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Abstract

This thesis describes systematically known and new results on bounding the range of polynomials and
solving systems of nonlinear equations using interval methods�

Range of Polynomials� Bounding the range of polynomials is an important sub�problem in many
disciplines of scientic computing� The main original results of this thesis are as follows�

� Centered Form� We give a new� more elementary� proof of the known quadratic convergence of centered
forms�

� Horner Form� For every polynomial f there exists an interval Of such that for every interval X� whose
interior is disjoint fromOf � the Horner evaluation of f onX is exact� The smallest such Of is the hull of
all roots of the intermediate polynomials arising during the Horner evaluation of f � During evaluation
of f on X this non�overestimation condition can be decided without additional computation� We
failed to nd a necessary and su�cient non�overestimation condition but found some further su�cient
conditions�
If the input interval of the Horner form contains zero� then we bisect it at zero and evaluate both parts
separately� As both parts have one endpoint zero� the total cost for both evaluations is comparable
to the cost of the ordinary Horner form but gives usually tighter inclusions� If the dense Horner form
evaluated on X overestimates� then any bisection of X gives an improvement� If X is centered� then
bisection at the midpoint reduces the overestimation error of the dense Horner form at least by half�
This observation is used to reduce the overestimation error of the dense Taylor form at least by half�

� Mean Value Form� The width of the mean value form is the same for any choice of a center between
the optimal centers of the bicentered mean value form� This width is smaller than if the center is chosen
di�erently� Hence� the midpoint is a width optimal center for the mean value form�

� Bernstein Form� For the Bernstein form we show that it is inclusion monotone and that it gives the
exact range provided the input interval is �small enough�� If the input interval contains zero� we bisect
it at zero and evaluate the parts separately� This gives tighter inclusions and allows faster evaluation
because each sub�interval has one endpoint zero and hence the Taylor coe�cient computation is trivial�

� Interpolation Form� We present some accuracy improvements of interpolation forms by combining them
with the concept of slopes and bicentered forms�

� Nested Form� For multivariate polynomials we dene the nested form� which is motivated by eliminating
common subexpressions and by exploiting the subdistributivity law� It is roughly as accurate as the
Horner form but less expensive�

� Experimental Comparison� Finally� we compare various univariate and multivariate range computa	
tion methods experimentally in the context of Newton�s method and a global optimization algorithm�
Therefore� we give an implementation of extended interval arithmetic on top of the IEEE standard ���
and prove its correctness�

Solution of Systems of Equations� The second part of the thesis is devoted to solving systems of
nonlinear equations� Our contribution is as follows�

� Acceleration� In order to accelerate the known algorithms we introduce a new operation called tigh	
tening� The idea is to evaluate a multivariate equation in all variables except for one on the given
box and to solve the obtained univariate interval equation� Tightening can be applied directly to the
given equations or to linearizations of them� When applied to linearizations� tightening is equivalent
to the non�preconditioned Hansen�Sengupta operator with a di�erent strategy for choosing equa	
tions and variables� We give a uniform and geometric framework for linearized tightening and the
Hansen�Sengupta operator� Then we give a new condition for non�existence of solutions for linearized
tightening� According to experimental results tightening usually leads to signicant speedups�

� Termination� Certain interval methods fail to terminate if the search space is decomposed in such a
way that a solution lies on the boundary of some sub�box� We solve this problem by slightly enlarging
the given box X obtaining �X� testing whether the Hansen�Sengupta operator converges starting from
�X and if so� iterating until we obtain a box Y which is either in the interior of �X or disjoint fromX �
We prove correctness and termination of this algorithm under the assumption that the system has only
nitely many simple solutions and the �oating point number accuracy is high enough�

� Application to Robotics� We apply the techniques developed above to the robot inverse kinematics prob	
lem� Exploiting the inherent structure of this problem results in a signicant e�ciency improvement�
Experimental results of a parallel implementation on a workstation network and on a super computer
using PVM are reported�
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Zusammenfassung

Inhalt dieser Arbeit ist eine systematische Darstellung bekannter und neuer Ergebnisse 
uber die Ein	
grenzung des Wertebereichs von Polynomen und 
uber die L
osung nichtlinearer Gleichungssysteme mit
Intervallmethoden�

Wertebereich von Polynomen� Die Eingrenzung des Wertebereichs von Polynomen ist ein elementares
Teilproblem in vielen Disziplinen wissenschaftlichen Rechnens� Die wichtigsten neuen Ergebnisse dieser
Arbeit sind wie folgt�

� Zentrische Form� Wir geben einen neuen� elementareren Beweis der bekannten quadratischen Konver	
genz zentrischer Formen�

� Horner Form� F
ur jedes Polynom f existiert ein IntervallOf so da� f
ur jedes X� dessen Inneres Of nicht
schneidet� das Horner Schema von f aufX exakt ist� Das kleinste solche Of ist die H
ulle der Nullstellen
der Teilpolynome� die w
ahrend der Hornerauswertung von f auftreten� W
ahrend der Auswertung
von f auf X kann diese Nicht�
Uberabsch
atzungsbedingung ohne Zusatzaufwand getestet werden� Es
ist uns nicht gelungen� eine notwendige und hinreichende Bedingung f
ur Nicht�
Uberabsch
atzung zu
formulieren� stattdessen fanden wir einige andere hinreichende Bedingungen�
Falls das Argument Intervall der Horner Form Null enth
alt� spalten wir es bei Null und werten beide
Teile separat aus� Da beide Teile einen Endpunkt Null haben� sind die Gesamtkosten f
ur beide Auswer	
tungen vergleichbar mit denen des gew
ohnlichen Horner Schemas� aber die Eingrenzung ist im allge	
meinen genauer� Falls die dichte Horner Form ausgewertet auf X eine 
Uberabsch
atzung liefert� dann
wird durch zerteilen von X immer eine Verbesserung erzielt� Falls X zentriert ist� dann wird durch
zerteilen am Mittelpunkt der 
Uberabsch
atzungsfehler der dichten Horner Form mindestens um die
H
alfte reduziert� Diese Beobachtung wird ausgenutzt um den 
Uberabsch
atzungsfehler der dichten Tay	
lor Form um mindestens die H
alfte zu reduzieren�

� Mittelwertsform� Die Weite der Mittelwertsform ist die selbe f
ur jede Wahl des Zentrums zwischen
den optimalen Zentren der bizentrischen Mittelwertsform� Diese Weite ist kleiner als wenn ein anderes
Zentrum gew
ahlt wird� Daher ist der Mittelpunkt ein optimales Zentrum der Mittelwertsform�

� Bernstein Form� F
ur die Bernstein Form zeigen wir Inklusionsmonotonie und da� f
ur �hinreichend
kleine� Intervalle keine 
Uberabsch
atzung eintritt� Wenn das Argument Intervall Null enth
alt� spalten
wir es bei Null und werten die Teile separat aus� Dies f
uhrt zu engeren Eingrenzungen und erlaubt
schnellere Auswertung� da jedes Teilintervall einen Endpunkt Null hat und daher die Berechnung der
Taylor Koe�zienten trivial ist�

� Interpolationsform� Wir geben einige Verbesserungen der Genauigkeit von Interpolationsformen� indem
wir sie mit dem Konzept von Steigungen und bizentrischen Formen kombinieren�

� Geschachtelte Form� F
ur multivariate Polynome denieren wir die geschachtelte Form� die durch die
Eliminierung gemeinsamer Teilausdr
ucke und die Ausnutzung des Subdistributivit
atsgesetzes motiviert
ist� Sie ist etwa gleich genau wie die Horner Form� aber schneller�

� Experimenteller Vergleich� Wir vergleichen verschiedene univariate und multivariate Wertebereichsme	
thoden experimentell im Kontext des Newton Verfahrens und eines globalen Optimierungsalgorithmus�
Dazu implementieren wir generalisierte Intervallarithmetik basierend auf dem IEEE Standard ��� und
beweisen die Korrektheit�

L�osung von Gleichungssystemen� Der zweite Teil der Arbeit ist der L
osung nichtlinearer Gleichungs	
systeme gewidmet� Unser Beitrag ist wie folgt�

� E�zienz� Um die bekannten Algorithmen zu beschleunigen denieren wir eine neue Operation genannt
Einengung� Die Idee ist� eine multivariate Gleichung in allen Variablen au�er einer auf dem gegebe	
nen Intervall auszuwerten und die so erhaltene Intervallgleichung zu l
osen� Einengung kann entweder
direkt auf die gegebenen Gleichungen angewandt werden oder auf Linearisierungen� Angewandt auf
Linearisierungen ist Einengung gleichbedeutend mit dem unkonditionierten Hansen�Sengupta Operator
mit einer anderen Strategie f
ur die Auswahl von Gleichungen und Variablen� Wir geben eine einheitliche
und geometrische Darstellung von linearisierter Einengung und Hansen�Sengupta Operator und zeigen
ein neues Kriterium f
ur die Nichtexistenz von L
osungen f
ur linearisierte Einengung� Entsprechend
unserer experimentellen Ergebnisse f
uhrt Einengung im allgemeinen zu deutlichen Beschleunigungen�

� Terminierung� Gewisse Intervallmethoden terminieren nicht wenn der Suchraum so zerteilt wird� da�
eine L
osung am Rand eines Teilintervalls liegt� Wir l
osen dieses Problem indem wir eine geringe
Vergr
o�erung �X des gegebenen Intervalls X bestimmen� testen ob der Hansen�Sengupta Operator

ix



ausgehend von �X konvergiert und in diesem Fall so lang iterieren bis wir ein Interval Y erhalten� welches
entweder im Innern von �X liegt oder disjunkt von X ist� Wir beweisen Korrektheit und Terminierung
dieses Algorithmus unter der Annahme� da� das Gleichungssystem nur endlich viele einfache L
osungen
hat und die Gleitkommagenauigkeit ausreicht�

� Anwendung auf Robotik� Wir wenden die oben beschriebenen Techniken auf das inverse Roboter Kine	
matikproblem an� Durch Ausnutzung der inherenten Struktur dieses Problems wird eine deutliche
E�zienzverbesserung erzielt� Experimentelle Ergebnisse einer Implementierung auf einem Workstation
Netzwerk und einem Superrechner unter Verwendung von PVM werden berichtet�
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Overview

This thesis describes systematically known and new results on bounding the range of polynomials and
solving systems of nonlinear equations using interval methods� The known results are presented as
described by the table of contents whereas the new results are scattered throughout the thesis� Thus� in
this overview we emphasize the original contributions�

Chapter � contains an introduction to the main concepts of interval arithmetic� In particular we give
a general denition of centered forms �Denition ������� page ��� and a new� more elementary� proof of
their quadratic convergence �Theorem ������� page ����

An implementation of extended interval arithmetic on top of the IEEE standard ��� for binary �oating
point numbers and the proof of its correctness is subject of Chapter ��

In Chapter � we discuss methods for bounding the range of univariate polynomials� The main original
results are as follows�

� Horner Form� For every polynomial f there exists an interval Of such that for every interval X which
is disjoint from the interior of Of � the Horner evaluation of f on X is exact �Theorem ������� page ����
The smallest such Of is the hull of all roots of the intermediate polynomials arising during the Horner
evaluation of f � Theorem ������� page ���� During evaluation of f on X this non�overestimation
condition can be decided without additional computation� �Theorem ������� page ���� Further su�cient
conditions for non�overestimation of the Horner form are given by Theorem ������� Corollary �������
Corollary ������ and Theorem �������
If the input interval of the Horner form does not contain zero then the evaluation can be accelerated
by replacing some interval power computations by number power computations �Algorithm �������
page ���� This observation is also used to speed up the separate computation of upper or lower bound
of the Horner form �Algorithm ������� page ����
If the input interval of the Horner form contains zero� then we bisect it at zero and evaluate both halves
separately� As both halves have one endpoint zero� the total cost for the evaluations is comparable to
the cost of the ordinary Horner form but gives usually tighter inclusions �Algorithm ������� page ����
If the dense Horner form evaluated on X overestimates� then any bisection of X gives an improvement
�Theorem ������� page ���� If X is centered� then bisection at the midpoint reduces the overestimation
error of the dense Horner form at least by half �Theorem ������� page ���� This observation is used to
reduce the overestimation error of the dense Taylor form at least by half �Algorithm ������� page ����

� Mean Value Form� Any choice of a center between the optimal centers of the bicentered mean value
form results in the same width of the mean value form� which is smaller than if the center is chosen
di�erently �Theorem ������� page ���� Hence� the midpoint is a width optimal center for the mean
value form�

� Bernstein Form� For the Bernstein form we show that it is inclusion monotone �Theorem �������
page ��� and that it gives the exact range provided the input interval is �small enough� �Theorem �������
page ����� If the input interval contains zero� we bisect it at zero� This gives tighter inclusions and al	
lows faster evaluation because each sub�interval has one endpoint zero and hence the Taylor coe�cient
computation is trivial �Algorithm ������� page �����

� Interpolation Form� We present some accuracy improvements of interpolation forms by combining them
with the concept of bicentered forms �Section ������ and slopes �Section �������

� Experimental Comparison� Finally� we compare various range computation methods experimentally at
some classes of random polynomials� in the context of Newton�s method� and in the context of a global
optimization algorithm�

�



�

Chapter � generalizes some results of Chapter � to the multivariate case� For e�ciency reasons we
restrict our considerations to methods which preserve sparsity of the given polynomial� In particular�
we introduce the nested form� �Denition ������� page ���� which is motivated by eliminating common
subexpressions and by exploiting the subdistributivity law� It is roughly as accurate as the Horner
form but less expensive� Again� we compare multivariate range computation methods at some classes of
random polynomials� in the context of a root nding algorithm� and in the context of a global optimization
algorithm�

Chapter � and Chapter � are concerned with the solution of systems of nonlinear equations� InChapter �
we review methods for testing existence� uniqueness and non�existence of solutions in a box and give
elementary geometric proofs of the main theorems� We introduce a modication of the Hansen�Sengupta
operator called linearized tightening and give a new non�existence property �Theorem ������ page �����
While linearized tightening is not as powerful as the Hansen�Sengupta operator for testing uniqueness
and existence of solutions �Section ������� experimental results indicate that it still leads in many cases
to an e�ciency improvement �Table ������� page �����
Certain algorithms for solving systems of nonlinear equations fail to terminate if the search space is
decomposed in such a way that a solution lies on the boundary of some sub�box� We solve this problem
by slightly enlarging the given box X obtaining �X� testing whether the Hansen�Sengupta operator
converges starting from �X and if so� iterating until we obtain a box Y which is either in the interior
of �X or disjoint from X � �Algorithm ������ page ����� We prove correctness and termination of this
algorithm under the assumption that the system has only nitely many simple solutions and the �oating
point number accuracy is high enough �Section ����� Finally� we review a method for nding all solutions
of a system of polynomial equations when the search space is unbounded �Section ������

In Chapter � we introduce a new method called tightening for pruning the search space� Various
experiments show that applying tightening in a Hansen�Sengupta operator based solver gives usually
signicant e�ciency improvements �Table ������ page �����

Finally� in Chapter  we apply the methods developed above to the robot inverse kinematics problem�
The computation is accelerated by exploiting the inherent structure of this problem �Table ���� page �����
Experimental results of a parallel implementation on a workstation network �Table ������ page ���� and
on a super computer �Table ������ page ���� are reported�



Symbol Index

A Coe�cient matrix of the linear interval function G� A � IRn�n ���
a Element of A� a � Rn�n ���

B
�k�
f Bernstein form of order k ��

b
�k�
j The j	th Bernstein coe�cient of f of order k ��

b
�k�X�
j The j	th Bernstein coe�cient of f of order k over X ��
��X� Boundary of X ���
Df Distributed form of f ���
�� Sequence� �� � h��� � � � � �mi� �� � R ���
f Point function Rn � R ��
F Interval function IRn � IR �
F Floating point interval function F � IFn � IF� F�A� � ��F ���A��� ��
Fn Set of functions IRn � IR �
F Set of �oating point numbers ��
Fo Set of ordinary �oating point numbers ��
F� Set of generalized �oating point numbers ��
� Interpretation function for ordinary �oating point numbers� � � Fo � R ��
G Linear interval function� G � Rn � IR

n ���
gdiv Generalized division� gdiv � IR� � IR� � IR� � P�R� ��
Hf Univariate � Multivariate Horner form of f �� � ���
H�
f Dense Horner form of f ��

 Hf Horner form with bisection at � ��
hdiv Hull division� hdiv � IR� � IR� � IR� ��
IA Set of sub�intervals of A ��
If Interpolation form of f ���

If Modied interpolation form of f ���

I
�s�
f Slope interpolation form of f ���
�I
�s�
f Parabolic boundary value form of f ���

IF Set of �oating point intervals ��
IF� IF� � IF� f�	� 	�g ��
int�X� Interior� int�X� � XnfX�Xg �
IR Set of closed and bounded intervals over R �
IR Set of extended intervals ��
IR� IR� � IR� � ��
IR� IR� � IR� � ��

 Lipschitz constant ��

F�A Lipschitz constant of F in A ��

F�f�A Lipschitz constant for the overestimation of f by F in A ��
mid�X� Mid� mid�X� � ����X !X� �
m Preconditioning matrix� m � Rn�n ���
Mf Univariate � Multivariate mean value form of f �� � ���
M�

f Dense mean value form of f ��

M
�s�
f Slope form of f ��

�



�

M
��s�
f Dense slope form of f ��


Mf Univariate � multivariate bicentered mean value form of f �� � ���

M
�H�
f Mean value � Horner form of f ���

M�f Successive mean value form ���

M
�s�
�

f Successive slope form ���

M �H�
f Mean value � Horner form of f ���


M�f Successive bicentered mean value form of f ���

mag�X� Magnitude� mag�X� � maxfjxj j x � Xg �

mig�X� Mignitude� mig�X� � minfjxj j x � Xg �
Nf Nested form of f ���
Of Overestimation interval of f ��

p
�k�
j The j	th Bernstein polynomial of order k ��

p
�k�X�
j The j	th Bernstein polynomial of order k over X ��
p� Path� p� � hp�� � � � � pmi� p� � �Gi� � j�� ���
P Powerset ��
� Interpretation function for �oating point intervals� � � IF� � IR� ��
q�X�Y � Distance� q�X�Y � � maxfjX � Y j� jX � Y jg �
"q�X�Y � Distance� "q�X�Y � � maxi q�Xi� Yi� �
Qf Interval such that Qf �	 Of ��
�
��

�
��
�
� Round to nearest� round up� round down function�

�
��

�
��
�
�� R� F ��

rad�X� Radius� rad�X� � ����X �X� �
R Set of real numbers �
� Rounding function for intervals� � � IR� � IF� ��
smig�X� Signed mignitude ��
Tf Taylor form of f ��
T �f Dense Taylor form of f ��
 T �f Dense Taylor form of f with bisection ��
tight Linear tightening� tight � IRn � �Rn � IR� � f�� � � � � ng � IR

n
� ���

w�X� Width� w�X� � X �X �
"w�X� Maximal width� "w�X� � maxi w�Xi� �
w��X� Sum of widths� w��X� �

P
iw�Xi� �

w��X� Volume� w��X� �
Q

iw�Xi� ���
X Interval �
X Interval vector �
X�X Lower respectively upper endpoint of the interval X �
jXj Absolute value� jXj � fjxj j x � Xg �

X�i� Upper i	face� X�i� � �X�� � � � � Xi��� X i� Xi��� � � � � Xn� ���

X
�i� Lower i	face� X�i� � �X�� � � � � Xi��� Xi� Xi��� � � � � Xn� ���

X
�i� i	face� X�i� �X �i� �X�i� ���

# � � � $ Hull operator �

 Floating point number for � ��
� Floating point number for �� ��
	 Not a number ��
�

!�
�

!�
�

! Floating point addition rounded to nearest� up� down�
�

!�
�

!�
�

!� F� � F� � F� ��
��� ��� �� Floating point subtraction rounded to nearest� up� down�

��� ��� ��� F� � F� � F� ��
�� �� � Floating point multiplication rounded to nearest� up� down�

�� �� �� F� � F� � F� ��
�

��
�

��
�

� Floating point division rounded to nearest� up� down�
�

��
�

��
�

�� F� � F� � F� ��
�� � �� Modied �oating point multiplication rounded up� down�

�� � �� � F� � F� � F� ��



Chapter �

Interval Arithmetic

This chapter gives a brief introduction to the main concepts of interval arithmetic� For a more com	
prehensive survey we recommend the excellent monographs #Moore� ����$� #Moore� ����$� #Alefeld and
Herzberger� ����$� #Ratschek and Rokne� ����$� #Ratschek and Rokne� ����$� #Neumaier� ����$� #Hansen�
����$ and #Hammer et al�� ����$�

In Section ��� we dene interval arithmetic operations� and give some important algebraic properties�
Further� we introduce notation which will be used throughout the thesis� A topology on the set of
intervals is dened in Section ���� Having a topology at hand� important notions like continuity and
convergence are dened� Some elementary properties of interval functions are subject of Section ����
Interval functions usually occur when the range of a real function over an interval has to be estimated�
In this context we give a general denition of a centered form� Concrete instances of centered forms are
presented in Chapter � and Chapter ��

��� Foundations

By an interval we mean a set
#a� b$ � fx j a � x � bg

where a� b � R� the set of real numbers� The set of intervals over R is denoted by IR� Intervals are written
in capital letters� The lower and upper endpoint of an interval X is denoted by X respectively X�

In order to distinguish intervals from arbitrary sets� we use a calligraphic font for the latter� If X is a
bounded set of real numbers� then we write #X $ to denote the smallest �w�r�t� �� interval which contains
all elements of X � We call #X $ the hull of X � For ease of notation we dene

#a� b$ � #b� a$

for a � b�

By an n	dimensional interval vector we mean an ordered n	tuple of intervals X � �X�� � � � � Xn�� The set
of n	dimensional interval vectors is denoted by IRn� Tuples are written in bold face�

Every continuous function f � Rn � R can be extended to IRn � IRby

f�X � � ff�x� j x �Xg�
This allows us to embed R into IRby the morphism

�x� � #x� x$

which is dened for tuples component wise� Elements of IRwhich are not in Rare called proper intervals�
elements of R are called points�

For the extension of arithmetic functions to intervals it su�ces to consider endpoints�

�



CHAPTER �� INTERVAL ARITHMETIC �

Theorem ����� �Interval Arithmetic� For all X�Y � IR it holds that

X ! Y � #X ! Y �X ! Y $

X � Y � #X � Y �X � Y $

XY � #fXY �XY �XY �XY g$
X�Y �

�
#fXY �XY �XY �XY g$ if � �� Y

unde�ned else

�X � #�X��X $� �

One easily checks the following properties of interval arithmetic operations�

Theorem ����� �Algebraic Properties� For all X�Y� Z � IR it holds that

� Associativity� �X ! Y � ! Z � X ! �Y ! Z�� �XY �Z � X�Y Z�
� Commutativity� �X ! Y � � �Y !X�� XY � Y X
� Neutral Element� � !X � X� �X � X� �

However� proper intervals do not have additive or multiplicative inverses� Further� the distributivity law
does not hold for intervals� Instead� we have the following weaker version�

Theorem ����� �Subdistributivity� For all X�Y� Z � IR it holds that

X�Y ! Z� � XY !XZ

X�Y ! Z� � XY ! Y Z if X � R or Y � Z � � or Y � Z � �� �

Remark� As intervals do not have additive inverses� IRn is not a vector space� Still� we call the elements
of IRn interval vectors� Sometimes we use the more intuitive term �box� or simply interval� �

Some useful standard functions which are used frequently in this thesis are listed below�

Midpoint� mid�X� � ����X !X�
Width� w�X� � X �X

Radius� rad�X� � ����X �X�
Absolute Value� jXj � fjxj j x � Xg
Mignitude� mig�X� � minfjxj j x � Xg
Magnitude� mag�X� � maxfjxj j x � Xg
Interior� int�X� � XnfX�Xg�

The functions extend to tuples component wise� For interval vectors we dene

Maximal Width� "w�X� � maxiw�Xi�
Sum of Widths� w��X� �

P
iw�Xi��

��� Topology on the Set of Intervals

In this section we dene a metric topology on the set of intervals which induces important concepts like
convergence� continuity� etc�

De�nition ����� �Distance� The distance between two intervals X�Y � IR is de�ned as

q�X�Y � � maxfjX � Y j� jX � Y jg�
For interval vectors X �Y � IRn we de�ne

"q�X �Y � � max
i�������n

q�Xi� Yi�� �
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Theorem ����� The distance function "q � IRn � IRn � R is a metric on IRn�

Proof� We have to show the following three properties�

� Positivity� For all X �Y � IRn it holds that

"q�X�Y � � �� and "q�X �Y � � � i� X � Y �

� Symmetry� For all X�Y � IRn it holds that

"q�X �Y � � "q�Y �X��

� Triangle Inequality� For all X�Y �Z � IRn it holds that

"q�X�Y � � "q�X�Z� ! "q�Y �Z��

Positivity and symmetry follow immediately from Denition ������ hence it remains to show the triangle
inequality� Let X�Y �Z � IR

n arbitrary but xed� let "i such that "q�X �Y � � q�X�i� Y�i� and let X �
X�i� Y � Y�i� Z � Z�i� As

q�X�Z� ! q�Y� Z� � "q�X �Z� ! "q�Y �Z�

it su�ces to show that
q�X�Y � � q�X�Z� ! q�Y� Z��

q�X�Z� ! q�Y� Z� � maxfjX � Zj� jX � Zjg!maxfjY � Zj� jY � Zjg
� maxfjX � Zj! jY � Zj� jX � Zj! jY � Z jg
� maxfjX � Y j� jX � Y jg
� q�X�Y �� �

The metric "q induces a topology on IRn� which is given by its open sets in the following way�

De�nition ����� �Open Subsets of IRn� A set S � IR
n is open in IRn if for all X � S there exists

a real number � � � such that
fY � IRn j "q�X �Y � � �g � S� �

Theorem ����� Let On be the set of open subsets of IRn� Then �IRn�On� is a topological space�

Proof� See #Armstrong� ����$� �

In the sequel� when we write IRn� we always mean the topological space �IRn�On��

De�nition ����� �Convergent Sequence� A sequence hX�k� � IRn� k � �� �� � � �i is called convergent
if there exists X � IRn such that

lim
k��

"q�X �k��X� � ��

In this case X is called a limit of the sequence hX �k�i�

Theorem ����� A sequence hX �k� � IRn� k � �� �� � � �i converges to X � IRn i�

lim
k��

X
�k�
i � Xi and lim

k��
X

�k�
i � Xi

for all i � �� � � � � n� �

Proof�
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��� Assume hX �k�� k � �� �� � � �i converges to X and let i � f�� � � � � ng and � � � arbitrary but xed�
Then there exists k� � N such that

q�X
�k�
i � Xi� � � for all k � k��

It follows that

jX�k�
i �Xij � �� jX�k�

i �Xij � �

for all k � k�� thus

lim
k��

X
�k�
i � Xi� lim

k��
X

�k�
i � Xi�

��� Assume hX�k�
i i converges to Xi and hX�k�

i i converges to Xi for i � �� � � � � n and let � � � arbitrary
but xed� Then there exists k� � N such that

jX�k�
i �Xij � �� jX�k�

i �Xij � �

for all i and all k � k�� It follows that

"q�X �k��X� � � for all k � k��

thus
lim
k��

X
�k� � X � �

De�nition ���� �Nested Sequence� A sequence hX �k� � IRn� k � �� �� � � �i is called nested if

X �k��� �X �k� for all k � �� �

Theorem ����	 A nested sequence hX�k� � IRn� k � �� �� � � �i is convergent� �

Proof� Let hX �k�i be a nested sequence� According to Theorem ����� it su�ces to show that

lim
k��

X
�k�
i � Xi and lim

k��
X

�k�
i � Xi for all i � �� � � � � n�

Let i � f�� � � � � ng be arbitrary but xed� Obviously hX�k�
i i is a nested sequence� Hence hX�k�

i i is a

monotone� nondecreasing sequence of real numbers� bounded above by X
���
i and so has a limit a � R�

Similarly� hX�k�
i i is a monotone� non�increasing sequence of real numbers� bounded below by X

���
i and

so has a limit b � R� As X�k�
i � X

�k�
i for all k� it holds that a � b� hence hX�k�

i i converges to #a� b$� �

��� Interval Functions

Interval functions are functions which map intervals to intervals� They arise naturally when one wants to
enclose the range of a point function over an interval� Obviously� we are interested in interval functions�
which bound the range as tight as possible and which are cheap to evaluate� The interval function� which
returns the exact range is most accurate but usually very expensive� The interval function� which returns
#����$ for all arguments is cheap� but of little use�

First� we have to make more precise what is meant by �bounding the range tightly�� A well known
criterion is convergence� How fast does the the interval function value approximate the range� if the width
of the argument interval approaches zero% Unfortunately the notion of convergence is only meaningful
for �small� argument intervals� Only in this case� a higher convergence order means tighter inclusions�
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It seems that no useful criterion was found so far to compare overestimation errors of interval functions
in the non�asymptotic case systematically�

In Section ����� we review some important properties of interval functions in general� Having a topology
at hand� continuity is already dened �Section ��������� The other two properties� inclusion monotonicity
�Section �������� and the Lipschitz property �Section �������� capture in what sense a �reduction� of the
argument interval leads to a �reduction� of the function value�

In Section ����� we introduce the fundamental notion of an interval extension� An interval extension
of a point function is an interval function which encloses the range of the point function over intervals�
Section ������� is concerned with an important class of interval extensions called centered forms� We give
a new elementary proof of their quadratic convergence�

����� Properties of Interval Functions

Throughout this thesis interval functions are denoted by capital letters� In the sequel let F � IRn � IR

be an interval function�

������� Inclusion Monotonicity

De�nition ����� �Inclusion Monotonicity� F is inclusion monotone if for all X � Y � IRn it holds
that

F �X� � F �Y �� �

Theorem ����� Constant functions and projections IRn � IRare inclusion monotone� �

Theorem ����� Interval addition� subtraction� multiplication and power by a natural constant are in�
clusion monotone� �

Proof� Follows immediately from the fact that X � Y � fx � y j x � X� y � Y g for � � f!��� g and
Xd � fxd j x � Xg� �
Remark� Mignitude� magnitude� midpoint and width function are not inclusion monotone� �

Theorem ����� �Composition Preserves Inclusion Monotonicity� Let F � IRm � IR and Gi �
IR

n � IR� i � �� � � � �m be inclusion monotone� Then F �G�� � � � � Gm� � IRn � IR is inclusion mono�
tone� �

Proof� Let F�Gi as in Theorem ����� and let X � Y � IRn arbitrary but xed� Then

�G��X�� � � � � Gm�X�� � �G��Y �� � � � � Gm�Y ��

as all Gi are inclusion monotone and

F �G��X�� � � � � Gm�X�� � F �G��Y �� � � � � Gm�Y ��

as F is inclusion monotone� �

Corollary ����� �Class of Inclusion Monotone Functions� Let Fn be the smallest set of functions
IR

n � IR� which contains all constant functions� all projections� and is closed under addition� subtraction�
multiplication and power by a natural constant� Then every F � Fn is inclusion monotone� �

������� Continuity

De�nition ����� �Continuous Function� F � IRn � IR is continuous at X � IRn if

lim
k��

F �X�k�� � F �X�
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for every sequence hX �k� � IRn j k � �� �� � � �i converging to X� F is continuous if F is continuous at
every X � IRn� �

Theorem ���� Constant functions and projections IRn � IRare continuous� �

Proof� Obvious� �

Theorem ����	 Mignitude� magnitude� midpoint and width are continuous functions� �

Proof� Let hX�k� � IR j k � �� � � � � ni be a sequence converging to X�

� Mignitude and Magnitude� Note that q�A�B� � jmig�A� �mig�B�j for all A�B � IR� Hence
lim
k��

jmig�X�k���mig�X�j � lim
k��

q�X�k�� X� � ��

i�e� mig�X�k�� converges to mig�X�� A similar argument holds for magnitude�

� Midpoint�

lim
k��

mid�X�k�� � lim
k��

����X�k� !X�k��

� ���� lim
k��

X�k� ! lim
k��

X�k��

� ����X !X�

� mid�X��

� Width�

lim
k��

w�X�k�� � lim
k��

�X�k� �X�k��

� lim
k��

X�k� � lim
k��

X�k�

� X �X

� w�X�� �

Theorem ����
 Interval addition� subtraction� multiplication and power by a natural constant are con�
tinuous� �

Proof� Let h�X�k�� Y �k�� � IR� j k � �� �� � � �i be a sequence converging to �X�Y ��

� Addition and Subtraction�

lim
k��

�X�k� � Y �k�� � lim
k��

#X�k��� Y �k�� X�k� � Y �k�$

� # lim
k��

�X�k� � Y �k��� lim
k��

�X�k� � Y �k��$

� #X � Y �X � Y $

� X � Y�

� Multiplication�

lim
k��

�X�k� Y �k�� � lim
k��

#X�k� Y �k�� X�k� Y �k�� X�k� Y �k�� X�k� Y �k�$

� # lim
k��

X�k� Y �k�� lim
k��

X�k� Y �k�� lim
k��

X�k� Y �k�� lim
k��

X�k� Y �k�$

� #X Y �X Y �X Y �X Y $

� XY�
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� Power by d � �� d � N�
� Assume d is odd�

lim
k��

�X�k�d� � lim
k��

#X�k�d� X�k�
d
$

� # lim
k��

�X�k�d�� lim
k��

�X�k�
d
�$

� #Xd� X
d
$

� Xd�

� Assume d is even�

lim
k��

�X�k�d� � lim
k��

#mig�X�k��d�mag�X�k��d$

� # lim
k��

�mig�X�k��d�� lim
k��

�mag�X�k��d�$

� #mig�X�d�mag�X�d$

� Xd� �

Theorem ������ �Composition Preserves Continuity� Let F � IRm � IR and Gi � IRn � IR�
i � �� � � � �m be continuous functions� Then F �G�� � � � � Gm� � IRn � IR is continuous� �

Proof� See #Armstrong� ����$� Theorem ���� �

Corollary ������ �Class of Continuous Functions� Let Fn be the smallest set of functions IRn �
IR� which contains all constant functions� all projections� and is closed under the mignitude� magnitude�
midpoint� width function� addition� subtraction� multiplication and power by a natural constant� Then
every F � Fn is continuous� �

������� Lipschitz Property

De�nition ������ �Lipschitz Constant� Lipschitz Function� Let A � IRn� A real number 
F�A is
a Lipschitz constant of F in A if for all X � A it holds that

w�F �X�� � 
F�A "w�X��

F is a Lipschitz function if there exists a Lipschitz constant of F in A for all A � IRn� �

Theorem ������ Constant functions and projections IRn � IRare Lipschitz� �

Proof� Obvious� �

Theorem ������ Mignitude� magnitude� midpoint and width are Lipschitz functions� �

Proof� Obvious� �

Theorem ������ Interval addition� subtraction� multiplication and power by a natural constant are
Lipschitz functions� �

Proof�

� Addition and Subtraction� Let A � IR� and let �X�Y � range over subintervals of A� Then

w�X ! Y � � w�X� ! w�Y �

� �"w�X�Y ��

Hence � is a Lipschitz constant of addition in A�
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� Multiplication� Let A � IR� and let �X�Y � range over subintervals of A� Then

w�XY � � mag�X�w�Y � ! mag�Y �w�X�� see #Neumaier� ����$

� mag�A��w�Y � ! mag�A��w�X�

� maxfmag�A���mag�A��g
�
w�X� ! w�Y �

�
� �maxfmag�A���mag�A��g"w�X�Y ��

Hence �maxfmag�A���mag�A��g is a Lipschitz constant of multiplication in A�

� Power� Let A � IRand let X range over subintervals of A� By induction we show that for all i � �
it holds that

w�Xi� � imag�X�i��w�X�� �������

Obviously ����� holds for i � �� Assume ����� holds for some i � �� Then

w�Xi��� � w�XXi�

� mag�X�w�Xi� !mag�Xi�w�X�

� mag�X�imag�X�i��w�X� ! mag�X�iw�X�

� imag�X�iw�X� !mag�X�iw�X�

� �i! ��mag�X�iw�X��

Hence w�Xi� � imag�A�i��w�X� and imag�A�i�� is a Lipschitz constant of the i	th power function
in A� �

Theorem ������ �Preservation of Lipschitz Property under Composition� Let F � IRm � IR

be a Lipschitz function and let Gi � IR
n � IR� i � �� � � � �m be Lipschitz functions such that each Gi is

continuous or inclusion monotone� Then F �G�� � � � � Gm� � IRn � IR is a Lipschitz function� �

The proof of Theorem ������ needs some preparation� In the following let IA be the set of subintervals
of A with the subspace topology of IRn dened on it�

Lemma ����� IA is compact for every A � IRn� �

Proof� Let A � IRn arbitrary but xed� dene

A � f�u�v� � R�n j Ai � ui � vi � Ai� i � �� � � � � ng

and let h � A � IA be dened as
h�u�v� � #u�v$�

A is a closed and bounded subset ofR�n� hence it is compact �#Armstrong� ����$� Theorem ����� Obviously
h is continuous and therefore IA is compact �#Armstrong� ����$� Theorem ����� �

Lemma �����	 Let A � IRn and assume G � IRn � IR is continuous� Then

fmag�G�X�� j X � IAg

is bounded� �

Proof� Follows from Lemma ������ and #Armstrong� ����$� Theorem ����� �

Proof of Theorem ������� Let F�Gi be as in Theorem ������� Let A � IRn arbitrary but xed� First�
we show that there exists an interval vector A� � IRn such that

A�i 	 Gi�X� for all X � IA�

� If Gi is continuous then the existence of A�i follows from Lemma �������
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� If Gi is inclusion monotone then we may choose A�i � Gi�A��

Let 
F�A� be a Lipschitz constant ofF inA� and let 
Gi�A be Lipschitz constants ofGi inA for i � �� � � � �m
respectively� Then for every subinterval X of A it holds that

w�F �G��X�� � � � � Gm�X�� � 
F�A� maxfw�G��X��� � � � �w�Gm�X��g
� 
F�A� maxf
G��A� � � � � 
Gm�Ag"w�X��

Hence

F�A� maxf
G��A� � � � � 
Gm�Ag

is a Lipschitz constant of F �G�� � � � � Gm� in A� �

Corollary �����
 Let Fn be the smallest set of functions IRn � IR� which contains all constant func�
tions� all projections� and is closed under the mignitude� magnitude� midpoint� width function� addition�
subtraction� multiplication and power by a natural constant� Then every F � Fn is a Lipschitz func�
tion� �

����� Inclusion of the Range of Real Functions

������� Interval Extensions

In this section we are concerned with interval functions� which bound the range of real functions� In the
following let f � Rn � R be a point function and let F � IRn � IRbe an interval function�

Notation� The range of f on X is denoted by

f�X� � ff�x� j x �Xg� �

Theorem ������ If f is continuous then f�X � � IR for all X � IRn� �

Proof� Assume f � Rn � R is continuous and let X � IRn� As X is a compact and connected subset of
R
n and f is continuous� it follows that f�X� is a compact and connected subset of R �#Armstrong� ����$�

Theorem ���� ���� ������ Hence f�X� � IR �#Armstrong� ����$� Theorem ������ �

De�nition ������ �Interval Extension� F is an interval extension of f if

f�x� � F �x� for all x � Rn and

f�X � � F �X� for all X � IRn� �

If F is an interval extension of f then F �X� bounds the range of f on X� The following theorem gives
a di�erent characterization of interval extensions�

Theorem ������ If F is inclusion monotone and

f�x� � F �x� for all x � Rn�

then F is an interval extension of f � �

Proof� Let F be inclusion monotone and assume f�x� � F �x� for all x � Rn� We have to show that
f�X� � F �X� for all X� Let X � IRn and y � f�X� arbitrary but xed� Then there exists x �X such
that y � f�x� � F �x� and inclusion monotonicity of F implies y � F �X�� Hence f�X� � F �X�� �

Obviously we are interested in interval extensions of which enclose the precise range as tight as possible�
A frequently used criterion for the accuracy of the overestimation is given by the following denition�
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De�nition ������ �Convergence� An interval extension F of f converges to f with order r inA � IRn
if there exists a real number 
F�f�A such that for all X � IA

q�F �X�� #f�X�$� � 
F�f�A "w�X�r �

F converges to f with order r if F converges to f with order r in A for all A � IRn� �

Lipschitz interval extensions converge at least linearly�

Theorem ������ A Lipschitz interval extension F of f converges linearly to f � �

Proof� Assume F is a Lipschitz interval extension of f � let A � IRn arbitrary but xed and let 
F�A be
a Lipschitz constant of F in A� Then

q�F �X�� #f�X�$� � w�F �X��

� 
F�A"w�X�

for all X � IA� �

������� Centered Forms

An important class of interval extensions are centered forms� Centered forms are quadratically convergent�
hence they give tight inclusions if the with of the argument interval is small� The notion of a centered
form is not dened consistently in the literature� The denition we use is similar to a very general one by
#Ratschek and Rokne� ����$� In Chapter � and Chapter � we study some concrete instances of centered
forms for polynomials�

Centered forms are one of the main areas studied in the literature on interval arithmetic� see for example
#Moore� ����$� #Hansen� ����$� #Hansen� ����$� #Chuba and Miller� ����$� #Miller� ����$� #Miller� ����$�
#Alefeld and Herzberger� ����$� #Miller� ����$� #Ratschek� ����$� #Hansen� ����b$� #Ratschek� ����$� #Moore�
����$� #Caprani and Madsen� ����$� #Ratschek� ����a$� #Ratschek� ����b$� #Ratschek and Rokne� ����b$�
#Ratschek and Rokne� ����a$� #Krawczyk� ����a$� #Krawczyk� ����b$� #Alefeld� ����$� #Alefeld and Rokne�
����$� #Ratschek and Schr
oder� ����$� #Rokne� ����$� #Krawczyk and Nickel� ����$� #Krawczyk� ����$�
#Rokne and Wu� ����$� #Alefeld and Herzberger� ����$� #Krawczyk� ����$� #Rall� ����$� #Rokne and Wu�
����$� #Ratschek and Rokne� ����$� #Alefeld and Lohner� ����$� #Krawczyk and Neumaier� ����$� #Rokne�
����$� #Rokne� ����$� #Baumann� ����$� #Alefeld� ����$� #Neumaier� ����$�

Throughout this section let f � Rn � R be continuous�

De�nition ������ �Centered Form�

� Let g � R�n � R
n such that

f�x� � f�c� ! g�x� c��x � c� for all x� c � Rn�

� Let z � IRn � R
n such that

z�X� �X for all X � IRn�

� Let G � IRn � IR
n such that

g�x� z�X�� � G�X� for all X � IRn and for all x �X
and Gi is Lipschitz for i � �� � � � � n�

Then F � IRn � IR�
F �X� � f�z�X�� !G�X��X � z�X��

is a centered form of f � �



CHAPTER �� INTERVAL ARITHMETIC ��

In the sequel let g� z�G and F as in Denition ������� First� we show that centered forms are interval
extensions�

Theorem ������ F is an interval extension of f � �

Proof�

� If x � Rn then z�x� � x� hence F �x� � f�x��

� Let X � IRn arbitrary but xed and let c � z�X�� For all x �X it holds that

f�x� � f�c� ! g�x� c��x � c�

� f�c� !G�X��x � c�

� f�c� !G�X��X � c�

� F �X��

hence f�X� � F �X��

Theorem ����� �Quadratic Convergence of Centered Forms�� F converges quadratically to f � �

The quadratic convergence of centered forms was rst conjectured by #Moore� ����$ and for multivariate
rational functions rst proven by #Hansen� ����$� A proof by induction on rational expressions is given
by #Chuba and Miller� ����$ and #Miller� ����$� Quadratic convergence is also proved in #Alefeld and
Herzberger� ����$� #Alefeld and Herzberger� ����$� To my knowledge� the most general proof is given by
#Krawczyk and Nickel� ����$� #Ratschek and Rokne� ����$� It uses topological properties and Miranda�s
Theorem #Miranda� ����$� We give a new elementary proof� It requires some preparation� though� and
is postponed until after Lemma �������

De�nition �����	 The signed mignitude of an interval X � IR is de�ned as

smig�X� �

��
�

X if X � �
X if X � �
� if � � X�

For interval vectors X � IRn we de�ne

smig�X� � �smig�X��� � � � � smig�Xn��� �

The following property of the smig function is trivial but will be useful later�

Lemma �����
 For all X � IR it holds that

smig�X� ! #��� �$w�X� 	 X� � �������

Proof� For all x � X it holds that x! #��� �$w�X� 	 X� Further� smig�X� � X� �

Lemma ������ For all X � IRn it holds that

f�z�X�� ! smig�G�X���X � z�X�� � f�X �� � �������

Proof� Let X � IRn arbitrary but xed and let c � z�X�� We have to show that

f�c� ! smig�G�X���X � c� � f�X � �������

f�c� ! smig�G�X���X � c� � f�X �� �������
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We prove �������� a similar argument shows �������� Let

�� � fi j smig�Gi�X�� � �� i � �� � � � � ng
�� � fi j smig�Gi�X�� � �� i � �� � � � � ng

and let "x � X be dened as

"xi �

��
�

X i if i � ��

X i if i � ��
ci else�

Then

f�c� ! smig�G�X���X � c� � f�c� !
nX
i��

smig�Gi�X���Xi � ci�

� f�c� !
X
i�	�

smig�Gi�X���X i � ci� !
X
i�	�

smig�Gi�X���X i � ci�

� f�c� !
X
i�	�

gi�"x� c��X i � ci� !
X
i�	�

gi�"x� c��X i � ci�

� f�c� !
nX
i��

gi�"x� c��"xi � ci�

� f�c� ! g�"x� c��"x � c�

� f�"x�

� f�X�� �

Proof of Theorem ������ Let A � IRn and for i � �� � � � � n let 
Gi�A be a Lipschitz constant of Gi

in A� Let X � IA arbitrary but xed and let c � z�X�� Then

F �X� � f�c� !
nX
i��

Gi�X��Xi � ci�

�������
� f�c� !

nX
i��

�
smig�Gi�X�� ! #��� �$w�Gi�X��

�
�Xi � ci�

� f�c� !
nX
i��

smig�Gi�X���Xi � ci� ! #��� �$w�Gi�X���Xi � ci�

� f�c� !
nX
i��

smig�Gi�X���Xi � ci� !
nX
i��

#��� �$w�Gi�X���Xi � ci�

�������

� f�X � !
nX
i��

#��� �$w�Gi�X���Xi � ci�

� f�X � !
nX
i��

#��� �$w�Gi�X��w�Xi�

� f�X � ! #��� �$"w�X�
nX
i��

w�Gi�X��

� f�X � ! #��� �$"w�X��
nX
i��


Gi�A

� f�X � ! #��� �$"w�X��
G�A�

where


G�A �
nX
i��


Gi�A�
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Hence�
q�F �X�� f�X�� � 
G�A "w�X��

and F converges quadratically to f according to Denition ������� �



Chapter �

Implementation of Interval

Arithmetic

Interval arithmetic was introduced originally as a new approach to the fundamental problem of repre	
senting real numbers on a computer� As is well known� this problem cannot be solved because the set of
real numbers is uncountable but the amount of memory of computers is only countable� �More precisely�
it is nite but can be extended in principle without limit�� So far� there have been two main approaches
to deal with this situation�

� In many cases� it is su�cient to compute with countable subsets of the reals� e�g� integers� rational
numbers or nite extensions of the rationals� Countable sets can be encoded� i�e� the elements of
a countable set can be mapped injectively to nite length bitstrings� Thus� for every algorithm
and input data there exists a nite memory request� such that the computation is possible if the
requested memory is available� The disadvantage of this approach is e�cency� The computing
time of arithmetic operations depends on the length of the argument bitstrings and is therefore not
constant�

� Another approach is to choose a nite subset of the reals and to represent them by xed length bit
strings� We call such a subset of the reals the set of represented numbers� Arithmetic operations on
represented numbers do in general not yield a represented number� Further� the input numbers to
some algorithm need not be represented� Hence� input numbers and intermediate results have to be
rounded to a represented number before they can be processed further� This allows e�cient com	
putation because all �rounded� arithmetic operations can be performed in constant time� However�
rounding introduces errors which accumulate during the computation� and in general it is highly
non�trivial to estimate the size of the error in the output�

The main motivation for interval arithmetic is to overcome the correctness deciency of the second ap	
proach� The idea is to enclose a real number by a real interval where the endpoints are represented
numbers� Naturally� these intervals are called represented intervals and they are encoded simply by
encoding the endpoints� As in the case of represented numbers� arithmetic operations on represented in	
tervals do in general not yield represented intervals� Hence� intermediate results have to be approximated
by represented intervals� and this approximation is always done by represented super intervals� Similarly�
input values are enclosed by represented intervals� Thus� by a suitable modication of the predicates and
the control structures� it can be guaranteed that the output of an algorithmwhich operates on represented
intervals contains the correct result�

As each intermediate result is rounded outwards� the accuracy of the inclusion decreases during the
computation� which leads sometimes to useless results� The simplest solution is to extend the set of
represented numbers in order to reduce the amount of overestimation in each arithmetic operation� In
many cases� however� one can obtain tighter results by rewriting the algorithm without extending the set
of represented numbers� As the set of represented numbers is nite and hence bounded� it is not possible
to enclose every real number by a represented interval� We will handle this problem by adding intervals

��
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of the form fx � R j x � yg� fx � R j x � yg and R to the set of represented intervals� for all represented
numbers y�

Fortunately the denition of represented numbers is standardized by the IEEE standard on binary �oat	
ing point numbers� The main features of this standard are reviewed in Section ���� A mathematical
abstraction of the standard is subject of Section ���� In Section ��� we give an implementation of interval
arithmetic on top of the standard and prove its correctness�

��� The IEEE Standard ��� for Binary Floating Point Arith	

metic

Rounded arithmetic on nite subsets of the reals plays a central role in scientic computing� Much e�ort
has been devoted to improve e�ciency� and nowadays there is support by special hardware in almost
every computer� A necessary precondition for building hardware was to standardize the encoding of
represented numbers� which was achieved by the IEEE standard ��� #IEEE� ����$� Below� we summarize
brie�y a subset of this standard� which will be used in the following sections for implementing machine
interval arithmetic� The bitstrings by which the represented numbers are encoded are called ��oating
point numbers��

����� Floating Point Number Formats

The format of a �oating point number describes its bitlength and its interpretation as a real number�
The IEEE Standard ��� species � �oating point number formats� In our implementations we are using
mainly the double precision numbers� hence we restrict our considerations to this format� A double
precision �oating point number is a string of �� bits� which consists of

� � bit for the sign s � f��� �g
� �� bits for the exponent e � f������ � � � � ����g
� �� bits for the fraction f � f�� ��	�� � � ��	�� � � ��	�� � � � � ��	�� ����	�g�

The value of a �oating point number is either undened or an element of R�f����g� Given values for
s� e and f � the value v of a �oating point number computes as follows�

� If ����� � e � ����� then v � s�� ! f�  �e�
� If e � ����� then v � sf  ���
��� Non�zero �oating point numbers with this property are called
denormalized�

� If e � ���� and f �� � then v is undened� Floating point numbers with this property are called
Nan �not a number��

� If e � ���� and f � � then v � s�� Floating point numbers with this property are called innite�

In the rst � cases� the �oating point number is called ordinary� If no confusion can arise� we do not
distinguish between a �oating point number and its value�

����� Predicates

The predicates �� ��� �� �� �� � are dened on non�Nan �oating point numbers according to their
values� The IEEE standard ��� denes the result of the comparison operations also for the case when
one or both operands are Nan� but we will not make use of this feature�
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����� Direction Rounded Arithmetic

The arithmetic operations !��� � � and the square root operation are dened on �oating point numbers�
The operations are performed as if they rst produced a correct intermediate result which is then rounded
to a neighboring �oating point number� It is possible to decide whether the correct result is rounded
up� down� to the nearest represented number� or towards zero� In case of rounding to nearest� there can
be two �oating point numbers which are equivalently near� In such a situation� the one with its least
signicant fraction bit zero is chosen�

If a real number� which is larger than the largest ordinary �oating point number� is rounded up or to
nearest� then the result is �� Rounding such a number to zero or down� results in the largest ordinary
�oating point number� Similarly� if a real number� which is is smaller than the smallest ordinary �oating
point number� is rounded down or to nearest� then the result is ��� Rounding such a number to zero
or up results in the smallest ordinary �oating point number�

Division of a non�zero ordinary �oating point number by zero results in � if the signs of the operands
are equal� and �� if they are di�erent� �Note that there exist two �oating point numbers with value
zero but with di�erent signs��

Real arithmetic is extended to operands �� in the usual way� The result of ���� ��!�� �  ���
��  �� ���� ����� or square root of a negative number is a Nan�

If at least one operand is a Nan� then the result is also a Nan�

����� Exception Handling

The IEEE standard ��� denes � exceptions which are signaled when detected during a �oating point
operation� For each type of exception there exists a status �ag which is set on any occurrence of the
corresponding exception� It is reset only at the user�s request� The user may test and alter each �ag
individually� Further� the user can dene a trap for each exception� which is taken unless the exception
is masked� Again� the user has the possibility to mask or to unmask each exception individually� The �
exceptions are as follows�

� Invalid Operation� The invalid operation exception is raised if an operand is invalid for the operation
to be performed� In our applications these are ���� ��!�� �  ��� �� �� ���� �����
and square root of a negative �oating point number�

� Division by Zero� The division by zero exception is raised during a division� where the numerator
is an ordinary non�zero number and the denominator is zero�

� Over�ow� The over�ow exception is raised if the rounded result of an operation exceeds in magnitude
what would have been the result if the exponent range were unbounded�

� Under�ow� The precise denition of this exception depends on the implementation� Roughly�
it is raised if the result of an operation is very small in magnitude and inaccurate because it is
approximated by a denormalized number�

� Inexact� The inexact exception is raised if the rounded result of a �oating point operation is not
the same as the result of the corresponding real number operation�

��� Floating Point Number Arithmetic

Informally� the most important facts about �oating point numbers for our purposes can be abstracted as
follows�

� There are three special numbers� !�� �� and an error symbol�
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� Arithmetic is dened in the usual way� where the exact result is rounded in a specied direction
after each operation� If the result is undened� as e�g ��� or � �� then the result is the error
symbol�

� If round to nearest is specied and there are two �oating point numbers which are equally near�
then the one with its least signicant fraction bit zero is delivered�

� In case of any kind of error� a signal is raised� The user can specify that this signal is ignored or
that a trap handler is called�

In order to facilitate mathematical reasoning on �oating point numbers and arithmetic� we dene them
more abstractly� The denitions are such that their implementation on a machine� which conforms to
the IEEE standard ���� is straight forward� On the other hand� they capture only the most essential
properties of �oating point numbers which are needed for the implementation of �oating point interval
arithmetic� Thus� it is for example possible to implement �oating point numbers with arbitrary bitlength
and internal representation� which still conform to the denitions�

For those who are logically oriented� we remark that from now on we use the language of rst order
predicate calculus with equality and the usual axioms about the membership predicate � �some part of
ZF set theory��

De�nition ����� �Floating Point Numbers� Let Fo be a �nite set with odd cardinality� Let

F � Fo � f
��g�
where 
 �� � and 
�� �� Fo� Finally� let

F� � F � f	g�
where 	 �� F� �

F is called the set of �oating point numbers� Fo is called the set of ordinary �oating point numbers and
F� is called the set of generalized �oating point numbers� In the following we use a� b to denote �oating
point numbers and x� y to denote real numbers�

De�nition ����� �Interpretation of Floating Point Numbers� Let � � Fo � R such that

� ��a� �� ��b� if a �� b for all a� b � Fo
� ��a� � � for some a � Fo�
� for every a � Fo there exists b � Fo such that ���a� � ��b�� �

We do not interpret 
 and � as � and ��� because this would lead to confusion when these numbers
occur as endpoint of intervals as described in the next section� For notational convenience we denote the
uniquely dened element of Fo� which is mapped to � under � by ��

De�nition ����� �Predicates on Floating Point Numbers� The predicates �� �� �� � are de�ned
on F as follows�

a � b i� �a� b � Fo� ��a� � ��b�� or �a � Fo� b � 
� or �a � �� b � Fo� or �a � �� b � 
�
a � b i� b � a

a � b i� a � b or a � b

a � b i� a � b or a � b� �

Note that �� � are total orderings of Fo� hence maxFo and minFo are well dened�

De�nition ����� �Rounding Functions� The rounding functions
�
��

�
��
�
� � R� F with intended mean�

ing round to nearest� round up and round down respectively� are de�ned such that for all x � R
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� if x � ��maxFo� then

�
� �x� � 

�
� �x� � maxFo
�
� �x� � 


� if x � ��minFo� then

�
� �x� � �
�
� �x� � �
�
� �x� � minFo

� otherwise�
�
� �x��

�
� �x��

�
� �x� � Fo and for all a � Fo

jx� ��
�
� �x��j � jx� ��a�j �nearest�

��
�
� �x�� � x and

�
��a� � x or a � �

� �x�
�

�down� optimal�

��
�
� �x�� � x and

�
��a� � x or a � �

� �x�
�

�up� optimal�� �

The following lemmas are immediate consequences of Denition ������

Lemma ����� For all x � R it holds that

if
�
� �x� � Fo then ��

�
� �x�� � x

if
�
� �x� � Fo then ��

�
� �x�� � x� �

Lemma ����� For all x � R it holds that

if x � � then
�
� �x� � Fo

if x � � then
�
� �x� � Fo� �

Lemma ���� For all x � R it holds that

if x � � then
�
� �x� � �

if x � � then
�
� �x� � �� �

Lemma ����	 For all x� y � R and for all � � f��� ��� ��g it holds that
if x � y then ��x� � ��y�

if x � y then ��x� � ��y�� �

Remark� The inversion of Lemma ����� does not hold� �

Lemma ����
 For all �nite X � R and for all � � f��� ��� ��g it holds that
minf��x� j x � Xg � ��minX �

maxf��x� j x � Xg � ��maxX �� �

Lemma ������ For all a � Fo and for all � � f��� ��� ��g it holds that
����a�� � a� �

In particular�
�
� ��� �

�
� ��� �

�
� ��� � ��
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De�nition ������ �Floating Point Number Arithmetic� The direction rounded arithmetic opera�

tions
�

!�
�

!�
�

!�
��� ��� ��� �� �� ��

�

��
�

��
�

�� F� � F� � F� and � � F� � F� are de�ned as follows�

a
�

! b �

����
���

	 if a � 	 or b � 	 or �a � 
� b � �� or �a � �� b � 
�

 if �a � 
� b �� f�� 	g� or �b � 
� a �� f�� 	g�
� if �a � �� b �� f
� 	g� or �b � �� a �� f
� 	g�

�
� ���a� ! ��b�� if a� b � Fo

a
�

! b �

	
a
�

! b if a �� Fo or b �� Fo
�
� ���a� ! ��b�� if a� b � Fo

a
�

! b �

	
a
�

! b if a �� Fo or b �� Fo
�
� ���a� ! ��b�� if a� b � Fo

a
�� b �

����
���

	 if a � 	 or b � 	 or �a � 
� b � 
� or �a � �� b � ��

 if �a � 
� b �� f
� 	g� or �b � �� a �� f�� 	g�
� if �a � �� b �� f�� 	g� or �b � 
� a �� f
� 	g�

�
� ���a�� ��b�� if a� b � Fo

a
�� b �

	
a
�� b if a �� Fo or b �� Fo

�
� ���a� � ��b�� if a� b � Fo

a
�� b �

	
a
�� b if a �� Fo or b �� Fo

�
� ���a� � ��b�� if a� b � Fo

a
� b �

����
���

	 if a � 	 or b � 	 or �a � f
��g� b� �� or �a � �� b � f
��g�

 if �a � 
� b � �� or �a � �� b � �� or �b � 
� a � �� or �b � �� a � ��
� if �a � 
� b � �� or �a � �� b � �� or �b � 
� a � �� or �b � �� a � ��

�
� ���a�  ��b�� if a� b � Fo

a
� b �

	
a
� b if a �� Fo or b �� Fo

�
� ���a�  ��b�� if a� b � Fo

a
� b �

	
a
� b if a �� Fo or b �� Fo

�
� ���a�  ��b�� if a� b � Fo

a
�

� b �

������
�����

	 if a � 	 or b � 	 or a � b � 
 or a � b � �

 if �a � 
�
 � b � �� or �a � ��� � b � ��
� if �a � 
�� � b � �� or �a � ��
 � b � ��

undened if a � F� b � �
�
� ���a����b�� if a� b � Fo� b �� �

a
�

� b �

	
a
�

� b if a �� Fo or b �� Fo or b � �
�
� ���a����b�� if a� b � Fo� b �� �

a
�

� b �

	
a
�

� b if a �� Fo or b �� Fo or b � �
�
� ���a����b�� if a� b � Fo� b �� �

�a �

����
���

	 if a � 	

 if a � �
� if a � 


�
� ����a�� if a � Fo

Note that according to Denition ����� for all a � Fo there exists b � Fo such that ���a� � ��b�� and by
Lemma ������

�
� ����a�� � �

� ����a�� � �
� ����a��� �������
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����� Basic Algorithms on Floating Point Numbers

Algorithms for �oating point number arithmetic are usually implemented in hardware and we do not
discuss them here� On most machines algorithms for �oating point approximations of elementary tran	
scendental functions are available� but it is usually not specied whether the returned �oating point
number is greater or less than the exact result� In many cases� not even an upper bound for the ap	
proximation error is given� hence we cannot use these algorithms for implementing interval arithmetic
correctly�

Apart from arithmetic functions we need in this thesis only exponentiation by a natural number� Usually�
the exponent will not be large� hence the well�known binary method for exponentiation seems suitable�
see e�g� #Knuth� ����$� The following two algorithms compute upper respectively lower approximations�

Algorithm ������ �
�

POW� #Upper Approximation of Floating Point Number Power$

In� a � F�
n � N
�

Out� b � F� b ��
� ��� if n � �� b � a if n � � and a �� Fo� otherwise b � 
 or �b � Fo and ��b� � ��a�n��

��� #Case a � ��$

if n is odd and a � � then return � �

POW ��a� n��
a�� jaj�

��� #Initialize�$

b���
� ����

if n � � return b�

��� #Iterate�$
if n is odd then

b�� b
� a

if n � � return b� else n�� n � ��
a�� a

� a�
n�� n���
goto Step ��

Algorithm ������ �
�

POW� #Lower Approximation of Floating Point Number Power$

In� a � F�
n � N
�

Out� b � F� b ��
� ��� if n � �� b � a if n � � and a �� Fo� otherwise b � � or �b � Fo and ��b� � ��a�n��

��� #Case a � ��$

if n is odd and a � � then return � �

POW ��a� n��
a�� jaj�

��� #Initialize�$

b���
� ����

if n � � return b�

��� #Iterate�$
if n is odd then

b�� b
� a

if n � � return b� else n�� n � ��
a�� a

� a�
n�� n���
goto Step ��
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Remark� For the correctness of Algorithms ������ and ������ we have to assume that
�
� ��� �� 
 and

�
� ��� �� �� Otherwise

�

POW ��� n� � 	 and
�

POW �
� n� � 	 for n � �� In the sequel we assume
�
� ��� �� 


and
�
� ��� �� �� �

Theorem ������ �Complexity� Algorithm 	�	��	 respectively 	�	��
 costs bld�n�c!��n� �oating point
number multiplications� where ��n� is the number of ones in the binary representation of n� �

Proof� See #Knuth� ����$� �

��� Floating Point Interval Arithmetic

Floating point intervals are closed real intervals� where the endpoints are ordinary �oating point numbers�
Arithmetic is dened in the set theoretic sense where the result is rounded outwards� In order to handle
over�ow� we extend the set of �oating point intervals by half�open intervals fx j x � yg and fx j x � yg
for all �oating point numbers y� and by the set R of all real numbers�

In this section we dene �oating point intervals and �oating point interval arithmetic formally� The
denitions are motivated by the following goals�

� Correctness� A �oating point interval operation must yield an interval� which contains the result
interval of the corresponding real interval operation�

� Completeness� Floating point interval arithmetic functions must be dened whenever the corre	
sponding real interval arithmetic function is dened� In particular� the computation must not be
interrupted because of over�ow�

� E�ciency� An e�cient implementation of the �oating point interval arithmetic must be possible� In
particular� the IEEE ��� �oating point arithmetic presented in the previous section must be used
because of its hardware support�

Before going into details of �oating point interval arithmetic� we want to point out an important problem�
A �oating point interval is a pair of �oating point numbers� where the rst component is less than or
equal to the second component� If over�ow occurs during some operation on �oating point intervals� we
obtain an interval where one or both components are 
 or �� While �oating point intervals� where both
components are ordinary �oating point numbers� are interpreted as elements of IR in the obvious way� it
is not clear� how �oating point intervals� where at least one component is 
 or �� should be interpreted�
For correctness reasons they cannot be interpreted as elements of IR� hence we have to extend the set IR
in a suitable way� There are two possibilities�

� Closed subintervals of R� f����g� The �oating point number interpretation � is extended by
��
� � � and ���� � ��� The �oating point interval �a� b� � F � F is then interpreted simply
as #��a�� ��b�$� The disadvantage of this approach is that all arithmetic operations are partial
functions� For example #���$  #�� �$ or #���$� #�� �$ are not dened� This means that even the
evaluation of arithmetic terms over IR� which do not contain division� might not be possible when
�oating point intervals are used and over�ow occurs�

� Extend IRby the sets
fx � R j x � yg
fx � R j x � yg



for all y � R

and by the set of all real numbers R� The �oating point interval ���
� is interpreted as R� If
a is an ordinary �oating point number� then �a�
� is interpreted as fx � R j x � ��a�g and
��� a� is interpreted as fx � R j x � ��a�g� Note that �
�
� and ����� are not �oating point
intervals� This approach seems to be advantageous� because it avoids innity arithmetic completely
and �oating point interval addition� subtraction and multiplication are total functions� A problem
arises� because the �oating point multiplication function as dened by the IEEE standard must
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be modied slightly for the implementation of �oating point interval multiplication� For example�
the result of ���
�  ��� �� must be ��� ��� but a straight forward implementation of �oating point
interval multiplication using the IEEE �oating point number multiplication would yield �	� 	��

In our implementations we use the second approach� which is described more formally as follows�

De�nition ����� �Extended Intervals� The set of extended intervals is de�ned as

IR� IR� ffx � R j x � yg j y � Rg � ffx � R j x � yg j y � Rg � fRg
Further�

IR� � IR� �
IR� � IR� �� �

Throughout this section� elements of IR are simply called intervals� An interval X � IR is called left
bounded� if there exists y � X such that x � y for all x � X� In this case we dene X � y� Otherwise�
X is called left unbounded� Similarly� X is called right bounded if there exists y � X such that x � y
for all x � X� In this case we dene X � y� Otherwise� X is called right unbounded�

The interval arithmetic operations are extended from IR to IR in the straight forward way�

De�nition ����� �Extended Interval Arithmetic� Let X�Y � IR�
X ! Y � fx! y j x � X� y � Y g
X � Y � fx� y j x � X� y � Y g
X  Y � fx  y j x � X� y � Y g
X�Y � fx�y j x � X� y � Y g if � �� Y

�X � f�x j x � Xg� �

De�nition ����� �Floating Point Intervals� The set of �oating point intervals is de�ned as

IF � f�a� b� j a� b � Fo� a � bg � f��� a� j a � Fog � f�a�
� j a � Fog � f���
�g
Further�

IF� � IF� f�	� 	�g� �

Note that ������ �
�
� �� IF� The rst and the second component of a �oating point interval A � IF is
denoted by A respectively A� In the following we will use A� B to denote �oating point intervals and X�
Y to denote real intervals�

De�nition ����� �Interpretation of Floating Point Intervals� Let � � IF� � IR� such that

��a� b� � #��a�� ��b�$ if a� b � Fo�
���� b� � fx � R j x � ��b�g if b � Fo�
��a�
� � fx � R j x � ��a�g if a � Fo�
����
� � R

��	� 	� � �� �

De�nition ����� �Rounding Function for Intervals� Let � � IR� � IF� such that

��X� �

�������
������

�
�
� �X��

�
� �X�� if X � IR

�
�
� �y��
� if X � fx � R j x � yg for some y � R
��� �� �y�� if X � fx � R j x � yg for some y � R
���
� if X � R

�	� 	� if X � � � �



CHAPTER 	� IMPLEMENTATION OF INTERVAL ARITHMETIC ��

De�nition ����� �Predicates on Floating Point Intervals� Let � � f������	g� Then for all
A�B � IF�

A � B i� ��A� � ��B��

For all a � F� A � IF�
a � A i�

�
��a� � ��A� if a � Fo�

a � A or a � A else� �

Lemma ����

� For all X � IR� it holds that
����X�� 	 X�

� For all A � IF� it holds that
����A�� � A� �

Proof� Follows from Denition ������ Denition ����� and Lemma ������ �

Before dening �oating point interval arithmetic� we modify the �oating point multiplication in order
to facilitate the denition of the interval multiplication� If the IEEE standard would dene �oating
point multiplication in this modied way� then interval arithmetic could be implemented more e�ciently�
However� the modied multiplication is not suitable for implementing innity arithmetic� and it seems
that the IEEE committee considered this aspect as more important�

De�nition ����	 �Modi�ed Floating Point Multiplication� The modi�ed direction rounded �oat�
ing point multiplications

�� � �� � F� � F� � F� are de�ned as

a
�� b �

�
� if �a � �� b � f
��g� or �b � �� a � f
��g�

a
� b else

a
�� b �

�
� if �a � �� b � f
��g� or �b � �� a � f
��g�

a
� b else� �

De�nition ����
 �Floating Point Interval Arithmetic� The arithmetic operations !� �� � � � IF�
IF� IF and � � IF� IF are de�ned as follows�

A! B � �A
�

! B�A
�

! B�

A� B � �A
�� B�A

�� B�

A B � �minfA �� B�A �� B�A �� B�A �� Bg�maxfA �� B�A �� B�A �� B�A �� Bg�
A�B � �minfA �

� B�A
�

� B�A
�

� B�A
�

� Bg�maxfA �

� B�A
�

� B�A
�

� B�A
�

� Bg� if � �� B

�A � ��A��A�� �

The following theorem states that the �oating point interval arithmetic operations are performed as if
they rst produced a correct intermediate result which is then rounded outwards to a �oating point
interval�

Theorem ������ For all A�B � IF it holds that

A! B � ����A� ! ��B�� �������

A� B � ����A� � ��B�� �������

A B � ����A�  ��B�� �������

A�B � ����A����B�� if � �� B �������

� A � �����A��� � �������

Proof� Let A�B � IF arbitrary but xed� We show that the left endpoints of the �oating point intervals
in ������� � ������� coincide� The proof for the right endpoints is equivalent�
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� Proof of ��������

� Assume A �� �� B �� �� Then ��A�� ��B� and ��A� ! ��B� are left bounded�

A !B
Definition �����

� A
�

! B
Definition ������

�
�
� ���A� ! ��B��

Definition ����	
�

�
� ���A� ! ��B��

Theorem �����
�

�
� ���A� ! ��B��

Definition ����

� ����A� ! ��B���

� Assume A � � or B � �� Then
A! B � ��

��A� ! ��B� is left unbounded� and

����A� ! ��B�� � ��

� Proof of �������� Analogous to the proof of ��������

� Proof of ��������

� Assume the condition

�A � �� B � �� or �A � 
� B � �� or �B � �� A � �� or �B � 
� A � �� �������

does not hold� First� we eliminate some trivial cases� If A � ���
� then B � ��� ��� ��A� � R�
��B� � �� Similarly� if B � ���
� then A � ��� ��� ��B� � R� ��A� � �� In both cases

A B � � � ����A�  ��B���

In the sequel assume A �� ���
�� B �� ���
�� Next� we show that

A B � minfa �� b j a � fA�Ag � Fo� b � fB�Bg � Fog �������

According to Denition ����� there exist a � fA�Ag� b � fB�Bg such that a
�� b � A B� If

a� b � Fo then ������� follows from Denition ������ The other cases are as follows�

� If a � � then b � �� A � Fo and A
�� b � a

�� b�
� If a � 
 then b � �� A � Fo and A

�� b � a
�� b�

� If b � � then a � �� B � Fo and a
�� B � a

�� b�
� If b � 
 then a � �� B � Fo and a

�� B � a
�� b�

Finally� we show that ��A�  ��B� is left bounded and

��A�  ��B� � minf��a�  ��b� j a � fA�Ag � Fo� b � fB�Bg � Fog �������

� Assume A�A�B�B � Fo� Then ��A�� ��B� are right and left bounded and

��A�  ��B�
Theorem �����

� minfx  y j x � f��A�� ��A�g� y � f��B�� ��B�gg
Definition ����	

� minfx  y j x � f��A�� ��A�g� y � f��B�� ��B�gg
� minf��a�  ��b� j a � fA�Ag� b � fB�Bgg�

� Assume A � �� Then B � �� hence B � Fo� Further� if A � � then B � Fo�

��A�  ��B� �

�
��A�  ��B� if A � �
��A�  ��B� else

� minf��a�  ��b� j a � fA�Ag � Fo� b � fB�Bg � Fog�



CHAPTER 	� IMPLEMENTATION OF INTERVAL ARITHMETIC ��

� Assume A � 
� Then B � �� hence B � Fo� Further� if A � � then B � Fo�

��A�  ��B� �

�
��A�  ��B� if A � �
��A�  ��B� else

� minf��a�  ��b� j a � fA�Ag � Fo� b � fB�Bg � Fog�
� The cases B � � and B � 
 can be reduced to the cases A � � respectively A � 
 by
using commutativity of real and interval multiplication�

Thus�

A B �������
� minfa � b j a � fA�Ag � Fo� b � fB�Bg � Fog

�Definition �������
� minf�� ���a�  ��b�� j a � fA�Ag � Fo� b � fB�Bg � Fog

�Lemma ������
�

�
� �minf��a�  ��b� j a � fA�Ag � Fo� b � fB�Bg � Fog�

�������
�

�
� ���A�  ��B��

�Definition ����
�
� ����A�  ��B���

� Assume ������� holds� Then
A B � ��

��A�  ��B� is left unbounded� and hence

����A�  ��B�� � ��
� Proof of �������� Analogous to the proof of ��������

� Proof of ��������

� Assume A � Fo�
�A Definition �����

� �A
Definition ������

�
�
� ����A��

�������
�

�
� ����A��

Definition ����	
�

�
� ����A��

Theorem �����
�

�
� ����A��

Definition ����

� �����A���

� Assume A �� Fo� Then A � 
 and
�A � ��

Further� ��A� is right unbounded� hence ���A� is left unbounded and

�����A�� � �� �

In the following� for A � IFn we dene

��A� � ���A��� � � � � ��An��

and for X � IRn we dene
��X � � ���X��� � � � � ��Xn���

Theorem ������ motivates the following Denition�

De�nition ������ �Rounding� A function F � IFn � IF is called rounding of a function F � IR
n � IR

if for all A � IFn
F�A� 	 ��F ���A����

F is the exact rounding of F if for all A � IFn

F�A� � ��F ���A���� �
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Theorem ������ states that the �oating point interval arithmetic functions are the exact roundings of the
corresponding real interval arithmetic functions�

Now we are ready to prove correctness of �oating point interval arithmetic in the sense that the evalua	
tion of an arithmetic expression using �oating point interval arithmetic yields an inclusion of the result
obtained by using real interval arithmetic� provided the results are dened� This is described by the
following diagram�

IR
n

IR�

IF
n

IF

��

�

� ���

�oating point
interval arithmetic

real
interval arithmetic

Theorem ������ Let F � IR
n � IR be inclusion monotone and let F � IFn � IF be a rounding of F �

Then for all X � IRn it holds that
F �X� � ��F���X���� �

Proof� Let F and F as in Theorem ������ and let X � IRn arbitrary but xed� Note that

F���X��
Definition ������	 ��F �����X ����
Lemma �����	 ��F �X���

Hence�

��F���X��� 	 ����F �X���
Lemma �����	 F �X�� �

Corollary ������ For all X�Y � IR it holds that

X ! Y � ����X� ! ��Y ��

X � Y � ����X� � ��Y ��

X  Y � ����X�  ��Y ��

X�Y � ����X����Y �� if � �� ��Y �

�X � �����X��� �

Proof� Follows from Theorem ������ and Theorem ������� �

It remains to show that the composition of roundings is a rounding of the composition of functions�

Theorem ������ �Composition of Roundings� Let F � IR
m � IR� Gi � IR

n � IR be inclusion
monotone and let F � IFm � IF� Gi � IF

n � IF be roundings of F � Gi for i � �� � � � �m respectively� Then
F�G�� � � � � Gm� is a rounding of F �G�� � � � � Gm�� �

Proof� Let F�Gi� F� Gi as in Theorem ������ and let A � IFn arbitrary but xed� Then

F�G�� � � � � Gm��A�
Definition ������	 ��F ���G�� � � � � Gm����A�
Lemma �����

� ��F ���G�� � � � � Gn��������A���
Theorem ������	 ��F �G�� � � � � Gm�����A��� �
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Remark� Theorem ������ and Theorem ������ show that inclusion monotonicity is a very important
property for the implementation of interval functions� �

Finally� we show that �oating point interval arithmetic is inclusion monotone� We begin by proving
that exact roundings of inclusion monotone functions are inclusion monotone� This implies inclusion
monotonicity of the basic interval arithmetic functions� Next� we show that inclusion monotonicity is
preserved under composition�

Theorem ������ Let F � IR
n � IRbe inclusion monotone and let F � IFn � IF be the exact rounding

of F � Then F is inclusion monotone� �

Proof� Let F and F as in Theorem ������ and let A�A
 � IFn arbitrary but xed such that A
 � A�
Then

F�A
�
Definition ������

� ��F ���A
���
Definition ����� ��F ���A���
Definition ������

� F�A�� �

Note that Theorem ������ can not be generalized to non�exact roundings�

Corollary ������ �Inclusion Monotonicity� Let A�B�A
� B
 � IF such that A
 � A� B
 � B�
Then

A
 !B
 � A! B

A
 �B
 � A� B

A
 B
 � A B
A
�B
 � A�B if � �� B

�A
 � �A� �

Proof� Follows from Theorem ������ and Theorem ������� �

Theorem ����� �Composition Preserves Inclusion Monotonicity� Let F � IFm � IR� Gi � IF
n �

IF be inclusion monotone for i � �� � � � �m� Then F�G�� � � � � Gm� is inclusion monotone� �

Proof� Let F� Gi� i � �� � � � �m as in Theorem ������� Let A
�A � IFn arbitrary but xed such that
A
 � A� Then

F�G�� � � � � Gm��A
� � F�G��A
�� � � � � Gm�A
��

� F�G��A�� � � � � Gm�A��

� F�G�� � � � � Gm��A�� �

����� Basic Algorithms on Floating Point Intervals

In this section we give algorithms for �oating point interval arithmetic and some other operations� which
will be used later�

Algorithm �����	 �IADD� #Floating Point Interval Addition$

In� A�B � IF�
Out� IADD�A�B� � IF� IADD�A�B� � A! B�
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��� return �A
�

! B�A
�

! B��

Theorem �����
 �Complexity� Algorithm 	�
��� costs 	 �oating point number additions� �

Algorithm ������ �ISUB� #Floating Point Interval Subtraction$

In� A�B � IF�
Out� ISUB�A�B� � IF� ISUB�A�B� � A� B�

��� return �A
�� B�A

�� B��

Theorem ������ �Complexity� Algorithm 	�
�	 costs 	 �oating point number subtractions� �

Algorithm ������ �INEG� #Floating Point Interval Negative$

In� A � IF�
Out� INEG�A� � IF� INEG�A� � �A�

��� return ��A��A��

Theorem ������ �Complexity� Algorithm 	�
�		 costs 	 �oating point number sign inversions� �

Algorithm ������ for multiplying intervals is relatively complicated� This is mainly due to the fact� that
the IEEE standard ��� does not provide the modied �oating point multiplication functions

�� � �� � In
order to minimize the number of �oating point comparisons during interval multiplication� we do not call
algorithms for

�� � �� � but use information on the sign of �oating point number operands whenever possible�
In any case� we have to avoid the multiplication of � and � or 
 by

� or
�� because this would result in

	� According to Denition ������ the desired result in this case is ��

Algorithm ������ �IMUL� #Floating Point Interval Multiplication$

In� A�B � IF�
Out� IMUL�A�B� � IF� IMUL�A�B� � A B�

��� #Case A � ��$
if A � � goto Step ��

����� #Case A � �� B � ��$

if B � � return �A
� B�A � B��

����� #Case A � �� B � ��$

if B � � return �A
� B�A � B��

����� #Case A � �� � � B�$

if B � � then C �� �� else C �� A
� B�

if B � � then C �� �� else C �� A
� B�

return C�

��� #Case A � ��$
if A � � goto Step ��

����� #Case A � �� B � ��$

if B � � return �A
� B�A � B��

����� #Case A � �� B � ��$

if B � � return �A
� B�A � B��
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����� #Case A � �� � � B�$

if B � � then C �� �� else C �� A
� B�

if B � � then C �� �� else C �� A
� B�

return C�

��� #Case � � A�$

����� #Case � � A� B � ��$
if B � � goto Step ����
if A � � then C �� �� else C �� A

� B�
if A � � then C �� �� else C �� A

� B�
return C�

����� #Case � � A� B � ��$
if B � � goto Step ����
if A � � then C �� �� else C �� A

� B�
if A � � then C �� �� else C �� A

� B�
return C�

����� #Case � � A� � � B�$

������� #Case A � �� � � B�$
if A �� � goto Step ������
if A � � return ��� ���

if B � � then C �� �� else C �� A
� B�

if B � � then C �� �� else C �� A
� B�

return C�

������� #Case A � �� A �� �� � � B�$
if A �� � goto Step ������
if B � � then C �� �� else C �� A

� B�
if B � � then C �� �� else C �� A

� B�
return C�

������� #Case � � A� A �� �� A �� �� B � ��$
if B �� � goto Step ������
if B � � return ��� ��� else return �A

� B�A � B��

������� #Case � � A� A �� �� A �� �� B � �� B �� ��$

if B � � return �A
� B�A � B��

������� #Case � � A� � � B� � �� fA�A�B�Bg�$
C �� minfA � B�A � Bg�
C �� maxfA � B�A � Bg�
return C�

Theorem ������ �Complexity� If � � int�A� and � � int�B� then Algorithm 	�
�	� costs � �oating
point number multiplications� Otherwise� Algorithm 	�
�	� costs 	 �oating point number multiplica�
tions� �

Algorithm ������ �IDIV� #Floating Point Interval Division$

In� A�B � IF� � �� B�

Out� IDIV�A�B� � IF� IDIV�A�B� � A�B�

��� #Distinguish cases B � � and B � ��$
if B � � goto Step �� else goto Step ��

��� #Case B � ��$

if A � � return �A
�

� B�A
�

� B��
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if A � � return �A
�

� B�A
�

� B��

return �A
�

� B�A
�

� B��

��� #Case B � ��$

if A � � return �A
�

� B�A
�

� B��

if A � � return �A
�

� B�A
�

� B��

return �A
�

� B�A
�

� B��

Theorem ����� �Complexity� Algorithm 	�
�	� costs 	 �oating point number divisions� �

The following algorithm gives the exact rounding of the interval square function�

Algorithm �����	 �ISQR� #Floating Point Interval Square$

In� A � IF�
Out� ISQR�A� � IF� ISQR�A� � ����A����

��� #Distinguish cases � � A and � �� A�$
if A � � and A � � goto Step �� else goto Step ��

��� #Case � � A�$

if �A � A return ��� A
� A� else return ��� A

� A��
��� #Case � �� A�$

if A � � return �A
� A�A � A� else return �A

� A�A � A��

Theorem �����
 �Complexity� Algorithm 	�
�	� costs � �oating point number multiplication if � � A
and 	 �oating point multiplications else� �

Algorithm ������ �IPOW� #Floating Point Interval Power$

In� A � IF� n � N�
Out� IPOW�A� n� � IF� ��IPOW�A� n�� 	 ��A�n�

��� #Distinguish cases n even and n odd�$
if n is even goto Step �� else goto Step ��

��� #Distinguish cases � � A and � �� A�$
if A � � and A � � goto Step �� else goto Step ��

��� #Case n even� � � A�$

if �A � A return ���
�

POW �A� n�� else return ���
�

POW �A� n���

��� #Case n even� � �� A�$

if A � � return �
�

POW �A� n��
�

POW �A� n�� else return �
�

POW �A� n��
�

POW �A� n���

��� #Case n odd�$

return �
�

POW �A� n��
�

POW �A� n���

Theorem ������ �Complexity� Algorithm 	�
�	� costs � �oating point number power computation if
n is even and � � A and 	 �oating point number power computations else� �

The following observation will be useful later on�

Theorem ������ If � �� int�A� then � �� int�IPOW�A� n�� for all n � N� �
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Algorithm ������ computes a �oating point approximation of the midpoint of an interval�

Algorithm ������ �MID� #Midpoint of a Floating Point Interval$

In� A � IF�
Out� MID�A� � Fo� MID�A� � A�

��� #Case A � ���
��$
if A � �A return ��

��� #Case A � � or A � 
�$
if A � � return minFo�
if A � 
 return maxFo�

��� return A
�

!
�
� �����

� �A
�� A��

Theorem ������ �Correctness� Algorithm 	�
�

 �MID� is correct� �

Proof� Let A � IF and let b � MID�A�� If A � � or A � 
 then obviously b � Fo and b � A� Assume

A�A � Fo and let a � A
�� A� According to Denition ������ a � Fo and

� � ��a� � ��A�� ��A��

Let a� �
�
� �����

� a� As ���� � � it follows from Denition ����� that � � ��
�
� ������ � � and therefore

� � ��a�� � ��a� � ��A�� ��A��

Hence�
��A� � ��A� ! ��a�� � ��A��

From Lemma ����� it follows that

�
� ���A�� � �

� ���A� ! ��a��� � �
� ���A���

and according to Lemma ������ and Denition ������

A � A
�

! a� � A�

As b � A
�

! a� it follows that b � Fo and b � A� �

Theorem ������ �Complexity� Algorithm 	�
�

 �MID� costs � number multiplication and 	 number
additions� �

Algorithm ������ computes a �oating point approximation of the width of an interval� The computed
value is greater or equal the exact width of the input interval�

Algorithm ������ �WIDTH� #Width of a Floating Point Interval$

In� A � IF�
Out� WIDTH�A� � F�

WIDTH�A� �

� 
 if ��A� is right or left unbounded
�
� �w���A��� else�

��� return A
�� A�

Theorem ����� Algorithm 	�
�
� �WIDTH� costs � �oating point addition� �
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Next� we give an algorithm for the exact rounding of the generalized and hull division of extended
intervals�

De�nition �����	 �Generalized and Hull Division� The function gdiv � IR� � IR� � IR� � P�R�
is de�ned as

gdiv�N�D�X� � fx � X j n � dx for some n � N� d � Dg�
The function hdiv � IR� � IR� � IR� � IR� is de�ned as

hdiv�N�D�X� � #gdiv�N�D�X�$� �

In order to simplify notation� we dene X � � if X is right unbounded and X � �� if X is left
unbounded� Arithmetic on R� f����g is dened in the usual way�

Theorem �����
 �Generalized Division� For all N�D�X � IR it holds that

gdiv�N�D�X� �

��������������
�������������

N�D �X if � �� D
X if � � N� � � D
� if � �� N�D � �
fx � X j x � N�Dg if N � �� D � �� D � �
fx � X j x � N�Dg if N � �� D � �� D � �

fx � X j x � N�Dg � fx � X j x � N�Dg� if N � �� � � int�D�
fx � X j x � N�Dg if N � �� D � �� D � �
fx � X j x � N�Dg if N � �� D � �� D � �

fx � X j x � N�Dg � fx � X j x � N�Dg� if N � �� � � int�D�� �

Thus� for all N�D�X � IR� there exist Y�� Y� � IR� such that

gdiv�N�D�X� � Y� � Y��

Algorithm ������ �GDIV� #Generalized Division$

In� N�D�X � IF��
Out� A�� A� � IF�� A� � ��Y��� A� � ��Y�� for some Y�� Y� � IR� such that gdiv���N �� ��D�� ��X�� �

Y� � Y��

��� #Case N � � or D � � or X � ��$
if N � � or D � � or X � � return �	� 	�� �	� 	��

��� #Case � �� D�$
if D � � or D � � return N�D �X� �	� 	��

��� #Case � � N � � � D�$
if � � N return X� �	� 	��

��� #Case � �� N � D � ��� ���$
if D � ��� �� return �	� 	�� �	� 	��

��� #Distinguish cases N � � and N � ��$
if N � � goto Step �� else goto Step ��

��� #Case N � �� � � D� D �� ��� ���$

if D � � return �N
�

� D�
� �X� �	� 	��
if D � � return ��� N �

� D� �X� �	� 	��
return ��� N �

� D� �X� �N
�

� D�
��X�

��� #Case N � �� � � D� D �� ��� ���$

if D � � return ��� N �

� D� �X� �	� 	��
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if D � � return �N
�

� D�
� �X� �	� 	��
return ��� N

�

� D� �X� �N
�

� D�
��X�

Algorithm ������ �HDIV� #Hull Division$

In� N�D�X � IF��
Out� HDIV�N�D�X� � IF�� HDIV�N�D�X� � ��hdiv���N �� ��D�� ��X����

��� #Generalized Division�$
A�� A� �� GDIV�N�D�X��

��� #Hull$
if A� � �	� 	� return A��
if A� � �	� 	� return A��
return �A�� A���

Theorem ������ �Complexity� Algorithm 	�
�� and Algorithm 	�
��� cost 	 �oating point number
divisions� �

Algorithms in the following sections often require arithmetic operations� where one operand is a real
number and the other operand is a real interval� These operations are dened in the real case by the
embedding of real numbers into the set of real intervals� However� in the �oating point case such an
embedding is not possible� hence we have to dene an explicit type conversion function which has not
the properties of a homomorphism�

De�nition ������ �Floating Point Number to Interval Conversion� The function � � F � IF is
de�ned as

��a� �

��
�

�a� a� if a � Fo
���minFo� if a � �
�maxFo�
� if a � 
� �

From Denition ����� it follows that for all a � Fo
��a� � ����a���

Further� by Denition ����� for all a� b � Fo� � � f!��� � �g
�a

�� b� a �� b� � ��a� � ��b�

and for all a � F
���a� � ���a��

The denition of � for a � 
 and a � � avoids sometimes the necessity of treating special cases� For
example

���A�� ��A�� � A

for all A � IF� An algorithm for computing � is straight forward�

Algorithm ������ �CONVERT� #Floating Point Number to Interval Conversion$

In� a � F�
Out� CONVERT�a� � IF� CONVERT�a� � ��a��

��� if a � � return ���minFo��
if a � 
 return �maxFo�
��
return �a� a��
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De�nition ������ Let � � f!��� � �g� Then � � F � IF� IF is de�ned as

a �B � ��a� �B�

Similarly� � � IF� F � IF is de�ned as

A � b � A � ��b�� �

Algorithms for arithmetic operations on a �oating point number and a �oating point interval� which do
not explicitly call CONVERT are straight forward� Usually� they require less control structures and less
�oating point number comparisons� but the same number of arithmetic �oating point number operations
as algorithms which rst convert the �oating point number argument to an interval� As an example we
give an Algorithm which computes the product of a �oating point number and a �oating point interval�

Algorithm ������ �NIMUL� #Floating Point Number � Interval Multiplication$

In� a � F� B � IF�
Out� NIMUL�a�B� � IF� NIMUL�a�B� � IMUL���a�� B��

��� #Case a � 
�$
if a � 


if B � � then C �� �� else C �� maxFo
� B�

if B � � then C �� 
� else C �� maxFo
� B�

return C�

��� #Case a � ��$
if a � �

if B � � then C �� 
� else C �� minFo
� B�

if B � � then C �� �� else C �� minFo
� B�

return C�

��� #Case a � Fo�$
if a � � return �B

� a�B � a��
if a � � return �B

� a�B � a��
return ������

Theorem ����� �Complexity� For all a � Fo� B � IF� B �� �� B �� � Algorithm 	�
��� with input
a�B executes as many �oating point number multiplications as Algorithm 	�
�	� with input ��a�� B� �

In the sequel� we omit �� ��
�
��

�
��
�
�� �� � if no confusion can arise� Further� we write !����� � � instead

of IADD� ISUB� INEG� IMUL� IDIV respectively and use the mathematical notation for exponentiation
instead of IPOW� Instead of CONVERT�a� we will write #a$ or simply a�



Chapter �

Inclusion of the Range of Univariate

Polynomials

The overestimation of the range of functions is a fundamental problem in interval mathematics� We
will not treat the problem in its full generality� rather we restrict ourselves to polynomials� Apart
from linear functions� for which range computation is trivial� polynomials are the �simplest� subclass of
elementary transcendental functions� We can therefore expect more e�cient methods and more rened
results for polynomials than for arbitrary functions� The practical importance of polynomials is out of
question� therefore it seems worthwhile to study them separately� In this chapter we consider univariate
polynomials� the multivariate case is treated in the next chapter�

In the following let f � R� R�

f�x� � anx
dn ! an��x

dn�� ! � � �! a�x
d� � ai �� �� di�� � di

be a polynomial and let
&� � d�
&i � di � di��� i � �� � � � � n�

��� Horner Form

There are many ways to rewrite an arithmetic expression and it is well known� that expressions� which
are equivalent as functions over the reals are usually di�erent as functions over intervals� A standard
arrangement of expressions which contain only addition and multiplication is the Horner form � it is
numerically stable and allows e�cient evaluation� Concerning the interval case� Horner form is optimal
with respect to subdistributivity� Among all methods described in this chapter� Horner form is cheapest�
On the other hand� there are many examples� where Horner form gives the exact range� where �more
sophisticated� methods overestimate�

Section ����� contains a new criterion to decide whether Horner form returns the exact range or a proper
overestimation� An algorithmic test of the criterion is straight forward� Improvements if the argument
interval does not contain � are discussed in Section ������ Sometimes it is su�cient to compute only
an upper or lower bound of the range� A new algorithm for computing the endpoints of the Horner
form separately is given in Section �������� Bisection of the input interval in connection with Horner
form is studied in Section ������ We give some original theorems for estimating the reduction of the
overestimation error through bisection and devise an e�cient algorithm for the special case when the
input interval is bisected at ��

De�nition ����� �Horner Form� The Horner form Hf � IR� IRof f is de�ned as

Hf �X� �
��

� � � �anX
�n ! an���X

�n�� ! � � �! a�
�
X�� ! a�

�
X�� � �

��
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If iterated multiplication is used instead of the interval power function in the denition of the Horner
form� we obtain the dense Horner form�

De�nition ����� �Dense Horner Form� The dense Horner form H�
f � IR� IRof f is de�ned as

H�
f �X� �

��
� � � �anX � � �X �z �

�ntimes

!an��� X � � �X �z �
�n�� times

! � � �! a�
�
X � � �X �z �
��times

!a�
�
X � � �X �z �
��times

� �

Theorem ����� For all X � IR it holds that

Hf �X� � H�
f �X��

If f is dense or � �� int�X� then
Hf �X� � H�

f �X�� �

Proof� Let
Pn�X� � anX

�n � Pi�X� � �Pi���X� ! ai�X�i

P �
n�X� � anX � � �X �z �

�ntimes

� P �
i �X� � �P �

i���X� ! ai�X � � �X �z �
�itimes

for i � �� � � � � n � �� Note that P��X� � Hf �X� and P �
� �X� � H�

f �X�� By induction it follows that
Pi�X� � P �

i �X� for all i� If f is dense then &i � �� for all i � � and &� � �� hence Pi�X� � P �
i �X� for

all i� If � �� int�X� then X�i is equal to &i times the product of X with itself� and Pi�X� � P �
i �X� for

all i� �

Theorem ����� �Inclusion Monotonicity� Hf and H�
f are inclusion monotone interval extensions of

f � �

Proof� Obviously Hf �X� � H�
f �X� � f�X� if X � R� The inclusion monotonicity of Hf and H�

f follows
from Corollary ����� and Theorem ������ shows that Hf � H�

f are interval extensions of f � �

Theorem ����� �Convergence� Hf and H�
f converge linearly to f � �

Proof� Hf and H�
f are interval extensions of f �Theorem ������ and Lipschitz �Corollary �������� Hence

Hf and H�
f converge linearly to f �Theorem �������� �

The following theorem simplies some considerations later on�

Theorem ����� For all c � R� X � IR the following holds�

�i� If g�x� � f�x� ! c then
Hg�X� � Hf �X� ! c�

�ii� If g�x� � cf�x� then
Hg�X� � cHf �X��

�iii� If g�x� � f�cx� then
Hg�X� � Hf �cX�� �

Proof� Let c � R and X � IRarbitrary but xed�

�i� Let g�x� � f�x� ! c� Then

Hg�X� �
��

� � � �anX
�n ! an���X

�n�� ! � � �! a�
�
X�� ! a�

�
X�� ! c

� Hf �X��
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�ii� Let g�x� � c f�x�� Then

Hg�X� �
��

� � � �canX
�n ! can���X

�n�� ! � � �! ca�
�
X�� ! ca�

�
X��

�
��

� � � c�anX
�n ! an���X

�n�� ! � � �! ca�
�
X�� ! ca�

�
X��

� � �

� c
��

� � � �anX
�n ! an���X

�n�� ! � � �! a�
�
X�� ! a�

�
X��

� cHf �X��

�iii� Let g�x� � f�cx�� Then

Hg�X� �
��

� � � �anc
dnX�n ! an��c

dn�� �X�n�� ! � � �! a�c
d�
�
X�� ! a�c

d�
�
X��

�
��

� � � �an�cX��n ! an���c
dn��X�n�� ! � � �! a�c

d�
�
X�� ! a�c

d�
�
X��

� � �

�
��

� � � �an�cX��n ! an����cX��n�� ! � � �! a�
�
�cX��� ! a�

�
�cX���

� Hf �cX�� �

Remark� In general it is not true that g�x� � f�x ! c� implies Hg�X� � Hf �X ! c�� For example� let
f�x� � x��x� X � #�� �$ and c � ��� Then g�x� � x���x!��Hg�X� � #��� �$ but Hf �X!c� � #��� �$�
This observation can be exploited to reduce the overestimation error of the Horner form� see Section
���� �

From Denition ����� we obtain the following algorithm for evaluating the Horner form�

Algorithm ���� �HF� #Horner Form$

In� f�x� � anx
dn ! an��x

dn�� ! � � �! a�x
d� � F#x$�

X � IF�
Out� HF�f�X� � IF� HF�f�X� 	 Hf �X��

��� #Initialize�$
Pn �� an�

��� #Accumulate�$
for i � n� �� � � � � �

Pi �� Pi��X
di���di ! ai�

��� #Last power�$
P
 �� P�X

d� �

��� #Return�$
return P
�

Remark� The specication of Algorithm ����� �HF� requires some explanation� It is clear how a poly	
nomial f�x� � F#x$ is interpreted as a polynomial in R#x$ if all coe�cients are ordinary �oating point
numbers� As we allow � and 
 as coe�cients� the output must be specied more precisely as

HF�f�X� � IF� HF�f�X� 	
�
�f�F

H �f �X��

where

F �

��
�

nX
i��

�aix
di

������
�ai � ai if ai � Fo

�ai � maxFo if ai � 

�ai � minFo if ai � �

��
� �

In order to simplify notation we write in the specication of subsequent range computation algorithms
as in Algorithm ������ �
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Theorem ����	 �Complexity� Algorithm 
���� �HF� costs

n interval power computations�
n interval multiplications and

�n� � number additions� �

If � �� int�X� then every interval multiplication in Algorithm ����� �HF� costs only � number multiplica	
tions�

Theorem ����
 �Complexity� If � �� int�X� then Algorithm 
���� �HF� costs

n interval power computations�
�n number multiplications and

�n� � number additions� �

Proof� Follows from Theorem ������ and Theorem ������� �

����� Non�Overestimation of Horner Form

Experimentally it was observed that there are many cases where the Horner form is exact� i�e� Hf �X� �
f�X��

� For example if f�x� � x�� x and X � #�� �$ we obtain Hf �X� � #�� �$ � f�X�� More generally� the
Horner form of f�x� evaluated on X does not lead to overestimation for all intervals where X � �
or X � ��

� Another example is f�x� � x� � �x evaluated on #�������$� Again� we can generalize� Horner
evaluation of f�x� on X does not lead to overestimation if X � p

� or X � �p��

In this section we present a new criterion to decide whether Horner Form computes the exact range or a
proper overestimation� If mig�X� is su�ciently large� i�e� if

X � Of or X � Of

for some bounds
Of � � � Of

�Theorem �������� then Horner form is exact� The computation of the bounds Of � Of is expensive�
However� it can be tested very cheaply whether a given interval is outside the bounds� without actually
knowing them �Algorithm ��������

It should be noted that this simple condition for non�overestimation is su�cient but not necessary�
Counterexamples have been found� which could be generalized to whole classes of polynomials� where
Horner form gives the range although X is not outside Of �Section ��������� Examples of two rather
obvious classes are as follows�

� The Horner form of f�x� � x ! x� never overestimates�

� The Horner form of x� ! �x gives the range for all argument intervals� which have midpoint zero�

A complete characterization of all cases where Horner form is exact is still unknown� The results of this
section are original� Before going into details we eliminate some trivial cases from the discussion�

Theorem ������ For all c � R� X � IR� if g�x� � f�x� ! c or g�x� � cf�x�� c �� �� then

Hf �X� � f�X� i� Hg�X� � g�X�� �
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Proof� Theorem ������ is an immediate consequence of Theorem ������ Let c � R and X � IRarbitrary
but xed�

� Let g�x� � f�x� ! c� Then Hf �X� � f�X� i� Hf �X� ! c � f�X� ! c i� Hg�X� � g�X��

� Let g�x� � cf�x�� c �� �� Then Hf �X� � f�X� i� cHf �X� � cf�X� i� Hg�X� � g�X�� �

Thus� we can make the following assumptions�

� Whether Horner form gives the range does not depend on an additive constant� Hence we can
assume that f has no constant monomial� i�e� d� � ��

� It is also independent of a constant factor whether Horner form overestimates� Therefore we may
assume an � ��

� Finally� if f is a monomial� then Horner form never overestimates� Thus� we assume n � ��

Summarizing� throughout this section let

f�x� � anx
dn ! an��x

dn�� ! � � �! a�x
d�

ai � Rnf�g� i � �� � � � � n
an � �
d� � �
n � ��

�������

������� A Su�cient Condition for Non�Overestimation

In this section we show that if the distance of X and � is su�ciently large� then Horner form does not
overestimate� The key of the proof is that in this case certain �sub�polynomials� of f are monotone
in X� Note however� that monotonicity of f in X is not su�cient for non�overestimation� for example
f�x� � x� � x is monotone in X � #���� �$ but Hf �X� � #����� �$ whereas f�X� � #������ �$�
Let pi � R� R� i � �� � � � � n be dened as

pn�x� � an
pn���x� � pn�x� x�n ! an��
pn���x� � pn���x� x�n�� ! an��

���
p��x� � p��x� x�� ! a�
p
�x� � p��x� x�� �

�������

Note that p
�x� � f�x��

De�nition ������ �Overestimation Interval� The overestimation interval Of � IRof f is de�ned as

Of � #fx � R j pi�x� � � for some n � i � �g$� �

In other words� Of is the smallest interval which contains all roots of the pi� Note that p
��� � �� hence
� � Of and

Of � ��

Of � ��

Now we are ready for the main theorem of this section�

Theorem ������ �Non�Overestimation of Horner Form� For all X � IR� if
int�X� �Of � �

then
Hf �X� � f�X�� �
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For the proof of Theorem ������ we need some monotonicity properties of the polynomials pi� which are
subject of Lemma ������ and Lemma �������

In the sequel let
sn � �

si�� � �����isi� i � n� � � � � ��

For the inductive proofs below we dene a
 � ��

Lemma ������ For i � �� � � � � n it holds that

p�i�x� � �
pi�x� � �



for all x � Of �������

sip
�
i�x� � �

sipi�x� � �



for all x � Of � � �������

Proof�

� We show ������� by proving inductively for i � n� � � � � �

pi�u� � pi�v�
pi�u� � �



for all u � v � Of � �������

As pn is a constant� ������� holds for i � n� Assume ������� holds for some i � "i � ��

p�i���u� � p�i�u�u
��i ! a�i��

� p�i�v�v
��i ! a�i��

� p�i���v��

Assume p�i���u� � �� As p�i���x� is non�constant and increasing for x � Of � there exists "x � u � Of

such that p�i���"x� � �� which contradicts the denition of Of �

� We show ������� by proving inductively for i � n� � � � � �

sipi�u� � sipi�v�
sipi�u� � �



for all u � v � Of � �������

As pn is a constant� ������� holds for i � n� Assume ������� holds for some i � "i � ��

s�i��p�i���u� � s�i��p�i�u�u
��i ! s�i��a�i��

� s�ip�i�u���u���i ! s�i��a�i��

� s�ip�i�v���v���i ! s�i��a�i��

� s�i��p�i�v�v
��i ! s�i��a�i��

� s�i��p�i���v�

Assume s�i��p�i���u� � �� As s�i��p�i���x� is non�constant and decreasing for x � Of � there exists
"x � u � Of such that s�i��p�i���"x� � �� which contradicts the denition of Of � �

We dene multivariate polynomials �pi � R
n�i � R� i � �� � � � � n and �f � Rn � R as

�pn�� � an
�pn���xn� � �pn�� x�n

n ! an��
�pn���xn��� xn� � �pn���xn� x

�n��

n�� ! an��
���

�p��x�� � � � � xn� � �p��x�� � � � � xn� x��
� ! a�

�p
�x�� � � � � xn� � �p��x�� � � � � xn� x��
� � �f �x�� � � � � xn�

�������

Note that
f �f �x�� � � � � xn� j x� � X� � � � � xn � Xg � Hf �X��
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Lemma ������

�f �u� � �f�v�
�f �u� � �



for all u�v � Rn� u� � v� � Of � � � � � un � vn � Of �������

s
 �f �u� � s
 �f �v�

s
 �f �u� � �



for all u�v � Rn� u� � v� � Of � � � � � un � vn � Of � �������

Proof� For u�v � Rn� i � �� � � � � n let

ui � �ui��� ui��� � � � � un�

vi � �vi��� vi��� � � � � vn��

� We show ������� by proving inductively for i � n� � � � � �

�pi�ui� � �pi�vi�
�pi�ui� � �



for all u�v � Rn� ui�� � vi�� � Of � � � � � un � vn � Of � ��������

As �pn is a constant� �������� holds for i � n� Assume �������� holds for some i � "i � ��

�p�i���u�i��� � �p�i�u�i�u
��i
�i

! a�i��

� �p�i�v�i�v
��i
�i

! a�i��

� �p�i���v�i����

�p�i���u�i��� � �p�i�u�i�u
��i
�i

! a�i��

� �p�i�Of � � � � � Of �Of
��i ! a�i��

� p�i�Of �Of
��i ! a�i��

� p�i���Of �

� ��

� We show ������� by proving inductively for i � n� � � � � �

si�pi�ui� � si�pi�vi�
si�pi�ui� � �



for all u�v � Rn� ui�� � vi�� � Of � � � � � un � vn � Of � ��������

As �pn is a constant� �������� holds for i � n� Assume �������� holds for some i � "i � ��

s�i���p�i���u�i��� � s�i���p�i�u�i�u
��i
�i

! s�i��a�i��

� s�i�p�i�u�i���u�i���i ! s�i��a�i��

� s�i�p�i�v�i���v�i���i ! s�i��a�i��

� s�i���p�i�v�i�v
��i
�i

! s�i��a�i��

� s�i���p�i���v�i����

s�i���p�i���u�i��� � s�i���p�i�u�i�u
��i
�i

! s�i��a�i��

� s�i�p�i�u�i���u�i���i ! s�i��a�i��

� s�i�p�i�Of � � � � � Of ���Of �
��i ! s�i��a�i��

� s�ip�i�Of ���Of �
��i ! s�i��a�i��

� s�i��p�i���Of �

� �� �

Proof of Theorem ������� Let X � IR such that int�X� � Of � �� Then either X � Of or X � Of

and according to Lemma ������ f is monotone in X� i�e�

f�X� � #f�X �� f�X�$�
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By the denition of �f it holds that

f�X� � �f�X� � � � �X�

f�X� � �f�X� � � � �X��

Finally� it follows from Lemma ������ that

# �f�X� � � � �X�� �f�X� � � � �X�$ � f �f �x�� � � � � xn� j x� � X� � � � � xn � Xg � Hf �X��

Hence
f�X� � Hf �X���

������� Optimality of the Non�Overestimation Condition

In the previous section we proved the su�cient condition int�X� � Of � � for Hf �X� � f�X�� This
condition is not necessary in general� For example let f�x� such that ai � � and &i is even for all i�
In this case Of � f�g� but Hf �X� � f�X� for all X in IR� even if int�X� � Of �� �� However� in this
section we show that Of is minimal in the sense that there exists no interval Qf such that Qf �	 Of and
int�X� �Qf � � still implies Hf �X� � f�X�� Throughout this section let f�x� as in ��������

Theorem ������ �Optimality of the Overestimation Interval� Assume ai � � or &i is odd for at
least one i � f�� � � � � ng� Let Qf � IR such that Qf �	 Of � Then there exists X � IR such that

int�X� �Qf � � and Hf �X� � f�X�� � ��������

For the proof of Theorem ������ we distinguish the case Of � f�g� which is treated in Lemma ������
and Lemma ������� and the case Of �� f�g� which is treated in Lemma ������� Lemma ������ and Lemma
������� In the sequel let Qf � IR such that Qf �	 Of �

Lemma ������ If Of � f�g then

�i� ai � � for i � �� � � � � n and

�ii� &i is even for i � �� � � � � n� �

Proof� Assume Of � f�g�

�i� Let n � i � � arbitrary but xed� From the denition of Of it follows that pi�x� �� � for x �� ��
Further� pi��� � ai �� �� hence pi�x� �� � for all x � R� As the leading coe�cient of pi is an � �� it
holds that pi�x� � � for su�ciently large x� Hence pi�x� � � for all x� and ai � pi��� � ��

�ii� Assume &i is odd for some i � � and let i be the largest index such that &i is odd� Then the
degree of

pi�x� �
�
� � � �anx

�n ! an���x
�n�� ! � � �! ai��

�
x�i�� ! ai

is even and the degree of
pi���x� � pi�x�x

�i ! ai��

is odd� Hence pi���x� � � if x is small enough� which is a contradiction to pi�x� � � for all x and
i � �� �

Thus� in order to prove Theorem ������ for the case Of � f�g it remains to show the following lemma�

Lemma ����� Assume Of � f�g and &� is odd� Then there exists X � IRsuch that

int�X� �Qf � � and Hf �X� � f�X�� �
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Proof� Assume Of � f�g and &� is odd� From Lemma ������ it follows that ai � � for i � �� � � � � n and
&i is even for i � �� � � � � n� Hence the degree of f is odd and from Lemma ������ it follows that f�x� is
monotonically increasing� Thus

f�X� � f�X �

for all X � IR� As � �� Qf there exists X � IR such that

int�X� �Qf � �
� � int�X�

X � �X�

The monomials of p��x� have even power and positive coe�cient� hence

p��X� � p��X� � ��

As X�� � �� it holds that

f�X� � p��X�X��

� p��X�X��

� �f�X�X�X� � � � � X��

Hence
Hf �X� � f�X��

which implies Hf �X� � f�X�� �

The following lemmas are a preparation for the proof of Theorem ������ for the case Of �� f�g�

Lemma �����	

�i� If x � � and pi�x� � � for all i � �� � � � � n then x � Of �

�ii� If x � � and sipi�x� � � for all i � �� � � � � n then x � Of � �

Proof�

�i� Assume x � � and pi�x� � � for all i � �� � � � � n� According to the denition of Of we have to
show that pi�y� �� � for all i and for all y � x� Hence� let y � x arbitrary but xed� Obviously
pn�y� � an � �� By induction we show for i � n� �� � � � � �

pi�y� � pi�x�� ��������

As pn���y� � any
�n ! an�� � anx

�n ! an�� � pn���x�� �������� holds for i � n � �� Assume
�������� holds for some i � "i � ��

p�i���y� � p�i�y�y
��i ! a�i��

� p�i�x�x
��i ! a�i��

� p�i���x��

Hence� pi�y� �� � for i � �� � � � � n�

�ii� Assume x � � and sipi�x� � � for all i � �� � � � � n� According to the denition of Of we have to
show that pi�y� �� � for all i and for all y � x� Hence� let y � x arbitrary but xed� Obviously
pn�y� � an � �� By induction we show for i � n� �� � � � � �

sipi�y� � sipi�x�� ��������

As sn��pn���y� � an��y��n ! sn��an�� � an��x��n ! sn��an�� � sn��pn���x�� �������� holds
for i � n� �� Assume �������� holds for some i � "i � ��

s�i��p�i���y� � s�ip�i�y���y���i ! s�i��a�i��

� s�ip�i�x���x���i ! s�i��a�i��
� s�i��p�i���x��

Hence� pi�y� �� � for i � �� � � � � n� �
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In the sequel let

�fi�x�� � � � � xn� �
�

�xi
�f�x�� � � � � xn�� i � �� � � � � n

be the partial derivatives of �f � Note that

�fi�x�� � � � � xn� � x��
� x��

� � � �x
�i��

i��

�

�xi
�pi���xi� � � � � xn�

� x��
� x��

� � � �x
�i��

i�� &ix
�i��
i �pi�xi��� � � � � xn��

where �pi� �f is as in ��������

Lemma �����
 Let X � IRnR and let x � X� If there exist i� j � f�� � � � � ng such that

�fi�x� � � � � x� �fj�x� � � � � x� � �

then �f �x� � � � � x� is not an extremum of �f in X� �

Proof� Assume �f�x� � � � � x� is an extremum of �f in X� X �� X and �fi�x� � � � � x� � �� �fj�x� � � � � x� � � for
some i� j � f�� � � � � ng�

� As the i	th and the j	th partial derivative of �f are not vanishing at �x� � � � � x� it follows that
�f�x� � � � � x� is a boundary extremum� hence x �� int�X��

� Assume x � X � Then �f �x� � � � � x� cannot be a maximum of �f in X because �fj�x� � � � � x� � ��

Further �f �x� � � � � x� cannot be a minimum of �f in X because �fi�x� � � � � x� � �� Hence x �� X�

� Assume x � X � Then �f�x� � � � � x� cannot be a maximumof �f inX because �fi�x� � � � � x� � �� Further
�f�x� � � � � x� cannot be a minimum of �f in X because �fj�x� � � � � x� � �� Hence x �� X� �

Lemma ������ Assume Of �� f�g� Then there exists X � IRnR such that

int�X� �Qf � �

and for all x � X there exists i � f�� � � � � ng such that

�fi�x� � � � � x� �fn�x� � � � � x� � �� �

Proof� Assume Of �� f�g� Then Of �� Of and there exists an interval X � IRnR such that

X � int�Of ��

� �� X and

int�X� �Qf � ��

We distinguish the cases X � � and X � ��

� Assume X � �� As X � Of and X � � it follows from Lemma ������ that for all x � X there
exists i � f�� � � � � ng such that pi�x� � �� Hence�

�fi�x� � � � � x� � x��x�� � � � x�i��&ix
�i���pi�x� � � � � x�

� &ix
di��pi�x�

� ��
�fn�x� � � � � x� � x��x�� � � � x�n��&nx

�n���pn��

� &nx
dn��an

� ��



CHAPTER 
� INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS ��

� Assume X � �� As X � Of and X � � it follows from Lemma ������ that for all x � X there
exists i � f�� � � � � ng such that sipi�x� � �� Note that

s
 � ����dn
si � ����dn�di � i � �� � � � � n�

Hence�

�fi�x� � � � � x� � x��x�� � � � x�i��&ix
�i���pi�x� � � � � x�

� &ix
di��pi�x�

� &i����dn�dixdi��sipi�x�
� &i����dn����x�di��sipi�x��

� � if dn is odd
� � else�

�fn�x� � � � � x� � x��x�� � � � x�n��&nx
�n���pn��

� &nx
dn��an�

� � if dn is even
� � else�

�

The proof of Theorem ������ follows now easily from Lemma ������ � �������

Proof of Theorem ������� Let f and Qf as in Theorem �������

� Assume Of � f�g� From Lemma ������ it follows that ai � � for i � �� � � � � n and &i is even for
i � �� � � � � n� Hence� &� must be odd and Hf �X� � f�X� follows from Lemma �������

� Assume Of �� f�g� According to Lemma ������ there exists X � IRnR such that int�X� �Qf � �
and for all x � X there exists i � f�� � � � � ng such that

�fi�x� � � � � x� �fn�x� � � � � x� � ��

According to Lemma ������� for all x � X� �f �x� � � � � x� is not an extremum of �f in X� Thus� there
exist u�� � � � � un� v�� � � � � vn � X such that

�f �u�� � � � � un� � f�X�

�f �v�� � � � � vn� � f�X��

hence
Hf �X� � f�X�� �

������� Algorithmic Test of the Non�Overestimation Condition

If int�X� � Of � �� then Horner form gives the range of f on X without overestimation� As the
computation of Of is expensive� we are interested in methods to decide whether int�X� and Of are
disjoint� without actually computing Of � The following theorem shows how this can be done e�ciently�
Throughout this section let f as in ��������

Theorem ������ Let X � IRnR� Then
int�X� �Of � �

if and only if
X � � and

pi�X� � � for i � �� � � � � n

or
X � � and

sipi�X� � � for i � �� � � � � n� �
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Proof� Let X � IR� X �� X�

��� Follows from Lemma ������� If int�X� �Of � � then either X � Of or X � Of �

� If X � Of � then X � � and pi�X� � � for all i � �� � � � � n�

� If X � Of � then X � � and sipi�X� � � for all i � �� � � � � n�

��� Follows from Lemma �������

� If X � � and pi�X� � � for i � �� � � � � n� then X � Of � hence int�X� �Of � ��
� If X � � and sipi�X� � � for i � �� � � � � n� then X � Of � hence int�X� �Of � �� �

If Theorem ������ is used for testing disjointness of int�X� and Of one has to evaluate the pi on the
endpoints of X� The next theorem shows how this computation can be avoided by using intermediate
results of the Horner evaluation of f on X instead� In the sequel let

Hpi � IR� IR

be the Horner form of pi and let Opi be the overestimation interval of pi� i � �� � � � � n�

Theorem ������ Let X � IRnR� Then
int�X� �Of � �

if and only if
X � � and

Hpi�X� � � for i � �� � � � � n

or
X � � and

siHpi�X� � � for i � �� � � � � n� �

Proof� Let X � IRnR�

��� Assume int�X� � Of � �� Then either X � Of or X � Of � As Of 	 Opi � it holds that
Hpi�X� � pi�X� for i � �� � � � � n�

� If X � Of then X � � and pi�X� � pi�X� � � by Lemma ������� hence Hpi�X� � ��

� If X � Of then X � � and sipi�X� � sipi�X� � � by Lemma ������� hence siHpi�X� � ��

��� Follows from Theorem ������ and Hpi�X� 	 pi�X�� �

Algorithm ������ is a modication of Algorithm ����� which� in addition to the computation of Hf �X��
decides whether int�X� �Of � �� The decision does not cost any additional arithmetic operations�

Algorithm ������ �HFOT� #Horner Form with Overestimation Test$

In� f�x� � anx
dn ! an��x

dn�� ! � � �! a�x
d� � F#x$�

X � IF�
Out� HF�f�X��

t � ftrue� falseg� if int�X� �Of �� � then t � false�

��� #Initialize�$
Pn �� an�

��� #Accumulate�$
for i � n� �� � � � � �

Pi �� Pi��X
di���di ! ai�
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��� #Last power�$
P
 �� P�X

d� �

��� #Trivial cases for disjointness decision�$
if � � int�X� then t�� false� goto ��
if X � X then t�� true� goto ��

��� #If d� � � then ignore a��$
if d� � � then l �� �� else l �� ��

��� #Signs�$
sn � sign�an��
if X � �

for i � n� �� � � � � l do si �� si���
if X � �

for i � n� �� � � � � l do si �� ����di���disi���
��� #Decide disjointness of int�X� and Of �$

t�� true�
for i � l� � � � � n� �

if siPi � � then t�� false�

��� #Return�$
return P
� t�

Remark� If exact arithmetic is used in Algorithm ������ then t � true if and only if int�X��Of � �� �
If Qf 	 Of � then a su�cient condition for non�overestimation of the Horner form is int�X� � Qf � ��
Thus� it is sometimes useful to know an overestimations of Of � Overestimations of Of can be obtained
cheaply by the use of root bound theorems�

Theorem ������ Let

f�x� �

dnX
i�


a�ix
i �

nX
i��

aix
di �

If f�r� � � for some r � R then

jrj � maxfja�
�a�dn j� � ! ja���a�dn j� � � � � � ! ja�dn���a�dn jg

jrj � maxf��
dn��X
i�


ja�i�a�dn jg

jrj � �maxfja�dn���a�dn j� ja�dn���a�dn j���� ja�dn���a�dn j���� � � � � ja�
�a�dn j��dng� �

Proof� See for example #Householder� ����$� �

If b � jrj for all real roots r of f � then b is called a root bound of f � If b is a common root bound of
p
� � � � � pn then #�b� b$ 	 Of �

Corollary ������ �Bounds for Overestimation Interval� If b � R satis�es one of the conditions

b � maxf� ! ja��anj� � ! ja��anj� � � � � � ! jan���anjg

b � maxf��
n��X
i��

jai�anjg

b � �maxfjan���anj���dn�dn�� �� jan���anj���dn�dn���� � � � � ja��anj���dn�d��g
then

#�b� b$ 	 Of � �

Proof� If b satises one of the conditions of Corollary ������� then b is a common root bound of
p
� � � � � pn� �
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Figure ������ q�Hf �X�� f�X�� in dependence of mid�X�� where f�x� � x� � �x ! ��x and w�X� � ��

������� Further Cases where Horner Form is Exact

In Section ������� we proved the su�cient condition int�X��Of � � for Hf �X� � f�X�� In the following
we study cases where Hf �X� � f�X� but int�X��Of �� �� A complete characterization of all cases when
Horner form is exact is still unknown� The results in this section are original�

Example� Consider the polynomial f�x� � x� � �x ! ��x and let X � #�� �$� We obtain Of � #�� �$�
hence int�X� �Of �� �� i�e� the non�overestimation condition of Theorem ������ is not satised� Still�

Hf �X� � #�� ���$ � f�X��

Figure ����� shows q�Hf �X�� f�X�� for f�x� � x���x!��x in dependence of mid�X�� where w�X� � ��
According to Theorem ������� Hf �X� � f�X� if mid�X� � � or mid�X� � ��� As one can see� the
non�overestimation for mid�X� � � is a �special case�� The following Theorem gives a generalization�

Theorem ������ If there exists c � R and & � N such that

ai � cai��� di � di�� �&� i � �� � � � � n� ��

d� � �� n is odd� and
X � #�� �

p
jcj$ or X � #� �

p
jcj� �$�

then
Hf �X� � f�X�� �

For the example f�x� � x� � �x ! ��x above� we obtain c � ��� & � �� d
 � � and by Theorem �������
Hf �X� � f�X� for X � #�� �$ and for X � #��� �$�
Proof� Let f�x� as in Theorem ������� According to Theorem ������ we may assume an � �� Then

f�x� �
�
� � �
�
�x� ! c�x� ! c�

�
x� ! � � �! cn��

�
x�xd�

where d
 � d� �&� Let

g��x� � x�

gi���x� � �gi�x� ! ci�x�� i � �� � � � � n� ��
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and let Hgi�X� � IR� IRbe the Horner form of gi�x�� i � �� � � � � n� Then

f�x� � gn�x�x
d�

Hf �X� � Hgn �X�Xd� �

and it su�ces to show

Hgn�X�Xd� � f�X� for X � #�� �
p�c$ and X � #��� �

p�c$�

We distinguish � cases�

� c � �� X � #�� �
p
c$� & even�

Of � f�g� hence int�X� �Of � � and Hf �X� � f�X� by Theorem �������

� c � �� X � #�� �
p
c$� & odd�

Of � �� hence int�X� �Of � � and Hf �X� � f�X� by Theorem �������

� c � �� X � #� �
p
c� �$� & even�

Of � f�g� hence int�X� �Of � � and Hf �X� � f�X� by Theorem �������

� c � �� X � #� �
p
c� �$� & odd�

By induction it follows for i � �� � � � � n

Hgi�X� � #�ci� �$
gi�X� �

� �ci� i odd
�� i even

gi�X� � ��

Hence� as n is odd

Hgn�X�Xd� � #�cn� �$#Xd� � �$

� #gn�X�� �$#Xd� � �$

� #gn�X�Xd� � �$

� #f�X�� �$

� f�X��

� c � �� X � #�� �
p�c$� & even�

By induction it follows for i � �� � � � � n

Hgi�X� � #���ci$
gi�X� � �

gi�X� �

� �ci� i odd
�� i even�

Hence� as n is odd

Hgn�X�Xd� � #���cn$#�� Xd�
$

� #�� gn�X�$#�� X
d�
$

� #�� gn�X�X
d�
$

� #�� f�X�$

� f�X��

� c � �� X � #�� �
p�c$� & odd�

This case is equivalent to the previous case�
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Figure ������ q�Hf �X�� f�X�� in dependence of mid�X�� where f�x� � x ! �x� ! �x� and w�X� � ��

� c � �� X � #� �
p�c� �$� & even�

By induction it follows for i � �� � � � � n

Hgi�X� � #���ci$
gi�X� �

� �ci� i odd
�� i even

gi�X� � ��

Hence� as n is odd

Hgn�X�Xd� � #���cn$#Xd� � �$

� #�� gn�X�$#Xd� � �$

� #gn�X�Xd� � �$

� #f�X�� �$

� f�X��

� c � �� X � #� �
p�c� �$� & odd�

Of � �� hence int�X� �Of � � and Hf �X� � f�X� by Theorem ������� �

Let us consider another example where Horner form is exact�

Example� Consider the polynomial f�x� � x ! �x� ! �x� and let X � #����� ���$� We obtain Of �
#��� �$� hence int�X� �Of �� �� i�e� the non�overestimation condition of Theorem ������ is not satised�
Still�

Hf �X� � #�� �������$ � f�X��

Figure ����� shows q�Hf �X�� f�X�� for f�x� � x!�x�!�x� in dependence of mid�X�� where w�X� � ��
According to Theorem ������� Hf �X� � f�X� if mid�X� � � or mid�X� � ��� The observation that
Hf �X� � f�X� already for mid�X� � p

�� � � ���� is generalized by the following Theorem� �

In the sequel let pi� �pi� i � �� � � � � n as in ������� respectively �������� and let Hp��X� be the Horner form
of p��x��
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Theorem ����� If ai � � for i � �� � � � � n� d� � � is even� mid�X� � � and Hp��X� � �� then

Hf �X� � f�X�� �

For the example f�x� � x ! �x� ! �x�� X � #����� ���$ above� we obtain

Hp��X� � �X ! ��X ! � � #����� ����$�

hence Hf �X� � f�X� by Theorem ������� For the proof of Theorem ������ we need the following two
lemmas�

Lemma �����	 If ai � � for i � �� � � � � n� then Of � �� �

Proof� Assume ai � � for i � �� � � � � n� Then all coe�cients of pi�x�� are positive and pi�x� has no
positive roots for i � �� � � � � n� Hence Of � �� �

Lemma �����
 If ai � � for i � �� � � � � n and mid�X� � � then

Hp��X� � p��X�� �

Proof� Assume ai � � for i � �� � � � � n and mid�X� � �� By induction we show for i � n� � � � � �

� � j�pi�xi��� � � � � xn�j � �pi�X� � � � �X� for all xi��� � � � � xn � X� ��������

As an � �� �������� holds for i � n� Assume �������� holds for some i � "i � � and let x�i� � � � � xn � X
arbitrary but xed�

j�p�i���x�i� � � � � xn�j � j�p�i�x�i��� � � � � xn�x��i
�i

! a�ij
� j�p�i�x�i��� � � � � xn�jjx

��i
�i
j! a�i

� j�p�i�X� � � � �X�jX��i ! a�i

� �p�i�X� � � � �X�X
��i ! a�i

� �p�i���X� � � � �X��

Hence

Hp��X� � max
xi�X

�p��x�� � � � � xn�

� max
xi�X

j�p��x�� � � � � xn�j
� �p��X� � � � �X�

� p��X��

As Hp��X� 	 p��X� it follows that Hp��X� � p��X�� �

Proof of Theorem ������ Assume ai � � for i � �� � � � � n� d� � � is even� mid�X� � � andHp��X� � ��
We distinguish the cases � �� X and � � X�

� Assume � �� X� As mid�X� � � it holds that X � �� From Lemma ������ it follows that Of � ��
hence X �Of � � and Hf �X� � f�X� by Theorem �������

� Assume � � X� As Hp��X� � �� Hp��X� � p��X� by Lemma ������ and Xd� � #�� X
d�
$� it holds

that

Hf �X� � Hp��X�Xd�

� #Hp��X�� p��X�$#�� X
d�
$

� #�� p��X�X
d�
$

� #f���� f�X�$

� f�X�� �
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Corollary ������

�i� If ai � � for i � �� � � � � n� d� � � is even� mid�X� � � and Hp��X� � �� then Hf �X� � f�X��

�ii� If ai � � for all i where di is even� ai � � for all i where di is odd� d� � � is even� mid�X� � � and
Hp��X� � �� then Hf �X� � f�X��

�iii� If ai � � for all i where di is even� ai � � for all i where di is odd� d� � � is even� mid�X� � � and
Hp��X� � �� then Hf �X� � f�X�� �

Proof� Follows from Theorem ������ applied to �f�x�� f��x�� respectively �f��x�� �

Corollary ������ If
sign�an� � sign�an��� � � � � � sign�a��

and di is even for i � �� � � � � n then for all X � IR
Hf �X� � f�X�� �

Proof� Let f�x� as in Corollary ������� Without loss of generality assume

sign�an� � sign�an��� � � � � � sign�a�� � �� d� � ��

Let X � IR arbitrary but xed� If mid�X� � � we apply Theorem ������� if mid�X� � � we apply
Corollary ������� In both cases we have to show that

Hp��X� � ��

As all coe�cients of �p� are positive and each xi has even power in �p��x�� � � � � xn�� it holds that

�p��x�� � � � � xn� � � for all xi � R�
hence Hp��X� � �� �

Another example where Horner form is exact is as follows�

Example� Consider the polynomial f�x� � x�!�x	!�x�!x and let X � #��� �$� We obtain Of � f�g�
hence int�X� �Of �� �� i�e� the non�overestimation condition of Theorem ������ is not satised� Still�

Hf �X� � #��� �$ � f�X��

Figure ����� shows q�Hf �X�� f�X�� for f�x� � x� ! �x	 ! �x� ! x in dependence of mid�X�� where
w�X� � �� According to Theorem ������� Hf �X� � f�X� if mid�X� � � or mid�X� � ��� The
observation that Hf �X� � f�X� for mid�X� � �� i�e� X � #��� �$ is generalized by the following
Theorem�

Theorem ������ If
sign�an� � sign�an��� � � � � � sign�a���

di is odd for i � �� � � � � n and mid�X� � �� then

Hf �X� � f�X�� �

Proof� Let f�x� as in Theorem ������ and mid�X� � �� Note that &i is even for i � �� � � � � n and
&� � d� is odd� Further� f�X � � �f�X�� Without loss of generality assume

sign�an� � sign�an��� � � � � � sign�a�� � ��

By induction we show for i � n� � � � � � that

� � j�pi�xi��� � � � � xn�j � �pi�X� � � � �X� for all xi��� � � � � xn � X� ��������
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Figure ������ q�Hf �X�� f�X�� in dependence of mid�X�� where f�x� � x�!�x	!�x�!x and w�X� � ��

As an � �� �������� holds for i � n� Assume �������� holds for some i � "i � ��

j�p�i���x�i� � � � � xn�j � j�p�i�x�i��� � � � � xn�x��i
�i

! a�ij
� j�p�i�x�i��� � � � � xn�jjx

��i
�i
j! a�i

� �p�i�X� � � � �X�X
��i ! a�i

� �p�i���X� � � � �X��

Hence�

Hf �X� � f �f �x�� � � � � xn� j x�� � � � � xn � Xg
� #�f�X �� f�X�$

� #f�X�� f�X�$

� f�X�� �

Remark� The theorems in this section do not give a complete characterization of all cases where
Hf �X� � f�X�� For example� let

f�x� � x� � �x ! �x�

X � #��� �$! �r� � ���r� where r � �

q
�
� �� !

p
���

Then Hf �X� � f�X�� but none of the criteria presented in this section applies� �

����� Improvements if the Input Interval does not Contain Zero

In this section we consider two improvements of the Horner form if the input interval does not contain
zero in its interior� Section ������� contains an algorithm for evaluating the Horner form which is faster
than Algorithm ����� �HF� if � �� int�X�� Sometimes it is su�cient to compute only the upper or the
lower bound of the Horner form� Obviously this can be done by evaluating the Horner form and selecting
the desired endpoint� In Section ������� we show a more e�cient method for the case � �� int�X��



CHAPTER 
� INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS ��

������� E�ciency Improvement

If � �� int�X� then some interval power computations of Algorithm ����� �HF� can be replaced by number
power computations� More precisely� if � � Pi�� and X � �� then

Pi��X
di���di � Pi��Xdi���di � Pi��X

di���di
�

The case X � � is treated analogously� The case distinction � � Pi�� does not introduce additional
overhead because it is necessary anyways during the interval multiplication Pi��X

di���di � Thus� we
obtain the following algorithm�

Algorithm ������ �HFS� #Horner Form� Special Case for � �� int�X�$

In� f�x� � anx
dn ! an��x

dn�� ! � � �! a�x
d� � F#x$�

X � IF�
Out� HF�f�X��

��� #Reduce to case X � ��$
if � � int�X� then return HF�f�X��
if X � � then f�x��� f��x�� X �� �X�

��� #Initialize�$
Pn �� an�

��� #Accumulate�$
for i � n� �� � � � � �

if � � Pi�� then

Pi �� Pi��
�

POW �X� di�� � di� ! ai
else

Pi �� Pi��X
di���di ! ai�

��� #Last power�$
if � � P� then

P
 �� P�
�

POW �X� d���
else

P
 �� P�X
d� �

��� #Return�$
return P
�

������� Separate Computation of Upper and Lower Bound

There are many algorithms� in particular algorithms for optimization� which require the computation of
an upper �or lower� bound of f�X�� If u is an upper bound of �f in X then �u is a lower bound of f
in X� hence it su�ces to consider the computation of upper bounds� Obviously an upper bound of f in
X can be obtained by evaluating Hf �X� and selecting the upper bound of the result� In this section we
present a more e�cient method if � �� int�X�� The results in this section are original�

From now on assume � �� int�X�� It su�ces to consider the case X � �� If X � �� then we form the
polynomial g�x� � f��x�� compute Hg��X�� and according to Theorem ������ Hg��X� � Hf �X�� In

the following let �pi and �f as in ��������

Theorem ������ Assume X � � and de�ne "x � Rn recursively as

"xi �

�
X if �pi�"xi��� � � � � "xn� � �
X else�

Then
�f�"x� � Hf �X�� �
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Proof� Let X and "x as in Theorem ������� By induction we show for i � n� � � � � �

�pi�"xi��� � � � � "xn� � �pi�xi��� � � � � xn� for all xi��� � � � � xn � X� ��������

Obviously �������� holds for i � n� Assume �������� holds for some i � "i � � and let x�i� � � � � xn � X
arbitrary but xed� Then

�p�i���x�i� � � � � xn� � �p�i�x�i��� � � � � xn�x
��i
�i

! a�i��

� �p�i�"x�i��� � � � � "xn�x
��i
�i

! a�i��

�
	

�p�i�"x�i��� � � � � "xn�X
��i ! a�i�� if �p�i�"x�i��� � � � � "xn� � �

�p�i�"x�i��� � � � � "xn�X
��i ! a�i�� else

� �p�i�"x�i��� � � � � "xn�"x
��i
�i

! a�i��

� �p�i���"x�i� � � � � "xn�� �

Based on Theorem ������ we give algorithms for computing Hf �X� and Hf �X�� In order to prevent
wrong results in case of over�ow we have to check the invalid operation �ag explicitly�

Algorithm ������ �HFUB� #Upper Bound of Horner Form$

In� f�x� � anx
dn ! an��x

dn�� ! � � �! a�x
d� � F#x$�

X � IF�
Out� HFUB�f�X� � F� HFUB�f�X� � Hf �X��

��� #Reduce to case X � ��$
if � � int�X� return HF�f�X��
if X � � then f�x��� f��x�� X �� �X�

��� #Initialize�$
�pn �� an�
clear invalid operation �ag�

��� #Accumulate�$
for i � n� �� � � � � �

if �pi�� � �

then �pi �� �pi��
� �

POW �X� di�� � di�
�

! ai�

else �pi �� �pi��
� �

POW �X� di�� � di�
�

! ai�

��� #Last power�$
if �p� � �

then �p
 �� �p�
� �

POW �X� d��

else �p
 �� �p�
� �

POW �X� d���

��� #Check invalid operation and return�$
if invalid operation �ag is raised� then �p
 �� 
�
return �p
�

Algorithm ������ �HFLB� #Lower Bound of Horner Form$

In� f�x� � anx
dn ! an��x

dn�� ! � � �! a�x
d� � F#x$�

X � IF�
Out� HFLB�f�X� � F� HFLB�f�X� � Hf �X��

��� #Reduce to upper bound�$
return �HFUB��f�X��
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Figure ������ w�Hf �#X� c$� � Hf �#c�X$�� in dependence of c for f�x� � x	 ! x � �x� � �x� ! �x and
X � #��� �$� The optimal bisection point is "c � ����

Theorem ����� �Complexity�

�i� If � � int�X� then Algorithm 
���
� and 
���
� cost

n interval power computations�
n interval multiplications and

n� � interval additions�

�ii� If � �� int�X� then Algorithm 
���
� and 
���
� cost

n number power computations�
n number multiplications and

n� � number additions� �

����� Bisection of the Input Interval

The overestimation error of the Horner form can usually be reduced by dividing the input interval X at a
point c � int�X� into two subintervals X� � #X� c$� X� � #c�X$ and evaluating the Horner form on both
intervals separately� From the inclusion monotonicity of the Horner form it follows that

Hf �X� 	 Hf �X�� �Hf �X�� 	 f�X��

It seems to be non�trivial to compute an optimal bisection point "c for a given polynomial f and X � IR�
for example in the sense that

w
�
Hf �#X� "c$� �Hf �#"c�X$�

� � w
�
Hf �#X� c$��Hf �#c�X$�

�
for all c � X� ��������

Figure ����� shows w
�
Hf �#X� c$� �Hf �#c�X$�

�
in dependence of c for f�x� � x	 ! x � �x� � �x� ! �x

and X � #��� �$�
As the computation of an optimal or at least a �good� bisection point seems too expensive just for the
purpose of reducing the overestimation error� we consider two special cases�
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� Bisection at zero� In general� the computation of Hf �X�� � Hf �X�� is twice as expensive as the
computation of Hf �X�� However� as shown in Section �������� the costs are comparable if c � ��
This means that if � � int�X�� then the computation of Hf �#X� �$� � Hf �#�� X$� is roughly as
expensive as the computation of Hf �X�� but gives usually better inclusions of the range�

� Bisection at the midpoint� The midpoint is usually not an optimal bisection point in the sense of
��������� Yet� it is a �standard choice� in many cases and in Section ������� we give some bounds
for the reduction of the overestimation error through bisection at the midpoint�

The results presented in this section are new� They will be used later on in Section ��� for the improvement
of the Taylor form�

������� Bisection at Zero

In the sequel let  Hf � IR� IRbe dened as

 Hf �X� �

�
Hf �#X� �$��Hf �#�� X$� if � � int�X�

Hf �X� else�

We give an algorithm for evaluating  Hf �X�� which costs less than twice as many arithmetic �oating point
operations as Algorithm ����� �HF�� The e�ciency improvement is due to the fact� that an endpoint of
#X� �$ and #�� X$ is zero� and multiplications by zero can be saved�

Algorithm �����	 �HFBZ� #Horner Form with Bisection at Zero$

In� f�x� � anx
dn ! an��x

dn�� ! � � �! a�x
d� � F#x$�

X � IF�
Out� HFBZ�f�X� � IF� HFBZ�f�X� 	  Hf �X��

��� #Case � �� int�X��$
If � �� int�X� then return HFS�X��

��� #Bisect and evaluate�$
Y� �� HFLZ�f��x�� #���X$��
Y� �� HFLZ�f�x�� #�� X$��

��� #Join�$
return Y� � Y��

Algorithm �����
 �HFLZ� #Horner Form for X � �$

In� f�x� � anx
dn ! an��x

dn�� ! � � �! a�x
d� � F#x$�

X � IF� X � ��

Out� HFLZ�f�X� � IF� HFLZ�f�X� 	 Hf �X��

��� #Initialize�$
Pn �� an�
clear invalid operation �ag�

��� #Accumulate�$
for i � n� �� � � � � �

p�� �

POW �X� di�� � di��

if Pi�� � � then Pi �� Pi��
� p �

! ai� else Pi �� ai�

if Pi�� � � then Pi �� Pi��
� p �

! ai� else Pi �� ai�
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Monomials � � � �� �� �� ��

Flops for Hf �X� ����� ����� ����� ����� ����� ����� ������

Flops for  Hf �X� ����� ����� ����� ����� ����� ����� �����

q�Hf �X�� f�X���w�X� ���� ���� ���� ���� ���� ���� ����

q�  Hf �X�� f�X���w�X� ���� ���� ���� ���� ���� ���� ����

Table ������ Comparison of Horner form Hf �X�� computed by Algorithm ����� �HF�� and Horner form
with bisection at zero  Hf �X�� computed by Algorithm ������ �HFBZ�� for random polynomials of degree
�� and � � X � #��� �$�

��� #Last power�$
if d� � �

p�� �

POW �X� d��

if P� � � then P
 �� P�
� p� else P
 �� �

if P� � � then P
 �� P�
� p� else P
 �� �

��� #Check invalid operation and return�$
if invalid operation �ag is raised� then P
 �� #��
$
return P
�

Theorem ������ �Complexity� Algorithm 
���
� �HFLZ� costs

n number power computations�
�n number multiplications and

�n� � number additions� �

Theorem ������ �Complexity�

�i� If � �� int�X� then Algorithm 
���
� �HFBZ� costs

n interval power computations�
�n number multiplications and

�n� � number additions�

�ii� If � � int�X� then Algorithm 
���
� �HFBZ� costs

�n number power computations�
�n number multiplications and

�n� � number additions� �

Theorem ������ does not justify the claim that the costs for computingHf �X� and  Hf �X� are comparable�
The reason is� that the operations were counted for the worst case� For the average case� an experimental
comparison seems to be more appropriate�

Table ����� shows the average cost and overestimation error of Algorithm ����� �HF� and Algorithm
������ �HFBZ� for �� random polynomials f of degree �� with di�erent numbers of monomials and
random intervals X� The polynomial coe�cients are randomly chosen from #��� �$� X from #��� �$ and
X from #�� �$� All random numbers are uniformly distributed� The cost is the total number of arithmetic
�oating point instructions� including those which were executed during interval operations� The quantity
q�Hf �X�� f�X���w�X�� respectively q�  Hf �X�� f�X���w�X� was chosen to measure the overestimation
error�

Finally� one should mention that there are cases where Hf �X� �� f�X�� � � int�X�� but  Hf �X� � Hf �X��
i�e� bisection at zero does not reduce overestimation� This can happen� even if � is the midpoint of X� as
is shown in Figure ������ However� in the next section we show that this is not possible if f is dense�
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Figure ������ w�Hf �#X� c$��Hf �#c�X$�� in dependence of c for f�x� � x�� x and X � #��� �$� Bisection
at c � � does not reduce the overestimation error�

������� Bisection at the Midpoint for the Dense Horner Form

In this section we study the reduction of the overestimation error of the dense Horner form H�
f � when

the input interval X is bisected at its midpoint� In particular� if mid�X� � �� then the overestimation
error is reduced at least by half� First� we show that if H�

f �X� �� f�X�� then bisection leads always to a
reduction of the overestimation error �Corollary �������� i�e�

H�
f �#X� c$� �H�

f �#c�X$� � H�
f �X� for all c � int�X��

Throughout this section let X � IR�
f�x� �

dnX
i�


a�ix
i

and let

�f �x�� � � � � xdn� �

dnX
i�


a�i

iY
j��

xj �

a�dn x�x� � � �xdn��xdn
! a�dn�� x�x� � � �xdn��

���
���

! a�� x�x�
! a�� x�
! a�
�

Note that
H�
f �X� � f �f�x�� � � � � xdn� j xi � X for all ig�

Let
�fi�x�� � � � � xn� �

�

�xi
�f�x�� � � � � xn�� i � �� � � � � n

be the partial derivatives of �f � As �f is linear in each variable� �fi does not depend on xi�
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The following lemma states that �f achieves its maximum and minimum in the n�cube �X� � � � �X� at a
corner of �X� � � � �X��

Lemma ������ There exist "x�� � � � � "xdn �  x�� � � � �  xdn � fX�Xg such that

max
x������xdn�X

�f�x�� � � � � xdn� � �f �"x�� � � � � "xdn�

min
x������xdn�X

�f�x�� � � � � xdn� � �f � x�� � � � �  xdn�� �

Proof� Follows immediately from the linearity of �f in each variable� �

If H�
f �X� �� f�X� then bisection at any point in the interior of X reduces the overestimation error�

Theorem ������ For all c � int�X� it holds that

�i� If f�X� � H�
f �X� then

H�
f �#X� c$��H�

f �#c�X$� � H�
f �X��

�ii� If f�X� � H�
f �X� then

H�
f �#X� c$��H�

f �#c�X$� � H�
f �X�� �

Proof� As �ii� follows from �i� if f is replaced by �f � it su�ces to prove �i�� Assume

H�
f �#X� c$� �H�

f �#c�X$� � H�
f �X�

and let

Y �

	
#X� c$ if H�

f �#X� c$� � H�
f �#c�X$�

#c�X$ else�

Then
H�
f �Y � � H�

f �X��

Note that

H�
f �Y � � max

x������xdn�Y

�f�x�� � � � � xdn�

H�
f �X� � max

x������xdn�X

�f �x�� � � � � xdn��

According to Lemma ������ there exist y�� � � � � ydn � fY � Y g such that

�f�y�� � � � � ydn � � max
x������xdn�Y

�f �x�� � � � � xdn�

� max
x������xdn�X

�f �x�� � � � � xdn��

From the linearity of �f it follows that if yi � c for some i� then

�f �y�� � � � � yi��� X� yi��� � � � � yn� � �f �y�� � � � � yn� � �f �y�� � � � � yi��� X� yi��� � � � � yn�� ��������

Repeated application of �������� yields

�f �y�� � � � � ydn� �

�
�f �X� � � � �X� if Y � #X� c$
�f �X� � � � �X� if Y � #c�X$

� f�X��

Hence�
f�X� � �f �y�� � � � � ydn� � H�

f �X�� �



CHAPTER 
� INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS ��

Corollary ������ If f�X� � H�
f �X� then

H�
f �#X� c$� �H�

f �#c�X$� � H�
f �X�

for all c � int�X�� �

In the following we consider the special case mid�X� � �� i�e� the input interval is centered� Here�
bisection at the midpoint reduces the overestimation error of the dense Horner form at least by half� This
result is used later on for the reduction of the overestimation error of the Taylor form� see Section ����

Theorem ������ �Bisection if Midpoint is Zero� Assume mid�X� � � and let

C � H�
f �#X� �$��H�

f �#�� X$��

Then

jf�X� � Cj � ���jf�X� �H�
f �X�j ��������

jf�X� �Cj � ���jf�X� �H�
f �X�j� � ��������

Proof� Let X and C as in Theorem ������� As �������� follows from �������� if f is replaced by �f � it
su�ces to show ��������� From

H�
f �X� � C � f�X�

it follows that �������� is equivalent to

H�
f �X� � C � C � f�X��

Further�

C � maxfH�
f �#�� X$��H�

f �#X� �$�g�
hence it su�ces to show

H�
f �X� �H�

f �#�� X$ � H�
f �#�� X$�� f�X� ��������

H�
f �X� �H�

f �#X� �$ � H�
f �#X� �$�� f�X�� ��������

The proofs of �������� and �������� are analogous� but for the sake of completeness we give both of them
explicitly�

� Proof of ��������� According to Lemma ������ there exist "x�� � � � � "xdn � f�� Xg such that

max
x������xdn��
�X�

�f �x�� � � � � xdn� �
�f �"x�� � � � � "xdn��

Let k be the largest index such that "xi � X for all i � k� If no such k exists� let k � �� Then

H�
f �#�� X$� � �f �X� � � � �X� �� "xk��� � � � � "xn�

� akX
k
! ak��X

k��
! � � �! a�X ! a


� jakXkj! jak��Xk��j! � � �! ja�X j! a
�

As mid�X� � �� it holds that

H�
f �X� � jadnX

dn j! jadn��X
dn��j! � � �! ja�Xj! a
�

Thus�

H�
f �X� �H�

f �#�� X$� � jadn jX
dn

! jadn��jX
dn��

! � � �! jak��jXk��

� ��adnXdn
! adn��X

dn��
! � � �! ak��X

k��
�

� H�
f �#�� X$�� f�X�

� H�
f �#�� X$�� f�X��
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� Proof of ��������� According to Lemma ������ there exist "x�� � � � � "xdn � fX� �g such that

max
x������xdn��X�
�

�f �x�� � � � � xdn� �
�f �"x�� � � � � "xdn��

Let k be the largest index such that "xi � X for all i � k� If no such k exists� let k � �� Then

H�
f �#X� �$� � �f �X� � � � �X� �� "xk��� � � � � "xn�

� akX
k ! ak��X

k�� ! � � �! a�X ! a


� jakXkj! jak��Xk��j! � � �! ja�X j! a
�

As mid�X� � �� it holds that

H�
f �X� � jadnXdn j! jadn��Xdn��j! � � �! ja�Xj! a
�

Thus�

H�
f �X� �H�

f �#X� �$� � jadnXdn j! jadn��Xdn��j! � � �! jak��Xk��j
� ��adnXdn ! adn��X

dn�� ! � � �! ak��X
k���

� H�
f �#X� �$�� f�X�

� H�
f �#X� �$�� f�X�� �

Another special case� where bisection at the midpoint reduces the overestimation error of the dense
Horner form at least by half� are parabolas�

Theorem ������ �Bisection for Parabolas� Assume dn � �� let c � mid�X� and

C � H�
f �#X� c$��H�

f �#c�X$��

Then

jf�X� � Cj � ���jf�X� �H�
f �X�j ��������

jf�X� �Cj � ���jf�X� �H�
f �X�j� � ��������

Proof� Let f � c and C as in Theorem ������� As �������� follows from �������� if f is replaced by �f � it
su�ces to show ��������� From

H�
f �X� � C � f�X�

it follows that �������� is equivalent to

C � f�X� � H�
f �X� �C�

Let
Y � �#X� c$� #X� c$�� �#c�X$� #c�X$��

Note that C � �f�y�� y�� for all �y�� y�� � Y� f�X� � �f �x� x� for all x � X� and H�
f �X� � �f�x�� x�� for all

x�� x� � X� Hence� it su�ces to show that for all �y�� y�� � Y there exist x� x�� x� � X such that

�f �y�� y��� �f�x� x� � �f �x�� x��� �f �y�� y���

In fact� we show that for all �y�� y�� � Y there exist x� x�� x� � X such that

�f �y�� y��� �f�x� x� � �f �x�� x��� �f �y�� y���

Let �y�� y�� � Y arbitrary but xed�

� If y� � y� � c or y� � y� � c then let x � y�� x� � y� and x� � �y� � y�� Note that x� � X� As �f
is linear in its second argument� it holds that

�f �y�� y��� �f �x� x� � �f �y�� y��� �f �y�� y��

� �f �y�� �y� � y��� �f �y�� y��

� �f �x�� x��� �f �y�� y���
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� If y� � y� � c or y� � y� � c then let x � y�� x� � �y� � y� and x� � y�� Note that x� � X� As �f
is linear in its rst argument� it holds that

�f �y�� y��� �f �x� x� � �f �y�� y��� �f �y�� y��

� �f ��y� � y�� y��� �f �y�� y��

� �f �x�� x��� �f �y�� y��� �

Remark� In general it is not the case that bisection of the input interval at its midpoint reduces the
overestimation error of the dense Horner form at least by half� For example� let f�x� � ��x� � x� ! �x�
X � #�� �$ and c � mid�X�� Then

f�X� �H�
f �X� � ���

f�X� �H�
f �#X� c$� �H�

f �#c�X$� � ����

i�e� the error of the upper bound was reduced by less than half�

According to extensive experimental results� the reduction of the overestimation error of the dense Horner
form� which is obtained through a bisection of the input interval at its midpoint� can be estimated
optimally as follows�

Conjecture ����� �Bisection at Midpoint in General� Let X � IR such that X �� �� X �� ��
X �� X� let c � mid�X� and let

r �

�
X�X if c � �
X�X else

t �
r ! �

�r
�

Further

bmax �

�
��tdn�� if � �� X

�r � ����rtdn�� � �� else

bmin �

��
�

� ! t if dn � �
� ! ��rdn�� if dn � � and � �� X

� else

and
C � H�

f �#X� c$��H�
f �#c�X$��

Then

bmin�H
�
f �X� � C� � H�

f �X� � f�X� � bmax�H
�
f �X� � C�

bmin�C �H�
f �X�� � f�X� �H�

f �X� � bmax�C �H�
f �X��� �

����� Horner Form for Interval Polynomials

Several interval extensions of polynomials which are considered in subsequent sections require the over	
estimation of the range of a polynomial with interval coe�cients� Therefore� we extend the Horner form
in a straight forward way to interval polynomials� In the following let F � R� IR�

F �x� � Anx
dn !An��x

dn�� ! � � �!A�x
d� � IR#x$

be an interval polynomial� F can be considered as a set of real polynomials� i�e�

F �x� �
�
anx

dn ! an��x
dn�� ! � � �! a�x

d� j an � An� an�� � An��� � � � � a� � A�

�
�

De�nition �����	 The Horner form HF � IR� IRof F is de�ned as

HF �X� �
��

� � � �AnX
�n ! An���X

�n�� ! � � �!A�

�
X�� ! A�

�
X�� � �
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The following theorem shows that splitting F into F�� F� by splitting a coe�cient and evaluating the
Horner form of F� and F� separately does not lead to a better inclusion than evaluating the Horner form
of F directly� More precisely� if F � F� � F� then

HF �X� � HF��X� �HF��X��

Theorem �����


HF �X� � fHf �X� j f � Fg� �

Proof�

HF �X� �
��

� � � �AnX
�n ! An���X

�n�� ! � � �!A�

�
X�� ! A�

�
X��

�
n��

� � � �anX
�n ! an���X

�n�� ! � � �! a�
�
X�� ! a�

�
X�� j ai � Ai� i � �� � � � � n

o
� fHf �X� j f � Fg� �

Algorithm ������ �HFI� for evaluating HF �X� di�ers from Algorithm ����� �HF� only in that the the
coe�cients of the input polynomial are �oating point intervals instead of �oating point numbers�

Algorithm ������ �HFI� #Horner Form of Interval Polynomial$

In� F �x� � Anx
dn ! An��x

dn�� ! � � �! A�x
d� � IF#x$�

X � IF�
Out� HFI�F�X� � IF�HFI�F�X� 	 HF �X��

��� #Initialize�$
Pn �� An�

��� #Accumulate�$
for i � n� �� � � � � �

Pi �� Pi��X
di���di !Ai�

��� #Last power�$
P
 �� P�X

d� �

��� #Return�$
return P
�

Theorem ������ �Complexity� Algorithm 
���� �HFI� costs

n interval power computations�
n interval multiplications and

�n� � number additions� �

Theorem ������ �Complexity� If � �� int�X� then Algorithm 
���� �HFI� costs

n interval power computations�
�n number multiplications and

�n� � number additions� �

��� Mean Value Form

The mean value form is a quadratically convergent interval extension and gives therefore tighter inclusions
than the Horner form if the width of the argument interval is su�ciently small� The convergence of the
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mean value form is discussed e�g� in #Alefeld and Herzberger� ����$� #Skelboe� ����$� #Caprani and Madsen�
����$� and #Alefeld and Herzberger� ����$� The inclusion monotonicity of the mean value form is proved
in #Caprani and Madsen� ����$�

The mean value form can be derived easily from the mean value Theorem� For all x� c � X there exists
� � X such that

f�x� � f�c� ! f �����x� c��

Hence� for all x� c � X
f�x� � f�c� ! f ��X��x � c�

and for all c � X
f�X� � f�c� ! f ��X��X � c��

Thus� every interval extension F � of f � and any choice of c � X� give rise to an interval extension
F � IR� IRof f �

F �X� � f�c� ! F ��X��X � c� 	 f�X�� �������

The mean value form is a special case of �������� where F � is the Horner form of f � and c � mid�X�� The
choice c � mid�X� is justied later on by Corollary �������

De�nition ����� �Mean Value Form� The mean value formMf � IR� IRand the dense mean value
form M�

f � IR� IRare de�ned as

Mf �X� � f�mid�X�� !Hf ��X��X �mid�X��

M�
f �X� � f�mid�X�� !H�

f ��X��X �mid�X��� �

Theorem ����� Mf and M�
f are interval extensions of f � �

Proof� Follows from �������� �

The following theorem is taken from #Caprani and Madsen� ����$�

Theorem ����� �Inclusion Monotonicity� Mf and M�
f are inclusion monotone� �

Proof� Let X
 � X� c
 � mid�X
�� c � mid�X�� r
 � rad�X
�� r � rad�X�� We show inclusion
monotonicity of Mf � i�e� Mf �X
� � Mf �X�� The proof for M�

f is analogous� As X � c is a centered
interval� it holds that

Mf �X� � f�c� ! mag�Hf ��X��r#��� �$
Mf �X
� � f�c
� ! mag�Hf ��X
��r
#��� �$�

Hence� we have to show that

f�c
� !mag�Hf � �X
��r
 � f�c� !mag�Hf � �X��r

f�c
� �mag�Hf � �X
��r
 � f�c� �mag�Hf � �X��r�

Note that

jc
 � cj � ���j�X
 !X
 �X �X�j
� ���maxfX
 !X
 �X �X�X !X �X
 �X
g
� ����X !X
 �X
 �X�

� r � r
�

Further� Hf ��X
� � Hf � �X� by Theorem ������ Let � � X such that

f�c
� � f�c� ! f �����c
 � c��
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Then

f�c
� !mag�Hf � �X
��r
 � f�c� ! f �����c
 � c� !mag�Hf � �X
��r


� f�c� ! jf ����jj�c
 � c�j!mag�Hf � �X
��r


� f�c� ! mag�Hf ��X���r � r
� !mag�Hf ��X��r


� f�c� ! mag�Hf ��X��r

f�c
� �mag�Hf � �X
��r
 � f�c� ! f �����c
 � c� �mag�Hf � �X
��r


� f�c� � jf ����jj�c
 � c�j �mag�Hf � �X
��r


� f�c� �mag�Hf ��X���r � r
��mag�Hf ��X��r


� f�c� �mag�Hf ��X��r� �

Theorem ����� �Convergence� Mf and M�
f converge quadratically to f � �

Proof� Let g�x� c� � R� � R be the uniquely dened polynomial� such that

f�x� � f�c� ! g�x� c��x� c� for all x� c � R�
From the mean value Theorem it follows that

g�x�mid�X�� � f ��X� � H�
f ��X� for all x � X�

According to Theorem �������H�
f � is Lipschitz� Hence M

�
f is a centered form and quadratically convergent

by Denition ������ and Theorem ������� As Mf �X� �M�
f �X� for all X � IR� the quadratic convergence

of Mf follows� �

Algorithm ����� �MF� for evaluating the mean value form follows immediately from Denition ������ The
algorithm requires evaluation of the Horner form of f �� As the coe�cients of f � need not be �oating
point numbers we have to enclose them by intervals� Further� as the midpoint of X is computed using
Algorithm ������ �MID�� which gives only an approximation of mid�X�� the output interval need not be

a superset of M
��s�
f �X�� but at least contains f�X��

Algorithm ����� �MF� #Mean Value Form$

In� f�x� � anx
dn ! an��x

dn�� ! � � �! a�x
d� � F#x$�

X � IF�
Out� MF�f�X� � IF� MF�f�X� �Mf �X�� MF�f�X� 	 f�X��

��� #Midpoint�$
c�� MID�X��

��� #Evaluate f�c��$
Y �� HF�f�x�� #c$��

��� #Inclusion of f ��$
if d� �� �

for i � �� � � � � n do A�i �� #di
� ai� di � ai$�

F ��x��� A�nx
dn�� !A�n��x

dn���� ! � � �! A��x
d����

else
for i � �� � � � � n do A�i �� #di

� ai� di � ai$�
F ��x��� A�nx

dn�� !A�n��x
dn���� ! � � �! A��x

d����

��� #Evaluate Hf ��X��$
F ��� HFI�F ��x�� X��

��� #Return�$
return Y ! F �  �X � c��
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Note that no invalid operation can occur in Step �� because di �� ��

Remark� As F �  �X � c� � mag�F �� �X� c�� it would be su�cient to compute �only� mag�F �� instead
of F �� However� it seems that there is no algorithm� which computes mag�HF ��X�� faster than HF � �X�
for arbitrary X� �An exception is the case mid�X� � �� see Section ����� �

Theorem ����� �Complexity� Algorithm 
�	�� �MF� costs

�n interval power computations�
n ! � interval multiplications�
�n! � number multiplications� and
�n! � number additions� �

Proof�

� Step � costs � number multiplication and � number additions�

� Step � costs n interval power computations� �n number multiplications and �n�� number additions
�Theorem �������

� Step � costs �n number multiplications�

� Step � costs n interval power computations� n interval multiplications and �n�� number additions
�Theorem ��������

� Step � costs � interval multiplication and � number additions� �

����� Slope Form

The slope form can be viewed as an improvement of the mean value form� see for example #Hansen�
����b$� #Alefeld� ����$� #Krawczyk and Neumaier� ����$ #Neumaier� ����$� #Hansen� ����$� It has the same
�shape� as the mean value form� but the overestimation of f ��X� in the mean value form is replaced by
an overestimation of the set of slopes between x and the midpoint of X� where x ranges over X�

It is well known that for every c � R� there exists a polynomial gc � R#x$ such that

f�x� � f�c� ! gc�x��x� c�� �������

for all x � R� Thus� a whole class of interval extensions of f is given by

f�X� � f�c� ! Gc�X��X � c�� �������

where Gc is an interval extension of gc� The slope form is a special case of �������� where Gc is the Horner
form of gc and c is the midpoint of X�

De�nition ���� �Slope Form� Let c � mid�X� and let gc be the uniquely de�ned polynomial such
that

f�x� � f�c� ! gc�x��x� c��

The slope form M
�s�
f � IR� IR is de�ned as

M
�s�
f �X� � f�c� !Hgc�X��X � c��

The dense slope form M
��s�
f � IR� IR is de�ned as

M
��s�
f �X� � f�c� !H�

gc�X��X � c�� �
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Obviously M
�s�
f �X� �M

��s�
f �X� for all X � IR� In the sequel let c and gc as in Denition ������

For the sake of clarity we give an explicit formula for gc and H�
gc � Let a

�
i be the coe�cient of xi in f � let

bn�c� � a�n

bi�c� � bi���c�c ! a�i � i � n� �� � � � � �

and let

gc�x� �
nX
i��

bi�c�x
i���

Then

f�c� ! gc�x��x� c� � f�c� !
nX
i��

bi�c�x
i���x� c�

� f�c� !
nX
i��

bi�c�x
i �

nX
i��

bi�c�x
i��c

� f�c� !
nX
i��

bi�c�x
i �

n��X
i�


bi���c�x
ic

� f�c� !
nX
i��

bi�c�x
i �

n��X
i��

�bi�c�� ai�x
i � b��c�c

� a�
 ! a�nx
n !

n��X
i��

aix
i

� f�x��

Further�

H�
gc �X� �

��
b
�mid�X��X ! b��mid�X��

�
X ! � � �! bn���mid�X��

�
X ! bn���mid�X��� �������

In contrast to the mean value form� neither the slope formnor the dense slope formare inclusionmonotone�

Theorem ����	 �Inclusion Monotonicity� There exist polynomials f such that neither M
�s�
f nor

M
��s�
f are inclusion monotone� �

Proof� Consider the example

f�x� � �x� � x� � �x� X � #�� ���$� X
 � #�� ���$�

We obtain
M

�s�
f �f�X� � M

��s�
f �f�X� � #������� ������$

M
�s�
f �f�X
� � M

��s�
f �f�X
� � #������� ������$�

i�e�

M
�s�
f �f�X� � M

�s�
f �f�X
�

M
��s�
f �f�X� � M

��s�
f �f�X
��

although X � X
� �

Theorem ����
 �Convergence� M
�s�
f and M

��s�
f converge quadratically to f � �

Proof� From ������� and Corollary ������ it follows that H�
gc

is Lipschitz� Further� gc�x� � H�
gc
�X� for

all x � X� Hence M
��s�
f is a centered form of f and is quadratically convergent by Denition ������ and

Theorem ������� As M
�s�
f �X� � M

��s�
f �X� for all X � IR� the quadratic convergence of M

��s�
f follows� �

The similarity of the slope form and the mean value form motivates a comparison�
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Lemma ������ For all X � IR it holds that

gc�X� � f ��X�� �

Proof� Let y � gc�X� arbitrary but xed� We have to show that y � f ��X�� Let "x � X such that
y � gc�"x��

� Assume "x � c� As gc�c� � f ��c� �see for example #Lipson� ����$�� it follows that y � f ��X��

� Assume "x �� c� From the mean value Theorem it follows that there exists � � X such that

f�"x� � f�c� ! f �����"x � c��

According to ��������
f�"x� � f�c� ! y�"x� c��

Hence y � f ���� � f ��X�� �

Lemma ������ gives rise to the conjecture that the slope form yields always tighter inclusions than the
mean value form� However� this is not true�

Theorem ������ There exist polynomials f and intervals X such that

M
�s�
f �X� �Mf �X�� � �������

Proof� Let
f�x� � x� � �x� X � #����� �$ �������

We obtain

Mf �X� � #���������� ��������$
M

�s�
f �X� � #��������� ������$� �

The reason why ������� holds in the example above is that f � is sparse� whereas gc is dense� Therefore�
the superiority of the interval power function over interval multiplication reveals in the Horner evaluation
of f �� but not in the Horner evaluation of gc� This gives rise to the following conjecture�

Conjecture ������ For all X � IR it holds that

M
��s�
f �X� �M�

f �X��

Justi�cation� It su�ces to show that

H�
gc�X� � H�

f ��X�� �������

Equation ������� can be written explicitly as�
�a�nX ! a�nc ! a�n���X ! a�nc

� ! a�n��c! a�n��
�
X ! � � �! a�nc

n�� ! a�n��c
n�� ! � � �! a��c! a��

� �
�na�nX ! �n� ��a�n���X ! �n� ��a�n���X ! � � �! �a��

�
X ! a���

where a�i is the coe�cient of xi in f � Experimental results indicate that the following inclusions are valid
for arbitrary c � X� We give formulas for the case n � �� the generalization is straight forward���

�a�	X ! a�	c! a��X ! a�	c
� ! a�c ! a��

�
X ! a�	c

� ! a�c
� ! a��c! a��

�
X

!a�	c
 ! a�c

� ! a��c
� ! a��c! a��

�
��

��a�	X ! a�	c! �a��X ! a�	c
� ! a�c! �a��

�
X ! a�	c

� ! a�c
� ! a��c! �a��

�
X ! a��

�
��

��a�	X ! a�	c! �a��X ! a�	c
� ! a�c! �a��

�
X ! �a��

�
X ! a��

�
��

��a�	X ! a�	c! �a��X ! �a��
�
X ! �a��

�
X ! a��

�
��

��a�	X ! �a��X ! �a��
�
X ! �a��

�
X ! a���
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Similar inclusions have been proved by #Alefeld� ����$� However� for the case above� it seems that no
proof is known� �

We give an algorithm for the dense slope form and not for the slope form because of the following reasons�

� Usually gc is dense� even if f is sparse� This is in particular the case if the coe�cients of gc are

computed by rounded interval arithmetic� Hence� in general M �s�
f �X� � M

��s�
f �X��

� In a concrete implementation� an algorithm for M��s�
f is usually faster than a corresponding algo	

rithm for M �s�
f � because some integer operations and the power function calls are saved�

Algorithm ������ �DSF� evaluates M
��s�
f �X�� The coe�cients of gc and the function value of f at c are

obtained simultaneously by the Horner scheme� As the midpoint of X is computed using Algorithm
������ �MID�� which gives only an approximation of mid�X�� the output interval need not be a superset

of M��s�
f �X�� but at least contains f�X��

Algorithm ������ �DSF� #Dense Slope Form$

In� f�x� � anx
dn ! an��x

dn�� ! � � �! a�x
d� � F#x$�

X � IF�
Out� DSF�f�X� � IF� DSF�f�X� �M

��s�
f �X�� DSF�f�X� 	 f�X��

��� #Midpoint�$
c�� MID�X��

��� #Coe�cients of gc�x� and f�c��$
k�� dn�
Bk �� an�
for i � n� �� � � � � �

for j � di��� � � � � di ! �
k �� k � �� Bk �� Bk��c�

Bk �� Bk ! ai�
for j � d�� � � � � �

k�� k � �� Bk �� Bk��c�

��� #Evaluate H�
gc�X��$

if dn � � then G�� �� goto Step ��
G�� Bdn �
for i � dn � �� � � � � � do G�� GX ! Bi�

��� #Return�$
return B
 ! G  �X � c��

Theorem ������ �Complexity� Algorithm 
�	��
 �DSF� costs

dn interval multiplications
�dn ! � number multiplication and

�dn ! �n number additions� �

Proof�

� Step � costs � number multiplication and � number additions�

� Step � costs �dn number multiplications and �n� � number additions�

� Step � costs dn � � interval multiplications and �dn � � number additions�

� Step � costs � interval multiplication and � number additions� �



CHAPTER 
� INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS ��

����� Bicentered Mean Value Form

The bicentered mean value form is a modication of the mean value form� which was introduced by
#Baumann� ����$� The basic idea is to evaluate the mean value form twice with di�erent centers c� and
c� and intersect the results� The centers are optimal in the sense that c� minimizes the upper bound and
c� maximizes the lower bound� The bicentered mean value form is therefore particularly suitable for the
separate computation of an upper or lower bound of f in X�

In the sequel let
Mf �X� c� � f�c� !Hf � �X��X � c��

Example� Let f�x� � x� � x� � and let X � #�� �$� Then Hf � �X� � #��� �$ and we obtain

Mf �X�mid�X�� � Mf �X� � #���� ��$�

Let c� � ���� c� � ���� Then

Mf �X� c
�� � #������� ����$

Mf �X� c
�� � #������ �����$

Mf �X� c
�� �Mf �X� c

�� � #������ ����$�

An illustration of this example is given in Figure ������ The dashed lines are the linear functions

f�c� !Hf ��X��x� c� and f�c� !Hf ��X��x� c� �������

where c � mid�X�� c � c� and c � c� from left to right� From the picture it is clear� why c� and c� can
be called optimal centers� Further� we can see the following important property� which will be used later
on�

f�c�� !Hf � �X��X � c�� � f�c�� !Hf � �X��X � c��

f�c�� !Hf � �X��X � c�� � f�c�� !Hf � �X��X � c���

�Note that this is only true if � � Hf � �X���
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Figure ������ Geometric interpretation of the mean value form of f�x� � x��x�� with di�erent centers�
From left to right� Mf �X�mid�X��� Mf �X� c��� Mf �X� c���
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De�nition ������ �Bicentered Mean Value Form� The bicentered mean value form 
Mf � IR� IR

is de�ned as

Mf �X� � #Mf �X� c

���Mf �X� c�$� �������

where the optimal centers c� and c� are

c� �

��
�

X if F � � �
X if F � � �
�F �X � F �X��w�F �� else

c� �

��
�

X if F � � �
X if F � � �
�F �X � F �X��w�F �� else

and F � � Hf ��X�� �

In the sequel let c�� c� and F � as in Denition �������

Theorem ������ �Interval Extension� 
Mf is an interval extension of f � �

Proof� As c�� c� are convex linear combinations of X and X � it holds that c�� c� � X� From ������� it
follows that


Mf �X� 	Mf �X� c
�� �Mf �X� c

���

According to �������� f�X� �Mf �X� c� for all c � X� Hence�

f�X� �Mf �X� c
�� �Mf �X� c

�� � 
Mf �X��

Finally� if X � R then obviously 
Mf �X� � R� �

Theorem ����� �Non�Overestimation� If F � � � or F � � � then


Mf �X� � f�X�� �

Proof�

� Assume F � � ��


Mf �X� � #Mf �X�X��Mf �X�X�$

� #f�X� ! F �  �X �X�� f�X� ! F �  �X �X�$

� #f�X�� f�X �$�

� Assume F � � ��


Mf �X� � #Mf �X�X��Mf �X�X�$

� #f�X� ! F �  �X �X�� f�X� ! F �  �X �X�$

� #f�X�� f�X �$�

In both cases f is monotone in X� hence #f�X �� f�X�$ � f�X�� �

Theorem �����	 �Optimality of Centers� For all c � X it holds that

Mf �X� c�� � Mf �X� c� ��������

Mf �X� c
�� � Mf �X� c�� ��������
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Proof� If F � � � or F � � � then �������� and �������� follow from Theorem ������� Hence assume
� � int�F �� and let c � X arbitrary but xed� We show ��������� the proof of �������� is similar�

Mf �X� c� � f�c� ! F �  �X � c�

� f�c�� ! F �  �c � c�� ! F �  �X � c�� ��������

Next� we show that
F �  �c� c�� ! F �  �X � c� � F �  �X � c��� ��������

As � � F � and � � X � c we have

F �  �X � c� � maxfF �  �X � c�� F �  �X � c�g ��������

and from the denition of c� it follows that

F �  �X � c�� � F �  �X � c�� � F �  �X � c��� ��������

� Assume c � c�� From �������� and �������� it follows that

F �  �X � c� � F �  �X � c�

F �  �c � c�� � F �  �c� c���

Hence�
F �  �c� c�� ! F �  �X � c� � F �  �X � c�� � F �  �X � c���

� Assume c � c�� From �������� and �������� it follows that

F �  �X � c� � F �  �X � c�

F �  �c � c�� � F �  �c� c���

Hence�
F �  �c� c�� ! F �  �X � c� � F �  �X � c�� � F �  �X � c���

After having shown ��������� we can continue with ���������

Mf �X� c� � f�c�� ! F �  �X � c��

� Mf �X� c��� �

Corollary �����



Mf �X� �
�
c�X

Mf �X� c�� �

Corollary ������ �Convergence� 
Mf converges quadratically to f � �

Proof� According to Corollary ������� 
Mf �X� � Mf �X� for all X � IR� and Mf is quadratically
convergent by Theorem ������ �

Theorem ������ �Inclusion Monotonicity� 
Mf is inclusion monotone� �

Proof� Let X
 � X� let c�
� c
�

 be the optimal centers of f in X
� and let F �


 � Hf ��X
�� We have to
show that


Mf �X
� � 
Mf �X�� ��������

or equivalently

Mf �X
� c
�

� � Mf �X� c�� ��������

Mf �X
� c
�

� � Mf �X� c

�� ��������
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We give a proof of ��������� the proof of �������� is analogous� If F �

 � � or F �


 � � then


Mf �X
� � f�X
� � f�X� � 
Mf �X�

by Theorem ������� In the sequel assume � � int�F �

�� Inclusion monotonicity of the Horner form implies

� � int�F ���

� Assume c�
 � c�� Then

f�c�
� � f�c�� ! F �  �c�
 � c��� ��������

Hence�

Mf �X
� c
�

� � f�c�
� ! F �


  �X
 � c�
�

������	�
� f�c�
� ! F �


  �X
 � c�
�

��������

� f�c�� ! F �  �c�
 � c�� ! F �

  �X
 � c�
�

� f�c�� ! F �  �c�
 � c�� ! F �  �X � c�
�

� f�c�� ! F �  �X � c��

������	�
� f�c�� ! F �  �X � c��

� Mf �X� c��� �

� Assume c�
 � c�� Then

f�c�
� � f�c�� ! F �  �c�
 � c��� ��������

Hence�

Mf �X
� c
�

� � f�c�
� ! F �


  �X
 � c�
�

������	�
� f�c�
� ! F �


  �X
 � c�
�

������
�

� f�c�� ! F �  �c�
 � c�� ! F �

  �X
 � c�
�

� f�c�� ! F �  �c�
 � c�� ! F �  �X � c�
�

� f�c�� ! F �  �X � c��

������	�
� f�c�� ! F �  �X � c��

� Mf �X� c��� �

In Figure ����� one sees that the width of the mean value form is the same for all centers c between c�

and c�� In this case the width is determined by the steeper dashed line� If the center is chosen outside
#c�� c�$ then the width of the mean value form is larger� The following theorem is new�

Theorem ������ Let C � #c�� c�$� For all c � X it holds that

w�Mf �X� c�� � mag�F ��w�X� ! w�F ��mig�C � c�� �

Proof� Assume � �� int�F ��� Then C � X and for all c � X it holds that mig�C � c� � �� Thus�

w�Mf �X� c�� � w�F �  �X � c��

� w�mag�F ���X � c��

� mag�F ��w�X��

Assume � � int�F ��� Further� assume F � � �F �� i�e� mag�F �� � F �� The case F � � �F � can be treated
similarly� Note that

F �X � F �X � F �X � F �X � �F � ! F ���X �X�

� F �X � F �X�
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Hence� c� � c�� Further� for all c � X

F �  �X � c� � maxfF �  �X � c�� F �  �X � c�g ��������

F �  �X � c� � minfF �  �X � c�� F �  �X � c�g ��������

and

F �  �X � c�� � F �  �X � c�� � � ��������

F �  �X � c�� � F �  �X � c�� � �� ��������

� Assume c � C� Note that mig�C � c� � �� As c � c� and c � c�� we obtain from �������� � ��������

F �  �X � c� � F �  �X � c�

F �  �X � c� � F �  �X � c��

Thus�

w�Mf �X� c�� � F �  �X � c�� F �  �X � c�

� F �  �X �X�

� F �w�X��

� Assume c �� C� We give a proof only for the case c � c�� the case c � c� is analogous� As c � c�

and c � c� we obtain from �������� � ��������

F �  �X � c� � F �  �X � c�

F �  �X � c� � F �  �X � c��

Thus�

w�Mf �X� c�� � F �  �X � c�� F �  �X � c�

� �F � � F ���X � c�

� �F � � F ���X � c�� ! �F � � F ���c� � c�

� F �  �X � c��� F �  �X � c�� ! w�F �mig�C � c�

� F �  �X � c��� F �  �X � c�� ! w�F �mig�C � c�

� F �w�X� ! w�F �mig�C � c�� �

The midpoint of X is an optimal center for the mean value form in the following sense�

Corollary ������ �Optimality of the Midpoint for the Mean Value Form� For all c � X it holds
that

w�Mf �X�� � w�Mf �X� c��� �

Proof� According to Theorem ������� we have to show that mid�X� � #c�� c�$� In fact� we show that
mid�X� � mid�#c�� c�$�� If � �� int�F �� then #c�� c�$ � X� If � � int�F �� then

����c� ! c�� �
F �X � F �X ! F �X � F �X

�w�F ��

�
�F � � F ���X !X�

��F � � F ��

� ����X !X�

� mid�X�� �

A comparison between the slope form and the bicentered mean value form might be of interest� The
bicentered mean value form returns the range without overestimation if � �� int�Hf � �X��� This is not the
case for the slope form� e�g� f�x� � x� ! �x� X � #��� �$� If � � int�Hf ��X�� sometimes the slope form
is better than the bicentered mean value form� sometimes vice versa�
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� f�x� � �x� ! x� � x� X � #��� �$�

M
�s�
f �X� � #��� �$ � #������� �����$ � 
Mf �X�

� f�x� � �x� ! x� ! x� X � #����� �$�

M
�s�
f �X� � #������� ����$� #���������� �������$ � 
Mf �X��

Algorithm ������ �BMF� for evaluating the bicentered mean value form follows immediately from Def	
inition ������� First� we give Algorithm ������ �OC� for computing the optimal centers� Note that an
approximation of the optimal centers is su�cient for the correctness of Algorithm ������� provided that
the approximations are elements of X�

Algorithm ������ �OC� #Optimal Centers$

In� F � � IF�
X � IF�

Out� c�� c� � X� approximations of the optimal centers according to Denition �������

��� #Monotonicity test�$
if F � � � return X�X �
if F � � � return X�X �

��� #Approximate�$
clear invalid operation �ag

c� �� �F � � X �� F � � X�
�

� �F �
�� F ���

c� �� �F � � X �� F � � X�
�

� �F �
�� F ���

��� #Check invalid operation and rounding errors�$
if invalid operation �ag is raised then c� �� X � c� �� X �
if c� � X then c� �� X �
if c� � X then c� �� X �
if c� � X then c� �� X �
if c� � X then c� �� X �

��� #Return�$
return c�� c��

Note that in Step � F � � and F � �� hence F �
�� F � �� � and division by zero cannot occur�

Theorem ������ �Complexity� Algorithm 
�	�	� �OC� costs

� number divisions�
� number multiplications and
� number additions� �

Algorithm ������ �BMF� #Bicentered Mean Value Form$

In� f�x� � anx
dn ! an��x

dn�� ! � � �! a�x
d� � F#x$�

X � IF�
Out� BMF�f�X� � IF� BMF�f�X� � 
Mf �X�� BMF�f�X� 	 f�X��

��� #Inclusion of f ��$
F ��x��� f ��x� �use interval arithmetic for coe�cients��
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��� #Evaluate f ��X��$
F ��� HFI�F ��x�� X��

��� #Optimal centers�$
c�� c� �� OC�F �� X��

��� #Evaluate at Centers�$

y� �� HFUB�f�x�� #c�$�
�

! F �  �X � c���

y� �� HFLB�f�x�� #c�$�
�

! F �  �X � c���

return #y�� y�$�

Theorem ����� �Complexity� Algorithm 
�	�	� �BMF� costs

n interval power computations�
n! � interval multiplications�

�n number power computations�
� number divisions�

�n! � number multiplications and
�n! � number additions� �

Proof�

� Step � costs �n number multiplications�

� Step � costs n interval power computations� n interval multiplications and �n�� number additions
�Theorem �������

� Step � costs � number divisions� � number multiplications and � number additions �Theorem ��������

� Step � costs �n number power computations� �n number multiplications and �n�� number additions
during the calls of HFLB and HFUB �Theorem �������� Further� it takes � interval multiplications
and � number additions� �

����� Experimental Results

An experimental comparison of the mean value formMf � computed by Algorithm ����� �MF�� the dense

slope form M
��s�
f � computed by Algorithm ������ �DSF� and the bicentered mean value form 
Mf � com	

puted by Algorithm ������ �BMF� for dense and sparse polynomials with di�erent degrees is given in
Table ������ respectively Table ������ The coe�cients of the polynomials and the endpoints of the input
intervals are uniformly distributed in #��� �$� For each degree dn� the average cost and overestimation
error of �� random polynomials is reported� The cost is the total number of arithmetic �oating point
instructions� including those which were executed during interval operations� As the forms are quadrati	
cally convergent� the distance to the range divided by w�X�� was chosen to measure accuracy� In almost

all cases 
Mf is more accurate than M
�s�
f � which is signicantly more accurate than Mf � The costs of 
Mf

and Mf are almost the same� If the polynomials are �su�ciently� sparse� then 
Mf and Mf are more

e�cient than M
��s�
f � In the dense case M��s�

f is cheaper�

��� Taylor Form

The basic idea of the Taylor form is to translate f by mid�X� to the left and evaluate the Horner form
of resulting polynomial on the centered interval X � mid�X�� The Taylor form is a centered form and
hence quadratically convergent�

The Taylor form for polynomials and rational functions was studied thoroughly in the literature� see
e�g� #Alefeld and Herzberger� ����$� #Alefeld and Rokne� ����$� #Alefeld and Herzberger� ����$� #Hansen�
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Degree of f � � �� �� �� �� �� ��

Flops for Mf �X� ���� ���� ����� ����� ����� ����� ����� �����

Flops for M
��s�
f �X� ���� ���� ���� ����� ����� ����� ����� �����

Flops for 
Mf �X� ���� ���� ����� ����� ����� ����� ����� �����

q�Mf �X�� f�X���w�X�� ���� ���� ���� ���� ���� ���� ���� ����

q�M��s�
f �X�� f�X���w�X�� ���� ���� ���� ���� ���� ���� ���� ����

q� 
Mf �X�� f�X���w�X�� ���� ���� ���� ���� ���� ���� ���� ����

Table ������ Comparison of Mf � M
��s�
f and 
Mf for dense random polynomials f with di�erent degrees

and random intervals X� The coe�cients of f and the endpoints of X are uniformly chosen in #��� �$�

Degree of f � � �� �� �� �� �� ��

Flops for Mf �X� ���� ���� ���� ���� ���� ���� ���� ����

Flops for M
��s�
f �X� ���� ���� ���� ����� ����� ����� ����� �����

Flops for 
Mf �X� ���� ���� ���� ���� ���� ���� ���� ����

q�Mf �X�� f�X���w�X�� ���� ���� ���� ���� ���� ���� ���� ����

q�M��s�
f �X�� f�X���w�X�� ���� ���� ���� ���� ���� ���� ���� ����

q� 
Mf �X�� f�X���w�X�� ���� ���� ���� ���� ���� ���� ���� ����

Table ������ Comparison of Mf � M
��s�
f and 
Mf for sparse random polynomials f with di�erent degrees

and random intervals X� Each polynomial has only � non�zero coe�cients� The coe�cients of f and the
endpoints of X are uniformly chosen in #��� �$�
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����$� #Moore� ����$� #Rall� ����$� #Ratschek� ����$� #Ratschek� ����a$� #Ratschek� ����b$� #Ratschek and
Rokne� ����b$� #Ratschek and Rokne� ����a$� #Ratschek and Schr
oder� ����$� #Ratschek and Rokne� ����$�
Interval polynomials are considered in #Rokne� ����$ and complex polynomials in #Rokne and Wu� ����$�
#Rokne and Wu� ����$� In Section ����� we give a new improvement of the Taylor form which is obtained
through a bisection of the input interval� The overestimation error is thereby reduced at least by half�

According to Taylor�s Theorem we can rewrite f for arbitrary c � R as

f�x� �

dnX
i�


f �i��c�

i'
�x� c�i�

If we translate f by c to the left� we obtain the polynomial

f �c��x� �
dnX
i�


f �i��c�

i'
xi �������

and obviously
f�x� � f �c��x � c��

Thus� a whole class of interval extensions of f is given by

f�X� � F �c��X � c�� �������

where F �c� is an interval extension of f �c�� The Taylor form is a special case of �������� where F �c� is the
Horner form of f �c� and c is the midpoint of X�

De�nition ����� �Taylor Form� The Taylor form Tf � IR� IRof f is de�ned as

Tf �X� � Hf�mid�X�� �X �mid�X���

The dense Taylor form T �f � IR� IRof f is de�ned as

T �f �X� � H�
f�mid�X�� �X �mid�X��� �

From Theorem ����� it follows that Tf �X� � T �f �X� for all X � IR� The reason why it is still worthwhile
to consider T �f is that it can be evaluated more e�ciently than Tf � This is surprising� because the
evaluation of Hf is usually cheaper than the evaluation of H�

f � Another reason is that T �f is inclusion
monotone� whereas Tf is not� Finally� Tf �X� � T �f �X� only if a Taylor coe�cient vanishes� which is �in
general� not the case� especially if rounded interval arithmetic is used for their computation�

In the sequel let c � mid�X� and f �c� as in �������� Further� let

g�c��x� �
dnX
i��

f �i��c�

i'
xi��

and note that
T �f �X� � f�c� !H�

g�c� �X � c�  �X � c�� �������

A corresponding representation is not possible for Tf if f ��c� � ��

The following Theorem shows� why T �f can be evaluated faster than Tf � Further� it will be used to prove
inclusion monotonicity of T �f �

Theorem ����� Let b
� � � � � bdn�� such that

g�c��x� �
dn��X
i�


bix
i�

let

g
�c�
jj �x� �

dn��X
i�


jbijxi�

and let r � rad�X�� Then

H�
g�c� �X � c� �X � c� � g

�c�
jj �r�r#��� �$� �



CHAPTER 
� INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS ��

Proof� Let r and b
� � � � � bdn�� as in Theorem ������ As X � c is a centered interval� it holds that

H�
g�c� �X � c� �X � c� � mag�H�

g�c� �X � c��r#��� �$�

It remains to show that
mag�H�

g�c� �X � c�� � g
�c�
jj �r��

Let
Pn�� � bn��� Pi � Pi���X � c� ! bi
pn�� � jbn��j� pi � pi��r ! jbij



i � n� �� � � � � ��

Note that P
 � H�
g�c�

�X � c� and p
 � g
�c�
jj �r�� Obviously mag�Pn��� � pn��� If mag�Pi� � pi for some

� � i � n� � then

mag�Pi��� � mag�Pi  �X � c� ! bi��� � mag�Pi�r ! jbi��j � pi���

hence mag�P
� � p
� �

In #Caprani and Madsen� ����$ inclusion monotonicity of a centered form similar to the Taylor form �see
#Ratschek� ����$� #Ratschek� ����a$� is disproved by a counterexample� Apparently� inclusion monotonic	
ity of the Taylor form was not studied before� In particular� Theorem ����� is new�

Theorem ����� �Inclusion Monotonicity of Dense Taylor Form� T �f is inclusion monotone� �

Proof� Let X
 � X� c
 � mid�X
�� r
 � rad�X
� and r � rad�X�� Note that

jc
 � cj � ���j�X
 !X
 �X �X�j
� ���maxfX
 !X
 �X �X�X !X �X
 �X
g
� ����X !X
 �X
 �X�

� r � r
�

We have to show that T �f �X
� � T �f �X�� which can be rewritten according to Theorem ����� as

f�c
� ! #��� �$
dnX
i��

jf �i��c
�j
i'

ri
 � f�c� ! #��� �$
dnX
i��

jf �i��c�j
i'

ri� �������

The corresponding inequalities for the endpoints are

f�c
� !
dnX
i��

jf �i��c
�j
i'

ri
 � f�c� !
dnX
i��

jf �i��c�j
i'

ri �������

f�c
� �
dnX
i��

jf �i��c
�j
i'

ri
 � f�c� �
dnX
i��

jf �i��c�j
i'

ri� �������

First� we express the derivatives of f at c
 in terms of derivatives of f at c�

f �i��c
� �
dnX
j�i

f �j��c�

�j � i�'
�c
 � c�j�i�

Thus�

dnX
i��

jf �i��c
�j
i'

ri
 �
dnX
i��

������
dnX
j�i

f �j��c�

i'�j � i�'
�c
 � c�j�i

������ ri

�

dnX
i��

dnX
j�i

jf �j��c�j
i'�j � i�'

j�c
 � c�jj�iri
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�
dnX
i��

dnX
j�i

jf �j��c�j
i'�j � i�'

�r � r
�
j�iri


�

dnX
j��

jX
i��

jf �j��c�j
i'�j � i�'

�r � r
�
j�iri


�
dnX
j��

jf �j��c�j
j'

jX
i��

�
j

i

�
�r � r
�

j�iri


�
dnX
j��

jf �j��c�j
j'

�
rj � �r � r
�

j
�

�
dnX
j��

jf �j��c�j
j'

rj �
dnX
j��

jf �j��c�j
j'

�r � r
�
j

�
dnX
j��

jf �j��c�j
j'

rj �
dnX
j��

jf �j��c�j
j'

jc
 � cjj

�
dnX
j��

jf �j��c�j
j'

rj �
������
dnX
j��

f �j��c�

j'
�c
 � c�j

������
�

dnX
j��

jf �j��c�j
j'

rj � jf�c
�� f�c�j�

Finally� ������� and ������� follow from

f�c
� � jf�c
�� f�c�j � f�c��

f�c
� ! jf�c
�� f�c�j � f�c�� �

Theorem ����� Tf is not inclusion monotone� �

Proof� Let f�x� � x� � �  x��

� Let X � #�� �$� c � �� The Taylor coe�cients are

f�c� � ��
f ��c���' � ��
f ���c���' � �

f ����c���' � ��

and
Tf �X� � �� ! �#��� �$� � ��#��� �$ � #��� �$�

Note that f ���c���' � �� which caused that the interval square function was used instead of multi	
plication�

� Let X
 � #�� ���$� c
 � ���� The Taylor coe�cients are

f�c
� � ������
f ��c
���' � �����
f ���c
���' � ����
f ����c
���' � ��

and

Tf �X
� � ������ ! ��#����� ���$� ����#����� ���$� ����
�
#����� ���$ � #������� �����$�



CHAPTER 
� INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS ��

Thus X
 � X but Tf �X
� � Tf �X�� �

Theorem ����� �Convergence� Tf and T �f converge quadratically to f � �

Proof� According to ������� the dense Taylor form can be written as

T �f �X� � f�c� !H�
g�c� �X � c� �X � c��

Let G�X� � H�
g�c�

�X�c�� From Corollary ������ it follows that H�
g�c�

and hence G are Lipschitz� Further�

g�c��x� c� � G�X� for all x � X� Hence T �f is a centered form and quadratically convergent by Denition
������ and Theorem ������� As Tf �X� � T �f �X� for all X � IR� Tf is also quadratically convergent� �

We give an algorithm for computing Taylor coe�cients by the extended Horner scheme rst�

Algorithm ����� �TC� #Taylor Coe�cients$

In� f�x� � anx
dn ! an��x

dn�� ! � � �! a�x
d� � F#x$�

c � F�
Out� TC�f� c� � �A
� � � � � Adn�� Ai � IF� f �i��c��i' � Ai� i � �� � � � � dn�

��� #Initialize�$
for i � �� � � � � dn do Ai �� coe�cient of xi in f �
S �� cAdn �

��� #Horner scheme�$
for i � �� � � � � dn � �

Adn�� �� Adn�� ! S�
for j � dn � �� � � � � i! � do Aj�� �� Aj�� ! cAj �

��� #Return�$
return A
� � � � � Adn �

Theorem ���� �Comlexity� Algorithm 
�
�� �TC� costs

d�n � dn ! � number multiplications and
d�n ! dn number additions� �

Proof�

� Step � costs � number multiplication�

� The i	th iteration in step � costs ��dn�i��� number multiplications and ��dn�i� number additions�
Hence step � costs dn�dn � �� number multiplications and dn�dn ! �� number additions�

Algorithm ����� evaluates the dense Taylor form� For the evaluation of the translated polynomial we
use Theorem ����� instead of Horner form� This allows to replace interval operations by �oating point
operations�

Algorithm ����	 �DTF� #Dense Taylor Form$

In� f�x� � anx
dn ! an��x

dn�� ! � � �! a�x
d� � F#x$�

X � IF�
Out� DTF�f�X� � IF� DTF�f�X� 	 T �f �X��

��� #Special case X � X�$
if X � X then return Hf �X��
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��� #Midpoint and radius of X�$
c�� MID�X��

r�� maxfX �� c� c
�� Xg�

��� #Taylor coe�cients�$
�A
� � � � � Adn ��� TC�f� c��

��� #Magnitude of H�
g�c�

�X � c��X � c��$

m�� mag�Adn �
� r�

for i � dn � � � � �� do m�� �m
�

! mag�Ai��
� r�

��� #Return�$
return A
 ! #�m�m$�

The special case X � X was excluded in Step �� hence r � � in Step � and an invalid operation cannot
occur�

Theorem ����
 �Complexity� If X �� X then Algorithm 
�
�� �DTF� costs

d�n ! � number multiplications and
d�n ! �dn ! � number additions� �

Proof�

� Step � costs � number multiplication and � number additions�

� Step � costs d�n � dn ! � number multiplications and d�n ! dn number additions �Theorem �������

� Step � costs dn number multiplications and dn � � number additions�

� Step � costs � number additions� �

����� Bisection at Zero

The Taylor form reduces the computation of the range of f on an arbitrary intervalX to the evaluation of
the Horner form of the Taylor polynomial f �c� on a centered interval X�c� According to Theorem �������
the overestimation error of the Horner form can be reduced at least by half if X � c is bisected at zero
and Horner form is evaluated separately on both halves� In Section ����� it was pointed out that such a
bisection is relatively inexpensive� The following new modication of the Taylor form is therefore slightly
more expensive than T �f � but gives signicantly tighter inclusions� In the sequel let

 H�
f �X� �

�
H�
f �#X� �$��Hf �#�� X$� if � � int�X�

H�
f �X� else�

De�nition ������ �Dense Taylor Form with Bisection� The dense Taylor form with bisection  T �f �
IR� IRof f is de�ned as

 T �f �X� �  H�
f�mid�X�� �X �mid�X��� �

The following theorem states that the overestimation error of  T �f is at most half as big as the overesti	
mation error of T �f �

Theorem ������ For all X � IR it holds that

jf�X� �  T �f �X�j � ���jf�X� � T �f �X�j
jf�X� �  T �f �X�j � ���jf�X� � T �f �X�j� �
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Proof� Follows immediately from Theorem ������� �

Algorithm ������ �DTFBM� evaluates  T �f � In order to improve e�ciency� we apply the techniques devel	
oped in Algorithm ������ �HFBZ��

Algorithm ������ �DTFBM� #Dense Taylor Form with Bisection at Midpoint$

In� f�x� � anx
dn ! an��x

dn�� ! � � �! a�x
d� � F#x$�

X � IF�
Out� DTFBM�f�X� � IF� DTFBM�f�X� �  T �f �X�� DTFBM�f�X� 	 f�X��

��� #Midpoint of X�$
c�� MID�X��

��� #Coe�cients of f �c��x��$
�A
� � � � � Adn ��� TC�f� c��

��� #Initialize �oating point operations�$
clear invalid operation �ag�

��� #Right half�$

x�� X
�� c�

R�� Adn �
for i � dn � �� � � � � �

if R � � then R�� R
� x �

! Ai� else R�� Ai�

if R � � then R�� R
� x �

! Ai� else R�� Ai�

��� #Coe�cients of f �c���x��$
for i � �� � � � � dn step � do Ai �� �Ai�

��� #Left half�$

x�� c
�� X�

L�� Adn �
for i � dn � �� � � � � �

if L � � then L�� L
� x �

! Ai� else L�� Ai�

if L � � then L�� L
� x �

! Ai� else L�� Ai�

��� #Check invalid operation and return�$
if invalid operation �ag is raised� then return #��
$� else return R � L�

Theorem ������ �Complexity� Algorithm ������ �DTFBM� costs

d�n ! �dn ! � number multiplications and
d�n ! �dn ! � number additions� �

Proof�

� Step � costs � number multiplication and � number additions�

� Step � costs d�n � dn ! � number multiplications and d�n ! dn number additions�

� Step � and � costs each �dn number multiplications and �dn ! � number additions� �

Hence� Algorithm ������ �DTFBM� costs �dn number multiplications and �dn�� number additions more
than Algorithm ����� �DTF��

����� Experimental Results

An experimental comparison between Algorithm ����� �DTF� and Algorithm ������ �DTFBM� for dense
polynomials with di�erent degrees is given in Table ������ The coe�cients of the polynomials and the
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Degree of f � � �� �� �� �� �� ��

Flops for T �f �X� ���� ���� ����� ����� ����� ������ ������ ������

Flops for  T �f �X� ���� ����� ����� ����� ����� ������ ������ ������

q�T �f �X�� f�X���w�X�� ���� ���� ���� ���� ���� ���� ���� ����

q�  T �f �X�� f�X���w�X�� ���� ���� ���� ���� ���� ���� ���� ����

Table ������ Comparison of T �f and  T �f for dense random polynomials f with di�erent degrees and random
intervals X� The coe�cients of f and the endpoints of X are uniformly chosen in #��� �$�

endpoints of the intervals are uniformly distributed in #��� �$� For each degree dn� the average cost and
overestimation error of �� random polynomials is reported� The cost is the total number of arithmetic
�oating point instructions� including those which were executed during interval operations� As the forms
are quadratically convergent� the distance to the range divided by w�X�� was chosen to measure accuracy�

While the measured costs of Algorithm ����� �DTF� correspond exactly to Theorem ������ the measured
costs of Algorithm ������ �DTFBM� are signicantly smaller than stated by Theorem ������� The reason
is� that the worst case assumption of Theorem ������ does not hold in most cases�

��� Bernstein Form

It is well known that the k ! � Bernstein polynomials of order k form a basis of the vector space of
polynomials of degree at most k� This means that every polynomial f with degree � k can be written as
a linear combination of k	th order Bernstein polynomials� The coe�cients of such a linear combination
have an important property� namely the largest and the smallest coe�cient bound the range of f in the
interval #�� �$� This observation can be generalized to bound the range of f on arbitrary intervals X�

Experimental results indicate that the Bernstein form gives very tight inclusions compared to the other
forms described so far� There are many situations when Bernstein form yields the range without over	
estimation� An a posteriori test� whether such a situation is given� does not require any additional
computation�

The idea to use Bernstein polynomials for range computation goes back to #Cargo and Shisha� ����$

and #Rivlin� ����$� The case X �� #�� �$ was considered rst by #Rokne� ����$� E�cient algorithms for
real and for interval polynomials are presented in #Rokne� ����a$ respectively #Rokne� ����$� Complex
polynomials are studied in #Rokne� ����b$ and #Grassmann and Rokne� ����$� The multivariate case is
treated in #Garlo�� ����$� An application to real root isolation can be found in #Lane and Riesenfeld�
����$� The inclusion monotonicity of the Bernstein form �Theorem ������� was proved by #Hong and
Stahl� ����$� A new criterion when the Bernstein form gives the range without overestimation is subject
of Theorem ������� In Section ����� we give a new improvement of the Bernstein form which reduces both�
the overestimation error and the computing time� The improvement is achieved through a bisection of
the input interval at ��

Let us rst review some basic properties of Bernstein polynomials�

De�nition ����� �Bernstein Polynomial� The j�th Bernstein polynomial of order k is de�ned as

p
�k�
j �x� �

�
k

j

�
xj��� x�k�j� k � �� j � �� � � � � k� �

The Bernstein polynomials fp�k�j �x� j j � �� � � � � kg form a basis of the vector space of polynomials of

degree � k� All we have to show is that the elements xi� i � �� � � � � k of the power basis are linear
combinations of Bernstein polynomials�
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Lemma ����� For all � � i � k it holds that

xi �
kX
j�i

�
j
i

��
k
i

�p�k�j �x�� �

Proof�

xi � xi�x! ��� x��k�i

�
k�iX
r�


�
k � i

r

�
xi�r��� x�k�i�r

�
kX
j�i

�
k � i

j � i

�
xj��� x�k�j

�
kX
j�i

�
j
i

��
k
i

��k
j

�
xj��� x�k�j

�
kX
j�i

�
j
i

��
k
i

�p�k�j �x�� �

In the sequel let k � dn and let a�i be the coe�cient of xi in f � i � �� � � � � k� According to Lemma �����

there exist coe�cients b�k�j such that

f�x� �
kX

j�


b
�k�
j p

�k�
j �x��

Using Lemma ����� we can derive the coe�cients as follows�

f�x� �
dnX
i�


a�ix
i

�
dnX
i�


a�i

kX
j�i

�
j
i

��
k
i

�p�k�j �x�

�
kX

j�


jX
i�


a�i

�
j
i

��
k
i

�p�k�j �x��

This motivates the following denition�

De�nition ����� �Bernstein Coe�cient� The j�th Bernstein coe�cient of f of order k is de�ned as

b
�k�
j �

jX
i�


a�i

�
j
i

��
k
i

� � j � �� � � � � k� �

The following theorem shows the relationship between Bernstein coe�cients and the range of polynomials
over #�� �$�

Theorem ����� �Range Overestimation�

f�#�� �$� � #fb�k�j j j � �� � � � � kg$� � �������

Proof� Note that
p
�k�
j �x� � � for all x � #�� �$� j � �� � � � � k�
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Further�

kX
j�


p
�k�
j �x� �

kX
j�


�
k

j

�
xj��� x�k�j

� �x! ��� x��k

� ��

Hence� for all x � X

f�x� �
kX

j�


b
�k�
j p

�k�
j �x�

� max
j

b
�k�
j

kX
j�


p
�k�
j �x�

� max
j

b
�k�
j

f�x� �
kX

j�


b
�k�
j p

�k�
j �x�

� min
j

b
�k�
j

kX
j�


p
�k�
j �x�

� min
j

b
�k�
j � �

The following theorem gives a necessary and su�cient condition when equality holds in ��������

Theorem ����� �Non�Overestimation�

f�#�� �$� � maxfb�k�j j j � �� � � � � kg �������

i� maxfb�k�j j j � �� � � � � kg � fb�k�
 � b
�k�
k g

f�#�� �$� � minfb�k�j j j � �� � � � � kg �������

i� minfb�k�j j j � �� � � � � kg � fb�k�
 � b
�k�
k g� �

Proof� We give a proof of �������� the proof of ������� is analogous�

��� Assume maxfb�k�j j j � �� � � � � kg � maxfb�k�
 � b
�k�
k g� As

b
�k�

 �


X
i�


a�i

�


i

��
k
i

� � a�
 � f���

b
�k�
k �

kX
i�


a�i

�
k
i

��
k
i

� �
kX

i�


a�i � f����

it holds that maxfb�k�j j j � �� � � � � kg � f�#�� �$�� Hence� by Theorem ������

maxfb�k�j j j � �� � � � � kg � f�#�� �$��

��� Assume f�#�� �$� � maxfb�k�j j j � �� � � � � kg�

� If b
�k�

 � b

�k�
� � � � � � b

�k�
k then trivially maxfb�k�j j j � �� � � � � kg � maxfb�k�
 � b

�k�
k g�
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� Otherwise� if � � x � � then � � p
�k�
j �x� � � for all j and

f�x� �
kX

j�


b
�k�
j p

�k�
j �x�

� max
j

b
�k�
j

kX
j�


p
�k�
j �x�

� max
j

b
�k�
j �

Hence� f achieves its maximum in #�� �$ either for x � � or for x � � and

maxfb�k�j j j � �� � � � � kg � f�#�� �$� � maxff���� f���g � maxfb�k�
 � b
�k�
k g� �

So far we restricted our considerations to the case X � #�� �$� In order to extend Theorem ����� and

Theorem ����� to arbitrary intervals� we introduce Bernstein basis polynomials p
�k�X�
j which depend on

X� The relevant properties which were needed for the case X � #�� �$ are supposed to carry over to the
generalized case� Hence� we expect

p
�k�X�
j �x� � � for all x � X�

kX
j�


p
�k�X�
j �x� � ��

In the sequel let X � IR� w�X� �� ��

De�nition ����� �Generalized Bernstein Polynomial� The j�th Bernstein polynomial of order k
over X is de�ned as

p
�k�X�
j �x� �

�
k

j

�
�x �X�j�X � x�k�j

w�X�k
� �

As in the case X � #�� �$� we show that fp�k�X�
j �x� j j � �� � � � � kg forms a basis of the vector space of

polynomials of degree � k�

Lemma ���� For every k � i � � it holds that

�x�X�i � w�X�i
kX

j�i

�
j
i

��
k
i

�p�k�X�
j �x��

�x�X�i � �w�X�i
k�iX
j�


�
k�j
i

��
k
i

� p
�k�X�
j �x�� �

Proof�

�x�X�i �
�

w�X�k�i
�x�X�i�x�X !X � x�k�i

�
�

w�X�k�i

k�iX
r�


�
k � i

r

�
�x�X�i�r�X � x�k�i�r

�
�

w�X�k�i

kX
j�i

�
k � i

j � i

�
�x�X�j�X � x�k�j

�
�

w�X�k�i

kX
j�i

�
j
i

��
k
i

��k
j

�
�x�X�j�X � x�k�j
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� w�X�i
kX
j�i

�
j
i

��
k
i

�p�k�X�
j �x�

�x�X�i �
����i

w�X�k�i
�X � x�i�x�X !X � x�k�i

�
����i

w�X�k�i

k�iX
r�


�
k � i

r

�
�X � x�i�r�x�X�k�i�r

�
����i

w�X�k�i

k�iX
j�


�
k � i

k � j � i

�
�x�X�j�X � x�k�j

�
����i

w�X�k�i

k�iX
j�


�
k�j
i

��
k
i

� �k
j

�
�x�X�j�X � x�k�j

� ��w�X��i
k�iX
j�


�
k�j
i

��
k
i

� p
�k�X�
j �x�� �

Let us transform f from the power basis to the generalized Bernstein basis� For that purpose� it is useful
to introduce Taylor coe�cients rst� In the sequel let

a
�X�
i � f �i��X��i'

a
�X�
i � f �i��X��i'

be the i	th Taylor coe�cient of f with developing point X respectively X � i�e�

f�x� �
dnX
i�


a
�X�
i �x�X�i

�

dnX
i�


a
�X�
i �x�X�i�

Thus�

f�x� �

dnX
i�


a
�X�
i �x�X�i

�
dnX
i�


a
�X�
i

kX
j�i

�
j
i

��
k
i

�w�X�ip
�k�X�
j �x�

�
kX

j�


jX
i�


�
j
i

��
k
i

�a�X�
i w�X�ip

�k�X�
j �x�

f�x� �

dnX
i�


a
�X�
i �x�X�i

�
dnX
i�


a
�X�
i

k�iX
j�


�
k�j
i

��
k
i

� ��w�X��ip�k�X�
j �x�

�
kX

j�


k�jX
i�


�
k�j
i

��
k
i

� a
�X�
i ��w�X��ip

�k�X�
j �x��

This motivates the following denition�

De�nition ����	 �Generalized Bernstein Coe�cient� The j�th Bernstein coe�cient of f of order
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k over X is de�ned as

b
�k�X�
j �

jX
i�


�
j
i

��
k
i

�a�X�
i w�X�i �������

�

k�jX
i�


�
k�j
i

��
k
i

� a
�X�
i ��w�X��i �������

for j � �� � � � � k� �

Thus� Theorem ����� can be generalized as follows�

Theorem ����
 �Range Overestimation�

f�X� � #fb�k�X�
j j j � �� � � � � kg$� � �������

Proof� Note that
p
�k�X�
j �x� � � for all x � X� j � �� � � � � k�

Further�

kX
j�


p
�k�X�
j �x� �

�

w�X�k

kX
j��

�
k

j

�
�x�X�j�X � x�k�j

�
�

w�X�k
�x�X !X � x�k

� ��

Hence� for all x � X

f�x� �
kX

j�


b
�k�X�
j p

�k�X�
j �x�

� max
j

b
�k�X�
j

kX
j�


p
�k�X�
j �x�

� max
j

b
�k�X�
j

f�x� �
kX

j�


b
�k�X�
j p

�k�X�
j �x�

� min
j

b
�k�X�
j

kX
j�


p
�k�X�
j �x�

� min
j

b
�k�X�
j � �

The generalization of Theorem ����� is as expected�

Theorem ������ �Non�Overestimation�

f�X� � maxfb�k�X�
j j j � �� � � � � kg

i� maxfb�k�X�
j j j � �� � � � � kg � fb�k�X�


 � b
�k�X�
k g �������

f�X� � minfb�k�X�
j j j � �� � � � � kg

i� minfb�k�X�
j j j � �� � � � � kg � fb�k�X�


 � b
�k�X�
k g� � �������



CHAPTER 
� INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS ��

Proof� We give a proof of �������� the proof of ������� is analogous�

��� Assume maxfb�k�X�
j j j � �� � � � � kg � maxfb�k�X�


 � b
�k�X�
k g� As

b
�k�X�

 �


X
i�


�

i

��


i

�a�X�
i w�X�i � a

�X�

 � f�X� �������

b
�k�X�
k �

kX
i�


�
k
i

��
k
i

�a�X�
i w�X�i �

kX
i�


a
�X�
i w�X�i � f�X �� ��������

it holds that maxfb�k�X�
j j j � �� � � � � kg � f�X�� Hence� by Theorem ������

maxfb�k�X�
j j j � �� � � � � kg � f�X��

��� Assume f�X� � maxfb�k�X�
j j j � �� � � � � kg�

� If b
�k�X�

 � b

�k�X�
� � � � � � b

�k�X�
k then triviallymaxfb�k�X�

j j j � �� � � � � kg � maxfb�k�X�

 � b

�k�X�
k g�

� Otherwise� if X � x � X then � � p
�k�X�
j �x� � � for all j and

f�x� �
kX

j�


b
�k�X�
j p

�k�X�
j �x�

� max
j

b
�k�X�
j

kX
j�


p
�k�X�
j �x�

� max
j

b
�k�X�
j �

Hence� f achieves its maximum in X either for x � X or for x � X and

maxfb�k�X�
j j j � �� � � � � kg � f�X� � maxff�X�� f�X �g � maxfb�k�X�


 � b
�k�X�
k g� �

The range of f is bounded by the smallest and the largest Bernstein coe�cient� This denes an interval
extension of f � which is called Bernstein form�

De�nition ������ �Bernstein Form� The k�th order Bernstein form B
�k�
f � IR� IR of f is de�ned

as
B
�k�
f �X� � #fb�k�X�

j j j � �� � � � � kg$� �

Theorem ������ �Interval Extension� B
�k�
f is an interval extension of f � �

Proof� From Theorem ����� it follows that f�X� � B
�k�
f �X� for all X � IR� If X � R then b

�k�X�
j �

f�X� � f�X� for all j� hence B
�k�
f �X� � R� �

For the parameter k it was required so far merely that it is greater or equal the degree of f � By
incrementing k� usually better approximations of the range are obtained�

Theorem ������ �Overestimation Error Bounds�

q�f�X�� B�k�
f �X�� � �

k

dnX
i��

�i � ���ja�X�
i jw�X�i� ��������

q�f�X�� B
�k�
f �X�� � �

k

dnX
i��

�i � ���ja�X�
i jw�X�i� � ��������
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The proof of Theorem ������ requires some preparation and will be given after Lemma ������� As the
proofs of �������� and �������� are analogous� we give only the proof of ���������

Lemma ������ Let ic
�k�X�
j � R� i � �� � � � � k� j � �� � � � � k such that

kX
j�


�j�k w�X��ip
�k�X�
j � �x�X�i �

kX
j�


ic
�k�X�
j p

�k�X�
j �

Then

� � ic
�k�X�
j � �i � ���

k
w�X�i� �

Proof� As p�k�X�
j � j � �� � � � � k span the space of polynomials of degree � k� the coe�cients ic

�k�X�
j exist

and are uniquely dened�

For i � � and i � � we obtain

c
�k�X�
j � �c

�k�X�
j � �� j � �� � � � � k�

For i � � it holds that

kX
j�


�j�k w�X��ip�k�X�
j � �x�X�i

�
kX

j�


�j�k w�X��ip
�k�X�
j �

kX
j�i

�
j
i

��
k
i

�w�X�ip
�k�X�
j

�
i��X
j�


�j�k w�X��ip�k�X�
j �

kX
j�i

�
j�k w�X��i �

�
j
i

��
k
i

�w�X�i

�
p
�k�X�
j

�
kX

j�


ic
�k�X�
j p

�k�X�
j �

Comparing the coe�cients of the Bernstein polynomials we get for j � i

� � ic
�k�X�
j � �j�k w�X��i � �i� ���

k
w�X�i

and for j � i

ic
�k�X�
j �

�
�j�k�i �

�
j
i

��
k
i

�
�
w�X�i�

It remains to show for j � i � �

� � �j�k�i �
�
j
i

��
k
i

� � �i � ���

k
�

�j�k�i �
�
j
i

��
k
i

� � �j�k�i � j'�k � i�'

k'�j � i�'

� �j�k�i � j�j � �� � � � �j � i ! ��

k�k � �� � � � �k � i ! ��

� �j�k�i

�
���

�
�� �

j

�
� � �
�
�� i��

j

�
�
�� �

k

� � � ���� i��
k

�
�
A ��������

� �j�k�i
�
��

�
�� �

j

�
� � �
�
�� i� �

j

��

� �j�k�i

�
��

�
�� i � �

j

�i��
�
�
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Applying the mean value Theorem to ��� x�i��� we obtain

��
�
�� i � �

j

�i��

� �i � ���

j
�

hence

�j�k�i
�i � ���

j
� �j�k�i��

�i � ���

k
� �i � ���

k
�

Finally�

� � �j�k�i �
�
j
i

��
k
j

�
follows from comparison of the factors in the numerator and the denominator of ��������� �

The following lemma gives a bound for the di�erence between a Bernstein coe�cient and f�x� for certain
x � X�

Lemma ������ Let
c
�k�X�
j � f�j�k w�X� !X�� b

�k�X�
j j � �� � � � � k�

Then

jc�k�X�
j j � �

k

dnX
i��

�i � ���a
�X�
i w�X�i� �

Proof� With the denition of c
�k�X�
j as in Lemma ������ it holds that

kX
j�


f�j�k w�X� !X�p
�k�X�
j �x� � f�x�

�
kX

j�


�c
�k�X�
j ! b

�k�X�
j �p

�k�X�
j �x��

kX
j�


b
�k�X�
j p

�k�X�
j

�
kX

j�


c
�k�X�
j p

�k�X�
j �x�� ��������

Using the coe�cient ic
�k�X�
j of Lemma ������ we obtain

kX
j�


f�j�k w�X� !X�p�k�X�
j �x�� f�x�

�
kX

j�


dnX
i�


a�i �j�k w�X� !X�ip�k�X�
j �x��

dnX
i�


a�ix
i

�
kX

j�


dnX
i�


a
�X�
i �j�k w�X��ip

�k�X�
j �x��

dnX
i�


a
�X�
i �x�X�i

�
dnX
i�


a
�X�
i

kX
j�


�j�k w�X��ip
�k�X�
j �x�� �x�X�i

�
dnX
i�


a
�X�
i

kX
j�


ic
�k�X�
j p

�k�X�
j �x�

�
kX

j�


dnX
i�


a
�X�
i

ic
�k�X�
j p

�k�X�
j �x�� ��������
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Comparing the coe�cients of p
�k�X�
j in �������� and �������� we obtain

c
�k�X�
j �

dnX
i�


a
�X�
i

ic
�k�X�
j �

From Lemma ������ and 
c
�k�X�
j � �c

�k�X�
j � � it follows that

jc�k�X�
j j �

dnX
i�


ja�X�
i jic�k�X�

j

� �

k

dnX
i��

ja�X�
i j�i � ���w�X�i

�
�

k

dnX
i��

ja�X�
i j�i � ���w�X�i� �

Proof of Theorem ������� Let jmin � jmax be the index of a smallest respectively largest Bernstein
coe�cient of f in X� From Theorem ����� and Lemma ������ it follows that

B
�k�
f �X� � f�X� � jf�jmax�k w�X� !X� � b

�k�X�
jmax

j

� �

k

dnX
i��

�i� ���ja�X�
i jw�X�i

f�X� � B
�k�
f �X� � jf�jmin�k w�X� !X�� b

�k�X�
jmin

j

� �

k

dnX
i��

�i� ���ja�X�
i jw�X�i� �

Corollary ������ �Convergence� B
�k�
f converges quadratically to f � �

Proof� Let A � IRarbitrary but xed� Let

"ai
�A� � maxfja�X�

i j j X � IAg�

The maximumexists because A is bounded and all derivatives of f are continuous� From Theorem ������
it follows that

q�f�X�� B
�k�
f �X�� �

�
�

k

dnX
i��

�i � ��� "ai
�A�w�X�i��

�
w�X��

�
�
�

k

dnX
i��

�i � ��� "ai
�A�w�A�i��

�
w�X��

� 

B
�k�
f

�A
w�X���

where



B
�k�
f

�A
�

�

k

dnX
i��

�i� ��� "ai
�A�w�A�i��� �

The following theorem is taken from #Hong and Stahl� ����a$�

Theorem ����� �Inclusion Monotonicity� B
�k�
f is inclusion monotone� �
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Before giving a formal proof of Theorem ������ we explain the key idea at an example� Consider the
polynomial

f�x� � x	 ! ���x ! ���x�! ���x�� x�

and let X�Y � IR such that X � Y � For simplicity� we rst consider the special case where Y has one
endpoint in common with X� Actually� this is already su�cient for the general case because the general
case can be viewed as applying the special case twice on each endpoint� Precisely� consider the interval
#Y �X$� This interval shares an endpoint with X and Y � Thus� if the special case is true� we have

Bf �X� � Bf �#Y �X$� � Bf �Y ��

In Figure ����� we show the Bernstein coe�cients of order k � � of f over all X� where X � �� and X

varies between �� and �� The curve for b
�	�X�
j is labeled by j� By careful inspection of this picture one

makes the following observations�

� The enveloping curves �bold lines� are monotone� i�e� maxj b
�	�X�
j increases and minj b

�	�X�
j decreases

as X grows� This precisely means inclusion monotonicity�

� Whenever the curve for some b�	�X�
j has a local extremum� it is intersected by the curve for b�	�X�

j�� �

Further� the curve for b
�	�X�

 is constant� This observation is the key for the proof of inclusion

monotonicity because� as one sees� it implies immediately monotonicity of the enveloping curves�

Next� we x the right endpoint X to � and observe the Bernstein coe�cients as X varies between ��
and � in Figure ������ Again� the enveloping curves are monotone� but this time� if b�	�X�

j has a local

extremum� it is intersected by b�	�X�
j�� and b

�	�X�
	 is constant�

Lemma ������ makes the experimental observations more precise� From now on we view b
�k�X�
j as a

function in the variables X � X �

Lemma �����	

b
�k�X�
j � b

�k�X�
j�� �

w�X�

j

�b
�k�X�
j

�X
� j � �� � � � � k ��������

b
�k�X�
j�� � b

�k�X�
j �

w�X�

k � j

�b
�k�X�
j

�X
� j � �� � � � � k� �� � ��������

Proof�

� Proof of ��������� Let � � j � k and note that�
j

i

�
�
�
j � �

i

�
�

�
j � �

i� �

�

i

�
j

i

�
� j

�
j � �

i � �

�
�

b
�k�X�
j � b

�k�X�
j��

�����
�

jX
i�


�
j
i

��
k
i

�a�X�
i w�X�i �

j��X
i�


�
j��
i

��
k
i

� a
�X�
i w�X�i

�

j��X
i�


�
j
i

�� �j��i ��
k
i

� a
�X�
i w�X�i !

��
k
j

�a�X�
j w�X�j

�

j��X
i��

�
j��
i��

��
k
i

� a
�X�
i w�X�i !

��
k
j

�a�X�
j w�X�j

�

jX
i��

�
j��
i��

�
�
k
i

� a
�X�
i w�X�i� ��������
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�b
�k�X�
j

�X

�����
�

�

�X

jX
i�


�
j
i

��
k
i

�a�X�
i �X �X�i

�

jX
i��

�
j
i

��
k
i

�a�X�
i iw�X�i��

� j

jX
i��

�
j��
i��

��
k
i

� a
�X�
i w�X�i���

� Proof of ��������� Let � � j � k � � and note that�
k � j � �

i

�
�
�
k � j

i

�
� �

�
k � j � �

i� �

�

i

�
k � j

i

�
� �k � j�

�
k � j � i

i� �

�
�

b
�k�X�
j�� � b

�k�X�
j

����	�
�

k�j��X
i�


�
k�j��

i

��
k
i

� a
�X�
i ��w�X��i �

k�jX
i�


�
k�j
i

��
k
i

� a
�X�
i ��w�X��i

� �
k�j��X
i��

�
k�j��

i

�� �k�ji ��
k
i

� a
�X�
i ��w�X��i !

��
k

k�j

�a�X�
j ��w�X��j

� �
k�jX
i��

�
k�j��
i��

��
k
i

� a
�X�
i ��w�X��i� ��������

�b
�k�X�
j

�X

����	�
�

�

�X

k�jX
i�


�
k�j
i

��
k
i

� a
�X�
i �X �X�i

�

k�jX
i��

�
k�j
i

��
k
i

� a
�X�
i i��w�X��i��

� �k � j�

k�jX
i��

�
k�j��
i��

��
k
i

� a
�X�
i ��w�X��i��� �

Finally� we come to the proof of Theorem �������

Proof of Theorem ����� According to the remarks above� we have to show the following�

min
j

b
�k�X�
j is monotonically decreasing in X ��������

max
j

b
�k�X�
j is monotonically increasing in X ��������

min
j

b
�k�X�
j is monotonically increasing in X ��������

max
j

b
�k�X�
j is monotonically decreasing in X� ��������

Note that for all X � IR
b
�k�X�

 � f�X �

b
�k�X�
k � f�X ��

The proofs of �������� � �������� are similar� but for the sake of completeness we give them all in detail�
Let X � IRarbitrary but xed�

� Proof of ��������� Let jmin such that

b
�k�X�
jmin

� b
�k�X�
j for all j� ��������
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We have to show that
�b

�k�X�
jmin

�X
� ��

As b�k�X�

 does not depend on X� this is obviously true if jmin � �� Hence� assume jmin �� � and

�b
�k�X�
jmin

�X
� ��

From ������ we obtain

b
�k�X�
jmin

� b
�k�X�
jmin��

�
�X �X�

jmin

�b
�k�X�
jmin

�X
� ��

which contradicts ���������

� Proof of ��������� Let jmax such that

b
�k�X�
jmax

� b
�k�X�
j for all j� ��������

We have to show that
�b

�k�X�
jmax

�X
� ��

As b�k�X�

 does not depend on X� this is obviously true if jmax � �� Hence� assume jmax �� � and

�b
�k�X�
jmax

�X
� ��

From ������ we obtain

b
�k�X�
jmax

� b
�k�X�
jmax��

�
�X �X�

jmax

�b
�k�X�
jmax

�X
� ��

which contradicts ���������

� Proof of ��������� Let jmin such that

b
�k�X�
jmin

� b
�k�X�
j for all j� ��������

We have to show that
�b

�k�X�
jmin

�X
� ��

As b
�k�X�
k does not depend on X� this is obviously true if jmin � k� Hence� assume jmin �� k and

�b
�k�X�
jmin

�X
� ��

From ������ we obtain

b
�k�X�
jmin��

� b
�k�X�
jmin

�
�X �X�

k � jmin

�b
�k�X�
jmin

�X
� ��

which contradicts ���������

� Proof of ��������� Let jmax such that

b
�k�X�
jmax

� b
�k�X�
j for all j� ��������

We have to show that
�b

�k�X�
jmax

�X
� ��
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As b
�k�X�
k does not depend on X� this is obviously true if jmax � k� Hence� assume jmax �� k and

�b
�k�X�
jmax

�X
� ��

From ������ we obtain

b
�k�X�
jmax��

� b
�k�X�
jmax

�
�X �X�

k � jmax

�b
�k�X�
jmax

�X
� ��

which contradicts ��������� �

Figure ����� reveals another property of the Bernstein coe�cients� Let � � X� If X � ��� then

b
�k�X�

 � b

�k�X�
j � b

�k�X�
k for all j�

Similarly� Figure ����� shows that if X � �� then

b
�k�X�

 � b

�k�X�
j � b

�k�X�
k for all j�

According to Theorem ������� this gives rise to the conjecture that B
�k�
f �X� � f�X� if w�X� is small

enough� Yet� this conjecture is true only if we make the notion �small enough� more precise� This is
done in the following Theorem� which is new�

Theorem �����


�i� For all X � R there exists � � � such that for all X � #X�X ! �$ it holds that

B
�k�
f �X� � f�X��

�ii� For all X � R there exists � � � such that for all X � #X � ��X $ it holds that

B
�k�
f �X� � f�X�� �

Proof� The proof of �i� and �ii� is analogous but for the sake of completeness we give both of them�

�i� Let X � R arbitrary but xed� According to Theorem ������ it su�ces to show that there exists
� � � such that for all X � #X�X ! �$

b
�k�X�
j � b

�k�X�
j�� for all j � �� � � � � k or ��������

b
�k�X�
j � b

�k�X�
j�� for all j � �� � � � � k� ��������

From �������� it follows that for all X � X

b
�k�X�
j � b

�k�X�
j�� �

jX
i��

�
j��
i��

��
k
i

� a
�X�
i w�X�i�

Let � � l � k be the smallest index such that a
�X�
l �� �� If no such l exists� then let l � k!�� Thus�

b
�k�X�
j � b

�k�X�
j�� �

jX
i�l

�
j��
i��

�
�
k
i

� a
�X�
i w�X�i

� w�X�l
j�lX
i�


�
j��
i�l��

��
k
i�l

� a
�X�
i�l w�X�i�

Depending on the sign of a
�X�
l we show that either �������� or �������� holds�
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� Assume a
�X�
l � �� Then for all j � �� � � � � k there exists �j � � such that for all w�X� � �j

j�lX
i�


�
j��
i�l��

�
�
k
i�l

� a
�X�
i�l w�X�i � ��

Let � � minj �j� Then for all X � #X�X ! �$

b
�k�X�
j � b

�k�X�
j�� � ��

� Assume a
�X�
l � �� Then for all j � �� � � � � k there exists �j � � such that for all w�X� � �j

j�lX
i�


�
j��
i�l��

�
�
k
i�l

� a
�X�
i�l w�X�i � ��

Let � � minj �j� Then for all X � #X�X ! �$

b
�k�X�
j � b

�k�X�
j�� � ��

�ii� Let X � R arbitrary but xed� According to Theorem ������ it su�ces to show that there exists
� � � such that for all X � #X � ��X$

b
�k�X�
j�� � b

�k�X�
j for all j � �� � � � � k� � or ��������

b
�k�X�
j�� � b

�k�X�
j for all j � �� � � � � k� �� ��������

From �������� it follows that for all X � X

b
�k�X�
j�� � b

�k�X�
j � �

k�jX
i��

�
k�j��
i��

��
k
i

� a
�X�
i ��w�X��i�

Let � � l � k � � be the smallest index such that a
�X�
l �� �� If no such l exists� then let l � k ! ��

Thus�

b
�k�X�
j�� � b

�k�X�
j � �

k�jX
i�l

�
k�j��
i��

�
�
k
i

� a
�X�
i ��w�X��i

� �w�X�l
k�j�lX
i�


�
k�j��
i�l��

��
k
i�l

� ����la�X�
i�l ��w�X��i�

Depending on the sign of ����la�X�
l we show that either �������� or �������� holds�

� Assume ����la�X�
l � �� Then for all j � �� � � � � k � � there exists �j � � such that for all

w�X� � �j
k�j�lX
i�


�
k�j��
i�l��

��
k
i�l

� ����la�X�
i�l ��w�X��i � ��

Let � � minj �j� Then for all X � #X � ��X

b
�k�X�
j�� � b

�k�X�
j � ��

� Assume ����la�X�
l � �� Then for all j � �� � � � � k � � there exists �j � � such that for all

w�X� � �j
k�j�lX
i�


�
k�j��
i�l��

��
k
i�l

� ����la�X�
i�l ��w�X��i � ��

Let � � minj �j� Then for all X � #X � ��X $

b
�k�X�
j�� � b

�k�X�
j � ��
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Remark� Note that it is not true that for all c � R there exists � � � such that for all � � r � �

B
�k�
f �#c� r� c! r$� � f�#c � r� c! r$��

As a counter example consider f�x� � x� and c � �� The Bernstein coe�cients in dependence of r are

b
�����r�r��

 � r�

b
�����r�r��
� � �r�
b
�����r�r��
� � r��

Hence� b�����
r�r��

� is the smallest Bernstein coe�cient� and according to Theorem �������

B
���
f �#�r� r$� �� f�#�r� r$�

for all r �� �� �

Remark� If jf ��X�j is su�ciently large compared to jf �i��X�j for all i � � and w�X� is su�ciently small�

then the sign of b
�k�X�
j � b

�k�X�
j�� is the same for all j� Similarly� if jf ��X�j is su�ciently large compared to

jf �i��X�j for all i � � and w�X� is su�ciently small� then the sign of b
�k�X�
j�� � b

�k�X�
j is the same for all j�

In both cases we obtain B
�k�
f �X� � f�X�� This qualitative result is illustrated in Figure ������ where the

overestimation error of the Bernstein form is computed for f�x� � �x����x����x����x���� w�X� � ���
and k � �� � and ��� One sees that the Bernstein form is exact if X is not close to a local extremum of
f � However� it is not true� that monotonicity of f in X is a su�cient condition for non�overestimation�
although this is claimed sometimes in the literature� For example let f�x� � �x� ! ���x� � ���x! ����
k � � and X � #�� �$� Note that f is monotone in X because f ��x� � � for all x � R� The Bernstein
coe�cients are

b
�k�X�

 � ����

b
�k�X�
� � �������

b
�k�X�
� � ����

b
�k�X�
� � ����

Thus� we obtain B
�k�
f �X� � #���� ���$� but f�X� � #���� ���$� �

Algorithm ������ �BF� for evaluating the Bernstein form proceeds in � steps� Compute the Taylor coe�	

cients a
�X�
i � compute the Bernstein coe�cients b�k�X�

j according to �������� nd the largest and the smallest

Bernstein coe�cient� Equivalently� one could compute the Taylor coe�cients a�X�
i and the Bernstein co	

e�cients according to �������� The Taylor coe�cients are obtained by the extended Horner scheme� An
e�cient method for computing the Bernstein coe�cients is given by the following lemma #Rokne� ����a$�

Lemma ������ Let lb
�k�X�
j � l � �� � � � � dn� j � �� � � � � k � l be de�ned recursively as

lb
�k�X�

 �

w�X�l�
k
l

� a
�X�
l for l � �� � � � � dn ��������

dnb
�k�X�
j � dnb

�k�X�

 for j � �� � � � � k � dn ��������

lb
�k�X�
j � lb

�k�X�
j�� ! l��b

�k�X�
j�� for j � �� � � � � k� l � �� � � � �minfdn � �� k� jg� ��������

Then
b
�k�X�
j � 
b

�k�X�
j for j � �� � � � � k� �

Figure ����� illustrates the computation of the Bernstein coe�cients according to Lemma ������� The left
column is computed by ��������� the upper row by �������� and the remaining points by ��������� The
Bernstein coe�cients appear in the last row�
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Figure ������ Overestimation error of the Bernstein form for f�x� � �x � ���x � ���x � ���x � ��� in
dependence of mid�X�� where w�X� � ��� and k � �� �� ���
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l � �
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Figure ������ Computation of the Bernstein coe�cients for dn � � and k � ��
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Proof� Inductively we show for l � �� � � � � dn� j � �� � � � � k � l that

lb
�k�X�
j �

jX
i�


�
j
i

��
k
i�l

�a�X�
i�l w�X�i�l � ��������

Obviously �������� holds for j � �� l � �� � � � � dn and for l � dn� j � �� � � � � k�dn� Further� for j � �� � � � � k�
l � �� � � � �minfdn � �� k � jg

lb
�k�X�
j � lb

�k�X�
j�� ! l��b

�k�X�
j��

�

j��X
i�


�
j��
i

��
k
i�l

� a�X�
i�l w�X�i�l !

j��X
i�


�
j��
i

��
k

i�l��

�a�X�
i�l��w�X�i�l��

�

j��X
i�


�
j��
i

��
k
i�l

� a�X�
i�l w�X�i�l !

jX
i��

�
j��
i��

�
�
k
i�l

� a�X�
i�l w�X�i�l

�

j��X
i��

�
j��
i

�
!
�
j��
i��

�
�
k
i�l

� a
�X�
i�l w�X�i�l !

��
k
l

�a�X�
l w�X�l !

��
k
j�l

�a�X�
j�lw�X�j�l

�

j��X
i��

�
j
i

��
k
i�l

�a�X�
i�l w�X�i�l !

��
k
l

�a�X�
l w�X�l !

��
k
j�l

�a�X�
j�lw�X�j�l

�

jX
i�


�
j
i

��
k
i�l

�a�X�
i�l w�X�i�l�

In particular� if l � � we obtain from ��������


b
�k�X�
j �

jX
i�


�
j
i

��
k
i

�a�X�
i w�X�i � b

�k�X�
j � �

Algorithm ������ �BCB� takes the Taylor coe�cients as input and returns the smallest and the largest
Bernstein coe�cient�

Algorithm ������ �BCB� #Bernstein Coe�cient Bounds$

In� X � IF�
A
� � � � � Adn � IF� f �i��X��i' � Ai� i � �� � � � � dn�
k � N� k � dn�

Out� BCB�X�A
� � � � � An� k� � IF�
BCB�X�A
� � � � � An� k� � b

�k�X�
j � BCB�X�A
� � � � � An� k�� for all j � �� � � � � k�

��� #Left column�$
w��WIDTH�X��
W �� w�

B �� ��
for l � �� � � � � dn do lB �� l��BW��k � l ! ��� W �� W !w�
for l � �� � � � � dn do lB �� lBAl�

��� #Inner points and bounds for Bernstein coe�cients$
F �� 
B�
for j � �� � � � � k

for i � �� � � � �minfdn � �� k� jg do lB �� lB ! l��B�
F �� minf
B�Fg� F �� maxf
B�Fg�

��� #Return�$
return F �



CHAPTER 
� INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS ���

Theorem ������ �Complexity� Algorithm 
���	� �BCB� costs

�dn number divisions�
�dn ! � number multiplications and

dn��k � dn ! �� ! � number additions� �

Proof�

� Step � costs �dn number divisions� �dn ! � interval multiplications and �dn ! � number additions�
As � �� int�lB� for all l� each interval multiplication costs � number multiplications�

� Step � costs dn��k � dn ! �� number additions� �

An algorithm for computing the Bernstein form is now straight forward�

Algorithm ������ �BF� #Bernstein Form$

In� f�x� � anx
dn ! an��x

dn�� ! � � �! a�x
d� � F#x$�

X � IF�
k � N� k � dn�

Out� BF�f�X� k� � IF�BF�f�X� k� 	 B
�k�
f �X��

��� #Taylor coe�cients�$
�A
� � � � � Adn ��� TC�f�X��

��� #Bounds for Bernstein coe�cients�$
F �� BCB�X�A
� � � � � Adn � k��

��� #Return�$
return F �

Theorem ������ �Complexity� Algorithm 
���	
 �BF� costs

�dn number divisions�
d�n ! �dn ! � number multiplications and

�kdn ! �dn ! � number additions� �

Proof�

� Step � costs d�n � dn ! � number multiplications d�n ! dn number additions �Theorem �������

� Step � costs �dn number divisions� �dn! � number multiplications and dn��k� dn!��!� number
additions �Theorem �������� �

����� Bisection at Zero

If � � X then we can avoid the expensive computation of Taylor coe�cients in Algorithm ������ if we
bisect X at � and compute the Bernstein coe�cients separately for both halves of X� Note that the
Taylor coe�cients with developing point � are precisely the power basis coe�cients� This reduces overall
computing time if dn is large and k � dn� Further� due to the inclusion monotonicity of the Bernstein
form� bisection leads usually to a reduction of the overestimation error� The content of this section is
new�

Thus� in the sequel let

 B�k�
f �X� �

	
B
�k�
f �#X� �$��B

�k�
f �#�� X$� if � � X

B
�k�
f �X� else�

The following algorithm computes  B�k�
f �X��
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Algorithm ������ �BFBZ� #Bernstein Form with Bisection at Zero$

In� f�x� � anx
dn ! an��x

dn�� ! � � �! a�x
d� � F#x$�

X � IF�
k � N� k � dn�

Out� BFBZ�f�X� k� � IF� BFBZ�f�X� k� 	  B�k�
f �X��

��� #Test � � X�$
if X � � or X � � then return BF�f�X� k��

��� #Coe�cients of f�x��$
for i � �� � � � � dn do Ai �� coe�cient of xi in f �

��� #Bounds for Bernstein coe�cients in #�� X$�$
F� �� BCB�#�� X$� A
� � � � � Adn � k��

��� #Coe�cients of f��x��$
for i � �� � � � � dn step � do Ai �� �Ai�

��� #Bounds for Bernstein coe�cients in #���X$�$
F� �� BCB�#���X$� A
� � � � � Adn � k��

��� #Return�$
return F� � F��

Theorem ������ �Complexity�

� If � �� X then Algorithm 
���	� costs

�dn number divisions�
d�n ! �dn ! � number multiplications and

�kdn ! �dn ! � number additions�

� If � � X then Algorithm 
���	� costs

�dn number divisions�
�dn ! � number multiplications and

�dn��k � dn ! �� ! � number additions� �

Proof�

� If � �� X then Algorithm ������ �BFBZ� and Algorithm ������ �BF� are identical�

� If � � X then step � and step � cost each �dn number divisions� �dn ! � number multiplications
and dn��k � dn ! �� ! � number additions� �

Thus� if � � X then Algorithm ������ �BFBZ� costs d�n��dn number multiplications less� but �dn number
divisions and �dn�k � dn ! �� ! � number additions more than Algorithm BF� In particular� if k � dn�
the di�erence in number additions is only �dn ! �� In this case BFBZ costs d�n � �dn � � �oating point
operations less than BF� hence BFBZ is cheaper than BF if dn � ��

����� Experimental Results

An experimental comparison of Algorithm ������ �BF� and Algorithm ������ �BFBZ� for dense polyno	
mials with di�erent degrees is given in Table ������ The coe�cients of the polynomials are uniformly
distributed in #��� �$ and the order of the Bernstein form is k � dn� Further� X and X are uniformly
chosen in #��� �$ respectively #�� �$� such that in all cases � � X� For each degree dn the average cost and
overestimation error of �� random polynomials is reported� The cost is the total number of arithmetic
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Degree dn of f � � �� �� �� �� �� ��

Flops for B�dn �
f �X� ���� ����� ����� ����� ������ ������ ������ ������

Flops for  B�dn �
f �X� ���� ����� ����� ����� ����� ������ ������ ������

q�B�dn�
f �X�� f�X���w�X�� ������ ������ ������ ������ ������ ������ ������ ������

q�  B
�dn�
f �X�� f�X���w�X�� ������ ������ ������ ������ ������ ������ ������ ������

Table ������ Comparison of Bernstein form B
�dn�
f and Bernstein form with bisection at zero  B�dn�

f �X� for
random polynomials f with di�erent degrees and random intervals X� where � � X�

�oating point instructions� including those which were executed during interval operations� As the Bern	
stein form is quadratically convergent� the distance to the range divided by w�X�� was chosen to measure

accuracy� According to Table ������ the error of B
�dn �
f is between one half and one third of the error of

 B
�dn�
f � The measured cost of both algorithms corresponds exactly to Theorem ������ respectively Theo	

rem ������� Note that the overestimation error gets smaller as the degree of the polynomials increases�
The reason is that k is equal to the degree� If k would be the same for all polynomials� then the error
would grow with increasing degree�

��� Interpolation Form

Interpolation formswere introduced by #Cornelius and Lohner� ����$� They are the rst interval extensions
which have convergence order higher than �� The original denition of interpolation forms comprises a
whole class of interval extensions with di�erent convergence orders� A particular instance� which is
cubically convergent� and which allows e�cient evaluation� is suggested in #Cornelius and Lohner� ����$�
In this section� we consider only this instance and call it �the� interpolation form� Section ����� and
Section ����� contain some modications� which are new� Another cubically convergent interpolation
form� the parabolic boundary value form� was introduced by #Neumaier� ����$ and is reviewed in Section
������

The basic idea of interpolation forms is to approximate f by a low degree polynomial g such that

� the range of g can be computed without overestimation�

� the remainder f � g can be enclosed with high convergence order�

Let us now derive the interpolation form� Using Taylor expansion of f at c we obtain

f�x� � f�c� ! f ��c��x� c� ! ���f ������x� c��

for some � between c and x� For arbitrary m � Rwe can continue with

f�x� � f�c� ! f ��c��x� c� ! ���m�x� c�� �z �
gc�m�x�

!����f ����� �m��x � c�� �z �
rc�m�x�

�

Thus� a class of interval extensions is dened by

f�X� � gc�m�X� !Rc�m�X�� �������

where Rc�m is an interval extension of rc�m� Note that gc�m is a polynomial of degree two� hence gc�m�X�
can be computed cheaply� The interpolation form is an instance of �������� where c � mid�X�� m �
mid�Hf �� �X�� and

Rc�m�X� � ����Hf ���X� �m��X � c���
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De�nition ����� �Interpolation form� The interpolation form If � IR� IR is de�ned as

If �X� � gc�m�X� ! ����Hf ���X� �m��X � c���

where

gc�m�x� � f�c� ! f ��c��x� c� ! ���m�x� c��

c � mid�X�

m � mid�Hf ���X��� �

In the sequel let c� m� and gc�m as in Denition ����� and let rc�m � f � gc�m�

Theorem ����� �Convergence� If converges cubically to f � �

Proof� Let A � IRarbitrary but xed and let X range over subintervals of A� Note that for all x � X
it holds that

jf�x� � gc�m�x�j � jrc�m�x�j
� mag

�
����Hf ���X� �m��X � c��

�
�

Thus�
q�f�X�� gc�m�X�� � mag

�
����Hf ���X� �m��X � c��

�
and

q�f�X�� If �X�� � q
�
f�X�� gc�m�X� ! ����Hf ���X� �m��X � c��

�
� mag

�
�Hf �� �X� �m��X � c��

�
�

Hence� it su�ces to nd a constant 
 such that for all X � IA
mag

�
�Hf ���X� �m��X � c��

� � 
w�X���

As Hf �� �X� �m is a centered interval we have

mag
�
�Hf �� �X� �m��X � c��

�
� mag�#��� �$rad�Hf ���X��rad�X���

� ���w�Hf �� �X��rad�X��

� ���
Hf�� �Aw�X�rad�X��

�
�

�

Hf�� �Aw�X���

where 
Hf�� �A is a Lipschitz constant of Hf �� in A� �

The interpolation form requires exact range computation of parabolas� The following theorem �#Aposto	
latos and Kulisch� ����$� shows� how this can be done e�ciently�

Theorem ����� �Range of Parabola� Let g�x� � a�x
� ! a�x! a
� Then

g�X� �

	
a�X ! a
 if a� � �

�
a�

��
a�X ! a�

�

�� � �a�� ���! a
 if a� �� �� �
�������

Proof� The case a� � � is trivial� hence assume a� �� �� Note that

�

a�

��
a�X !

a�
�

��
�
�a�
�

���
! a
 �

�
�

a�

��
a�x!

a�
�

��
�
�a�
�

���
! a
 j x � X



�

because X occurs only once in the expression on the left hand side� Further

�

a�

��
a�x!

a�
�

��
�
�a�
�

���
! a
 �

�

a�

�
a��x

� ! a�a�x!
�a�
�

��
�
�a�
�

���
! a


� a�x
� ! a�x! a
� �
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An implementation of ������� using �oating point numbers is numerically unstable if a� � �� Therefore�
we prefer to evaluate g at the endpoints ofX� test whether g has a local extremum inX� and if so� evaluate
g at the extremum� Algorithm ����� �PE� computes bounds for the range of parabolas A�x

�!A�x!A
�
where A�� A� and A
 are intervals� However� it is assumed that the width of A� and A� is small� which
will be the case when PE is called later on by other algorithms� Otherwise� the overestimation error of PE
might be large� If � � A�� then PE evaluates the Horner scheme� This does not lead to big overestimation
errors if w�A�� is small�

Algorithm ����� �PE� #Parabola Evaluation$

In� A�� A�� A
 � IF�
X � IF�

Out� PE�A�� A�� A
� X� � IF� PE�A�� A�� A
� X� 	 fA�x
� !A�x! A
 j x � Xg�

��� #Case � � A��$
if � � A� then return �A�X ! A��X ! A
�

��� #Evaluate at endpoints�$
Y �� #�A�X ! A��X�A�X ! A��X$�

��� #Extremum�$
B� �� ���A��
E �� ��B��A�� �X�
if E �� � then Y �� #Y �B�E$�

��� #Return�$
return Y ! A
�

Theorem ����� �Complexity� Algorithm 
���� costs

� interval multiplication�
� number divisions�

�� number multiplications and
� number additions� �

Proof� If � � A� then Algorithm ����� �PE� costs � interval multiplications and � interval additions�
Assume � �� A��

� Step � costs � number multiplications and � number additions�

� Step � costs � interval multiplication� � number divisions and � number multiplications�

� Step � costs � number additions� �

Algorithm ����� �IF� evaluates the interpolation form If � We assume that f is sparse� hence we do not
use the extended Horner scheme for evaluating f � at c but compute the coe�cients of f � explicitly� A
modication of the algorithm for dense polynomials is given in Section ������ The coe�cients of gc�m are

gc�m�x� � ���mx� ! �f ��c��mc�x! f�c� � f ��c�c! ���mc��

Algorithm ����� �IF� #Interpolation Form$

In� f�x� � anx
dn ! an��x

dn�� ! � � �! a�x
d� � F#x$�

X � IF�
Out� IF�f�X� � IF� IF�f�X� � If �X�� IF�f�X� 	 f�X��
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��� #Midpoint�$
c�� MID�X��

��� #Derivatives of f � use rounded interval arithmetic for the coe�cients�$
F ��x��� formal derivative of f �
F ���x��� formal derivative of F ��x��

��� #f�c�� f ��c�� f ���X��$
F �� HF�f�x�� #c$��
F ��� HFI�F ��x�� #c$��
F ���� HFI�F ���x�� X��

��� #Coe�cients of gc�m�$
M �� #MID�F ���$�
A� �� ���M �
A� �� F � �Mc�
A
 �� �A�c� F ��c! F �

��� #Evaluation of parabola�$
Y �� PE�A�� A�� A
� X��

��� #Add remainder and return�$
r�� mag�X � c��

return Y ! �F �� �M �#�� ���
� r � r$�

Theorem ���� �Complexity� Algorithm 
���� �IF� costs

�n interval power computations�
n! � interval multiplications�

� number divisions�
�n! �� number multiplications and
�n! �� number additions� �

Proof�

� Step � costs at � number multiplication and � number additions�

� Step � costs �n number multiplications�

� Step � costs �n interval power computations� n interval multiplications� �n number multiplications
and �n� � number additions�

� Step � costs � number multiplication and � number additions�

� Step � costs � interval multiplication � number division� �� number multiplications and � number
additions�

� Step � costs � number multiplications and � number additions� �

����� Reduction of the Overestimation Error

In this section we present an improvement 
If of the interpolation form If � The costs for evaluating 
If
and If are comparable �Theorem �������� but 
If gives always at least as tight bounds as If �Theorem
�������� The idea is to evaluate If twice with di�erent choices of m and intersect the result� The content
of this section is new�

De�nition ����	 The modi�ed interpolation form 
If � IR� IRof f is de�ned as


If �X� � #p�c�X�� p�c�X�$�
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where

p�c�x� � f�c� ! f ��c��x� c� ! ���F ��  �x � c��

p�c�x� � f�c� ! f ��c��x� c� ! ���F ��  �x � c���

F �� � Hf ���X� and c � mid�X�� �

In the sequel let F ��� c� p�c and p�c as in Denition ������

Remark� If If �X� is evaluated twice with m � F �� and m � F �� and the results are intersected� then

If �X� is obtained� �

Theorem ����
 
If is an interval extension of f � �

Proof� Let x � X arbitrary but xed and let � � X such that

f�x� � f�c� ! f ��c��x � c� ! ���f ������x � c���

Then

p�c�X� � f�c� ! f ��c��x� c� ! ���F ��  �x � c��

� f�c� ! f ��c��x� c� ! ���f ������x� c��

� f�x�

p�c�X� � f�c� ! f ��c��x� c� ! ���F ��  �x � c��

� f�c� ! f ��c��x� c� ! ���f ������x� c��

� f�x��

i�e� f�X� � 
If �X�� Further� 
If �X� � R if X � R� �

Theorem ������ For all X � IR it holds that


If �X� � If �X�� �

Proof� Note that
p�c�X� � p�c�X��

Hence� we have to show that

If �X� � p�c�X� �������

If �X� � p�c�X�� �������

� We begin with �������� Let gc�m as in Denition ����� and let a� b � X such that

p�c�a� � max
x�X

p�c�x�

gc�m�b� � max
x�X

gc�m�x��

Then

p��X� � p��a�

� f�c� ! f ��a� c� ! ���F ���a � c��

� f�c� ! f ��a� c� ! ���mid�F ����a� c�� ! ���rad�F ����a � c��

� gc�m�a� ! ���rad�F ����a� c��

� gc�m�b� ! ���rad�F ����X � c��

� If �X��
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� Similarly� for �������� let gc�m as in Denition ����� and let a� b � X� such that

p�c�a� � min
x�X

p�c�x�

gc�m�b� � min
x�X

gc�m�x��

Then

p��X� � p��a�

� f�c� ! f ��a� c� ! ���F ���a � c��

� f�c� ! f ��a� c� ! ���mid�F ����a� c�� � ���rad�F ����a � c��

� gc�m�a� � ���rad�F ����a� c��

� gc�m�b� � ���rad�F ����X � c��

� If �X�� �

The following algorithm evaluates 
If � As in Algorithm ����� �IF� we assume that f is sparse� The
coe�cients of p�c and p�c are

p�c�x� � ���F ��x� ! �f ��c�� F ��c�x! f�c� � f ��c�c ! ���F ��c�

p�c�x� � ���F ��x� ! �f ��c�� F ��c�x! f�c� � f ��c�c ! ���F ��c��

Algorithm ������ �MIF� #Modied Interpolation Form$

In� f�x� � anx
dn ! an��x

dn�� ! � � �! a�x
d� � F#x$�

X � IF�
Out� MIF�f�X� � IF� MIF�f�X� � 
If �X�� MIF�f�X� 	 
If �X��

��� #Midpoint�$
c�� MID�X��

��� #Derivatives of f � use rounded interval arithmetic for the coe�cients�$
F ��x��� formal derivative of f�x��
F ���x��� formal derivative of F ��x��

��� #f�c�� f ��c�� f ���X��$
F �� HF�f�x�� #c$��
F ��� HFI�F ��x�� #c$��
F ���� HFI�F ���x�� X��

��� #Coe�cients of p�c and p�c �$
A� �� ���F ���
A�� �� A�� A

�
� �� F � � #F

��
$  c� A�
 �� �A��c� F ��c�

A�� �� A�� A
�
� �� F � � #F ��$  c� A�
 �� �A��c� F ��c�

��� #Evaluate parabolas�$

Y �� #PE�A��� A
�
�� A

�

� X��PE�A��� A

�
�� A

�

� X�$ ! F �

��� #Return�$
return Y �

Theorem ������ �Complexity� Algorithm 
����� �MIF� costs

�n interval power computations�
n! � interval multiplications�

� number divisions�
�n! �� number multiplication and
�n! �� number additions� �
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Proof�

� Step � costs � number multiplication and � number additions�

� Step � costs �n number multiplications�

� Step � costs �n interval power computations� n interval multiplications� �n number multiplications
and �n� � number additions�

� Step � costs �� number multiplications and � number additions�

� Step � costs � interval multiplications� � number divisions� �� number multiplications �� number
additions� �

����� Slopes Instead of Derivatives

The comparison of the mean value form and the slope form in Section ����� turned out� that using slopes
instead of derivatives improves e�ciency and accuracy for dense polynomials� In the following� we apply
this idea to the modied interpolation form�

De�nition ������ �Slope Interpolation Form� The slope interpolation form 
I
�s�
f � IR� IR of f is

de�ned as

I
�s�
f �X� � #p�c�X�� p�c�X�$�

where c � mid�X��

p�c�x� � f�c� ! f ��c��x� c� !H�x� c��

p�c�x� � f�c� ! f ��c��x� c� !H�x� c��

H � H�
hc�X�

and hc is the uniquely de�ned polynomial such that

f�x� � f�c� ! f ��c��x� c� ! hc�x��x� c��� �

In the sequel let p�c � p
�
c � hc and H as in Denition ������� The proof that 
I

�s�
f is an interval extension of

f � is analogous to the proof of Theorem ������

Theorem ������ �Convergence� 
I
�s�
f converges cubically to f � �

Proof� Let A � IRand let X range over subintervals of A� For all x � X it holds that

jf�x� � p�c�x�j � jH � hc�x�j�x� c�� � w�H�w�X��

jf�x� � p�c�x�j � jH � hc�x�j�x� c�� � w�H�w�X���

According to Corollary ������� H�
hmid���

is Lipschitz� and there exists 
H�A � R such that

w�H�
hc
�X� � 
H�Aw�X�

for all X � IA� Hence�
q�f�X�� 
I

�s�
f �X�� � w�H�w�X��

� 
H�Aw�X��� �

The following algorithm evaluates 
I
�s�
f � For the computation of f�c�� f ��c� and the coe�cients of hc we

use the extended Horner scheme� The coe�cients of p�c and p�c are

p�c�x� � Hx� ! �f ��c� � �Hc�x! f�c� � f ��c�c!Hc�

p�c�x� � Hx� ! �f ��c� � �Hc�x! f�c� � f ��c�c!Hc��
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Algorithm ������ �SIF� #Slope Interpolation Form$

In� f�x� � anx
dn ! an��x

dn�� ! � � �! a�x
d� � F#x$�

X � IF�
Out� SIF�f�X� � IR� SIF�f�X� � 
I

�s�
f �X�� SIF�f�X� 	 f�X��

��� #Trival cases�$
if dn � � return HF�f�X��

��� #Midpoint�$
c�� MID�X��

��� #Dense coe�cients�$
for i � �� � � � � dn do Ai �� coe�cient of xi in f �

��� #Horner scheme� f�c�� f ��c�� hc�$
for i � dn� � � � � � do Ai�� �� Ai�� ! cAi�
for i � dn� � � � � � do Ai�� �� Ai�� ! cAi�

��� #Compute H�
hc
�X��$

H �� Adn �
for i � dn � �� � � � � � do H �� HX !Ai�

��� #Coe�cients of parabolas�$

H�
c �� #H$  c� H�

� �� A� �H�
c � P

�
� �� H�

� �H�
c � P

�

 �� �H�

�c�

H�
c �� #H$  c� H�

� �� A� �H�
c � P

�
� �� H�

� �H�
c � P

�

 �� �H�

�c�

��� #Evaluate parabolas�$

Y �� #PE�H�P �
� � P

�

 � X��PE�H�P �

� � P
�

 � X�$ !A
�

��� #Return�$
return Y �

Theorem ������ �Complexity� Algorithm 
����� costs

dn interval multiplications�
� number divisions�

�dn ! �� number multiplication and
�dn ! �� number additions� �

Proof�

� Step � costs � number multiplication and � number additions�

� Step � costs �dn � � number multiplications and �dn � � number additions�

� Step � costs dn � � interval multiplications and �dn � � number additions�

� Step � costs � number multiplications and � number additions�

� Step � costs � number division� � interval multiplications� �� number multiplications and �� number
additions� �

����� Parabolic Boundary Value Form

The parabolic boundary value form is a modication of the interpolation form� which was introduced by
#Neumaier� ����$� For the approximation of f � the values f�X�� f�X � are used� whereas the interpolation
forms in the previous sections used f�c� and f ��c��
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De�nition ����� �Parabolic Boundary Value Form� The parabolic boundary value form �I
�s�
f �

IR� IR is de�ned as
�I�s�f �X� � #p�X�X�� p�X�X�$�

where

p�X �x� � aX ! bXx!H�x�X��x �X�

p�X �x� � aX ! bXx!H�x�X��x �X�

H � H�
hX �X�

and aX � bX � hX are uniquely de�ned by

f�x� � aX ! bXx! hX �x��x�X��x�X�� �

In the sequel let aX � bX and hX as in Denition �������

Theorem �����	 �Convergence� �I�s�f converges cubically to f � �

Proof� See #Neumaier� ����$� �

For the computation of aX � bX and the coe�cients of hX we use the extended Horner scheme� More
precisely� we compute rst f�X� and the coe�cients of the polynomial gX such that

f�x� � f�X � ! gX�x��x�X��

Next� we compute gX �X� and the coe�cients of hX � where

gX�x� � gX �X� ! hX �x��x�X��

Thus�

f�x� � f�X � !
�
gX�X� ! hX�x��x�X�

�
�x�X�

� f�X �� gX�X�X �z �
aX

! gX�X� �z �
bX

x! hX �x��x�X��x�X��

The coe�cients of p�X and p�X are

p�X�x� � f�X �� gX�X�X ! gX �X�x!H�x�X��x �X�

� Hx� !
�
gX �X� �H�X !X�

�
x! f�X �� gX�X�X !HXX

p�X�x� � f�X �� gX�X�X ! gX �X�x!H�x�X��x �X�

� Hx� !
�
gX �X� �H�X !X�

�
x! f�X �� gX�X�X !HXX�

Algorithm �����
 �PBF� #Parabolic Boundary Value Form$

In� f�x� � anx
dn ! an��x

dn�� ! � � �! a�x
d� � F#x$�

X � IF�
Out� PBF�f�X� � IR� PBF�f�X� 	 �I

�s�
f �X��

��� #Trivial cases�$
if dn � � return HF�f�X��

��� #Dense coe�cients�$
for i � �� � � � � dn do Ai �� coe�cient of xi in f �

��� #Horner scheme� f�X �� gX�X�� hX �$
for i � dn� � � � � � do Ai�� �� Ai�� !XAi�
for i � dn� � � � � � do Ai�� �� Ai�� !XAi�
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��� #Compute H�
hX

�X��$
H �� Adn �
for i � dn � �� � � � � � do H �� HX !Ai�

��� #Coe�cients of parabolas�$
X� �� #X$ ! #X$�
X� �� #X$  #X$�

P �
� �� A� �HX� � P �


 �� HX��

P �
� �� A� �HX� � P �


 �� HX��

��� #Evaluate parabolas�$

Y �� #PE�H�P �
� � P

�

 � X��PE�H�P �

� � P
�

 � X�$ !A
�

��� #Return�$
return Y �

Theorem ������ �Complexity� Algorithm 
����� �PBF� costs

dn interval multiplications�
� number divisions�

�dn ! �� number multiplications and
�dn ! �� number additions� �

Proof�

� Step � costs �dn � � number multiplications and �dn � � number additions�

� Step � costs dn � � interval multiplications and �dn � � number additions�

� Step � costs �� number multiplications and � number additions�

� Step � costs � interval multiplications� � number divisions� �� number multiplications and �� number
additions� �

����� Experimental Results

An experimental comparison of the interpolation form If � computed by Algorithm ����� �IF�� the mod	

ied interpolation form 
If � computed by Algorithm ������ �MIF�� the slope interpolation form 
I
�s�
f �

computed by Algorithm ������ �SIF�� and the parabolic boundary value form �I�s�f � computed by Al	
gorithm ������ �PBF�� for dense and sparse polynomials with di�erent degrees is given in Table ������
respectively Table ������ The coe�cients of the polynomials and the endpoints of the input intervals are
uniformly distributed in #��� �$� For each degree dn the average cost and overestimation error of ��

random polynomials is reported� The cost is the total number of arithmetic �oating point instructions�
including those which were executed during interval operations� As the forms are cubically convergent�
the distance to the range divided by w�X�� was chosen to measure accuracy�

� The accuracy of If and 
If is almost the same� but 
If is more expensive�

� In all cases 
I
�s�
f and �I

�s�
f return signicantly tighter inclusions than If and 
If � If f is dense� then


I�s�f is cheaper than If and 
If �

� 
I�s�f gives usually tighter inclusions than �I�s�f � However� the following experiment shows that this
depends on w�X��

Figure ����� shows a comparison of the slope interpolation form 
I
�s�
f and the parabolic boundary value

form �I
�s�
f for dense polynomials of degree ��� In the left graph� the input intervals X are chosen such

that mid�X� � ��� and w�X� varies between � and �� in the right graph mid�X� � � and w�X� varies
between � and �� The curves are averages over ���� random polynomials with coe�cients in #��� �$�
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Degree of f �dense� � � �� �� �� �� �� ��

Flops for If �X� ���� ����� ����� ����� ����� ����� ����� �����

Flops for 
If �X� ���� ����� ����� ����� ����� ����� ����� �����

Flops for 
I
�s�
f �X� ���� ����� ����� ����� ����� ����� ����� �����

Flops for �I
�s�
f �X� ���� ����� ����� ����� ����� ����� ����� �����

q�If �X�� f�X���w�X�� ���� ���� ���� ���� ����� ����� ����� �����

q�
If �X�� f�X���w�X�� ���� ���� ���� ���� ����� ����� ����� �����

q�
I�s�f �X�� f�X���w�X�� ���� ���� ���� ���� ���� ���� ���� ����

q��I�s�f �X�� f�X���w�X�� ���� ���� ���� ���� ���� ���� ���� ����

Table ������ Comparison of interpolation form If � modied interpolation form 
If � slope interpolation

form 
I�s�f and parabolic boundary value form �I�s�f for dense random polynomials f with di�erent degrees
and random intervals X� The coe�cients of f and the endpoints of X are uniformly chosen in #��� �$�

Degree of f �sparse� � � �� �� �� �� �� ��

Flops for If �X� ���� ����� ����� ����� ����� ����� ����� �����

Flops for 
If �X� ���� ����� ����� ����� ����� ����� ����� �����

Flops for 
I
�s�
f �X� ���� ����� ����� ����� ����� ����� ����� �����

Flops for �I
�s�
f �X� ���� ����� ����� ����� ����� ����� ����� �����

q�If �X�� f�X���w�X�� ���� ���� ���� ���� ���� ���� ���� ����

q�
If �X�� f�X���w�X�� ���� ���� ���� ���� ���� ���� ���� ����

q�
I
�s�
f �X�� f�X���w�X�� ���� ���� ���� ���� ���� ���� ���� ����

q��I�s�f �X�� f�X���w�X�� ���� ���� ���� ���� ���� ���� ���� ����

Table ������ Comparison of interpolation form If � modied interpolation form 
If � slope interpolation

form 
I
�s�
f and parabolic boundary value form �I

�s�
f for sparse random polynomials f with di�erent degrees

and random intervals X� Each polynomial has only � non�zero coe�cients� The coe�cients of f and the
endpoints of X are uniformly chosen in #��� �$�
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Slope Interpolation Form (166 flops)

Parabolic Boundary Value Form (168 flops)
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Figure ������ Comparison of 
I
�s�
f and �I

�s�
f for dense random polynomials of degree ��� In the left graph

the input intervals X are such that mid�X� � ��� and w�X� varies between � and �� in the right graph

mid�X� � � and w�X� varies between � and �� In both cases 
I�s�f is more accurate than �I�s�f for large

intervals whereas �I
�s�
f is better than 
I

�s�
f for small intervals�
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��
 Experimental Comparison

After having dened several interval extensions of univariate polynomials in the previous sections� we
now come to a comparison� The computational cost for the evaluation of the interval extensions can
be compared easily because it depends basically only on the degree and on the sparsity of the input
polynomial� A comparison of the overestimation errors is more involved� because the overestimation
error depends on the actual value of the polynomial coe�cients and on the input interval�

The main theoretical results of the previous sections concerning accuracy can be summarized as follows�

� For input intervals with small width� interpolation forms are superior because of their cubic conver	
gence �Theorem ������ ������� �������� the Horner form is worst because it is only linearly convergent
�Theorem ������� and the chances� that the bicentered mean value form and the Bernstein form are
exact are high �Theorem ������� ��������

� If the Horner form of f � evaluated on X does not contain zero� then the bicentered mean value form
is exact �Theorem �������� Note that every interval extension can be modied to be exact in this
case� simply by executing the monotonicity test rst�

� The bicentered mean value form gives always at least as tight inclusions as the mean value form
�Corollary ��������

� The dense slope form is at least as accurate as the dense mean value form �Conjecture ��������

� If mig�X� is large enough� then the Horner forms are exact �Theorem ��������

� If mid�X� � �� then the �dense� Horner form� the �dense� Taylor form and the �dense� slope form
are equivalent�

� The overestimation error of the dense Taylor form with bisection is at most half as large as the
overestimation error of the dense Taylor form �Theorem ��������

� If � � int�X� then a bisection at zero is inexpensive for the Horner forms �Algorithm ������� and
the Bernstein form �Algorithm �������� and usually reduces the overestimation error�

Section ����� contains an experimental comparison of interval extensions for various classes of random
polynomials and a xed input interval X� This kind of comparison shows statistically� which interval
extension is best for a given input interval X�

Every interval extension is a compromise between computational cost and accuracy� For individual algo	
rithms� which evaluate interval extensions as subroutines� the optimal choice may therefore be di�erent�
For example� in an iterative algorithm it may be cheaper to choose an inaccurate and inexpensive interval
extension �like the Horner form� and execute some more iterations� or to choose an accurate and expen	
sive interval extension �like the Bernstein form� and save some iterations� In Section ����� and ����� we
tackle this problem for two typical applications of interval arithmetic� namely nding the roots and the
global minimum of univariate polynomials�

In the sequel� when we refer to the Bernstein form of a polynomial� we implicitly assume� that the order
of the Bernstein form is equal to the degree of the polynomial�

����� E	ciency and Accuracy for Random Polynomials

In this section we compare the average overestimation error of some interval extensions for � classes of
random polynomials and for � classes of input intervals�

� The classes of random polynomials f are�

� Dense polynomials with degree � �Figure ������ �������

� Dense polynomials with degree �� �Figure ������ �������
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� Sparse polynomials with degree ��� where only � coe�cients are non�zero �Figure ������ �������

The coe�cients are uniformly chosen from #��� �$�
� The input intervals X are as follows�

� mid�X� � �� � � w�X� � ��� �Figure ������ ������ �������

� mid�X� � ���� � � w�X� � ��� �Figure ������ ������ �������

In order to measure the overestimation error of some interval extension F of f we use

q�F �X�� f�X��

w�X�
�

In each experiment we report the average overestimation error of ���� random polynomials in dependence
of the input interval as well as the average number of �oating point operations for the evaluation�

����� Newton
s Method

The �one�dimensional� interval Newton method is an iterative algorithm� which computes inclusions
of all roots of a polynomial f in an interval A� It was studied thoroughly in the literature� see for
example #Moore� ����$� #Krawczyk� ����$� #Alefeld� ����$� #Hansen� ����a$� #Hansen� ����b$� #Hansen�
����$� #Alefeld and Herzberger� ����$� #Hansen� ����$� #Hammer et al�� ����$ and many others� In each
iteration� an interval extension of f � has to be evaluated� In this section we compare the e�ciency of
the interval Newton method in dependence of the chosen interval extension� The number of Newton
iterations depends on the accuracy of the interval extension� Thus� a more accurate and more expensive
interval extension reduces the number of Newton iterations� but increases the cost of each iteration�

First� we give a skeleton algorithm for Newton�s method� In the algorithm� F � denotes an interval
extension of f ��

Algorithm ����� �NEWTON� #Newton Method for Univariate Polynomials$

In� f�x� � F#x$�
A � IF�
� � F� � � ��

Out� Z � P�IF� such that

� for every X � Z it holds that w�X� � � or w�X� is so small that X cannot be bisected�

� if f�x� � � for some x � A then x � SZ �

��� #Initialize�$
S �� empty stack�
Z �� fg�
compute the coe�cients of f ��
push A on S�

��� #Iterate�$
if S is empty� then return Z�
pop X from S�

��� #Test if w�X� is too small�$
c�� MID�X��
if WIDTH�X� � � or c �� int�X� then Z �� Z � fXg� goto Step ��

��� #Compute interval extensions�$
Y �� HF�f� #c$��
D �� F ��X��
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Horner Form (HF), 23 flops
Horner Form with Bisection at Zero (HFBZ), 21 flops
Bicentered Mean Value Form (BMF), 60 flops
Dense Slope Form (DSF), 33 flops
Dense Taylor Form with Bisection at Midpoint (DTFBM), 53 flops
Bernstein Form with Bisection at Zero (BFBZ), 146 flops
Slope Interpolation Form (SIF), 78 flops
Parabolic Boundary Value Form (PBF), 108 flops
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Figure ������ Average overestimation error for dense polynomials of degree �� mid�X� � ��
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Horner Form (HF), 23 flops
Horner Form with Bisection at Zero (HFBZ), 21 flops
Bicentered Mean Value Form (BMF), 59 flops
Dense Slope Form (DSF), 45 flops
Dense Taylor Form with Bisection at Midpoint (DTFBM), 77 flops
Bernstein Form with Bisection at Zero (BFBZ), 133 flops
Slope Interpolation Form (SIF), 106 flops
Parabolic Boundary Value Form (PBF), 108 flops
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Figure ������ Average overestimation error for dense polynomials of degree �� mid�X� � ����
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Horner Form (HF), 67 flops
Horner Form with Bisection at Zero (HFBZ), 64 flops
Bicentered Mean Value Form (BMF), 165 flops
Dense Slope Form (DSF), 97 flops
Dense Taylor Form with Bisection at Midpoint (DTFBM), 306 flops
Bernstein Form with Bisection at Zero (BFBZ), 726 flops
Slope Interpolation Form (SIF), 161 flops
Parabolic Boundary Value Form (PBF), 232 flops
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Figure ������ Average overestimation error for dense polynomials of degree ��� mid�X� � ����
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Horner Form (HF), 66 flops
Horner Form with Bisection at Zero (HFBZ), 64 flops
Bicentered Mean Value Form (BMF), 164 flops
Dense Slope Form (DSF), 128 flops
Dense Taylor Form with Bisection at Midpoint (DTFBM), 520 flops
Bernstein Form with Bisection at Zero (BFBZ), 779 flops
Slope Interpolation Form (SIF), 229 flops
Parabolic Boundary Value Form (PBF), 230 flops
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Figure ������ Average overestimation error for dense polynomials of degree ��� mid�X� � ����
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Horner Form (HF), 19 flops
Horner Form with Bisection at Zero (HFBZ), 22 flops
Bicentered Mean Value Form (BMF), 52 flops
Dense Slope Form (DSF), 61 flops
Dense Taylor Form with Bisection at Midpoint (DTFBM), 134 flops
Bernstein Form with Bisection at Zero (BFBZ), 354 flops
Slope Interpolation Form (SIF), 128 flops
Parabolic Boundary Value Form (PBF), 181 flops
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Figure ������ Average overestimation error for sparse polynomials of degree ��� mid�X� � ����
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Horner Form (HF), 22 flops
Horner Form with Bisection at Zero (HFBZ), 22 flops
Bicentered Mean Value Form (BMF), 54 flops
Dense Slope Form (DSF), 72 flops
Dense Taylor Form with Bisection at Midpoint (DTFBM), 249 flops
Bernstein Form with Bisection at Zero (BFBZ), 379 flops
Slope Interpolation Form (SIF), 168 flops
Parabolic Boundary Value Form (PBF), 168 flops
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Figure ������ Average overestimation error for sparse polynomials of degree ��� mid�X� � ����
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��� #Newton step if � �� D�$
if � �� D

X� �� �c� Y�D� �X�
if X� � � then goto Step ��
if X� �� X then push X� on S and goto Step ��
push #X� c$ and #c�X$ on S and goto Step ��

��� #Split X if � � D�$
X�� X� �� GDIV��Y�D�X � c�
if X� �� � then X� �� �X� ! c� �X�
if X� �� � then X� �� �X� ! c� �X�
if X� �� � and X� �� � and X� �X� � ��

if X� �� X and X� �� X then push X�� X� on S and goto Step ��
push #X� c$ and #c�X$ on S and goto Step ��

else
X� �� X� �X��
if X� � � goto Step ��
if X� � X then push #X� c$ and #c�X$ on S and goto Step ��
push X� on S and goto Step ��

Algorithm ����� �NEWTON� is modied slightly if the bicentered mean value form or the dense slope
form is used�

� During the evaluation of the bicentered mean value form of f �� the coe�cients of f �� have to be
computed� This is done only once in Step ��

� As a side product of the evaluation of the the dense linear factor form of f on X� we obtain an
overestimation of f�c� and an overestimation of the set of slopes of f between x and c for all x � X

and c � mid�X�� This set of slopes is used instead of M
��s�
f � �X�� Thus� in Step � the computation

of f�c� and M
��s�
f � �X� is basically replaced by the evaluation of M��s�

f �X��

Finally� one should mention� that the coe�cients of f � in Step � have to be computed by rounded interval
arithmetic� Hence� for the computation of D in Step �� we have to overestimate the range of an interval
polynomial� The necessary modications of the algorithms are straight forward�

In the experiments we compute the roots of random polynomials in #��� �$� We consider three classes of
polynomials�

� Dense random polynomials of degree ��� The coe�cients are uniformly chosen from #��� �$ �Table
������ left chart��

� Sparse random polynomials of degree ��� Only � coe�cients are non�zero and chosen uniformly
from #��� �$� Note that these polynomials have a multiple root at zero if the constant coe�cient is
zero �Table ������ middle chart��

� Dense random polynomials of degree �� with at least � roots in #���� ���$� The polynomials are
generated as follows� � points are randomly chosen from #���� ���$ and the unique polynomial of
degree � is computed which vanishes on these points� The polynomial is multiplied by a random
polynomial of degree �� whose coe�cients are uniformly chosen from #��� �$ �Table ������ right
chart��

In Table ����� we report the number of �oating point operations and iterations of Algorithm �����
�NEWTON�� averaged over ���� random input polynomials� The accuracy is � � ���� in all cases�
The results can be summarized and explained as follows�

� For dense random polynomials �left chart� the dense slope form �M
��s�
f � � is best� This is mainly

due to the modication described above� i�e� instead of overestimating f ��X� in Newton�s method�
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Dense

K�ops Iterations

 Hf � ���� �����


Mf � ���� �����

M
��s�
f � ���� ����

 T �f � ���� �����

 B
�k�
f � ���� ����


I
�s�
f � ���� ����

�I�s�f � ���� �����

Sparse

K�ops Iterations

 Hf � ���� �����


Mf � ���� �����

M
��s�
f � ���� �����

 T �f � ����� �����

 B
�k�
f � ���� �����


I
�s�
f � ���� �����

�I�s�f � ����� �����

Root Cluster

K�ops Iterations

 Hf � ������� ��������


Mf � ����� ������

M
��s�
f � ������ �������

 T �f � ����� �����

 B
�k�
f � ����� �����


I
�s�
f � ����� �����

�I�s�f � ����� �����

Table ������ Newton�s method for nding the roots of f in #��� �$ in dependence of the chosen interval
extension for overestimating f ��X�� In each chart� the average of ���� random polynomials of degree ��
is reported� In the left chart� the polynomials are dense� in the middle chart� the polynomials are sparse
with only three non�zero coe�cients� and in the right chart� the polynomials have a cluster of at least �
roots in #���� ���$�

merely an overestimation of the set of slopes of f between mid�X� and arbitrary points in X is
used� This explains also the small number of iterations of the slope form�

� For sparse polynomials �middle chart�� the Horner form with bisection at zero �  Hf � � is comparable

to M
��s�
f � � The reason is that  Hf � exploits the sparsity of f � for improving both e�ciency and

accuracy� whereas the accuracy of M��s�
f is not a�ected� and the costs are reduced by a smaller

amount as compared to  Hf � �

� The high accuracy of more expensive interval extensions pays only in the presence of root clusters
�right chart�� Here� most iterations are done when w�X� is very small� This explains the bad
performance of the only linearly convergent Horner form� Further� it explains why the bicentered

mean value form � 
Mf � � is now much better than M��s�
f � � If w�X� is small� then the chances are high�

that � �� Hf �� �X� and 
Mf � is exact� The smallest number of iterations is achieved by the Bernstein

form with bisection at zero �  B�k�
f � �� but as it is more expensive than the interpolation forms and the

dense Taylor form with bisection �  T �f � �� the methods perform about equally well� It is interesting

to note that  T �f � � which is relatively ine�cient for dense and sparse random polynomials� is one of
the best in the presence of root clusters�

From our experimental observations we conclude that it is very important to choose an appropriate
interval extension for overestimating f ��X� in Newton�s method� It seems that the following strategy can
be recommended�

� If w�X� is large and f is dense� then use the dense linear factor form�

� If w�X� is large and f is sparse� then use the Horner form with bisection at zero�

� If w�X� is small and mid�X� � � then use the Horner form with bisection at zero�

� If w�X� is small and mid�X� �� � then use the Bernstein form� the Taylor form with bisection or
an interpolation form�

����� Global Optimization

In this section we compare interval extensions at the problem of nding the global minimumwith given
accuracy of a univariate polynomial f in an interval A� The problem is solved by an iterative algorithm�
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which evaluates an interval extension of f on a subinterval of A in each iteration� As in the case of
Newton�s method� the number of iterations and the cost of each iteration depend on the chosen interval
extension�

Global optimization is one of the standard applications of interval arithmetic and was studied thoroughly
in the literature� see for example #Skelboe� ����$� #Moore� ����$� #Ichida and Fujii� ����$� #Hansen� ����$�
#Hansen� ����$� #Hansen and Sengupta� ����$� #Hansen� ����$� #Ratschek and Rokne� ����$� #Hansen�
����$� #Hammer et al�� ����$ and many others�

In order to facilitate the interpretation of the experimental results� we use a very simple optimization
algorithm and omit all kinds of accelerating devices� In the experiments below� we compute the global
minimumof random polynomials in #��� �$� We consider the same classes of random polynomials as in the
previous section on Newton�s method� but multiply each polynomial by x��� Without this multiplication�
the probability that f achieves its minimum at the boundary of X is very high� and the experimental
results might not be meaningful�

The comparison is done using the following optimization algorithm� As usual� F denotes an interval
extension of f � The algorithm keeps a list L of intervals which contains initially only the input interval
A� In each iteration� we chose the interval X of L for which F �X� is smallest� bisect it in the middle
and add both halves to L� Obviously� F �X� encloses the global minimum of f in A� The algorithm
terminates if w�F �X�� � �� where � is the desired accuracy of the result� or if X cannot be bisected any
more because of nite precision arithmetic� For e�ciency reason it is best to store pairs �X�F �X�� in L
and sort them according to increasing F �X��

Algorithm ����� �MIN� #Global Minimum of Univariate Polynomials$

In� f�x� � F#x$�
A � IF�
� � F� � � ��

Out� Y � IF such that

� minx�A f�x� � Y

� w�Y � � � if the precision of the �oating point numbers is su�ciently high�

��� #Initialize�$
L �� h�A�F �A��i�

��� #Iterate�$
pop �X�Y � from L�

��� #Terminate�$
if WIDTH�Y � � � then return Y �
c�� MID�X��
if c �� int�X� then return Y �

��� #Bisect�$
X� �� #X� c$�
X� �� #c�X$�

��� #Insert�$
insert �X�� F �X��� and �X�� F �X��� in L such that the elements �X�Y � in L are sorted with increasing
Y �
goto Step ��

Algorithm ����� is modied slightly in dependence of the chosen interval extension F �

� The bicentered mean value form requires the computation of the coe�cients of f �� Apparently� this
should be done only once in Step �� Further� instead of 
Mf �X�� the smaller interval

#Mf �X� c
���Hf �c

��$
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Dense

K�ops Iterations

 Hf ����� ������
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Sparse

K�ops Iterations
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M
��s�
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B
�k�
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f ���� ����
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Root Cluster

K�ops Iterations
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I
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Table ������ Computation of the global minimum of f in #��� �$ in dependence of the chosen interval
extension for overestimating f�X�� In each chart� the average of ���� random polynomials of degree ��
is reported� In the left chart� the polynomials are dense� in the middle chart� the polynomials are sparse
with at most � non�zero coe�cients� and in the right chart� the polynomials have a cluster of at least �
roots in #���� ���$� Every polynomial vanishes at �� and ��

is used in Step � and Step �� This saves the computation of c� and Hf �c��� see Section ������

� As a side product during the evaluation of M
��s�
f �X��  T �f �X� and 
I

�s�
f �X� we obtain an overestima	

tion Y of f�mid�X��� Thus� in Step � and Step � we use the smaller interval #F �X�� Y $ instead of

F �X�� where F is M
��s�
f �  T �f and 
I

�s�
f respectively�

� Similarly� during the evaluation of B�k�
f �X� and �I�s�f �X� we obtain overestimations L� R of f�X�

respectively f�X�� Thus� in Step � and Step � we use the smaller interval #F �X��minfL�Rg$ instead
of F �X�� where F is B�k�

f and �I�s�f respectively�

In Table ����� we report the number of �oating point operations and iterations of Algorithm ����� �MIN��
averaged over ���� random input polynomials� The accuracy is � � ���� in all cases� It does not seem
reasonable to choose a higher accuracy unless quadratically convergent accelerators like Newton�s method
are used�

The results can be summarized and explained as follows�

� For dense randompolynomials �left chart� the parabolic boundary value form �I
�s�
f is best� followed by

the bicentered mean value form 
Mf � The good performance of 
Mf is mainly due to the modication
described above� The Horner form with bisection at zero  Hf is signicantly worse than the other
methods� Whereas all methods could be improved because an upper bound of f at the center or
the boundary of X was available� this was not possible for the Horner form�

� For sparse random polynomials �middle chart�� 
Mf is better than �I
�s�
f � because the former exploits

sparsity to improve both e�ciency and accuracy� whereas the latter does not� This explains also�
why  Hf is much better compared to the dense case� whereas all other methods remain basically the
same�

� In the presence of a root cluster� interpolation forms are best� A closer analysis shows that this is
only true if the global minimum is near the root cluster� In this case many iterations are executed
when the width of X is small� and the cubic convergence order of interpolation forms pays�

Note that the smallest number of iterations is achieved by the Bernstein form in all cases� However� as the
evaluation of the Bernstein form is relatively expensive� its overall performance is not good� Further� the
experiments show that  Hf is not a good choice for global optimization problems� Not only the number of
�oating point operations is large� but each iteration requires insertion of elements in a sorted list� which
causes additional overhead�



Chapter �

Inclusion of the Range of

Multivariate Polynomials

In this chapter we consider the problem of nding an overestimation of the range of multivariate poly	
nomials over an interval vector� Most of the methods for univariate polynomials presented in Chapter �
can easily be generalized� However� for e�ciency reasons� it is very important to exploit sparsity in the
multivariate case� Hence� we restrict our considerations to methods which fulll this condition�

In the following let f�x�� x�� � � � � xn� � R#x�� � � � � xn$

f�x�� x�� � � � � xn� �
mX
i��

ai x
di��
� x

di��
� � � �xdi�nn

be a multivariate real polynomial in n � � variables� such that ai �� � for all i and

�di��� di��� � � � � di�n� � �dj��� dj��� � � � � dj�n� for all � � i � j � m�

where � means lexicographically greater� For the zero polynomial we dene m � � and a� � �� The
term

ai x
di��
� x

di��
� � � �xdi�nn

is called i	th monomial of f �

��� Horner Form

The Horner form of multivariate polynomials is dened recursively� If n � � then f � a� is a real number
and the Horner form of f is a�� Otherwise� we consider f�x�� � � � � xn� as a univariate polynomial in x�
with coe�cients in R#x�� � � � � xn$� By evaluating the Horner form of the coe�cients recursively� we obtain
a univariate interval polynomial F �x�� � IR#x�$� and the Horner form of the multivariate polynomial f
is the Horner form of the univariate interval polynomial F �see Denition �������� Before giving a formal
denition of the multivariate Horner form� we introduce some basic notions�

De�nition ����� �Coe�cient� The coe�cient of xd� in f is de�ned as

coef�f� d� �
mX
i��

di���d

ai x
di��
� x

di��
� � � �xdi�nn � R#x�� � � � � xn$� �

De�nition ����� �Degree� The degree of f is de�ned as

deg�f� �

�
d��� if n � �
� else� �

���
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De�nition ����� �Multivariate Horner Form� The multivariate Horner formHf � IRn � IRof f is
de�ned recursively as

Hf �X�� � � � � Xn� �

�
a� if n � �

HF �X�� else�

where

F �x�� �

deg�f�X
i�


Hcoef�f�i��X�� � � � � Xn�x
i
� � IR#x�$� �

We are using the same symbol H for the univariate and the multivariate Horner form� because the forms
coincide if the number of variables is ��

Theorem ����� �Inclusion Monotonicity� Hf is an inclusion monotone interval extension of f � �

Proof� Follows from Corollary ����� and Theorem ������� �

Theorem ����� �Convergence� Hf converges linearly to f � �

Proof� Hf is an interval extensions of f �Theorem ������ and Lipschitz �Corollary �������� Hence Hf

converges linearly to f �Theorem �������� �

From Denition ����� we obtain the following recursive algorithm for evaluating the multivariate Horner
form�

Algorithm ����� �HFM� #Multivariate Horner Form$

In� f�x�� � � � � xn� �
Pm

i�� ai x
di��
� x

di��
� � � �xdi�nn � F#x�� � � � � xn$�

X � IFn�
Out� HFM�f�X� � IF� HFM�f�X� 	 Hf �X��

��� #Recursion base�$
if n � � return a��

��� #Coe�cients of univariate interval polynomial�$
for i � � � � �deg�f�

gi�x�� � � � � xn��� coef�f� i��
Ai �� HFM�gi�x�� � � � � xn�� X�� � � � � Xn��

��� #Evaluate univariate interval polynomial�$

F �x����
Pdeg�f�

i�
 Aix
i
��

return HFI�F �x��� X���

Theorem ���� �Complexity� Algorithm ����� �HFM� costs at most

nm interval power computations�
nm interval multiplications and

�m� � number additions� �

Proof� Let ��m�n� be the number of interval power computations and interval multiplications� and let
��m�n� be the number of interval additions of Algorithm ����� �HFM�� By induction on n we show that

��m�n� � mn� ��m�n� � �m� � �������

for all m � � and n � �� Obviously ������� holds for n � �� Let n arbitrary but xed and assume

��m�n � �� � m�n � ��� ��m�n� �� � �m � �
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for all m� Let k be the number of di�erent powers of x� occuring in f and let mi be the number of
monomials in the i	th coe�cient� i � �� � � � � k� Step � costs

Pk
i�� ��mi� n � �� power computations

and multiplications and
Pk

i�� ��mi� n � �� additions� Step � costs at most k power computations and
multiplications and k � � additions� Hence� by induction on n we obtain

��m�n� � k !
kX

i��

��mi� n� ��

� k !
kX

i��

mi�n � ��

� m�n� �� ! k

� nm

��m�n� � k � � !
kX

i��

��mi� n� ��

� k � � !
kX

i��

�mi � ��

� m� �� �

Theorem ����	 If � �� int�Xi� for all i� then Algorithm ����� �HFM� costs

nm interval power computations�
�nm number multiplications and

�m� � number additions� �

����� Nested Form

A simple way to obtain interval extensions F of f is as follows�

� Find an arithmetic expression e for f �

� Let F �X� be the interval which is obtained by evaluating e on X using interval arithmetic�

The Horner form is obtained in this way� where the expression e has a particular shape� For example� let

f�x�� x�� � x��x
�
� ! x�x

�
� ! x�x��

Then
e � x��x

�
� ! x��x� ! ��x�

is an expression for f � and the Horner form of f is the interval evaluation of e� Another expression for f
is

e
� � x�x��x��x� ! �� ! ���

Usually� the interval evaluation of e and e
� yield di�erent results� Further� it depends on the value of X

which expression gives a tighter interval� For example let

X � �#�� �$� #��� �$�

then
e�X� � #��� �$ � #��� �$ � e

��X��

whereas if
X � �#��� �$� #��� �$�
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then
e�X� � #��� �$ � #��� �$ � e

��X��

It is non�trivial to nd an expression for given f and X which yields an interval with smallest width
e�ciently� In the literature on optimizing compilers a similar problem is treated� For a given expression an
equivalent expression is searched� which allows evaluation with a minimal number of machine instructions�
see e�g� #Sethi and Ullman� ����$� #Ullman� ����$� #Aho et al�� ����$� However� the arithmetic operations
are not assumed to be commutative or associative but mainly the register usage is optimized� Thus�
the results cannot be applied here� Our experience is that searching an expression which minimizes the
overestimation error is very expensive and other interval extensions with comparable costs give usually
tighter inclusions� Thus� instead of searching an optimal expression we are content with a suboptimum�
In applications it is often the case that the same polynomial has to be evaluated over many di�erent
intervals� As the determination of a suboptimal expression can be costly� it should be done only once
and not each time the polynomial is evaluated� Therefore� we are interested in an expression which gives
tight inclusions for arbitrary input intervals�

Having in mind the subdistributivity law of interval arithmetic� one might be tempted to say that e� is
always better than e� However� this is wrong because the interval power function gives tighter inclusions
than iterated multiplication� On the other hand� there are many cases where an application of the
distributivity rule

Axa ! BXb �� �AXa�c ! BXb�c�Xc� � � c � min�a� b�

leads to better expressions� The following theorem is new�

Theorem ����
 Let A�B�X � IR� let a� b� c � N such that � � c � min�a� b�� Let

Y� � AXa ! BXb

Y� � �AXa�c ! BXb�c�Xc

Y� � �AXa�min�a�b� !BXb�min�a�b��Xmin�a�b��

�i� If � �� int�X� then Y� � Y� � Y��

�ii� If a� b are both even then Y� � Y��

�iii� If a� b are both odd and Y� � Y� then Y� � Y�� �

Intuitively �iii� can be read as �if factoring out something gives an improvement� then factoring out as
much as possible is best��

Proof�

�i� Assume � �� int�X�� Then the d	th power of X is equal to d times the product of X with itself for
all d � N and Y� � Y� � Y� follows from the subdistributivity law �Theorem �������

�ii� Assume a� b are even and without loss of generality b � a� Then b� a is even and

Xb � Xb�aXa

and thus

Y� � �A !BXb�a�Xa

� AXa ! BXb�aXa

� AXa ! BXb

� Y��

�iii� Assume a� b are odd� Y� � Y� and without loss of generality b � a� As A�B occur only once in
each expression of Theorem ������ it su�ces to consider the case when A � � � R and B � � � R�
Further� the case � � � can be reduced to the case � � �� hence we may assume � � �� If
� �� int�X� then �iii� follows from �i�� hence in the following assume � � int�X�� The case X � �X
can be reduced to the case X � �X by replacing X by �X� hence we may assume X � �X � We
distinguish two cases depending on the sign of ��
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� Assume � � �� Then

Y � � ��X
a�c

! �X
b�c

�X
c

� ��! �X
b�a

�X
a

� Y ��

� If c is odd then a� c� b� c are even and

Y � � ��X
a�c

! �X
b�c

�Xc

� ��! �X
b�a

�Xa

� Y ��

� If c is even then a� c� b� c are odd and

Y � � ��Xa�c ! �Xb�c�X
c

� ��Xa ! �X b�

� Y ��

i�e� the assumption Y� � Y� is not satised�

� Assume � � ��

� If c is odd then a� c� b� c are even and

Y � � maxf��Xa�c
! ���X

c
� ��� ! �X

b�c
�Xcg

� maxf�Xa
� �X

b�c
Xcg

� maxf�Xa
� �X

b�a
Xag

� Y ��

Y � � minf��Xa�c
! ���Xc� ��� ! �X

b�c
�X

cg
� minf�Xa�c

Xc� �X
bg

� minf�Xa� �X
b�a

Xag
� Y ��

� If c is even then a� c� b� c is odd and

Y � � ��X
a�c

! �Xb�c�X
c

� ��X
a
! �X b�

� Y ��

Y � � ��Xa�c ! �X
b�c

�X
c

� ��Xa ! �X
b
�

� Y ��

i�e� the assumption Y� � Y� is not satised�

Thus� it seems reasonable to search for expressions which are highly nested� Although intuitively it is
clear what is meant by nested� this notion does not dene a unique expression� For example� let

f�x�� x�� � x�x� ! x� ! x��

Then
x��x� ! �� ! x�� x��x� ! �� ! x�

are two locally optimal expressions for f � This means that even after rewriting the expressions using the
commutativity or associativity law� the distributivity law cannot be applied in the direction of higher
nesting�

We give a simple algorithm which computes such a locally optimal expression for a given polynomial�
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Algorithm ������ �NEP� #Nested Expression for Polynomial$

In� e �
Pm

i�� ai x
di��
� x

di��
� � � �xdi�nn � an expression�

Out� NEP�e�� an expression equivalent to e up to commutativity� associativity and distributivity�

��� #Initialize�$

L �� List�ai x
di��
� x

di��
� � � �xdi�nn j i � �� � � � �m��

��� #Iterate�$
The elements of L are expressions of the form axd�� xd�� � � � �xdnn where a is a �compound� expression�
while Length�L� � �

����� #Search�$

Choose e
� � a

�x
d��
� x

d��
� � � � �xd

�
n
n and e

�� � a
��x

d���
� x

d���
� � � � �xd

��
n
n from L such that

Pn
i��min�d�i� d

��
i � is

maximal� Remove e� and e
�� from L�

����� #Combine�$
for i � �� � � �n do di �� min�d�i� d

��
i ��

e�� �a�
Qn

i��
d�
i
��di

x
d�i�di
i ! a

�
Qn

i��
d��
i
��di

x
d��i �di
i �xd�� xd�� � � �xdnn �

Add e to L�
��� #Return�$

return First�L��

Note that Step ��� is non�deterministic� For example� if e � x�x�!x�!x� then Algorithm ������ �NEP�
may either return x��x�!��!x� or x��x�!��!x�� In the sequel we assume that an arbitrary but xed
strategy is used�

De�nition ������ �Nested Form� The nested form Nf � IRn � IRof f is the interval evaluation of
the expression obtained by Algorithm ����� �NEP� with input expression

mX
i��

ai x
di��
� x

di��
� � � �xdi�nn � �

An algorithm for evaluating the nested form is now straight forward�

Algorithm ������ �NF� #Nested Form$

In� f�x�� � � � � xn� �
Pm

i�� ai x
di��
� x

di��
� � � �xdi�nn � F#x�� � � � � xn$�

X � IFn�
Out� NF�f�X� � IF� NF�f�X� 	 Nf �X��

��� #Nested expression�$

e�� NF�
Pm

i�� ai x
di��
� x

di��
� � � �xdi�nn ��

��� #Evaluate�$
Y �� evaluation of e on X using �oating point interval arithmetic�

��� #Return�$
return Y �

Remark� In the univariate case the nested form and the Horner form are identical�

Remark� If Nf has to be computed repeatedly for di�erent intervals X using Algorithm ������ �NF��
then Step � has to be executed only once� i�e� e can be pre�computed�
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Theorem ������ �Complexity� Algorithm �����	 �NF� costs

nm interval power computations�
nm interval multiplications and

�m� � number additions� �

Proof� Step � involves merely symbolic and integer operations� For the cost of Step � we have to count the
number of operation symbols in the expression e� Therefore� we count the number of operation symbols
of all expressions in L of Algorithm ������ �NEP�� Upon termination of this algorithm L contains the
single element e� In Step �� every element of L comprises n power computations and n multiplications�
hence there are nm power computations and nm multiplications� In each iteration in Step � we remove
in Step ��� the operations for a�� a��� �n power computations and �n multiplications and add in Step ���
the operations for a

�� a��� at most �n power computations� at most �n multiplications and � addition�
Hence� in each iteration in Step � we add � addition and� in the worst case� keep the number of power
computations and multiplications constant� As m� � iterations are performed� we add m� � additions�
Hence� upon termination there are at most nm power computations� nm multiplications and m � �
additions in L� �

����� Experimental Results

In this section we compare the Horner form Hf � the nested form Nf and the distributed form Df which
is dened as

Df �X� �
nX
i��

aiX
di��
� X

di��
� � � �Xdi�n

n �

The distributed form is the evaluation of the �least nested� expression for f � hence Df and Nf can be
viewed as two extremes where Hf is in between�

As the computation of the exact range of a multivariate polynomial is expensive� we do not report over	
estimation errors� Instead� we compare the width of the nested and the dense form with the width of
the Horner form� The costs are given in terms of arithmetic �oating point instructions� The coe�cients
of the test polynomials and the endpoints of the components of the input interval vectors are uniformly
distributed in #��� �$� We report the average over ���� random polynomials and input interval vec	
tors� Table ����� shows a comparison for random polynomials with di�erent numbers of variables n and
monomials m�

� In the rst experiment �Table ������ each degree vector contains n non�zero components and the
degree in each variable is at most �� The accuracy of all three forms is roughly the same� However�
the cost of Nf is signicantly smaller than for Hf � in particular if the number of monomials is large�

In fact� we expected that the accuracy of Nf would be much better than the accuracy of Hf �
According to Theorem ������ Nf is at least as accurate as Df if � �� Xi for all i�

� Thus� in Table ����� we repeat the experiment� but consider only cases where � �� Xi for all i� The
result is disappointing� In general� Nf is only slightly more accurate than Df and Hf �

� Table ����� shows the same experiment as in Table ������ but this time each degree vector has at
most � non�zero components� Qualitatively� we obtain the same result concerning accuracy and
costs�

� Finally� in Table ����� we repeat the experiment of Table ������ but this time the degree in each
variable is up to ��� Again� the result is qualitatively the same as in the previous experiments�

Thus� we conclude that Nf is in general not more accurate than Hf but costs signicantly less in terms
of arithmetic �oating point operations� The non�numeric overhead for computing the nested expression
for Nf pays only if f has to be evaluated several times for di�erent input intervals�
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Degree �� Dense Monomials

Variables n� Monomials m �� � �� � �� � �� � �� � �� �� ��� � ��� ��

Flops for Hf �X� ���� ���� ���� ����� ����� ����� ����� ������

Flops for Nf �X� ���� ���� ���� ���� ����� ����� ����� �����

Flops for Df �X� ���� ���� ����� ����� ����� ����� ����� ������

w�Nf �X���w�Hf �X�� ����� ����� ����� ����� ����� ����� ����� �����

w�Df �X���w�Hf �X�� ����� ����� ����� ����� ����� ����� ����� �����

Table ������ Comparison of Hf � Nf and Df for random polynomials Each degree vector contains n
non�zero components and the degree in each variable is at most ��

Degree �� Dense Monomials� � �� Xi

Variables n� Monomials m �� � �� � �� � �� � �� � �� �� ��� � ��� ��

Flops for Hf �X� ���� ���� ���� ����� ����� ����� ����� ������

Flops for Nf �X� ���� ���� ���� ���� ����� ����� ����� �����

Flops for Df �X� ���� ���� ����� ����� ����� ����� ����� ������

w�Nf �X���w�Hf �X�� ����� ����� ����� ����� ����� ����� ����� �����

w�Df �X���w�Hf �X�� ����� ����� ����� ����� ����� ����� ����� �����

Table ������ Same experiment as in Table ������ but this time � �� Xi for all i�

Degree �� Sparse Monomials

Variables n� Monomials m �� � �� � �� � �� � �� � �� �� ��� � ��� ��

Flops for Hf �X� ���� ���� ���� ����� ����� ����� ����� �����

Flops for Nf �X� ���� ���� ���� ���� ���� ����� ����� �����

Flops for Df �X� ���� ���� ���� ����� ����� ����� ����� �����

w�Nf �X���w�Hf �X�� ����� ����� ����� ����� ����� ����� ����� �����

w�Df �X���w�Hf �X�� ����� ����� ����� ����� ����� ����� ����� �����

Table ������ Same experiment as in Table ������ but this time each degree vector has at most � non�zero
components�

Degree ��� Sparse Monomials

Variables n� Monomials m �� � �� � �� � �� � �� � �� �� ��� � ��� ��

Flops for Hf �X� ���� ���� ���� ����� ����� ����� ����� �����

Flops for Nf �X� ���� ���� ���� ����� ����� ����� ����� �����

Flops for Df �X� ���� ����� ���� ����� ����� ����� ����� �����

w�Nf �X���w�Hf �X�� ����� ����� ����� ����� ����� ����� ����� �����

w�Df �X���w�Hf �X�� ����� ����� ����� ����� ����� ����� ����� �����

Table ������ Same experiment as in Table ������ but this time the degree in each variable is at most ��
and each degree vector has at most � non�zero components�
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��� Mean Value Form

The mean value form of multivariate polynomials is a straight forward generalization of the univariate
case� It is quadratically convergent �#Alefeld and Herzberger� ����$� #Skelboe� ����$� #Caprani and Mad	
sen� ����$� #Alefeld and Herzberger� ����$� and inclusion monotone �#Caprani and Madsen� ����$�� An
important improvement of the mean value form� called successive mean value form #Hansen� ����$ is
subject of Section ������ The successive mean value form with slopes instead of derivatives is studied in
Section ������ In Section ����� we generalize the bicentered mean value form to the multivariate case� A
new combination of the successive mean value form and the bicentered mean value form is introduced in
Section ������ Finally� in Section ����� we compare the di�erent mean value forms experimentally�

The multivariate mean value form can be derived easily from the mean value Theorem� For all X � IRn
and for all x� c � X there exists � �X such that

f�x� � f�c� !
nX
i��

�if ����xi � ci��

where

�if �
�f

�xi
�

Hence�

f�x� � f�c� !
nX
i��

�if �X��Xi � ci��

Thus� every interval extension Fi of �if � i � �� � � � � n and any choice of c � X give rise to an interval
extension F of f �

F �X� � f�c� !
nX
i��

Fi�X��Xi � ci� 	 f�X �� �������

The mean value form is a special case of �������� where Fi is the Horner form of �if and c � mid�X��

De�nition ����� �Multivariate Mean Value Form� The multivariate mean value formMf � IRn �
IR is de�ned as

Mf �X� � f�mid�X�� !
nX
i��

H�if �X��Xi �mid�Xi��� �

Theorem ����� �Interval Extension� Mf is an interval extension of f � �

Proof� Follows from �������� �

Theorem ����� �Convergence� Mf converges quadratically to f � �

Proof� Straight forward generalization of Theorem ������ �

The following theorem is taken from #Caprani and Madsen� ����$�

Theorem ����� �Inclusion Monotonicity� Mf is inclusion monotone� �

Proof� The proof is a straight forward generalization of the proof of Theorem ������ Let X
 � X �
c
 � mid�X
�� c � mid�X�� r
 � rad�X
�� r � rad�X�� We have to show that Mf �X
� � Mf �X��
As Xi � ci and Xi
 � ci
 are centered intervals for all i� it holds that

Mf �X� � f�c� !
nX
i��

mag�H�if �X��ri#��� �$

Mf �X
� � f�c
� !
nX
i��

mag�H�if �X
��ri
#��� �$�
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Hence� we have to show that

f�c
� !
nX
i��

mag�H�if �X
��ri
 � f�c� !
nX
i��

mag�H�if �X��ri

f�c
��
nX
i��

mag�H�if �X
��ri
 � f�c��
nX
i��

mag�H�if �X��ri�

Note that for all i

jci
 � cij � ���j�Xi
 !Xi
 �X i �X i�j
� ���maxfXi
 !Xi
 �X i �Xi� Xi !Xi �Xi
 �Xi
g
� ����Xi !Xi
 �Xi
 �Xi�

� ri � ri
�

Further� H�if �X
� � H�if �X� by Theorem ������ Let � � X such that

f�c
� � f�c� !
nX
i��

�if ����ci
 � ci��

Then

f�c
� !
nX
i��

mag�H�if �X
��ri
 � f�c� !
nX
i��

�if����ci
 � ci� !mag�H�if �X
��ri


� f�c� !
nX
i��

j�if ���jj�ci
 � ci�j!mag�H�if �X
��ri


� f�c� !
nX
i��

mag�H�if �X���ri � ri
� ! mag�H�if �X��ri


� f�c� !
nX
i��

mag�H�if �X��ri

f�c
��
nX
i��

mag�H�if �X
��ri
 � f�c� !
nX
i��

�if����ci
 � ci� �mag�H�if �X
��ri


� f�c� !
nX
i��

�j�if ���jj�ci
 � ci�j �mag�H�if �X
��ri


� f�c� !
nX
i��

�mag�H�if �X���ri � ri
� �mag�H�if �X��ri


� f�c��
nX
i��

mag�H�if �X��ri� �

Algorithm ����� �MFM� for evaluating the multivariate mean value form follows immediately from Deni	
tion ������ The algorithmrequires evaluation of the Horner form of the partial derivatives �if � i � �� � � � � n�
As the coe�cients of �if need not be �oating point numbers� we have to enclose them by intervals� The
Horner form of multivariate interval polynomials is computed by Algorithm HFMI� which is a trivial
modication of Algorithm ����� �HFM� and which is therefore not given explicitly� Further� we extend
Algorithm ������ MID and Algorithm ������ �CONVERT� to interval vectors component wise�

Algorithm ����� �MFM� #Multivariate Mean Value Form$

In� f�x� �
Pm

i�� ai x
di��
� x

di��
� � � �xdi�nn � F#x�� � � � � xn$�

X � IFn�
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Out� MFM�f�X� � IF� MFM�f�X� �Mf �X�� MFM�f�X� 	 f�X��

��� #Midpoint�$
c�� MID�X��

��� #Evaluate f�c��$
Y �� HFM�f�x�� #c$��

��� #Partial derivatives�$
for i � �� � � � � n do Fi�x��� �f

�xi
�interval arithmetic for coe�cients��

��� #Evaluate partial derivatives�$
for i � �� � � � � n do Fi �� HFMI�Fi�x��X��

��� #Accumulate�$
for i � �� � � � � n do Y �� Y ! Fi  �Xi � ci��

��� #Return�$
return Y �

Theorem ����� �Complexity� Algorithm ��	�� �MFM� costs

n�m! nm interval power computations�
n�m ! n interval multiplications�
�nm ! n number multiplications and

�nm ! �n! �m� � number additions� �

Proof�

� Step � costs n number multiplications and �n number additions�

� Step � costs nm interval power computations� �nm number multiplications and �m � � number
additions�

� Step � costs �nm number multiplications�

� Step � costs n�m interval power computations� n�m interval multiplications and �nm� �n number
additions�

� Step � costs n interval multiplications and �n number additions� �

In Algorithm ����� �MFM� we explicitly computed polynomials for the partial derivatives of f and eval	
uated all of them on X� A new possibility for obtaining the value of the i	th partial derivative is to
evaluate f rst in the variables xi��� � � � � xn� next compute the formal i	th partial derivative of this
i	variate interval polynomial and evaluate it� This can be done successively as follows� Let

F �n��x�� � � � � xn� � f�x�� � � � � xn��

For i � n� � � � �� evaluate F �i����x�� � � � � xi��� in its last variable xi by Xi using the Horner scheme and
obtain an i	variate interval polynomial F �i��x�� � � � � xi��

F �i��x�� � � � � xi� � F �i����x�� � � � � xi� Xi����

Next� let F
�i�
i be the formal i	th partial derivative of F �i� and evaluate F

�i�
i on X�� � � � � Xn using the

Horner scheme� One checks that

H
F
�i�
i

�X�� � � � � Xi� � H�if �X�� � � � � Xn��

An advantage of this method is that F 
�� � Hf �X�� i�e� we obtain the Horner form as a side product
with minimal additional costs� such that we can compute easily Mf �X� �Hf �X��
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De�nition ���� �Mean Value � Horner Form� The mean value � Horner form M
�H�
f � IRn � IR

is de�ned as
M

�H�
f �X� �Mf �X� �Hf �X�� �

We formalize the procedure described above in Algorithm ������ �MHF� and compare its complexity with
Algorithm ����� �MFM�� First� we give an auxiliary algorithm for evaluating an interval polynomial in
its last variable�

Algorithm ����	 �HFIL� #Horner Form in Last Variable$

In� F �x� �
Pm

i��Ai x
di��
� x

di��
� � � �xdi�nn � IF#x�� � � � � xn$

such that �di��� di��� � � � � di�n� � �dj��� dj��� � � � � dj�n� for i � j�
X � IF�

Out� HFIL�F�X� � IF#x�� � � � � xn��$� HFIL�F�X� 	 HF �x�� � � � � xn��� X��

��� #Partition f �$
Let

k � jf�di��� di��� � � � � di�n��� j i � �� � � � �mgj�
and let � � m� � � � � � mk�� � m ! � such that

Fj�xn� �

mj����X
i�mj

Aix
di�n
n � IF#xn$� j � �� � � � � k

and

F �x� �
kX

j��

Fj�xn�x
dmj��

� x
dmj��

� � � �xdmj�n��

n�� �

��� #Evaluate�$
for j � �� � � � � k do Bj �� HFI�Fj�xn�� X�

��� #Return�$

return
Pk

j��Bj x
dmj��

� x
dmj��

� � � �xdmj�n��

n��

Theorem ����
 �Complexity� Algorithm ��	�� �HFIL� costs

m interval power computations�
m interval multiplications and

�m � �k number additions�

where
k � jf�di��� di��� � � � � di�n��� j i � �� � � � �mgj� �

Proof� The computation of HFI�Fj� X� in Step � costs mj���mj interval power computations�mj���mj

multiplications and mj�� �mj � � interval additions �Theorem �������� Hence� Step � costs

kX
j��

mj�� �mj � mk�� �m� � m

interval power computations and multiplications and

kX
j��

mj�� �mj � � � mk�� �m� � k � m� k

interval additions� �
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Theorem ������ �Complexity� If � �� int�X� then Algorithm ��	�� �HFIL� costs

m interval power computations�
�m number multiplications and

�m � �k number additions� �

Algorithm ������ �MHF� #Mean Value � Horner Form$

In� f�x� �
Pm

i�� ai x
di��
� x

di��
� � � �xdi�nn � F#x�� � � � � xn$�

X � IFn�
Out� MHF�f�X� � IF� MHF�f�X� � M

�H�
f �X�� MHF�f�X� 	 f�X��

��� #Midpoint�$
c�� MID�X��

��� #Evaluate f�c��$
Y �� HFM�f�x�� #c$��

��� #Convert f to an interval polynomial�$
F �n��x�� � � � � xn��� f�x�� � � � � xn��

��� #Evaluate f successively in X �$
for i � n� � � � � � do F �i����x�� � � � � xi����� HFIL�F �i��x�� � � � � xi�� Xi��

��� #Partial derivatives�$

for i � n� � � � � � do F
�i�
i �x�� � � � � xi��� �

�xi
F �i��x�� � � � � xi��

��� #Evaluate partial derivatives�$

for i � n� � � � � � do Fi �� HFMI�F �i�
i �x�� � � � � xi�� X�� � � � � Xi��

��� #Accumulate�$
for i � n� � � � � � do Y �� Y ! Fi  �Xi � ci��

��� #Intersect with Hf �X��$
Y �� Y � F �
����

��� #Return�$
return Y �

Theorem ������ �Complexity� Algorithm ��	��� �MHF� costs

���n�m! ���nm interval power computations�
���n�m ! ���nm! n interval multiplications�

�nm! n number multiplications and
�nm ! �n! �m� � number additions� �

Proof� We assume the worst case where all F �i� have m monomials� i�e� no two degree vectors of f have
a common prex�

� Step � costs n number multiplications and �n number additions�

� Step � costs nm interval power computations� �nm number multiplications and �m � � number
additions�

� Step � costs nm interval power computations� nm interval multiplications and �m � � number
additions�

� Step � costs �nm number multiplications�

� The i	th iteration in Step � costs im interval power computations� im interval multiplications
and �m � � number additions� Hence� Step � costs ���n�n ! ��m interval power computations�
���n�n! ��m interval multiplications and �nm � �n number additions�
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� Step � costs n interval multiplications and �n number additions� �

Thus� asymptotically Algorithm ������ �MHF� is half as expensive as Algorithm ����� �MFM��

����� Successive Mean Value Form

An important improvement of the mean value form is presented in #Hansen� ����$� Recall that for the
mean value form we have to evaluate the partial derivatives of f on �X�� � � � � Xn�� If� instead� we evaluate
the i	th partial derivative only on

�X�� � � � � Xi� ci��� � � � � cn� � �X�� � � � � Xn��

we still obtain an interval extension� which is called successive mean value form� Obviously� the successive
mean value form is usually tighter than the mean value form�

In order to show that the successive mean value form is an interval extension� we apply the mean value
Theorem successively to the variables of f � Let X � IRn and let x� c �X� First� consider f�x�� � � � � xn�
as a univariate function in xn� According to the mean value Theorem there exists �n � Xn such that

f�x�� � � � � xn� � f�x�� � � � � xn��� cn� ! �nf �x�� � � � � xn��� �n��xn � cn��

Next� consider f�x�� � � � � xn��� cn� as a univariate function in xn��� Applying the mean value Theorem
again� we obtain

f�x�� � � � � xn��� cn� � f�x�� � � � � xn��� cn��� cn� ! �n��f�x�� � � � � xn��� �n��� cn��xn�� � cn���

for some �n�� � Xn��� Hence�

f�x�� � � � � xn� � f�x�� � � � � xn��� cn��� cn�
! �n��f �x�� � � � � xn��� �n��� cn��xn�� � cn���
! �nf �x�� � � � � xn��� �n��xn � cn��

Next� we apply the mean value Theorem to f�x�� � � � � xn��� cn��� cn� as a univariate function in xn���
and so on� Finally� we obtain

f�x�� � � � � xn� � f�c�� � � � � cn� !
nX
i��

�if�x�� � � � � xi��� �i� ci��� � � � � cn��xi � ci�

for some � �X and

f�x�� � � � � xn� � f�c�� � � � � cn� !
nX
i��

�if �X�� � � � � Xi� ci��� � � � � cn��Xi � ci��

Thus� every interval extension Fi of �if � i � �� � � � � n and every choice of c � X give rise to an interval
extension F of f �

F �X� � f�c� !
nX
i��

Fi�X�� � � � � Xi� ci��� � � � � cn��Xi � ci� 	 f�X �� �������

The successive mean value form is a special case of �������� where Fi is the Horner form of �if and
c � mid�X��

De�nition ������ �Successive Mean Value Form� The successive mean value formM�f � IRn � IR

is de�ned as

M�f �X� � f�c� !
nX
i��

H�if �X�� � � � � Xi� ci��� � � � � cn��Xi � ci��

where c � mid�X�� �
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Theorem ������ �Interval Extension� M�f is an interval extension of f � �

Proof� Follows from �������� �

Theorem ������ �Accuracy� For all X � IRn it holds that

M�f �X� �Mf �X�� �

Proof� Obvious� �

Corollary ������ �Convergence� M�f converges quadratically to f � �

Theorem ����� �Inclusion Monotonicity� M�f is not inclusion monotone� �

Proof� Consider the polynomial f�x�� x�� � x��x�� We obtain

M�f �X�� X�� � mid�X��
�mid�X�� ! �X�mid�X���X� �mid�X��� !X�

� �X� �mid�X����

Obviously
�#��� �$� #�� �$�T � �#��� �$� #���$�T�

but
M�f �#��� �$� #�� �$� � #��� �$� #��� �$ � M�f �#��� �$� #���$�� �

Algorithm������ �SMF� for evaluating the successive mean value form follows immediately fromDenition
������� As in Algorithm ������ �MHF�� we do not compute the i	th partial derivative of f and evaluate
it on �X�� � � � � Xi� ci��� � � � � cn�� Instead� we rst compute successively i	variate polynomials

f �i��x�� � � � � xi� � f�x�� � � � � xi� ci��� � � � � cn�

and then evaluate the i	th partial derivative of f �i� on �X�� � � � � Xi�� As a side product� we obtain
f�c�� � � � � cn� which is needed anyways� As usual� the intermediate polynomials have to be enclosed by
interval polynomials because of rounding errors�

Algorithm �����	 �SMF� #Successive Mean Value Form$

In� f�x� �
Pm

i�� ai x
di��
� x

di��
� � � �xdi�nn � F#x�� � � � � xn$�

X � IFn�
Out� SMF�f�X� � IF� SMF�f�X� � M�f �X�� SMF�f�X� 	 f�X ��

��� #Midpoint�$
c�� MID�X��

��� #Convert f to an interval polynomial�$
F �n��x�� � � � � xn��� f�x�� � � � � xn��

��� #Evaluate f successively in c�$
for i � n� � � � � � do F �i����x�� � � � � xi����� HFIL�F �i��x�� � � � � xi�� #ci$��

��� #Partial derivatives�$

for i � n� � � � � � do F
�i�
i �x�� � � � � xi��� �

�xi
F �i��x�� � � � � xi��

��� #Evaluate partial derivatives�$

for i � n� � � � � � do Fi �� HFMI�F
�i�
i �x�� � � � � xi�� X�� � � � � Xi��

��� #Accumulate�$
Y �� F �
����
for i � n� � � � � � do Y �� Y ! Fi  �Xi � ci��
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��� #Return�$
return Y �

Theorem �����
 �Complexity� Algorithm ��	��� �SMF� costs

���n�m! ���nm interval power computations�
���n�m ! ���nm! n interval multiplications�

�nm! n number multiplications and
�nm ! �n! �m� � number additions� �

Proof� We assume the worst case where all F �i� have m monomials� i�e� no two degree vectors of f have
a common prex�

� Step � costs n number multiplications and �n number additions�

� Step � costs nm interval power computations� �nm number multiplications and �m � � number
additions�

� Step � costs �nm number multiplications�

� The i	th iteration in Step � costs im interval power computations� im interval multiplications
and �m � � number additions� Hence� Step � costs ���n�n ! ��m interval power computations�
���n�n! ��m interval multiplications and �nm � �n number additions�

� Step � costs n interval multiplications and �n number additions� �

����� Successive Slope Form

The univariate mean value form was improved signicantly by replacing the derivative by a slope� Now�
we apply this idea to the multivariate case� The interval extension which we derive can also be ob	
tained by applying the formulas of #Krawczyk and Neumaier� ����$ for rational expressions in a specic
way� However� for polynomials there is a more direct method� which reveals possibilities to optimize a
corresponding algorithm�

Generalizing the univariate case means nding polynomials gi�x� c�� i � �� � � � � n such that

f�x� � f�c� ! g�x� c��x � c� �������

for all x� c� As the gi are not uniquely determined by ������� we have to impose a further condition� We
require that gi depends only on x�� � � � � xi� ci� ci��� � � � � cn� Therefore� we write

gi�x�� � � � � xi� ci� ci��� � � � � cn�

instead of gi�x� c��

The polynomials gi can be constructed as follows� First� consider f�x�� � � � � xn� as a univariate function
in xn� Let gn�x�� � � � � xn� cn� be the uniquely dened polynomial such that

f�x�� � � � � xn� � f�x�� � � � � xn��� cn� ! gn�x�� � � � � xn� cn��xn � cn��

Next� consider f�x�� � � � � xn��� cn� as a univariate function in xn�� and let gn���x�� � � � � xn��� cn��� cn�
be the uniquely dened polynomial such that

f�x�� � � � � xn��� cn� � f�x�� � � � � xn��� cn��� cn� ! gn���x�� � � � � xn��� cn��� cn��xn�� � cn����

Hence�

f�x�� � � � � xn� � f�x�� � � � � xn��� cn��� cn�

! gn���x�� � � � � xn��� cn��� cn��xn�� � cn���

! gn�x�� � � � � xn� cn��xn � cn��
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Applying this procedure successively to xn��� � � � � x� we obtain polynomials gi�x�� � � � � xi� ci� ci��� � � � � cn�
such that

f�x�� � � � � xn� �
nX
i��

gi�x�� � � � � xi� ci� ci��� � � � � cn��xi � ci�� �������

Thus� every interval extension Gi of gi� i � �� � � � � n and any choice of c � Rn gives rise to an interval
extension F of f �

F �X� � f�c� !
nX
i��

Gi�X�� � � � � Xi� ci� ci��� � � � � cn��Xi � ci� 	 f�X �� �������

The successive slope form is a special case of ������� where Gi is the Horner form of gi�

De�nition ������ �Successive Slope Form� The successive slope formM
�s�
�

f � IRn � IRis de�ned as

M
�s�
�

f �X� � f�c� !
nX
i��

Hgi�X�� � � � � Xi� ci� ci��� � � � � cn��Xi � ci��

where c � mid�X� and gi is as in ���	���� �

Theorem ������ �Convergence� M
�s�
�

f converges quadratically to f � �

Proof� Straight forward generalization of Theorem ������ �

Before we devise an algorithm for M
�s�
�

f we give formulas for the polynomials gi�

Theorem ������ Let

gi�x�� � � � � xi� ci� ci��� � � � � cn� �
mX
j��

ajx
dj��
� � � �xdj�i��i�� h�dj�i��xi� ci� c

dj�i��
i�� � � �cdj�nn �

where
h�d��xi� ci� �

X
u�v�d��
u���v��

xui c
v
i �

Then

f�x� � f�c� !
nX
i��

gi�x�� � � � � xi� ci� ci��� � � � � cn��xi � ci�� �

Proof� We have to show that for all i

f�x�� � � � � xi� ci��� � � � � cn�� f�x�� � � � � xi��� ci� � � � � cn� � gi�x�� � � � � xi� ci� ci��� � � � � cn��xi � ci��

Note that
h�d��xi� ci��xi � ci� � xdi � cdi �

f�x�� � � � � xi� ci��� � � � � cn� � f�x�� � � � � xi��� ci� � � � � cn�

�
mX
j��

aj x
dj��
� � � �xdj�ii c

dj�i��
i�� � � �cdj�nn �

mX
j��

aj x
dj��
� � � �xdj�i��i�� c

dj�i
i � � �cdj�nn

�
mX
j��

aj x
dj��
� � � �xdj�i��i�� c

dj�i��
i�� � � � cdj�nn �x

dj�i
i � c

dj�i
i �

�
mX
j��

aj x
dj��
� � � �xdj�i��i�� c

dj�i��
i�� � � � cdj�nn h�dj�i��xi� ci��xi � ci�

� gi�x�� � � � � xi� ci� ci��� � � � � cn��xi � ci�� �

The following observations are important for the e�ciency of an implementation of M
�s�
�

f �
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� First� the polynomials h�d� have the property

h�d����xi� ci� � h�d��xi� ci�xi ! cdi �

As the intervals H
h�dj�i�

�Xi� ci� have to be computed for j � �� � � � �m� it is usually advantageous to
pre�compute the intervals

H
�
�
i � �

H
�d�
i � H

�d���
i Xi ! cd��i for d � �� � � � �max

j
dj�i

as well as the powers cdi � d � �� � � � �maxj dj�i � � where X is the input interval and c � mid�X��

� Further� by evaluating f successively in its last variable on ci� i � n� � � � � � we obtain polynomials

f �n��x�� � � � � xn� � f�x�� � � � � xn�

f �i��x�� � � � � xi� � f �i����x�� � � � � xi� ci�

�
m�i�X
j��

a
�i�
j x

d
�i�
j��

� � � �xd
�i�
j�i

i

The coe�cients of these polynomials can be used for the evaluation of gi� as

gi�x�� � � � � xi� ci� ci��� � � � � cn� �
m�i�X
j��

a
�i�
j x

d
�i�
j��

� � � �xd
�i�
j�i��

i�� h�d
�i�
j�i

��xi� ci��

� Finally� let a�i � i � �� � � � � deg�f ���� such that

f ����x�� �

deg�f����X
i�


a�ix
i
��

Then

g��x�� c�� c�� � � � � cn� �

deg�f����X
i��

b�ix
i��
�

where

b�i �

�
a�i if i � deg�f ����

b�i��c� ! a�i else�

Thus�

f�c�� � � � � cn� !Hg��X�� c�� c�� � � � � cn��X� � c�� � M
�s�
f���

�X���

i�e� we end up with the univariate slope form �see Denition �������

Remark� The polynomials h�d��xi� ci� have an interesting structure and one may expect that the com	
putation of the exact range h�Xi�mid�Xi�� is cheap� In fact� from Theorem ������ it follows that if
� �� int�Xi� then

H
�d�
i � h�d��Xi�mid�Xi���

Further� if d is even� then h�d��xi� ci� is monotone in xi� hence

#h�d��X i�mid�Xi��� h
�d��X i�mid�Xi��$ � h�d��Xi�mid�Xi���

However� this would introduce additional costs and we will not make use of it� �

Algorithm ������ �SSF� #Successive Slope Form$

In� f�x� �
Pm

i�� ai x
di��
� x

di��
� � � �xdi�nn � F#x�� � � � � xn$�

X � IFn�
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Out� SSF�f�X� � IF� SSF�f�X� �M
�s�
�

f �X�� SSF�f�X� 	 f�X ��

��� #Powers of ci and H
�j�
i �$

for i � �� � � � � n

����� #Degree�$
d�� degree of f in xi�

����� #Powers of ci�$
ci ��MID�Xi��

C
�
�
i �� ��

for j � �� � � � � d� � do C
�j�
i �� C

�j���
i  #ci$�

����� #Compute H
�d�
i �$

H
�
�
i �� ��

H
���
i �� ��

for j � �� � � � � d do H
�j�
i �� H

�j���
i Xi ! C

�j���
i �

��� #Sucessively evaluate slopes�$
F �n��x�� � � � � xn��� f�x�� � � � � xn��
for i � n� � � � � �

����� #Slope�$

Let F �i��x�� � � � � xi� �
Pm�i�

j�� a
�i�
j x

d
�i�
j��

� � � �xd
�i�
j�i

i �

�F �i��x�� � � � � xi�����
Pm�i�

j�� a
�i�
j x

d
�i�
j��

� � � �xd
�i�
j�i��

i�� H
d
�i�
j�i

i �

Fi �� HFMI� �F �i��x�� � � � � xi���� X�� � � � � Xi����

����� #Successively evaluate f �$
F �i��� �� HFIL�F �i��x�� � � � � xi�� #ci$��

��� #Univarate slope form�$
Y �� DSF�F ����x��� X���

��� #Add Slopes�$
for i � �� � � � � n do Y �� Y ! Fi  �Xi � ci��

��� #Return�$
return Y �

Remark� In Step � we call Algorithm ������ �DSF� for evaluating the dense univariate slope form�
As the rst argument of DSF is an interval polynomial� we have to modify Algorithm ������ �DSF��
However� the modication is trivial and the complexity remains the same� In order to conform precisely
to Denition ������� we would have to evaluate the slope form instead of the dense slope form� But for
the reasons discussed in Section ������ we use the dense slope form� �

Theorem ������ �Complexity� Let d be the maximum degree of f in each variable� Then Algorithm
��	�	
 �SSF� costs

���n�m ! ���nm�m interval power computations
���n�m ! ���nm! nd�m ! d� � interval multiplications
�nm! �nd� n� � m ! �  d! � number multiplications

�nm ! �nd! �n! �m! �d� � number additions� �

Proof�

� Let d be the maximumdegree of f in each variable� First� we compute the cost of the i	th iteration
of Step �� Step ��� costs �d � � number multiplication and � number additions� Step ��� costs
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d � � interval multiplications and �d � � number additions� Thus� Step � costs nd � n interval
multiplications� �nd� n number multiplications and �nd number additions�

� The i	th iteration of Step ��� costs m�i� interval multiplications ��m�i� �m�i���� number additions
for the computation of the coe�cients of �F �i� and �i � ��m�i��� interval power computations�
�i � ��m�i��� interval multiplications and �m�i��� � � number additions for its evaluation� In the
worst case m�i� � m for all i � � and we obtain ����n� � n�m interval power computations�
����n�!n���m interval multiplications and ��n����m��� number additions for all iterations of
Step ���� The total cost of Step ��� is bounded by �n���m interval power computations� ��n���m
number multiplications and �m � � number additions� So� Step � costs ����n� ! n � ��m interval
power computations ����n� ! n� ��m interval multiplications� ��n� ��m number multiplications
and �n�m � �� number additions�

� Step � costs d interval multiplications� �d!� number multiplications and �d!�m number additions�

� Step � costs n� � interval multiplications and ��n� �� number additions� �

����� Bicentered Mean Value Form

The multivariate bicentered mean value form is a straight forward generalization of the univariate case�
see Section ������ Both have been introduced by #Baumann� ����$�

The basic idea is to evaluate the mean value form twice with di�erent centers c� and c� and intersect the
results� The centers are optimal in the sense that c� minimizes the upper bound and c� maximizes the
lower bound among all centers c � X� The bicentered mean value form is therefore particularly suitable
for the separate computation of an upper or lower bound of f in X�

In the sequel let

Mf �X � c� � f�c� !
nX
i��

H�if �X��Xi � ci��

De�nition ������ �Multivariate Bicentered Mean Value Form� The multivariate bicentered mean
value form 
Mf � IRn � IR is de�ned as


Mf �X� � #Mf �X � c���Mf �X � c��$�

where the optimal centers c� and c� are

c�i �

��
�

X i if F i � �
X i if F i � �
�F iXi � F iX i��w�Fi� else

c�i �

��
�

X i if F i � �
X i if F i � �
�F iXi � F iX i��w�Fi� else

and Fi � H�if �X�� �

In the sequel let c�� c� and Fi as in Denition �������

The following theorems are generalizations of the corresponding theorems for the univariate case� As the
proofs are completely analogous� we omit them�

Theorem ������ �Interval Extension� 
Mf is an interval extension of f � �

Theorem ����� �Non�Overestimation� If � �� int�Fi� for all i then


Mf �X� � f�X�� �
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Theorem �����	 �Optimality of Centers� For all c �X it holds that

Mf �X� c�� � Mf �X � c�

Mf �X� c�� � Mf �X � c�� �

Corollary �����



Mf �X� �
�
c�X

Mf �X� c�� �

Corollary ������ �Convergence� 
Mf is quadratically convergent� �

Theorem ������ �Inclusion Monotonicity� 
Mf is inclusion monotone� �

Theorem ������ Let Ci � #c�i � c
�
i $ and let c � X�

w�Mf �X � c�� �
nX
i��

mag�Fi�w�Xi� ! w�Fi�mig�Ci � ci�� �

Corollary ������ �Optimality of the Midpoint for the Mean Value Form� For all c �X it holds
that

w�Mf �X�� � w�Mf �X � c��� �

Algorithm ������ �BMFM� for evaluating the bicentered mean value form follows immediately from Def	
inition ������� As in the univariate case� we use Algorithm ������ �OC� for approximating the optimal
centers c� and c��

Algorithm ������ �BMFM� #Multivariate Bicentered Mean Value Form$

In� f�x� �
Pm

i�� ai x
di��
� x

di��
� � � �xdi�nn � F#x�� � � � � xn$�

X � IFn�
Out� BMFM�f�X� � IF� BMFM�f�X� � 
Mf �X�� BMFM�f�X� 	 f�X ��

��� #Initialize�$
y� �� �� y� �� ��

��� #Iterate over all variables�$
for i � �� � � � � n do

����� #Partial derivative�$
Fi�x��� �f�x���xi �interval arithmetic for coe�cients��

����� #Evaluate partial derivative�$
Fi �� HFMI�Fi�x��X��

����� #Optimal centers�$

c�i � c
�
i �� OC�Fi� Xi��

����� #Accumulate�$

y� �� y�
�

! Fi  �Xi � c�i ��

y� �� y�
�

! Fi  �Xi � c�i ��

��� #Evaluate at centers�$

y� �� y�
�

! HFM�f�x�� #c�$��

y� �� y�
�

! HFM�f�x�� #c�$��

return #y�� y�$�
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Theorem ������ �Complexity� Algorithm ��	�
� �BMFM� costs

n�m ! �nm interval power computations�
n�m ! �n interval multiplications�

�n number divisions�
�nm! �n number multiplications and

�nm ! �n! �m� � number additions� �

Proof� The costs for one iteration of Step � are as follows�

� Step ��� costs �m number multiplications�

� Step ��� costs nm interval power computations� nm interval multiplications and �m � � number
additions�

� Step ��� costs � number divisions� � number multiplications and � number additions �Theorem
��������

� Step ��� costs � interval multiplications and � number additions�

Summarizing� Step � costs n�m interval power computations� n�m ! �n interval multiplications� �n
number divisions� �nm ! �n number multiplications and �nm ! �n number additions� Further� Step �
costs �nm interval power computations� �nm number multiplications and �m� � number additions� �

As in the case of the mean value form� we can evaluate the partial derivatives successively and intersect
with Hf �X� which is obtained as a side product�

De�nition ������ �Bicentered Mean Value � Horner Form� The bicentered mean value � Horner

form 
M
�H�
f � IRn � IR is de�ned as


M �H�
f �X� � 
Mf �X� �Hf �X�� �

Algorithm ����� �BMHF� #Bicentered Mean Value � Horner Form$

In� f�x� �
Pm

i�� ai x
di��
� x

di��
� � � �xdi�nn � F#x�� � � � � xn$�

X � IFn�
Out� BMHF�f�X� � IF� BMHF�f�X� � 
M

�H�
f �X�� BMHF�f�X� 	 f�X ��

��� #Initialize�$
y� �� �� y� �� ��
F �n��x�� � � � � xn��� f�x�� � � � � xn��

��� #Iterate over all variables�$
for i � n� � � � � � do

����� #Partial Derivative�$

F
�i�
i �x�� � � � � xi��� �F �i��x�� � � � � xi���xi�

����� #Evaluate partial derivative�$

Fi �� HFMI�F �i�
i �x�� � � � � xi�� X�� � � � � Xi��

����� #Optimal centers�$

c�i � c
�
i �� OC�Fi� Xi��

����� #Accumulate�$

y� �� y�
�

! Fi  �Xi � c�i ��

y� �� y�
�

! Fi  �Xi � c�i ��

����� #Evaluate f successively�$
F �i����x�� � � � � xi����� HFIL�F �i��x�� � � � � xi�� Xi��
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��� #Evaluate at centers�$

y� �� y�
�

! HFM�f�x�� #c�$��

y� �� y�
�

! HFM�f�x�� #c�$��

Y �� #y�� y�$�

��� #Intersect with Hf �X��$
Y �� Y � F �
����

��� #Return�$
return Y �

Theorem �����	 �Complexity� Algorithm ��	�
� �BMHF� costs

���n�m ! ���nm interval power computations�
���n�m! ���nm! �n interval multiplications�

�n number divisions�
�nm ! �n number multiplications and

�nm! �n! �m� � number additions� �

Proof� As in the proof of Theorem ������ we assume the worst case where all F �i� have m monomials�
Hence� the successive evaluation of f in Step ��� costs �nm interval power computations� �nm interval
multiplications and �m � � number additions� The remaining costs for the i	th iteration of Step � are�

� Step ��� costs �m number multiplications�

� Step ��� costs im interval power computations� im interval multiplications and �m � � number
additions�

� Step ��� costs � number divisions� � number multiplications and � number additions �Theorem
��������

� Step ��� costs � interval multiplications and � number additions�

Summarizing� Step � costs ����n� ! �n�m interval power computations� ����n ! ��nm ! �n interval
multiplications� �n number divisions� �nm! �n number multiplications and �nm! �n! �m� � number
additions� Further� Step � costs �nm interval power computations� �nm number multiplications and
�m� � number additions� �

����� Successive Bicentered Mean Value Form

In this section we present a new interval extension which combines the ideas of the successive and the
bicentered mean value form� The successive mean value form is evaluated twice with di�erent centers and
the results are intersected� The centers are chosen in a similar way as for the bicentered mean value form�
However� the centers are not optimal and it can even happen that the successive mean value form gives
more accurate results than the successive bicentered mean value form� On the other hand� the successive
bicentered mean value form is always at least as accurate as the bicentered mean value form�

In the sequel let

M�f �X � c� � f�c� !
nX
i��

H�if �X�� � � � � Xi� ci��� � � � � cn��

De�nition �����
 �Successive Bicentered Mean Value Form� The successive bicentered mean value
form 
M�f � IRn � IR is de�ned as


M�f �X� � #M�f �X � c���M�f �X � c��$� �������
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where the centers c� and c� are de�ned recursively as

c�i �

���
��

X i if F �
i � �

X i if F
�
i � �

�F
�

i Xi � F�i X i��w�F
�
i � else

c�i �

���
��

X i if F �
i � �

X i if F
�
i � �

�F
�

i Xi � F�i X i��w�F
�
i � else

and

F �
i � H�if �X�� � � � � Xi� c

�
i��� � � � � c

�
n�

F �
i � H�if �X�� � � � � Xi� c

�
i��� � � � � c

�
n�� �

In the sequel let c�� c� and F ��F � as in Denition �������

Theorem ������ �Interval Extension� 
M�f is an interval extension of f � �

Proof� As c�i � c
�
i are convex linear combinations of X i and X i� it holds that c

�� c� �X� From ������� it
follows that

M�f �X� c�� �M�f �X � c�� � 
M�f �X��

According to �������
f�X� �M�f �X � c�

for all c �X � Hence�
f�X� �M�f �X � c�� �M�f �X � c�� � 
M�f �X��

Further� 
M�f �x� � f�x� for all x � Rn� �

Theorem ������ �Non�Overestimation�

� If � �� int�F �
i � for all i then


M�f �X� � f�X �� �������

� If � �� int�F �
i � for all i then


M�f �X� � f�X�� � �������

Proof� We give a proof of �������� the proof of ������� is analogous� According to Denition ������


M�f �X� � M�f �X � c��

� f�c�� !
nX
i��

H�if �X�� � � � � Xi� c
�
i��� � � � � c

�
n��Xi � c�i �

� f�c�� !
nX
i��

F �
i  �Xi � c�i ��

Assume � �� int�F �
i � for all i� If F

�
i � � then c�i � Xi� If F

�

i � � then c�i � X i� In both cases

F �
i  �Xi � c�i � � ��

hence� as c� �X�

M�f �X� � f�c�� � f�X ��
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From f�X� � 
M�f �X�� it follows that


M�f �X� � f�X�� �

The centers c�� c� are not optimal in the sense that c� minimizes the upper bound of the successive
mean value form and c� maximizes the lower bound� In particular there are cases where M�f is more

accurate than 
M�f � i�e� c � mid�X� leads to a smaller upper bound than c� and to a larger lower bound

than c��

Theorem ������ �Comparison with Successive Mean Value Form� There exist f � R#x�� � � � � xn$
and X � IRn such that

M�f �X� � 
M�f �X�� �

Proof� Let f�x�� x�� � x��x� and let X � �#��� �$� #����$�� Then

M�f �X� � #��� �$� #��� �$ � 
M�f �X�� �

On the other hand� 
M�f is always at least as accurate as 
Mf �

Theorem ������ �Comparison with Bicentered Mean Value Form� For all f � R#x�� � � � � xn$ and
for all X � IRn it holds that


M�f �X� � 
Mf �X�� �

Proof� Let f � R#x�� � � � � xn$ and let X � IRn arbitrary but xed� We have to show that


M�f �X� � 
Mf �X� �������


M�f �X� � 
Mf �X�� ��������

We give a proof of �������� the proof of �������� is analogous� In order to avoid confusion of notation� we

replace c�i by d�i and F �
i by G�

i for the successive bicentered mean value form and keep the symbols c�i �
Fi for the bicentered mean value form� Thus�

d�i �

���
��

X i if G�i � �

X i if G
�

i � �

�G
�

i Xi � G�
i Xi��w�G

�
i � else

where
G�
i � H�if �X�� � � � � Xi� d

�
i��� � � � � d

�
n�

and

c�i �

��
�

X i if F i � �
X i if F i � �
�F iX i � F iXi��w�Fi� else

where
Fi � H�if �X�� � � � � Xn��

We have to show that

f�d�� !
nX
i��

G�
i  �Xi � d�i � � f�c�� !

nX
i��

Fi  �Xi � c�i ��

From the mean value Theorem it follows that there exists � �X such that

f�d�� � f�c�� !
nX
i��

�if ����d
�
i � c�i ��
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Thus�

f�d�� !
nX
i��

G�
i  �Xi � d�i � � f�c�� !

nX
i��

�if ����d
�
i � c�i � ! G�

i  �Xi � d�i �

� f�c�� !
nX
i��

Fi  �d�i � c�i � !G�
i  �Xi � d�i ��

In order to complete the proof� we show for each i that

Fi  �d�i � c�i � !G�
i  �Xi � d�i � � Fi  �Xi � c�i ��

Hence� let i arbitrary but xed� We distinguish the cases whether or not � � int�G�
i ��

� Assume � �� int�G�
i �� From the denition of d�i it follows that

G�
i  �Xi � d�i � � ��

hence

Fi  �d�i � c�i � !G�
i  �Xi � d�i � � Fi  �d�i � c�i �

� Fi  �Xi � c�i ��

� Assume � � int�G�
i �� As G�

i � Fi� it holds that � � int�Fi� and from the denition of d�i and c�i it
follows that

G�
i  �Xi � d�i � � G

�

i  �Xi � d�i � � G�
i  �X i � d�i �

Fi  �Xi � c�i � � F i  �X i � c�i � � F i  �Xi � c�i ��

Next� we distinguish the cases di � ci and di � ci�

� Assume di � ci�

Fi  �d�i � c�i � !G�
i  �Xi � d�i � � F i  �d�i � c�i � !G

�

i  �X i � d�i �

� F i  �d�i � c�i � ! F i  �X i � d�i �

� F i  �X i � c�i �

� Fi  �Xi � c�i ��

� Assume di � ci�

Fi  �d�i � c�i � !G�
i  �Xi � d�i � � F i  �d�i � c�i � !G�

i  �X i � d�i �

� F i  �d�i � c�i � ! F i  �X i � d�i �

� F i  �X i � c�i �

� Fi  �Xi � c�i �� �

Corollary ������ �Convergence� 
M�f converges quadratically to f � �

Theorem ������ �Inclusion Monotonicity� 
M�f is not inclusion monotone� �

Proof� Consider the polynomial f�x�� x�� � x��x�� Obviously

�#��� �$� #�� �$�T � �#��� �$� #���$�T�
but


M�f �#��� �$� #�� �$� � #�� �$� #��� �$ � 
M�f �#��� �$� #���$�� �

Algorithm ������ �SBM� computes the successive bicentered mean value form� First� we have to modify

Algorithm ������ �OC�� because now the centers c�i and c�i depend on di�erent derivatives F �
i and F �

i �
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Algorithm ������ �OC�� #Centers for Successive Bicentered Mean Value Form$

In� F �� F � � IF�
X � IF�

Out� c�� c� � X� approximations of the centers according to Denition �������

��� #Computation of c��$

����� #Monotonicity test�$
if F � � � then c� �� X � goto Step ��

if F
� � � then c� �� X � goto Step ��

����� #Approximate�$
clear invalid operation �ag�

c� �� �F
� � X �� F�

� X�
�

� �F
� �� F ���

����� #Check �oating point errors�$
if invalid operation �ag is raised then c� �� X �
if c� � X then c� �� X �
if c� � X then c� �� X �

��� #Computation of c��$

����� #Monotonicity test�$
if F � � � then c� �� X � goto Step ��

if F
� � � then c� �� X � goto Step ��

����� #Approximate�$
clear invalid operation �ag

c� �� �F
� � X �� F�

� X�
�

� �F
� �� F ���

����� #Check �oating point errors�$
if invalid operation �ag is raised then c� �� X �
if c� � X then c� �� X �
if c� � X then c� �� X �

��� #Return�$
return c�� c��

Theorem ����� �Complexity� Algorithm ��	��� �OC�� costs

� number divisions�
� number multiplications and
� number additions� �

In Algorithm ������ �SBM� the n	th variable is handled separately because F �
n � F �

n and therefore the
n	th partial derivative has to be computed only once�

Algorithm �����	 �SBM� #Successive Bicentered Mean Value Form$

In� f�x� �
Pm

i�� ai x
di��
� x

di��
� � � �xdi�nn � F#x�� � � � � xn$�

X � IFn�
Out� SBM�f�X� � IF� SBM�f�X� � 
M�f �X�� SBM�f�X� 	 f�X ��

��� #Last variable�$

����� #n	th partial derivative�$
Fn�x�� � � � � xn��� �f�x�� � � � � xn���xn�
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����� #Evaluate n	th partial derivative�$
Fn �� HFMI�Fn�x�� � � � � xn�� X�� � � � � Xn��

����� #Centers�$
c�n� c

�
n �� OC�Fn� Xn��

����� #Accumulate�$

y� �� Fn  �Xn � c�n��
y� �� Fn  �Xn � c�n��

����� #Evaluate successively�$
F ��x�� � � � � xn����� HFIL�f�x�� � � � � xn�� #c�n$��
F ��x�� � � � � xn����� HFIL�f�x�� � � � � xn�� #c�n$��

��� #Other variables�$
for i � n� �� � � � � � do

����� #i	th partial derivative�$

F �
i �x�� � � � � xi��� �F ��x�� � � � � xi���xi�

F �
i �x�� � � � � xi��� �F ��x�� � � � � xi���xi�

����� #Evaluate i	th partial derivative�$

F �
i �� HFMI�F �

i �x�� � � � � xi�� X�� � � � � Xi��

F �
i �� HFMI�F �

i �x�� � � � � xi�� X�� � � � � Xi��

����� #Centers�$

c�i � c
�
i �� OC��F �

i � F
�
i � Xi��

����� #Accumulate�$

y� �� y�
�

! F �
i  �Xi � c�i ��

y� �� y�
�

! F �
i  �Xi � c�i ��

����� #Evaluate successively�$

F ��x�� � � � � xi����� HFIL�F ��x�� � � � � xi�� #c
�
i $��

F ��x�� � � � � xi����� HFIL�F ��x�� � � � � xi�� #c
�
i $��

��� #Add f�c��� f�c���$

y� �� y�
�

! F ����

y� �� y�
�

! F ����
return #y�� y�$�

Theorem �����
 �Complexity� Algorithm ��	��� �SBM� costs

n�m ! �nm interval power computations�
n�m ! �n interval multiplications�

�n number divisions�
�nm! �n� �m number multiplications and

�nm ! �n! �m� � number additions� �

Proof� As in the proof of Theorem ������ we assume the worst case that during the successive evaluation
of f in its last variable the number of monomials does not decrease� Hence� the successive evaluation
of f in Step ��� and Step ��� costs �nm interval power computations� �nm number multiplications and
�m� � number additions� The remaining costs for Step � are�

� Step ��� costs �m number multiplications�

� Step ��� costs nm interval power computations� nm interval multiplications and �m � � number
additions �Theorem �������

� Step ��� costs � number divisions� � number multiplications and � number additions �Theorem
��������
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� Step ��� costs � interval multiplications and � number additions�

Summarizing� Step ��� � Step ��� cost nm interval power computations� nm! � interval multiplications�
� number divisions� �m ! � number multiplications and �m ! � number additions� In the i	th iteration�
the costs for Step ��� � Step ��� are�

� Step ��� costs �m number multiplications�

� Step ��� costs �im interval power computations� �im interval multiplications and �m � � number
additions �Theorem �������

� Step ��� costs � number divisions� � number multiplications and � number additions �Theorem
��������

� Step ��� costs � interval multiplications and � number additions�

Summarizing� in the i	th iteration Step ��� � Step ��� cost �im interval power computations� �im ! �
interval multiplications� � number divisions� �m!� number multiplications and �m!� number additions�
Summing up for i � n� �� � � � � � we obtain n�m� nm interval power computations� n�m� nm! �n� �
interval multiplications� �n� � number divisions� �nm!�n� �m� � number multiplications and �nm!
�n� �m � � number additions� Finally� Step � costs � number additions� �

����� Experimental Results

We compare the mean value forms which were described in the previous sections experimentally at some
classes of random polynomials and input intervals� As the computation of the range of a multivariate
polynomial is expensive� we do not report overestimation errors� Instead� we compare the width of the
rened mean value forms and the width of the ordinary mean value form� The cost for evaluating each
mean value form is given in terms of arithmetic �oating point instructions� The coe�cients of the test
polynomials are uniformly distributed in #��� �$� The midpoints of the components of the input interval
vectors are uniformly distributed in #��� �$� the widths are uniformly distributed in #�� ���$� The reason
why we use relatively small widths is that otherwise the Horner form or the nested form are preferable� as
will be shown in Section ���� In each experiment we report the average over ���� random polynomials and
input interval vectors� Table ����� shows a comparison for random polynomials with di�erent numbers
of variables n and monomials m� Each degree vector contains n non�zero components and the degree in
each variable is at most ��

Accuracy� The intersection with Hf leads to a signicant improvement of M
�H�
f and 
M

�H�
f compared to

Mf respectively 
Mf � especially if the number of variables is large� In all cases 
M�f is more accurate

than M�f � M
�s�
�

f and 
Mf � The accuracy of 
Mf is usually better than the accuracy of M�f � but with

increasing n� the di�erence shrinks� In the last column� M�f is more accurate than 
Mf �

Cost� The successive evaluation reduces the cost of M �H�
f and 
M �H�

f almost by half compared to Mf

and 
Mf respectively if the number of variables is large� Otherwise� the costs are comparable� The

evaluation ofM�f is only about half as expensive as Mf � 
Mf and 
M�f � These observations conform

to the complexity considerations in the previous sections� The evaluation of M
�s�
�

f is even a bit
cheaper than M�f �

Table ����� shows the same experiment� but this time the polynomials are such that each degree vector
has only � non�zero components�

Accuracy� The accuracy is almost independent of the number of variables and monomials in all cases�
Again� 
Mf is signicantly more accurate than M�f � even if the number of variables is high� The

accuracy of M
�s�
�

f is between M�f and 
Mf � The accuracies of 
M�f � 
Mf and 
M
�H�
f are comparable�

Intersection with Hf �X� leads to an improvement of M
�H�
f over Mf but not of 
M

�H�
f over 
Mf �
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Cost� In contrast to the previous experiment� the costs of Mf and M
�H�
f and the costs of 
Mf and 
M

�H�
f

are comparable� As the degree vectors are sparse� the worst case assumptions in the complexity

considerations in Theorem ������ and Theorem ������ are not adequate� Again� M�f and M
�s�
�

f are

about half as expensive as 
Mf and 
M�f �

��� Experimental Comparison

����� E	ciency and Accuracy for Random Polynomials

In this section we compare the accuracy ofHf � Nf �Mf � 
Mf �M
�

f and 
M�f experimentally� As the compu	
tation of the exact range of a multivariate polynomial is expensive� we compare the widths of the interval
extensions and the width of the Horner form� More precisely� we report the average over ���� random
polynomials and inputs of

w�F �X���w�Hf �X���

where F is one of Nf �Mf � 
Mf �M
�

f or 
M�f �

For the experiments� we use � classes of random polynomials and � classes of input interval vectors�

� In both classes of random polynomials the number of variables is n � �� each polynomial consists
of m � �� monomials and the degree in each variable is at most ��

� In the rst class of random polynomials� all components of the degree vectors are randomly
chosen �Figure �������������

� In the second class� each degree vector has only two non�zero components �Figure �������������

� The input interval vectors X are such that w�Xi� is randomly chosen from #�� w$ for all i where w
is a parameter�

� In the rst class of random input interval vectors we x mid�Xi� � ��� for all i �Figure
�������������

� In the second class we x mid�Xi� � � for all i �Figure �������������

It seems that the results of these and several other experiments can be generalized as follows�

� The accuracy of Nf is usually slightly better than the accuracy of Hf �

� If mid�Xi� � � �Figure ������������ then Hf � Nf � M
�H�
f and 
M �H�

f are best� An explanation is that
if mid�Xi� � � then Hf is equivalent to the quadratically convergent multivariate version of the

Taylor form� M
�s�
�

f is only slightly less accurate�

� If mid�Xi� � � �Figure ������������ then M
�s�
�

f is best among all mean value forms which are not in	

tersected with the Horner form� In particular�M
�s�
�

f and even M�f are better than 
M�f � If all degree
vectors are dense �Figure ������� and if mid�Xi� � � then ci � � and �if �X�� � � � � Xi� ci��� � � � � cn� �
� for i �� n� Hence�

M�f �X� � f��� � � � � �� !H�nf �X�� � � � � Xn��Xn � cn�

which explains the good performance of M�f compared to the bicentered forms�

� If mid�Xi� �� � �Figure ������������ then 
M�f is more accurate than Mf � M
�

f � M
�s�
�

f and 
Mf � If

w�X� is small� then 
M�f is more accurate than Hf and Nf because of its quadratic convergence�

If the degree vectors are sparse �Figure ������ then 
Mf is better than M�f �
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Dense Monomials

Variables n� Monomials m �� � �� � �� � �� � �� � �� �� ��� � ��� ��

Flops for Mf �X� ����� ����� ����� ����� ������ ������ ������� �������

Flops for M
�H�
f �X� ����� ����� ����� ����� ������ ������ ������ �������

Flops for M�f �X� ����� ����� ����� ����� ������ ������ ������ �������

Flops for M
�s�
�

f �X� ���� ����� ����� ����� ������ ������ ������ ������

Flops for 
Mf �X� ����� ����� ����� ������ ������ ������ ������� �������

Flops for 
M �H�
f �X� ����� ����� ����� ����� ������ ������ ������ �������

Flops for 
M�f �X� ����� ����� ����� ����� ������ ������ ������� �������

w�M
�H�
f �X���w�Mf �X�� ����� ����� ����� ����� ����� ����� ����� �����

w�M�f �X���w�Mf �X�� ����� ����� ����� ����� ����� ����� ����� �����

w�M
�s�
�

f �X���w�Mf �X�� ����� ����� ����� ����� ����� ����� ����� �����

w� 
Mf �X���w�Mf �X�� ����� ����� ����� ����� ����� ����� ����� �����

w� 
M
�H�
f �X���w�Mf �X�� ����� ����� ����� ����� ����� ����� ����� �����

w� 
M�f �X���w�Mf �X�� ����� ����� ����� ����� ����� ����� ����� �����

Table ������ Comparison of mean value forms for random polynomials with di�erent numbers of variables
and monomials� Each degree vector has n non�zero components and the degree in each variable is at
most ��

Sparse Monomials

Variables n� Monomials m �� � �� � �� � �� � �� � �� �� ��� � ��� ��

Flops for Mf �X� ����� ����� ����� ����� ����� ����� ����� ������

Flops for M
�H�
f �X� ����� ����� ����� ����� ����� ����� ����� ������

Flops for M�f �X� ����� ����� ����� ����� ����� ����� ����� ������

Flops for M
�s�
�

f �X� ���� ����� ����� ����� ����� ����� ����� ������

Flops for 
Mf �X� ����� ����� ����� ����� ����� ������ ������ ������

Flops for 
M �H�
f �X� ����� ����� ����� ����� ����� ������ ������ ������

Flops for 
M�f �X� ����� ����� ����� ����� ����� ������ ������ ������

w�M �H�
f �X���w�Mf �X�� ����� ����� ����� ����� ����� ����� ����� �����

w�M�f �X���w�Mf �X�� ����� ����� ����� ����� ����� ����� ����� �����

w�M
�s�
�

f �X���w�Mf �X�� ����� ����� ����� ����� ����� ����� ����� �����

w� 
Mf �X���w�Mf �X�� ����� ����� ����� ����� ����� ����� ����� �����

w� 
M
�H�
f �X���w�Mf �X�� ����� ����� ����� ����� ����� ����� ����� �����

w� 
M�f �X���w�Mf �X�� ����� ����� ����� ����� ����� ����� ����� �����

Table ������ Same experiment as before� but this time each degree vector has only � non�zero components�
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w

w( F ( X ))  / w( Hf ( X ))

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Horner Form (HFM), 449 flops
Nested Form (NF), 206 flops
Mean Value Form (MFM), 4183 flops
Mean Value Horner Form (MHF), 2831 flops
Successive Mean Value Form (SMF), 2380 flops
Successive Slope Form (SSF), 1949 flops
Bicentered Mean Value Form (BMFM), 4749 flops
Bicentered Mean Value Horner Form (BMHF), 3398 flops
Successive Bicentered Mean Value Form (SBM), 4311 flops

Figure ������ Accuracy for random polynomials with n � � variables� m � �� monomials and degree � �
in each variable� The degree vectors have � non�zero components� The widths of the Xi are randomly
chosen from #�� w$ and mid�Xi� � ��� for all i�
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w

w( F ( X ))  / w( Hf ( X ))

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2

4

6

8

10

12

14

16

18

Horner Form (HFM), 461 flops
Nested Form (NF), 244 flops
Mean Value Form (MFM), 4042 flops
Mean Value Horner Form (MHF), 2752 flops
Successive Mean Value Form (SMF), 533 flops
Successive Slope Form (SSF), 621 flops
Bicentered Mean Value Form (BMFM), 4444 flops
Bicentered Mean Value Horner Form (BMHF), 3153 flops
Successive Bicentered Mean Value Form (SBM), 611 flops

Figure ������ Accuracy for random polynomials with n � � variables� m � �� monomials and degree � �
in each variable� The degree vectors have � non�zero components� The widths of the Xi are randomly
chosen from #�� w$ and mid�Xi� � � for all i�
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����� Global Optimization

In this section we compare interval extensions at the problem of nding the global minimum of a mul	
tivariate polynomial f in a given box A� The problem is solved by a straight forward generalization of
Algorithm ����� to the multivariate case� In Step � of this algorithm� we bisect in a coordinate direction
where the width of X is maximal� Algorithm ����� is modied slightly in dependence of the interval
extension which is used to bound f�X ��

� For Mf and 
Mf the coe�cients of the partial derivatives are computed only once and not in every
iteration�

� Instead of 
Mf �X�� 
M
�H�
f �X� and 
M�f �X� we use the intervals

#Mf �X � c���Hf�c
��$

#Mf �X � c���Hf�c
��$ �Hf �X�

#M�f �X � c���Hf�c
��$�

where c� is as in Denition ������ respectively Denition ������� In the case of 
M�f � this reduces
the costs approximately by half�

� Instead of Mf �X�� M �H�
f �X�� M�f �X� and M

�s�
�

f �X� we use the intervals

#Mf �X��Hf�c�$

#Mf �X��Hf�c�$ �Hf �X�

#M�f �X��Hf �c�$

#M
�s�
�

f �X��Hf�c�$�

which give tighter inclusions of the minimum with no additional costs�

The algorithms can be improved if intermediate results such as partially evaluated polynomials are
memorized between the iterations� However� in order to keep the presentation simple we will not make use
of this� In Figure ����� � ����� we trace the width of the inclusion of the global minimum in dependence
of the number of executed arithmetic �oating point operations� The gures show the average over ����
random polynomials where each polynomial has m � � monomials and the degree in each variable is at
most �� The search interval A is in all cases the n	cube #��� �$� � � � � #��� �$�

� In Figure ����� the polynomials have � variables and each degree vector has � non�zero components�

The computation is stopped after �� K�op� The bicentered forms are best in the order 
M�f � 
M
�H�
f �


Mf � Next comes Nf � which is slightly better than Hf and M
�s�
�

f �

� In Figure ����� the polynomials have n � � variables and each degree vector has � non�zero com	
ponents� The computation is stopped after ��� K�op� As in Figure ������ the bicentered forms are

best� but this time 
M
�H�
f is slightly better than 
M�f � Intersection with the Horner form gives a

signicant improvement�

� In Figure ����� we repeat the experiment of Figure ����� but this time the degree vectors are dense�

Here� Nf is clearly best� followed by Hf and 
M
�H�
f �

����� Solution of Systems of Nonlinear Equations

In this section we compare interval extensions at the problem of nding all solutions of a system of
polynomial equations f�x� � IRn � IR

n in a box A� The algorithm is a simple bisection and range test
algorithm in the case of Hf and Nf � Every mean value form gives rise to a Newton operator� where the
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� � in each variable� The degree vectors have � non�zero components�
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Jacobian matrix is obtained in the same way as the partial derivatives or slopes for the corresponding
mean value form� We are using the Hansen�Sengupta operator #Hansen and Sengupta� ����$� which is
an interval version of the Newton�Gauss�Seidel method�

The bicentered mean value forms are problematic� First� it is not clear which center to use during the
Newton step� Second� for each component of f the optimal centers are usually di�erent� which makes
preconditioning as it is used for the other forms impossible� Therefore� as in the case of the ordinary
mean value form� we are using the midpoint for the Newton step and take the optimal centers only for a
range test� Note that this is not possible for the successive bicentered mean value form because here we
have slopes at the optimal centers and not a derivative�

First� we give an algorithm for the simple bisection and range test method� The algorithm terminates
if all solutions are enclosed by interval vectors whose total volume is less then a given constant �� The
volume w��X� of an interval vector X � IRn is dened as

w��X� �
nY
i��

w�Xi��

The volume was chosen as a termination criterion because the sum of volumes of a set of interval vectors
remains unchanged if some element is bisected�

Algorithm ����� �SBR� #Solving with Bisection and Range Test$

In� f�x� � IF#x�� � � � � xn$n�
A � IFn such that f has only nitely many solutions in A�
� � F� � � ��

Out� L � fZ�j� � IFn j j � �� � � � � kg� such that

� fz � A j f�z� � �g � Sk
j��Z

�j�

� Pk
j��w

��Z �k�� � ��

��� #Initialize�$
L �� fAg�

��� #Termination test�$
if
P
Z�Lw��Z� � � then return L�

��� #Take largest box�$
X �� an element of L with largest volume�
remove X from L�

��� #Range test�$
for i � �� � � � � n

Y �� overestimation of fi�X��
if � �� Y goto Step ��

��� #Bisect�$

bisect X at the midpoint in a direction where its width is largest into X ��� and X ����

��� #Store the sub�boxes�$

L �� L � fX����X���g�
goto Step ��

Next� we give an algorithm which solves systems using bisection� range test and Newton�s method� see
#Hansen and Sengupta� ����$� #Neumaier� ����$� The specication of the algorithm is the same as before�

Algorithm ����� �SBRN� #Solving with Bisection� Range Test and Newton�s Method$
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In� f�x� � IF#x�� � � � � xn$n�
A � IFn such that f has only nitely many solutions in A�
� � F� � � ��

Out� L � fZ�j� � IFn j j � �� � � � � kg� such that

� fz � A j f�z� � �g � Sk
j��Z

�j�

� Pk
j��w

��Z �k�� � ��

��� #Initialize�$
L �� fAg

��� #Termination test�$
if
P
Z�Lw��Z� � � then return L�

��� #Take largest box�$
X �� an element of L with largest volume�
Remove X from L

��� #Gradients and range test�$
c�� mid�X�
for i � �� � � � � n

����� #Gradients�$
for j � �� � � � � n do Jij �� overestimation of derivative or slope of fi w�r�t� xj evaluated at X�

����� #Range test�$
Yi �� overestimation of fi�c��
if � �� Yi !

Pn
j�� Jij�Xj � cj� then goto Step ��

��� #Solve linear system�$
X� �� X�

����� #Precondition�$
m �� approximation of mid�J����
J �� mJ �
Y �� mY �

����� #Gauss�Seidel iteration�$
for i � �� � � � � n

Q�� Q� �� GDIV��Yi �
Pn

j��
j ��i

Jij�Xj � cj�� Jii� Xi � ci��

Q� �� �Q� ! ci� �Xi�
Q� �� �Q� ! ci� �Xi�
if Q� �� � and Q� �� � then Gi � #Q�� Q�$� else Gi � ��
if Q� � � and Q� � � then goto Step ��
Xi �� #Q� �Q�$�

��� #No bisection if su�cient improvement�$
if w��X� � ���w��X �� then L �� L � fXg� goto Step ��

��� #Bisect�$
if Gi � � for all i � �� � � � � n then

bisect X at the midpoint in a direction of largest width into X ��� and X����
else

let i such that w�Gi� is maximal�

X��� �� �X�� � � � � #Xi� Gi$� � � � � Xn��

X��� �� �X�� � � � � #Gi� Xi$� � � � � Xn��

L �� L � fX����X���g�
goto Step ��
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The value of Jij in Step ��� corresponds to the the partial derivatives or slopes of the chosen interval
extension�

The pictures on the following pages show the total volume of the boxes in the list L of Algorithm �����
�SBR� and Algorithm ����� �SBRN� in dependence of the number of executed �oating point instructions
at some sample polynomial systems from the literature� The costs of Step � for computing the total
volume of all boxes in the list is neglected in both algorithms�

� Brown�s almost linear system�

x� ! x� ! x� ! x� ! x ! x	 � � � �

x� ! x� ! x� ! x� ! x ! x	 � � � �

x� ! x� ! x� ! x� ! x ! x	 � � � �

x ! x� ! x� ! x� ! x ! x	 � � � �

x�x�x�xx	 � � � �

Initial box� #��� �$	�
There are two solutions within the box� The Jacobian is ill�conditioned at these roots� see #Kearfott�
����$� #Morgan� ����$� #Morgan and Shapiro� ����$� �Figure ������

� Combustion chemistry problem�

a�x�x ! a�x� ! a�x�x ! ax� ! a	x � �

b�x�x ! b�x�x� ! b�x�x ! bx�x ! b	x� ! b�x ! b� � �

x�� � x� � �

x� � x� � �

a� � ������e� a� � ����� � ��� a� � ����
a � ���� a	 � ���� b� � ����� � ���
b� � ����� � ��� b� � ������ � ��� b � ����� � ���
b	 � ������ � ��� b� � ���� b� � ������

Initial box� #�� �$�
There is a unique solution within the box� see #Kearfott� ����$� #Morgan and Shapiro� ����$� �Figure
������

� Robot kinematics problem�

A�x�x� ! A�x�x� !A�x� !Ax� ! A	x ! A�x� ! A� � �

A�x�x� ! A�x�x� ! A�
x� !A��x� ! A��x ! A�� � �

A�x�x� !A�	x� ! A��x� � �

A��x� ! A��x� ! A�� � �

x�� ! x�� � � � �

x�� ! x� � � � �

x�	 ! x�� � � � �

x�� ! x�� � � � �

A� � ����� � ���� A� � ������� A� � �������
A � ������ � ���� A	 � ������� A� � ���
A� � ������� A� � ������ A� � ������
A�
 � ������ A�� � ������� � ���� A�� � �������
A�� � ������� A� � ��� A�	 � ������
A�� � ����� � ���� A�� � ������� A�� � ������
A�� � ������

Initial box� #��� �$�� There are �� solutions within the box� see� #Kearfott� ����$� #Tsai and Morgan�
����$� �Figure �������
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In the rst two examples� M�f and M
�s�
�

f are clearly best� In the robot kinematics problem Nf is best�
followed by Hf � at least after the rst �� M�ops� At this time the inclusion of the solutions is still not
very precise�
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Figure ������ Brown�s almost linear system� � variables� There are two solutions within the box� The
Jacobian is ill�conditioned at these roots�
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Figure ������ Combustion chemistry problem� � variables� There is a unique solution within the box�
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Figure ������� Robot kinematics problem� � variables� There are �� solutions within the box�



Chapter �

Isolating Boxes for Systems of

Nonlinear Equations

In this chapter we study the following problem� Given a di�erentiable function f � Rn � R
n and a box

B � IRn� nd disjoint sub�boxes X ���� � � � �X�r� of B such that

� every solution of f in B is contained in some X�i��

� every X �i� contains a unique solution of f �

� starting from X�i�� an iterative method converges to the unique solution of f in X�i� for every i�

The boxes X���� � � � �X�r� are called isolating boxes for the solutions of f in B�

Finding isolating boxes for the solution of systems of nonlinear equations is a very important problem
in scientic computing� constraint logic programming� geometric modeling� engineering� etc� Various
methods for this problem based on the Krawczyk operator #Krawczyk� ����$ and the Hansen�Sengupta
operator #Hansen and Sengupta� ����$ have been described for example in #Moore� ����$ #Hansen� ����$�
#Krawczyk� ����$� #Moore� ����$� #Moore and Jones� ����$� #Hansen� ����a$� #Hansen� ����b$� #Jones�
����$� #Moore� ����$� #Moore� ����$� #Jones� ����$� #Krawczyk� ����a$� #Moore� ����a$� #Moore and
Kioustelidis� ����$� #Moore� ����b$� #Qi� ����$� #Wolfe� ����$� #Hansen and Sengupta� ����$� #Qi� ����$�
#Moore and Qi� ����$� #Qi� ����$� #Rump� ����$� #Hansen and Greenberg� ����$� #Krawczyk� ����$� #Rump�
����$� #Krawczyk� ����$� #Shearer and Wolfe� ����b$� #Shearer and Wolfe� ����a$� #Krawczyk� ����b$�
#Krawczyk� ����c$� #Krawczyk� ����a$� #Rump� ����$� #Zuhe� ����$� #Frommer and Mayer� ����$� #Kear	
fott� ����a$� #Kearfott� ����b$� #Neumaier� ����$� #Dimitrova� ����$� #Hong and Stahl� ����b$ and many
others�

The algorithms considered in this chapter consist of three main conceptual steps�

Prune� Reduce the search space by eliminating regions which do not contain a solution�

Test� Decide whether a box contains a �unique� solution�

Bisect� Divide the search space and work on the sub�regions separately�

In Section ���� ���� ��� we give conditions for the existence� uniqueness and non�existence of solutions of f
in a boxX respectively� The key idea is to enclose f by a linear interval function i�e� a linear function with
interval coe�cients� and derive corresponding properties of the linearization� The non�existence condition
in Section ��� is new� In Section ��� we introduce the notion of linear tightening� Linear tightening is an
operator which serves for both pruning and testing� Unfortunately the conditions for the uniqueness and
existence tests are too strong and are usually not satised� This problem is solved by preconditioning�
which was introduced for systems of linear interval equations already in #Hansen� ����$� In Section ���
and Section ��� we present two strategies for linear tightening� the linearized tightening operator� and

���
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the Hansen�Sengupta operator #Hansen and Sengupta� ����$� The Hansen�Sengupta operator applies
preconditioning whereas the linearized tightening operator does not� Therefore the linearized tightening
operator is cheaper but less powerful� The main properties of both operators are proved in an elementary
geometric way�

Usually the operators are applied repeatedly until the �unique� existence test succeeds� In Section ��� we
generalize the existence condition of the Hansen�Sengupta operator to iterations of the Hansen�Sengupta
operator� A similar generalization of the uniqueness condition is not possible� In Section ��� we give
conditions under which a sequence of boxes generated by iteration of the Hansen�Sengupta operator
converges� some of them are new� Termination of a general algorithm for nding isolating boxes for
the solutions of systems of nonlinear equations is studied in Section ���� A particular problem arises if
a solution lies on the boundary of a box and we present a new method for resolving this di�culty by
using results of Section ��� and ���� In Section ���� we review a method for nding all solutions of a
system of polynomial equations when the search space is unbounded� Finally� in Section ���� we give an
experimental comparison of two nonlinear equation system solvers� which indicates that combining the
Hansen�Sengupta operator with the linearized tightening operator gives often a speed up�

��� Existence of Solutions in a Box

In this section we give a condition for the existence of solutions of a continuous function f � Rn � R
n in

a box X � IRn� Further� we introduce some notations which will be used in the following sections�

De�nition ����� �Upper and Lower i�Face� The upper and lower i�face X �i��X�i� of X � IRn are
de�ned as

X
�i� � �X�� � � � � Xi��� Xi� Xi��� � � � � Xn�

X
�i� � �X�� � � � � Xi��� Xi� Xi��� � � � � Xn��

Further�

X
�i� � X �i� �X �i�� �

The following Theorem is due to #Miranda� ����$�

Theorem ����� �Existence of Solutions� If there exists a permutation

� � f�� � � � � ng � f�� � � � � ng

such that
fi�a�fi�b� � � for all a �X�	�i��� b �X �	�i��� i � �� � � � � n

then f has a solution in X � �

Theorem ����� can be directly applied by evaluating an interval extension of f on X�i� and on X �i� for
all i� see for example #Moore and Kioustelidis� ����$� In the following� we use a mean value form of f �
First� we give some basic denitions which will be used throughout the chapter�

De�nition ����� �Linear Interval Function� A function G � Rn � IR is called linear interval func�
tion if there exists y � R� c � Rn and A � IRn such that

G�x� � y !A�x � c�� �

Note that a linear interval function is not linear� For example� let G�x� � #��� �$x� then

G��� !G���� � #��� �$ �� � � G����
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However� a linear interval function can be considered as a set of �real� linear functions� Let g � Rn � R

be a linear function� We write g � G if there exist y � R� A � IRn and a � A such that

G�x� � y !A�x � c� and

g�x� � y ! a�x � c�

for all x � Rn� Note that
G�x� � fg�x� j g � Gg�

In the following let G be a linear interval function and let f � Rn � R�

De�nition ����� �Interval Linearization� G is called interval linearization of f in X if there exist
c � Rn and A � IRn such that

G�x� � f�c� !A�x � c�

and
f�x� � G�x� for all x �X � �

Note that in Denition ����� it is not required that c � X� Hence� if G is an interval linearization of f
in X � then G is an interval linearization of f in Y for all Y � X �

De�nition ����� �Variety of Interval Function� The variety of G is de�ned as

Z�G� � fx � Rn j � � G�x�g� �

Notation� For an interval X � IRn we write G�X� to denote the set

fy j y � G�x� for some x �Xg�

Further� we write X � � if x � � for all x �X � where � � f�������g� �
Note that if G�x� � y !A�x � c� then

G�X� � y !A�X � c��

De�nition ����� �Face Enclosed Linear Interval Function�

� G is weakly X �i� enclosed if�
G�X �i�� � � and G�X�i�� � �

�
or

�
G�X �i�� � � and G�X�i�� � �

�
�

� G is strongly X �i� enclosed if�
G�X�i�� � � and G�X�i�� � �

�
or

�
G�X�i�� � � and G�X�i�� � �

�
� �

Due to the natural embedding of R into IR� a �real� linear function is a special case of linear interval
function� Therefore� all denitions and properties of linear interval functions carry over to linear functions�

In particular� if G is X �i� enclosed then g is X�i� enclosed for all g � G�

Figure ����� illustrates Denition ����� of face enclosedness� An easy way to understand this notion is

to think of a sandwich� where the bread is X�i� and the ham is Z�G�� If G is X�i� enclosed� then the

variety of G in X is enclosed between X �i� and X
�i�� In the upper two pictures� the variety �shaded

area� of the linear interval function

G�x�� x�� � ��� ! #���� ���$x�! #���� ���$x�
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is displayed� In the left graph G is strongly X��� enclosed where X � �#����� ���$� #����� ���$�T� in the

right graph G is weakly �but not strongly� X ��� enclosed where X � �#����� ���$� #����� ���$�T� In the
lower left graph the variety of

G�x�� x�� � ��� ! #���� ����$x�! #������ ���$x�

and the box X � �#����� ���$� #����� �$�T is displayed� As one sees� G is strongly X ��� enclosed and there

exists no X such that G would be X ��� enclosed� In the lower right graph� the variety of

G�x�� x�� � ��� ! #������ ���$x�! #������ ����$x�

is displayed� Apparently there is no X and i such that G would be X �i� enclosed� The following lemma

gives an equivalent condition for strong X �i� enclosedness�

Lemma ���� �Strong Face Enclosedness� G is strongly X �i� enclosed i� � �� G�X�i��� � �� G�X �i��
and � � G�X�� �

Proof�

��� Assume G is strongly X�i� enclosed� By Denition ������ � �� G�X�i��� � �� G�X�i��� It remains to
show that � � G�X�� Let g � G and xj � Xj for all j �� i arbitrary but xed� Note that

g�x�� � � � � Xi� � � � � xn�g�x�� � � � � Xi� � � � � xn� � ��

As g is continuous� there exists xi � Xi such that g�x� � �� Hence� � � G�x� and therefore
� � G�X��

��� Assume � �� G�X �i��� � �� G�X�i�� and � � G�X�� From the continuity of G it follows that all

elements of G�X�i�� have the same sign and all elements of G�X�i�� have the same sign� It remains

to show that the sign of G�X �i�� and G�X �i�� is di�erent� As � � G�X� there exists g � G and
x � X such that g�x� � �� From the linearity of g it follows that

g�x�� � � � � Xi� � � � � xn�g�x�� � � � � Xi� � � � � xn� � ��

Hence� the sign of G�X�i�� and G�X�i�� is di�erent and G is X �i� enclosed� �

We generalize the denitions of a linear interval function to tuples�

De�nition ����	 �Linear Interval Function� A function G � Rn � IR
n is called linear interval func�

tion if Gi is a linear interval function for i � �� � � � � n� i�e� if there exist

y�� � � � � yn � R�

c�� � � � � cn � R
n

A�� � � � �An � IR
n�n

such that
Gi�x� � yi !Ai�x � ci� for i � �� � � � � n� �

In the following let G be a linear interval function� We call the matrix

A � �A�� � � � �An�
T

coe�cient matrix of G�
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Figure ������ Illustration of Denition ������
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De�nition ����
 �Interval Linearization� G is called interval linearization of f in X if there exist

c�� � � � � cn � R
n�

A�� � � � �An � IR
n�n

such that for all i
Gi�x� � fi�ci� !Ai�x� ci�

and
fi�x� � Gi�x� for all x �X � �

De�nition ������ �Variety of Interval Function� The variety of G is de�ned as

Z�G� � fx � Rn j � � Gi�x� for all i � �� � � � � ng� �

De�nition ������ �G Orthogonal in X� G is weakly respectively strongly orthogonal in X if there
exists a permutation

� � f�� � � � � ng � f�� � � � � ng
such that Gi is weakly respectively strongly X�	�i�� enclosed for all i� �

Now� Theorem ����� can be specialized as follows�

Theorem ������ �Existence of Solutions� If there exists an interval linearizationG of f inX which
is weakly orthogonal in X� then f has a solution in X � �

Proof� LetG be an interval linearization of f inX which is weakly orthogonal inX � Let � � f�� � � � � ng �
f�� � � � � ng be a permutation such that Gi is X

�	�i�� enclosed for all i� As fi�x� � Gi�x� for all x �X � it
follows that

fi�a�fi�b� � � for all a �X�	�i��� b �X �	�i��� i � �� � � � � n

and f has a solution in X by Theorem ������ �

��� Uniqueness of Solutions in a Box

In this section we give a condition for the uniqueness of solutions of a di�erentiable function f � Rn � R
n

in a box X � IRn� The main result is that if there exists a strongly orthogonal linearization G of f in
X where the coe�cient matrix is a Jacobian� then f has at most one solution in X �

De�nition ����� �Jacobian Matrix� A � IRn�n is a Jacobian of f in X if

f
��x� � A for all x � X� �

De�nition ����� �Regular Interval Matrix� An interval matrix A is regular� if every a � A is regu�
lar� �

Theorem ����� �Regular Jacobian Implies Uniqueness� If there exists a regular Jacobian A of f
in X � then f has at most one solution in X� �

Proof� Assume A is a regular Jacobian of f in X and assume f �x� � f�y� � � for some x�y � X �
According to the mean value theorem

f�x� � f�y� ! a�x � y�

for some a � A� Hence a�x � y� � � and from the regularity of a it follows that x � y� �
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Theorem ����� �Linearization by Jacobian� Let A be a Jacobian of f inX and let c�� � � � � cn �X �
Let

Gi�x� � fi�ci� !Ai�x� ci� for i � �� � � � � n�

Then G is a linearization of f in X� �

Proof� Let ci�Ai� Gi as in Theorem ������ Let x � X and i � f�� � � � � ng arbitrary but xed� We have
to show that fi�x� � Gi�x�� According to the mean value theorem there exists ai � Ai such that

fi�x� � fi�ci� ! ai�x � ci��

Hence
fi�x� � fi�ci� !Ai�x � ci� � Gi�x�� �

In the remainder of the section we derive a criterion for the regularity of an interval matrix� Let

G�x� � y !A�x � c�

be a linearization of f in X�

Lemma ����� If G is weakly X�i� enclosed then for all g � G and for all

�x�� � � � � xi��� xi��� � � � � xn� � �X�� � � � � Xi��� Xi��� � � � � Xn�

there exists xi � Xi such that g�x�� � � � � xi� � � � � xn� � �� �

Proof� Lemma ����� can easily be veried at Figure ������ Assume G is weaklyX�i� enclosed� Let g � G
and "xj � Xj for all j �� i arbitrary but xed� Let h � R� R be dened as

h�xi� � g�"x�� � � � � xi� � � � � "xn��

As g is weakly X �i� enclosed� it holds that

sign�h�X i�� sign�h�X i�� � ��

From the continuity of h it follows that there exists "xi � Xi such that h�"xi� � � and hence g�"x� � �� �

Corollary ����� �Enclosed Function Intersects all other Faces� IfG is weaklyX �i� enclosed� then
for all g � G and for all j �� i

� � g�X �j��� � � g�X �j��

and thus
� � G�X�j��� � � G�X�j��� �

The following lemma states an important property of the coe�cient matrix of an enclosed function�

Lemma ���� If G is strongly X �i� enclosed then

mig�Ai�w�Xi� �
X
j �i

mag�Aj�w�Xj�� �

Proof� Assume G is strongly X �i� enclosed and let a � A arbitrary but xed� we have to show that

jaijw�Xi� �
X
j �i

jajjw�Xj��
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We consider the case ai � �� the case ai � � is similar� According to Lemma ����� there exists "xi � Xi

such that X
aj��

j ��i

ajXj !
X
aj��

j ��i

ajXj ! ai"xi ! y � �� �������

Assume
aiw�Xi� �

X
j �i

jajjw�Xj��

i�e�
aiw�Xi� �

X
aj��

j ��i

aj�Xj �Xj� !
X
aj��

j ��i

aj�Xj �Xj��

Then there exist "xj � Xj� j �� i such that

ai�"xi �X i� �
X
aj��

j ��i

aj�"xj �Xj� !
X
aj��

j ��i

aj�"xj �Xj�� �������

Adding ������� and ������� we obtain X
j �i

aj "xj ! aiXi ! y � �

i�e� � � g�X �i��� which contradicts the assumption that g is strongly X �i� enclosed� �

From Lemma ����� it follows immediately that if � � Ai then there is no X � IRn such that G is X �i�

enclosed� This explains the observations in the second row of Figure ������ In the following let

Gi�x� � fi�ci� !Ai�x � ci�� i � �� � � � � n

be a linearization of fi in X and let A � �A�� � � � �An�
T � IRn�n�

Theorem ����	 �Strong Orthogonality Implies Regularity� IfG is strongly orthogonal inX� then
A is regular� �

Proof� Assume G is strongly orthogonal in X� For simplicity we reorder the Gi such that Gi is strongly

X
�i� enclosed for all i� We have to show that every a � A is regular� Hence� let a � A arbitrary but xed�

According to Lemma ����� it holds that

jaiijw�Xi� �
X
j �i

jaijjw�Xj� for all i�

Hence� the matrix �
BBB�

a���w�X�� a���w�X�� � � � a��nw�Xn�
a���w�X�� a���w�X�� � � � a��nw�Xn�

���
���

���
an��w�X�� an��w�X�� � � � an�nw�Xn�

�
CCCA

is strictly diagonally dominant and hence regular� Thus��
BBB�

a��� a��� � � � a��n
a��� a��� � � � a��n
���

���
���

an�� an�� � � � an�n

�
CCCA

is also regular� �

Corollary ����
 �Orthogonality Implies Uniqueness� IfA is a Jacobian of f inX andG is strongly
orthogonal in X� then f has a unique solution in X � �

Proof� Follows from Theorem ������� Theorem ����� and Theorem ������ �
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Figure ������ Illustration of face disjointness and orthogonality�

��� Non�Existence of Solutions in a Box

In this section we give a new condition for the non�existence of solutions of a continuous function f �
R
n � R

n in a box X � IRn�

De�nition ����� �G Face Disjoint from X� A linear interval function G � Rn � IR
n is face disjoint

from X if for every face T of X there exists i � f�� � � � � ng such that

Z�Gi� � T � �� �

Obviously� ifG is strongly orthogonal inX then G is face disjoint fromX � Now� the main non�existence
theorem of this section is as follows�

Theorem ����� �Non�Existence of Solutions in a Box� Let G be a linearization of f in X� If G
is face disjoint from X but not strongly orthogonal in X then f has no solution in X� �

Theorem ����� is new� Before going into details of the proof� we give an illustration of the notions face
disjointness and orthogonality in Figure ������ For simplicity� we consider only real linear functions g
there� Figure ����� motivates the following Theorem� where g � Rn � R

n is a linear function�

Theorem ����� �Non�Existence of Solutions in a Box� Assume g is face disjoint fromX but g is
not strongly orthogonal in X � Then g�x� �� � for all x �X � �

For the proof of Theorem ����� we need some preparation� First� we show that if some gi is not strongly

X
�j� enclosed for any j� then already one half of X can not contain a solution of g� Next� we show that

if g is face disjoint from X but not strongly orthogonal in X � then the halves corresponding to such g�is
together cover X entirely�

De�nition ����� �Half Box� Let U �V be non�opposite faces of X � The set H�U �V �� is de�ned as

H�U �V � � f�u! ��� ��v j � � � � ��u � U �v � V g� �

From the convexity ofX it follows that H�U �V � � X� Geometrically�H�U �V � is the half ofX spanned
by U and V � see Figure ������ In the following let g�x� � y ! ax be a linear function�

Lemma ����� �No Solution in Half Box� Let U �V be non�opposite faces of X� If

Z�g� �U � �� Z�g� � V � �
then

Z�g� �H�U �V � � �� �
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U

V

H ( U, V )

Z ( g )

Figure ������ Illustration of Lemma �����

Proof� Let U �V be non�opposite faces of X and assume Z�g� � U � �� Z�g� � V � �� As U �V are
not disjoint and g�x� �� � for all x � U � V � it follows that g has the same sign on U and V � Let
x � H�U �V � arbitrary but xed� By Denition ����� there exists � � � � � and u � U � v � V such
that

x � �u! ��� ��v�

Thus�

g��u! ��� ��v� � y !
X

ai
�
�ui ! ��� ��vi

�
� �

�
y !

X
aiui

�
! ��� ��

�
y !

X
aivi

�
� �g�u� ! ��� ��g�v�

�� �� �

An illustration of Lemma ����� is given in Figure �����

Lemma ����� �Element Test for Half Box� Let U �V be an i� respectively j�face of X � i �� j and
assume X i �� X i� Xj �� Xj � Let x �X and let

ei �

	
�xi �X i���Xi �Xi� if U � X

�i�

�Xi � xi���Xi �Xi� if U � X�i�

ej �

	
�xj �Xj���Xj �Xj� if V � X

�j�

�Xj � xj���Xj �Xj� if V � X �j�

Then x � H�U �V � if and only if ei ! ej � �� �

Proof� Let i �� j arbitrary but xed and assume X i �� X i� Xj �� Xj� We give a proof for the case

U � X
�i�� V � X

�j��

The other cases can be treated analogously� Assume x �X � According to Denition �����

x � H�X �i��X�j��

if and only if there exist u �X�i��v �X �j� and � � � � � such that x � �u! ��� ��v� or equivalently

xi � �Xi ! ��� ��vi

xj � �uj ! ��� ��Xj�
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As vi � Xi� uj � Xj this is equivalent to

xi � �Xi ! ��� ��Xi

xj � �Xj ! ��� ��Xj�

By some formula manipulation we obtain

�xi �X i���Xi �X i� � �

�xj �Xj���Xj �Xj� � ��

�xi �X i���Xi �X i� � �� �

�Xj � xj���Xj �Xj� � ��

and thus
ei ! ej � �� �

The following lemma is trivial but will be useful later�

Lemma ���� �Condition for X �i� �� X
�i�� If Z�g� �X �� � and either Z�g� �X �i� � � or Z�g� �

X
�i� � �� then X �i� �� X

�i�
�

Proof� Assume Z�g� �X �� � and X�i� �X
�i�� Then X �X �i� � X

�i� and therefore Z�g� �X�i� �� ��
Z�g� �X�i� �� �� �

Lemma ����	 �Cycle Implies Non�Existence of Solutions� Let � � m � n and let

� � f�� � � � �mg � f�� � � � � ng

be injective� Let U �i��V �i� be opposite ��i��faces of X for i � �� � � � �m� i�e�

fU �i��V �i�g � fX �
�i���X�
�i��g
and let

fh�� � � � � hmg � fg�� � � � � gng�
If

� Z�hi� is disjoint from U �i� and V �i��� for i � �� � � � �m� � and

� Z�hm� is disjoint from U �m� and V ���

then g�x� �� � for all x �X � �

Proof� Let �� hi�U
�i��V �i�� i � �� � � � �m as in Lemma ������ If Z�hi��X � � for some i� then obviously

g�x� �� � for all x � X � Hence assume Z�hi� �X �� � for all i� As every ��i�	face of X is disjoint from
some Z�hj� it follows from Lemma ����� that X
�i� �� X
�i� for all i�

According to Lemma ����� there exists no solution of g in

X �
m���
i��

H�U �i��V �i���� �H�U �m��V �����

It remains to show that X � X � Let x �X arbitrary but xed� Let

ei �

	
�x
�i� �X
�i����X
�i� �X
�i�� if U �i� � X

�
�i��� V �i� � X�
�i��

�X
�i� � x
�i����X
�i� �X
�i�� if U �i� � X�
�i��� V �i� � X
�
�i��
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for i � �� � � � �m� According to Lemma ����� x �� X if and only if

e� ! ��� e�� � �

e� ! ��� e�� � � �������

���

em ! ��� e�� � ��

Summing up all inequalities in ������� we obtainm � m� i�e� the inequalities are inconsistent and therefore
x � X � �

Proof of Theorem ������ Assume g is face disjoint from X but g is not strongly orthogonal in X� If
Z�gi� �X � � for some gi then obviously Z�g� �X � �� Thus� in the following assume Z�gi� �X �� �
for all i� As g is face disjoint from X � there exists

� � fX����X���� X����X���� � � � �X�n��X�n�g � fg�� � � � � gng

such that
Z���T �� � T � �

for all faces T of X � Note that according to Lemma ����� no two faces of X are equal� Let G be an
�undirected� graph whose set of vertices V is

V � fgi j i � �� � � � � ng

and whose set of edges E is

E � fX �j� j j � �� � � � � ng

where X�j� is an edge between the nodes ��X �j�� and ��X �j��� If

��X �j�� � ��X �j�� � gi

for some i� j then gi is strongly X
�j� enclosed and by Corollary ����� ��T � �� gi for all T �� X�j��X�j��

In this case X �j� is an edge between gi and itself and gi is an isolated vertex in G� i�e� no edge except

X
�j� is connected to gi� As g is not strongly orthogonal in X � not all vertices are isolated� The number

of non�isolated vertices and edges between non�isolated vertices is the same� hence there exists a cycle
consisting of m � � vertices in G� Let

� � f�� � � � �mg � f�� � � � � ng

be injective and fh�� � � � � hmg � fg�� � � � � gng such that

h�
X������

�� h�
X ������

�� � � �
X ���m����

�� hm
X ���m��

�� h�

is a cycle� Let U �i��V �i� be the ��i�	faces of X such that

� hi is disjoint from U �i� and V �i��� for i � �� � � � �m� � and

� hm is disjoint from U �m� and V ����

Now� an application of Theorem ����� completes the proof� �

In order to prove Theorem ������ we have to generalize Theorem ����� to linear interval functions� The
following observation is useful therefore�

Lemma ����
 If G is face disjoint from X and not strongly orthogonal in X � then g is face disjoint
from X and not strongly orthogonal in X for all g �G� �
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Proof� Assume G is face disjoint from X and not strongly orthogonal in X and let g � G arbitrary
but xed� Obviously g is face disjoint from X � Assume g is strongly orthogonal in X� Then there

exists a permutation � such that gi is strongly X
�	�i�� enclosed and by Corollary ����� Z�gi� intersects

X�	�j���X�	�j�� for all j �� i� Therefore Z�Gi� intersects X�	�j���X�	�j�� for all j �� i� As G is face

disjoint from X it follows that Z�Gi� is disjoint from X
�	�i���X�	�i��� hence G is strongly orthogonal in

X by Lemma ������ which contradicts the assumption� �

Lemma ������ If G is face disjoint from X and not strongly orthogonal in X then � ��G�X�� �

Proof� Let G be face disjoint from X and not strongly orthogonal in X� Assume to the contrary that
� �G�X�� Then there exists g �G and x �X such that g�x� � �� But according to Lemma ����� g is
face disjoint fromX and not strongly orthogonal in X and therefore g�x� �� � for all x �X by Theorem
������ �

Now the proof of Theorem ����� is straight forward�

Proof of Theorem ������ Let G be a linearization of f in X and assume G is face disjoint from X

but not strongly orthogonal in X � Then � ��G�X� by Lemma ������� hence f�x� �� � for all x �X� �

��� Linear Tightening

In this section we introduce the notion of �linear tightening�� Linear tightening is an operator which
takes a linear interval function G and a box X and shrinks the box in one coordinate direction optimally

such that no solution of G in X gets lost thereby� Linear tightening is illustrated at two examples in
Figure ������ From left to right� linear tightening is rst applied in vertical direction �middle graph� and
then horizontally �right graph�� Note that in the second example horizontal tightening did not give any
improvement� From this picture one can see already that after having applied linear tightening in both
coordinate directions� no more reduction can be achieved by further tightening steps� One also observes
that it does not matter whether we tighten rst horizontally and then vertically or vice versa� Further� a
reduction can be achieved only if Z�G� is disjoint from some face of X � Note that in the second example
vertical tightening gave a simultaneous reduction on both faces of X� As will be shown in this section�
linear tightening in some other direction will not give a further improvement in such a situation�

����� Elementary Properties of Linear Tightening

Throughout this section let G � Rn � IRbe a linear interval function and let X � IRn�

De�nition ����� �Linear Tightening� The function

tight � IRn � �Rn � IR�� f�� � � � � ng � IR
n
�

is de�ned as

tight�X� G� j�i �

�
Xi if j �� i

#fxi � Xi j � � G�X�� � � � � xi� � � � � Xn�g$ else� �

In the following we implicitly extend all interval functions to empty interval arguments such that if some
argument is empty� then the function value is also empty�

Theorem ����� �Linear Tightening Preserves Solutions� Let Y � tight�X� G� j�� Then

Z�G� �X � Z�G� � Y � �

Proof� Let j � f�� � � � � ng arbitrary but xed� Let Y � tight�X � G� j� and let x �X such that � � G�x��
Assume x �� Y � As Xi � Yi for all i �� j it holds that xj �� Yj � From Denition ����� it follows that
� �� G�x�� which is a contradiction to the assumption � � G�x�� �

The following corollary gives a condition when linear tightening does not give an improvement�
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Figure ������ Illustration of linear tightening� From left to right� tightening is rst applied vertically and
then horizontally�

Corollary ����� �Face Condition for Linear Tightening� Let X �� � and Y � tight�X � G� j��
Then

Y j � Xj i� � � G�X�j��

Y j � Xj i� � � G�X�j��� �

Next� we establish a connection between linear tightening and face enclosedness�

Corollary ����� �Linear Tightening and Strong Face Enclosedness� Let Y � tight�X � G� j� ��
� such that Yj � int�Xj �� Then G is strongly X�j� enclosed� �

Proof� Follows from Corollary ����� and Lemma ������ �

De�nition ����� �Generalized and Hull Division� The function gdiv � IR� � IR� � IR� � P�R� is
de�ned as

gdiv�N�D�X� � fx � X j n � dx for some n � N� d � Dg�
The function hdiv � IR� � IR� � IR� � IR� is de�ned as

hdiv�N�D�X� � #gdiv�N�D�X�$� �

Note that if � �� D then gdiv�N�D�X� � hdiv�N�D�X� � N�D �X� The following theorem shows how
to evaluate the linear tightening function e�ciently�

Theorem ����� �Algorithm for Linear Tightening� Let G�x� � y !A�x � c�� Then

tight�X� G� j�i �

�
Xi if j �� i

ci ! hdiv��R�Ai� Xi � ci� else�

where
R � y !

X
k �i

Ak�Xk � ck�� �
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Proof� Let G� R as in Theorem ������ We have to show that

#fxi � Xi j � � G�X�� � � � � xi � � � � Xn�g$ � ci ! hdiv��R�Ai� Xi � ci��

#fxi � Xi j � � G�X�� � � � � xi� � � � � Xn�g$
� #fxi � Xi j � � Ai�xi � ci� !Rg$
� #fxi � Xi j ai�xi � ci� ! r � � for some r � R� ai � Aig$
� ci ! #fxi � Xi � ci j � r � aixi for some r � R� ai � Aig$
� ci ! hdiv��R�Ai� Xi � ci�� �

Let Y � tight�X � G� j� �� �� Geometrically it is easy to see that if Yj � int�Xj�� then G is strongly X�j�

and weakly Y �j� enclosed� By slightly enlarging Y in its j	th coordinate direction we can achieve that

G is also strongly Y �j� enclosed� Therefore� we dene the following modication of linear tightening�

De�nition ���� �Linear ��Tightening� For all � � � the function

tight� � IR
n � �Rn � IR�� f�� � � � � ng � IR

n

is de�ned as

tight��X � G� j�i �

�
tight�X� G� j�i if j �� i�

tight�X � G� j�i ! #��� �$� �Xi else� �

Now� we consider iterated application of linear tightening steps�

De�nition ����	 �Reduction� Path� Let X �Y � IRn� We write

X
G�j�� Y respectively X

G�j��� Y

if
Y � tight�X� G� j� respectively Y � tight��X � G� j�

and say X was ����reduced to Y by G in direction j� Let

p� � h�Gi� � j��� �Gi� � j��� � � � � �Gim� jm�i
�� � h��� ��� � � � � �mi

where i�� j� � f�� � � � � ng� �� � � and Gi� is a linear interval function for all � � �� � � � �m� Then p� is
called path� The ��th component �Gi� � j�� of of p

� is denoted by p�� We write

X
p��� Y respectively X

p����� Y

if
X

p��� � � �
pm�� Y respectively X

p����� � � �
pm���m Y �

Further� we write

X
p��� respectively X

p�����

to denote the uniquely de�ned Y such that X
p��� Y respectively X

p����� Y � �

Notation� Let �� � h��� � � � � �mi and let � � R� For �� f������ ���g we write �� � � if �i � � for all
i � �� � � � �m�

For a single linear interval function G it does not matter in which order linear tightening steps are applied�
At the end of such a tightening sequence we always obtain the smallest box in each coordinate direction
where tightening was applied�
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Theorem ����
 �Order Independence of Tightening Steps� Let

p� � h�G� j�� j � � �� � � � �mi

and let X
p��� Y � Then for all i

Yi �

�
Xi if i �� fj�� � � � � jmg

#fxi � Xi j � � G�X�� � � � � xi� � � � � Xn�g$ else� �

Proof� Let p� as in Theorem ������ let X
p��� Y and let �Y such that for all i

�Yi �

�
Xi if i �� fj�� � � � � jmg

#fxi � Xi j � � G�X�� � � � � xi� � � � � Xn�g$ else�

Further� let

X � 
Y
p��� �Y

p��� � � �
pm�� mY � Y �

� We show that Y � �Y � i�e� Yi � �Yi for all i� Let i arbitrary but xed� If i �� fj�� � � � � jmg then
Yi � Xi � �Yi� Otherwise� let � such that i � j�� Then

Yi � �Yi

� #fxi � ���Y j � � G����Y�� � � � � xi� � � � �
���Yn�g$

� #fxi � Xi j � � G�X�� � � � � xi� � � � � Xng$
� �Yi�

� We show that �Y � Y � Assume to the contrary there exists y � �Y such that y �� Y � Then there
exists i such that yi � �Yi but yi �� Yi� From the denition of �Y and y � �Y it follows that there
exists z � X such that zi � yi and � � G�z�� Thus� z is a solution of G in X � which is not in
Y � Hence� there exists � � � � m such that z � ���Y but z �� �Y � which is a contradiction to the
solution preservation property of linear tightening �Theorem ������� �

From Theorem ����� it follows immediately that for a single linear interval function G� a sequence of
tightening steps may be permuted arbitrarily�

Corollary ������ �Permutation of Tightening Sequence� Let

p� � h�G� j�� j � � �� � � � �mi
q� � h�G� j	���� j � � �� � � � �mi

where � � f�� � � � �mg � f�� � � � �mg is a permutation� Then

X
p��� � X

q���
for all X � IRn� �

Note that neither Theorem ����� nor Corollary ������ can be generalized to �	tightening�

����� Face Disjointness by Linear Tightening

Throughout this section let G � Rn � IR
n be a linear interval function and let

p� � h�Gi� � j�� j � � �� � � � �mi

for some m � � and i�� j� � f�� � � � � ng� We show that X
p����� Y � int�X� for some �� � � implies

that G is face disjoint from Y � Further� we show how to obtain for each face T of Y an index i such
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that Z�Gi��T � � as a side product during computation of the tightening sequence� Unfortunately this
works only if �� � �� but in the next section we show that the case �� � � is in some sense equivalent to
the case �� � � if �� is �small enough��

For a given direction j it is sometimes useful to know the last tightening step in p�� which gave a reduction
in direction j or whether no reduction in direction j was achieved at all� We dene functions &� & which
give us this information�

De�nition ������ �Face Disjointness Functions� For �� � � the partial functions &�� � &�� are
de�ned as follows� Let

X � 
X
p�����

�X
p����� � � �

pm���m
mX �� ��

Then

&�� �X � p�� j� �

�
i�� if "� � maxf� j ���Xj �

�Xjg exists
� else

&�� �X � p�� j� �

�
i�� if "� � maxf� j ���Xj �

�Xjg exists
� else� �

A necessary and su�cient condition for the totality of &�� � &�� is given by the following lemma�

Lemma ������ Assume X
p����� Y �� � for some �� � �� Then

&���X � p�� j� ��� and &�� �X � p�� j� ��� for all j

if and only if
Y � int�X�� �

Proof� Follows immediately from Denition ������� �

The following theorem captures the essential property of the face disjointness functions &�� � &�� � It tells
us which Gi are disjoint from which faces of the tightened box�

Theorem ������ �Face Disjointness Function� Assume X
p����� Y �� � for some �� � ��

�i� If &���X � p�� j� � i ��� then Z�Gi� � Y �j� � ��
�ii� If &���X � p�� j� � i ��� then Z�Gi� � Y �j� � �� �

For the proof of Theorem ������ we need the following two lemmas� First� we show that Theorem ������
holds for paths of length one� Let G � Rn � IRbe a linear interval function�

Lemma ������ Let
� �� Y � tight��X � G� j�

for some � � ��

�i� If Y j � Xj then Z�G� � Y �j� � ��
�ii� If Y j � Xj then Z�G� � Y �j� � �� �

Proof� We give a proof of �i�� the proof of �ii� is analogous� Let

� �� Y � tight��X � G� j�

for some � � � and Y j � Xj� Assume to the contrary that Z�G� � Y �j� �� �� Then � � G�y� for some

y � Y �j�� As � � � and Y j � Xj � it holds that y �� tight�X � G� j�� which is a contradiction to the
solution preserving property of linear tightening �Theorem ������� �
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Lemma ������ �Face Disjointness from Sub�Box�

�i� Assume Z�G� �X�j� � �� Let Y � X such that Y j � Xj� Then Z�G� � Y �j� � ��

�ii� Assume Z�G� �X�j� � �� Let Y � X such that Y j � Xj� Then Z�G� � Y �j� � �� �

Proof� We give a proof of �i�� the proof of �ii� is analogous� Assume Z�G� �X�j� � � and let Y � X

such that Y j � Xj � Then Y
�j� �X �j� and hence Z�G� � Y �j� � �� �

Proof of Theorem ������� We give a proof of �i�� the proof of �ii� is analogous� Let �� � � and let �X �

� � �� � � � �m as in Denition ������� Assume &���X � p�� j� � i ���� Then there exists "� such that

����Xj �
��Xj �

����Xj � � � � � mXj

and
����X

Gi�j�����

��X�

From Lemma ������ it follows that Gi� ��X
�j�

� � and from Lemma ������ it follows that Gi� mX�j� �
�� �
In an algorithm for solving systems of equations one would want to use linear tightening and not linear
�	tightening because the former produces more accurate inclusions� Theorem ������ is essential because it
gives conditions for face enclosedness or orthogonality ofG in some box and thus ultimately for existence�
uniqueness and non�existence of solutions of nonlinear systems of equations� However� the assumptions of
this theorem are that �� � �� Now� one expects that if �� is small enough� then &�� � &
 and &�� � &
�
Yet� there are counterexamples where this is not true� so we have the following slightly weaker theorem�

Theorem ������ �Face Disjointness Function for � � �� For all � � � there exists � � �� � � such
that for all j

&
�X � p�� j� � &�� �X � p�� j�

&
�X � p�� j� � &�� �X � p�� j�� �

The content of the next section is to prove Theorem ������ by using a continuity property of linear
tightening� As Theorem ������ is geometrically quite obvious� the reader may skip this rather lengthy
proof�

����� Pseudo Continuity of Linear Tightening

In this section we prove Theorem ������� First� we show a continuity property of the hull division which
is generalized to linear tightening and to linear tightening sequences�

Lemma ����� �Inclusion Monotonicity of Hull Division� Let N � �N � D � �D andX � �X � Then

hdiv�N�D�X� � hdiv� �N� �D� �X�� �

Proof� Let N� �N�D� �D�X� �X as in Lemma �������

hdiv�N�D�X� � #fx � X j n � dx for some n � N� d � Dg$
� #fx � �X j n � dx for some n � �N� d � �Dg$
� hdiv� �N� �D� �X�� �
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Lemma �����	 �Pseudo Continuity of Hull Division� Let N�D�X � IR� For all � � � there exists
� � � such that for all

�N � N ! #��� �$� �D � D ! #��� �$� �X � X ! #��� �$
it holds that

hdiv� �N� �D� �X� � hdiv�N�D�X� ! #��� �$� � �������

Remark� Note that hdiv is not continuous� even if its arguments are restricted such that hdiv�N�D�X� ��
�� For example�

hdiv
�
�� #��� �$� #����$�� #��� �$�

but for every � � � � � it holds that

hdiv
�
�� #��� �$� #��� �� �$

�
� ��� �

Proof� Let N�D�X � IRand let � � � arbitrary but xed� Let g � R� � R be dened as

g�n� d� x� � n � dx�

Note that
hdiv�N�D�X� � #fx � X j g�n� d� x� � � for some n � N� d � Dg$�

� Assume hdiv�N�D�X� � �� Then
g�n� d� x� �� � for all n � N� d � D�x � X�

From the continuity of g it follows that there exist � � � such that

g��n� �d� �x� �� � for all �n � n! #��� �$� �d � d! #��� �$� �x � x! #��� �$�
Hence

hdiv� �N� �D� �X� � � for all �N � N ! #��� �$� �D � D ! #��� �$� �X � X ! #��� �$
and in particular

hdiv� �N� �D� �X� � hdiv�N�D�X� ! #��� �$�
In the following assume hdiv�N�D�X� �� ��

� Assume � � D� � � N � Then

hdiv� �N� �D� �X� � �X for all �N� �D� �X � IR�
Hence�

hdiv� �N� �D� �X� � hdiv�N�D�X� ! #��� �$ for all �N� �D � IR� �X � X ! #��� �$�
Thus� ������� holds for � � ��

� Assume � �� D� From the continuity of interval division restricted to denominators which do not
contain zero� it follows that there exists � � �� � mig�D� such that

q� �N� �D�N�D� � � if q� �N�N � � ��� q� �D�D� � ���

From the inclusion monotonicity of interval division it follows that

�N� �D � N�D ! #��� �$ for all �N � N ! #���� ��$� �D � D ! #���� ��$�
Let � � minf�� ��g� Then

�N� �D � �X � N�D �X ! #��� �$ for all �N � N ! #��� �$� �D � D ! #��� �$� �X � X ! #��� �$�
hence�

hdiv� �N� �D� �X� � hdiv�N�D�X�!#��� �$ for all �N � N !#��� �$� �D � D!#��� �$� �X � X!#��� �$�
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� Assume � � D� � �� N � We consider the case N � �� the case N � � is treated analogously�
For arbitrary � � � let N� � N ! #��� �$� D� � D ! #��� �$� X� � X ! #��� �$� Using inclusion
monotonicity of hdiv it su�ces to show that there exists � � � such that

hdiv�N�D�X� ! � � hdiv�N� � D�� X�� �������

hdiv�N�D�X� � � � hdiv�N� � D�� X��� �������

We show �������� the proof of ������� is analogous�

� If hdiv�N�D�X� � X then

hdiv�N�D�X� ! � � X ! �

� X�

� hdiv�N�� D�� X��

and ������� holds for � � ��

� Otherwise� hdiv�N�D�X� � X � First� we show that in this case D � �� Assume to the
contrary D � �� From hdiv�N�D�X� � X it follows that n �� dX for all n � N � d � D�
and as N � �� D � � it holds that N � DX� As hdiv�N�D�X� �� � there exist x � X such
that n � dx for some n � N � d � D� x � X and X � �� But dx � DX � N � which is a
contradiction to dx � n for some n � N � Hence� D � ��

Next� we show that there exists �� � � such that for all � � � � ��

X� �� hdiv�N�� D�� X��� �������

As X �� hdiv�N�D�X�� it holds that

g�n� d�X� �� � for all n � N� d � D�

From the continuity of g it follows that there exists �� � � such that for all � � � � ��

g�n� d�X�� �� � for all n � N�� d � D� �

and ������� holds�

Finally� for all � � � � minf��� N��Dg it holds that

gdiv�N�� D� � X�� �

�
X� � fx � R j x � N ��D� or x � N ��D�g if D� �� �
X� � fx � R j x � N ��D�g else�

From X� �� hdiv�N� � D�� X�� it follows that X� �� gdiv�N�� D�� X��� hence

hdiv�N� � D�� X�� � N��D��

Thus� there exists � � � such that

hdiv�N� � D�� X��� hdiv�N�D�X� �
N ! �

D � �
� N

D
� �

and ������� holds� �

Lemma �����
 �Inclusion Monotonicity of Linear Tightening� Let X � �X � Then

tight�X � G� j� � tight� �X� G� j�� �

Proof� Follows immediately from Lemma ������� �

We apply the pseudo continuity of the hull division to sequences of linear tightening steps� In the following
we write #��� �$n to denote the n	dimensional interval vector with each component #��� �$�
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Lemma ������ �Pseudo Continuity of Linear Tightening� For all � � � there exists � � � such
that for all �X � X ! �#��� �$n

tight� �X � G� j� � tight�X� G� j� ! �#��� �$n� �

Proof� Follows immediately from Lemma ������� �

Theorem ������ �Pseudo Continuity of Linear Tightening Sequence� Let

X
p��� Y �

For all � � � there exists "� � � such that for all � � �� � "�

X
p����� � Y ! �#��� �$n� �

Proof� Assume X
p��� Y and let � � � arbitrary but xed� We prove Theorem ������ by induction on

the length of p�� If the length of p� is zero� then

X
p����� X � Y � Y ! �#��� �$n�

for all ��� Now� assume Theorem ������ is proved for all paths of length m � � and let p� be a path of
length m� Let

X � 
X
p��� � � �

pm���� m��X
pm�� mX � Y �

Let � � �� � � arbitrary but xed� According to Lemma ������ there exists �� � � such that

m��X ! ��#��� �$n pm�� � mX ! �� � ���#��� �$n�
Hence�

m��X ! ��#��� �$n pm���� � mX ! �#��� �$n�
By induction hypothesis� there exists ��� � � such that

X
p������ � � �

pm���� ��� � m��X ! ��#��� �$n�
Now� for

� � minf��� ���g
it follows from the inclusion monotonicity of linear tightening �Lemma ������� that

X
p����� � Y ! �#��� �$n

for all �� � �� �

Proof of Theorem ������� Let X arbitrary but xed� We give a proof by induction on the length of
p�� If the length of p� is zero� then obviously

&
�X � p�� j� � &�� �X � p�� j� �������

&
�X � p�� j� � &�� �X � p�� j�

for all �� and for all j� Now� let p� be an arbitrary but xed path of length m� let p�
�

� hp�� � � � � pm��i
and let pm � �G� k� for some G� k� The induction hypothesis is as follows� For all � � � there exists
� � ��

� � � such that for all j

&
�X� p�
�

� j� � &��� �X� p�
�

� j� �������

&
�X� p�
�

� j� � &��
� �X� p�

�

� j�

Let � � � arbitrary but xed� If j �� k then ������� holds for �� � ��
� � �m where ��

�

satises ������� and
�m is arbitrary� Hence� it remains to show that there exists �� � � such that ������� holds for j � k� Let

X
p�
�

�� Y
G�k�� Z�

and

X
p�
�

�����
�Y �

We distinguish � cases�



CHAPTER �� ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS ���

� Assume Zk � Yk� According to the induction hypothesis and Theorem ������ there exists ��
� � �

such that ����� holds and �Yk � Yk ! #��� �$� Let
�Y

G�k���
�Z�

Then �Zk � �Yk and ������� holds for �� � ��
� � ��

� Assume Zk � int�Yk�� Then Z�G� is disjoint from both k	faces of Y � From the continuity of
G it follows that there exists � � � such that Z�G� is disjoint from both k	faces of Y � for all
Y � Y � � Y ! �#��� �$n� According to the induction hypothesis and Theorem ������ there exists
��
� � � such that ����� holds and Y � �Y � Y ! �#��� �$n� i�e� Z�G� is disjoint from both k	faces

of �Y � Therefore� there exists � � �m � � such that

�Y
G�k���m

�Z�

�Zk � int� �Yk� and ������� holds for �� � ��
� � �m�

� Assume Zk � Y k and Zk � Y k� According to the pseudo continuity �Lemma ������� and the
inclusion monotonicity �Lemma ������� of linear tightening there exists � � � such that for all
Y � Y

� � Y ! �#��� �$n it holds that

Y
�
k � Z

�
k � Z�k � Y �

k

and
Z�k � Y �

k � ��

where

Y
� G�k�� Z

��

According to the induction hypothesis and Theorem ������ there exists ��
� � � such that ����� holds

and Y � �Y � Y ! �#��� �$n� Let �m � � such that

�Y k � �Z
�

k � �m � �Z
�

k � �Y k�

where
�Y

G�k�� �Z
�
�

Now� let
�Y

G�k���m
�Z�

Then �Zk � �Y k and �Zk � �Y k and ������� holds for �� � ��
� � �m�

� Assume Zk � Y k and Zk � Y k� This case is analogous to the previous case� �

In the following we write &� & instead of &
� &
�

����� Existence� Uniqueness and Non�Existence by Linear Tightening

In this section we derive existence� uniqueness and non�existence tests for solutions of a nonlinear system
of equations f in a box X� The tests are based on the results of Section ���� ���� ���� Hence� we consider
a linearization G of f in X and derive conditions for orthogonality of G in X � for the regularity of the
coe�cient matrix of G and for � ��G�X�� The conditions are given by properties of the boxes in a linear
tightening sequence of G starting at X� In the following let G � Rn � IR

n and let

p� � h�Gi� � j��� �Gi� � j��� � � � � �Gim � jm�i�

Theorem ������ Assume X
p��� Y �� � and

&�X� p�� j� � &�X � p�� j� � i ���
for some i� j � f�� � � � � ng� Then the following holds�
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�i� For all � � � there exists � � �� � � such that the linear interval function Gi is strongly �Y
�j�

enclosed� where X
p�����

�Y �

�ii� Gi is weakly Y
�j� enclosed�

�iii� &�X � p�� j�� �� i� &�X� p�� j�� �� i for all j� �� j�

�iv� Y
Gi�j

�

�� Y for all j� �� j�

Proof� Assume X
p��� Y �� � and &�X� p�� j� � &�X� p�� j� � i ����

�i� Let � � � arbitrary but xed� According to Theorem ������ there exists � � �� � � such that
&�� � & and &�� � &� Let

X � 
X
p�����

�X
p����� � � �

pm���m
mX � �Y �

We have to show that Gi is strongly �Y
�j�

enclosed� Let ��� �� � m such that

��Xj �
����Xj � � � � � mXj

��Xj �
����Xj � � � � � mXj�

Assume �� � ��� the case �� � �� is analogous� According to Lemma ������

Gi�
��X �j�� � � or Gi�

��X�j�� � ��

Assume Gi�
��X

�j�� � �� the case Gi�
��X

�j�� � � is analogous� From Lemma ������ it follows that

Gi�
�X

�j�� � � for all � � ��

and in particular�

Gi�
��X �j�� � �� �������

Now� it su�ces to show that Gi���X
�j�� � � because then Gi��X

�j�� � � for all � � ��� hence

Gi�Y
�j�� � �� Gi�Y

�j�� � �

Assume to the contrary Gi���X
�j�

� � �� According to Lemma ������� � �� Gi�
��X

�j�
�� hence

Gi�
��X

�j�� � �� �������

As Gi is a linear interval function� ������� and ������� imply Gi���X� � � and thus ����X � ��
Hence �Y � � and as �Y 	 Y � it follows that Y � �� which is a contradiction to the assumption�

�ii� Assume Gi is not weakly Y
�j� enclosed� From the continuity of Gi� it follows that Gi is not strongly

�Y
�j�

enclosed for all �Y in a neighborhood of Y � which contradicts �i� and Theorem �������

�iii� Let �� as in �i�� and let X
p�����

�Y � Then Gi is strongly �Y
�j�

enclosed and by Corollary �����

Z�Gi� � �Y
�j�� �� �� Z�Gi� � �Y

�j�� �� �

for all j� �� j� From Theorem ������ it follows that &���X � p�� j�� �� i� &�� �X � p�� j�� �� i and thus
&�X � p�� j�� �� i� &�X� p�� j�� �� i� �

�iv� According to �ii� Gi is weakly Y
�j� enclosed� By Theorem ����� Z�Gi� intersects Y

�j��� Y �j�� for

all j �� j�� Hence� by Corollary ����� Y
Gi�j

�

�� Y for all j� �� j� �
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In the following let A be the coe�cient matrix of G�

Theorem ������ �Orthogonality� Regularity and Non�Existence� Assume X
p��� Y � int�X�

and Y �� ��

�i� Assume &�X� p�� j� � &�X� p�� j� for all j� Then for all � � � there exists � � �� � � such that G

is strongly orthogonal in �Y where X
p�����

�Y �

�ii� Assume &�X � p�� j� � &�X � p�� j� for all j� Then A is regular and G is weakly orthogonal in Y �

�iii� Assume &�X � p�� j� �� &�X � p�� j� for some j� Then � ��G�x� for all x � X� �

Proof� Assume X
p��� Y � int�X� and Y �� �� From Theorem ������ it follows that

&�X� p�� j� ���� &�X� p�� j� ��� for all j�

Let � � � arbitrary but xed and let � � �� � � such that

&�� �X� p�� j� � &�X� p�� j�� &�� �X� p�� j� � &�X� p�� j�

and
Y � �Y � int�X�

where

X
p�����

�Y �

�i� Assume &�X � p�� j� � &�X � p�� j� for all j� From Theorem ������ �i� it follows that for all j there

exists i such that Gi is strongly �Y
�j�

enclosed� According to Theorem ������ �iii� no Gi is strongly

�Y
�j��

and �Y
�j�

enclosed for j� �� j� Hence� G is strongly orthogonal in �Y �

�ii� From �i� and Theorem ����� it follows that A is regular� Weak orthogonality ofG in Y follows from
Theorem ������� �ii� and �iii��

�iii� Assume &�X � p�� j� � i� �� i�� � &�X� p�� j� for some j� First� we show that G is not strongly
orthogonal in �Y � Assume to the contrary that G is strongly orthogonal in �Y � Then there exists

a permutation � such that Gi is strongly �Y
�	�i��

enclosed for all i� According to Corollary ������

Z�Gi� intersects �Y
�j�

and �Y
�j�

for all i �� ����j�� From Theorem ������ it follows that Z�Gi�� is

disjoint from �Y
�j�

and Z�Gi��� is disjoint from �Y
�j�

� hence i� � i�� � ����j� which is a contradiction
to the assumption�

As &�� and &�� are total functions� it follows from Theorem ������ that G is face disjoint from �Y �
Applying Lemma ������ we get � �� G�x� for all x � �Y and according to Theorem ����� it holds
that � ��G�x� for all x � X� �

Theorem ������ �Non�Existence� If X
p��� � then � ��G�x� for all x �X� �

Proof� Follows from Theorem ������ �

Remark� It is not obvious whether there are cases where Theorem ������ �iii� is algorithmically advan	
tageous over Theorem ������ for proving non�existence of solutions� Figure ����� displays such a situation
for the two�dimensional case� In order to apply Theorem ������ more tightening steps are necessary as
compared to Theorem ������� �
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Figure ������ In order to apply Theorem ������ for proving non�existence� tightening steps have to be
applied until an empty box is obtained� For Theorem ������ �iii� the tightening sequence can be stopped
as soon as a box is obtained which is in the interior of the original box�

����� The Unique Existence Condition of Linearized Tightening is Too Strong

Theorem ������ can be used for testing whether a system of nonlinear equations f has a unique solution
in X in the following straight forward way� Choose a linearization G of f in X� where the coe�cient
matrix of G is a Jacobian of f in X � Choose a path p� consisting of pairs �Gi� j� and check whether the

conditionsX
p���X � � int�X��X � �� � and &�X � p�� j� � &�X � p�� j� for j � �� � � � � n of Theorem ������

are satised� Unfortunately� even if f has a unique solution in X� these conditions will usually not be
satised� The reason is as follows� Assume the conditions are satised� Then there exists �� � � such

that X
p����� Y and G is strongly orthogonal in Y � Hence� there exists a permutation � such that G	�i�

is strongly Y �i� enclosed� According to Lemma ����� this means that

mig�A	�i��w�Yi� �
X
j �i

mag�A	�j��w�Yj� �������

for all i� Let
a � f

��x�

where x is the unique solution of f in X� It follows that

ja	�i�jw�Yi� �
X
j �i

ja	�j�jw�Yj�

for all i� This means that the matrix�
BBB�

a���w�Y�� a���w�Y�� � � � a��nw�Yn�
a���w�Y�� a���w�Y�� � � � a��nw�Yn�

���
���

���
an��w�Y�� an��w�Y�� � � � an�nw�Yn�

�
CCCA

is strictly diagonally dominant after some row permutation� Hence� a necessary condition for the assump	
tions of Theorem ������ is that there exists a permutation matrix p and a diagonal matrix d such that
pad is strictly diagonally dominant� In general such matrices p� d do not exist if n � �� As an example
consider the matrix

a �

�
� � � �

� � �
� � �

�
A �

��� Linearized Tightening Operator

In this section we present the linearized tightening operator� which denes a strategy for choosing a path

p� and a linearization G of f and returns X
p���� The main objective of this strategy is that X

p��� can
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be computed e�ciently and that each Gi is tightened once in every direction j in p�� As pointed out in
Section ������ the linearized tightening operator will usually not detect whether f has a unique solution
in X� However� as will be shown in Section ����� it can give signicant speedups in combination with a
more powerful method�

Informally� the linearized tightening operator can be described as follows� Let 
X �X � Find a lineariza	
tion G� of f� in 
X � Tighten G� in every coordinate direction with starting box 
X obtaining �X� Find
a linearization G� of f� in �X� Tighten G� in every coordinate direction with starting box �X obtaining
�X � etc� Finally� return nX� Note that Gi is a linearization of fi in i��X� but not necessarily in X �
This results usually in tighter inclusions as if we would require that G is a linearization of f in X � The
following algorithm describes this process more formally�

Algorithm ����� #Linearized Tightening Operator$

In� f � Rn � R
n�

X � IRn�
Out� Y � X such that Y contains all solutions of f in X�

��� #Initialize�$

X �� X�

��� #Iterate over equations�$
for i � �� � � � � n

����� #Linearize�$
Choose ci � Rn and Ai � IRn such that Gi�x� � f�ci� !Ai�x � ci� is a linearization of fi in
i��X�

����� #Path�$
ip� �� h�Gi� ��� �Gi� ��� � � � � �Gi� n�i�

����� #Tighten�$

Let iX such that i��X
ip��� iX �

��� #Return�$
Y �� nX�
return Y �

De�nition ����� �Linearized Tightening Operator� Let ci� Ai� i � �� � � � � n and Y as in Algo�
rithm ������ Let c � �c�� � � � � cn�

T and A � �A�� � � � �An�
T� Then the linearized tightening operator LT

is de�ned as
LT �f �X� c�A� � Y � �

In the following let ci� Ai� iX � ip� and Y as in Algorithm ������

Theorem ����� �Properties of Linearized Tightening Operator�

�i� If f�x� � � for some x �X then x � LT �f �X� c�A��

�ii� If iX � � for some � � i � n then f has no solution in X �

�iii� If iX � int�X� for some i � n then f has no solution in X�

�iv� If Y � int�X� and there exists � � i � n such that for all j it holds that iXj �� int�i��Xj� then f
has no solution in X�

�v� If � �� Y � int�X� and for all i there exists j such that iXj � int�i��Xj� then f has a solution in
X�
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�vi� If � �� Y � int�X� and for all i there exists j such that iXj � int�i��Xj� and A is a Jacobian of f
in Y � then f has a unique solution in X� �

Proof�

�i� Follows from the solution preserving property of linear tightening �Theorem �������

�ii� Follows from �i��

�iii� Assume iX � int�X� for some i � n� Let p� � �p� � � � � � ip�� From Lemma ������ it follows that

&�X� p�� j� ���� &�X � p�� j� ��� for all j�

As i � n it follows from Theorem ������ �iii� that

&�X � p�� j� �� &�X � p�� j� for some j�

According to Theorem ������ �iii� it holds that � �� G�x� for all x � X and hence for all x � Y �
As G is a linearization of f in Y it follows that f�x� �� � for all x � Y and by �i�� f �x� �� � for all
x � X�

�iv� Assume Y � int�X� and there exists i such that

iXj �� int�i��Xj� for all j�

Then there exists no j such that &�X � p�� j� � &�X � p�� j� � i� where p� � �p� � � � � � np�� From
Theorem ������ �iii� it follows that

&�X � p�� j�� �� &�X � p�� j�� for some j��

The rest of the proof is the same as for �iii��

�v� Assume � �� Y � int�X� and for all i there exists ji such that iXji � int�i��Xji �� Then Gi is

strongly i��X
�ji� enclosed by Corollary ������ Hence� by Corollary ����� iXj �

i��Xj for all j �� ji�
As Y � int�X� it follows that i �� i� implies ji �� ji� � Hence�

&�X� p�� j� � &�X� p�� j� for all j

where p� � �p� � � � � � np�� Thus� G is weakly orthogonal in Y by Theorem ������ �ii�� As G is a
linearization of f in Y � it follows from Theorem ������ that f has a solution in Y and hence in X �

�vi� Assume � �� Y � int�X� and for all i there exists j such that iXj � int�i��Xj� and A is a Jacobian
of f in Y � According to �v� f has a solution in X � From Theorem ������ �ii� it follows that A

is regular� As A is a Jacobian of f in Y � it follows from Theorem ����� that f has at most one
solution in Y � Hence� by �i� there exists a unique solution of f in X � �

Below� we give an optimized algorithm for evaluating the linearized tightening operator� During compu	
tation of the reduction sequence

i��X
Gi���� � � �

Gi�n�� iX

some intermediate results can be precomputed and reused� This is possible because the order of the
tightening steps does not matter as long as Gi is xed� see Theorem ������ Further� Theorem ������ �iv�
is used in Step ��� to cancel a tightening sequence ip� as soon as it is clear that no further reduction will
be achieved� We assume that A is sparse� i�e� each row of A has at most n� � n non�zero elements�

Algorithm ����� �LTO� #Linearized Tightening Operator$

In� f � Rn � R
n�

X � IFn�
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Out� X� 	 LT �f �X� c�A�� for some suitably chosen c� A�
exist � ftrue� falseg such that if exist � true then A is regular and f has a solution in X�
nonexist � ftrue� falseg such that if nonexist � true then f has no solution in X�

��� #Initialize�$

X �� X� exist�� false� nonexist�� false� orthogonal �� true�

��� #Iterate over equations�$
for i � �� � � � � n

����� #Linearize�$
Choose ci � Fn and Ai � IFn such that Gi�x� � f�ci� ! Ai�x � ci� is a linearization of fi in
i��X�

����� #Translate�$
for j � �� � � � � n where Aij �� � do Yj �� i��Xj � cij�

����� #Precompute products�$
for j � �� � � � � n where Aij �� � do Pj �� AijYj �

����� #Accumulate sums right to left�$
Sn�� �� fi�ci� �overestimate��
for j � n� � � � � � where Aij �� � do Sj�� �� Sj ! Pj�

����� #Tighten along ip��$
R�� ��
for j � �� � � � � n where Aij �� �

�Yj �� HDIV��R � Sj��� Aij� Yj��

if �Yj �� Yj
if �Yj � � then return ��� false� true��
if �Yj � int�Yj� then Yj �� �Yj � goto Step ������

Yj �� �Yj � orthogonal �� false�
R�� R! Pj�

����� #Translate Back�$
for j � �� � � � � n where Aij �� �

if Aij �� � then iXj �� Yj ! cij � else iXj �� i��Xj �

��� #Test if in interior�$
if nX � int�X�

if orthogonal � true then exist �� true� else nonexist�� true�

��� #Return�$
return �nX � exist� nonexist��

Theorem ����� �Complexity� The costs of Algorithm ����� �LTO� except for Step 	�� and the over�
estimation of fi�ci� in Step 	�� are

n�n interval multiplication�
�n�n number divisions�

��n�n number additions� �

Proof�

� Step ��� costs �n� number additions�

� Step ��� costs n� interval multiplications�

� Step ��� costs �n� number additions�

� The j	th iteration in Step ��� costs � number divisions and � number additions� Hence� Step ���
costs �n� number divisions and �n� number additions�
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� Step ��� costs �n� number additions�

As Step � is iterated n times� Theorem ����� follows� �

Remark� If ci is chosen to be the midpoint of i��X in Step ���� then all interval multiplications can be
turned into number multiplications using the formula

A�X �mid�X�� � mag�A�rad�X�#��� �$�

��
 Hansen�Sengupta Operator

As pointed out in Section ������ the unique existence condition of linearized tightening �Theorem �������
is too strong� Unless the Jacobian of f at some solution x has certain diagonal dominance properties�
then for all X containing x and for all linearizations G of f in X the condition of Theorem ������ is
not satised� In this section we present the Hansen�Sengupta operator #Hansen and Sengupta� ����$�
which solves this problem� Instead of weakening the conditions of Theorem ������� we modify the given
equations f by premultiplying a matrix m � R

n�n� The matrix m is called preconditioning matrix�
If m is regular� then f and mf have the same solution set� Now� we choose m such that the interval
Jacobian of mf in X is approximately the identity matrix� If this approximation is close enough� then
the necessary condition ������� holds and the problem pointed out in Section ����� is solved�

In order to obtain a linearization of mf in X� it is not necessary to multiply m and f � as the following
lemma shows�

Lemma ����� �Linearization of Preconditioned System� If G � f�c�!A�x�c� is a linearization
of f in X� then mG is a linearization of mf in X� Further� mG�x� � mf�c� ! �mA��x � c�� �

Proof� Assume G�x� � f�c�!A�x� c� is a linearization of f in X and let i � f�� � � � � ng arbitrary but
xed� Then

�mG�x��i � �m �f�c� ! A�x� c���i

� mi�f�c� !A�x � c��

�
nX

j��

mij�fj�c� !Aj�x � c��

�
nX

j��

mijfj�c� !
nX

j��

mijAj�x � c�

�
nX

j��

mijfj�c� !
nX

j��

mij

nX
k��

Ajk�xk � ck�

�
nX

j��

mijfj�c� !
nX

j��

nX
k��

mijAjk�xk � ck�

�
nX

j��

mijfj�c� !
nX

j��

�mijAj��x � c�

� mif�c� ! �miA��x � c�
� �mf�c� ! �mA��x � c��i�

Hence mG is a linear interval function and mf�x� � mG�x� for all x � X follows immediately from
f�x� �G�x�� �

The choice of m has been studied thoroughly in the literature� If m � a�� for some a � A� then i � mA�
where i denotes the identity matrix� In this case we may view mA as an approximation of i� In #Xiaojun
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x1

x2

x1

x2

Figure ������ Preconditioning of the linearized system�

and Deren� ����$� #Neumaier� ����$ optimality properties of the choice

m � �mid�A����

are given� The e�ect of preconditioning is illustrated in Figure ������ The left graph shows a system of
linear interval equations G� the right graph shows mG� where m � �mid�A���� and A is the coe�cient
matrix ofG� The varieties of the equations in the right graph are approximately parallel to the coordinate
axes� which re�ects the fact that mA contains the identity matrix� Note that Z�G� � Z�mG�� It is easy
to see that this is always the case�

In the following let G�x� � f �c� ! A�x� c� be a linearization of f in X and let m � Rn�n� We use the
notation

mf � f
m � �fm� � fm� � � � � � fmn �T

mA � Am � �Am

� �A
m

� � � � � �A
m

n �T

mG � Gm � �Gm� � G
m

� � � � � � G
m

n �T�

If i � mA� then we know a priori that certain tightening steps will not give a simultaneous reduction on
opposite faces�

Lemma ����� �Failing Tightening Steps� Assume � � Amij and Y � tight�X� Gmi � j� �� �� Then
Yj �� int�Xj�� �

Proof� Assume � � Amij � Y � tight�X � Gmi � j� �� � and Yj � int�Xj�� Then Gmi is strongly X �j� enclosed
by Corollary ����� and thus

mig�Amij �w�Xj� �
X
k �j

mag�Amik�w�Xk�

by Lemma ������ But this is a contradiction because mig�Aij� � � as i � mA and i �� j� �

Lemma ����� can be veried at the right graph of Figure ������

In order to apply Theorem ������ we are only interested in tightening steps �Gmi � j� which reduce the
given box simultaneously on both j	faces� This justies why the Hansen�Sengupta operator uses only
tightening steps �Gmi � j� where i � j�

De�nition ����� �Hansen�Sengupta operator� Let G�x� � f �c� !A�x� c� be a linearization of f
in X and let m � Rn�n� Then the Hansen�Sengupta operator HS is de�ned as

HS�f �X� c�A�m � � Y
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where p� � h�Gm� � ��� �Gm� � ��� � � � � �Gmn � n�i and X p��� Y � �

Algorithm ����� gives the main steps in the computation of the Hansen�Sengupta operator�

Algorithm ����� #Hansen�Sengupta Operator$

In� f � Rn � R
n�

X � IRn�
Out� Y � X such that Y contains all solutions of f in X�

��� #Initialize�$

X �� X�

��� #Linearize�$
Choose c � Rn� A � IRn such that G�x� � f �c� ! A�x� c� is a linearization of f in X�

��� #Precondition�$
m �� mid�A����
Compute mf�c� and mA and let Gm �x� � mf�c� !mA�x � c��

��� #Tighten�$
for i � �� � � � � n

iX �� tight�i��X � Gmi � i��

��� #Return�$
Y �� nX�
return Y �

Comparing Algorithm ����� for the Hansen�Sengupta operator and Algorithm ����� for the linearized
tightening operator one makes the following observations�

� The matrix A is computed at the beginning of the Hansen�Sengupta algorithm� but is computed
successively in the linearized tightening algorithm� Successive computation is preferable because it
gives usually tighter inclusions� However� as already for the computation of m and for each Ami the
entire matrix A is needed� this is not possible for the Hansen�Sengupta operator� Before the i	th
tightening step of the Hansen�Sengupta operator one could recompute A using iX� but this seems
too costly�

� The linearization of f chosen for the Hansen�Sengupta operator is such that for every fi the same c
is used� whereas for the linearized tightening operator we allow di�erent ci� We could have allowed
the same generality for the Hansen�Sengupta operator but there is no necessity for it� As the
computation of fmi �ci� requires evaluation of fj�ci� for all j� the choice of di�erent ci would cost n
times as many evaluations of f as needed if the same c is used for the linearization of all fi�

The following theorem states the most important properties of the Hansen�Sengupta operator�

Theorem ����� �Properties of Hansen�Sengupta Operator� Let c� A as in De�nition ����
� let
m � Rn�n and let Y � HS�f �X� c�A�m ��

�i� If f�x� � � for some x �X then x � HS�f �X� c�A�m ��

�ii� If Y � � then f has no solution in X �

�iii� If � �� Y � int�X� then f has a solution in X �

�iv� If � �� Y � int�X� and A is a Jacobian of f in X � then f has a unique solution in X� �

Proof� Let c� A� G� m � Y as in Theorem ����� and let p� as in Denition ������
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�i� Follows from Theorem ������

�ii� Follows from �ii��

�iii� Assume � �� Y � int�X�� Then

&�X � p�� i� � &�X� p�� i� � i for all i�

From Theorem ������ �ii� it follows that Gm is weakly orthogonal in Y and fm has a solution in
Y and hence in X by Theorem ������� In order to prove that f has a solution in X � we have
to show that m is regular� According to Theorem ������ �i� there exists �� � � such that Gm is

strongly orthogonal in X
p����� � From Theorem ����� it follows that mA is regular and therefore

m is regular�

�iv� Assume � �� Y � int�X� and A is a Jacobian of f inX � In the proof of �iii� we have already shown
that A is regular and f has a solution in X � According to Theorem ����� this solution is unique� �

Below� we give an optimized algorithm for evaluating the Hansen�Sengupta operator� As in the case of
the linearized tightening operator� we assume that A is sparse� i�e� each row of A has at most n� � n
non�zero elements� Note however that if m � mid�A���� then m and mA are usually dense�

Algorithm ����� �HSO� #Hansen�Sengupta Operator$

In� f � Rn � R
n�

X � IFn�
Out� X� 	 HS�f �X� c�A�m �� for some suitably chosen c� A� m �

exist � ftrue� falseg such that if exist � true then A is regular and f has a solution in X�
nonexist � ftrue� falseg such that if nonexist � true then f has no solution in X�

��� #Initialize�$
exist�� false� nonexist�� false�

��� #Linearize�$
Choose c � Fn� A � IFn�n such that G�x� � f�c� !A�x � c� is a linearization of f in X �

��� #Precondition�$
m �� mid�A��� �approximate� perturb if singular��
Am �� mA�
Bm �� mf�c� �use interval arithmetic��

��� #Translate�$
Y ��X � c�

��� #Tighten�$
for i � �� � � � � n

R��Pj �iA
m

ijYj !Bmi �
Yi �� HDIV��R�Amii � Yi��
if Yi � � then return ��� false� true��

��� #Translate Back�$
X� �� Y ! c�

��� #Test if in Interior�$
if X� � int�X� then exist�� true� else exist�� false�

��� #Return�$
return �X�� exist� false��

Theorem ���� �Complexity� The costs of Algorithm ����� �HSO� except for Step 	� the overestima�
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tion of f �c� and the approximation of mid�A��� in Step 
 are

n�n� ! �n� � n interval multiplications�
�n number divisions�

�n�n� � �n�n! �n� number additions� �

Proof�

� The computation of Am in Step � costs n�n� interval multiplications and �n�n� � �n�n number
additions� The computation ofBm costs n� interval multiplications� and �n���n number additions�

� Step � costs �n number additions�

� The i	th iteration in Step � costs n � � interval multiplications� � number divisions� and �n � �
number additions� Hence� Step � costs n� � n interval multiplications� �n number divisions� and
�n� � �n number additions�

� Step � costs �n number additions� �

Note that the linearized tightening operator is signicantly cheaper than the Hansen�Sengupta operator�
even if the costs for the inversion of mA are ignored�

��� Iterated Linear Tightening

If the Hansen�Sengupta operator is applied to a box X � it is often the case that the resulting box Y is
a proper subset of X but not in the interior of X� This means that some reduction was achieved but
we do not know whether f has a �unique� solution in X � Hence� one would apply the Hansen�Sengupta
operator again on Y and so on� Let us assume after several iterations we obtain a box � �� Z � int�X��
Can we conclude from this that f has a solution in X and that this solution is unique if in each iteration
the linearization had a Jacobian coe�cient matrix% In both cases the answer is no� counterexamples exist
already for n � �� However� for the existence property the examples show why this is not the case and
how the problem can be solved� There seems to be no useful way for preserving the uniqueness property
though� As in the previous sections we give more general proofs by using arbitrary linear tightening
sequences� The results in this section are new and can be applied directly to the Hansen�Sengupta
operator and to the linearized tightening operator�

We begin by giving counterexamples for n � �� where the Hansen�Sengupta operator is applied twice and
the resulting box is in the interior of the starting box but in one case there is no solution in the box and
in the other case there are three solutions� Note that these are also counterexamples for the linearized
tightening operator� applied to the preconditioned system�

Counterexample for Existence� Let f�x� � � and let X � #�� �$� Then A � #��� �$ is a �widely
overestimated� Jacobian of f in X� For c��� � ��� we obtain a linearization G����x� � �! #��� �$�x� ����
of f in X� The inverse midpoint preconditioner is in this case m � � and we obtain mA � #��� �$�
mf�c���� � � and thus Y � HS�f�X� c���� A�m� � #���� �$� We apply the Hansen�Sengupta operator
again with the same A and m but this time we choose c��� � ���� We obtain Z � HS�f� Y� c���� A�m� �
#���� ����$� Now� � �� Z � int�X� but obviously f has no solution in X� This example is shown in
Figure ������ left graph�

Counterexample for Uniqueness� Let f�x� � x� � x and let X � #����� ���$� Then A � #��� �$ is a
Jacobian of f inX� For c��� � ���� we obtain a linearizationG����x� � ������!#��� �$�x!���� of f inX�
The inverse midpoint preconditioner is in this case m � ��� and we obtainmA � #��� �$�mf�c� � ������
and thus Y � HS�f�X� c���� A�m� � #������� ���$� We apply the Hansen�Sengupta operator again
with the same A and m but this time we choose c��� � ���� We obtain Z � HS�f� Y� c���� A�m� �
#������� �����$� Now� � �� Z � int�X� but f has � solutions in X� This example is shown in Figure ������
right graph�
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Figure ������ Counterexamples for iterated Hansen�Sengupta operator�

Let us analyze what happened in the rst example� Here� we have two linearizations mG���� mG��� of
mf in Z� where

mG����x� � � ! #��� �$�x� ����

mG����x� � � ! #��� �$�x� �����

Let G��x� � mG����x� � mG����x�� Then mf�x� � G��x� for all x � X� Extending the denition of
face enclosedness to intersections of linear interval functions in the natural way� one would expect that

G� is X��� enclosed� However� this is not the case� Instead� G��X���� � �� G��X���� � � but neither

G��X���� � � nor G��X���� � �� Therefore Theorem ������� which is the basis of the existence proof�
can not be applied in this case�

In the counterexample for uniqueness we have Z � int�X� but A is not regular and therefore Theorem
����� does not apply� One might conjecture that this situation will not arise if we apply only linear
tightening steps where the denominator in the hull division of Theorem ����� does not contain zero� At
least in the one�dimensional case this would trivially hold� because if the derivative does not contain
zero� then f has at most one solution� But as Figure ����� shows� it is not true for n � �� Here�

f��x�� x�� � x�� ! ���x�� x�

f��x�� x�� � x�� ! ���x�� x�

and X � �#��� �$� #��� �$�T� Then

A �

�
#���� ����$ ��

�� #���� ����$

�
is a Jacobian of f in X � The inverse midpoint preconditioner is

m �
�

�������� ��������
�������� ��������

�
and thus

mA �
�

#��������� ��������$ #���������� ��������$
#���������� ��������$ #��������� ��������$

�
�

In the rst graph of Figure ����� one sees that mf has � solutions in X � In the second row we show
the rst application of the Hansen�Sengupta operator� where c��� � ������ ����T� Here� we have the
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Figure ������ Counterexample for the uniqueness property of the iterated Hansen�Sengupta operator�
The denominator in the hull division does not contain zero�
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Figure ������ Counterexample for the uniqueness property of the iterated Hansen�Sengupta operator� The
denominator in the hull division does not contain zero and the center is always chosen as the midpoint�
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linearizations

G
m ���
� �x� � ����� ! #��������� ��������$�x�! ���� ! #���������� ��������$�x�� ����

G
m ���
� �x� � ���� ! #���������� ��������$�x�! ���� ! #��������� ��������$�x�� ����

and thus
HS�f �X� c����A�m � � Y � �#���������� �$� #�����������$�T�

In the second row of Figure ����� we apply the Hansen�Sengupta operator again on Y with the same A�
m � but this time we choose c��� � ����������T� We obtain the linearizations

G
m ���
� �x� � ���� ! #�����������������$�x�� ���� ! #���������� ��������$�x�! ����

G
m ���
� �x� � ����� ! #���������� ��������$�x�� ���� ! #��������� ��������$�x�! ����

and
HS�f �X� c����A�m � � Z � �#���������� ��������$� #���������� ��������$�T�

Hence� Z � int�X� but in none of the tightening steps a hull division with a denominator containing
zero occured�

Looking at Figure ������ one sees that the choice of c���� c��� close to the corners of the box played an
essential role� If� as an additional restriction we would require that the chosen c is always the midpoint
of the current box� would then the uniqueness property hold for iterated application of the Hansen�
Sengupta operator% Again the answer is no� as Figure ����� shows� We use the same f as above but
X � �#��� �$� #��� �$�T� the Jacobian

A �

�
#���� �����$���
��� #���� �����$

�

and the inverse midpoint preconditioner m � For c��� � mid�X� we obtainY � �#�������� �$� #��� ������$�T�
and for c��� � mid�Y � we get Z � �#�������� ��������$� #����������������$�T� Again� Z � int�X�� in
none of the tightening steps a hull division with a denominator containing zero occured and c was in
both iterations the midpoint of the current box� One possibility to restrict the Hansen�Sengupta opera	
tor such the uniqueness property holds also for iterated application would be to allow only simultaneous
reductions on opposite faces� However� instead of pursuing such strong restrictions� we give a di�erent
uniqueness criterion in Section ����

In the remainder of this section we modify the existence conditions of the Hansen�Sengupta or linearized
tightening operator such that they still hold if the operators are applied iteratively�

����� Existence by Intersected Linearizations

Iterative application of operators like the Hansen�Sengupta operator or the linearized tightening operator
is a special case of a tightening sequence� where di�erent linearizations of the same nonlinear function
occur� In this section we use such tightening sequences in order to prove existence of solutions of systems
of nonlinear equations� As in the case of linear interval functions� the existence condition is based on the

notion of weak face enclosedness and orthogonality� Given two linearizations G
���
i � G

���
i of a nonlinear

function fi in X and a direction j� it can happen that neither G���
i nor G���

i is weaklyX �j� enclosed� but

G
���
i �X �j�� � �� G

���
i �X�j�� � �� and thus G

���
i �G

���
i is X�j� enclosed� However� the intersection of two

linear interval functions is usually not a linear interval function� Therefore� we rst extend some basic
properties shown in Section ��� for linear interval functions to intersections of linear interval functions�

De�nition ���� �Intersected Linear Interval Function� A function G� � Rn � IR� is called in�
tersected linear interval function if there exist linear interval functions G���� G��� such that

G��x� � G����x� �G����x�

for all x � Rn� �
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In the following let G� be an intersected linear interval function and let f � Rn � R�

De�nition ���� �Intersected Interval Linearization� G� is called intersected interval linearization
of f in X if there exist interval linearizations G���� G��� of f in X such that G� � G��� �G���� �

If G� is an intersected interval linearization of f inX then f�x� � G��x� for all x �X � hence G��x� �� �
for all x �X � Further� G� is an intersected interval linearization of f in every Y � X�

Let G� � G��� �G��� where G���� G��� are linear interval functions� The variety Z�G�� of G� is dened
as

Z�G�� � fx � Rn j � � G��x�g
and obviously

Z�G�� � Z�G���� � Z�G�����

As in the case of linear interval functions we use the following notation�

Notation� For an interval X � IRn we write G��X� to denote the set

fy j y � G��x� for some x � Xg�
Further� we write X � � if x � � for all x �X � where � � f�������g� �
Next� we extend the notion of face enclosedness to intersected linear interval functions in a straight
forward way�

De�nition ���� �Face Enclosed Intersected Linear Interval Function�

� G� is weakly X �i� enclosed if G��x� �� � for all x � X and�
G��X �i�� � � and G��X�i�� � �

�
or

�
G��X �i�� � � and G��X�i�� � �

�
�

� G� is strongly X�i� enclosed if G��x� �� � for all x �X and�
G��X �i�� � � and G��X �i�� � �

�
or

�
G��X �i�� � � and G��X �i�� � �

�
� �

As Figure ����� shows� there exist intersected linear interval functions G� such that G��x� �� � for all

x � X� � �� G��X �i��� � �� G��X �i��� � � G��X� but still G� is not strongly X�i� enclosed� This is
the crucial di�erence to linear interval functions� see Lemma ������ The following lemma gives a useful

criterion when G� is X �i� enclosed�

Lemma ���� �Face Enclosed Intersected Linear Interval Function� Let G� � G��� �G��� such
that G��x� �� � for all x � X�

� If �
G����X�i�� � � and G����X �i�� � �

�
or

�
G����X�i�� � � and G����X �i�� � �

�
then G� is weakly X �i� enclosed�

� If �
G����X�i�� � � and G����X �i�� � �

�
or

�
G����X�i�� � � and G����X �i�� � �

�
then G� is strongly X �i� enclosed� �

Proof� Obvious� �

The denitions of intersected linear interval function and intersected interval linearization extend to
tuples component wise� In the following let G� � Rn � IR

n
� be an intersected linear interval function�
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De�nition ���� �G� Orthogonal in X� G� is weakly respectively strongly orthogonal inX if there
exists a permutation

� � f�� � � � � ng � f�� � � � � ng
such that G�

i is weakly respectively strongly X �	�i�� enclosed for all i� �

Now� Theorem ����� can be specialized as follows�

Theorem ���� �Existence of Solutions� If there exists an intersected interval linearization G� of f
in X which is weakly orthogonal in X � then f has a solution in X � �

Proof� Let G� be an interval linearization of f in X which is weakly orthogonal in X � Let � �

f�� � � � � ng � f�� � � � � ng be a permutation such that G�
i is X�	�i�� enclosed for all i� As fi�x� � G�

i �x�
for all x �X � it follows that

fi�a�fi�b� � � for all a �X�	�i��� b �X �	�i��� i � �� � � � � n

and f has a solution in X by Theorem ������ �

����� Tightening with Multiple Linearizations

In Theorem ������ it was shown that if &�X � p�� j� � &�X� p�� j� � i� then Gi is weakly Y
�j� enclosed�

whereX
p��� Y � FromFigure ������ left graph� we see that this Theorem does not generalize to intersected

linear interval functions� If Z�G���� � Y �j� � �� Z�G���� � Y �j� � � then G��� � G��� need not be Y �j�

enclosed� even if G���� G��� are linearizations of the same f in X � However� Lemma ����� shows that if

the signs of G���� G��� on X �j�� X�j� are opposite� then G��� �G��� is in fact X�j� enclosed� Thus� after
having computed the tightening sequence� we have to check this sign condition� Actually it is possible to
compute the signs already during tightening and memorize them� Let us now formalize this method�

In the following let

p� � h�G���
i�
� j�� j i�� j� � f�� � � � � ng� � � �� � � � �mi

and

���X
G
���
i�

�j��� �X �

where G
���
i�

is a linearization of fi over ���X and 
X � X� We modify the denition of the face

disjointness functions &� & as follows�

De�nition ��� �Face Disjointness Functions�

&�X � p�� j� �

	
�i���

"�� sign�G
����
i��
�
����X

�j�
��� if "� � maxf� j ���Xj �

�Xjg exists

� else

&�X � p�� j� �

	
�i���

"�� sign�G
����
i��
�
����X

�j�
��� if "� � maxf� j ���Xj �

�Xjg exists

� else� �

Note that
���Xj �

�Xj implies � �� G
���
i�

����X
�j�

�

and
���Xj �

�Xj implies � �� G
���
i�

����X
�j�

��

hence

sign�G
���
i�
����X

�j�
��� sign�G���

i�
����X

�j�
��

are well dened�

The essential property of the face disjointness functions is captured by the following theorem�
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Theorem ���	 �Face Disjointness Functions� Let X
p��� Y �� ��

�i� If &�X� p�� j� � �i� �� s� ��� then sG
���
i �Y �j�� � ��

�ii� If &�X� p�� j� � �i� �� s� ��� then sG
���
i �Y �j�

� � �� �

Proof� We give a proof of �i�� the proof of �ii� is similar� Assume X
p��� Y �� �� Let

&�X� p�� j� � �i� �� s� ��� �
Then

sG
���
i ����X

�j�
� � ��

hence

sG
���
i ��X

�j�
� � ��

As
�Xj �

���Xj � � � � � Y j �

it holds that

Y
�j� � �X

�j�
�

hence
sG

���
i �Y �j�� � �� �

Theorem ���
 �Weak Enclosedness� Assume X
p��� Y �� � and

&�X � p�� j� � �i� �� s�� &�X � p�� j� � �i� ����s�

for some i � f�� � � � � ng� �� �� � f�� � � � �mg and s � f��� �g� Then G
���
i �G

����
i is weakly Y �j� enclosed� �

Proof� Assume X
p��� Y �� � and

&�X� p�� j� � �i� �� s�� &�X � p�� j� � �i� ����s��

As G
���
i � G

����
i are linearizations of fi in Y � it holds that G

���
i �x� �� �� G����

i �x� �� � for all x � Y � From

Theorem ����� it follows that sG
���
i �Y �j�� � �� sG����

i �Y �j�� � � and thus G���
i � G

����
i is weakly Y �j�

enclosed by Lemma ������ �

Theorem ����� �Existence of Solutions� Assume X
p��� Y �� � and there exists a permutation

� � f�� � � � � ng � f�� � � � � ng such that

&�X� p�� j� � ���j�� �j � sj�� &�X� p�� j� � ���j�� ��j ��sj�
for all j� Then f has a solution in X� �

Proof� Follows from Theorem ����� and Theorem ������ �

In the following let
G����x� � f�c���� !A����x � c����

be a linearization of f in ���X for � � �� � � � �m�

Theorem ����� �Weak Enclosedness� Assume X
p��� Y �� � and

&�X � p�� j� � �i� �� s�� &�X � p�� j� � �i� ��� s���
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�i� If A
���
ij � � and A

����
ij � � then s � �� s� � ���

�ii� If A
���
ij � � and A

����
ij � � then s � ��� s� � ��

In both cases G���
i �G

����
i is weakly Y �j� enclosed� �

Proof� We give a proof of �i�� the proof of �ii� is analogous� Assume X
p��� Y �� ��

&�X � p�� j� � �i� �� s�� &�X � p�� j� � �i� ��� s���

and A
���
ij � �� A

����
ij � �� Using Theorem ����� it su�ces to show that

G
���
i ����X

�j�
� � �� G

����
i ��

���X
�j�

� � ��

As
�X � tight����X � G

���
i � j�

and ���Xj �
�Xj � it holds that

� �� G
���
i ����X

�j�
��

Assume

G
���
i ����X

�j�
� � ��

As G���
i is a set of linear functions and A

���
ij � �� it holds that

G
���
i ����X

�j�
� � ��

and hence � �� G
���
i ����X�� But then �X � �� which contradicts the assumption Y �� �� The proof of

G
����
i ��

���X
�j�

� � �

is analogous� Hence G
���
i �G����

i is weakly Y �j� enclosed by Theorem ������ �

Theorem ����� �Existence of Solutions� Assume X
p��� Y �� � and there exists a permutation

� � f�� � � � � ng � f�� � � � � ng such that for all j

&�X � p�� j� � ���j�� �j � sj�� &�X� p�� j� � ���j�� ��j � s
�
j�

and either

A
��j�
	�j��j

� �� A
���j �

	�j��j
� �

or

A
��j �
	�j��j � �� A

���j �

	�j��j � ��

Then sj � �s�j and f has a solution in X � �

Proof� Follows from Theorem ������ and Theorem ������ �

����� Iteration of the Hansen�Sengupta Operator

In this section we use Theorem ������ for proving existence of solutions through iterated application of
the Hansen�Sengupta operator� Let X ��� �X � m � Rn�n�

X�k��� � HS�f �X�k�� c�k��A�k��m �

such that
G�k� � f �c�k�� !A�k��x � c�k��

is a linearization of f in X�k�� k � �� � � � � r for some r � � and let Y � X �r���� Note that throughout
the iteration the preconditioning matrix m is xed�
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Theorem ����� �Existence of Solution by Iterated Hansen�Sengupta Operator� If A
m �k�
ii �

� for all k � �� � � � � r� i � f�� � � � � ng and Y � int�X�� then f has a solution in Y � �

Proof� Assume A
m �k�
ii � � for all k� i and Y � int�X�� Let

p� � h �Gm ���
� � ��� �Gm ���

� � ��� � � � � �Gm ���
n � n��

�Gm ���
� � ��� �Gm ���

� � ��� � � � � �Gm ���
n � n�� � � �

�Gm �r�
� � ��� �Gm �r�

� � ��� � � � � �Gm �r�
n � n� i�

As Y � int�X� it holds that

&�X� p�� i� � �i� ki� si�� &�X� p�� i� � �i� k�i� s
�
i�

for all i and for some ki� k�i � f�� � � � � rg� si� s�i � f��� �g and an application of Theorem ������ completes
the proof� �

��� Convergence of the Hansen�Sengupta Operator

In this section we give criteria when iterated application of the Hansen�Sengupta operator converges�
First� let us dene what we mean by a convergent sequence of interval vectors� In order to simplify the
presentation� we dene "w��� � ��

De�nition ��	�� �Convergent Sequence of Interval Vectors� A sequence of interval vectors

hX �k� � IR� j k � �� �� � � �i

is called convergent if for every � � � there exists "k � N such that for all k � "k it holds that "w�X �k�� � �� �

Note that this is the usual denition for convergence of the sequence h"w�X �k�� � R j k � �� �� � � �i to ��

but not for convergence of the sequence hX �k� � IR� j k � �� �� � � �i� We will use the following well known
criterion for convergence�

Theorem ��	�� �Criterion for Convergence� If there exists � � � such that

"w�X �k���� � �"w�X�k��

for all k� then hX �k� j k � �� �� � � �i is convergent� �

Throughout this section let
X�k��� � HS�f �X�k�� c�k��A�k��m �

where
G�k� � f �c�k�� !A�k��x � c�k��

is a linearization of f in X�k�� c�k� � X �k� and A�k� � A��� for k � �� �� � � �� Instead of A��� we will
simply write A� The following theorem is a slight generalization of #Hansen and Sengupta� ����$ to the
case when c�k� is arbitrarily chosen from X �k� and X need not contain a solution of f �

Theorem ��	�� �Convergence of Hansen�Sengupta Operator� Let

di � q�Amii � ��

ri �
nX
j��
j ��i

mag�Amij �
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and let

�i �
���diri ! d�i ! di ! ri�

�� d�i
�

If di � � and �i � � for all i � �� � � � � n then hX �k� j k � �� �� � � �i is convergent and

"w�X �k���� � �"w�X�k��

where � � maxi �i� �

Proof� Let di� ri� �i� � as in Theorem ����� and assume di � �� �i � � for all i� We show that
"w�X�k���� � �"w�X �k�� for all k� and apply Theorem ������ Hence� let k � � arbitrary but xed� We
distinguish two cases�

� Assume
� �� fmi �c�k�� !A

m �k�
i �X�k� � c�k�� for some i� �������

We show that X�k��� � �� From ������� it follows that

A
m �k�
ii �X

�k�
i � c

�k�
i � �

�
��fmi �c�k�� �

X
j �i

A
m �k�
ij �X

�k�
j � c

�k�
j �

�
A � ��

As di � � it holds that � �� A
m �k�
ii and

X
�k�
i � c

�k�
i � �fmi �c�k�� �Pj �iA

m �k�
ij �X

�k�
j � c

�k�
j �

A
m �k�
ii

� ��

Hence� X �k��� � HS�f �X�k�� c�k��A�m � � ��
� Assume

� � fmi �c�k�� !A
m �k�
i �X�k� � c�k�� for all i� �������

As d� � � it holds that � �� Amii for all i and

X
�k���
i � c

�k�
i � fmi �c�k�� !

P
j �iA

m

ij �X
�k�
j � c

�k�
j �

Amii

� c
�k�
i � fmi �c�k�� !

P
j �imag�Amij �w�X

�k��#��� �$
Amii

� c
�k�
i � fmi �c�k�� ! ri"w�X

�k��#��� �$
#�� di� � ! di$

� c
�k�
i � fmi �c�k��

#�� di� � ! di$
� ri"w�X

�k��#��� �$
�� di

�

Hence�

w�X�k���
i � � w

�
fmi �c�k��

#�� di� � ! di$

�
!

�ri"w�X
�k��

�� di
�

Now�

w

�
fmi �c�k��

#�� di� � ! di$

�
�

jfmi �c�k��j
�� di

� jfmi �c�k��j
� ! di

� jfmi �c�k��j
�

�di
�� d�i

�
�
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From ����� it follows that

fmi �c�k�� � �
X
j �i

Amij �X
�k�
j � c

�k�
j �� Amii �X

�k�
i � c

�k�
i �

�
X
j �i

mag�Amij �w�X
�k�
j �#��� �$ !mag�Amii �w�X

�k�
i �#��� �$

� ri"w�X
�k��#��� �$ ! �� ! di�"w�X

�k��#��� �$�

Hence
jfmi �c�k��j � �ri ! di ! ��"w�X �k���

Summarizing� we obtain

w�X�k���
i � �

�
�di�ri ! di ! ��

�� d�i
!

�ri
�� di

�
"w�X �k��

�
�di�ri ! di ! �� ! �ri�� ! di�

�� d�i
"w�X�k��

�
���diri ! d�i ! di ! ri�

�� d�i
"w�X �k��

� �i"w�X
�k���

Thus�
"w�X �k���� � �"w�X�k��

and hX �k� j k � �� �� � � �i is convergent by Theorem ������ �

Theorem ��	�� �Convergence of Hansen�Sengupta Operator� Let

�i �
nX
j��
j ��i

mag�Amij � ! mag���Amii �

and let � � maxi �i�

�i� If � � ��� then hX �k� j k � �� �� � � �i is convergent and

"w�X �k���� � ��"w�X �k��

�ii� If � � � and c�k� � mid�X�k�� for all k� then hX�k� j k � �� �� � � �i is convergent and

"w�X �k���� � �"w�X �k��� �

Proof� See #Neumaier� ����$� Corollary ����� and Theorem ������ �

Before we give another convergence theorem for the Hansen�Sengupta operator� we state the following
two technical lemmas about the width of an interval quotient and an interval product�

Lemma ��	�� �Width of Quotient� Let N�D � IRand y � R such that � � N � � �� D� Then

�i� w�N�D� � w�N ��mig�D��

�ii� w�N�D� � w��N ! y��D�� �

Proof� Let N�D� y as in Lemma ������ As w�N�D� � w��N�D� we may assume D � ��
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�i�

w�N�D� � N�D �N�D

� N�mig�D� �N�mig�D�

� w�N ��mig�D��

�ii� If � � N ! y then according to �i�

w�N�D� � w�N ��mig�D�

� w�N ! y��mig�D�

� w��N ! y��D��

Otherwise� as w��N ! y��D� � w���N ! y��D� we may assume N ! y � �� Then

w�N�D� � w�N ��mig�D�

� w�N ! y��mig�D�

� �N ! y��mig�D� � �N ! y��mig�D�

� �N ! y��mig�D� � �N ! y��mag�D�

� �N ! y��D � �N ! y��D

� w��N ! y��D�� �

Lemma ��	�� �Width of Product� Let A�X � IRand let c � X� Then

w�A�X � c�� � �mag�A�q�X� c�� �

Proof� Let A�X� c as in Lemma ������ Then

w�A�X � c�� � A�X � c� �A�X � c�

� maxfja�x� c�j j a � A� x � Xg �minf�ja�x� c�j j a � A� x � Xg
� mag�A�q�X� c� ! mag�A�q�X� c�

� �mag�A�q�X� c�� �

The following theorem is new� It gives a convergence condition for the Hansen�Sengupta operator which
is even weaker than Theorem ������

Theorem ��	� �Convergence of Hansen�Sengupta Operator� Assume � �� Amii for i � �� � � � � n�
let

�i �
nX
j��
j ��i

mag�Amij ��mig�Amii �

and let � � maxi �i�

�i� If � � ��� and X �k� �� � then
"w�X�k���� � "w�X �k��

for all k�

�ii� If X �k� �� � and there exists � � � such that

q�c
�k�
i � X

�k�
i � � �w�X

�k�
i �

for all k� i and �� � ��� then hX �k� j k � �� �� � � �i is convergent and

"w�X �k���� � �max���� ��"w�X �k��� �
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Proof� Let �i� � as in Theorem ����� and assume � �� Amii for all i� Let k arbitrary but xed and assume

X�k� �� �� Further� let i such that w�X�k���
i � � "w�X �k�����

� Assume c
�k�
i �� X

�k���
i �

�i� As c
�k�
i � X

�k�
i and X

�k���
i � X

�k�
i � it holds that X

�k���
i � X

�k�
i � Hence "w�X �k���� � "w�X �k���

�ii� Assume q�c
�k�
i � X

�k�
i � � �w�X

�k�
i �� Then w�X

�k���
i � � q�c

�k�
i � X

�k�
i � � �w�X

�k�
i �� Hence

"w�X �k���� � � "w�X �k���

� Assume c
�k�
i � X

�k���
i � Let

Y � tight�X �k�� G
�k�
i � i��

According to Lemma ������ it holds that X
�k���
i � Yi� As � �� Amii it holds that

Yi � c
�k�
i � �fi�c

�k�� !
P

j �iA
m

ij �X
�k�
j � c

�k�
j �

Amii
�

As c
�k�
i � Yi it follows that

� � fi�c
�k�� !

X
j �i

Amij �X
�k�
j � c

�k�
j ��

Further� as c
�k�
j � X

�k�
j for all j� obviously

� �
X
j �i

Amij �X
�k�
j � c

�k�
j ��

Hence� by Lemma �����

w�Yi� � w

�
fi�c�k

�� !
P

j �iA
m

ij �X
�k�
j � c

�k�
j �

Amii

�

� w

�P
j �iA

m

ij �X
�k�
j � c

�k�
j �

Amii

�

� w

�P
j �iA

m

ij �X
�k�
j � c

�k�
j �

mig�Amii �

�

�
X
j �i

w�Amij �X
�k�
j � c

�k�
j ���mig�Amii �� �������

�i� Assume � � ���� As c�k�j � X
�k�
j for all j it holds that

w�Yi� �
X
j �i

�mag�Amij �w�X
�k�
j ��mig�Amii �

�
X
j �i

�mag�Amij ��mig�Amii � "w�X �k��

� ��i"w�X
�k��

� "w�X �k���

Hence� "w�X�k���� � "w�X �k���

�ii� Assume q�c
�k�
j � X

�k�
j � � �w�X

�k�
j � for all j and �� � ���� According to Lemma �����

w�Amij �X
�k�
j � c

�k�
j �� � �mag�Amij �q�X

�k�
j � c

�k�
j �

� ��mag�Amij �w�X
�k�
j �
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for all j� and thus

w�Yi� �
X
j �i

��mag�Amij �w�X
�k�
j ��mig�Amii �

�
X
j �i

��mag�Amij ��mig�Amii � "w�X�k��

� ��i� "w�X
�k���

Hence� "w�X�k���� � ��� "w�X �k��� �

Corollary ��	�	 Let � as in Theorem ������ If c�k� � mid�X�k�� for all k and � � � then hX�k� j k �
�� �� � � �i is convergent and

"w�X �k���� � max��� ����"w�X�k��� �

The following Theorem is known for the Krawczyk operator #Qi� ����$� but is new for the Hansen�
Sengupta operator� It states that if a box is mapped into its interior by the Hansen�Sengupta operator�
then further application of the Hansen�Sengupta operator converges�

Theorem ��	�
 �Convergence of Hansen�Sengupta Operator� Assume � �� X
��� � int�X ����

and c�k� � mid�X�k�� for all k � �� �� � � �� Then hX �k� j k � �� �� � � �i is convergent and

w�X
�k�
i � � max��� ����k��w�X

���
i �

for all i� where

� � max
i

w�X
���
i ��w�X

���
i �� �

Proof� Assume � �� X��� � int�X���� and c�k� � mid�X �k�� for all k � �� �� � � �� According to Theorem

����� �i� and �iii�� X�k� �� � for all k� From Lemma ����� it follows that � �� Amii for all i� Let �i such that

w�X���
i � � �iw�X

���
i ��

As X ��� � int�X ���� it holds that �i � �� By induction on k we show that

w�X
�k�
i � � max��� ����k��w�X

���
i � for all i� �������

Obviously ������� holds for k � �� Assume ������� holds for some k � � and let i arbitrary but xed�

� If c
�k�
i �� X

�k���
i then w�X

�k���
i � � ���w�X

�k�
i � and by induction w�X

�k���
i � � max��� ����kw�X

���
i ��

� Assume c�k�i � X
�k���
i � From ������� it follows that

mig�Amii �w�X
�k���
i � �

X
j �i

w�Amij �X
�k�
j � c

�k�
j ���

By induction hypothesis and the assumption c�k� � mid�X�k�� it holds that

�X
�k�
j � c

�k�
j � � max��� ����k���X

���
j � c

���
j ��

Hence�

mig�Amii �w�X
�k���
i � � max��� ����k��

X
j �i

w�Amij �X
���
j � c

���
j ���
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Now� as � �Pj �iA
m

ij �X
���
j � c

���
j �� it follows from Lemma ����� thatX

j �i

w�Amij �X
���
j � c

���
j ���mig�Amii �

� w

�P
j �iA

m

ij �X
���
j � c

���
j �

Amii

�

� w

�
fi�c

���� !
P

j �iA
m

ij �X
���
j � c

���
j �

Amii

�

� w�X
���
i �

� �w�X���
i ��

Thus�

w�X
�k���
i � � max��� ����kw�X

���
i �� �

�� Termination

Let f � Rn � R
n be a continuous functions with nitely many solutions in Rn and let B � IRn� We

want to nd isolating boxes for all solutions of f in B� In the previous sections we studied algorithms
for testing existence� uniqueness and non�existence of solutions of f in a box� As the tests may fail� it
is not clear whether an algorithm based on these tests will terminate� In this section we give necessary
conditions for termination and a terminating algorithm� The content of this section is new�

In the following let E � N be predicates on IRn such that if E�X� � true then f has a unique solution
in X and if N �X� � true then f has no solution in X� Note that the Hansen�Sengupta operator� the
linearized tightening operator or simply a function which returns always false can be used to implement
E andN � The following algorithm is a skeleton for many interval methods for solving systems of nonlinear
equations� From now on we will not take care of problems arising from nite precision arithmetic any
more� However� the results still hold in the case of nite precision arithmetic� if the accuracy is �high
enough��

Algorithm ��
�� #Isolating Boxes$

In� f � Rn � R
n continuous with nitely many solutions�

B � IRn�
Out� Solutions� a list of sub�boxes of B such that each X in Solutions contains a unique solution of

f in B and each solution of f in B is contained in some X in Solutions�

��� #Initialize�$
Work�� fBg� Solutions �� empty list�

��� #Terminate�$
if Work � empty list� then return Solutions�

��� #Get box to work on�$
choose and remove an element X from Work�

��� #Test unique existence�$
if E�X� � true then add X to Solutions� goto Step ��

��� #Test non�existence�$
if N �X� � true then goto Step ��

��� #Bisect�$
bisect X in the midpoint of its component with largest width� add both halves to Work and goto
Step ��
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Algorithm ����� is correct but need not terminate� For example� if E�X� � N �X� � false for all
X � IRn� then Algorithm ����� will not terminate� So� we impose further conditions on E and N which
guarantee termination�

Theorem ��
�� �Termination�

� Assume there exists � � � such that if X � B� "w�X� � � and X contains a unique solution of f �
then E�X� � true�

� Assume there exists 
 � � such that for all X � B it holds that

minfjfi�x�j j x �Xg � 
"w�X� for some i implies N �X� � true�

Then Algorithm ����� terminates� �

Proof� Assume E andN satisfy the conditions of Theorem ����� for some � � �� 
 � � but Algorithm�����
does not terminate� According to K
onig�s Lemma there exists a sequence hX�k� � IRn j k � �� �� � � �i�
such that X�k��� � X

�k�� limk�� "w�X �k�� � � and E�X �k�� � N �X �k�� � false� Let "k � � such that

"w�X��k�� � �� From the condition on E it follows that X�k� does not contain a solution of f for all k � "k�

According to Theorem ����� x� � limk��X
�k� exists� As x� � X�k� for all k� it holds that f�x�� �� ��

Hence� there exists i such that fi�x
�� �� � and from the continuity of fi it follows that fi�x� �� � for all

x in a neighborhood X of x�� Let �k � � such that X ��k� � X � As X��k� is a closed subset of Rn and

fi is continuous� there exists � � � such that jfi�x�j � � for all x � X��k�� Now� let �k� � �k such that

"w�X��k��� � ��
� As X ��k�� � X��k� it holds that

minfjfi�x�j j x �X��k��g � minfjfi�x�j j x �X ��k�g
� �

� 
"w�X ��k����

By the condition on N � it holds that N �X ��k��� � true� which is a contradiction to the assumption

N �X �k�� � false for all k� �

As a next step towards an algorithm for nding isolating boxes for the solutions of systems of nonlinear
equations� we try to use interval methods for computing E � N � For N this is easy� all we need is an
interval extension F of f � which is Lipschitz in B�

Theorem ��
�� Let F be an interval extension of f � which is Lipschitz in B� i�e� there exists 
 � �
such that

"w�F �X�� � 
"w�X� for all X � B�

Let N be de�ned as

N �X� �

�
true if � �� F �X�
false else�

Then the following holds�

�i� Let X � IRn� If N �X� � true then f has no solution in X�

�ii� If X � B and
minfjfi�x�j j x �Xg � 
"w�X�g for some i

then N �X� � true� �

Proof� Let F � 
 and N as in Theorem ������

�i� Let X � IRn arbitrary but xed� If N �X� � true then � �� F �X�� hence f�x� �� � for all x �X�
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�ii� Let X � B and assume y � minfjfi�x�j j x � Xg � 
"w�X� for some i� From the Lipschitz
property of F it follows that y � "w�F �X��� hence y � w�Fi�X��� As y � mag�Fi�X�� it follows
that mag�Fi�X�� � w�Fi�X��� Therefore � �� Fi�X� and � �� F �X�� Hence� N �X� � true� �

Using Theorem ����� �iv� one could dene E for example as

E�X� �

�
true if HS�f �X� c�A�m � � int�X�
false else�

where f �c� !A�X � c� is a linearization of f in X and A is a Jacobian of f in X � But no matter what
restrictions we impose on the choice of c� A� m � the condition of Theorem ����� on E will not be satised
for the following two reasons�

� If f has a multiple solution in X� i�e� there exists "x �X such that f�"x� � � and f ��"x� is singular�
then A and Am are singular and HS�f �X� c�A�m � �� int�X� for any choice of c and m �

� If f�x� � � for some x � ��X� then by Theorem ����� �i�� HS�f �X� c�A�m � �� int�X� for any
choice of c�A�m �

From now on we assume that f has no multiple solutions in B� In the next section we give a terminating
algorithm for nding isolating boxes of the solutions of f � which solves the problem of solutions at the
boundary of boxes�

���� Solutions at the Boundary of Boxes

The key idea to solve the problem with solutions of f at the boundary ofX is as follows� First� enlargeX
in each direction obtaining a box �X such that X � int� �X�� Let A be a Jacobian of f in �X and assume

hX �k� j k � �� �� � � �i converges� where X ��� � �X� X�k��� � HS�f �X�k�� c�k��A�m � for some m � Rn�n

and c�k� �X�k�� Then there exists "k such that X ��k� satises one of the following two conditions�

� X��k� �X � �� In this case f has no solution in X �

� X��k� � int� �X�� According to Theorem ������� f has a unique solution in X��k� if Amii � � for all i�

Note that X ��k� need not be a subset of X � hence we do not know whether f has a solution in X
or not�

In the following let F � be an interval extension of the Jacobian of f and let C be a predicate on IRn such
that if C�X� � true then

� the sequence hX �k� j k � �� �� � � �i� where X ��� � X� X�k��� � HS�f �X�k�� c�k��A�m � converges�

� Amii � � for all i� and

� mid�A� is regular

where c�k� � mid�X �k��� A � F
��X� and m � mid�A���� Further� let � � R� � � � be a constant� which

determines the amount by which �X is larger than X� Now� we modify Algorithm ����� as follows�

Algorithm ��
�� #Isolating Boxes$

In� f � Rn � R
n continuous with nitely many solutions� all of them are simple�

B � IRn� "w�B� � ��

Out� Solutions� a list of sub�boxes of B such that every X in Solutions contains a unique solution of
f and every solution of f in B is contained in some X in Solutions�
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��� #Initialize�$
Work�� fBg� Solutions �� empty list�

��� #Terminate�$
if Work � empty list� then return Solutions�

��� #Get box to work on�$
chose and remove an element X from Work�

��� #Test unique existence�$
choose �X such that X � int� �X� and �X � X ! � "w�X�#��� �$n�
A�� F �� �X�� m �� mid�A����
if C� �X� � true

����� #Initialize Hansen�Sengupta iteration�$

k �� �� X ��� �� �X �

����� #Test�$

if X �k� �X � � goto Step ��
if X �k� � int� �X� then add X �k� to Solutions and goto Step ��

����� #Hansen�Sengupta operator�$

X �k��� �� HS�f �X�k��mid�X �k���A�m ��

����� #Iterate�$
k �� k ! �� goto Step ����

��� #Test non�existence�$
if N �X� � true then goto Step ��

��� #Bisect�$
bisect X in the midpoint of the component with largest width� add both halves to Work and goto
Step ��

We modify Theorem ����� such that it gives su�cient conditions for the termination of Algorithm ������
Let �B � B ! � "w�B�#��� �$n�

Theorem ��
�� �Termination�

� Assume there exists � � � such that if X � �B� "w�X� � � and X contains a unique solution of f �
then C�X� � true�

� Assume there exists 
 � � such that for all X � B it holds that

minfjfi�x�j j x �Xg � 
"w�X� for some i implies N �X� � true�

Then Algorithm ����� terminates� �

Proof� The proof is similar to the proof of Theorem ������ First� we show that the loop in Step �
terminates� i�e� there exists k such that either X�k� �X � � or X �k� � int� �X�� As C� �X� � true� it

holds that X �k� converges and there exists �k such that

"w�X ��k�� � min
i

minfjXi � �Xij� jXi � �Xijg�

Assume X��k� �� int� �X�� As X ��k� � �X � there exists i such that X
��k�
i � �X i or X

��k�
i � �X i� Assume

X
��k�
i � �Xi� Then X

��k�
i � X i� hence X��k� � X � � and the loop in Step � terminates� The case

X
��k�
i � �X i is analogous�

Assume C and N satisfy the conditions of Theorem ����� for some � � �� 
 � � but Algorithm ����� does
not terminate� According to K
onig�s Lemma there exists a sequence hX �k� � IRn j k � �� �� � � �i� such
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that X �k��� � X�k�� limk�� "w�X �k�� � � and C� �X �k�
� � N �X �k�� � false where X �k� � int� �X

�k�
�

and �X
�k� � X

�k� ! � "w�X �k��#��� �$n� Hence� there exists "k � � such that "w� �X
��k�

� � �� From the

condition on C it follows that X ��k� and hence X�k� does not contain a solution of f for all k � "k� The
rest is the same as in the proof of Theorem ������ �

Now� we can use any of the convergence theorems of Section ��� to obtain an algorithm for C� which
satises the conditions of Theorem ������ For simplicity� we use Theorem ������

Theorem ��
�� Let C be de�ned as

C�X� �

�
true if � � ���� Amii � � for all i and mid�A� is regular
false else�

for all X � �B� where � is as in Theorem ������ A � F ��X� for some continuous Lipschitz interval
extension F

� of f � in �B and m � mid�A��� if mid�A� is regular� Then there exists � � � such that
X � �B� "w�X� � � and X contains a unique solution of f implies C�X� � true� �

Proof� Let ��A�F ��m as in Theorem ������ As f has no multiple solutions� there exists �� � � such that
F
��X� is regular for all X � X where

X � fX � �B j "w�X� � ���f�x� � � for some x �Xg�
As X is closed and F � is continuous� the set fmid�F ��X���� j X � Xg is component wise bounded� i�e�
there exists "m such that

"m � jmijj for all i� j and m � fmid�F ��X���� j X � Xg�
As F � is Lipschitz in �B� there exists 
 � � such that w�F �

ij�X�� � 
"w�X� for all i� j andX � �B� Hence�
for all X � X

"w�mid�F ��X����F ��X�� � n "m
"w�X��

From i � mid�F ��X����F ��X� it follows that

� � n� "m
"w�X��

Thus� let

� � min

�
�

�n� "m

� ��


�

Now� ifX � �B� "w�X� � � and X contains a solution of f � then � � ��� and mid�A� is regular� Further�
� � ��� implies Amii � � for all i� hence C�X� � true� �

The output of Algorithm ����� is not precisely what one would expect from an algorithm for nding root
isolating boxes� It is true that every X in Solutions contains a unique solution of f and that every
solution of f in B is contained in some X � Solutions� However� the elements of Solution need not be
disjoint and it is even possible that there are two di�erent elements X �Y in Solution which contain the
same unique solution of f � The reason is that in Step � of Algorithm ����� the box was enlarged and it
can happen that the enlarged box contains a solution but the original box does not or has a solution on
its boundary� However� this deciency can easily be repaired�

Let X�Y � Solutions such that X � Y �� �� Let hX �k� j k � �� �� � � �i� hY �k� j k � �� �� � � �i be
sequences which are generated by repeated application of the Hansen�Sengupta operator starting with
X respectively Y using the respective A� m as in Algorithm ������ Step �� Then both sequences are
convergent and there exists "k such that either

X��k� � Y ��k� � �
or

C�#X��k� � Y ��k�$� � true�

In the rst case� X ��k� and Y ��k� each contain a unique solution of f � In the second case� X ��k� � Y ��k�

contains a unique solution� By simultaneous computation of X�k�� Y �k� for k � �� �� � � � it is therefore
possible to rene the list Solutions such that it has the same properties as stated in Algorithm ����� and
all its elements are mutually disjoint�
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���� Unbounded Start Regions for Polynomial Systems

So far we were searching for the solutions of a nonlinear system of equations f within a given search
intervalB� In this section we tackle the problem of nding all solutions of f inRn where f is a polynomial
system� The method was invented by #Neumaier� ����$� We give a more comprehensive description� point
out the problem of solutions at innity and generalize it to polynomial inequalities�

The idea of the algorithm is to decompose Rn into n ! � subsets D���� � � �� � � � � n ! � and map each
subset to the interval #��� �$n� For each subset D��� the polynomial system f is transformed into a system

g��� such that the roots of f in D��� correspond to the roots of g in #��� �$n� After having found the roots

of g in #��� �$n using a method for bounded start regions� we have to map them back to D���� First� we
give a simple but more general theorem which forms the theoretical basis of the algorithm�

Let D be a set� let p be a predicate on D and let D���� � � �� � � � �m be subsets of D such that

m�
���

D��� 	 fx � D j p�x�g�

Let E ��� be a set and let
t��� � E ��� �D���

be surjective for all �� Further� let q��� be a predicate on E���� which is dened by

q����y� i� p
�
t����y�

�
for all y � E����

Theorem ������ For all x � D it holds that p�x� if and only if there exists � � f�� � � � �mg and y � E ���
such that q����y� and t����y� � x� �

Proof� Let x � D arbitrary but xed�

��� Assume p�x�� Then x � D��� for some � � f�� � � � �mg� As t��� is surjective� there exists y � E ���
such that t����y� � x� Hence q����y��

��� Let � � f�� � � � �mg and y � E ��� arbitrary but xed such that q����y� and t����y� � x� Then
p�t����y�� and hence p�x�� �

In the following we apply Theorem ������ to the special case when D � R
n and p�x� � f�x� � �� where

f is a polynomial system R
n � R

n with nitely many solutions in Rn� We make the following choices
for D���� E���� t��� which are justied later� Let m � n! �� and for � � �� � � � � n let

D��� � fx � Rn j jx�j � �� jxij � jx�j for i �� �g�
E ��� � fy � #��� �$n j y� �� �g�

t
���
i �y� �

�
yi�y� i �� �
��y� i � ��

for i � �� � � � � n

and let

D�n��� � #��� �$n
E �n��� � #��� �$n

t�n����y� � y�

One easily checks that t��� � E��� �D��� is surjective and
Sn��
��� D��� � D�

Let g��� � E��� � R
n be dened as

g����y� � f�t����y���
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From Theorem ������ it follows that "x is a solution of f in Rn if and only if there exists � � f�� � � � � ng
and "y � E ��� such that g����"y� � � and t����"y� � "x� Thus� it su�ces to nd the solutions of g��� in

the bounded set E ��� for all �� Before we go into details of solving this problem let us consider a simple
example�

Example� Let n � � and let

f��x� � x�� ! x� � �

f��x� � x�x� � ��

The decomposition of R� into D��D��D� is displayed in Figure ������� We obtain

D� D�

D�

D�

D�

�
�
�

	
	
	

	
	
	

�
�
�

Figure ������� Decomposition of R��

t����y� � ���y�� y��y��

t����y� � �y��y�� ��y��

t����y� � �y�� y��

and thus

g
���
� �y� � f��t

����y�� � ��y�� ! y��y� � � � ��y���� ! y�y� � y���

g
���
� �y� � f��t

����y�� � ��y� y��y� � � � ��y���y� � y���

g
���
� �y� � f��t

����y�� � y���y
�
� ! ��y� � � � ��y���y

�
� ! y� � y���

g
���
� �y� � f��t

����y�� � y��y� ��y� � � � ��y���y� � y����

g
���
� �y� � f��t

����y�� � y�� ! y� � �

g
���
� �y� � f��t

����y�� � y�y� � �

Applying interval methods directly for nding the solutions of g��� in E ��� is not possible because of the

singularity of g
���
i at y� � � and because E ��� is not an interval for � �� n! �� However� the special choice

of t��� and the fact that f is a polynomial system allow us to write g
���
i in the form

g
���
i �y� � ��ydi� �g���i �y�

g
�n���
i �y� � �g

�n���
i �y�

where di is the total degree of fi and �g
���
i is a polynomial� Obviously

g
���
i �y� � � i� �g��i �y� � �

for all y � E ���� Note that �g�i has the same number of terms as fi� which means that sparsity of the input
system is preserved�
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In the next step we solve the �g��� with starting box #��� �$n� For each � we obtain a set A��� of sub�

intervals of #��� �$n such that each solution of �g��� is contained in some A��� � A���� In order to obtain a

set B of interval vectors which enclose all solutions of f in Rn we have to transform the A��� back using
t���� Note however� that t����A���� is dened only if A��� � E ���� i�e�

� �� A
���
� �

If this is not the case� then extended interval arithmetic has to be used during the back transformation
and for the corresponding solutions of f enclosures by unbounded intervals are obtained� This situation
occurs whenever f has solutions at innity�

In the following we extend the method described above to systems of polynomial inequalities

fi�x� �i �

where �i� f�� ��� �������g for i � �� � � � � r

A straight forward generalization does not work because

g
�l�
i �y� �i � i� �g

�l�
i �y� �i � for all y � E���

holds only if �i� f�� ��g or if di is even� The problem can be solved if Rn is decomposed into �n ! �
subsets instead of only n! � subsets as in the case of polynomial equations� Let

D��� �

� fx � Rn j x� � �� jxij � jx�j for i �� �g � � �� � � � � n
fx � Rn j x� � ��� jxij � jx�j for i �� �g � � n! �� � � � � �n

E ��� �

� fy � #��� �$n j y� � �g � � �� � � � � n
fy � #��� �$n j y� � �g � � n! �� � � � � �n�

t
���
i �y�� � � � � yn� �

�
yi�y� i �� �
��y� i � �

� � �� � � � � �n

and let

D��n��� � #��� �$n
E��n��� � #��� �$n

t��n����y� � y�

As before let g����y� � f
�
t����y�

�
� For � � �� � � � � �n let �g��� � Rn � R

n be polynomial systems such that

g
���
i �y� �

	
�g
���
i �y��ydi� if � � n or di is even

��g���i �y��ydi� if � � n and di is odd

and g��n����y� � �g��n����y�� Then �g���i �y� �i � i� g
���
i �y� �i � for all y � E ���� Back transformation of

the solution intervals is done in the same way as for polynomial systems of equations�

���� Experimental Results

In this section we compare two algorithms for nding isolating boxes for all solutions of a given system
of equations� The rst algorithm� RHB �Range test� Hansen�Sengupta operator� Bisection� repeats the
following operations until isolating boxes for all solutions of f are found� see #Hansen and Sengupta�
����$�

� Range test�
Overestimate f�X� and test if it contains zero�

� Hansen�Sengupta operator�
Replace a boxX by the result of the Hansen�Sengupta operator applied toX using Algorithm ������
Check the existence� uniqueness and non�existence conditions of Theorem ������
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� Bisection�
Bisect a box X in the midpoint of the largest width direction�

In the second algorithm� RLHB �Range test� Linearized tightening� Hansen�Sengupta operator� Bisec	
tion�� we use in addition the linearized tightening operator�

� Linearized tightening operator�
Replace a box X by the result of the linearized tightening operator applied to X using Algo	
rithm ������ Check the existence� uniqueness and non�existence conditions of Theorem ������

A few remarks are needed here�

� In the examples below we consider only polynomial equations� For the range test and the evaluation
of the derivatives we use the linearly convergent Horner form�

� After application of the Hansen�Sengupta operator� a Jacobian of mf in some box X is available
and we use Theorem ����� for testing convergence of the Hansen�Sengupta operator starting from
X� If the conditions of this Theorem are satised� we use the technique described in Algorithm �����
for avoiding non�termination if a solution of f is on the boundary of X�

� If the hull division in a linear tightening step is replaced by a generalized division� then the result
is sometimes the disjoint union of two intervals� In such a situation we memorize the gap between
the intervals and instead of a bisection we split the box at the widest gap�

� If slopes are used instead of derivatives for the Hansen�Sengupta or for the linearized tightening
operator� then the computed boxes are usually smaller but the uniqueness property as stated by
Theorem ����� and Theorem ����� does no longer hold� Thus� one might use slopes until existence of
a solution in a box is proved and from then on derivatives� However� in order to keep the algorithms
simple� we use derivatives from the beginning�

Based on experimental observations� we found that the following strategy seems to work well�

��� Range test�

��� �Only for RLHB�� Apply successive linearized tightening� If the box is reduced �signicantly�
thereby� go back to ����

��� Next� apply Hansen�Sengupta operator� If the box is reduced �signicantly� thereby� go back to ����

��� If during ��� or ��� some gaps were detected� split the box at the widest gap� Otherwise bisect in
the midpoint of the largest width direction�

��� Goto ����

In order to apply this heuristics� one should decide how much change is �signicant�� In our implemen	
tation� we consider a change signicant if it is greater than ��( in size� where the size of a box is the
sum of the widths of its components� We compared the algorithms on the following examples�

A� This example is taken from #Moore� ����$�

x�� ! x�� � �

x�� � x� � �

Starting box� #����� ���$��
B� This example is taken from #Morgan� ����$�

x� ! x� ! x� ! x � � � �

x� ! x� � x� ! x � � � �

x�� ! x�� ! x�� ! x� � � � �

x�� ! x�� ! x�� ! x� � �x� � � � �

Starting box� #���� ��$�
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C�� This example is taken from #Moore and Jones� ����$� where the specic values of the coe�cients
ai� bi and the indices i�� i�� i� are given�

xi � ai � bixi�xi�xi� � �� i � �� � � � � ��

Starting box� #��� �$�
�
C�� This example is also taken from #Moore and Jones� ����$� The di�erence from C� is that it has

�� variables�
xi � ai � bixi�xi�xi� � �� i � �� � � � � ��

Starting box� #��� �$�
�
C�� This example is a modication of C� in that each variable xi is replaced by x�i � Note that if

�z�� � � � � z�
� is a solution of C� then ��z�� � � � � z�
� is also a solution� hence the number of
solutions is a multiple of ����� In fact� both methods found exactly ���� isolating boxes�

x�i � ai � bix
�
i�x

�
i�x

�
i� � �� i � �� � � � � ��

Starting box� #��� �$�
�
C�� This example is another modication of C�� where we use the same coe�cients but increase the

degrees of some variables and add one more term�

xi � ai � bix
�
i�x

�
i�x

�
i� ! xi�x

�
i� � �� i � �� � � � � ���

Starting box� #��� �$�
�
D�� This is a sparse system with �� variables and low degree�

�x�x�
x�� � x	x�
x�� � x�x�
x�� ! xx�� ! x�x�� ! x�x�� � ������

x�xx� ! x�x�x� ! x�x�x� ! x�x�
 � ������

x�x� ! x	x� ! x�x� � ������

�x�x ! �x�x� ! x�x� � ������

�x�x ! �x�x� ! x�x� � ������

�x� ! �x	 ! x� � ������

x�i ! x�i�� � �� i odd

Starting box� #����� ����$� #����� ����$� #����� ����$� #����� ����$� #��� �$��

D�� This example is the same as D�� The only di�erence is that its starting box is larger� Starting
box� #����� ����$� #����� ����$� #��� �$�
�

D�� This example is again the same as D�� The only di�erence is that its starting box is even larger�
Starting box� #��� �$���

In Table ������� we report various statistics� At top� we report the number of arithmetic �oating point
operations� It seems that the RLHB method is usually faster�

The second table shows that the number of bisections is much smaller for RLHB� which explains why
RLHB is usually faster�

For the readers who might be interested in more details� we provide further statistics such as the number
of Hansen�Sengupta operator� linearized tightening and range test calls� The reason why a Hansen�
Sengupta operator call is faster for RLHB than for RHB is that for RLHB the Jacobian is already
evaluated from the previous linearized tightening iteration when the Hansen�Sengupta operator is called�
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A B C� C� C� C� D� D� D�

Total �K�op�

RLHB ���� �	
 
��
 
���� 	��� ���� ���� ���	� ���
RHB ���� �	� 

�� �
�� �	��� ����
 ���
� ����� ���
��

Bisections � Splits

RLHB 
�� ���� ����� 	
	�� 
����� �	�� �	�� ����� ����
RHB 
�� ��� ��
�� �������	� ���
�� ������ ����� 		���� �	������

RLHB
Range Test

calls �� ��� �� ��� ����� �� ��� ���
 �
�

avg �K�op� ���� ���� ���	 ���� ��� ��� ���� ���� ����
percent ���� ���� ���� ���	 �

 ���
 	��	 	��� 	���

Linearized Tightening
calls �
 �	� 	�� �
� ���� ��� ��� ���� ���
avg �K�op� ���� ���
 ��� 	��
 ��	 ���� ���� ���	 ���	
percent 	��� ���� ���� ���� ���� ��� ���	 ���	 ���	

Hansen�Sengupta Operator

calls 
 �	 �� 	�� 
��� �	� �� �� ����
avg �K�op� ���� ��
 �	� 
�� ��� ��
 ��� ���� ����
percent ���� ���� ��� �� 
�� 	��� 
��� ���	 	��


RHB
Range Test

calls �
 ��� ���� ����� �

�� ���� ��
	 �		� ��	
�
avg �K�op� ���� ���	 ���� ��
 ��
� ��	� ���� ���� ���
percent ��� ���	 ���� ��
� ��	 ���� ���� ���� ����

Hansen�Sengupta Operator
calls �� ��� 	�
 ��	
 ��� ���� ���� ����� ����
avg �K�op� ���
 ��� ���
 	��� ��� ����� ���	 ���	 ����
percent 
�� 	�� ���	 �
�� ����� ��� ���� ���� ����

Table ������� Experimental comparison of RLHB and RHB
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Nonlinear Tightening

In the previous chapter we introduced the notion of linear tightening� The idea was to iterate the following
process�

��� Choose an equation fi and a direction j�

��� Find a linearization Gi of fi in X �

��� Shrink X in direction j optimally obtaining X�� such that all solutions of Gi in X are in X ��

In this chapter we do not linearize fi but apply tightening directly to the nonlinear equation� This
operation was introduced in #Hong and Stahl� ����b$� Nonlinear tightening does not have uniqueness�
existence and non�existence properties corresponding to linear tightening� but gives in many cases better
reductions as the linearized tightening operator or the Hansen�Sengupta operator� especially for �large�
boxes� Thus� nonlinear tightening is a pure pruning operation and can not be used for testing existence
or uniqueness of solutions�

Roughly put� nonlinear tightening works as follows� Choose an equation fi from the system f and a
direction j� Evaluate fi in all variables except for xj on the given box X � obtaining a univariate function
F � R� IR in xj � Next� nd enclosures Z�� � � � � Zr for the solutions of F in Xi� Now� every solution of

f in X and hence every solution of f in X is still contained in one of X���� � � � �X�r� where

X �k� � �X�� � � � � Xi��� Zk� Xi��� � � � � Xn��

Nonlinear tightening has been investigated in AI community #Mackworth� ����� Cleary� ����� Older and
Vellino� ����$� for solving simple equations and inequalities such as xy � z and x � ��

In Section ���� we give a precise denition of nonlinear tightening� In Section ���� we describe an algorithm
for nding isolating boxes� which uses the tightening operation� In Section ���� we illustrate the algorithm
described in the previous section on a simple example� In Section ���� we give a general description of
a tightening procedure� and a more detailed one for multivariate polynomials� In Section ���� we report
some experimental results�


�� De�nition of Nonlinear Tightening

In this section we dene the notion �nonlinear tightening�� Throughout this section� let f � Rn � R and
X � IRn�

De�nition ����� �Variety� The variety Z�f� of f � is de�ned by

Z�f� � fx � Rn j f�x� � �g� �

���
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De�nition ����� �Projection� Let x � Rn� The i�th projection of x� written as �i�x�� is de�ned by

�i�x� � xi�

Let S � Rn� Then the i�th projection of S� written also as �i�S�� is de�ned by

�i�S� � f�i�x� j x � Sg� �

De�nition ����� �Optimal Tightening� The optimal tightening of X on xi by f is de�ned as the set

�i�Z�f� �X�� �

Theorem ����� �Solution Preservation� Let X�
i be the optimal tightening of X on xi by f � and let

X� � �X�� � � � � Xi��� X
�
i� Xi��� � � � � Xn�� Then we have

Z�f� �X � Z�f� �X�� �

Thus� we can always safely replace X by X � when we are interested only in the solution of f in X �
Unlike in the case of linear tightening� it is expensive to compute the optimal tightening� since in general
it requires exact computations with real algebraic numbers� Thus we relax the denition as follows�

De�nition ����� �Tightening� A tightening of X on xi by f is a �nite set of disjoint sub�intervals of
Xi whose union contains the optimal tightening� More precisely� it is a set

fX���
i � � � � � X

���
i g

such that X
�k�
i � IR� X�k�

i � Xi� X
�k�
i �X�j�

i � � for k �� j� and
U
kX

�k�
i 	 �i�Z�f� �X�� �

De�nition ����� �Tightening Operator� A tightening operator is a procedure that� given f � X and

i� produces a �nite set of boxes X ���� � � � �X��� such that for every k � �� � � � � �

X �k� � �X�� � � � � Xi��� X
�k�
i � Xi��� � � � � Xn�

where the set fX���
i � � � � � X

���
i g forms a tightening of X on xi by f � �

One extreme tightening operator is the most expensive one which computes the optimal tightening and
the other extreme is the cheapest one which trivially returns fXg� Obviously� we are interested in one
between these two extremes� which strikes a �good� compromise between accuracy and computational
cost� One such tightening operator for multivariate polynomial functions will be described in Section ����


�� Combined Algorithm for Finding Isolating Boxes

In this section� we use the Hansen�Sengupta operator together with a tightening operator for nding
isolating boxes for all zeros of a function within a box�

Algorithm ����� #Isolating Boxes by Hansen�Sengupta Operator and Tightening$

In� f � Rn �� R
n�

X � IRn�
Out� Solutions� a nite set of isolating boxes for the solutions of f in X �

TooSmall� a nite set of sub�boxes of X that are too small to work on�

��� #Initialize�$
Work�� fXg� Solutions �� fg� TooSmall �� fg�
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��� #Choose a box and an operation�$
Choose and remove a box from Work�
Choose one of the following operations�

� range test�

� tightening�

� Hansen�Sengupta operator�

� bisection�

��� #Process the box�$
Apply the operation on the chosen box� obtaining possibly one ore more sub�boxes�
Insert the resulting boxes into the proper sets� Solutions� TooSmall� or Work�

��� #Loop�$
If there is a box in Work� then go to Step ���� Otherwise� we are done� �

Algorithm ����� is correct no matter which boxes and operations are chosen in Step ���� Since we are
interested in nding all isolating boxes �not just one�� the e�ciency of the algorithm does not depend
on which box we choose� because we need to analyze every box eventually� Thus� it is ne to choose the
rst one in the data structure of Work� But the e�ciency of the algorithm depends heavily on which
operation is chosen� Based on experimental results� we found that the following strategy seems to work
well�

��� First� apply tightening with respect to every equation and variable� During tightening carry out
range test� since it can be done cheaply using the intermediate results of tightening�

��� Next� apply Hansen�Sengupta operator�

��� If the state has been �signicantly� changed during ��� and ���� then goto ����

��� If during tightening or during the Hansen�Sengupta operator a gap was detected� split in the
direction of the largest gap� Otherwise bisect in the midpoint of the largest width direction�

��� Goto ����

In order to apply this heuristics� one should decide how much change is �signicant� to avoid bisection�
In our implementation� we consider a change signicant if it is greater than ��( in size� where the size
of a box is the sum of the widths of its components� For comparison purpose� we have implemented the
method described in #Hansen and Sengupta� ����$� and we applied a similar strategy�


�� Illustration

Before jumping into the details of tightening operation� we illustrate the main algorithm described in the
previous section on a simple example� taken from #Moore� ����$�

x� ! y� � �

x� � y

The graph on the left hand side of Figure ����� traces the boxes produced during the execution of the
algorithm of the last section� The one on the right hand side provides the same information produced
by the algorithm of #Hansen and Sengupta� ����$ which is basically run by Hansen�Sengupta operator�
range test� and bisection�

From the picture on the left hand side� we see that the initial box #����� ���$� is rst tightened by the circle
and then by the parabola� The white patch is the portion that has been tightened out� The remaining box
can neither be reduced by the Hansen�Sengupta operator nor by tightening� so it is bisected vertically�
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Figure ������ Illustration of the main algorithm at a simple example

In each sub�box tightening is not successful� but the Hansen�Sengupta operator leads to some reduction�
pruning out the gray strip� The remaining box is tightened by the circle and then by the parabola� Now�
the Hansen�Sengupta operator detects that the remaining box is an isolating box�

For the picture on the right hand side we do not go into details� but note that it produced more inter	
mediate boxes� This is partly due to the increased number of bisections �the left picture has � bisection�
while the right one has � bisections�� The experimental results in Section ��� show that this e�ect seems
to become more dramatic for higher dimensional problems�


�� Algorithm for Tightening

In this section� we describe a general scheme for tightening continuous functions� and in particular give
a detailed procedure for the case of multivariate polynomials� Let us begin by recalling the problem of
tightening�

In� f � Rn � R� X � IRn� and i � f�� � � � � ng�
Out� a tightening of X on xi by f �

In the following� we will reduce this problem into two sub�problems� Note that

�i�Z�f� �X� � fxi � Xi j � � f�X�� � � � � Xi��� xi� Xi��� � � � � Xn�g�

Let F � R�� IRbe dened as

F �xi� � #f�X�� � � � � Xi��� xi� Xi��� � � � � Xn�$�

Using this function� we can rewrite the above formulas as

�i�Z�f� �X� � fxi � Xi j � � F �xi�g� �������

Note that if f is continuous then equality holds in �������� Now� let F � F � R� R be the bounding
functions of F � i�e�

F �xi� � # F �xi�� F �xi� $�
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Continuing using these two functions� we have

�i�Z�f� �X� 	 fxi � Xi j � � F �xi�g
� fxi � Xi j � � # F �xi�� F �xi� $g
� fxi � Xi j F �xi� � �  F �xi� � �g
� fxi � Xi j F �xi� � �g � fxi � Xi j F �xi� � �g�

Thus� we have reduced the problem of tightening into two sub�problems�

�� nding the functions F and F �

�� solving the inequalities F �xi� � � and F �xi� � ��

For the purpose of just tightening �not necessary optimal�� it is su�cient to overestimate� This gives us
the following main algorithm�

Algorithm ����� �Tightening�

��� Compute the functions F and F �suitably overestimate��

��� Solve the two inequalities F � � and F � � �overestimate again��

��� Return the intersection of the two solution sets� �

In the following two sections� we show the details of the rst two steps� For the rst step� we present an
algorithm for polynomials only� while for the second step� we give a general algorithm� Thus we present
the second step rst in the order of generality�

����� Solving Inequalities

We begin with the second step� namely that of solving the inequalities� The two inequalities are solved
in the same way� and thus we describe how to solve only one of them� F � �� So� here is the sub�problem
statement�

In� F � R� R and X � IR�
Out� disjoint intervals P�� � � � � Pk such that

U
j Pj 	 fx � X j F �x� � �g�

The basic idea is to compute all real roots of F within X� which induces a nite set of intervals on which
the sign of F is constant� From these� we only need to select the ones with non�negative signs� In doing
this� we face the following technical problems� due to nite precision arithmetic and multiple roots� we
get not the exact roots� but intervals which contain them� Moreover such an interval may contain more
than one root� The following algorithm handles such di�culties�

Algorithm ����� �Solving Inequality�

��� Compute disjoint �root� intervals R�� � � � � Rr such that
U
j Rj 	 fx � X j F �x� � �g� �This can be

done for instance by the Interval Newton Method��

��� The following code extracts intervals where F is non�negative� It essentially scans the root intervals
from left to right while picking up solution intervals� In the code� Ri is the current root interval being
checked� k keeps track of the number of the solution intervals extracted so far� b holds the upper end
point of the previous root interval� and Y is the interval evaluation of F on the middle of the gap
between two consecutive root intervals�

Initialize b�� X and k �� ��
for i � �� � � � � r

Y �� F �����b! Ri�� using interval arithmetic�
case� Y � �� k �� k ! �� Pk �� Ri�
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case� Y � � and k � �� Pk � hull�Pk� #b�Ri$��
case� Y � � and k � �� k �� k ! �� Pk �� #b�Ri$�
b�� Ri�

if b �� X or �X � X and r � ��
Y �� F �����b!X�� using interval arithmetic�
case� Y � � and k � �� Pk � hull�Pk� #b�X$��
case� Y � � and k � �� k �� �� Pk �� X� �

����� Finding Bounding Functions

Now we tackle the problem of nding the bounding functions for the case of polynomial functions� Here
is the problem statement�

In� f � R#x�� � � � � xn$� X � IRn� and i � f�� � � � � ng�
Out� F and F as dened above �overestimated��

Recall that F and F are dened by

F �xi� � #ff�X�� � � � � Xi��� xi� Xi��� � � � � Xng$
� # F �xi�� F �xi� $�

The following algorithm solves the problem�

Algorithm ����� �Bounding Functions for Polynomials�

��� Obtain the coe�cients Aj � IR of an interval polynomial F �xi� �
Pd

j�
Ajx
j by evaluating f on

xj � Xj for every j �� i� using interval arithmetic�

��� Compute the bounding functions of F �x�� �We drop the subscript i for simplicity��

F �x� �

	 Pd
j�
Ajx

j if x � �Pd
j�
A

inf
j xj else

F �x� �

	 Pd
j�
Ajx

j if x � �Pd
j�
A

sup
j xj else�

where

Ainf
j �

�
Aj if j is even

Aj if j is odd
Asup
j �

�
Aj if j is even
Aj if j is odd�

�

The proof of Step ��� is straightforward� One remark is needed here� The resulting bounding functions
are piecewise di�erentiable but not di�erentiable at �� This does not cause problems in solving the
corresponding inequalities since one only needs to apply the method of the previous section on each piece
separately and merge the resulting intervals� While merging� it might be necessary to concatenate two
intervals containing ��


�� Experimental Results

In the sequel THB denotes the method described above �tightening� Hansen�Sengupta operator� bisection�
and RHB stands for the method described in #Hansen and Sengupta� ����$ �range test� Hansen�Sengupta
operator� bisection�� We have tested the algorithms on the same examples as described in Section �����

In Table ������ we report various statistics� At top� we report the number of arithmetic �oating point
operations� It seems that the THB is faster� in particular for the problems with many variables�

The second table shows that the number of bisections is much smaller for THB� which explains why THB
is usually faster� The reduction in the number of bisections is mainly due to the tightening operation�
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A B C� C� C� C� D� D� D�

Total �K�op�
THB ��� ��� ���� ��� ��

 
�� 
� 	

 ����
RHB ���� �	� 

�� �
�� �	��� ����
 ���
� ����� ���
��

Bisections � Splits
THB ��� ��� ��� ��� ������ ��� 
�� ����� �����
RHB 
�� ��� ��
�� �������	� ���
�� ������ ����� 		���� �	������

THB
Tightening

calls 	 �� � � ��� � �� �� ��
avg �K�op� ��� ���� ���� ���� ���� 	��� ��
� ��
� ����
percent 

�
 
��� ���� ���
 ���
 ���� ���� ���	 ����

Hansen�Sengupta Operator
calls 	 �� � � ��� � �� ��� �
�
avg �K�op� ���� ��� ���� 	�� ��	 ���� ���	 ���	 ���	
percent ���� �	�� ��� ��� ��� 
��� ��� ���� ���

RHB
Range Test

calls �
 ��� ���� ����� �

�� ���� ��
	 �		� ��	
�
avg �K�op� ���� ���	 ���� ��
 ��
� ��	� ���� ���� ���
percent ��� ���	 ���� ��
� ��	 ���� ���� ���� ����

Hansen�Sengupta Operator
calls �� ��� 	�
 ��	
 ��� ���� ���� ����� ����
avg �K�op� ���
 ��� ���
 	��� ��� ����� ���	 ���	 ����
percent 
�� 	�� ���	 �
�� ����� ��� ���� ���� ����

Table ������ Experimental comparison of THB and RHB



Chapter �

Solution of the Robot Inverse

Kinematics Problem

In this chapter we apply the interval methods presented in the previous chapters for solving the robot
inverse kinematics problem� The inverse kinematics problem is stated as follows� Given a parametric
description of a robot and a desired position and orientation of the end e�ector� nd all possible sets of
joint values such that the end e�ector is in the desired position and orientation�

There are important classes of robots where this problem has a closed form solution� In general� however�
one has to rely on iterative methods� In the following we consider robots with � joints corresponding to
the � degrees of freedom of the end e�ector in both position and orientation� The joints are either revolute
or prismatic� For an introduction to robot kinematics we refer to the excellent monographs #Paul� ����$

and #Craig� ����$�

��� Kinematic Equations

The kinematic equations of a robot are given by

a�a� � � �a� � e� �������

where a�� � � � � a�� e � R
�� Each ai corresponds to a joint and a connected link of the robot and e

describes the end e�ector position and orientation� More precisely�

ai � rotz��i� transz�di� transx�ai� rotx��i�

where

rotz��i� �

�
BB�

cos��i� � sin��i� � �
sin��i� cos��i� � �

� � � �
� � � �

�
CCA

rotx��i� �

�
BB�

� � � �
� cos��i� � sin��i� �
� sin��i� cos��i� �
� � � �

�
CCA

transz�di� �

�
BB�

� � � �
� � � �
� � � di
� � � �

�
CCA

���
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transx�ai� �

�
BB�

� � � ai
� � � �
� � � �
� � � �

�
CCA �

If the i	th joint of the robot is revolute� then di� ai� �i are constants given by the structure of the robot
and �i is a variable describing the joint angle� If the i	th joint is prismatic� then �i� ai� �i are constants
and di is a variable describing the joint distance�

The matrices rotz���� rotx��� and transz�d�� transx�a� are called elementary rotation and translation
frames respectively� Frames are a class of �� � matrices with special properties�

De�nition ���� �Frame� A matrix a � R� is called frame if

a �

�
o p

� � � �

�
for some orthogonal o � R��� and p � R�� The matrix o is called orientation of a� the vector p is called
position of a� �

Obviously rotz���� rotx���� transz�d�� transx�a� are frames� and as the product of two frames is a frame�
it holds that a�� � � � � a� and e are frames�

��� Forward Kinematics

Before we come to the inverse kinematics problem� we discuss the forward kinematics problem� which
is much simpler� The results of this section will be used in an algorithm for computing the inverse
kinematics� The forward kinematics problem can be stated as follows� Given �i� di� �i� ai� i � �� � � � � ��
nd e such that

e � a�a� � � �a��
In the following let

xi �

�
di if the i	th joint is prismatic
�i if the i	th joint is revolute

and let x � �x�� � � � � x��T� Note that ai depends only on xi but not on xj for j �� i� If the i	th joint is
prismatic� then we call xi distance variable� otherwise xi is called angle variable�

Computing the forward kinematics for a given robot means simply evaluating the function f � R� � R
��

f�x� � a�a� � � �a�� �������

Now� we want to compute the forward kinematics where the joint values are given by intervals Xi � IR�
Therefore� we dene an interval extension F of f� As the associative law does not hold for interval matrix
multiplication� we have to explicitly specify the order in which the matrices are multiplied� It seems
that the smallest number of arithmetic operations are needed if the elementary matrices are multiplied
successively from left to right� Hence� let

F�X� � F
��
�

where

F
�
�
i � F

��
i��

F
���
i �

	
F
�
�
i rotz��i� if the i	th joint is prismatic

F
�
�
i rotz�Xi� if the i	th joint is revolute

F
���
i �

	
F
���
i transz�di� if the i	th joint is revolute

F
���
i transz�Xi� if the i	th joint is prismatic

F
���
i � F

���
i transx�ai�

F
��
i � F

���
i rotx��i�
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for i � �� � � � � � and let

F
��

 � i�

Obviously x �X implies f�x� � F�X� but due to interval dependencies usually

F�X� � f�X��

In order to obtain closer inclusions of f one can apply standard techniques like centered forms as described
in Chapter � for polynomials� However� the special structure of ������� gives us further possibilities as
described below�

Frame Property� Note that each F
�j�
i � i � �� � � � � �� j � �� � � � � � bounds a set of frames� Eliminating

all matrices which are not frames from F
�j�
i would in general not give an interval matrix� Hence� we

reduce F
�j�
i in a sub�optimal way without leaving the class of interval matrices� So� the problem can be

stated as follows� Given F � IR�� nd "F � F such that each frame in F is also in "F� This problem can
be solved by tightening using the orthogonality properties of the orientation of frames�

Dependency between sin�X� and cos�X�� For revolute joints� overestimation occurs already during
the multiplication of a matrix F by rotz�X� because of the dependency between sin�X� and cos�X��

Let

F �

�
BB�

O�� O�� O�� P�
O�� O�� O�� P�
O�� O�� O�� P�
� � � �

�
CCA �

Then

F rotz�X� �

�
BB�

O�� O�� O�� P�
O�� O�� O�� P�
O�� O�� O�� P�
� � � �

�
CCA
�
BB�

cos�X� � sin�X� � �
sin�X� cos�X� � �

� � � �
� � � �

�
CCA

�

�
BB�

O�� cos�X� !O�� sin�X� �O�� sin�X� !O�� cos�X� O�� P�
O�� cos�X� !O�� sin�X� �O�� sin�X� !O�� cos�X� O�� P�
O�� cos�X� !O�� sin�X� �O�� sin�X� !O�� cos�X� O�� P�

� � � �

�
CCA �

In order to avoid this kind of overestimation� we have to solve the following problem� Given A�B�X � IR�
nd

fA sin�x� ! B cos�x� j x � Xg�
When solving the inverse kinematics problem� we are are usually given the intervals sin�X�� cos�X� but
not X� Therefore� the problem is slightly di�erent� Given A�B� S�C � IR� nd

fAs !Bc j s� ! c� � �� s � S� c � Cg�

In order to simplify the problem� we assume � �� int�S�� � �� int�C�� This can always be achieved through
bisections� As

fAs !Bc j s� ! c� � �� s � S� c � Cg � f��A�s ! Bc j s� ! c� � �� s � �S� c � Cg
� fAs! ��B�c j s� ! c� � �� s � S� c � �Cg

we can reduce the problem to S � �� C � �� Thus�

fAs !Bc j s� ! c� � �� s � S� c � Cg � maxfAs !Bc j s� ! c� � �� s � S� c � Cg
fAs !Bc j s� ! c� � �� s � S� c � Cg � minfAs! Bc j s� ! c� � �� s � S� c � Cg

and the problem can be solved for example by the Lagrange multiplier method�
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��� Inverse Kinematics

In this section we give an algorithm for solving the inverse kinematics problem

a�a� � � �a� � e �������

based on tightening and the Hansen�Sengupta operator� The algorithm is in principle the same as the
one presented in Chapter �� but exploits the structure of the kinematic equations ��������

����� Tightening

The idea of tightening is to evaluate an equation in all variables except for one and solve the univariate
interval equation� For the kinematic equations ������� this is particularly straight forward� because �������
can be solved explicitly for each variable�

For revolute joints we can rewrite ������� as

rotz�x�� � e a��
�

a��
�

a��
�

a��
�

a��
�

rot��
x

����trans
��

x
�a��trans

��

z
�d��

rotz�x�� � a��
�

e a��
�

a��
�

a��
�

a��
�

rot��
x

����trans
��

x
�a��trans

��

z
�d��

rotz�x�� � a��
�

a��
�

e a��
�

a��
�

a��
�

rot��
x

����trans
��

x
�a��trans

��

z
�d��

rotz�x�� � a��
�

a��
�

a��
�

e a��
�

a��
�

rot��
x

����trans
��
x

�a��trans
��
z

�d��

rotz�x�� � a��
�

a��
�

a��
�

a��
�

e a��
�

rot��
x

����trans
��

x
�a��trans

��

z
�d��

rotz�x�� � a��
�

a��
�

a��
�

a��
�

a��
�

e rot��
x

����trans
��

x
�a��trans

��

z
�d��

For prismatic joints we have

transz�x�� � rot��
z

���� e a��
�

a��
�

a��
�

a��
�

a��
�

rot��
x

����trans
��

x
�a��

transz�x�� � rot��
z

���� a��
�

e a��
�

a��
�

a��
�

a��
�

rot��
x

����trans
��
x

�a��

transz�x�� � rot��
z

���� a��
�

a��
�

e a��
�

a��
�

a��
�

rot��
x

����trans
��

x
�a��

transz�x�� � rot��
z

���� a��
�

a��
�

a��
�

e a��
�

a��
�

rot��
x

����trans
��

x
�a��

transz�x�� � rot��
z

���� a��
�

a��
�

a��
�

a��
�

e a��
�

rot��
x

����trans
��

x
�a��

transz�x�� � rot��z ���� a��
�

a��
�

a��
�

a��
�

a��
�

e rot��x ����trans
��
x �a��

Thus� tightening means simply evaluating the right hand sides of the above equations by interval arith	
metic and intersect with the matrix on the left hand side� If tightening is done successively in each
variable� then intermediate results of the right hand side evaluation can be reused and overestimation
is reduced because most recently updated values are used in the computation� Further� as all matrix
products on the right hand side are frames� we can use the techniques described in the previous section
for reducing overestimation during frame multiplication� Inverse frames can be handled in the same way
as ordinary frames because

a��i � rot��x ��i�trans
��
x �ai�trans

��
z �di�rot

��
z ��i�

� rotx���i�transx��ai�transz��di�rotz���i��
In order to avoid trigonometric function calls during tightening� we replace each angle variable xi by two
new variables si � sin�xi�� ci � cos�xi�� Whenever a new interval Si for si or Ci for ci is computed� we
tighten the other interval optimally using s�i ! c�i � ��

����� Hansen�Sengupta Operator

Note that the matrix kinematic equation
f�x� � e

consists of �� equations in � variables� Still� it is not overdetermined as due to the frame property
there are only � independent equations� In order to apply the Hansen�Sengupta operator� the number of
variables must be the same as the number of equations� Hence we choose � independent equations� for
example

f���x� � e��

f���x� � e��
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f���x� � e�� �������

f��x� � e�

f��x� � e�

f��x� � e��

In the following let

f�x� � �f��� f��� f��� f�� f�� f��
T

e � �e��� e��� e��� e�� e�� e��
T�

In order to compute the partial derivatives of f e�ciently� we use

�

�xi
f�x� � a�a� � � �a�i � � �a�

where

a�i �

�
BB�

� sin�xi� � cos�xi� � �
cos�xi� � sin�xi� � �

� � � �
� � � �

�
CCA transz�di� transx�ai� rotx��i�

if the i	th joint is revolute and

a�i � rotz��i�

�
BB�

� � � �
� � � �
� � � �
� � � �

�
CCA transx�ai� rotx��i�

if the i	th joint is prismatic� This allows to reuse intermediate results for the computation of all partial
derivatives as well as a reduction of the overestimation error in the same way as described in Section ���
for the forward kinematics�

As in Chapter � we apply tightening and the Hansen�Sengupta operator alternately� During tightening
we compute intervals for the sine and the cosine of each angle variable� hence no trigonometric function
calls are needed for the computation of the Jacobian� But in order to obtain a starting box for the
Hansen�Sengupta operator we need an interval version of the arctan function� and for the evaluation of
f�mid�X�� interval versions of the sine and the cosine function are necessary� Finally� in order to get
the sines and cosines of the result of the Hansen�Sengupta operator for the next tightening step� further
interval sine and cosine function calls are needed� The interval versions of trigonometric and inverse
trigonometric functions which we use in our experiments are based on direction rounded� truncated
Taylor series� see for example #Rothmaier� ����$� #Braune and Kr
amer� ����$� #Braune� ����$�

��� Experimental Results

In this section we compare three algorithms for solving the robot inverse kinematics problem�

� The rst algorithm IKG �Inverse Kinematics General algorithm� is the same as in Chapter �� For
the Hansen�Sengupta operator we use the system of equations �������� For tightening we use all
�� non�trivial equations of �������� Each angle variable xi is replaced by two variables si� ci for its
sine and cosine and an equation s�i ! c�i � � is added�

� The second algorithm IKS �Inverse Kinematics Specialized algorithm� is as described in this chapter
and exploits the special structure of the kinematic equations�

� The third algorithm IKO �Inverse Kinematics Optimized algorithm� is the same as IKS� except
that for the Hansen�Sengupta operator we are using slopes instead of derivatives� The slopes are
dened as for the successive mean value form� see Section ������ Only after the Hansen�Sengupta
operator with a slope maps a box into its interior� we use a Jacobian for testing uniqueness of the
solution in the box�
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In our experiments we consider the following four examples� The costs for the computation are reported
in Table ����

� Elbow manipulator� see for example #Paul� ����$� This robot has only revolute joints�

i �i di �i ai
� x� � ��� �
� x� � � �
� x� � � �
� x � ���� �
� x	 � ��� �
� x� � � �

Starting Box� #��� �$� #��� �$� #��� �$� #��� �$� #��� �$� #��� �$�
End E�ector Frame�

e �

�
BB�

������ ������ ����� �����
����� ������ ������ �����
����� ������ ����� �����
� � � �

�
CCA �

The problem has � solutions�

� Stanford manipulator� see for example #Paul� ����$� This robot has � revolute joints and � prismatic
joint�

i �i di �i ai
� x� � ���� �
� x� � ��� �
� � x� � �
� x � ���� �
� x	 � ��� �
� x� � � �

Starting Box� #��� �$� #��� �$� #�� �$� #��� �$� #��� �$� #��� �$�
End E�ector Frame�

e �

�
BB�

����� ������ ����� ������
����� ����� ����� �����
������ ����� ����� �����

� � � �

�
CCA �

The problem has � solutions�

� Modied Stanford manipulator� All parameters are the same as for the Stanford manipulator except
for �	 and a	� Note that neither sin��	� � � nor cos��	� � �� hence the corresponding algebraic
system of equations is more dense than in the previous example�

i �i di �i ai
� x� � ���� �
� x� � ��� �
� � x� � �
� x � ���� �
� x	 � ��� �
� x� � � �

Starting Box� #��� �$� #��� �$� #�� �$� #��� �$� #��� �$� #��� �$�
End E�ector Frame�

e �

�
BB�

����� ������ ����� ������
����� ����� ����� �����
������ ����� ����� ������

� � � �

�
CCA �

The problem has � solutions�
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� This example is the same as the previous one except that the last joint is replaced by a prismatic
joint�

i �i di �i ai
� x� � ���� �
� x� � ��� �
� � x� � �
� x � ���� �
� x	 � ��� �
� � x� � �

Starting Box� #��� �$� #��� �$� #�� �$� #��� �$� #��� �$� #�� �$�
End E�ector Frame�

e �

�
BB�

����� ������ ����� ������
����� ����� ����� �����
������ ����� ����� ������

� � � �

�
CCA �

The problem has � solution�

In all examples except for the Stanford Manipulator IKS is faster than IKG and in all cases IKO is faster
than IKS� While the di�erence between IKO and IKS is roughly the same in all cases� the performance
of IKG deviates signicantly� In the Elbow Manipulator example IKG is more than ��� times more
expensive than IKO whereas in the case of the Stanford Manipulator the di�erence is negligible�

��� Parallelization

We parallelize algorithm IKO on a workstation network and on the super computer CS	�HA using
PVM #Geist et al�� ����$ for the parallelization primitives� In both cases we apply a manager�worker
scheme� For the super computer implementation this works well up to about �� processors� If more
processors are used� the manager is a bottle neck� We solve this problem by using a more sophisticated
load balancing method and report experimental results with up to �� processors�

����� Parallelization on a Workstation Network

In this section we describe the parallelization of algorithm IKO on a workstation network and report
experimental results with up to � machines� For the parallelization we use the following simple manager�
worker scheme�

Manager� The manager holds the list of boxes which have to be worked on and a list of idle workers�
If there is a box in the list and an idle worker� he sends the box to the worker� Otherwise he waits for
a message from a worker and updates the list of boxes� solutions and idle workers� If there are no more
boxes and all workers are idle� he sends a termination message to each worker�

Worker� Each worker performs the following loop�

��� Receive a message from the manager which tells the worker either to terminate or contains a box
to work on�

��� Perform tightening and the Hansen�Sengupta operator as described in the previous section as long
as the box is reduced signicantly� If the box is canceled thereby then send a message to the
manager indicating that the worker is idle and go to ���� If the box is too small to continue working
on it or if it is detected that it contains a unique solution� then send the box to the manager and
indicate that the worker is idle�
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Elbow Manipulator

Total �MFlop� Hansen�Sengupta Tightening Bisections
calls avg� �Flop� calls avg� �Flop�

IKG ������� ������ ����� ������ ����� ������

IKS ���� ���� ���� ����� ���� ����

IKO ���� ���� ���� ����� ���� ����

Stanford Manipulator

Total �MFlop� Hansen�Sengupta Tightening Bisections
calls avg� �Flop� calls avg� �Flop�

IKG ��� ��� ����� ��� ���� ���

IKS ��� ���� ���� ���� ���� ���

IKO ��� ��� ���� ���� ���� ���

Modied Stanford Manipulator �

Total �MFlop� Hansen�Sengupta Tightening Bisections
calls avg� �Flop� calls avg� �Flop�

IKG ����� ����� ����� ����� ���� �����

IKS ����� ����� ���� ����� ���� �����

IKO ���� ����� ���� ����� ���� ����

Modied Stanford Manipulator �

Total �MFlop� Hansen�Sengupta Tightening Bisections
calls avg� �Flop� calls avg� �Flop�

IKG ���� ���� ����� ���� ���� ����

IKS ��� ��� ���� ��� ���� ���

IKO ��� ��� ���� ��� ���� ���

Table ������ Experimental comparison of � algorithms for solving the inverse kinematics problem�
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��� Bisect the box� send one half to the manager and continue with the other half at ����

The algorithm is implemented in the C!! language using PVM for the parallelization primitives� The
network consists of Silicon Graphics workstations with MIPS R����A�R���� processors and �� MHz
clock frequency� The manager and each worker runs on a separate machine� Experimental results with
up to � workers are reported in Table ������ The utilization is obtained by dividing the speedup with n
workers by n� i�e� the manager is not taken into account� For the experiments we are using the same
examples as in the previous section� All computing times are measured in seconds using wall clock�

����� Parallelization on the Super Computer CS��HA

In this section we parallelize algorithm IKO on the MIMD super computer CS	�HA at the European
Center for Parallel Computing in Vienna �VCPC��

In its current conguration the CS	�HA has ��� processing elements� each consisting of � Super SPARC
shared memory �� MHz processors� � MB cache and �� MB RAM� The CS	�HA is divided into several
partitions where the largest partition comprises �� processors� The communication is supported by
proprietary communication and switching chips� Each processing element interfaces the network through
an Elan communications chip� which relives the CPU from communications processing� The Elan is
a RISC processor which has a shared memory interface to the CPU and has two �	way �� MHz byte
wide data links to connect to the network providing �� MB�s user bandwidth� The network itself is a
multi�stage packet switch with ��� MB�sec�link and is built of Elite ��� crosspoint switches� As well as
supporting point�to�point connectivity� the data network provides hardware broadcast at full bandwidth�

Manager�Worker Scheme� First� we tested the same simple manager�worker scheme as for the
workstation implementation described in the previous section on the CS	�HA� Both implementations are
based on PVM� hence only minor modications of the program were necessary� Experimental results
are reported in Table ������ As loading and starting the processes involves negotiation with the resource
manager� which can cause arbitrary delays� we do not take the startup time into account�

For the larger two examples �Elbow and Modied Stanford �� the worker utilization is higher than ��(
up to �� processors' However� in all cases the maximum speedup is already achieved with roughly �����
processors and using more than �� processors increases the computing time� There might be two reasons
for this�

� Limited number of boxes which can be worked on simultaneously�

� The manager is a bottle neck�

Modi�ed Manager�Worker Scheme� Let us rst assume that there are not enough boxes available
which can be processed at the same time� Note that at the beginning of the program only one box is
processed� after that there are two boxes which can be worked on in parallel and so on� This means that
although a large number of boxes has to be processed� it is possible that there are only few boxes which
are available at the same time� The low parallelization degree especially at the beginning of the program
execution can be resolved if the strategy of the manager is modied slightly as follows� If there is more
than one idle worker but only one available box� then the manager splits the box and assigns one half
to a worker� This means that immediately after the program starts� all workers are busy� Experimental
results obtained with this modication are reported in Table ������

Apparently the modication in the manager strategy does not resolve the problem that using more than
�� processors gives no performance improvement� Qualitatively the results in Table ����� are the same
as in Table ������ Hence� it seems that the manger is the bottleneck�

Explicit Load Balancing Scheme� The idea to overcome the manager bottleneck is to employ several
managers and assign a xed number of workers to each manager� Further� there is a meta manager which
is in charge of load balancing between the managers�
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Elbow Manipulator

Workers seq � � � � � � � �

Time �sec� ����� ����� ����� ����� ����� ����� ����� ���� ����

Speedup � ���� ���� ���� ���� ���� ���� ���� ����

Utilization � ���� ���� ���� ���� ���� ���� ���� ����

Stanford Manipulator

Workers seq � � � � � � � �

Time �sec� ���� ���� ���� ���� ���� ���� ���� ���� ����

Speedup � ���� ���� ���� ���� ���� ���� ���� ����

Utilization � ���� ���� ���� ���� ���� ���� ���� ����

Modied Stanford Manipulator �

Workers seq � � � � � � � �

Time �sec� ����� ����� ����� ����� ����� ����� ����� ����� �����

Speedup � ���� ���� ���� ���� ���� ���� ���� ����

Utilization � ���� ���� ���� ���� ���� ���� ���� ����

Modied Stanford Manipulator �

Workers seq � � � � � � � �

Time �sec� ���� ���� ���� ���� ���� ��� ��� ��� ���

Speedup � ���� ���� ���� ���� ���� ���� ���� ����

Utilization � ���� ���� ���� ���� ���� ���� ���� ����

Table ������ Workstation network implementation of algorithm IKO for the inverse kinematics problem�
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Elbow Manipulator

Workers seq � � � �� �� �� �� �� �� ��

Time �sec� ����� ���� ���� ���� ��� ��� ��� ��� ��� ��� ���

Speedup � ���� ���� ���� ����� ����� ����� ����� ����� ����� �����

Utilization � ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

Stanford Manipulator

Workers seq � � � �� �� �� �� �� �� ��

Time �sec� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

Speedup � ���� ���� ���� ����� ����� ����� ����� ����� ����� �����

Utilization � ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

Modied Stanford Manipulator �

Workers seq � � � �� �� �� �� �� �� ��

Time �sec� ����� ����� ���� ���� ���� ���� ���� ���� ���� ���� ����

Speedup � ���� ���� ���� ����� ����� ����� ����� ����� ����� �����

Utilization � ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

Modied Stanford Manipulator �

Workers seq � � � �� �� �� �� �� �� ��

Time �sec� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

Speedup � ���� ���� ���� ����� ����� ����� ����� ���� ���� ����

Utilization � ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

Table ������ Manager�worker implementation of algorithm IKO for the inverse kinematics problem on a
super computer�
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Elbow Manipulator

Workers seq � � � �� �� �� �� �� �� ��

Time �sec� ����� ���� ���� ���� ��� ��� ��� ��� ��� ��� ���

Speedup � ���� ���� ���� ����� ����� ����� ����� ����� ����� �����

Utilization � ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

Stanford Manipulator

Workers seq � � � �� �� �� �� �� �� ��

Time �sec� ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

Speedup � ���� ���� ���� ����� ����� ����� ����� ����� ����� ����

Utilization � ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

Modied Stanford Manipulator �

Workers seq � � � �� �� �� �� �� �� ��

Time �sec� ����� ����� ���� ���� ���� ���� ���� ���� ���� ���� ����

Speedup � ���� ���� ���� ����� ����� ����� ����� ����� ����� �����

Utilization � ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

Modied Stanford Manipulator �

Workers seq � � � �� �� �� �� �� �� ��

Time �sec� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

Speedup � ���� ���� ���� ����� ����� ���� ���� ���� ���� ����

Utilization � ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

Table ������ Modied manager�worker implementation of algorithm IKO for the inverse kinematics prob	
lem on a super computer� The manager bisects a box if there are more than one idle workers and only
one available box�



The task of the managers and workers is basically the same as in the previous approach except that from
time to time each manager reports his current load to the meta manager� The load of a manager is the
di�erence between the number of boxes on his stack and the number of his idle workers� If the meta
manager detects a signicant load imbalance� he sends a message to the most loaded manager indicating
that he should give work to the least loaded manager�

This approach requires that some parameters are xed� Experimentally the following values turned out
to be reasonable�

� The number of managers is determined such that each manager has approximately �� workers�

� A manager reports his load to the meta manger if the load information at the meta manager di�ers
at least by ��

� If according to the information available at the meta manager the most loaded manager has a load
of at least � and the least loaded manager has a load of less than �� then the meta manager issues
a work shift between these two managers�

� If a manager is told to send work to another manager� he attempts to send as many boxes such that
both managers are equally loaded� The information about the load of the recipient of the work is
provided by the meta manager�

A problem with this approach is how to detect termination� Each manager sends a message to the meta
manager when he has no more work and all his workers are idle� But this information is not su�cient
for the meta manager to decide whether all work is done because there might still be some load balance
messages under way� Hence� in addition each manager counts the number of sent and received messages
between himself� other managers and the meta manger� If a manager has no more work and all his
workers are idle� then he sends these numbers to the meta manager� After the meta manager received
such a message from every manager� he checks whether the total number of sent and received messages
is consistent with his own message count and if so� he sends a termination message to all managers and
workers�

Experimental results of this implementation are reported in Table ������ For the larger examples �Elbow
and Modied Stanford �� we obtain a worker utilization of at least ��( even with the maximumnumber
of processors� In this case the computing time is less than half of the manager�worker approach� For
the Stanford Manipulator example we get speedups until the maximum number of processors which are
signicantly higher than in the previous approach� Only for the Modied Stanford Manipulator � example
no improvement over the simple manager�worker scheme is achieved� However� as shown in Table ����
in this example the total number of boxes which are processed is only ��� and it seems that this is not
enough for an e�cient parallelization�

���



Elbow Manipulator

Workers seq � � � �� �� �� �� �� �� ��

Managers � � � � � � � � � � �

Time �sec� ����� ����� ���� ���� ���� ��� ��� ��� ��� ��� ���

Speedup � ���� ���� ���� ����� ����� ����� ����� ����� ����� �����

Utilization � ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

Stanford Manipulator

Workers seq � � � �� �� �� �� �� �� ��

Managers � � � � � � � � � � �

Time �sec� ���� ���� ��� ��� ��� ��� ��� ��� ��� ��� ���

Speedup � ���� ���� ���� ����� ����� ����� ����� ����� ����� �����

Utilization � ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

Modied Stanford Manipulator �

Workers seq � � � �� �� �� �� �� �� ��

Managers � � � � � � � � � � �

Time �sec� ����� ����� ���� ���� ���� ���� ��� ��� ��� ��� ���

Speedup � ���� ���� ���� ����� ����� ����� ����� ����� ����� �����

Utilization � ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

Modied Stanford Manipulator �

Workers seq � � � �� �� �� �� �� �� ��

Managers � � � � � � � � � � �

Time �sec� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

Speedup � ���� ���� ���� ���� ����� ����� ����� ����� ���� ����

Utilization � ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

Table ������ Explicit load balancing implementation of algorithm IKO for the inverse kinematics problem
on a super computer� The work is distributed dynamically between the managers�

���
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