4x107*  55x107% 3.5 x107° 1.0 x 1072 6.3 x 1073
0.8 1.5 x10° 22x107* 1.5x107%* 24 x107° 8.7x107% 5.4 x107°

Table 8.7: ITS(17) and THO(8,8) on y' = —10y, y(0) € [0.9,1.1], ¢ € [0, 10].
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Figure 8.3: ITS(17) and THO(8,8) on y' = —10y, y(0) = 1, ¢t € [0, 10].

Variable Stepsizes

We integrated (8.3.1) with y(0) = 1 for ¢ € [0,100] with the stepsize selection scheme
from §6.2. We used an absolute tolerance of 107°. In Figure 8.4, we plot the stepsizes
against the step number for the two methods. With the I'TS method, the solver takes a
small stepsize in the last step to hit the endpoint exactly.

The ITS method is asymptotically unstable for stepsizes h such that

10A)'7

|T16(—10R)] + ( 17!) > 1
(see §4.3.1). For h = 0.695,
10A)'7

For the IHO method, the stepsize oscillates around 1.875, which is about 2.7 times bigger

than 0.695, the stepsize limit for the ITS method. For & = 1.875,

78,8 (10h>17

R s(—10h
s =100) |+ 5 oRy 17

~ 0.996.

Although the IHO method permits larger stepsizes, they are still limited by its local error

term. This observation confirms the theory in §4.3.1.
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Figure 8.4: ITS(17) and THO(8,8) on 3’ = —10y, y(0) = 1, ¢t € [0,100], variable stepsize

control with Tol = 10719,
Two-Dimensional Problem

We compare the I'TS(17) and THO(8, 8) methods on the system

J = By = y (8.3.2)

[44]. This system is interesting because the solution components tend to zero rapidly,

but still, we have to deal with the wrapping effect. For example, if
y(O) = (17 _1)T7 (833)
then the true solution of (8.3.2-8.3.3) is given by

yi(t) = He™" — 4e?

Ya(t) = He™" — e,

As ¢ increases, both y;(¢) and y2(¢) become approximately 5e~".

In the phase plane,
the solution becomes almost parallel to the line y, = y;. If the solution is enclosed by a

parallelepiped, as in the direct method (see §3.2.2), there is a large overestimation, which

increases with the steps taken.

Constant Stepsizes We integrated (8.3.2) on [0, 50] first with an initial condition

y(0) = (1,—1)T and then with an initial condition y(0) € ([0.9,1.1],[-0.1,0.1])T. We
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used constant stepsizes h = 1.2,1.4,....3.4 and computed a priori enclosures of the

solution on each step by

36_[0’h] o 26_2[0’h] —26_[0’h] T 26_2[0’h]

[9,] = [yil, (8.3.4)
36_[0’h] o 36_2[0’h] —26_[0’h] T 36_2[0’h]

which is obtained from the true solution

e~t Qe 3 =2
y(t) = y(0).
et Ze~% -1 1

The results are shown in Tables 8.8 and 8.9. Corresponding to Table 8.8, we compute
the base-10 logarithm of the data and plot in Figure 8.5 the excess versus the stepsize
and the CPU time spent in Algorithm II versus the excess. Since the results for Table 8.9
are similar, we do not show the corresponding graphs.

In the ITS method, the widths of the computed enclosures increase rapidly with A
for h > 2.8. We would expect a blow up to occur for stepsizes not much smaller than
3.66, which is determined from the condition |T16(—2h)| < 1 (The eigenvalues of B are
—1 and —2.). The reason for this “early” blow up is that the a priori enclosures are
not tight enough, and as a result, the local excess in the ITS method is not as small
as it should be. However, the IHO method produces good enclosures for all stepsizes
considered (h = 1.2,1.4,...,3.4). From the fourth column in Table 8.8, the excess in
the THO method is (roughly) at least 107" times the excess in the ITS method (see also

§4.3.2, (4.3.25)).
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h Excess Reductions Time
ITS THO IHO/ITS Q(hB) ITS THO
1.2 2.5 x 107% 8.6 x 1073 3.5 x 107° 1.2 x 1074 1.2 x107 2.1 x 107!
1.4 3.7 x 107 1.2x107% 3.1 x107° 1.1 x 10~ 1.1 x 107 1.8 x 107!
1.6 4.1 x107% 1.2 x10°% 2.8 x 107° 1.1 x 10~ 9.9 x 1072 1.5 x 107!
1.8 3.6 x 10722 8.6 x 10~%7 2.4 x 1075 1.1 x 10~ 82 x107% 1.3 x 107!
2.0 3.7 x 1072 5.3 x 107% 1.4 x 107° 1.0 x 1074 74 %1072 1.3 x 107!
2.2 27 %1079 27 x107% 1.0 x107% 9.4 x107° 6.9 x 1072 1.1 x 1071
2.4 1.8 x 1071 1.2 x 107 6.7 x 10719 8.9 x 107° 6.2 x 1072 1.0 x 107!
2.6 50 x 10719 5.0 x 107 1.0 x 107 83 x107° 6.0 x 1072 1.0 x 107!
2.8 1.5 x107* 1.8 x 107 1.2 x 107" 78 x107° 53 x107% 8.8 x 1072
3.0 2.2 x 102 6.2 x 1072 2.9 x 1072 7.3 x107° 51 x107% 8.3 x 1072
3.2 2.0 x 10° 2.0 x 10722 1.0 x 1073 6.8 x 107° 4.7 %1072 7.9 x 1072
3.4 3.0 x 100 6.4 x 10722 2.1 x 1072 6.3 x 107° 4.4 x 1072 7.4 x 1072
Table 8.8: ITS(17) and THO(8, 8) on (8.3.2), y(0) = (1, 1), ¢ € [0, 50],
-1
Q(hB) = s3[[(Qss(hB)) ||
15 T T T T T T T T T T T T
12 - HO o s o HO ]
o 1 i
Z -0 - £ i
-15 - /JZI/ i R
-20 = = - B ) N
25 kL @87 4 . B e
_30 1 1 1 1 1 1 1 1 _14 1 1 1 1 1 1 1 IE
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 30 25 20 15 10 -5 0 5 10 15
Stepsize Excess
(a) (b)

Figure 8.5: ITS(17) and THO(8,8) on (8.3.2), y(0) = (1,—1)T, ¢ € [0,50].
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h Excess Reductions Time
ITS [HO [HO/ITS Q(hB) ITS [HO

1.2 1.4 x107% 4.7 x 1073 3.5 x107° 1.2 x1074 1.2 x 107t 2.0 x 107!
1.4 2.1 x1072* 6.5 x 10727 3.1 x107° 1.1 x 107 1.1 x107* 1.9x 107t
1.6 2.2 %1072 6.4 x 10728 28 x107° 1.1 x 1074 9.5 x 1072 1.5 x 107!
1.8 2.0 x 10722 4.7 x 1077 2.4 x107% 1.1 x 1074 8.3 x107? 1.3 x 107!
2.0 2.0 x 10721 2.9 x 1072 1.4 x107° 1.0 x10™* 7.6 x 1072 1.3 x 1071
2.2 1.5 x 107 1.5x107% 1.0 x 107% 9.4 x107° 6.9 x 1072 1.1 x 107!
2.4 1.0 x 107 6.7 x 107% 6.7 x 1071 8.9 x 10~° 6.3 x 1072 1.0 x 107!
2.6 2.7 x1071% 2.8 x 1074 1.0 x 10714 8.3 x107° 6.0 x 1072 9.9 x 1072
2.8 83 x107° 9.9x 1072 1.2 %107 7.8 x107° 5.3 x 1072 8.6 x 1072
3.0 1.2 x 102 3.4 x 10723 29 %107 7.3 x107° 5.0 x 1072 8.1 x 1072
3.2 1.1 x 10° 1.1 x 1072 1.0 x 1073t 6.8 x 107 4.8 x107% 7.8 x 1072
3.4 1.7 x 101° 3.5 x107% 2.1 x107%2 6.3 x107° 4.5 %1072 7.2 x 1072

Table 8.9: ITS(17) and THO(8,8) on (8.3.2), y(0) € ([0.9,1.1],[-0.1,0.1))T, ¢ € [0,50],
Q(hB) = 355/l (Qss(hB)) ||

Variable Stepsizes We integrated (8.3.2) with y(0) = (1, —1)7 for ¢ € [0,400] with

a variable step control with T'ol = 107!, In Figures 8.6(a-d), we show how the stepsize

depends on how the a priori bounds are computed and whether they are intersected with

the tight bounds.

If the a priori enclosures are computed from (8.3.4), then these enclosures are normally

wider than the tight bounds. Since the intersection of the a priori and tight enclosures

produces intervals that are the same (or almost the same) as the tight bounds, the stepsize

shows similar behavior, whether or not these bounds are intersected; see Figures 8.6(a-

b). Because of the additional stability restriction from the remainder term, the stepsize

in the ITS cannot reach the value 3.66 and oscillates around 2.9. Recall that 3.66 is
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determined from |Tj_;(—2h)| < 1. The stepsize in the IHO method is restricted mainly

by the associated formula for the truncation error. If the a priori bounds are computed

by
36_[0’h] _ 26_2[0’h] —26_[0’h] T 26_2[0’h]
[y;], ift <1
[9;] = 3e [0 — 3200 —2e7 [0 | 320N
[0, ;] otherwise, (8.3.5)

we observe a different behavior; see Figures 8.6(c-d). With (8.3.5), we compute tighter a
priori bounds for ¢ > 1 than with (8.3.4).

In Figure 8.6(c), the stepsize in the ITS method oscillates slightly below 3.66. In a
standard method with a stability restriction on the stepsize of 3.66, we would expect
these oscillations to occur at about 3.66, but here, they are shifted down because of the
restriction on the stepsize from the remainder term. In this figure, the oscillations of the
stepsizes in the I'TS method and the THO method occur at larger values of & than in
Figure 8.6(a). The reason is that we compute tighter bounds for the truncation error.

In Figure 8.6(d), the stepsize in the ITS method reaches a value greater than 3.66
and then stays at this value. Taking stepsizes outside the stability region of Ty_1(hB)
seems strange, but this phenomenon can be explained as follows.

As the stepsize increases towards 3.66, the I'TS method becomes unstable for some
hj < 3.66. Suppose that the solver has accepted [y;] at ¢; > 1 and computes [y;11]
with the ITS method and such h;. Because of instability, w([y;4+1]) > w([y;]). Since the
true solution components tend to zero as ¢ increases, we can assume that [y;41] contains

(0,0)T. Then the tight and a priori bounds are intersected, and the solver accepts

i) = lyjea] O [55] = [yi+] N[0, 55] = [0, 5.

For the next step, it determines a stepsize so that [0,y;] satisfies the tolerance require-
ment. In our example, such a stepsize is greater than 3.66. The ITS produces again a

tight bound that is wider than the a priori one, which is again [0,y;]. Thus, the solver
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Figure 8.6: ITS(17) and IHO(8, 8) on (8.3.2), y(0) = (—1,1), t € [0,400], variable stepsize

control with Tol = 10711,

keeps taking the same stepsize and accepting [0, y;], which satisfies the accuracy require-

ment. The situation is similar with the THO method, except that the stepsize reaches a

much larger value and stays

at 1t.

It is important to note on this example that although Algorithm IT becomes unstable,

the integration essentially continues with Algorithm I. Here, we knew how to compute

good a priori bounds in Algorithm I for large stepsizes, but this is rarely the case.
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8.3.2 Nonlinear Problems
Example 1 We integrated [39]
Yy =t(1—y)+ (1 —t)e ™, (8.3.6)

with constant stepsizes 0.2,0.3,0.4, and 0.5. In autonomous form, this equation is

/

yp =1

v, =11 (1 —y2) + (1 —yi)e .

We computed a priori enclosures from

[Gi1] = [yl + [0, 4]
g2 /2 2l = 1+ e

_ 42 ’
/2

[gj,Q] =1- e_[gj,l] _I_ e

which is determined from the true solution

Py —14eh)

_ 12 ’
/2

y(t)=1- et where y(t;) = y;,

and used the ITS(17) and THO(8, 8) methods with the direct method, described in §3.2.2
(without the QR-factorization, described in §3.2.5).

As can be seen from the results in Tables 8.10 and 8.11 and Figure 8.7, for the same
stepsizes, the THO method produces much better enclosures in less time than the I'TS

method. In these tables, we have also shown the maximum excess during the integration.

In Table 8.12, we show results produced with the ITS(17) and THO(8, 8) methods with
the QR-factorization and without rearranging the columns of the transformation matrix
(see §3.2.5). It is interesting to note that in this case, the solver computed wider bounds
than the ones reported in Table 8.11, which are obtained without QR-factorization. The
reason is that by computing the interval vectors [r;], j > 1 (see §3.2.5 and §4.1.3), the
initial excess in the second component of the solution is introduced into the first one.

Then, the excess in the first component propagates, as we integrate towards the endpoint.
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h Excess Max Excess Time
ITS [HO ITS [HO ITS [HO
0.2 5.3 x 1071* 4.4 x 10716 6.5 x 1071* 2.2 x 1071° 1.4 x10° 1.1 x10°
0.3 1.2 x 1072 3.3 x 10716 7.9 x 1071 1.8 x 107 9.2 x 107t 7.6 x 107!
0.4 4.5 x107% 4.5 x 10714 4.5 x107% 1.1 x 10713 7.1 x 107t 5.7 x 1071
0.5 2.1 x107% 1.3 x 10712 2.1 x107% 3.5 x 10712 5.5 x 107t 4.5 x 107!

Table 8.10: ITS(17) and THO(8,8) on ¢ =¢(1 —y) + (1 —t)e™", y(0) = 1, t € [0,20].

Error
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Figure 8.7: ITS(17) and THO(8,8) on 3 = ¢(1 —y) + (1 — t)e™", y(0) =1, ¢ € [0, 20].
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h Excess Max Excess Time
ITS [HO ITS [HO ITS [HO
0.2 3.3 x 107 1.1 x 10716 5.0 x 1071* 1.6 x 1071° 1.4 x10° 1.1 x10°
0.3 1.0 x 1072 1.1 x 10716 7.4 x 1071 1.1 x 107 9.3 x 107t 7.5 x 107!
0.4 4.5 x107% 2.2 x 10714 4.5 x107% 7.6 x 10714 7.1 x 107t 5.7 x 1071
0.5 2.1 x107% 6.3 x 10713 2.1 x107% 2.6 x 10712 5.5 x 107t 4.5 x 107!

Table 8.11: ITS(17) and THO(8,8) on 3" = (1 —y) + (1 — t)e™", y(0) € [0.999,1.001],

t € [0,20].
h Excess Max Excess Time
ITS IHO ITS IHO ITS IHO
0.2 83x107* 83x10™* 83x10"* 83 x 107 1.4 x10° 1.2 x10°
0.3 81x107* 81x10™* 81x107* 81x107* 94 x107! 81 x107!
0.4 1.6x107° 83 x10~* 1.6 x10™ 83 x107* 7.2x107" 6.1 x 107!
0.5 1.0x10T" 8.4 x107* 1.0 x 1077 84 x 107" 5.6 x 1071 4.8 x 1071

Table 8.12: TTS(17) and THO(8,8) on 3" = (1 —y) + (1 — t)e™", y(0) € [0.999,1.001],

t € [0,20], QR-factorization.
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Example 2 Two-Body Problem

We integrated the two-body problem

Y = Ys

yé = Ya

Yy = —Lg/z
(yi +y3)

yf; = —%7
(yi +y3)

y(0) = (1,0,0,1)", ¢ €[0,20]

108

with the ITS(17) and THO(8,8) methods. We used a constant enclosure method in

Algorithm I and input stepsizes 0.1, 0.15, 0.2 to this method. For input stepsize 0.1 to

the validation procedure, the IHO method produces slightly better enclosures for slightly

less work, Table 8.13. However, when the stepsize is 0.15 or 0.2, the excess of the IHO

method is significantly smaller than the excess of the I'TS method.

H Steps Excess Time
ITS THO ITS IHO ITS IHO
0.10 207 207 5.2 x 1071 7.3 x 107! 6.1 4.7
0.15 154 154 5.4 % 1077 2.0 x 10710 4.6 3.7
0.20 161 161 6.6 x 107 3.5 x107* 4.9 3.7

Table 8.13: ITS(17) and THO(8, 8) on the two-body problem, constant enclosure method.

Since Algorithm I usually reduces the input stepsize, in Figure 8.8, we plot the stepsize

against the step number. The stepsizes reductions at the end of the plots occurs because

the solver takes a small stepsize to hit the endpoint (in time) exactly.



CHAPTER 8. NUMERICAL RESULTS

Stepsize

Stepsize

Stepsize

0.11 T T T T

o 1 1 1 1

0 50 100 150 200

Step number

(a) Input stepsize 0.1, ITS

0.11
0.1
0.09
0.08
0.07
0.06
0.05 1 1 1 1 1 1 1

ST

0 20 40 60 80

Step number

(c) Input stepsize 0.15, ITS

0.2

100 120 140

160

0.18
0.16
0.14
0.12

0.1
0.08
0.06
0.04 L L L L L L L L

Step number

(¢) Input stepsize 0.2, ITS

60 80 100 120 140 160 180

Stepsize

Stepsize

Stepsize

109

0.11 T T T T

o 1 1 1 1

0 50 100 150 200

Step number

(b) Input stepsize 0.1, THO

0.11
0.1
0.09
0.08 -
0.07
0.06 -
0'05 1 1 1 1 1 1 1

A

0 20 40 60 80

Step number

(d) Input stepsize 0.15, THO

0.2

100 120 140

0.18
0.16
0.14
0.12

0.1
0.08
0.06
0.04 L L L L L L L L

0 20 40 60 80 100 120 140

Step number

(f) Input stepsize 0.2, THO

160 180

Figure 8.8: ITS(17) and THO(8, 8) on the two-body problem, constant enclosure method.
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Example 3 Lorenz system

We integrated

Y =0o(y2 —y1)
yy = yi(p — ys) — Y2
yé =1Yy2 — ﬁyi’n

y(0) = (15,15,36)", t € [0,10],

where o = 10, p = 28, and 8 = 8/3, with the ITS(17) and THO(8,8) methods and used
a constant enclosure method in Algorithm I. The input stepsizes for Algorithm I are
0.01,0.05,0.1. The results are shown in Table 8.14, and the stepsizes versus step number
are shown in Figure 8.9. As in the two-body problem, the IHO method produces tighter

enclosures in less time, than the I'TS method.

H Steps Excess Time

ITS IHO ITS [HO ITS [HO

0.01 1001 1001 1.0 x 107 7.6 x 1077 1.4 x 10" 1.2 x 10!
0.05 286 286 2.0 x 1071 1.6 x 1072 4.0 x 10° 3.4 x 10°
0.10 282 282 2.9 x 1071 2.4 x 1072 4.0 x 10° 3.4 x 10°

Table 8.14: ITS(17) and THO(8,8) on the Lorenz system, constant enclosure method.

We also tried the IHO method with the a priori bounds from Algorithm I as an input
to the corrector, instead of computing bounds with the predictor from §4.2.2. With
H = 0.01 and T' = 0.8, the excess at T' = 0.8 was 26.8. Therefore, if we want to eliminate
the predictor step, we have to perform at least one more step of the corrector, which is
more expensive than the predictor.

In the next two examples, we compare the ITS and THO methods with a variable step-
size control (see §6.2) and our version of a Taylor series method for validating existence

and uniqueness of the solution (see Chapter 5).



CHAPTER 8. NUMERICAL RESULTS

Stepsize

Stepsize

Stepsize

0.011 T T T T T
0.01 y
0.009 y
0.008 - ]
0.007 |- y
0.006 - ]
0.005 - ]
0.004 y
0.003 - ]
0.002 y
0.001 y
o 1 1 1 1
0 200 400 600 800

1000

Step number

(a) Input stepsize 0.01, ITS

0.055 T T T T T
0.05
0.045
0.04
0.035
0.03
0.025
0.02
0.015
0.01

0.005 1 1 1 1 1
0 50 100 150 200 250

Step number

(c) Input stepsize 0.05, ITS

0.055 T T T T T
0.05 1
0.045 1
0.04 B
0.035 1
0.03 R
0.025 B
0.02 - B

0.015 : : : ' :
0 50 100 150 200 250

300

Step number

(¢) Input stepsize 0.1, ITS

Stepsize

Stepsize

Stepsize

0.011

0.01
0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001

0.055
0.05
0.045
0.04
0.035
0.03
0.025
0.02
0.015
0.01
0.005

0.055
0.05
0.045
0.04
0.035
0.03
0.025
0.02
0.015

111

0 200 400 600 800

1000

Step number

(b) Input stepsize 0.01, THO

T T T T T
1 1 1 1 1
0 50 100 150 200 250 300
Step number
(d) Input stepsize 0.05, THO
T T T T T
1 1 1 1 1
50 100 150 200 250 300

Step number

(f) Input stepsize 0.1, THO

Figure 8.9: ITS(17) and THO(8, 8) on the Lorenz system, constant enclosure method.
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Example 4 Van der Pol’s equation

We integrated Van der Pol’s equation, written as a system,

Y. = Y2

vy = u(l—yi)ys =y, (8.3.7)
with

y(0) = (2,0)", (8.3.8)

for t € [0,20], where g = 5. We used the ITS(11) and THO(5,5) methods and tolerances
107,108, ..., 10712,

From Table 8.15 and Figure 8.10, we see that, for approximately the same excess,
VNODE using the IHO method took fewer steps than it did using the I'TS method, thus
saving computation time. In Figure 8.10, we plot the logarithms of the excess, time, and
tolerance. In Figure 8.10(d), the stepsize corresponding to the IHO method is not as
smooth as the one corresponding to the ITS method. In the regions where the stepsize
is not smooth, the Taylor series method for validation could not verify existence and
uniqueness with the supplied stepsizes, but verified with reduced stepsizes. Note also
that we control the local excess per unit step and report the global excess in Table 8.15.
Thus the global excess can be larger than the tolerance.

We also integrated (8.3.7-8.3.8) on [0,0.1] with an input stepsize of 0.01 to Algo-
rithm I. We used orders k = 3,7,11,17,25,31,37,43, and 49 for the ITS method and
p=q=(k—1)/2 for the IHO method. Algorithm I did not reduce the input stepsize. As
a result, the solver could take the same number of steps with the I'TS and THO methods.
In Figure 8.11, we plot the logarithm of the CPU time against the logarithm of the order
for these two methods. Although on this problem, the IHO method is more expensive
for “low” orders, including k& = 11, we still have savings in time (for the same excess)

due to the fewer steps taken.
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Figure 8.10: ITS(11) and THO(5,5) on Van der Pol’s equation, Taylor series for validation,

variable stepsize control with Tol = 1077,1078,... 10712,
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Figure 8.11: ITS and IHO with orders 3,7,11,17,25,31,37,43, and 49 on Van der Pol’s

equation.
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Tol Excess Steps Time
ITS IHO ITS IHO ITS IHO

1077 4.0 x 1078 2.8 x 1077 352 231 1.5 1.1
10°8 1.3 x107™® 1.6 x 1078 384 274 1.6 1.3
107? 1.2x107 1.1 x107° 473 324 2.0 1.6
1071 1.3 x 1071 4.4 %1071 587 372 2.6 1.8
10~ 1.3 x 10711 4.8 x 107 731 428 3.1 2.1
10712 1.8 x 10712 3.5 x 10712 912 531 3.9 2.5

Table 8.15: ITS(11) and THO(5,5) on Van der Pol’s equation, Taylor series for validation,

variable stepsize control.

Example 5 Stiff DETEST Problem D1

We integrated the Stiff DETEST problem D1 [21],

yi = 0.2(y2 —11)

v, = 10y; — (60 — 0.125ys)y, + 0.125y3 (8.3.9)
ys = 1,

with
y(0) = (0,0,0)", for € [0,400]. (8.3.10)

Here, we used the ITS(17) and THO(8,8) methods, Taylor series for validation, and a
variable stepsize control with tolerances 1076,1077, ... ,1071°,

With the IHO method, we computed tighter bounds with fewer stepsizes, than with
the I'TS method; see Table 8.16 and Figure 8.12. The reduction in the stepsize on the
last step for the THO method seen in Figure 8.12(d) is a result of our program reducing

the stepsize to hit the endpoint exactly.
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Tol Excess Steps Time

ITS IHO ITS IHO ITS IHO
1076 1.9 x107% 7.2x10°8 5506 3122 4.9 x 101 3.3 x 10!
1077 2.5 %1077 7.2x107° 5829 3524 5.1 x 101 3.6 x 10!
10°8 2.5 x107% 7.2 x1071° 5811 3977 5.1 x 101 4.1 x 10!
107? 2.5 x 1077 7.4 x 1071 6492 4502 5.7 x 101 4.6 x 10!
1071 2.6 x 1071 3.4 x 1071 7367 5107 6.4 x 101 5.2 x 10!

Table 8.16: ITS(17) and THO(8,8) on Stiff DETEST D1, Taylor series for validation,

variable stepsize control.
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Figure 8.12: ITS(17) and THO(8,8) on Stiff DETEST D1, Taylor series for validation,

variable stepsize control with Tol = 1076,1077,...,1071°,
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8.4 Taylor Series versus Constant Enclosure Method

We integrated the following problems, which we denote by P1, P2, P3, and P4,
P1: (8.3.6) with y(0) =1, for ¢ € [0, 20];

P2: y| =2, ¥, = —y1, with y(0) = (0,1)T, for ¢ € [0,100];

P3: (8.3.2) with y(0) = (1,—1)T, for ¢ € [0,50]; and

P4: (8.3.9) with y(0) = (0,0,0)T, for ¢ € [0, 50].

For all of these tests, we used order k£ = 17 for the ITS method and p = ¢ = 8 for the
IHO method, and LEPUS error control with 7ol = 1071°.

Tables 8.17 and 8.18 show the number of steps taken by VNODE, when Algorithm I
uses a constant enclosure (CE) method (see §3.1) and our Taylor series enclosure (TSE)
method (see Chapter 5), and the corresponding excess and times. The results in Ta-
ble 8.17 are produced with the ITS method, and the results in Table 8.18 are produced
with the THO method. In Figures 8.13 and 8.14, we plot the stepsizes against the step
number.

From Table 8.17, we see that if we use a Taylor series enclosure method, we have
a significant reduction in the number of steps (with Tol = 107'%). Furthermore, from
the obtained excess, we see that with a Taylor series enclosure method the stepsize is
controlled from the accuracy requirements. In the constant enclosure method, we achieve
more accuracy than we have asked for, implying that the stepsize was controlled from
Algorithm I 'in that case. We should note, though, that the TSE method may still reduce
the stepsizes determined from the stepsize control mechanism.

In Table 8.18, we see a further reduction in the number of steps with the TSE method,
while the number of steps with the CE method remains the same (except for a slight
difference for P1). Note also that with the IHO method, we generally compute smaller

enclosures in less time; cf. Tables 8.17 and 8.18.
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Problem Steps Excess Time
TSE CE TSE CE TSE CE
P1 79 211 4.7 %1071 1.6 x 107" 1.1 x10° 2.9 x 10°
P2 64 161 1.2x107? 1.0x 107 98 x 1072 2.4 x 1071
P3 91 368 4.2x107'? 1.1x107* 28 x107' 1.0 x 10°
P4 1402 3354 2.0 x107'' 33 x107™ 1.3 x10' 2.7 x 10!

Table 8.17: TSE and CE methods, ITS method, variable stepsize control with

Tol = 10719,
Problem Steps Excess Time
TSE CE TSE CE TSE CE
P1 60 209 23x107% 44x1071%  6.8x 107! 2.3 x 10°
P2 40 161 1.4x107? 14 %107  1.7x1071 81 x 1071
P3 62 368 8.9x107'® 91x10™* 3.0x107' 1.8 x10°
P4 976 3354 6.1 x 107" 21 x107* 1.0 x10* 3.3 x 10!

Table 8.18: TSE and CE methods, IHO method, variable stepsize control with

Tol = 10719,
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Chapter 9

Conclusions and Directions for

Further Research

We have developed and studied an interval Hermite-Obreschkoff method for computing
rigorous bounds on the solution of an IVP for an ODE. Compared to interval Taylor
series methods with the same order and stepsize, our method has a smaller truncation
error, better stability, and is usually less expensive for ODEs for which the right side
contains many terms. Although Taylor series methods can be considered as a special
case of the more general Hermite-Obreschkoff methods, we have developed a different

approach (from Taylor series) to compute bounds for the solution of an IVP for an ODE.

While our study was not directed towards producing an interval method for stiff
problems, we have shown that an interval version of a scheme suitable for stiff problems
(in traditional numerical methods) may still have a restriction on the stepsize. To obtain
an interval method without stepsize limitations, we need to find a scheme with a stable

formula not only for advancing the step but also for the truncation error.

We proposed a Taylor series method for validating existence and uniqueness of the
solution. This method was designed to ameliorate the stepsize restriction imposed by

Algorithm I, but we have not tried to produce an algorithm that always verifies existence
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and uniqueness (if possible) with the supplied stepsize. Further work is necessary to
produce a very good implementation of Algorithm I. Such an implementation can be
considered as an optimization problem: maximize the step length, subject to a tolerance
restriction.

Our stepsize control mechanism is relatively simple. It worked well for our tests,
but we have not performed a thorough empirical investigation. Further studies may
be necessary. New developments on stepsize selection for standard and validated ODE
methods might be appropriate for considerations in a validated solver; see for example
[26] and [36].

There has not been a comprehensive study of order control heuristics. Eijgenraam [19,
pp- 129-136] describes the only order selection scheme known to the author. Some in-
sights into the problem of order control are given in [50, pp. 100-118] and [70]. To
develop an order control strategy based on the amount of work per step, we need to
estimate this work. Obtaining a theoretical bound for the number of arithmetic oper-
ations in generating Taylor coefficients for the solution is not difficult, but obtaining a
reasonably accurate formula for the number of arithmetic operations in generating their
Jacobians is more complex. These Jacobians can be computed by a forward (TADIFF)
or a reverse mode (IADOL-C) of automatic differentiation [58], sparsity may or may not
be exploited, and different packages may implement the same method differently; for
example, with a tape in ADOL-C or using only the main memory as in TADIFF. In ad-
dition to estimating the number of floating-point operations, the time spent on memory
operations may be nonnegligible.

As the area of validated ODE solving develops, we will need a methodology for as-
sessing validated methods. A part of such a methodology should be an estimate of the
amount of work. It may be possible to express it as a number of function and Jaco-

bian evaluations. Then, we may compare validated methods in a framework similar to

DETEST [30] or Stiff DETEST [21].



Appendix A

Number of Operations for

Generating Taylor Coeflicients

We obtain formulas for the number of arithmetic operations for generating one Taylor
coefficient and k Taylor coefficients for the solution to ¥’ = f(y), y(to) = yo. For simplic-
ity, we assume that the code list of f contains only arithmetic operations. Let Ny, N;
and N3 be, respectively, the number of additions (we count subtractions as additions),
multiplications, and divisions in the code list of f. If we have computed the Taylor

coefficients (y), (y¥)ys -- ., (y),, we can compute the (i + 1)-st coeflicient from

1

f[i-l—l](y) = (y)H—l = it 1 (f());, (A1)

where (f(y)); is the ith Taylor coefficient of f(y) (see §2.4). The number of arithmetic
operations required for computing (f(y)),, using (y)y, (y);, --., (y),, are calculated in
Table A.1. If Ops(g) denotes the number of arithmetic operations for computing some
function g, then from Table A.1, the number of arithmetic operations to compute (f(y)),

K3

is

Ops ((f(y));) = 2(N2 + Na)i + Ny + N + Ny
(A.2)

= 2¢;Ni+ N,
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Op. # Formula Number of
+ " /
LN (ute), = (u), £ (v), N, |- _
N ()= (), (v),, Noi | Nyi+Ny| =
[/ Ns (%), =), = Xis (0), (%), .} Nai | Nai N3

Table A.1: Number of additions, multiplications, and divisions for computing (f(y)),

I

where N = Ny 4+ Ny + N3 and ¢; = (N2 4+ N3)/N. Because of (A.1), (A.2) also gives the

number of operations for computing fli+!l(y) = (¥);41-" Therefore,

Ops (fy)) = 2e;N(i = 1) + N = 2¢;Ni + (1 = 2¢7)N (A.3)

=2¢sNi 4+ O(N).
The total number of arithmetic operations to compute & > 1 Taylor coefficients, (y),,

(¥)g> -+ (y),, can be obtained by summing the number of arithmetic operations to

compute (f(y)), fori =0,... ,k—1:

>~ Ops (7)) = (26, Ni )
o, BT DR N BN = ek — 1N £ kN (A4)

2
= ¢;NE* + O(NE).

'We do not count the multiplication H-Ll x (f(y);-



Appendix B

A Validated Object-Oriented Solver

B.1 Objectives

Our primary goal is to provide a program environment that will assist researchers in the
numerical study and comparison of schemes and heuristics used in computing validated
solutions of IVPs for ODEs. The VNODE (Validated Numerical ODE) package that we
are developing is intended to be @ uniform implementation of a generic validated solver for
IVPs for ODFEs. Uniform means that the design and implementation of VNODE follow
well-defined patterns. As a result, implementing, modifying, and using methods can
be done systematically. Generic means that the user can construct solvers by choosing
appropriate methods from sets of methods. This property enables us to isolate and
compare methods implementing the same part of a solver. For example, we can assemble
two solvers that differ only in the module implementing Algorithm II. Then, the difference
in the numerical results obtained by executing the two solvers will indicate the difference
in the performance of Algorithm II. Since we would like to investigate algorithms, being

able to isolate them is an important feature of such an environment.

We list and briefly explain some of the goals we have tried to achieve with the design of

VNODE. Provided that a validated method for IVPs for ODEs is implemented correctly,
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the reliability issue does not exist: if a validated solver returns an enclosure of the

solution, then the solution is guaranteed to exist within the computed bounds.

Modularity The solver should be organized as a set of modules with well-defined inter-
faces. The implementation of each module should be hidden, but if necessary, the

user should be able to modify the implementation.

Flexibility Since we require well-defined interfaces, we should be able to replace a
method, inside a solver, without affecting the rest of it. Furthermore, we should
be able to add methods following the established structure and without modifying

the existing code.

Efficiency The methods incorporated in VNODE do not have theoretical limits. How-
ever, these methods require the computation of high-order Taylor coefficients and
Jacobians of Taylor coefficients. As a result, the efficiency of a validated solver
is determined mainly by the efficiency of the underlying automatic differentiation
package. Other factors that contribute to the performance are: the efficiency of
the interval-arithmetic package, the programming language, and the actual im-
plementation of the methods. To achieve flexibility, we may need to repeat the
same calculations in two parts of a solver. For example, to separate Algorithm I
and Algorithm II, we may need to generate the same Taylor coefficients in both

algorithms. However, the repetition of such computations should be avoided.

Since VNODE is to be used for comparing and assessing methods, it has to contain the

existing ones. Moreover, VNODE should support rapid prototyping.
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B.2 Background

The area of computing validated solutions of IVPs for ODEs is not as developed as the
area of computing approximate solutions. Some of the difficulties that arise in interval
methods are discussed in Chapter 3 and [52]. With respect to the tools involved, a
validated solver is inherently more complex than a classical ODE solver. In addition to
an interval-arithmetic package, a major component of a validated solver is the module

for automatic generation of interval Taylor coefficients (see §B.4).

Currently, there are three available packages for computing guaranteed bounds on the
solution of an IVP for an ODE: AWA [44], ADIODES [69] and COSY INFINITY [8]. We

briefly summarize each in turn.

AWA is an implementation of Lohner’s method (§3.2.5) and the constant enclosure
approach (§3.1). This package is written in Pascal-XSC [37], an extension of Pascal for

scientific computing.

ADIODES is a C++ implementation of a solver using the constant enclosure method

in Algorithm I and Lohner’s method in Algorithm II. The stepsizes in both ADIODES

and AWA is restricted to Euler steps by Algorithm 1.

COSY INFINITY is a Fortran-based code for study and design of beam physics sys-
tems. The method used for verified integration of ODEs is based on high-order Taylor
polynomials with respect to time and the initial conditions. The wrapping effect is re-
duced by establishing functional dependency between initial and final conditions (see [7]).
For that purpose, the computations are carried out with Taylor polynomials with real
floating-point coefficients and a guaranteed error bound for the remainder term. Thus,
the arithmetic operations and standard functions are executed with such Taylor polyno-
mials as operands. Although the approach described in [7] reduces the wrapping effect
substantially, working with polynomials is significantly more expensive than working with

intervals.
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B.3 Object-Oriented Concepts

Since our goal is to build a flexible, easy-to-use, and easy-to-extend package, we have
chosen an object-oriented approach in designing VNODE. This is not the first object-
oriented design of an ODE solver. The Godess project [57] offers a generic ODE solver
that implements traditional methods for IVPs for ODEs. Another successful package is
Diffpack [43], which is devised for solving partial differential equations. In [43], there is

also an example of how to construct an object-oriented ODE solver.

In this section, we review some object-oriented concepts supported in C++. A good
discussion of object-oriented concepts, analysis, and design can be found in [11]. An
excellent book on advanced C+4+4 styles and idioms is [12]. A study of nonprocedural

paradigms for numerical analysis, including object-oriented ones, is presented in [72].

Data Abstraction

In the object model, a software system can be viewed as a collection of objects that
interact with each other to achieve a desired functionality. An object is an instance of
a class, which defines the structure and behavior of its objects. By grouping data and
methods inside a class and specifying its interface, we achieve encapsulation, separating
the interface from the implementation. Hence, the user can change the data represen-
tation and the implementation of a method! (or methods) of a class without modifying
the software that uses it. By encapsulating data, we can avoid function calls with long
parameter lists, which are intrinsic to procedural languages like Fortran 77. A class can

encapsulate data or algorithms, or both.

1We use method in two different contexts: to denote a member function of a class or a method in

VNODE.
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Inheritance and Polymorphism

Inheritance and polymorphism are powerful features of object-oriented languages. In-
heritance allows code reuse: the derived class can use the data and functions of its base
class(es). Polymorphism serves to apply a given function to different types of objects.
Often polymorphism and inheritance are used with abstract classes. An abstract class
defines abstract operations, which are implemented in its subclasses; it has no instances

and an object of such a class cannot be created.

Operator Overloading

Operator overloading allows the operators of the language to be overloaded for user de-
fined types. To program interval operations without explicit function calls, we have to
use a language that supports operator overloading. Without it, programming interval-
arithmetic expressions is cumbersome. Both C+4 and Fortran 90 provide operator over-
loading. This feature is used to build interval-arithmetic libraries like PROFIL/BIAS
[38] (C+4) and INTLIB (Fortran 90) [34].

B.4 Choice of Language: C++4 versus Fortran 90

We have chosen C++ [20] over Fortran 90 [47] to implement VNODE. Procedural lan-
guages like C or Fortran 77 can be used to implement an object-oriented design [3].
However, using a language that supports object-oriented programming usually reduces
the effort for implementing object-oriented software. Our choice was determined by the

following considerations, listed in order of importance:
1. availability of software for automatic generation of interval Taylor coefficients;
2. performance and built-in functions of the available interval-arithmetic packages;

3. support of object-oriented concepts; and
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4. efficiency.

In this section, we discuss each in turn.

B.4.1 Software for Automatic Generation of Interval Taylor

Coefficients

Although packages for automatic differentiation (AD) are available (see for example [33]
and [79]), to date, only two free packages for automatic generation of interval Taylor
coefficients for the solution of an ODE and the Jacobians of these coefficients are known
to the author. These are the FADBAD/TADIFF [5], [6] and IADOL-C [31] packages.
They are written in C++ and implement AD through operator overloading.

TADIFF and FADBAD are two different packages. TADIFF can generate Taylor
coefficients with respect to time. Then, FADBAD can be used to compute Jacobians
of Taylor coefficients by applying the forward mode of AD [58] to these coefficients.
FADBAD and TADIFF are not optimized to handle large and sparse systems. Also,
they perform all the work in the main memory.

The TADOL-C package is an extension of ADOL-C [25] that allows generic data
types. ADOL-C can compute Taylor coefficients by using the forward mode and their
Jacobians by applying the reverse mode [67] to these coefficients. The basic data type
of ADOL-C is double. To use a new data type in IADOL-C, the user has to overload
the arithmetic and comparison operations and the standard functions for that data type.
Then, using TADOL-C is essentially the same as using ADOL-C. Since ITADOL-C replaces
only the double data type of ADOL-C, TADOL-C inherits all the functionality of ADOL-
C. However, it was reported that the operator overloading, in IADOL-C, for a basic data
type incurs about a three times speed penalty over ADOL-C [31]. This appears to be a
phenomenon of the C++ compilers rather than the AD package [31].

The ADOL-C package records the computation graph on a so-called tape. This tape
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is stored in the main memory, but, when necessary, is paged to disk. When generating
Jacobians of Taylor coefficients, ADOL-C exploits the sparsity structure of the Jacobian
of the function for computing the right side. Since optimization techniques are used
in ADOL-C, we expect the interval version, TADOL-C, to perform better than FAD-

BAD/TADIFF on large and complex problems. But, still, FADBAD/TADIFF should

perform well on small to medium-sized problems.

Currently, VNODE is configured with FADBAD/TADIFF, but we have also used
TADOL-C. VNODE with these AD packages is based on the INTERVAL data type from
the PROFIL/BIAS package, which we discuss in §B.4.2 and §B.4.3.

B.4.2 Interval Arithmetic Packages

The most popular and free interval-arithmetic packages are PROFIL/BIAS [38], written
in C++, and INTLIB [35], written in Fortran 77 and available with a Fortran 90 interface
[34]. The Fortran 90 version of INTLIB uses operator overloading. For references and
comments on other available packages, see for example [34] or [38]. Recently, an interval
extension of the Gnu Fortran compiler was reported [65], where intervals are supported

as an intrinsic data type.

PROFIL/BIAS seems to be the fastest interval package. In comparison with other
such packages, including INTLIB, PROFIL/BIAS is about one order of magnitude faster
[38]. Also, PROFIL/BIAS is easy-to-use, and provides matrix and vector operations
and essential routines, for example, guaranteed linear equation solvers and optimization
routines. For efficiency, it uses the rounding mode of the processor on the machines on
which it is installed. Portability is provided by isolating the machine dependent code in

small assembler files, which are distributed with the package.
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B.4.3 Efficiency

Compared to Fortran, C++ has been criticized for its poor performance for scientific
computing. Here, we discuss an important performance problem: the pairwise evaluation
of arithmetic expression with arguments of array types (e.g., matrices and vectors). More
detailed treatment of this and other problems can be found in [62], [75], and [76].

In C++, executing overloaded arithmetic operations between array data types creates
temporaries, which can introduce a significant overhead, particularly for small objects.

For example, if A, B, C, and D are vectors, the evaluation of the expression
D=A+B+C

creates two temporaries: one to hold the result of A + B, and another to hold the result
of (A + B) + C. Furthermore, this execution introduces three loops. Clearly, it would be
better to compute this sum in one loop without temporaries. In Fortran 90, mathematical
arrays are represented as elementary types and optimization is possible at the compiler
level.

Because of better optimizing compilers and template techniques [74], [76], C++ is
becoming more competitive for scientific computing. A good technique for reducing the
overhead in the pairwise evaluation of expressions involving arrays is to use expression
templates [74]. The expression template technique is based on performing compile-time
transformation of the code using templates. With this technique, expressions containing
vectors and matrices can be evaluated in a single pass without allocating temporaries. For
example, with expression templates, it is possible to achieve a loop fusion [74], allowing

the above sum to be evaluated in a single loop:
for ( int 1 = 1; 1 <= N; i++ )
D(i) = A(i) + B(i) + C(i);
However, executing this loop in interval arithmetic may not be the best solution for the

following reason. Each interval addition in this loop involves two changes of the rounding
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mode. In modern RISC architectures, rounding mode switches cost nearly the same or
even more than floating-point operations [38], [65]. The approach of PROFIL/BIAS is

to minimize these switches. Suppose that we want to compute in PROFIL/BIAS
C=A+3B,

where A, B, and C are vectors of the same dimensions. If we denote the components of
A, B, and C by a;, b;, and ¢;, respectively, PROFIL/BIAS changes the rounding mode
downwards and computes ¢; = a; + b,;, for + = 1,2,... ., n. Then, this package changes
the rounding mode upwards and computes ¢ = a; + b;, for i = 1,2,...n. Therefore, the
result of A + B is computed with two rounding mode switches. However, PROFIL/BIAS

still creates temporaries.

B.4.4 Support of Object-Oriented Concepts

C++ is a fully object-oriented language, while Fortran 90 is not, because it does not
support inheritance and polymorphism. The features of C++ (e.g., data abstraction, op-
erator overloading, inheritance, and polymorphism) allow the goals in §B.1 to be achieved
in a relatively simple way. Inheritance and polymorphism can be simulated in Fortran

90 [17], but this is cumbersome.

B.5 The VNODE package

B.5.1 Structure

From an object-oriented perspective, it is useful to think of a numerical problem as an
object containing all the information necessary to compute its solution. Also, we can
think of a particular method, or a solver, as an object containing the necessary data and
functions to perform the integration of a given problem. Then, we can compute a solution

by “applying” a method object to a problem object. Most functions in VNODE have
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ODE_PROBLEM PROBLEM_INFO

% (D abstract class

ODE_NUMERIC ODE_SOLUTION :
: Z# is-a

3 has-a
P1 P2 P3 ;

Figure B.1: Problem classes.

such objects as parameters. The description of the numerical problem and the methods

in VNODE are implemented as classes in C++4.

The problem classes are shown in Figure B.1, and the method classes are shown in
Figure B.2. A box in Figures B.1 and B.2 denotes a class; the rounded, filled boxes
denote abstract classes. Each of them declares one or more virtual functions, which are
not defined in the corresponding abstract class, but must be defined in the derived classes.
The lines with A indicate an is-a relationship, which can be interpreted as a derived class
or as a specialization of a base class; the lines with ¢ indicate a has-a relationship. It is
realized either by a complete containment of an object Y within another object X or by

a pointer from X to Y. The notation in these figures is similar to that suggested in [64].

In the next two subsections, we list the problem and method classes and provide brief
explanations. Here, we do not discuss the classes for generating Taylor coefficients in
VNODE. A detailed description of VNODE will be given in the documentation of the

code at http://www.cs.toronto.edu/NA.

Problem Classes Class ODE_ PROBLEM specifies the mathematical problem, that is, ¢,
[yo], T', and a pointer to a function to compute the right side of the ODE. It also contains
a pointer to a class PROBLEM_INFO. It indicates, for example, if the problem is constant
coefficient, scalar, has a closed form solution, or has a point initial condition. Such

information is useful since the solver can determine from it which part of the code to
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execute.

ODE_NUMERIC specifies the numerical problem. This class contains data such as abso-
lute and relative? error tolerances, and a pointer to a class ODE_NUMERIC representing a
solution. The user-defined problems, P1, P2, and P3 in Figure B.1 are derived from this
class. New problems can be added by deriving them from 0DE_NUMERIC.

ODE_SOLUTION contains the last obtained a priori and tight enclosures of the solution
and the value of ¢ where the tight enclosure is computed. 0DE_SOLUTION contains also a
pointer to a file that stores information from the preceding steps (e.g., enclosures of the

solution and stepsizes).

Method Classes Class ODE_SOLVER is a general description of a solver that “solves”
an ODE_NUMERIC problem. ODE_SOLVER declares the pure virtual function Integrate. Its
definition is not provided in this class. As a result, instances of ODE_SOLVER cannot be
created. This class also contains the class METHOD _CONTROL, which includes different flags
(encapsulated in FLAGS) and statistics collected during the integration (encapsulated in
STATISTICS).

Class VODE_SOLVER implements a general validated solver by defining the Integrate
function. We have divided this solver into four abstract methods: for selecting an order,
selecting a stepsize, and computing initial and tight enclosures of the solution. These
methods are realized by the abstract classes ORDER_CONTROL, STEP_CONTROL, INIT_ENCL,
and TIGHT ENCL, respectively. Their purpose is to provide general interfaces to partic-
ular methods. A new method can be added by deriving it from these abstract classes.
Integrate performs the integrations by calling objects that are instances of classes de-
rived from ORDER_CONTROL, STEP_CONTROL, INIT_ENCL, and TIGHT_ENCL.

ORDER_CONTROL has only one derived class, CONST_ORDER, whose role is to return a

constant order. Currently, VNODE does not implement variable-order methods.

How to specify and interpret relative error tolerance will be discussed in the documentation of

VNODE.
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For selecting a stepsize, CONST_STEP returns a constant stepsize on each step, and
VAR_STEP_CONTROL implements the stepsize selection scheme from §6.2.

There are two methods for validating existence and uniqueness of the solution in
VNODE: a constant enclosure method (CONST_INIT_ENCL) and a Taylor series method
(TAYL_INIT.ENCL). The purpose of the FIXED_INITENCL class is to compute a priori
enclosures of the solution from the formula for the true solution, if the problem has a
closed form solution. This class turns out to be helpful when we want to isolate the
influence of Algorithm I, because this algorithm often reduces the input stepsize.

There are two methods for computing a tight enclosure of the solution: an in-
terval Hermite-Obreschkoff method (OBRESCHKOFF_TIGHT.ENCL) and Lohner’s method
(LOHNER_TIGHT_ENCL). The VODE_SOLVER class has also a pointer to DATA_REPR, which is

responsible for generating and storing Taylor coefficients and their Jacobians.

B.5.2 An Example Illustrating the Use of VNODE

Suppose that we want to compare two solvers that differ only in the method implementing
Algorithm II. In addition, we want to compare them with a constant enclosure method
and then with a Taylor series enclosure method in Algorithm I. Here, we show and discuss
part of the VNODE code that can be employed for this study. As an example of an ODE,

we use Van der Pol’s equation, written as a system,

yi =Yz
(B.5.1)

vy = 1l = yi)y2 — yi.

In a traditional ODE solver, we provide a function for computing the right side. In a
validated solver, we have to provide also functions for generating Taylor coefficients and
their Jacobians. Since we use an AD package for generating such coefficients, we have to
specify a function for computing the right side of (B.5.1) for this package. We write the

template function
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template <class YTYPE> void VDPtemplate(YTYPE *yp, const YTYPE *y)

{

ypL0] y[1]1;

ypl1] MU* (1-sqr(y[0]))*y[1] - y[0];

which is used by FADBAD /TADIFF and IADOL-C to store the computation graph, and
by VNODE to create a function for computing the right side. Then we derive a class
VDP from ODE_NUMERIC. Since the details about the declaration of VDP are not essential
to understand our example, we omit this declaration.

Figure B.3 shows a typical use of VNODE classes. First, we create an 0DE_NUMERIC
object®, VDP, and load the initial condition, the interval of integration, and tolerance by
calling the function LoadProblemParam (Part A). For testing, it is convenient to have a
function that supplies different sets of data depending on the parameter to this function.

Then, we create methods and return pointers to them (Part B), as described below.
ITS and IHO are pointers to objects for computing enclosures using Lohner’s and the
[HO methods, respectively. InitEncl is a pointer to an object for validating existence
and uniqueness of the solution with the constant enclosure method; StepControl refers
to an object that implements a variable stepsize control; and OrderControl points to an
an object that provides a constant value for the order.

The purpose of class TAYLOR_EXPANSION is to generate and store Taylor coefficients
and their Jacobians. It is a template class, for which instances are created by specifying
a class for generating Taylor coefficients and a class for generating Jacobians of Tay-
lor coefficients. Here, we create such an instance with parameters VDPTaylGenODE and

VDPTaylGenVar, which are classes? for generating Taylor coefficients and their Jacobians

for (B.5.1).

3In Figure B.3, Ptr stands for pointer in PtrODENumeric, PtrTightEncl, etc.
4We do not describe these classes here.
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In part C, we create two solvers, SolverITS and SolverIHO and integrate the problem
by calling the Integrate function on these solvers.” Note that they differ only in the
method for computing a tight enclosure of the solution. Thus, we can isolate and compare
the two methods implementing Algorithm II.

Now, in part D, we want to replace the constant enclosure method for validating
existence and uniqueness of the solution with a Taylor series method and repeat the

same integrations. We create an instance of TAYL_INIT_ENCL by

InitEncl =

new TAYL_INIT_ENCL(ODE->Size,new VDPTaylGenODE,new VDPTaylGenVAR);

set it by calling the SetInitEncl function, and integrate.
We explain how class INIT_ENCL works; the same idea is used in the other abstract

classes. INIT_ENCL is an abstract class since it contains the pure virtual function
virtual void Validate( ... ) = 0;

(for simplicity, we leave out the parameters). Each of the derived classes of INIT_ENCL
must declare a function with the same name and parameters and specify the body of
the function. In Integrate, there is a call to Validate. During execution, depending
on the object set, the appropriate Validate function will be called. We use dynamic
or late binding: the function that is called is determined by the type of object during
the execution of the program. In our example, the method for validating existence and
uniqueness is replaced, but the integrator function is not changed. If the user wants to
implement his/her own Algorithm I, he/she has to define a derived class of INIT_ENCL

and an associate Validate function.

®We omit the details about extracting data after an integration.
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// ...

// A. Create the ODE problem.
PtrODENumeric ODE = new VDP;
0DE->LoadProblemParam(1);

// B. Create the methods.

int K, P, Q;
K = 11; // order
P=Q-=(K-1)/2;

PtrTightEncl ITS
PtrTightEncl IHO

new LOHNER_TIGHT_ENCL(X);
new OBRESCHKOFF_TIGHT_ENCL(P,Q);

PtrInitEncl InitEncl
PtrStepCtrl StepCtrl
PtrOrderCtrl OrderCtrl
PtrDataRepr DataRepr

new CONST_ORDER(K);

// Part C. Create the solvers and integrate.
PtrVODESolver SolverITS = new

VODE_SOLVER(ODE, DataRepr, OrderCtrl, StepCtrl, InitEncl, ITS);

PtrVODESolver SolverIHO = new

VODE_SOLVER(ODE, DataRepr, OrderCtrl, StepCtrl, InitEncl, IHO);

SolverITS->Integrate();
SolverIHO->Integrate();

// Part D. Replace the method implementing Algorithm I and integrate.

InitEncl =

139

new CONST_INIT_ENCL(ODE->Size, new VDPTaylGenVAR);
new VAR_STEP_CONTROL(ODE->Size);

new TAYLOR_EXPANSION<VDPTaylGenODE,VDPTaylGenVAR>;

new TAYL_INIT_ENCL(ODE->Size, new VDPTaylGenODE, new VDPTaylGenVAR);

SolverITS->SetInitEncl(InitEncl);
SolverIHO->SetInitEncl(InitEncl);

SolverITS->Integrate();

SolverIHO->Integrate();
/...

Figure B.3: The test code.



Bibliography

1]

E. Adams, D. Cordes, and R. Lohner. Enclosure of solutions of ordinary initial value
problems and applications. In E. Adams, R. Ansorge, Chr. Gromann, and H. G.
Roos, editors, Discretization in Differential Fquations and Enclosures, pages 9-28.

Akademie-Verlag, Berlin, 1987.

G. Alefeld and J. Herzberger. Introduction to Interval Computations. Academic
Press, New York, 1983.

S. Balay, W. D. Gropp, L. C. Mclnnes, and B. F. Smith. Parallelism in object-
oriented numerical software libraries. In Erlend Arge, Are Magnus Bruaset, and
Hans Petter Langtangen, editors, Modern Software Tools in Scientific Computing,

pages 163-202. Birkhauser, Boston, 1997. See http://www.mcs.anl.gov/petsc/.

H. Bauch and W. Kimmel. Solving ordinary initial value problems with guaranteed

bounds. Z. angew. Math. Mech., 69:T110-T112, 1989.

Claus Bendsten and Ole Stauning. FADBAD, a flexible C++4 package for automatic
differentiation using the forward and backward methods. Technical Report 1996-
x5-94, Department of Mathematical Modelling, Technical University of Denmark,
DK-2800, Lyngby, Denmark, August 1996. FADBAD is available at
http://www.imm.dtu.dk /fadbad.html.

Claus Bendsten and Ole Stauning. TADIFF, a flexible C+4 package for automatic

differentiation using Taylor series. Technical Report 1997-x5-94, Department of

140



BIBLIOGRAPHY 141

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Mathematical Modelling, Technical University of Denmark, DK-2800, Lyngby, Den-
mark, April 1997. TADIFF is available at http://www.imm.dtu.dk/fadbad.html.

M. Berz and K. Makino. Verified integration of ODEs and flows using differential
algebraic methods on high-order Taylor models. Reliable Computing, 4:361-369,
1998.

Martin Berz. COSY INFINITY version 8 reference manual. Technical Report
MSUCL-1088, National Superconducting Cyclotron Lab., Michigan State Univer-
sity, East Lansing, Mich., 1997. COSY INFINITY is available at

http://www.beamtheory.nscl.msu.edu/cosy/.

Martin Berz, Christian Bischof, and George F. Corliss, editors. Computational Dif-

ferentiation: Techniques, Applications, and Tools. STAM, Philadelphia, Penn., 1996.

G. Birkhoff and R. S. Varga. Discretization errors for well-set Cauchy problems: I.
J. Math. and Phys., 44:1-23, 1965.

Grady Booch. Object-Oriented Analysis and Design. The Benjamin/Cummings

Publishing Company Inc., Rational, Santa Clara, California, 2nd edition, 1994.

James O. Coplien. Advanced C++ Programming Styles and Idioms. Addison-Wesley,
AT&T Bell Laboratories, 1992.

G. F. Corliss and R. Rihm. Validating an a priori enclosure using high-order Taylor
series. In G. Alefeld and A. Frommer, editors, Scientific Computing, Computer
Arithmetic, and Validated Numerics, pages 228-238. Akademie Verlag, Berlin, 1996.

George F. Corliss. Survey of interval algorithms for ordinary differential equations.

Appl. Math. Comput., 31:112-120, 1989.

George F. Corliss. Guaranteed error bounds for ordinary differential equations. In

M. Ainsworth, J. Levesley, W. A. Light, and M. Marletta, editors, Theory of Numer-



BIBLIOGRAPHY 142

[16]

[17]

[18]

[19]

[21]

[22]

ics in Ordinary and Partial Differential Fquations, pages 1-76. Oxford University
Press, 1995.

G. Darboux. Sur les developpements en série des fonctions d’une seule variable. J.

des Mathématique pures et appl., pages 291-312, 1876. 3eme série, t. 1I.

Viktor K. Decyk, Charles D. Norton, and Boleslaw K. Szymanski. Expressing object-

oriented concepts in Fortran 90. ACM Fortran Forum, 16(1):13-18, April 1997.

B. L. Ehle. On Padé approximations to the exponential function and A-stable
methods for the numerical solution of initial value problems. SIAM J. Math. Anal.,

4:671-680, 1973.

P. Eijgenraam. The Solution of Initial Value Problems Using Interval Arithmetic.
Mathematical Centre Tracts No. 144. Stichting Mathematisch Centrum, Amsterdam,

1981.

Margaret A. Ellis and B. Stroustrup. The Annotated C++ Reference Manual.

Addison—Wesley, 1990.

W. H. Enright, T. E. Hull, and B. Lindberg. Comparing numerical methods for stiff
systems of ODEs. BIT, 15:10-48, 1975.

Andreas Griewank. ODE solving via automatic differentiation and rational predic-
tion. In D. F. Griffiths and G. A. Watson, editors, Numerical Analysis 1995, volume
344 of Pitman Research Notes in Mathematics Series. Addison-Wesley Longman

Ltd, 1995.

Andreas Griewank and George F. Corliss, editors. Automatic Differentiation of
Algorithms: Theory, Implementation, and Application. STAM, Philadelphia, Penn.,
1991.



BIBLIOGRAPHY 143

[24]

[30]

Andreas Griewank, George F. Corliss, Petra Henneberger, Gabriella Kirlinger, Flo-
rain A. Potra, and Hans J. Stetter. High-order stiff ODE solvers via automatic
differentiation and rational prediction. In Lecture Notes in Comput. Sci., 1196,

pages 114-125. Springer, Berlin, 1997.

Andreas Griewank, David Juedes, and Jean Utke. ADOL-C, a package for the auto-
matic differentiation of algorithms written in C/C++. ACM Trans. Math. Software,

22(2):131-167, June 1996.

Kjell Gustafsson, Michael Lundh, and Gustaf Soderlind. A PI stepsize control for

the numerical solution of ordinary differential equations. BIT, 28(2):270-287, 1988.

E. Hairer, S. P. Ngrsett, and G. Wanner. Solving Ordinary Differential Equations 1.

Nonstiff Problems. Springer-Verlag, 2nd revised edition, 1991.

Ch. Hermite. Extrait d’une lettre de M. Ch. Hermite & M. Borchardt sur la formule
d’interpolation de Lagrange. J. de Crelle, 84(70):70, 1878. Oeuvres, tome III, p.
432-443.

T. E. Hull and W. H. Enright. A structure for programs that solve ordinary differ-
ential equations. Technical Report 66, Department of Computer Science, University

of Toronto, May 1974.

T. E. Hull, W. H. Enright, B. M. Fellen, and A. E. Sedgwick. Comparing numer-
ical methods for ordinary differential equations. SIAM J. on Numerical Analysis,
9(4):603-637, December 1972.

Ronald Van Iwaarden. TADOL-C, personal communications, 1997. TADOL-C is

available through the author. E-mail vaniwaar@metsci.com.

L. W. Jackson. Interval arithmetic error-bounding algorithms. SIAM J. Numer.
Anal., 12(2):223-238, 1975.



BIBLIOGRAPHY 144

[33] David Juedes. A taxonomy of automatic differentiation tools. In Andreas Griewank
and George F. Corliss, editors, Automatic Differentiation of Algorithms: Theory,

Implementation, and Application, pages 315-329. STAM, Philadelphia, Penn., 1991.

[34] R. B. Kearfott. INTERVAL_ARITHMETIC: A Fortran 90 module for an interval
data type. ACM Trans. Math. Software, 22(4):385-392, 1996.

[35] R. B. Kearfott, M. Dawande, K. Du, and C. Hu. Algorithm 737: INTLIB: A
portable Fortran 77 interval standard function library. ACM Trans. Math. Softw.,

20(4):447-459, December 1995.

[36] Monika Kerbl. Stepsize strategies for inclusion algorithms for ODE’s. In E. Kaucher,
S. M. Markov, and G. Mayer, editors, Computer Arithmetic, Scientific Computation,
and Mathematical Modelling, IMACS Annals on Computing and Appl. Math. 12.
J.C. Baltzer, Basel, 1991.

[37] Rudi Klatte, Ulrich Kulisch, Michael Neaga, Dietmar Ratz, and Christian Ullrich.

Pascal-XSC: Language Reference with Framples. Springer-Verlag, Berlin, 1992.

[38] O. Kniippel. PROFIL/BIAS — a fast interval library. Computing, 53(3-4):277-287,
1994. PROFIL/BIAS is available at
http://www.ti3.tu-harburg.de/Software/ PROFIL/Profil.texinfo_1.html.

[39] Fred T. Krogh. On testing a subroutine for the numerical integration of ordinary

differential equations. J. Assoc. Comput. Mach., 20(4):545-562, October 1973.

[40] F. Kriickeberg. Ordinary differential equations. In Eldon Hansen, editor, Topics in

Interval Analysis, pages 91-97. Clarendon Press, Oxford, 1969.

[41] Ulrich W. Kulisch and Willard L. Miranker. Computer Arithmetic in Theory and

Practice. Academic Press, New York, 1981.



BIBLIOGRAPHY 145

[42]

[43]

[44]

[45]

[49]

[50]

J. D. Lambert. Computational Methods in Ordinary Differential Equations. John

Wiley & Sons, 1977.

Hans Petter Langtangen. Diffpack. Technical report, SINTEF, Oslo, Norway, June

1996. See http://www.oslo.sintef.no/diffpack/reports/.

Rudolf J. Lohner. FEinschliefung der Losung gewohnlicher Anfangs— und Randw-
ertaufgaben und Anwendungen. PhD thesis, Universitat Karlsruhe, 1988. AWA is

available at ftp://iamk4515.mathematik.uni-karlsruhe.de/pub/awa/.

Rudolf J. Lohner. Step size and order control in the verified solution of IVP with
ODFE’s, 1995. SciCADE’95 International Conference on Scientific Computation and

Differential Equations, Stanford University, Calif., March 28 — April 1, 1995.

Rudolph J. Lohner. Enclosing the solutions of ordinary initial and boundary value
problems. In Edgar W. Kaucher, Ulrich W. Kulisch, and Christian Ullrich, editors,
Computer Arithmetic: Scientific Computation and Programming Languages, pages

255-286. Wiley-Teubner Series in Computer Science, Stuttgart, 1987.

M. Metcalf and J. Reid. Fortran 90 Explained. Oxford University Press, Oxford,
England, 1990.

Ramon E. Moore. The automatic analysis and control of error in digital computation
based on the use of interval numbers. In Louis B. Rall, editor, Error in Digital

Computation, Vol. I, pages 61-130. Wiley, New York, 1965.

Ramon E. Moore. Automatic local coordinate transformations to reduce the growth
of error bounds in interval computation of solutions of ordinary differential equations.
In Louis B. Rall, editor, Error in Digital Computation, Vol. II, pages 103-140. Wiley,
New York, 1965.

Ramon E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, N.J., 1966.



BIBLIOGRAPHY 146

[51]

[53]

[55]

[56]

[57]

[58]

[59]

[60]

Ramon E. Moore. A survey of interval methods for differential equations. In Pro-
ceedings of the 23rd Conference on Decision and Control (Las Vegas, 1984), pages
1529-1535. IEEE, 1984.

N. S. Nedialkov, K. R. Jackson, and G. F. Corliss. Validated solutions of initial
value problems for ordinary differential equations. Appl. Math. Comp., (To appear).

Available at http://www.cs.toronto.edu/NA /reports.html.

Arnold Neumaier. Interval Methods for Systems of Fquations. Cambridge University
Press, Cambridge, 1990.

K. L. E. Nickel. Using interval methods for the numerical solution of ODE’s. Z.

angew. Math. Mech., 66:513-523, 1986.

N. Obreschkoff. Neue Quadraturformeln. Abh. Preuss. Akad. Wiss. Math. Nat. KI.,
4, 1940.

N. Obreschkoff. Sur le quadrature mecaniques. Spisanie Bulgar. Akad. Nauk. (Jour-
nal of the Bulgarian Academy of Sciences), 65:191-289, 1942.

Hans Olson. Documentation of the structure of Godess. Technical report, Computer

Science, Lund Institute of Technology, 5-221 00 Lund, Sweden, November 1995.

Louis B. Rall. Automatic Differentiation: Techniques and Applications, volume 120

of Lecture Notes in Computer Science. Springer Verlag, Berlin, 1981.

A. Ralston. A First Course in Numerical Analysis. McGraw-Hill, New York, 2nd
edition, 1978.

Robert Rihm. Interval methods for initial value problems in ODEs. In Jirgen
Herzberger, editor, Topics in Validated Computations: Proceedings of the IMACS-

GAMM International Workshop on Validated Computations, University of Olden-



BIBLIOGRAPHY 147

[62]

[65]

[66]

[67]

burg, Elsevier Studies in Computational Mathematics, pages 173-207. Elsevier, Am-
sterdam, New York, 1994.

Robert Rihm. On a class of enclosure methods for initial value problems. Computing,

53:369-377, 1994.

Arch D. Robinson. C++4 gets faster for scientific computing. Computers in Physics,
10(5):458-462, Sep/Oct 1996.

J. Rohn. NP-hardness results for linear algebraic problems with interval data. In
J. Herzberger, editor, Topics in Validated Computations, volume 5 of Studies in

Computational Mathematics, pages 463-471, North-Holland, Amsterdam, 1994.

James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and William

Lorensen. Object-Oriented Modeling and Design. Prentice Hall, New York, 1991.

Michael J. Schulte, Vitaly Zelov, Ahmet Akkas, and James Craig Burley. The
interval-enhanced GNU Fortran compiler. Reliable Computing, (Submitted), Octo-
ber 1998.

Lawrence F. Shampine. Numerical solution of ordinary differential equations. Chap-

man & Hall, New York, 1994.

B. Speelpenning. Compiling Fast Partial Derivatives of Functions Given by Al-
gorithms. PhD thesis, Department of Computer Science, University of Illinois at

Urbana-Champaign, January 1980.

H. Spreuer and E. Adams. On the existence and the verified determination of

homoclinic and heteroclinic orbits of the origin for the Lorenz system. Computing

Suppl., 9:233-246, 1993.



BIBLIOGRAPHY 148

[69]

73]

[74]

[75]

[76]

Ole Stauning. Automatic validation of numerical solutions. Technical Report IMM-
PHD-1997-36, IMM, Lyngby, Denmark, October 1997. ADIODES is available at
http://www.imm.dtu.dk/~os/ADIODES. tar.gz.

Hans J. Stetter. Algorithms for the inclusion of solutions of ordinary initial value
problems. In Jaramir Vosmansky and Milés Zlamal, editors, Equadiff 6: Proceedings
of the International Conference on Differential Equations and Their Applications
(Brno, 1985), volume 1192 of Lecture Notes in Mathematics, pages 85-94. Springer
Verlag, Berlin, 1986.

Hans J. Stetter. Validated solution of initial value problems for ODEs. In Christian
Ullrich, editor, Computer Arithmetic and Self-Validating Numerical Methods, pages

171-187. Academic Press, New York, 1990.

Stephen J. Sullivan and Benjamon G. Zorn. Numerical analysis using nonprocedural

paradigms. ACM TOMS, 21(3):267-298, Sept 1995.

R. S. Varga. On higher order stable implicit methods for solving parabolic differential
equations. J. Math. and Phys., 40:220-231, 1961.

T. Veldhuizen. Expression templates. C++ Report, 7(5):26-31, June 1995.

T. Veldhuizen. Scientific computing: C++ versus Fortran. Dr. Dobb’s Journal, 34,
November 1997.

T. L. Veldhuizen and M. E. Jernigan. Will C+4 be faster than Fortran? In
Proceedings of the 1st International Scientific Computing in Object-Oriented Parallel

Environments (ISCOPE’97), Lecture Notes in Computer Science. Springer-Verlag,
1997.



BIBLIOGRAPHY 149

[77] G. Wanner. On the integration of stiff differential equations. Technical report,
Université de Genéve, Section de Mathematique, 1211 Genéve 24th, Suisse, October

1976.

[78] G. Wanner. On the integration of stiff differential equations. In Proceedings of the
Colloquium on Numerical Analysis, volume 37 of Internat. Ser. Numer. Math., pages

209-226, Basel, 1977. Birkhauser.

[79] Wenhong Yang and George Corliss. Bibliography of computational differentiation.
In Martin Berz, Christian H. Bischof, George F. Corliss, and Andreas Griewank,
editors, Computational Differentiation: Techniques, Applications, and Tools, pages
393-418. STAM, Philadelphia, Penn., 1996.



