Interval Methods for

Bounding the Range of Polynomials and
Solving Systems of Nonlinear Equations

Dissertation

zur Erlangung des akademischen Grades
“Doktor der technischen Wissenschaften”

Eingereicht von
Dipl.-Inf. Volker Stahl

September 1995

Erster Begutachter: o.Univ.-Prof. Dr. Dr. Bruno Buchberger
Zweiter Begutachter: o.Univ.-Prof. Dr. Jens Volkert

Angefertigt am Forschungsinstitut fur Symbolisches Rechnen
Technisch-Naturwissenschaftliche Fakultat
Johannes Kepler Universitat Linz

i

Eidesstattliche Erklarung

Ich versichere, dafl ich die Dissertation selbstandig verfait habe, andere als die angegebenen Quellen und
Hilfsmittel nicht verwendet und mich auch sonst keiner unerlaubten Hilfe bedient habe.

Volker Stahl
Hagenberg, 15. September 1995

v

Acknowledgments

Heartfelt thanks go to my scientific adviser, Dr. Hoon Hong, for making me familiar with constraint
solving and interval methods, for his patient support and his indefatigable interest in my thesis and last
but not least for his friendship. He invested much more time and effort in me than one could expect from
any adviser — also for raising research projects for my financial support. Thank you very much Hoon, I
will never forget what you did for me.

I am deeply indebted to Prof. Dr. Dr. Bruno Buchberger for his selfless dedication to the Research
Institute for Symbolic Computation, where this thesis was written. Thank you also for the excellent
introduction to scientific working in the “Thinking, Speaking, Writing” courses.

I am grateful to Prof. Dr. Jens Volkert for serving on my thesis committee.

Several members of RISC contributed to this thesis in one way or another. In particular, I want to
mention my colleagues in the STURM group — thanks for our close and fruitful teamwork and for the
inspirations which I got from our discussions.

I want to thank my parents Siegfried and Irmgard Stahl who enabled me to study and do research in
whatever area I decided. Together with my brother Axel they encouraged and motivated me in moments
of frustration and gave me a home where I could take refuge any time.

A fellowship of the Deutsch—Osterreichische Akademische Austauschdienst provided financial support
during two years in Austria. I am grateful to Dr. Volker Strehl and to Dr. Jochen Pfalzgraf for their
assistance in obtaining that support.

This research was done within the framework of the ACCLAIM project sponsored by the Furopean
Community Basic Research Action (ESPRIT 7195) and the Austrian Science Foundation (P9374-PHY).

vi

Abstract

This thesis describes systematically known and new results on bounding the range of polynomials and
solving systems of nonlinear equations using interval methods.

Range of Polynomials. Bounding the range of polynomials is an important sub—problem in many

disciplines of scientific computing. The main original results of this thesis are as follows:

e Centered Form. We give a new, more elementary, proof of the known quadratic convergence of centered
forms.

o Horner Form. For every polynomial f there exists an interval O; such that for every interval X, whose

interior is disjoint from O}, the Horner evaluation of f on X is exact. The smallest such Oy is the hull of
all roots of the intermediate polynomials arising during the Horner evaluation of f. During evaluation
of f on X this non—overestimation condition can be decided without additional computation. We
failed to find a necessary and sufficient non—overestimation condition but found some further sufficient
conditions.
If the input interval of the Horner form contains zero, then we bisect it at zero and evaluate both parts
separately. As both parts have one endpoint zero, the total cost for both evaluations is comparable
to the cost of the ordinary Horner form but gives usually tighter inclusions. If the dense Horner form
evaluated on X overestimates, then any bisection of X gives an improvement. If X is centered, then
bisection at the midpoint reduces the overestimation error of the dense Horner form at least by half.
This observation is used to reduce the overestimation error of the dense Taylor form at least by half.

e Mean Value Form. The width of the mean value form is the same for any choice of a center between
the optimal centers of the bicentered mean value form. This width is smaller than if the center is chosen
differently. Hence, the midpoint is a width optimal center for the mean value form.

e Bernstein Form. For the Bernstein form we show that it is inclusion monotone and that it gives the
exact range provided the input interval is “small enough”. If the input interval contains zero, we bisect
it at zero and evaluate the parts separately. This gives tighter inclusions and allows faster evaluation
because each sub—interval has one endpoint zero and hence the Taylor coefficient computation is trivial.

e Interpolation Form. We present some accuracy improvements of interpolation forms by combining them
with the concept of slopes and bicentered forms.

e Nested Form. For multivariate polynomials we define the nested form, which 1s motivated by eliminating
common subexpressions and by exploiting the subdistributivity law. It is roughly as accurate as the
Horner form but less expensive.

e Ezperimental Comparison. Finally, we compare various univariate and multivariate range computa-
tion methods experimentally in the context of Newton’s method and a global optimization algorithm.
Therefore, we give an implementation of extended interval arithmetic on top of the IEEE standard 754
and prove its correctness.

Solution of Systems of Equations. The second part of the thesis is devoted to solving systems of

nonlinear equations. Qur contribution is as follows:

e Acceleration. In order to accelerate the known algorithms we introduce a new operation called tigh-
tening. The idea is to evaluate a multivariate equation in all variables except for one on the given
box and to solve the obtained univariate interval equation. Tightening can be applied directly to the
given equations or to linearizations of them. When applied to linearizations, tightening is equivalent
to the non-preconditioned Hansen-Sengupta operator with a different strategy for choosing equa-
tions and variables. We give a uniform and geometric framework for linearized tightening and the
Hansen—Sengupta operator. Then we give a new condition for non—existence of solutions for linearized
tightening. According to experimental results tightening usually leads to significant speedups.

e Termination. Certain interval methods fail to terminate if the search space is decomposed in such a
way that a solution lies on the boundary of some sub—box. We solve this problem by slightly enlarging
the given box X obtaining X, testing whether the Hansen—Sengupta operator converges starting from
X and if so0, iterating until we obtain a box Y which is either in the interior of X or disjoint from X.
We prove correctness and termination of this algorithm under the assumption that the system has only
finitely many simple solutions and the floating point number accuracy is high enough.

e Application to Robotics. We apply the techniques developed above to the robot inverse kinematics prob-
lem. Exploiting the inherent structure of this problem results in a significant efficiency improvement.
Experimental results of a parallel implementation on a workstation network and on a super computer
using PVM are reported.

vil

viil

Zusammenfassung

Inhalt dieser Arbeit ist eine systematische Darstellung bekannter und neuer Ergebnisse tiber die Ein-
grenzung des Wertebereichs von Polynomen und iber die Losung nichtlinearer Gleichungssysteme mit
Intervallmethoden.

Wertebereich von Polynomen. Die Eingrenzung des Wertebereichs von Polynomen ist ein elementares
Teilproblem in vielen Disziplinen wissenschaftlichen Rechnens. Die wichtigsten neuen Ergebnisse dieser
Arbeit sind wie folgt:

e Zentrische Form. Wir geben einen neuen, elementareren Beweis der bekannten quadratischen Konver-
genz zentrischer Formen.

o Horner Form. Fir jedes Polynom f existiert ein Intervall O; so daf fiir jedes X, dessen Inneres O nicht

schneidet, das Horner Schema von f auf X exakt ist. Das kleinste solche Oy ist die Hulle der Nullstellen
der Teilpolynome, die wahrend der Hornerauswertung von f auftreten. Wahrend der Auswertung
von f auf X kann diese Nicht—Uberabschatzungsbedingung ohne Zusatzaufwand getestet werden. Es
ist uns nicht gelungen, eine notwendige und hinreichende Bedingung fur Nicht—Uberabschatzung zu
formulieren, stattdessen fanden wir einige andere hinreichende Bedingungen.
Falls das Argument Intervall der Horner Form Null enthalt, spalten wir es bei Null und werten beide
Teile separat aus. Da beide Teile einen Endpunkt Null haben, sind die Gesamtkosten fir beide Auswer-
tungen vergleichbar mit denen des gewohnlichen Horner Schemas, aber die Eingrenzung ist im allge-
meinen genauer. Falls die dichte Horner Form ausgewertet auf X eine Uberabschatzung liefert, dann
wird durch zerteilen von X immer eine Verbesserung erzielt. Falls X zentriert ist, dann wird durch
zerteilen am Mittelpunkt der Uberabschéitzungsfehler der dichten Horner Form mindestens um die
Halfte reduziert. Diese Beobachtung wird ausgenutzt um den Uberabschéitzungsfehler der dichten Tay-
lor Form um mindestens die Halfte zu reduzieren.

o Mittelwertsform. Die Weite der Mittelwertsform ist die selbe fur jede Wahl des Zentrums zwischen
den optimalen Zentren der bizentrischen Mittelwertsform. Diese Weite ist kleiner als wenn ein anderes
Zentrum gewahlt wird. Daher ist der Mittelpunkt ein optimales Zentrum der Mittelwertsform.

e Bernstein Form. Fir die Bernstein Form zeigen wir Inklusionsmonotonie und daf fir “hinreichend
kleine” Intervalle keine Uberabschatzung eintritt. Wenn das Argument Intervall Null enthalt, spalten
wir es bei Null und werten die Teile separat aus. Dies fuhrt zu engeren Eingrenzungen und erlaubt
schnellere Auswertung, da jedes Teilintervall einen Endpunkt Null hat und daher die Berechnung der
Taylor Koeffizienten trivial ist.

o Interpolationsform. Wir geben einige Verbesserungen der Genauigkeit von Interpolationsformen, indem
wir sie mit dem Konzept von Steigungen und bizentrischen Formen kombinieren.

e (Geschachtelte Form. Fur multivariate Polynome definieren wir die geschachtelte Form, die durch die
Eliminierung gemeinsamer Teilausdriicke und die Ausnutzung des Subdistributivitatsgesetzes motiviert
ist. Sie ist etwa gleich genau wie die Horner Form, aber schneller.

o Ezperimenteller Vergleich. Wir vergleichen verschiedene univariate und multivariate Wertebereichsme-
thoden experimentell im Kontext des Newton Verfahrens und eines globalen Optimierungsalgorithmus.
Dazu implementieren wir generalisierte Intervallarithmetik basierend auf dem IEEE Standard 754 und
beweisen die Korrektheit.

Losung von Gleichungssystemen. Der zweite Teil der Arbeit ist der Losung nichtlinearer Gleichungs-

systeme gewidmet. Unser Beitrag ist wie folgt:

o Effizienz. Um die bekannten Algorithmen zu beschleunigen definieren wir eine neue Operation genannt
Einengung. Die Idee ist, eine multivariate Gleichung in allen Variablen aufler einer auf dem gegebe-
nen Intervall auszuwerten und die so erhaltene Intervallgleichung zu losen. Finengung kann entweder
direkt auf die gegebenen Gleichungen angewandt werden oder auf Linearisierungen. Angewandt auf
Linearisierungen ist Einengung gleichbedeutend mit dem unkonditionierten Hansen—Sengupta Operator
mit einer anderen Strategie fur die Auswahl von Gleichungen und Variablen. Wir geben eine einheitliche
und geometrische Darstellung von linearisierter Einengung und Hansen—Sengupta Operator und zeigen
ein neues Kriterium fur die Nichtexistenz von Losungen fur linearisierte Einengung. Entsprechend
unserer experimentellen Ergebnisse fuhrt Einengung im allgemeinen zu deutlichen Beschleunigungen.

o Terminterung. Gewisse Intervallmethoden terminieren nicht wenn der Suchraum so zerteilt wird, dafl
eine Losung am Rand eines Teilintervalls liegt. Wir l1osen dieses Problem indem wir eine geringe
VergréBerung X des gegebenen Intervalls X bestimmen, testen ob der Hansen-Sengupta Operator

1X

ausgehend von X konvergiert und in diesem Fall so lang iterieren bis wir ein Interval Y erhalten, welches
entweder im Innern von X liegt oder disjunkt von X ist. Wir beweisen Korrektheit und Terminierung
dieses Algorithmus unter der Annahme, dafl das Gleichungssystem nur endlich viele einfache Losungen
hat und die Gleitkommagenauigkeit ausreicht.

o Anwendung auf Robotik. Wir wenden die oben beschriebenen Techniken auf das inverse Roboter Kine-
matikproblem an. Durch Ausnutzung der inherenten Struktur dieses Problems wird eine deutliche
Effizienzverbesserung erzielt. Experimentelle Ergebnisse einer Implementierung auf einem Workstation
Netzwerk und einem Superrechner unter Verwendung von PVM werden berichtet.

Contents

Overview

Symbol Index

1

3

Interval Arithmetic
1.1 Foundations
1.2 Topology on the Set of Intervals
1.3 Interval Functions
1.3.1 Properties of Interval Functions 0L
1.3.1.1 Inclusion Monotonicity
1.3.1.2 Continuity
1.3.1.3 Lapschitz Property
1.3.2 Inclusion of the Range of Real Functions
1.3.2.1 Interval Extensions

1.3.2.2 Centered Forms

Implementation of Interval Arithmetic

2.1 The IEEE Standard 754 for Binary Floating Point Arithmetic
2.1.1 Floating Point Number Formats
2.1.2 Predicates
2.1.3 Direction Rounded Arithmetic L oo
2.1.4 Exception Handling

2.2 Floating Point Number Arithmetic
2.2.1 Basic Algorithms on Floating Point Numbers

2.3 Floating Point Interval Arithmetic o 000

2.3.1 Basic Algorithms on Floating Point Intervals

Inclusion of the Range of Univariate Polynomials
3.1 Horner Form e
3.1.1 Non—Overestimation of Horner Form
3.1.1.1 A Sufficient Condition for Non—-Overestimation

3.1.1.2 Optimality of the Non—Overestimation Condition

x1

= O O v L O ot >

_= = =
= W W

18
19
19
19
20
20
20
24
25
31

3.1.1.3 Algorithmic Test of the Non—Overestimation Condition 49

3.1.1.4 Further Cases where Horner Form is Exact 52

3.1.2 Improvements if the Input Interval does not Contain Zero 57
3.1.2.1 FEfficiency Improvemento 58

3.1.2.2 Separate Computation of Upper and Lower Bound 58

3.1.3 Bisection of the Input Interval 0. 60
3.1.3.1 Bisection at Zero 61

3.1.3.2 Bisection at the Midpoint for the Dense Horner Form 63

3.1.4 Horner Form for Interval Polynomials 67

3.2 Mean Value Form 68
3.2.1 Slope Form 71
3.2.2 Bicentered Mean Value Form 75
3.2.3 Experimental Results 81

3.3 Taylor Form 81
3.3.1 Bisection at Zero 87
3.3.2 Experimental Results 88

3.4 Bernstein Form L 89
3.4.1 Bisection at Zero 109
3.4.2 Experimental Results 110

3.5 Interpolation Form 111
3.5.1 Reduction of the Overestimation Error, 114
3.5.2 Slopes Instead of Derivatives 117
3.5.3 Parabolic Boundary Value Form 118
3.5.4 Experimental Results o 120

3.6 Experimental Comparison 123
3.6.1 Efficiency and Accuracy for Random Polynomials. 123
3.6.2 Newton’s Method 124
3.6.3 Global Optimization 132
Inclusion of the Range of Multivariate Polynomials 135
4.1 Horner Form e 135
411 Nested Form 137
4.1.2 Experimental Results 0 141

4.2 Mean Value Form 143
4.2.1 Successive Mean Value Form 0. 148
4.2.2 Successive Slope Form oL 150
4.2.3 Bicentered Mean Value Form L. 154
4.2.4 Successive Bicentered Mean Value Form 157
4.2.5 Experimental Results o 163

x11

4.3 Experimental Comparison
4.3.1 Efficiency and Accuracy for Random Polynomials.
4.3.2 Global Optimization

4.3.3 Solution of Systems of Nonlinear Equations

Isolating Boxes for Systems of Nonlinear Equations
5.1 Existence of SolutionsinaBox o
5.2 Uniqueness of Solutionsina Box
5.3 Non-Existence of Solutionsina Box
5.4 Linear Tightening e
5.4.1 FElementary Properties of Linear Tightening
5.4.2 Face Disjointness by Linear Tightening
5.4.3 Pseudo Continuity of Linear Tightening
5.4.4 Existence, Uniqueness and Non-Existence by Linear Tightening
5.4.5 The Unique Existence Condition of Linearized Tightening is Too Strong
5.5 Linearized Tightening Operator 0
5.6 Hansen—Sengupta Operator
5.7 Tterated Linear Tightening
5.7.1 Existence by Intersected Linearizations
5.7.2 Tightening with Multiple Linearizations
5.7.3 TIteration of the Hansen—Sengupta Operator
5.8 Convergence of the Hansen—Sengupta Operator
5.9 Termination e
5.9.1 Solutions at the Boundary of Boxes,
5.10 Unbounded Start Regions for Polynomial Systems
5.11 Experimental Results

Nonlinear Tightening

6.1 Definition of Nonlinear Tightening L.

6.2 Combined Algorithm for Finding Isolating Boxes

6.3 Tlustration Lo

6.4 Algorithm for Tightening L
6.4.1 Solving Inequalities L L
6.4.2 Finding Bounding Functionso

6.5 Experimental Results

Solution of the Robot Inverse Kinematics Problem
7.1 Kinematic Equations
7.2 Forward Kinematics

7.3 Inverse Kinematics

xiil

181
182
186
189
193
193
196
198
202
205
205
209
213
217
219
221
222
228
230
233
235

239
239
240
241
242
243
244
244

7.3.1 Tightening Lo 249

7.3.2 Hansen—Sengupta Operator 249

7.4 Experimental Results 250
7.5 Parallelization 252
7.5.1 Parallelization on a Workstation Network 252

7.5.2 Parallelization on the Super Computer CS-2HA 254
Bibliography 261
Vita 272

x1v

Overview

This thesis describes systematically known and new results on bounding the range of polynomials and
solving systems of nonlinear equations using interval methods. The known results are presented as
described by the table of contents whereas the new results are scattered throughout the thesis. Thus, in
this overview we emphasize the original contributions.

Chapter 1 contains an introduction to the main concepts of interval arithmetic. In particular we give
a general definition of centered forms (Definition 1.3.25, page 14) and a new, more elementary, proof of
their quadratic convergence (Theorem 1.3.27, page 15).

An implementation of extended interval arithmetic on top of the IEEE standard 754 for binary floating
point numbers and the proof of its correctness is subject of Chapter 2.

In Chapter 3 we discuss methods for bounding the range of univariate polynomials. The main original

results are as follows:

e Horner Form. For every polynomial f there exists an interval O; such that for every interval X which
is disjoint from the interior of O, the Horner evaluation of f on X is exact (Theorem 3.1.12, page 43).
The smallest such Oy is the hull of all roots of the intermediate polynomials arising during the Horner
evaluation of f. Theorem 3.1.15, page 46). During evaluation of f on X this non—overestimation
condition can be decided without additional computation. (Theorem 3.1.22, page 50). Further sufficient
conditions for non—overestimation of the Horner form are given by Theorem 3.1.26, Corollary 3.1.30,
Corollary 3.1.31 and Theorem 3.1.32.

If the input interval of the Horner form does not contain zero then the evaluation can be accelerated
by replacing some interval power computations by number power computations (Algorithm 3.1.33,
page 58). This observation is also used to speed up the separate computation of upper or lower bound
of the Horner form (Algorithm 3.1.35, page 59).

If the input interval of the Horner form contains zero, then we bisect 1t at zero and evaluate both halves
separately. As both halves have one endpoint zero, the total cost for the evaluations is comparable to
the cost of the ordinary Horner form but gives usually tighter inclusions (Algorithm 3.1.38, page 61).
If the dense Horner form evaluated on X overestimates, then any bisection of X gives an improvement
(Theorem 3.1.43, page 64). If X is centered, then bisection at the midpoint reduces the overestimation
error of the dense Horner form at least by half (Theorem 3.1.45, page 65). This observation is used to
reduce the overestimation error of the dense Taylor form at least by half (Algorithm 3.3.12, page 88).

o Mean Value Form. Any choice of a center between the optimal centers of the bicentered mean value
form results in the same width of the mean value form, which is smaller than if the center is chosen
differently (Theorem 3.2.22, page 78). Hence, the midpoint is a width optimal center for the mean
value form.

e Bernstein Form. For the Bernstein form we show that it is inclusion monotone (Theorem 3.4.17,
page 98) and that it gives the exact range provided the input interval is “small enough” (Theorem 3.4.19,
page 104). If the input interval contains zero, we bisect it at zero. This gives tighter inclusions and al-
lows faster evaluation because each sub—interval has one endpoint zero and hence the Taylor coefficient
computation is trivial (Algorithm 3.4.25, page 110).

e Interpolation Form. We present some accuracy improvements of interpolation forms by combining them
with the concept of bicentered forms (Section 3.5.1) and slopes (Section 3.5.2).

e Ezperimental Comparison. Finally, we compare various range computation methods experimentally at
some classes of random polynomials, in the context of Newton’s method, and in the context of a global
optimization algorithm.

Chapter 4 generalizes some results of Chapter 3 to the multivariate case. For efficiency reasons we
restrict our considerations to methods which preserve sparsity of the given polynomial. In particular,
we introduce the nested form, (Definition 4.1.11, page 140) which is motivated by eliminating common
subexpressions and by exploiting the subdistributivity law. It is roughly as accurate as the Horner
form but less expensive. Again, we compare multivariate range computation methods at some classes of
random polynomials, in the context of a root finding algorithm, and in the context of a global optimization
algorithm.

Chapter 5 and Chapter 6 are concerned with the solution of systems of nonlinear equations. In Chapter 5
we review methods for testing existence, uniqueness and non—existence of solutions in a box and give
elementary geometric proofs of the main theorems. We introduce a modification of the Hansen—Sengupta
operator called linearized tightening and give a new non—existence property (Theorem 5.3.2, page 189).
While linearized tightening is not as powerful as the Hansen—Sengupta operator for testing uniqueness
and existence of solutions (Section 5.4.5), experimental results indicate that it still leads in many cases
to an efficiency improvement (Table 5.11.1, page 238).

Certain algorithms for solving systems of nonlinear equations fail to terminate if the search space is
decomposed in such a way that a solution lies on the boundary of some sub—box. We solve this problem
by slightly enlarging the given box X obtaining X, testing whether the Hansen-Sengupta operator
converges starting from X and if so, iterating until we obtain a box ¥ which is either in the interior
of X or digjoint from X. (Algorithm 5.9.4, page 230). We prove correctness and termination of this
algorithm under the assumption that the system has only finitely many simple solutions and the floating
point number accuracy is high enough (Section 5.9). Finally, we review a method for finding all solutions
of a system of polynomial equations when the search space is unbounded (Section 5.10).

In Chapter 6 we introduce a new method called tightening for pruning the search space. Various
experiments show that applying tightening in a Hansen—Sengupta operator based solver gives usually
significant efficiency improvements (Table 6.5.1, page 245).

Finally, in Chapter 7 we apply the methods developed above to the robot inverse kinematics problem.
The computation is accelerated by exploiting the inherent structure of this problem (Table 7.4, page 253).
Experimental results of a parallel implementation on a workstation network (Table 7.5.1, page 255) and
on a super computer (Table 7.5.4, page 259) are reported.

Symbol Index

Coefficient matrix of the linear interval function G, 2 € IR**"
Element of 2, a € R"*"

Bernstein form of order &
The j-th Bernstein coefficient of f of order &

The j-th Bernstein coefficient of f of order k over X
Boundary of X

Distributed form of f

Sequence, §* = {61,...,6m), 6 € R

Point function R" — R

Interval function TR" — TR

Floating point interval function F : ITF* — I, F(A) = o(F(¢(A)))
Set of functions TR" — TR

Set of floating point numbers

Set of ordinary floating point numbers

Set of generalized floating point numbers
Interpretation function for ordinary floating point numbers, ¢ : F, — R
Linear interval function, G : R" — IR"

Generalized division, gdiv : TRy x TRy x TRy — P(IR)
Univariate / Multivariate Horner form of f

Dense Horner form of f

Horner form with bisection at 0

Hull division, hdiv : TRy x IRy x IRy

Set of sub—intervals of A

Interpolation form of f

Modified interpolation form of f

Slope interpolation form of f

Parabolic boundary value form of f

Set of floating point intervals

IFy = IPU{(4, 1)} B

Interior, int(X) = X\{X, X}

Set of closed and bounded intervals over R

Set of extended intervals

TRy =TRUD

m@ =IRUY

Lipschitz constant

Lipschitz constant of F'in A

Lipschitz constant for the overestimation of f by F' in A
Mid, mid(X) = 1/2(X + X)

Preconditioning matrix, m € R**"

Univariate / Multivariate mean value form of f
Dense mean value form of f

Slope form of f

184
186
95
90

94
230
141
195
13
9
29
9
21
21
21
21
184
36
39 / 136
40
61
36
12
112
114

117

119
26

26

6

5

26

26

26

11

11

14

6

209

69 / 143
69

71

G

ln4a™ o

|>1|->
| < +<

>0 *0
c > ¥>

—< %L

Dense slope form of f

Univariate / multivariate bicentered mean value form of f
Mean value — Horner form of f

Successive mean value form

Successive slope form

Mean value — Horner form of f

Successive bicentered mean value form of f

Magnitude, mag(X) = max{|z| | z € X}

Mignitude, mig(X) = min{|z| | x € X'}

Nested form of f

Overestimation interval of f

The j-th Bernstein polynomial of order &

The j-th Bernstein polynomial of order k& over X

Path, p* = (p1,...,pm), pe = (Gi,, je)

Powerset

Interpretation function for floating point intervals, 9 : IFy — IRy
Distance, q(X,Y) = max{|X — Y|, |X - Y|}

Distance, ¢(X,Y) = max; q(X;,Y;)

Interval such that Qr 2 Oy

Round to nearest, round up, round down function, z, ﬁ, pR—T
Radius, rad(X) = 1/2(X — X)

Set of real numbers

Rounding function for intervals, o : TRy — IIF

Signed mignitude

Taylor form of f

Dense Taylor form of f

Dense Taylor form of f with bisection

Linear tightening, tight : TR" x (R" — IR) x {1,...,n} — T&}
Width, w(X) = X — X

Maximal width, w(X) = max; w(X;)

Sum of widths, W+()=, w(Xy)

Volume, w (X) [L w(X)

Interval

Interval vector

Lower respectively upper endpoint of the interval X
Absolute value, |X| = {|z| | x € X}

Upper i-face, X = (X1, Xim, X, Xty o0, X))
Lower i-face, x4 — (X1, Xim, X, Xty oo, X))
iface, X = x(Wy x©

Hull operator

Floating point number for oo

Floating point number for —oco
Not a number

Floating point addition rounded to nearest, up, down, i, —Ai—, I IFy
Floating point subtraction rounded to nearest, up, down, —, i i
Floating point multiplication rounded to nearest, up, dow e

\

=LA
Floating point division rounded to nearest, up, down, /,/,/: Fy x Fy — Ty

A

Modified floating point multiplication rounded up, down,

Fu XFﬁ—ﬂFﬁ
,*,*.Fﬁ XFﬁ—ﬂFﬁ

~,\~/2Fﬁ XFuHFﬁ

71
76 / 154
146
148

151
156
157
6

6
140
43
89

92
195
36
26
6
6
46
21
6
5
26
15
83
83

Chapter 1

Interval Arithmetic

This chapter gives a brief introduction to the main concepts of interval arithmetic. For a more com-
prehensive survey we recommend the excellent monographs [Moore, 1966, [Moore, 1979], [Alefeld and
Herzberger, 1983), [Ratschek and Rokne, 1984], [Ratschek and Rokne, 1988], [Neumaier, 1990], [Hansen,
1992] and [Hammer et al., 1993].

In Section 1.1 we define interval arithmetic operations, and give some important algebraic properties.
Further, we introduce notation which will be used throughout the thesis. A topology on the set of
intervals is defined in Section 1.2. Having a topology at hand, important notions like continuity and
convergence are defined. Some elementary properties of interval functions are subject of Section 1.3.
Interval functions usually occur when the range of a real function over an interval has to be estimated.
In this context we give a general definition of a centered form. Concrete instances of centered forms are
presented in Chapter 3 and Chapter 4.

1.1 Foundations

By an interval we mean a set
[a,8] = {z | a <2 < b}

where a,b € R, the set of real numbers. The set of intervals over R is denoted by IR, Intervals are written
in capital letters. The lower and upper endpoint of an interval X is denoted by X respectively X.

In order to distinguish intervals from arbitrary sets, we use a calligraphic font for the latter. If X' is a
bounded set of real numbers, then we write [X] to denote the smallest (w.r.t. C) interval which contains
all elements of X'. We call [X] the hull of X'. For ease of notation we define

[a,b] = [b,a]

for a > b.

By an n-dimensional interval vector we mean an ordered n-tuple of intervals X = (X1,..., X,,). The set
of n-dimensional interval vectors is denoted by TR". Tuples are written in bold face.

Every continuous function f : R® — IR can be extended to IR" — IR by
F(X)={f(x) | = € X}.
This allows us to embed R into IR by the morphism
plz) = [z,]

which is defined for tuples component wise. Elements of IR which are not in R are called proper intervals,
elements of R are called points.

For the extension of arithmetic functions to intervals it suffices to consider endpoints:

CHAPTER 1. INTERVAL ARITHMETIC 6

Theorem 1.1.1 (Interval Arithmetic) For all X, Y € IR it holds that

X+Y = [X4Y X+4Y]
XY {XY, XV, XY, XV}
XY XY, XY, XYY if 0¢Y
Xy = { undefined else
X = [-X,-x].0O

One easily checks the following properties of interval arithmetic operations.

Theorem 1.1.2 (Algebraic Properties) For all X|Y, 7 € IR it holds that

e Associativity: X+V)+7Z = X+ Y +72), (XV)7 = X2
o Commutativity: (X+Y) = (Y +X), XY = YX
e Neutral Element: 0+X = X, 1X = X.0O

However, proper intervals do not have additive or multiplicative inverses. Further, the distributivity law
does not hold for intervals. Instead, we have the following weaker version.

Theorem 1.1.3 (Subdistributivity) For all X|Y, Z € IR it holds that

X(Y+Z2) C XY+XZ
X(Y+Z2) = XY4+YZif XER or Y, Z>0 or V,Z<0.0

Remark. As intervals do not have additive inverses, IIR” is not a vector space. Still, we call the elements
of TR" interval vectors. Sometimes we use the more intuitive term “box” or simply interval. O

Some useful standard functions which are used frequently in this thesis are listed below:

Midpoint: mid(X) = 1/2(X + X)
Width: wX) = X-X

Radius: rad(X) = 1/2(X - X)
Absolute Value: 1IX| = {lz||zeX}
Mignitude: mig(X) = min{|z||z€ X}
Magnitude: mag(X) = max{|z|]|z € X}
Interior: int(X) = X\{X, X}

The functions extend to tuples component wise. For interval vectors we define

Maximal Width: w(X) = max; w(X;)
Sum of Widths: wt(X) = cw(X5).

K3

1.2 Topology on the Set of Intervals

In this section we define a metric topology on the set of intervals which induces important concepts like
convergence, continuity, etc.

Definition 1.2.1 (Distance) The distance between two intervals X|Y € IR is defined as
4(X,) = max{[¥ — 7], |X - Y]}.
For interval vectors X, Y € IR" we define

§(X,Y) = max q(X;,Y;). O

CHAPTER 1. INTERVAL ARITHMETIC 7

Theorem 1.2.2 The distance function q : IR" x IR" — R is a metric on IR".

Proof. We have to show the following three properties:

e Positivity: For all X, Y € IR" it holds that

@X,Y)>0, and (X, Y)=0iff X =Y.

e Symmetry: For all X,Y € IR" it holds that

4(X,Y) =q(Y, X).

e Triangle Inequality: For all XY, Z € TIR" it holds that

4(X,Y) <a(X, Z) +q(Y, 2).

Positivity and symmetry follow immediately from Definition 1.2.1, hence it remains to show the triangle
inequality. Let X,Y,Z € IR"® arbitrary but fixed, let ¢ such that A(X,Y) = q(X;,Y;) and let X =
X;,Y = }/;,ZI Z;». As

Q(X’ Z) + Q(Y’ Z) < Q(X’ Z) + Q(Y’ Z)

1t suffices to show that
q(X,Y) < a(X, Z) +q(Y, Z).

q(Xa Z) +q(Ya Z) maX{|Y—7|, |X_Z|} —|—H1aX{|?—7|, |Z_Z|}
max{|X — Z| + Y = Z|,|X - Z| + |Y - 2|}
max{|X - Y|, | X -Y]|}

q(X,Y). O

(AVARAY/

The metric § induces a topology on IIR", which is given by its open sets in the following way:

Definition 1.2.3 (Open Subsets of TR") A set § C IR" is open in IR" if for all X € § there exists
a real number ¢ > 0 such that
{Y e IR"

(X, Y)<e}Cs. o
Theorem 1.2.4 Let @, be the set of open subsets of IR". Then (IR",0,,) is a topological space.

Proof. See [Armstrong, 1983]. O

In the sequel, when we write IIR" | we always mean the topological space (IR*, O,).

Definition 1.2.5 (Convergent Sequence) A sequence (X(k) €IR" k=1,2,...) is called convergent
if there exists X € IR" such that
lim g(X%*) X)=0.

k—o0

In this case X is called a limit of the sequence (X(k)).

Theorem 1.2.6 A sequence (X(k) eR" k=1,2,...) converges to X € IR" iff

lim X[= X; and lim XY =X

foralli=1,...,n. 0

Proof.

CHAPTER 1. INTERVAL ARITHMETIC 8

“=” Assume (X(k), k=1,2,...) converges to X and let ¢ € {1,...,n} and ¢ > 0 arbitrary but fixed.
Then there exists k. € N such that

q(XZ»(k),XZ') < e forall k>k..

It follows that

X -l <e XM - x| <e

for all & > k., thus

lim XM =% lim X = X,

k—o0 k—oo ———

“e=” Assume (X;k)) converges to X; and (X;k)) converges to X; for i = 1,...,n and let £ > 0 arbitrary
but fixed. Then there exists k. € N such that

XP -Fl<e, XM - X<
for all ¢ and all £ > k.. It follows that
QXxX™ X)<e forall k> k.,
thus
Jim X =X 0
Definition 1.2.7 (Nested Sequence) A sequence (X(k) e IR" k=1,2,...) is called nested if

X*HD c x® forall k> 1.0
Theorem 1.2.8 A nested sequence (X(k) eIR" k=1,2,...) is convergent. O

Proof. Let (X(k)) be a nested sequence. According to Theorem 1.2.6 it suffices to show that

lim XZ»(k) =X; and klim XZ»(k) =X; forall i=1,...,n.

k—o0

Let ¢ € {1,...,n} be arbitrary but fixed. Obviously (X;k)) is a nested sequence. Hence (X;k)) is a

monotone, nondecreasing sequence of real numbers, bounded above by XZ»(I) and so has a limit a € R.

Similarly, (X;k)) i1s a monotone, non—increasing sequence of real numbers, bounded below by XZ»(I) and

so has a limit b € R. As XZ»(k) < XZ»(k) for all k, it holds that a < b, hence (X;k)) converges to [a,b]. O

1.3 Interval Functions

Interval functions are functions which map intervals to intervals. They arise naturally when one wants to
enclose the range of a point function over an interval. Obviously, we are interested in interval functions,
which bound the range as tight as possible and which are cheap to evaluate. The interval function, which
returns the exact range is most accurate but usually very expensive. The interval function, which returns
[0, 0o] for all arguments is cheap, but of little use.

First, we have to make more precise what is meant by “bounding the range tightly”. A well known
criterion is convergence: How fast does the the interval function value approximate the range, if the width
of the argument interval approaches zero? Unfortunately the notion of convergence is only meaningful
for “small” argument intervals. Only in this case, a higher convergence order means tighter inclusions.

CHAPTER 1. INTERVAL ARITHMETIC 9

It seems that no useful criterion was found so far to compare overestimation errors of interval functions
in the non—asymptotic case systematically.

In Section 1.3.1 we review some important properties of interval functions in general: Having a topology
at hand, continuity is already defined (Section 1.3.1.2). The other two properties, inclusion monotonicity
(Section 1.3.1.1) and the Lipschitz property (Section 1.3.1.3) capture in what sense a “reduction” of the
argument interval leads to a “reduction” of the function value.

In Section 1.3.2 we introduce the fundamental notion of an interval extension. An interval extension
of a point function is an interval function which encloses the range of the point function over intervals.
Section 1.3.2.2 1s concerned with an important class of interval extensions called centered forms. We give
a new elementary proof of their quadratic convergence.

1.3.1 Properties of Interval Functions

Throughout this thesis interval functions are denoted by capital letters. In the sequel let F' : TR" — IR
be an interval function.

1.3.1.1 Inclusion Monotonicity

Definition 1.3.1 (Inclusion Monotonicity) F is inclusion monotone if for all X CY € IR" it holds
that
F(X)C F(Y). O

Theorem 1.3.2 Constant functions and projections IR" — IR are inclusion monotone. O

Theorem 1.3.3 Interval addition, subtraction, multiplication and power by a natural constant are in-
clusion monotone. O

Proof. Follows immediately from the fact that X oY = {z oy | z € X, yeY}foroe {+ — %} and
Xt={s?|2zecX}. O

Remark. Mignitude, magnitude, midpoint and width function are not inclusion monotone. O

Theorem 1.3.4 (Composition Preserves Inclusion Monotonicity) Let F' : IR — IR and G; :
IR® — IR, ¢ = 1,...,m be inclusion monotone. Then F(Gy,...,Gp) : IR" — IR is inclusion mono-
tone. O

Proof. Let F,G; as in Theorem 1.3.4 and let X CY € IIR" arbitrary but fixed. Then
(G1(X),...,Gn(X)) C(G1(Y),...,Gn(Y))
as all GG; are inclusion monotone and
F(Gi(X),...,Gn(X)) CF(G1(Y),...,Gn(Y))

as F' 1s inclusion monotone. O

Corollary 1.3.5 (Class of Inclusion Monotone Functions) Let F" be the smallest set of functions
IR"™ — IR, which contains all constant functions, all projections, and is closed under addition, subtraction,
multiplication and power by a natural constant. Then every F' € F" is inclusion monotone. O

1.3.1.2 Continuity

Definition 1.3.6 (Continuous Function) F : IR" — IR is continuous at X € IR" if

lim F(X®) = F(X)

k—o0

CHAPTER 1. INTERVAL ARITHMETIC 10

for every sequence (X(k) e IR" | k =1,2,...) converging to X. F is continuous if F' is continuous at
every X ¢ IR". O

Theorem 1.3.7 Constant functions and projections IR" — TR are continuous. O
Proof. Obvious. O
Theorem 1.3.8 Mignitude, magnitude, midpoint and width are continuous functions. O

Proof. Let (X(*) € TR | k=1,...,n) be a sequence converging to X.
e Mignitude and Magnitude. Note that q(A, B) > |mig(A) — mig(B)| for all A, B € TR. Hence

Jim Imig(X*)) — mig(X)| < Jim q(X™) Xy =0,

i.e. mig(X)) converges to mig(X). A similar argument holds for magnitude.

e Midpoint.

Jim mid(X™*)) = Jim 1/2(X®) 4 X0y
= 1/2(lim X 4 lim Xy
= 1/2(X +X)
= mid(X).

o Width.
Jim w(Xh)y = Jim (X (k) — x)y
= lim X®) — lim x*)
k—oco k—o0
= X-X
= w(X). O

Theorem 1.3.9 Interval addition, subtraction, multiplication and power by a natural constant are con-
tinuous. O

Proof. Let (X(*) y(F)) ¢ TR? | k=1,2,...) be a sequence converging to (X,Y).

o Addition and Subtraction.

klir&(X(k) +yWH)y = klin;o[&i Y& X 4 Y]
= [lim (XM £ y®), lim (XE £ V)]
= [X+Y,X+YV]
= X%V
e Multiplication.
klin;o(X(k) Yy = klin;o[ﬂﬂ,ﬂY(k), Xy (F) X k) y ()

[lim X®y® Jim XBy®) | lim XEY®) | lim X#) y#)]
k—o00 k—oo k—oco k—o0

= XY, XV, XY, XY]

= XY.

CHAPTER 1. INTERVAL ARITHMETIC 11

e Power by d > 0,d € N.
— Assume d 1s odd.

lim (X®Y = Jim x® X

k—o0 k—co

= [lim (x®%), lim (XY

= XX
= X9
— Assume d 1s even.
Jim (Y = lim [mig(X*)?, mag(x(5))]

= [lim (mig(x"))), lim (mag(x"))")]
= [mig(X)d, mag(X)d]
= X% 0

Theorem 1.3.10 (Composition Preserves Continuity) Let F : IR™ — IR and G; : TR" — IR
i =1,...,m be continuous functions. Then F(Gy,...,Gy) : IR" — IR is continuous. O

Proof. See [Armstrong, 1983], Theorem 2.7. O

Corollary 1.3.11 (Class of Continuous Functions) Let " be the smallest set of functions IR" —
IR, which contains all constant functions, all projections, and is closed under the mignitude, magnitude,
midpoint, width function, addition, subtraction, multiplication and power by a natural constant. Then
every F' € F" is continuous. O

1.3.1.3 Lipschitz Property

Definition 1.3.12 (Lipschitz Constant, Lipschitz Function) Let A € IR". A real number Ap 4 is
a Lipschitz constant of F' in A if for all X C A it holds that

w(F(X)) < Apaw(X).

F' is a Lipschitz function if there exists a Lipschitz constant of F' in A for all A ¢ IIR". O
Theorem 1.3.13 Constant functions and projections IR" — IR are Lipschitz. O

Proof. Obvious. O

Theorem 1.3.14 Mignitude, magnitude, midpoint and width are Lipschitz functions. O
Proof. Obvious. O

Theorem 1.3.15 Interval addition, subtraction, multiplication and power by a natural constant are
Lipschitz functions. O

Proof.

o Addition and Subtraction. Let A € IR? and let (X,Y) range over subintervals of A. Then

wX+Y) = wX)+w)
< 2W(X,Y).

Hence 2 is a Lipschitz constant of addition in A.

CHAPTER 1. INTERVAL ARITHMETIC

e Multiplication. Let A € IR

w(XY)

IN N IN A

and let (X,Y) range over subintervals of A. Then

mag(X)w(Y) + mag(Y)w(X),see [Neumaier, 1990]
mag(A1)w(¥') + mag(Az)w(X)

max{mag(A1), mag(Az)}(w(X) + w(Y))
2max{mag(A;), mag(A4:)}w(X,Y).

Hence 2 max{mag(A;), mag(Asz)} is a Lipschitz constant of multiplication in A.

12

e Power. Let A € IR and let X range over subintervals of A. By induction we show that for all ¢ > 0

1t holds that

Obviously 1.3.1 holds for ¢ =

W(Xi'l'l)

w(X") < imag(X) " 'w(X).
1. Assume 1.3.1 holds for some 7 > 0. Then

w(XX)
mag Xw(X') + magl X' pw()
mag(X)imag(X)'~ w(X) + mag(X) w(X)
i mag(X) w(X) + mag(X)w(X)
(i + Dmag(X) w(X).

)

INININ A

(1.3.1)

Hence w(X?) < imag(A)'~*w(X) and i mag(A)*~! is a Lipschitz constant of the i-th power function

mA. 0O

Theorem 1.3.16 (Preservation of Lipschitz Property under Composition) Let F : TR™ — IR

be a Lipschitz function and let G
continuous or inclusion monotone.

R IR, i =1,...,
Then F(Gh, ...

m be Lipschitz functions such that each G; is
,G) : TR" — IR is a Lipschitz function. O

The proof of Theorem 1.3.16 needs some preparation. In the following let TA be the set of subintervals

of A with the subspace topology of IR" defined on it.
Lemma 1.3.17 IA is compact for every A € IR". O

Proof. Let A € TIR" arbitrary but fixed, define

A= {(u,
and let A : A — IA be defined as

) ER™ | 4 <u<v <A i=1,...,n}

h(u,v) = [u,v].

A s a closed and bounded subset of R?", hence it is compact ([Armstrong, 1983], Theorem 3.1). Obviously
h is continuous and therefore IA is compact ([Armstrong, 1983], Theorem 3.4). O

Lemma 1.3.18 Let A € IR" and

is bounded. O

Proof. Follows from Lemma 1.3.1

assume GG : IR” — TR is continuous. Then

{mag(G(X)) | X €14)

7 and [Armstrong, 1983], Theorem 3.10. O

Proof of Theorem 1.3.16. Let F,G; be as in Theorem 1.3.16. Let A € TIR" arbitrary but fixed. First,
we show that there exists an interval vector A" € IR" such that

Al D Gi(X) for all X €IA.

o If GG; is continuous then the existence of A% follows from Lemma 1.3.18.

CHAPTER 1. INTERVAL ARITHMETIC 13

o If (G; is inclusion monotone then we may choose A, = G;(A).

Let Ap 4+ be a Lipschitz constant of F'in A’ and let Ag;,a be Lipschitz constants of G in Afori=1,... . m
respectively. Then for every subinterval X of A it holds that

WF(GUX), ., (X)) < Apar max{w(G1(X)), .., (G (X))
< /\F,A’ max{/\GlyA, cee /\GmyA}VAV(X).
Hence
/\F,A’ maX{/\GlyA, ey /\Gm,A}

is a Lipschitz constant of F(G1,...,Gp) in A. O

Corollary 1.3.19 Let F" be the smallest set of functions TIR® — IR, which contains all constant func-
tions, all projections, and is closed under the mignitude, magnitude, midpoint, width function, addition,
subtraction, multiplication and power by a natural constant. Then every F' € F" is a Lipschitz func-
tion. O

1.3.2 Inclusion of the Range of Real Functions
1.3.2.1 Interval Extensions

In this section we are concerned with interval functions, which bound the range of real functions. In the
following let f : R"™ — R be a point function and let F': TR® — TR be an interval function.

Notation. The range of f on X is denoted by
f(X)={f(z) |z X}.O
Theorem 1.3.20 If f is continuous then f(X) € IR for all X € IR". O

Proof. Assume f : R" — IR is continuous and let X € IR". As X is a compact and connected subset of
R™ and f is continuous, it follows that f(X) is a compact and connected subset of R ([Armstrong, 1983],
Theorem 3.1, 3.4, 3.21). Hence f(X) € IR ([Armstrong, 1983], Theorem 3.19). O

Definition 1.3.21 (Interval Extension) F is an interval extension of f if

f®) = F(x) forall € R"™ and
f(X) C F(X) forall X eIR". O

If I is an interval extension of f then F(X) bounds the range of f on X. The following theorem gives
a different characterization of interval extensions.

Theorem 1.3.22 If F is inclusion monotone and
f(e)=F(x) forall @ €R",
then F' is an interval extension of f. O
Proof. Let F be inclusion monotone and assume f(x) = F(x) for all # € R". We have to show that

F(X)C F(X)forall X. Let X € IR" and y € f(X) arbitrary but fixed. Then there exists # € X such
that y = f(®) = F(«) and inclusion monotonicity of F' implies y € F(X). Hence f(X)C F(X). O

Obviously we are interested in interval extensions of which enclose the precise range as tight as possible.
A frequently used criterion for the accuracy of the overestimation is given by the following definition.

CHAPTER 1. INTERVAL ARITHMETIC 14

Definition 1.3.23 (Convergence) An interval extension F of f converges to f with order r in A C TR"
if there exists a real number Ap; 4 such that for all X € IA

q(F(X), [f(X)]) < Appaw(X)".
F converges to f with order v if F' converges to f with order r in A for all A € TR", O
Lipschitz interval extensions converge at least linearly.
Theorem 1.3.24 A Lipschitz interval extension F' of f converges linearly to f. O

Proof. Assume F is a Lipschitz interval extension of f, let A € IR" arbitrary but fixed and let Ap 4 be
a Lipschitz constant of F' in A. Then

a(F(X), [f(X)])

IA A

forall X € 1A. O

1.3.2.2 Centered Forms

An important class of interval extensions are centered forms. Centered forms are quadratically convergent,
hence they give tight inclusions if the with of the argument interval is small. The notion of a centered
form is not defined consistently in the literature. The definition we use is similar to a very general one by
[Ratschek and Rokne, 1984]. In Chapter 3 and Chapter 4 we study some concrete instances of centered
forms for polynomials.

Centered forms are one of the main areas studied in the literature on interval arithmetic, see for example
[Moore, 1966, [Hansen, 1968], [Hansen, 1969], [Chuba and Miller, 1972], [Miller, 1972], [Miller, 1973],
[Alefeld and Herzberger, 1974], [Miller, 1975], [Ratschek, 1977), [Hansen, 1978b], [Ratschek, 1978], [Moore,
1979], [Caprani and Madsen, 1980], [Ratschek, 1980a], [Ratschek, 1980b], [Ratschek and Rokne, 1980b],
[Ratschek and Rokne, 1980a], [Krawczyk, 1980a], [Krawczyk, 1980b], [Alefeld, 1981], [Alefeld and Rokne,
1981], [Ratschek and Schréder, 1981], [Rokne, 1981], [Krawczyk and Nickel, 1982], [Krawczyk, 1982,
[Rokne and Wu, 1982], [Alefeld and Herzberger, 1983], [Krawczyk, 1983], [Rall, 1983], [Rokne and Wu,
1983], [Ratschek and Rokne, 1984], [Alefeld and Lohner, 1985], [Krawczyk and Neumaier, 1985], [Rokne,
1985], [Rokne, 1986], [Baumann, 1988], [Alefeld, 1990], [Neumaier, 1990].

Throughout this section let f: R™ — IR be continuous.

Definition 1.3.25 (Centered Form)
o Let g : R*™ — R" such that
fl®) = fle)+g(x, ¢)(x —¢) forall & ¢ceR".

o Let z : IR® — IR" such that
z(X)e X forall X e IR".

o Let G :IR" — IIR" such that
g(x,2(X)) € G(X) forall X ¢IR" and forall@z € X

and G is Lipschitz for: = 1,... n.

Then F : IR" — IR,

is a centered form of f. O

CHAPTER 1. INTERVAL ARITHMETIC

15

In the sequel let g, z, G and F' as in Definition 1.3.25. First, we show that centered forms are interval

extensions.
Theorem 1.3.26 [is an interval extension of f. O
Proof.

o If & € R" then z(x) = @, hence F(x) = f(x).

o Let X € IR" arbitrary but fixed and let ¢ = 2(X). For all ® € X it holds that

f®) = [fle)+g(z)z -c)
€ [fle)+ G(X)(z - ¢)
C flo)+ GX)X —¢)
= F(X),

hence f(X) C F(X).

Theorem 1.3.27 (Quadratic Convergence of Centered Forms.) I converges quadratically to f. O

The quadratic convergence of centered forms was first conjectured by [Moore, 1966) and for multivariate
rational functions first proven by [Hansen, 1969]. A proof by induction on rational expressions is given
by [Chuba and Miller, 1972] and [Miller, 1972]. Quadratic convergence is also proved in [Alefeld and
Herzberger, 1974, [Alefeld and Herzberger, 1983]. To my knowledge, the most general proof is given by
[Krawczyk and Nickel, 1982], [Ratschek and Rokne, 1984]. It uses topological properties and Miranda’s
Theorem [Miranda, 1940]. We give a new elementary proof. It requires some preparation, though, and

is postponed until after Lemma 1.3.30.

Definition 1.3.28 The signed mignitude of an interval X € IR is defined as

X ifX>0
smig(X)=+¢ X ifX <0
0 if0oeX.

For interval vectors X € IR"® we define

smig(X) = (smig(Xy),...,smig(Xy)). O
The following property of the smig function is trivial but will be useful later.

Lemma 1.3.29 For all X € IR it holds that

smig(X) +[-1,1]w(X) D X. O
Proof. For all # € X it holds that # + [—1, 1]w(X) D X. Further, smig(X) € X. O

Lemma 1.3.30 For all X € IR" it holds that

f(z(X)) + smig(G(X))(X — 2(X)) € f(X). O

Proof. Let X € IR" arbitrary but fixed and let ¢ = 2(X). We have to show that

f(e) +smig(G(X))(X - ¢)
f(e) + smig(G(X))(X — ¢)

IV IA
= =

(1.3.2)

(1.3.3)

CHAPTER 1. INTERVAL ARITHMETIC 16

We prove (1.3.4), a similar argument shows (1.3.5). Let

to= i | smig(Gi(X)) >0, i=1,...,n}
= {i|smig(Gy(X)) <0, i=1,...,n}

X, ifiegt

¢; else.

LW

and let # € X be defined as

Then

Fe FomgGNX —e) = f(e)+ Y smiglGr(X)(Xi — i)

= fle)+ Y smig(Gi(X))(X; — i) + Y smig(Gy(X)(X; — i)

i€S+ €S-

Fle)+ Y gi(e o)(Xi—c)+ D i@, e)(X; —)

et TES—

fle)+ Zgi(ii, e)(z; — ;)

IN

fle) +g(z,e)(® - ¢)
/()
(X). O

IA
S~y

Proof of Theorem 1.3.27. Let A € IR" and for i = 1,...,n let Ag, 4 be a Lipschitz constant of G;
in A. Let X € IA arbitrary but fixed and let ¢ = z(X). Then

F(X) = f(c)+ZGi(X)(Xi—cZ')

= flo+ Z (smig(G4(X)) + [~ 1, Jw(Gi(X))) (X; — ¢)

C flo+ Zsmig(Gi(X))(Xi — i) + [1 w(Gi (X)) (X — i)
= fle)+ Zsmig(Gi(X))(Xi — i)+ Z[—l, 1w(Gi(X)) (X — i)
(1.3.3)

< J(X)+ Z[—L w(Gi(X))(Xi —)

c fX)+ Z[—l, Hw(Gi(X))w(X;)
c fX)+[-1 1]W(X)ZW(Gi(X))
C AX)+[-1,1w(X)? ZAG,,A

C AX)+[-L,1IW(X)*Aga,

where

n
Ag,a = g Ag;.A-
i=1

CHAPTER 1. INTERVAL ARITHMETIC

Hence,

a(F(X), f(X)) < Agaw(X)?
and F' converges quadratically to f according to Definition 1.3.23. O

17

Chapter 2

Implementation of Interval
Arithmetic

Interval arithmetic was introduced originally as a new approach to the fundamental problem of repre-
senting real numbers on a computer. As is well known, this problem cannot be solved because the set of
real numbers is uncountable but the amount of memory of computers is only countable. (More precisely,
it is finite but can be extended in principle without limit). So far, there have been two main approaches
to deal with this situation:

e In many cases, it is sufficient to compute with countable subsets of the reals, e.g. integers, rational
numbers or finite extensions of the rationals. Countable sets can be encoded, i.e. the elements of
a countable set can be mapped injectively to finite length bitstrings. Thus, for every algorithm
and input data there exists a finite memory request, such that the computation is possible if the
requested memory 1s available. The disadvantage of this approach is efficency. The computing
time of arithmetic operations depends on the length of the argument bitstrings and is therefore not
constant.

e Another approach is to choose a finite subset of the reals and to represent them by fixed length bit
strings. We call such a subset of the reals the set of represented numbers. Arithmetic operations on
represented numbers do in general not yield a represented number. Further, the input numbers to
some algorithm need not be represented. Hence, input numbers and intermediate results have to be
rounded to a represented number before they can be processed further. This allows efficient com-
putation because all (rounded) arithmetic operations can be performed in constant time. However,
rounding introduces errors which accumulate during the computation, and in general 1t is highly
non—trivial to estimate the size of the error in the output.

The main motivation for interval arithmetic is to overcome the correctness deficiency of the second ap-
proach. The idea is to enclose a real number by a real interval where the endpoints are represented
numbers. Naturally, these intervals are called represented intervals and they are encoded simply by
encoding the endpoints. As in the case of represented numbers, arithmetic operations on represented in-
tervals do in general not yield represented intervals. Hence, intermediate results have to be approximated
by represented intervals, and this approximation is always done by represented super intervals. Similarly,
input values are enclosed by represented intervals. Thus, by a suitable modification of the predicates and
the control structures, it can be guaranteed that the output of an algorithm which operates on represented
intervals contains the correct result.

As each intermediate result is rounded outwards, the accuracy of the inclusion decreases during the
computation, which leads sometimes to useless results. The simplest solution i1s to extend the set of
represented numbers in order to reduce the amount of overestimation in each arithmetic operation. In
many cases, however, one can obtain tighter results by rewriting the algorithm without extending the set
of represented numbers. As the set of represented numbers is finite and hence bounded, it is not possible
to enclose every real number by a represented interval. We will handle this problem by adding intervals

18

CHAPTER 2. IMPLEMENTATION OF INTERVAL ARITHMETIC 19

of the form {z € R | z<yh{zelrR | z > y} and R to the set of represented intervals, for all represented
numbers y.

Fortunately the definition of represented numbers is standardized by the IEEE standard on binary float-
ing point numbers. The main features of this standard are reviewed in Section 2.1. A mathematical
abstraction of the standard is subject of Section 2.2. In Section 2.3 we give an implementation of interval
arithmetic on top of the standard and prove its correctness.

2.1 The IEEE Standard 754 for Binary Floating Point Arith-
metic

Rounded arithmetic on finite subsets of the reals plays a central role in scientific computing. Much effort
has been devoted to improve efficiency, and nowadays there is support by special hardware in almost
every computer. A necessary precondition for building hardware was to standardize the encoding of
represented numbers, which was achieved by the IEEE standard 754 [IEEE, 1985]. Below, we summarize
briefly a subset of this standard, which will be used in the following sections for implementing machine
interval arithmetic. The bitstrings by which the represented numbers are encoded are called “floating
point numbers”.

2.1.1 Floating Point Number Formats

The format of a floating point number describes its bitlength and its interpretation as a real number.
The TEEE Standard 754 specifies 4 floating point number formats. In our implementations we are using
mainly the double precision numbers, hence we restrict our considerations to this format. A double
precision floating point number is a string of 64 bits, which consists of

o 1 bit for the sign s € {—1,1}
e 11 bits for the exponent e € {—1023,... 1024}
e 52 bits for the fraction f € {0,27%%,2.27523.2752 (252 — 1)2752}.

The value of a floating point number is either undefined or an element of RU {—00, co}. Given values for
s, e and f, the value v of a floating point number computes as follows:

o If —1023 < e < 1024, then v = s(1 + f) » 2°.

o If ¢ = —1023 then v = sf * 27922, Non—zero floating point numbers with this property are called
denormalized.

o If e = 1024 and f # 0 then v is undefined. Floating point numbers with this property are called
Nan (not a number).

e If e = 1024 and f = 0 then v = soco. Floating point numbers with this property are called infinite.

In the first 2 cases, the floating point number is called ordinary. If no confusion can arise, we do not
distinguish between a floating point number and its value.

2.1.2 Predicates

The predicates =, #, <, <, >, > are defined on non-Nan floating point numbers according to their
values. The IEEE standard 754 defines the result of the comparison operations also for the case when
one or both operands are Nan, but we will not make use of this feature.

CHAPTER 2. IMPLEMENTATION OF INTERVAL ARITHMETIC 20

2.1.3 Direction Rounded Arithmetic

The arithmetic operations +, —, *, / and the square root operation are defined on floating point numbers.
The operations are performed as if they first produced a correct intermediate result which is then rounded
to a neighboring floating point number. It is possible to decide whether the correct result i1s rounded
up, down, to the nearest represented number, or towards zero. In case of rounding to nearest, there can
be two floating point numbers which are equivalently near. In such a situation, the one with its least
significant fraction bit zero is chosen.

If a real number, which is larger than the largest ordinary floating point number, 1s rounded up or to
nearest, then the result is co. Rounding such a number to zero or down, results in the largest ordinary
floating point number. Similarly, if a real number, which is is smaller than the smallest ordinary floating
point number, is rounded down or to nearest, then the result is —co. Rounding such a number to zero
or up results in the smallest ordinary floating point number.

Division of a non—zero ordinary floating point number by zero results in oo if the signs of the operands
are equal, and —oo if they are different. (Note that there exist two floating point numbers with value
zero but with different signs.)

Real arithmetic is extended to operands oo in the usual way. The result of co — 0o, —oo + o0, 0 % o0,
+00 %0, 0/0, 200/ & 0o or square root of a negative number is a Nan.

If at least one operand 1s a Nan, then the result is also a Nan.

2.1.4 Exception Handling

The TEEE standard 754 defines 5 exceptions which are signaled when detected during a floating point
operation. For each type of exception there exists a status flag which is set on any occurrence of the
corresponding exception. It is reset only at the user’s request. The user may test and alter each flag
individually. Further, the user can define a trap for each exception, which is taken unless the exception
is masked. Again, the user has the possibility to mask or to unmask each exception individually. The 5
exceptions are as follows:

e Invalid Operation. The invalid operation exception is raised if an operand is invalid for the operation
to be performed. In our applications these are oo — 0o, —00 + 00, 0% 00, oo * 0, 0/0, £oo/ & co
and square root of a negative floating point number.

e Division by Zero. The division by zero exception is raised during a division, where the numerator
is an ordinary non—zero number and the denominator is zero.

e Overflow. The overflow exception is raised if the rounded result of an operation exceeds in magnitude
what would have been the result if the exponent range were unbounded.

e Underflow. The precise definition of this exception depends on the implementation. Roughly,
it 1s raised if the result of an operation is very small in magnitude and inaccurate because it is
approximated by a denormalized number.

e Inexact. The inexact exception is raised if the rounded result of a floating point operation is not
the same as the result of the corresponding real number operation.

2.2 Floating Point Number Arithmetic

Informally, the most important facts about floating point numbers for our purposes can be abstracted as
follows:

e There are three special numbers, +00, —o0 and an error symbol.

CHAPTER 2. IMPLEMENTATION OF INTERVAL ARITHMETIC 21

e Arithmetic is defined in the usual way, where the exact result is rounded in a specified direction
after each operation. If the result is undefined, as e.g 0o — 0o or 0 * oo, then the result is the error
symbol.

e If round to nearest is specified and there are two floating point numbers which are equally near,
then the one with its least significant fraction bit zero is delivered.

e In case of any kind of error, a signal is raised. The user can specify that this signal is ignored or
that a trap handler is called.

In order to facilitate mathematical reasoning on floating point numbers and arithmetic, we define them
more abstractly. The definitions are such that their implementation on a machine, which conforms to
the IEEE standard 754, is straight forward. On the other hand, they capture only the most essential
properties of floating point numbers which are needed for the implementation of floating point interval
arithmetic. Thus, it is for example possible to implement floating point numbers with arbitrary bitlength
and internal representation, which still conform to the definitions.

For those who are logically oriented, we remark that from now on we use the language of first order
predicate calculus with equality and the usual axioms about the membership predicate € (some part of
ZF set theory).

Definition 2.2.1 (Floating Point Numbers) Let IF, be a finite set with odd cardinality. Let
F=T,U {Ta J—}a

where T # L and T, L & F,. Finally, let
Fy = FU{t},

where t € . O
I is called the set of floating point numbers, F, is called the set of ordinary floating point numbers and

IFy is called the set of generalized floating point numbers. In the following we use «, b to denote floating
point numbers and z, y to denote real numbers.

Definition 2.2.2 (Interpretation of Floating Point Numbers) Let ¢ : F, — R such that

o dla) £ ¢(b) ifa# b foralla,beT,
o ¢(a) =0 for somea € F,.
o for every a € IV, there exists b € T, such that —¢(a) = ¢(b). D
We do not interpret T and L as co and —oo, because this would lead to confusion when these numbers

occur as endpoint of intervals as described in the next section. For notational convenience we denote the
uniquely defined element of F,, which is mapped to 0 under ¢ by 0.

Definition 2.2.3 (Predicates on Floating Point Numbers) The predicates <, >, <, > are defined
on F as follows:

a<b iff (a,beT, ¢(a)<¢(b)) or (a€Fy,b=T) or (a=L,b€TF,) or (a=L,0=T)
a>b iff b<a

a<b iff a<b or a=1b

a>b iff a>b or a=5.0

Note that <, > are total orderings of F,, hence maxF, and minF, are well defined.

Definition 2.2.4 (Rounding Functions) The rounding functions p, f,p: R — T with intended mean-
ing round to nearest, round up and round down respectively, are defined such that for all z € R

CHAPTER 2. IMPLEMENTATION OF INTERVAL ARITHMETIC

o if # > ¢(maxT,) then

p(z) = T
ﬁ(x) = maxTF,
plz) = T

o if # < ¢(minT,) then
p(z) = L
p(z) = L
ﬁ(x) = minl,

v

o otherwise, p (2),0(z),p () € T, and for all a € T,
|z — ((z) < |z — ¢(a)] (nearest)

x
(b(ﬁ(l‘ < z and (q/)()>zora< ﬁ(x)) (down, optimal)
(b(ﬁ(l‘ >z and (qb

The following lemmas are immediate consequences of Definition 2.2.4.

Lemma 2.2.5 For all x € R it holds that

if p(z) €T, then ¢(p(x)) <z
if p(z) €T, then ¢(p(x))>x. O
Lemma 2.2.6 For all x € R it holds that
ifz >0 then ﬁ(x) cF,
iz <0 then ﬁ(x)E}FO m|
Lemma 2.2.7 For all x € R it holds that
if <0 then p(z)<0
if >0 then p(z)>0. 0

Lemma 2.2.8 For all x,y € R and for all p € {Z, ﬁ, ﬁ} it holds that

if # <y then p(z) < p(y)
if >y then p(x) > p(y). O

Remark. The inversion of Lemma 2.2.8 does not hold. O

Lemma 2.2.9 For all finite ¥ C R and for all p € {z,ﬁ,%} it holds that

min{p(z) | x € X} = p(mink)
max{p(z) | x € X} = p(maxX). O

Lemma 2.2.10 For all a € I, and for all p € {P, 5, P} it holds that

p(¢(a)) =a. 0

In particular, p (0) = ﬁ(O) = 5(0) =0.

(a) <wora> ﬁ(x)) (up, optimal). O

22

CHAPTER 2. IMPLEMENTATION OF INTERVAL ARITHMETIC 23

Definition 2.2.11 (Floating Point Number Arithmetic) The direction rounded arithmetic opera-

tionsi +, —|—,i i *, ,¥,7,7, 7, Iy x Fy — IFy and — : Fy — [y are defined as follows:
1 ifa=forb=4or(a=T,b=L)or(a=L,6=T)
s, if (a=T,b¢ {L,8)or (b=T.a¢ (L1}
“rh = L if (a=Lbg {T.t)or (b= Loag {T,1})

ifa,bec T,

™
Y
©-
~
=]
2
+
©-
~
<o~
=
=

P X atb ifaglF,orbgl,
P(g(a)+¢(b)) ifabeT,
cdp = s atb ifaglF,orbgl,
p(g(a)+¢(b)) ifabeT,
1 ifa=forb=4or(a=T,b=T)or(a=L,b=1)
e T =T g T o (b= Lag (L)
~ 1 if(a=Lbg{Lghor(b="T,ag{T,i}
P (¢(a)— (b)) ifabell,
Wb = X aZb ifaglF,orbgl,
P(g(a) — ¢(b)) ifa,beT,
W lp = s aZh ifaglF,orbgl,
pP(¢(a) — ¢(b)) ifa,beT,

0)or(a=0,be{T, L}

ifa=forb=for(ac{T,L},b=
= or(b=T,a>0)or (b=1,a<0)
o

if(a=T,0>0)or(a=1,0<0)
if(a=T,b<0)or(a=L,0>0)or(b=T,a<0)or(b=_1,a>0)
) ifa,berl,
alhh — a%*b ifagl, orbgl,
| P(é(a) x (b)) ifabeT,
a%*b ifagl, orbgl,

p(o(a)* ¢(b)) ifa,beT,
i ifa=forb=fora=b=Tora=b=1
T ifa=T, T>b>0)or (a=1,L<b<0)
1 ifa=T,L<b<0)or (a=L,T>b>0)
undefined ifaeF b=0
P (9(a)/d(b) ifabeT, b#0

Q

*U

o>

l

———— —— " —— " ——

o
)
Q
— =
©-
=

a?b = a7b ifaglF,orbgF,orb=0
P($(a)/d(b)) ifa,b€ Fy b0
a7b = a7b ifaglF,orbgF,orb=0
P(¢(a)/d(b)) ifa,b€ [y b0
i ifa=+
T fa= 1
= 1 fa=T

P (—¢(a)) ifach,

Note that according to Definition 2.2.2 for all @ € T, there exists b € I, such that —¢(a) = ¢(b), and by

Lemma 2.2.10 _ Y R
P (=¢(a)) = P(=¢(a)) = P(—¢(a)). (2.2.1)

CHAPTER 2. IMPLEMENTATION OF INTERVAL ARITHMETIC 24

2.2.1 Basic Algorithms on Floating Point Numbers

Algorithms for floating point number arithmetic are usually implemented in hardware and we do not
discuss them here. On most machines algorithms for floating point approximations of elementary tran-
scendental functions are available, but it is usually not specified whether the returned floating point
number is greater or less than the exact result. In many cases, not even an upper bound for the ap-
proximation error is given, hence we cannot use these algorithms for implementing interval arithmetic
correctly.

Apart from arithmetic functions we need in this thesis only exponentiation by a natural number. Usually,
the exponent will not be large, hence the well-known binary method for exponentiation seems suitable,
see e.g. [Knuth, 1981]. The following two algorithms compute upper respectively lower approximations.

Algorithm 2.2.12 (PéW) [Upper Approximation of Floating Point Number Power]

In: a €T,
n € Ny.

Out: bel b :ﬁ(l) ifn=0,b=aifn>0and agT,, otherwise b =T or (b € F, and ¢(b) > ¢(a)").

(1) [Case a < 0.]
if n is odd and @ < 0 then return — POW (—a,n).
a — |al.

(2) [Initialize.]
b %ﬁ(l)

if n = 0 return b.

(3) [Tterate.]
if n is odd then
b—b%a
if n =1 return b, else n «—— n — 1.
a— a%a.
n+——n/2.
goto Step 3.

Algorithm 2.2.13 (PéW) [Lower Approximation of Floating Point Number Power]

In: a €T,
n € Ny.

Out: bel b :ﬁ(l) ifn=0,b=aifn>0and agT,, otherwise b = L or (b € F, and ¢(b) < ¢(a)").

(1) [Case a < 0.]
if nis odd and a < 0 then return — POW (—a,n).

a — |al.

(2) [Initialize.]
b %ﬁ(l)
if n = 0 return b.

(3) [Tterate.]
if n is odd then
b—1b*a
if n =1 return b, else n «—— n — 1.
a— a*a.
n+——n/2.
goto Step 3.

CHAPTER 2. IMPLEMENTATION OF INTERVAL ARITHMETIC 25

Remark. For the correctness of Algorithms 2.2.12 and 2.2.13 we have to assume that ﬁ(l) # T and
ﬁ(l) # 0. Otherwise POW (0,n) =t and POW (T,n) =4 for n > 0. In the sequel we assume ﬁ(l) +T
and ﬁ(l) 4£0.0

Theorem 2.2.14 (Complexity) Algorithm 2.2.12 respectively 2.2.13 costs |ld(n)| +v(n) floating point
number multiplications, where v(n) is the number of ones in the binary representation of n. O

Proof. See [Knuth, 1981]. O

2.3 Floating Point Interval Arithmetic

Floating point intervals are closed real intervals, where the endpoints are ordinary floating point numbers.
Arithmetic is defined in the set theoretic sense where the result is rounded outwards. In order to handle
overflow, we extend the set of floating point intervals by half—open intervals {« | z >y} and {z | z <y}
for all floating point numbers y, and by the set R of all real numbers.

In this section we define floating point intervals and floating point interval arithmetic formally. The
definitions are motivated by the following goals:

e Correctness. A floating point interval operation must yield an interval, which contains the result
interval of the corresponding real interval operation.

e Completeness. Floating point interval arithmetic functions must be defined whenever the corre-
sponding real interval arithmetic function is defined. In particular, the computation must not be
interrupted because of overflow.

e Efficiency. An efficient implementation of the floating point interval arithmetic must be possible. In
particular, the IEEE 754 floating point arithmetic presented in the previous section must be used
because of its hardware support.

Before going into details of floating point interval arithmetic, we want to point out an important problem.
A floating point interval is a pair of floating point numbers, where the first component is less than or
equal to the second component. If overflow occurs during some operation on floating point intervals, we
obtain an interval where one or both components are T or L. While floating point intervals, where both
components are ordinary floating point numbers, are interpreted as elements of IR in the obvious way, it
is not clear, how floating point intervals, where at least one component is T or L, should be interpreted.
For correctness reasons they cannot be interpreted as elements of IR, hence we have to extend the set TR
in a suitable way. There are two possibilities:

o Closed subintervals of R U {co, —oo}. The floating point number interpretation ¢ is extended by
#(T) = oo and ¢(L) = —oo. The floating point interval (a,b) € T x [is then interpreted simply
as [¢(a), #(b)]. The disadvantage of this approach is that all arithmetic operations are partial
functions. For example [3, 00] * [0, 0] or [00, 00] — [00, 3] are not defined. This means that even the
evaluation of arithmetic terms over IR, which do not contain division, might not be possible when
floating point intervals are used and overflow occurs.

e Extend IR by the sets
{reR|z>y}

{J;E}R|x§y} }forallyE}R

and by the set of all real numbers R. The floating point interval (L, T) is interpreted as R. If
a is an ordinary floating point number, then (a, T) is interpreted as {# € R | z > ¢(a)} and
(L,a) is interpreted as {x € R | z < ¢(a)}. Note that (T,T) and (L, L) are not floating point
intervals. This approach seems to be advantageous, because it avoids infinity arithmetic completely
and floating point interval addition, subtraction and multiplication are total functions. A problem
arises, because the floating point multiplication function as defined by the ITEEE standard must

CHAPTER 2. IMPLEMENTATION OF INTERVAL ARITHMETIC 26

be modified slightly for the implementation of floating point interval multiplication. For example,
the result of (L, T)* (0,0) must be (0,0), but a straight forward implementation of floating point
interval multiplication using the IEEE floating point number multiplication would yield (4,).

In our implementations we use the second approach, which 1s described more formally as follows.

Definition 2.3.1 (Extended Intervals) The set of extended intervals is defined as
TE=IRU{{z€R |c>y} |yeRIU{{z R |2 <y} |yeRIU{R)
Further,
Ry = TRUD
IRy = TRUP. O

Throughout this section, elements of IR are simply called intervals. An interval X € IR is called left
bounded, if there exists y € X such that z > y for all z € X. In this case we define X = y. Otherwise,
X is called left unbounded. Similarly, X is called right bounded if there exists y € X such that « < y
for all z € X. In this case we define X = y. Otherwise, X is called right unbounded.

The interval arithmetic operations are extended from IR to IR in the straight forward way.

Definition 2.3.2 (Extended Interval Arithmetic) Let X,Y € IR

X+Y = {z+ylzeX yeY}

X-Y = {z—ylzeX yeY}
XY = {x*y|x€X,yEY}

XY = {efy|lzeX,yecY}if 0¢Y
-X = {—x|l‘€X}.D

Definition 2.3.3 (Floating Point Intervals) The set of floating point intervals is defined as
IF = {(a,b) | a,b € Fp,a <bYU{(L,a) [a €l U{(a,T)[a€F}U{(L T)}

Further,
I =TIFU{(4,§)}. O

Note that (L, L), (T, T) & IF. The first and the second component of a floating point interval A € I is
denoted by A respectively A. In the following we will use A, B to denote floating point intervals and X,
Y to denote real intervals.

Definition 2.3.4 (Interpretation of Floating Point Intervals) Let ¢ : Iy — IRy such that

P(a,b) = [¢(a),d(b)] if a,b € I,
(L, b) {reR|z<o(b)} ifbeT,,
Pla, T) = {J;E}R|x2¢(a)} ifaecl,,
(L, T) = R

vty = 0.0

Definition 2.3.5 (Rounding Function for Intervals) Let o : IRy — Iy such that

(P(X),P(X)) if X € IR
,T) ifX:{xEthZy} for some y € R
o(X) = (J_,ﬁ(y)) ifX:{xE}R|x§y} for some y e R
(L,T) ifX=R
(#,1) ifX=0.0

CHAPTER 2. IMPLEMENTATION OF INTERVAL ARITHMETIC 27

Definition 2.3.6 (Predicates on Floating Point Intervals) Let ~ € {C,C,D,D}. Then for all
A, B e 1T

A~ Bift ¥(A)~ ¢(B).
Forallae T, A € 1T

. é(a) € Y(A) ifacl,,
a € Aiff {a:A or a=A else. O

Lemma 2.3.7

e For all X € TRy it holds that

e For all A € IFy it holds that

Proof. Follows from Definition 2.3.4, Definition 2.3.5 and Lemma 2.2.5. O

Before defining floating point interval arithmetic, we modify the floating point multiplication in order
to facilitate the definition of the interval multiplication. If the IEEE standard would define floating
point multiplication in this modified way, then interval arithmetic could be implemented more efficiently.
However, the modified multiplication is not suitable for implementing infinity arithmetic, and it seems
that the IEEE committee considered this aspect as more important.

Definition 2.3.8 (Modified Floating Point Multiplication) The modified direction rounded float-
ing point multiplications *, *: Fy x Fy — Iy are defined as

Ny - 0 if(a=0,6€{T,L})or(b=0,ae{T, L}
“ - a%b else

T 0 if(a=0,6€{T,L})or(b=0,ae{T, L}
“ - a*xb else. O

Definition 2.3.9 (Floating Point Interval Arithmetic) The arithmetic operations +, —, x, / : IFx
IF — IF and — : IF — ITF are defined as follows:

A+B = (A+BA4+B)

AxB = (minfA"B,AYBAYBAY B}, max{A" B,A"B,A" B,A" B})

A/B = (min{A/B,A/B,A/B A/ B}, max{A) B AJB,A)BA/B})if 0¢ B
~A = (-A,-4).0

The following theorem states that the floating point interval arithmetic operations are performed as if
they first produced a correct intermediate result which i1s then rounded outwards to a floating point
interval.

Theorem 2.3.10 For all A, B € IIIF it holds that

A+B = o(¥(A)+¢(B)) (2.3.1)
A=B = o(d(A) - ¥(B)) (23.2)
AxB = o(¥(A)+$(B)) (2.3.3)
A/B = o((A)/H(B))if 0¢B (2.3.4)
—A = o(—¢(A)). O (2.3.5)

Proof. Let A, B € IF arbitrary but fixed. We show that the left endpoints of the floating point intervals
in (2.3.1) - (2.3.5) coincide. The proof for the right endpoints is equivalent.

CHAPTER 2. IMPLEMENTATION OF INTERVAL ARITHMETIC 28

e Proof of (2.3.1).
— Assume A # L, B# L. Then ¢(A),¥(B) and ¢(A4) + ¢(B) are left bounded.

A + B Definiti:on 2.3.9 A_\i/_ E

pefinition 2241 (G A) + $(B))
P 200G ((A) + Y(B))
e p((A) +9(B))
P 225 G ((A) + ¢(B)).
— Assume A= 1 or B= L. Then
A+ B=1,

$(A) + ¢(B) is left unbounded, and
o(4(A) + 9(B) = L.
e Proof of (2.3.2). Analogous to the proof of (2.3.1).
e Proof of (2.3.3).
— Assume the condition
(A=1,B>0) or (A=T,B<0) or (B=L1,A>0) or (B=T,A<0) (2.3.6)

does not hold. First, we eliminate some trivial cases. If A = (L, T) then B = (0,0), ¥(A) = R,
(B) = 0. Similarly, if B = (L, T) then 4 = (0,0), ¥(B) =R, ¥(A) = 0. In both cases

AxB=0=0c(¢(A)*¢(B)).
In the sequel assume A # (L, T), B # (L, T). Next, we show that
AsxB=min{a " b|a€c {A A}NT, bec{B,B}INT,} (2.3.7)

According to Definition 2.3.9 there exist a € {A, A}, b € {B, B} such that a “ b = Ax B. If
a,b € T, then (2.3.7) follows from Definition 2.3.9. The other cases are as follows:

-Hfa=Lthenb<0, AcF,and A b<a"b.

- Hfa=Tthenb>0, AcF,and A b<a"b.

-Ifb=Lthena<0, BeTF,anda B<a"b.

- Ifb=Tthena>0, BeTF,anda’ B<a"b.
Finally, we show that ¢(A) % ¢(B) is left bounded and

V(A) % (B) = min{¢(a) * ¢(b) | a € {A, A} NTF,, b {B,B}NT,} (2.3.8)
- Assume A, A, B, B € F,. Then v(A),¥(B) are right and left bounded and

YA xp(B) ET min{exy | @ € {9(4),v(A)},y € {¥(B),¥(B)}}

T minfe ey | v € {8(4),0(A)}y € {6(B), 6(B)}}
= min{¢(a) * $(b) | a € {4,4},b € {B, B}}.

- Assume A = L. Then B <0, hence B € IF,. Further, if A > 0 then B € F,.

seum = {0

CHAPTER 2. IMPLEMENTATION OF INTERVAL ARITHMETIC 29

- Assume A = T. Then B >0, hence B € F,. Further, if A < 0 then B € T,.
_ Pp(A)xo(B) fA>0
v = {GENE A
min{¢(a) * ¢(b) | a € {4, A} NT,, b€ {B,B}NT,}.

- The cases B = L and B = T can be reduced to the cases 4 = L respectively A = T by
using commutativity of real and interval multiplication.

Thus,

AxB G20 min{a ¥ b | a € {A, A} NTF,,be {B,B}NT,}

LY mindp(g(a) + ¢(b)) | @ € {4, A} N1, b € {B, B}NE,}
(emme 229 D (min{é(a) * ¢(b) | a € {4, A} NT,,be {B,B}NT,})
= P(Y(A) * $(B))
TR o) £ v (B)).
— Assume (2.3.6) holds. Then
AxB=1

$(A) * ¢(B) is left unbounded, and hence
o((A) +p(B)) = L.
e Proof of (2.3.4). Analogous to the proof of (2.3.3).
o Proof of (2.3.5).
— Assume A € T,.

_A Definiti_on 2.3.9 _Z
DeﬁnitiO:n 2.2.11 Z (_¢(Z))
(2.2.1) v —
= P(—=9(A))
Def}nlt;n 2.3.4 ﬁ(—l/)(A))
Theor;ﬂ 1.1.1 ﬁ(—’l/)(A))
Deﬁniti:On 2.3.5 0’(_’[/)(14)).
— Assume A ¢ F,. Then A= T and
—A=1,
Further, ¥(A) is right unbounded, hence —t(A) is left unbounded and
P(—p(A) = L. O

In the following, for A € IF" we define
o(A) = (c(A1),...,0(An))

and for X € TR" we define
P(X) = (V(X1), .. 0(Xn)).

Theorem 2.3.10 motivates the following Definition:

Definition 2.3.11 (Rounding) A function F : IF" — ITF is called rounding of a function F : TR — IR
if for all A € TIF"

F(A) 2 o(F(4(A))).
F is the exact rounding of F if for all A € TF"

F(A) = o(F(¢(A))). O

CHAPTER 2. IMPLEMENTATION OF INTERVAL ARITHMETIC 30

Theorem 2.3.10 states that the floating point interval arithmetic functions are the exact roundings of the
corresponding real interval arithmetic functions.

Now we are ready to prove correctness of floating point interval arithmetic in the sense that the evalua-
tion of an arithmetic expression using floating point interval arithmetic yields an inclusion of the result
obtained by using real interval arithmetic, provided the results are defined. This i1s described by the
following diagram:

real
TR" interval arithmetic R
4 v, C
I floating point i

interval arithmetic

Theorem 2.3.12 Let F : IR’ — IR be inclusion monotone and let F : IT" — IF be a rounding of F.
Then for all X € TR" it holds that
F(X) Cy(F(e(X))). O

Proof. Let F and F as in Theorem 2.3.12 and let X € IR arbitrary but fixed. Note that

Definitiir‘ 2.3.11 o(F(¢(a(X))))

Lemma 2.3.7

F(o(X))

Hence,

2 F(X). O
Corollary 2.3.13 For all X,Y € IR it holds that
X+Y C Y(o(X)+o(Y))
X =Y C 4(o(X)—a(Y))
X*Y C ¢(a(X)*xo(Y))
X/YC d(e(X)/e(Y))if 0¢a(Y)
X C d(—o(X)). O

Proof. Follows from Theorem 2.3.10 and Theorem 2.3.12. O

It remains to show that the composition of roundings is a rounding of the composition of functions.

Theorem 2.3.14 (Composition of Roundings) Let F : IR — IR, G; : IR' — IR be inclusion
monotone and let F : IF" — [T, G; : IF" — I be roundings of F', G; fori = 1,..., m respectively. Then
F(Gy,...,Gn) is a rounding of F/(Gy,...,Gp,). O

Proof. Let F,G;,F,G; as in Theorem 2.3.14 and let A € IIF" arbitrary but fixed. Then

Definition 2.3.11

F(Gi,...,Gn)(A) 5 o(F((Gr,. ..,
T g (F(4(G1, - -, Gn)))(0($(A)))

Theorem 2.3.12

CHAPTER 2. IMPLEMENTATION OF INTERVAL ARITHMETIC 31

Remark. Theorem 2.3.12 and Theorem 2.3.14 show that inclusion monotonicity is a very important
property for the implementation of interval functions. O

Finally, we show that floating point interval arithmetic is inclusion monotone. We begin by proving
that exact roundings of inclusion monotone functions are inclusion monotone. This implies inclusion
monotonicity of the basic interval arithmetic functions. Next, we show that inclusion monotonicity is
preserved under composition.

Theorem 2.3.15 Let F : IR — IR be inclusion monotone and let F : IF" — ITF be the exact rounding
of F'. Then F is inclusion monotone. O

Proof. Let F' and F as in Theorem 2.3.15 and let A, Ay € IF" arbitrary but fixed such that A, C A.
Then

F(Ao) Defmmo:n 2.3.11 O'(F(l/)(AQ)))
Definition 2.3.6
o

C (F((A)))

Definitio:n 2.3.11 F(A) D

Note that Theorem 2.3.15 can not be generalized to non—exact roundings.

Corollary 2.3.16 (Inclusion Monotonicity) Let A, B, Ay, By € IF such that Ay, C A, By C B.
Then

As+Be C A4+ B
Ap— By C A-B
AexBe C AxB
A¢/Be C A/Bif 0¢ B
-4, C —-A.DO

Proof. Follows from Theorem 2.3.10 and Theorem 2.3.15. O

Theorem 2.3.17 (Composition Preserves Inclusion Monotonicity) LetF : [F" — IR, G; : IF' —
I be inclusion monotone for i = 1,...,m. Then F(Gy,...,Gpy,) is inclusion monotone. O

Proof. Let F, G;, i = 1,...,m as in Theorem 2.3.17. Let Ay, A € IF" arbitrary but fixed such that
Ay C A. Then

F(Gr,...,Gn)(As) = F(Gi(Ag),...,Gm(As))
C F(Gi(A),...,Gn(A))
= F(Gy,...,Gn)(A). O

2.3.1 Basic Algorithms on Floating Point Intervals

In this section we give algorithms for floating point interval arithmetic and some other operations, which
will be used later.

Algorithm 2.3.18 (TADD) [Floating Point Interval Addition]

In: A, B €I

Out: TADD(A, B) € IF, ITADD(A, B) = A + B.

CHAPTER 2. IMPLEMENTATION OF INTERVAL ARITHMETIC 32

(1) return (A—T— Q,Z—Ai— B).
Theorem 2.3.19 (Complexity) Algorithm 2.3.18 costs 2 floating point number additions. O

Algorithm 2.3.20 (ISUB) [Floating Point Interval Subtraction]
In: A BelF.
Out: ISUB(A, B) € IF, ISUB(A, B) = A — B.

(1) return (A — B, A~ B).
Theorem 2.3.21 (Complexity) Algorithm 2.3.20 costs 2 floating point number subtractions. O

Algorithm 2.3.22 (INEG) [Floating Point Interval Negative]
In: AcIF.
Out: INEG(A) € IF, INEG(A) = —A.

(1) return (—A4,—A).

Theorem 2.3.23 (Complexity) Algorithm 2.3.22 costs 2 floating point number sign inversions. O

Algorithm 2.3.24 for multiplying intervals is relatively complicated. This is mainly due to the fact, that
the IEEE standard 754 does not provide the modified floating point multiplication functions *, ¥. In
order to minimize the number of floating point comparisons during interval multiplication, we do not call
algorithms for *, ¥, but use information on the sign of floating point number operands whenever possible.
In any case, we have to avoid the multiplication of 0 and L or T by % or %, because this would result in
1. According to Definition 2.3.8, the desired result in this case is 0.

bl

Algorithm 2.3.24 (IMUL) [Floating Point Interval Multiplication]
In: A BelF.
Out: IMUL(A, B) € IF, IMUL(A, B) = A+ B.

(1) [Case A > 0]
if A <0 goto Step 2.

(1.1) [Case A >0, B > 0]
if B > 0 return (A¥§,Z$

(1.2) [Case A>0, B <0.)]
if B<0return (A% B, A%
(1.3) [Case A > 0,0 € B.]
if B=0 then ' «—— 0, else
if B =0 then C «—— 0, else

return C'.

(2) [Case A<0]
if A > 0 goto Step 3.

(2.1) [Case A< 0, B >0]
if B > 0 return (A¥§,Z$ B).
(2.2) [Case A< 0, B <0]

if B < 0return (A % B,

s

).

s~

).

A
A

*> %<
e

€ —
C —

=S
*>
&

CHAPTER 2. IMPLEMENTATION OF INTERVAL ARITHMETIC 33

(2.3) [Case A< 0,0€ B]
if B =0 then C 0, else
if B =0 then C'—— 0, else

return C'.
(3) [Case 0 € A.]

(3.1) [Case 0 € A, B> 0]
if B <0 goto Step 3.2.
if A =0 then C «—— 0, else
if A=0 then C' «— 0, else

return C'.

(3.2) [Case 0 € A, B < 0]
if B > 0 goto Step 3.3.
if A=0 then C «— 0, else
if A=0 then C' «— 0, else

return C'.
(3.3) [Case 0 € A, 0€ B]

(3.3.1) [Case A=0,0¢€ B]
if A # 0 goto Step 3.3.2.
if A= 0 return (0,0).
if B =0 then C «— 0, else
if B =0 then C — 0, else

return C'.

(3.3.2) [Case A=0,A#0,0¢€ B]
if A # 0 goto Step 3.3.3.
if B=20then C «— 0, else ' «—
if B =0 then C — 0, else C' —

return C'.

(3.3.3) [Case 0 € A, A#0,A#0,B=10]
if B # 0 goto Step 3.3.4.

€ —
C —

Qllo
[
[SSsN
*> ¥<

C—
C —

if B = 0 return (0, 0), else return (Z¥ Q,AQQ)
(3.34) [Case 0 € A, A#£0, A40,B=0,B+#0]

if B =0 return (A¥§,Z$ B).
(3.3.5) [Case 0 € A,0€ B,0¢ {A, A, B, B}]

C — min{A ¥ B, A % B}.
C — max{A% B, A% B}.

return C'. N

Theorem 2.3.25 (Complexity) If 0 € int(A) and 0 € int(B) then Algorithm 2.3.24 costs 4 floating
point number multiplications. Otherwise, Algorithm 2.3.24 costs 2 floating point number multiplica-
tions. O

Algorithm 2.3.26 (IDIV) [Floating Point Interval Division]

In: ABEIL 0¢ B.
Out: IDIV(A, B) € IF, IDIV(A, B) = A/B.

(1) [Distinguish cases B > 0 and B < 0.]
if B > 0 goto Step 2, else goto Step 3.

(2) [Case B > 0.]
if A< 0 return (A / B, A/ B).

CHAPTER 2. IMPLEMENTATION OF INTERVAL ARITHMETIC 34

if A> 0 return (A7§,Z7§)
return (A7 Q,Z? B).

(3) [Case B < 0.]
if A< 0 return (
if A > 0 return (
return (Z7 B, A7 B).

Theorem 2.3.27 (Complexity) Algorithm 2.3.26 costs 2 floating point number divisions. O

The following algorithm gives the exact rounding of the interval square function.

Algorithm 2.3.28 (ISQR) [Floating Point Interval Square]
In: AcIF.
Out: ISQR(A) € IIF, ISQR(A) = o(v(4)?).

(1) [Distinguish cases 0 € A and 0 & A.]
if A<0and A >0 goto Step 2, else goto Step 3.

(2) [Case 0 € A.]
if —A > A return (O,A@ A) else return (O,ZQ A).

(3) [Case 0 ¢ A.]
if A > 0 return (A4 A A% A) else return (A x A A% A).

Theorem 2.3.29 (Complexity) Algorithm 2.3.28 costs 1 floating point number multiplication if 0 € A
and 2 floating point multiplications else. O

Algorithm 2.3.30 (IPOW) [Floating Point Interval Power]
In: AellF, neN.
Out: TPOW(A,n) € IF, o(TPOW (A, n)) D ¢(A)™.

(1) [Distinguish cases n even and n odd.]
if n is even goto Step 2, else goto Step 5.

(2) [Distinguish cases 0 € A and 0 & A.]
if A<0and A >0 goto Step 3, else goto Step 4.

(3) [Case n even, 0 € A.]

if —A > A return (0, POW (A, n)) else return (0, POW (A, n)).
(4) [Case n even, 0 ¢ A.]

if A> 0 return (PdW (A, n), POW (A, n)) else return (PdW (4,n), POW (4, n)).
(5) [Case n odd.]

return (PdW (A, n), POW (A, n)).

Theorem 2.3.31 (Complexity) Algorithm 2.3.28 costs 1 floating point number power computation if
n is even and 0 € A and 2 floating point number power computations else. O

The following observation will be useful later on.

Theorem 2.3.32 If 0 ¢ int(A) then 0 & int(TPOW(A, n)) for all n e N. O

CHAPTER 2. IMPLEMENTATION OF INTERVAL ARITHMETIC 35

Algorithm 2.3.33 computes a floating point approximation of the midpoint of an interval.

Algorithm 2.3.33 (MID) [Midpoint of a Floating Point Interval]
In: AcIF.
Out: MID(A) € F,, MID(A) € A.

(1) [Case A= (L,T)]
if A= —A return 0.

(2) [Case A= Lor A=T.]
ifé = | return minl,.
if A= T return max[T,.

(3) return A ¥ 7 (0.5)% (A = A).
Theorem 2.3.34 (Correctness) Algorithm 2.3.33 (MID) is correct. O

Proof. Let A € I and let b = MID(A). If A= 1 or A = T then obviously b € F, and b € A. Assume
A AeT,and let a = A M A. According to Definition 2.2.11 @ € IF, and

0 < ¢(a) < ¢(A) — ¢(A).
Let o' =p (0.5) ¥ a. As ¢(0) = 0 it follows from Definition 2.2.4 that 0 < qb(z (0.5)) < 1 and therefore
0 < ¢(a’) < ¢(a) < ¢(4) — H(4).

Hence, .
$(A) < ¢(4) + ¢(d) < ¢(A).
From Lemma 2.2.8 1t follows that

P(8(4) <P (8(4) +6(a) < P (6(A)),
and according to Lemma 2.2.10 and Definition 2.2.11
A<ATd <A

Asb=AT a it follows that b€ T, and b € A. O

Theorem 2.3.35 (Complexity) Algorithm 2.3.33 (MID) costs 1 number multiplication and 2 number
additions. O

Algorithm 2.3.36 computes a floating point approximation of the width of an interval. The computed
value is greater or equal the exact width of the input interval.

Algorithm 2.3.36 (WIDTH) [Width of a Floating Point Interval]
In: AcIF.
Out: WIDTH(A) € I,

T if ¢/(A) is right or left unbounded

wiDTH) = | Plw(w(A)) clse.

(1) return A 2 A

Theorem 2.3.37 Algorithm 2.3.36 (WIDTH) costs 1 floating point addition. D

CHAPTER 2. IMPLEMENTATION OF INTERVAL ARITHMETIC 36

Next, we give an algorithm for the exact rounding of the generalized and hull division of extended
intervals.

Definition 2.3.38 (Generalized and Hull Division) The function gdiv : TRy x IRy x IRy — P(R)
is defined as
gdiv(iN, D, X)={r e X | n=dz for some n € N,d € D}.

The function hdiv : IRy x IRy x IRy — IRy is defined as

hdiv(N, D, X) = [gdiv(N, D, X)]. O

In order to simplify notation, we define X = oo if X is right unbounded and X = —oo if X is left
unbounded. Arithmetic on R U {—o00, 00} is defined in the usual way.

Theorem 2.3.39 (Generalized Division) For all N, D, X € IR it holds that

N/DNX if0¢D

X if0e N,0e D

0 if0g N, D=0

{reX |z>N/D} if N>0,D=0,D>0
gdiv(N, D, X)=<¢ {z€ X |2 < N/D} ifN>0,D<0D=0

{reX|z<N/DIU{zeX |xz>N/D}) if N>0,0¢cint(D)

{reX |z<N/D} if N<0,D=0,D>0

{reX |z>N/D} if N<0,D<0,D=0

{reX|z<N/D}u{zeX |2z>N/D}) if N<0,0cint(D). O

Thus, for all N, D, X € IRy there exist Y7, Y5 € IRy such that

gle(N,D,X) = Y1 UYQ.

Algorithm 2.3.40 (GDIV) [Generalized Division]
In: N,D,X eIF,.

Out: Ay, As € 1Ty, Ay = a(Y1), Ay = o(Y2) for some Yy, Vs € TRy such that gdiv(y(N), ¥(D),¥(X)) =
Y1 UYs.

(1) [Case N=0or D=0or X =0]
ifN=0or D=0or X =0 return (},1), (%, 1).

(2) [Case 0¢ D.]
if D> 0or D<O0return N/DN X, (4,1).

(3) [Case 0 € N, 0 € D]
if 0 € N return X, (4,).

(4) [Case 0¢€ N, D =(0,0).]
if D =(0,0) return (4,1), (£, £).

(5) [Distinguish cases N > 0 and N < 0.]
if N > 0 goto Step b, else goto Step 6.

(6) [Case N >0,0€ D, D #(0,0)]

if D=0return (N / D, T)NX,(4,1).
if D = 0 return (J.,ﬂ?Q) NX,(t1).
return (L, N/ D)N X, (N /D, T)N X.

(7) [Case N <0,0€ D, D #(0,0).]
if D = 0 return (J.,N? D)yn X, (1, 1)

CHAPTER 2. IMPLEMENTATION OF INTERVAL ARITHMETIC 37

if D = 0 return (N 7 D,
return (L, N / D)N X, (

) N (8, 8).

X,
D, T)NnX.

=l 4

n
/

Algorithm 2.3.41 (HDIV) [Hull Division]
In: N,D,X eIF,.
Out: HDIV(N, D, X) € Iy, HDIV(N, D, X) = o(hdiv((N), (D), ¥(X))).

(1) [Generalized Division.]
A1, Ay — GDIV(N, D, X).

(2) [Hull]
if A1 = (f,1) return As.
if A2 = (f,1) return A;.

return (A;, As).

Theorem 2.3.42 (Complexity) Algorithm 2.3.40 and Algorithm 2.3.41 cost 2 floating point number
divisions. O

Algorithms in the following sections often require arithmetic operations, where one operand is a real
number and the other operand is a real interval. These operations are defined in the real case by the
embedding of real numbers into the set of real intervals. However, in the floating point case such an
embedding is not possible, hence we have to define an explicit type conversion function which has not
the properties of a homomorphism.

Definition 2.3.43 (Floating Point Number to Interval Conversion) The function v : F — 1T is
defined as
(a,a) ifaecl,
y(a) =< (L,minF,) fa=1
(maxTF,, T) ifa=T.0

From Definition 2.3.4 it follows that for all « € I,

Further, by Definition 2.3.9 for all a,b € T,, o € {4+, — %, /}
(a6b,adb)=7y(a)oy(b)

and for all a € IF

The definition of v for « = T and a = L avoids sometimes the necessity of treating special cases. For
example

(4(4),7(A)) = A

for all A € IF. An algorithm for computing v is straight forward:

Algorithm 2.3.44 (CONVERT) [Floating Point Number to Interval Conversion]
In: acl.
Out: CONVERT(a) € IF, CONVERT(a) = y(a).

(1) if a = L return (L, minTF,).
if a = T return (maxT,, T).
return (a, a).

CHAPTER 2. IMPLEMENTATION OF INTERVAL ARITHMETIC 38

Definition 2.3.45 Let o € {4, —,*,/}. Then o : F x IF — IF is defined as
aoB=~(a)o B.
Similarly, o : IIF x F — IF is defined as

Aob=Aoy(b). D

Algorithms for arithmetic operations on a floating point number and a floating point interval, which do
not explicitly call CONVERT are straight forward. Usually, they require less control structures and less
floating point number comparisons, but the same number of arithmetic floating point number operations
as algorithms which first convert the floating point number argument to an interval. As an example we
give an Algorithm which computes the product of a floating point number and a floating point interval.

Algorithm 2.3.46 (NIMUL) [Floating Point Number / Interval Multiplication]
In: aelF Bell.
Out: NIMUL(a, B) € IF, NIMUL(a, B) = IMUL(3(a), B).

(1) [Case a = T.]
fa=T
if B<0then €' «— 1, else (' «—— max][F,
if B> 0then C «—— T, else C «— max[F,
return C.

(2) [Case a = L.]
ifa= 1
if B< 0then C — T, else C «— minT,
if B> 0 then C «— L, else C «— minT,
return C.

(3) [Case a € TF,.]
if @ > 0 return (
if @ < 0 return (
return (0,0).

* B.
+B

* B
iB

Theorem 2.3.47 (Complexity) For all a € F,, B € IF, B # 0, B # 0 Algorithm 2.3.46 with input
a, B executes as many floating point number multiplications as Algorithm 2.3.24 with input y(a), B. O

In the sequel, we omit ¢, 1/),5,& %, 0,7 if no confusion can arise. Further, we write 4+, — — %, / instead
of TADD, ISUB, INEG, IMUL, IDIV respectively and use the mathematical notation for exponentiation
instead of IPOW. Instead of CONVERT (a) we will write [a] or simply a.

Chapter 3

Inclusion of the Range of Univariate
Polynomials

The overestimation of the range of functions is a fundamental problem in interval mathematics. We
will not treat the problem in its full generality, rather we restrict ourselves to polynomials. Apart
from linear functions, for which range computation is trivial, polynomials are the “simplest” subclass of
elementary transcendental functions. We can therefore expect more efficient methods and more refined
results for polynomials than for arbitrary functions. The practical importance of polynomials is out of
question, therefore it seems worthwhile to study them separately. In this chapter we consider univariate
polynomials, the multivariate case is treated in the next chapter.

In the following let f: R — IR,
flx) = ane?™ + ap_12®t 4 4 arzh, #+0, diy1>d;

be a polynomial and let
Ay = 4y
Az’ = di_di—la i:2,...,n.

3.1 Horner Form

There are many ways to rewrite an arithmetic expression and it is well known, that expressions, which
are equivalent as functions over the reals are usually different as functions over intervals. A standard
arrangement of expressions which contain only addition and multiplication is the Horner form — it is
numerically stable and allows efficient evaluation. Concerning the interval case, Horner form is optimal
with respect to subdistributivity. Among all methods described in this chapter, Horner form is cheapest.
On the other hand, there are many examples, where Horner form gives the exact range, where “more
sophisticated” methods overestimate.

Section 3.1.1 contains a new criterion to decide whether Horner form returns the exact range or a proper
overestimation. An algorithmic test of the criterion is straight forward. Improvements if the argument
interval does not contain 0 are discussed in Section 3.1.2. Sometimes it is sufficient to compute only
an upper or lower bound of the range. A new algorithm for computing the endpoints of the Horner
form separately is given in Section 3.1.2.2. Bisection of the input interval in connection with Horner
form is studied in Section 3.1.3. We give some original theorems for estimating the reduction of the
overestimation error through bisection and devise an efficient algorithm for the special case when the
input interval is bisected at 0.

Definition 3.1.1 (Horner Form) The Horner form H; : IR — IR of f is defined as

H¢(X)= ((...(anXA" —|—an_1)XA"‘1 —|—...—|—a2)XA2 —I—al)XAl. m]

39

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 40

If iterated multiplication 1s used instead of the interval power function in the definition of the Horner
form, we obtain the dense Horner form.

Definition 3.1.2 (Dense Horner Form) The dense Horner form H IR — IR of f is defined as

HE(X) = ((...(anX~~~X—|—an_1) XX —|—...—|—a2)X~~~X—|—a1)X~~~X. 0

A, times A, _itimes Astimes Ajtimes

Theorem 3.1.3 For all X € IR it holds that

If f is dense or 0 & int(X) then

Proof. Let
(X)) = @ X, R(Y) = (Pa(X) 4+ a) XS
PHX) = apn XX, P(X) = (X)) +a)X X
A, times A,times

for i = 1,...,n — 1. Note that P,(X) = H;(X) and P¥(X) = H}‘(X). By induction it follows that
Pi(X) C P*(X) for all i. If f is dense then A; =1, for all > 1 and A; =0, hence P;(X) = P*(X) for
all 4. If 0 ¢ int(X) then X2 is equal to A; times the product of X with itself, and P;(X) = P*(X) for
all ¢. O

Theorem 3.1.4 (Inclusion Monotonicity) H; and H?} are inclusion monotone interval extensions of

f. 0

Proof. Obviously H;(X) = H; (X) = f(X) if X € R. The inclusion monotonicity of H; and H7 follows
from Corollary 1.3.5 and Theorem 1.3.22 shows that H;, H}‘ are interval extensions of f. O

Theorem 3.1.5 (Convergence) H; and H?} converge linearly to f. O

Proof. H; and H7} are interval extensions of f (Theorem 3.1.4) and Lipschitz (Corollary 1.3.19). Hence
Hy and H} converge linearly to f (Theorem 1.3.24). O

The following theorem simplifies some considerations later on.
Theorem 3.1.6 For all c € R, X € IR the following holds.

(i) If g(x) = f(x) + ¢ then
Hy(X) = Hy(X) +c.

(ii) If g(x) = cf(x) then
Hy(X) = cHs (X).

(iii) If g(x) = f(cx) then
Hy(X) = H(eX). D

Proof. Let ¢ € R and X € IR arbitrary but fixed.
(i) Let g(x) = f(x) +c. Then

Hy(X) = ((...(anXA"—l—an_l)XA"—l—|—...—|—a2)XA2—|—a1)XA1—|—c
= H;X).

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 41

(ii) Let g(#) = ¢ f(z). Then

H,(X) = (...(canXA" —|—can_1)XA"—1 +. ..—|—ca2)XA2 + cal)XAl

= c((...(anXA" —|—an_1)XA"—1 +. ..—|—a2)XA2 + al)XAl
= CHf(X).

(...c(anXA" + an_l)XA"—l + ...+ caz)XA2 + cal)XAl

H,(X) = ((...(ancd"XA" —|—an_1cd"—1)XA"—1 + ...+ aQCdQ)XA2 + alcdl)XAl

= ((o (@n(eX)P 4 apoq)edr T XAt 4 page®) X A2 4 alcdl)XAl

- (((@ (€X)A o 1)(eX)A T+ an)(eX)A + al) (cX)

= Hf(CX). O
Remark. In general it is not true that g(x) = f(x + ¢) implies Hy(X) = H¢(X + ¢). For example, let
flz)=2?—2, X =[0,2]and ¢ = —1. Then g(z) = 2? =3z +2, Hy(X) = [-4,2] but Hf(X +¢) = [-2,2].

This observation can be exploited to reduce the overestimation error of the Horner form, see Section

3.3.0

From Definition 3.1.1 we obtain the following algorithm for evaluating the Horner form.

Algorithm 3.1.7 (HF) [Horner Form)]

In: f(2) = apet 4+ ap_gz@-t + 4 agz? € Fz),
X eIl.

Out: HF(f,X) € IF, HF(f, X) D H(X).

(1) [Initialize.]
P, — a,.
(2) [Accumulate.]
fori=n—-1,...,1
P, — PZ'+1Xd’+1_d’ + a;.

(3) [Last power.]
PO — Plel .

(4) [Return.]

return .

Remark. The specification of Algorithm 3.1.7 (HF) requires some explanation. It is clear how a poly-
nomial f(z) € Flz] is interpreted as a polynomial in R[z] if all coefficients are ordinary floating point
numbers. As we allow L and T as coefficients, the output must be specified more precisely as

HF(f,X) € IF, HF(f,X)2 | J Hf(X),

feF
where
n a; = a; ifa; € F,
F = Za}xd’ a; > maxlf, ifa; =T
i=1 a; <minlF, ifa; =1

In order to simplify notation we write in the specification of subsequent range computation algorithms
as in Algorithm 3.1.7. O

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 42

Theorem 3.1.8 (Complexity) Algorithm 3.1.7 (HF) costs

n Interval power computations,
n Interval multiplications and
2n — 2 number additions. O

If 0 ¢ int(X) then every interval multiplication in Algorithm 3.1.7 (HF) costs only 2 number multiplica-
tions:

Theorem 3.1.9 (Complexity) If 0 ¢ int(X) then Algorithm 3.1.7 (HF) costs

n Interval power computations,
2n number multiplications and
2n — 2 number additions. O

Proof. Follows from Theorem 2.3.32 and Theorem 2.3.25. O

3.1.1 Non—-Overestimation of Horner Form

Experimentally it was observed that there are many cases where the Horner form is exact, i.e. H¢(X) =

J(X).

e For example if f(z) = 2? — z and X = [1,2] we obtain H;(X) = [0,2] = f(X). More generally, the
Horner form of f(x) evaluated on X does not lead to overestimation for all intervals where X > 1
or X <0.

e Another example is f(z) = 23 — 2z evaluated on [-2,—1.5]. Again, we can generalize: Horner
evaluation of f(x) on X does not lead to overestimation if X > V2or X < —V2.

In this section we present a new criterion to decide whether Horner Form computes the exact range or a
proper overestimation. If mig(X) is sufficiently large, i.e. if

X>0; or X <O

for some bounds .
Of >0> Qf

(Theorem 3.1.12), then Horner form is exact. The computation of the bounds 6f,Qf 1S expensive.
However, it can be tested very cheaply whether a given interval is outside the bounds, without actually
knowing them (Algorithm 3.1.23).

It should be noted that this simple condition for non—overestimation is sufficient but not necessary.
Counterexamples have been found, which could be generalized to whole classes of polynomials, where
Horner form gives the range although X is not outside O (Section 3.1.1.4). Examples of two rather
obvious classes are as follows:

e The Horner form of f(x) = x* + x? never overestimates.

e The Horner form of x3 + 2z gives the range for all argument intervals, which have midpoint zero.

A complete characterization of all cases where Horner form is exact is still unknown. The results of this
section are original. Before going into details we eliminate some trivial cases from the discussion.

Theorem 3.1.10 For allc € R, X € IR, if g(x) = f(x) + c or g(x) = cf(x), ¢ #0, then

Hp(X) = f(X) iff Hy(X) = g(X). O

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 43

Proof. Theorem 3.1.10 is an immediate consequence of Theorem 3.1.6. Let ¢ € R and X € IR arbitrary
but fixed.

o Let g(2) = f(2)+¢. Then Hy(X) = f(X) it Hy(X)+c= f(X) +ciff H(X)=g(X).
o Let g(x) =cf(z), ¢ #0. Then Hy(X) = f(X) iff cHp(X) = ¢f(X) iff Hy(X) =g¢(X). O
Thus, we can make the following assumptions.

e Whether Horner form gives the range does not depend on an additive constant. Hence we can
assume that f has no constant monomial, i.e. dy > 0.

e It is also independent of a constant factor whether Horner form overestimates. Therefore we may
assume a, > 0.

e Finally if f 1s a monomial, then Horner form never overestimates. Thus, we assume n > 1.

Summarizing, throughout this section let

flz) = apz® +ap_129-1 4+ . +apzh
a; € B\{0}, i=1,...,n
4 > 0 (3.1.1)
di > 0
n > 1.

3.1.1.1 A Sufficient Condition for Non—Overestimation

In this section we show that if the distance of X and 0 1s sufficiently large, then Horner form does not
overestimate. The key of the proof is that in this case certain “sub—polynomials” of f are monotone
in X. Note however, that monotonicity of f in X is not sufficient for non—overestimation, for example

f(z) = 2? — z is monotone in X = [0.5,1] but H;(X) = [-0.5,0] whereas f(X) = [-0.25,0].
Let p; : R — R, 2 =0,...,n be defined as

Pn(l‘) = Ap

Pn—l(l‘) i Pn(l‘) xin_ + an_1

pn—Z(x) — pn—l(x) T + an_o (312)
pe) = o) e 4w

po(e) = pi(z) =™

Note that po(z) = f(=).

Definition 3.1.11 (Overestimation Interval) The overestimation interval O € IR of f is defined as
O; =[{z €R | pj(x) =0 forsome n >i>0}]. O
In other words, Oy is the smallest interval which contains all roots of the p;. Note that pg(0) = 0, hence
0€ 0y and
O;
9y

IN IV

Now we are ready for the main theorem of this section.

Theorem 3.1.12 (Non—Overestimation of Horner Form) For all X € IR, if
nt(X)NO; =10

then

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 44

For the proof of Theorem 3.1.12 we need some monotonicity properties of the polynomials p;, which are
subject of Lemma 3.1.13 and Lemma 3.1.14.

In the sequel let
Sp =
sic1 = (=%, i=n,..., L

For the inductive proofs below we define ag = 0.

Lemma 3.1.13 For:=0,...,n it holds that

pi(z) > 0 =

PzEl‘; > 0 } for all > Oy (3.1.3)
sipi(x) < 0
spi() > 0 forallz < O;. O (3.1.4)

Proof.
o We show (3.1.3) by proving inductively for ¢ = n,...,0

i:gzg E 182(0)} for all u>v > Oy. (3.1.5)

As py, is a constant, (3.1.5) holds for ¢ = n. Assume (3.1.5) holds for some ¢ = i > 0.

pimy(u) = pi(wuti +a;_,
> pi(v)ei +a;_,
= pi’—l(“)~

\Y

Assume p;_,(u) < 0. As p;_, (%) is non—constant and increasing for z > 6f, there exists & > u > 6f
such that p;_,(2) = 0, which contradicts the definition of Oy.

o We show (3.1.4) by proving inductively for ¢ = n,...,0

sipi(u) > sipi(v)
sipi(u) > 0 forall u<v<0;. (3.1.6)

As py, is a constant, (3.1.6) holds for ¢ = n. Assume (3.1.5) holds for some ¢ = i > 0.
)

_ N . As N N
sy (w) = s p(wui s a;_

VA
® 2
3 3
< <«

= 5.0 ,(v)

Assume s;_,p;_(u) < 0. As s;_;p;_,(x) is non—constant and decreasing for < Qf, there exists
z < u < 0O such that s;_,p;_,(2) = 0, which contradicts the definition of O¢. O

We define multivariate polynomials p; : R" ™" — R, i=0,...,n and f ‘R" — R as

ﬁn() = Ap
ﬁn—l(xn) = ﬁn() xﬁn + an—1
~ ~ A,
pn—2($n—1axn) = pn—1($n) $n_11 + an_o (317)
]31($2,~~~al’n) = ﬁ2($3a"wxn) szz + ay ~
Po(x1, .. xn) = pr(za,...,2n) a7 = [z, .., 2n)

Note that R
{fler, ... 2p) | r€e€X,. ..z, € X} = Hp(X).

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS

Lemma 3.1.14

;EZ; i g(v) } for all w,v € R” ug > v1 > Of,...,uy > v, > Oy
SO.f(u) Z SO.f(v) n
sof(u) > 0 forall w,v € R",uy <v1 <0f,...,up <0, <O O

Proof. For u,v €¢ R" i=10,...,n let

u; = (Ui+1,ui+2a""u”)

U;

(Vs41, Vig2y ..., Un).

o We show (3.1.8) by proving inductively for ¢ = n,...,0

{’Z(ul) E gl(vl) } for all w,v € R w1 > vig1 > Of, ..., u, > v, > Oy,
As Py, is a constant, (3.1.10) holds for ¢ = n. Assume (3.1.10) holds for some ¢ = i>0.

_ . A,
Piog(up_y) = pz(uz)uZ ta

v
<

A-
v+

v;_y).

;(

[[l
= =
—~ |
: =
0 —~
s
NC
+
N@
iR

Pi_q(w;_y)

Y%
il
<
-

> -

> Q|
=
@)
o
+
N@

|
I
|
—
—
Ql
[y
~—

> 0.

o We show (3.1.9) by proving inductively for ¢ = n,...,0

s;Pi(u;)
sipi(w;) 0

As P, is a constant, (3.1.11) holds for i = n. Assume (3.1.11) holds for some i =i > 0.

~ - A

s B (ug_y) = s p(upust + s jap

s; 93 () (—up) >

5:5;(v;)(—vp) ™ 4 5545,
A~

= s p(vp)vs sy

s;_1D;_1(v;_1).

~ A-
s;_aPplup)us 4545

Rl AT

v

s;_1P; -1 (w;_y)
= sipi(u)(—up) S+ s,

Sgﬁg(Qf, . ~an)(_Qf)A; + 5104

Sip{(Qf)(_Qf)A; + 810

s;_1P;-1(Oy)

> 0.0

v

> e . _
N 5ipi(v:) } for all w,v € R ujy1 <wip1 <Op, .. u, Svp <Oy

45

(3.1.8)

(3.1.9)

(3.1.10)

(3.1.11)

Proof of Theorem 3.1.12. Let X € IR such that int(X) N Oy = 0. Then either X < O;or X > 6f

and according to Lemma 3.1.13 f is monotone in X, i.e.

FX) = [f(X), f(X)].

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 46

By the definition of f it holds that

Finally, it follows from Lemma 3.1.14 that

FX, . X)) (X, X)) = {fler, . wn) |21 € X, 2, € X} = Hp(X).

Hence

f(X) = Hp(X).B

3.1.1.2 Optimality of the Non—Overestimation Condition

In the previous section we proved the sufficient condition int(X) N O = @ for Hf(X) = f(X). This
condition is not necessary in general. For example let f(x) such that a; > 0 and A; is even for all i.
In this case Oy = {0}, but H¢(X) = f(X) for all X in IR, even if int(X) N Of # 0. However, in this
section we show that O; is minimal in the sense that there exists no interval ¢y such that Q; 2 O; and
int(X) N Qs = 0 still implies H¢(X) = f(X). Throughout this section let f(z) as in (3.1.1).

Theorem 3.1.15 (Optimality of the Overestimation Interval) Assume a; < 0 or A; is odd for at
least one i € {1,...,n}. Let Qs € IR such that QQ; 2 Oy. Then there exists X € IR such that

int(X)NQ; =0 and H;(X)D f(X). O (3.1.12)

For the proof of Theorem 3.1.15 we distinguish the case Oy = {0}, which is treated in Lemma 3.1.16
and Lemma 3.1.17, and the case Oy # {0}, which is treated in Lemma 3.1.18, Lemma 3.1.19 and Lemma
3.1.20. In the sequel let @ € IR such that @y 2 Oy.

Lemma 3.1.16 If O; = {0} then

(i) @ >0fori=1,...,n and

(i) Ajisevenfori=2,...,n. O
Proof. Assume O; = {0}.

(1) Let n > ¢ > 0 arbitrary but fixed. From the definition of O; it follows that p;(x) # 0 for z # 0.
Further, p;(0) = a; # 0, hence p;(x) # 0 for all x € R. As the leading coefficient of p; is ap, > 0, it
holds that p;(x) > 0 for sufficiently large . Hence p;(z) > 0 for all z, and a; = p;(0) > 0.

(ii) Assume A; is odd for some ¢ > 1 and let ¢ be the largest index such that A; is odd. Then the
degree of

pi(e) = (- (an@® 4 ap_1)e® " 44 a2t 4 g

is even and the degree of
pio1(z) = pi()z® + ai_

is odd. Hence p;—1(z) < 0 if @ is small enough, which is a contradiction to p;(z) > 0 for all z and
> 0.0

Thus, in order to prove Theorem 3.1.15 for the case Oy = {0} it remains to show the following lemma:

Lemma 3.1.17 Assume Of = {0} and Ay is odd. Then there exists X € IR such that

mt(X)NQr =0 and Hi(X)D f(X). D

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 47

Proof. Assume Oy = {0} and Ay is odd. From Lemma 3.1.16 it follows that a; > 0 for i =1,...,n and
A; is even for ¢ = 2,...,n. Hence the degree of f is odd and from Lemma 3.1.13 it follows that f(x) is
monotonically increasing. Thus

F(X) = f(X)

for all X € IR. As 0 ¢ ()5 there exists X &€ IR such that

mt(X)NnQy = 0
0 € int(X)
X > -X.

The monomials of p;(#) have even power and positive coefficient, hence

p1(X) > p1(X) > 0.

As X2t <0, it holds that

X)) = p(x)x*
> p(X)XH
= fN Xa ya ya 3 7)

Hence

which implies H;(X) D f(X). O

The following lemmas are a preparation for the proof of Theorem 3.1.15 for the case O # {0}.

Lemma 3.1.18

(i) If # > 0 and p;(x) >

fora]li:l,...,nthenxzaf.

0
(ii) If <0 and s;pj(x) > 0 foralli=1,...,n then < O;. O

Proof.

1) Assume > 0 and p;(x) > O for all : = 1,...,n. According to the definition of O; we have to
(i) > pi(z) > e g 7

show that p;(y) # 0 for all ¢ and for all y > ». Hence, let y > x arbitrary but fixed. Obviously
pn(y) = an > 0. By induction we show fori=n—1,...,0

pi(y) > pi(e). (3.1.13)
As pa_1(y) = any™ + Ap-1 > anT®" 4+ ay_1 = pp_1(x), (3.1.13) holds for i = n — 1. Assume
(3.1.13) holds for some ¢ = ¢ > 0.
piay) = Wy e,
pi(@)e™ + a;_,
= poy()

\%

Hence, p;(y) #0 for i =0,...,n.

Assume ¢ < 0 and s;pi(x) > 0 for all i = 1,...,n. According to the definition of O we have to
show that p;(y) # 0 for all ¢ and for all y < . Hence, let y < x arbitrary but fixed. Obviously
pn(y) = an > 0. By induction we show fori=n—1,...,0

sipi(y) > sipi(x). (3.1.14)
As Sn—lpn—l(y) = an(_y)An + Sp—1Gn-1 > an(_x)An + Sp_1ap-1 = 5n—1pn—1(£)a (3114) holds

for ¢ = n — 1. Assume (3.1.14) holds for some ¢ = ¢ > 0.

sioisi(y) = sip)~y + sy,
> Sipi'(x)(_l’)A; +s_qa;_y
= s;_pq (@)

Hence, pi(y) #0for i =0,...,n. O

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 48

In the sequel let

9 f(xl,...,xn), i=1,....n

filwy, ... xn) = £

be the partial derivatives of f Note that

£ Ay Ap N

i1, ®n) = @ptay ~~~$i—lllax,ﬁi—1($ia~w$n)
K3
Ai A A Ay—1~
= zrtaey? ooz T A T pi(@ig, o, 20),

where p;, fis as in (3.1.7).

Lemma 3.1.19 Let X € IR\R and let & € X. If there exist i,j € {1,...,n} such that
fi(x,...,x)fj(x,...,x)<0

then f(x, ..., %) IS not an extremum of fin X. O

Proof. Assume f(a:,,a:) is an extremum of f in X, X # X and ﬁ(a:,,x) >0, j?](x,,x) < 0 for
some 4,5 € {1,...,n}.

e As the i-th and the j-th partial derivative of f are not vanishing at (z,...,z) it follows that
flz,...,x) is a boundary extremum, hence z & int(X).

e Assume z = X. Then f(x, ...,x) cannot be a maximum of f in X because f](x, onr) < 0.
Further f(z,...,z) cannot be a minimum of f in X because fi(z,...,z) > 0. Hence z # X.

e Assume z = X. Then f(x, ..., &) cannot be a maximum of fin X because ﬁ(x, ..., %) > 0. Further
f(z,...,z) cannot be a minimum of f in X because f;(,...,2) < 0. Hence # X. O

Lemma 3.1.20 Assume O # {0}. Then there exists X € IR\R such that
mt(X)NQr =10

and for all € X there exists i € {1,...,n} such that

filz, ..) fu(z,...,2)< 0.0

Proof. Assume Oy # {0}. Then O; # Oy and there exists an interval X € IR\ such that

X C int(Oy),
0 ¢ X and
mt(X)nQy = 0.

We distinguish the cases X > 0 and X < 0.

o Assume X > 0. As X < 6f and X > 0 1t follows from Lemma 3.1.18 that for all # € X there
exists ¢ € {1,...,n} such that p;(x) < 0. Hence,

file, .. 2) = &®eb2 e ARt T (e, e)
= Au®lpi(x)
< 0.

Fule, . w) = ababe gl ALadeip ()

= Anxd"_lan

> 0.

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 49

o Assume X < 0. As X > O; and X < 0 it follows from Lemma 3.1.18 that for all z € X there
exists ¢ € {1,...,n} such that s;p;(#) < 0. Note that

Sy = (—1)d"
si o= (=)™ i=1,...n
Hence,
ﬁ(x,...,x) = zfpfr B A T (e, 1)

Aixd’_lpi(x)
Ai(—l)dn_d’xd’_lsipi(x)
= Ai(=D)" TN (=) sipy(x)
{ <0 ifd, is odd
>0 else.

falm,..) = afePr et AT, ()
= Anxd"_lan
<0 ifd, 1s even
{ >0 else.

The proof of Theorem 3.1.15 follows now easily from Lemma 3.1.16 — 3.1.20.
Proof of Theorem 3.1.15. Let f and Q; as in Theorem 3.1.15.
e Assume O; = {0}. From Lemma 3.1.16 it follows that ¢; > 0 for i = 1,...,n and A; is even for
i=2,...,n. Hence, Ay must be odd and H¢(X) D f(X) follows from Lemma 3.1.17.

e Assume Oy # {0}. According to Lemma 3.1.20 there exists X € IR\IR such that int(X)N Qs =0
and for all # € X there exists i € {1,...,n} such that

file, ... x)fale, ... &) <0.
According to Lemma 3.1.19, for all z € X, f(x, ..., &) is not an extremum of f in X. Thus, there

exist uy,...,Un,v1,...,U, € X such that
Flug,. . . un) < F(X)
f(vh ,Un) > m,
hence

Hp(X) D f(X). 0O

3.1.1.3 Algorithmic Test of the Non—Overestimation Condition

If int(X) N Of = 0, then Horner form gives the range of f on X without overestimation. As the
computation of Oy is expensive, we are interested in methods to decide whether int(X) and O are
disjoint, without actually computing O;. The following theorem shows how this can be done efficiently.
Throughout this section let f as in (3.1.1).

Theorem 3.1.21 Let X € IR\R. Then
nt(X)NO; =10

if and only if

X > 0 and
pi(X) > 0 fori=1,...,n
or o
X < 0 and
sipi(X) > 0 fori=1,...,n.0

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 50

Proof. Let X € IR, X # X.

“=” Follows from Lemma 3.1.13. If int(X) N O = 0 then either X > Oy or X < (OFY

— If X > Oy, then X >0 and p;(X)>0foralli=1,.
fIfXng,thenX§0and5ipi()_Oforallzzl,...,n

“<” Follows from Lemma 3.1.18.

—~HfX>0and p;(X)>0fori=1,...,n, thenX26f hence int(X) N Oy = 0.
— If X <0 and sipi(Y)ZOforizl, ,n, then §Q hence int(X)NO; =0. O

If Theorem 3.1.21 is used for testing disjointness of int(X) and O one has to evaluate the p; on the
endpoints of X. The next theorem shows how this computation can be avoided by using intermediate
results of the Horner evaluation of f on X instead. In the sequel let

Hp, : TR — IR

be the Horner form of p; and let O, be the overestimation interval of p;, i = 1,..., n.

Theorem 3.1.22 Let X € IR\R. Then
nt(X)NO; =10

if and only if

X > 0 and
H,(X) > 0 fori=1,...,n
or _
X < 0 and
s;Hp(X) > 0 fori=1,...,n.0

Proof. Let X € IR\R.
“=” Assume int(X) N O; = 0. Then either X > O; or X < O;. As O D Op,, it holds that
H,(X)=p(X)fori=1,...,n
— If X > Oy then X > 0 and p;(X) = p;(X) > 0 by Lemma 3.1.13, hence H, () > 0.
-~ IfX< O; then X <0 and s;p;(X) = s;p;(X) > 0 by Lemma 3.1.13, hence s, H,,,(X) > 0.

“&” Follows from Theorem 3.1.21 and H,,(X) D p;(X). O

Algorithm 3.1.23 is a modification of Algorithm 3.1.7 which, in addition to the computation of H;(X),
decides whether int(X) N Oy = 0. The decision does not cost any additional arithmetic operations.

Algorithm 3.1.23 (HFOT) [Horner Form with Overestimation Test]

In: f(2) = apet 4+ ap_gz@-t + 4 agz? € Fz),
X eIl.

Out: HF(f, X),
t € {true, false}, if int(X) N Of # 0 then t = false.

(1) [Initialize.]
P, — a,.
(2) [Accumulate.]

fori=n—-1,...,1
P — Pz+1Xdl+1_dl + a;.

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 51

(3) [Last power.]
PO — Plel .

(4) [Trivial cases for disjointness decision.]
if 0 € int(X) then ¢ — false, goto 8.
if X = X then { «— true, goto 8.

(5) [If dy = 0 then ignore a;.]
if dg =0 then [+—— 2 else | — 1.

(6) [Signs.]
sp = sign(ay).
ifX>0
fori=n—1,...,0dos; — si41.
if X <0
fori=n—1,...,0dos — (-1)
(7) [Decide disjointness of int(X) and Oy]

t +—— true.

dipr1—dig.
+1 Si41.

fori=1...,n—1
if 5;P; < 0 then ¢t «— false.

(8) [Return.]

return Py, t.

Remark. If exact arithmetic is used in Algorithm 3.1.23 then ¢ = true if and only if int(X)NO; = 0. O

If @ 2 Oy, then a sufficient condition for non-overestimation of the Horner form is int(X) N Qs = 0.
Thus, it is sometimes useful to know an overestimations of O;. Overestimations of Oy can be obtained
cheaply by the use of root bound theorems.

Theorem 3.1.24 Let

n n
flx) = Za?xi = Zaixd’.
1=0 i=1
If f(r) = 0 for some r € R then
Irl < max{lag/ag, |, 1+ [ai/ag,|,..., 1+ [ag, 1 /ag, |}
dp—1
| < max{1, Y faj/aj, |}
i=0
rl < 2max{lay, _i/ay, |, a5, _o/ag |7 ah, _s/al, |12, lag /g, | Y O

Proof. See for example [Householder, 1970]. O

If b > |r| for all real roots r of f, then b is called a root bound of f. If b is a common root bound of
Po, ..., Pn then [—b 0] D Oy.

Corollary 3.1.25 (Bounds for Overestimation Interval) If b € IR satisfies one of the conditions

b > max{l+ |a1/a,|, 1+ |az/an],..., 1+ |an—1/an]|}
n—1
b > maX{l,Z|ai/an|}
i=1
b > 2max{|an_1/an |41 Na, _o/an |V =) 0 g fa, | (4 d)y
then
[—b,0] 2 Of. O

Proof. If b satisfies one of the conditions of Corollary 3.1.25, then b is a common root bound of
Po,-- s Pn- d

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 52

qQ(Hp(X),f(X))

A
400 +
200 +
/X | » 1
> mid(X)
-1 1 2 3

Figure 3.1.1: q(H;(X), f(X)) in dependence of mid(X), where f(z) = " — 82% + 64z and w(X) = 2.

3.1.1.4 Further Cases where Horner Form 1s Exact

In Section 3.1.1.1 we proved the sufficient condition int(X)NO; = 0 for H;(X) = f(X). In the following
we study cases where H(X) = f(X) but int(X)NO; # 0. A complete characterization of all cases when
Horner form is exact is still unknown. The results in this section are original.

Example. Consider the polynomial f(z) = 27 — 82 4+ 64z and let X = [0,2]. We obtain O; = [0, 2],
hence int(X) N Oy # 0, i.e. the non-overestimation condition of Theorem 3.1.12 is not satisfied. Still,

Hp(X) = [0,128] = F(X).

Figure 3.1.1 shows q(H¢(X), f(X)) for f(z) = 27 —8z*+ 64 in dependence of mid(X), where w(X) = 2.
According to Theorem 3.1.12, H¢(X) = f(X) if mid(X) > 3 or mid(X) < —1. As one can see, the
non—overestimation for mid(X) = 1 is a “special case”. The following Theorem gives a generalization.

Theorem 3.1.26 If there exists ¢ € R and A € N such that
a; = caip1, di=diy1 — A, i=1...,n-1,

di > 0, n is odd, and
X =10, Vlel] or X =[=+/]l,0],

then

For the example f(z) = 27 — 82* 4 64z above, we obtain ¢ = —8, A = 3, dy = 1 and by Theorem 3.1.26,
H¢(X) = f(X) for X =10,2] and for X = [-2,0].

Proof. Let f(x) as in Theorem 3.1.26. According to Theorem 3.1.10 we may assume a, = 1. Then
flx) = (.. ((xA +o)x® + cz)xA + ...+ c"_l)xAxd”
where dyg = d; — A. Let

gi(z) = «
gis1(x) = (gi(x)+cHze®, i=1,....n—1.

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS

and let H,,(X) : IR — IR be the Horner form of g;(¢), 7=1,...,n. Then
flx) = gnlx)a®
Hy(X) C Hy, (X)X®,
and 1t suffices to show
Hy (X)X% C f(X) for X =[0, ¥/—¢] and X =[0,— ¥/ —¢].
We distinguish 8 cases:
e c>0, X =10, {/c|, A even.
O = {0}, hence int(X) N Oy =0 and H;(X) = f(X) by Theorem 3.1.12.

® c>0, X =0, /c], A odd.
Of = 0, hence int(X)NOf =0 and H¢(X) = f(X) by Theorem 3.1.12.

e c>0, X =[-%/c,0], A even.
O = {0}, hence int(X) N Oy =0 and H;(X) = f(X) by Theorem 3.1.12.
]

e c>0, X =[-%/c,0], A odd.

By induction it follows for ¢ = 1,...,n
ng(X) = [_CZ’ 0]
—c', 1 odd
gi(X) = { 0, 7even
q; (Y) =0

Hence, as n is odd

Hy, (X)X = [=¢", 0][X™, 0]
= [9(X),0)[X™, 0]
= [gn(X)X®, 0]
= [f(X),0]
c f(X)
e c<0, X =[0, §/—¢], A even.
By induction it follows for ¢ = 1,...,n
H,(X) = [0,—¢]
gi(X) = 0
- —¢, {odd
6i(X) = { 0, 1 even.
Hence, as n is odd
Hgn(X)XdD = [Oa _cn][o’ydﬂ]
= [0, 0(D)][0, X
= [O,gng)ydu]
= [0, f(X)]
c f(X).

e ¢ <0, X =10, ¥/—¢], A odd.

This case 1s equivalent to the previous case.

53

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 54

qQ(Hp(X),f(X))
A

IS

> mid(X)
-3 -25 -2 -15 -1 -0.5 0.5

Figure 3.1.2: q(H;(X), f(X)) in dependence of mid(X), where f(z) = z* + 22® + 22% and w(X) = 2.

e ¢<0,X =[-4%—¢0], A even.

By induction it follows for ¢ = 1,...,n
H,(X) = [0,—¢]
—c', 1 odd
g:(X) = { 0, 7even
gl(Y) = 0
Hence, as n is odd
H, (X)X = [0,—c"][X%,0]
= [0, gn(X)][X", 0]
= [gn(X)X™, 0]
= [£(X),0]
C fX)

e ¢<0,X =[-%—¢0], A odd.
Of =0, hence int(X) N Oy =0 and Hf(X) = f(X) by Theorem 3.1.12. O

Let us consider another example where Horner form is exact.

Example. Consider the polynomial f(z) = z* + 22 + 22? and let X = [-0.5,1.5]. We obtain O; =
[—2, 0], hence int(X) N Oy # 0, i.e. the non-overestimation condition of Theorem 3.1.12 is not satisfied.
Still,

H;(X) = [0,16.3125] = f(X).

Figure 3.1.2 shows q(H ¢ (X), f(X)) for f(z) = "+ 223+ 22 in dependence of mid(X), where w(X) = 2.
According to Theorem 3.1.12, H¢(X) = f(X) if mid(X) > 1 or mid(X) < —3. The observation that
H¢(X) = f(X) already for mid(X) > V2 — 1 & 0.41 is generalized by the following Theorem. O

In the sequel let p;, p;,4 = 0,...,n as in (3.1.2) respectively (3.1.7), and let H,, (X) be the Horner form
of p1(x).

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 95

Theorem 3.1.27 Ifa; >0 fori=1,...,n, dy > 0 is even, mid(X) > 0 and H, () > 0, then
Hp(X) = f(X). O
For the example f(z) = 2% + 223 + 222, X = [-0.5, 1.5] above, we obtain
H, (X)=(X+2)X +2=10.25,7.25],

hence H¢(X) = f(X) by Theorem 3.1.27. For the proof of Theorem 3.1.27 we need the following two
lemmas.

Lemma 3.1.28 Ifa; >0 fort=1,...,n, then 6f =0.0

Proof. Assume a; > 0 for i = 1,...,n. Then all coefficients of p;(x), are positive and p;(x) has no
positive roots for ¢ = 0,...,n. Hence O; = 0. O

Lemma 3.1.29 Ifa; >0 fori=1,...,n and mid(X) > 0 then

H,,(X) =p1(X). B

Proof. Assume a; > 0 for i = 1,...,n and mid(X) > 0. By induction we show for i = n,... 1
0 < |pi(@igt, - xn)| <pi(X,...,X) forall z;4q,...,2, € X. (3.1.15)

As ap > 0, (3.1.15) holds for ¢ = n. Assume (3.1.15) holds for some i = i > 1 and let Ty, €X
arbitrary but fixed.

PioaCivmn)l = 1B,)+ al
< |Z<xz+1,...,xn>||x?i
< X DT g
- p;(X,...,Y)YAMra;
= p (X, . X).
Hence
H, (X)) = gleaxﬁl(xl,...,xn)
< irlleaj)((|]31(x1,...,xn)|
< X, ... X)
= p(X).
O

As H,,(X) D pi(X) it follows that H,, (X) = p1(X).
1

Proof of Theorem 3.1.27. Assume ¢; > 0 for 7 =
We distinguish the cases 0 ¢ X and 0 € X.

y.oooyn, dy > 0iseven, mid(X) > 0 and H,, (X) > 0.

e Assume 0 € X. As mid(X) > 0 it holds that X > 0. From Lemma 3.1.28 it follows that O = 0,
hence X N Oy = 0 and H;(X) = f(X) by Theorem 3.1.12.

e Assume 0 € X. As H,,(X) >0, Hp,(X) = p1(X) by Lemma 3.1.29 and X% = [O,Ydl], it holds
that

Hy(X) = Hp(X)X"

(l
— .\.5| —

3

=

—~
=

~—

>

N
=
>

D —~

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 56

Corollary 3.1.30

(i) Ifa; <0 fori=1,...,n,d; >0 is even, mid(X)>0andH (X) <0, then Hy(X) = f(X).

(ii) Ifa; > 0 for all i where d; is even, a; < 0 for all { where d; is odd, dy > 0 is even, mid(X) < 0 and
H,, (X) >0, then Hf(X) = f(X).

(iii) If a; < 0 for all i where d; is even, a; > 0 for all i where d; is odd, di > 0 is even, mid(X) < 0 and
H, (X) <0, then H¢(X) = f(X). O

Proof. Follows from Theorem 3.1.27 applied to — f(x), f(—x), respectively —f(—z). O
Corollary 3.1.31 If

sign(ay,) = sign(an—1) = ... =sign(a1)

and d; is even for 1 = 1,...,n then for all X € TR

Proof. Let f(x) as in Corollary 3.1.31. Without loss of generality assume
sign(a,) = sign(a,—1) = ... =sign(a;) =1, dy > 0.

Let X € IR arbitrary but fixed. If mid(X) > 0 we apply Theorem 3.1.27, if mid(X) < 0 we apply
Corollary 3.1.30. In both cases we have to show that

H, (X)>0.

As all coefficients of py are positive and each x; has even power in p1(x1,...,#,), it holds that
p1(z1, ..., 2y) >0 forall z; € R,

hence H, ()> 0.0
Another example where Horner form is exact is as follows:

Example. Consider the polynomial f(z) = 27 +22° + 423+ 2 and let X = [~1,1]. We obtain Oy = {0},
hence int(X) N Oy # 0, i.e. the non-overestimation condition of Theorem 3.1.12 is not satisfied. Still,

H(X) = [-8,8] = f(X).

Figure 3.1.3 shows q(H(X), f(X)) for f(z) = 27 + 22° 4+ 423 + 2 in dependence of mid(X), where
w(X) = 2. According to Theorem 3.1.12, H¢(X) = () if mid(X) > 1 or mid(X) < —1. The
observation that H;(X) = f(X) for mid(X) = 0, i.e. X = [—1,1] is generalized by the following
Theorem.

Theorem 3.1.32 If
sign(a,) = sign(a,—1) = ... = sign(ay),
d; is odd fori=1,...,n and mid(X) = 0, then

Proof. Let f(z) as in Theorem 3.1.32 and mid(.X) = 0. Note that A; is even for i = 2,...,n and
Ay = dj is odd. Further, f(X) = —f(X). Without loss of generality assume

sign(a,) = sign(an—1) = ... =sign(a;) = 1.
By induction we show for i = n,...,0 that

0 < |pi(@igt, - xn)| <pi(X,...,X) forall z;4q,...,2, € X. (3.1.16)

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 87

q(H(X),f(X))

A
15 1

> mid(X)
—1 -0.5 0.5 1

Figure 3.1.3: q(H;(X), f(X)) in dependence of mid(X), where f(z) = 27 + 22° +42% + 2 and w(X) = 2.

As a, > 0, (3.1.16) holds for i = n. Assume (3.1.16) holds for some i = ¢ > 0.

;1 (7, en)] = Iﬁ;(xnpm,xn)x?#agl
< |ﬁz(xz+1’axn)||xll +a;
< (X, XXV 4
= 5, (X,....X)
Hence,
Hy(X) = {f(z1,...,2) | 21,..., 20 € X}
C [(X), J(X)
= [f(X), f(X)]
C fX).0D

Remark. The theorems in this section do not give a complete characterization of all cases where
H¢(X) = f(X). For example, let
flz) = 27—22%+ 4z,
X = [-L1)+(*-1)/r, where r = /3(1+5).

Then H;(X) = f(X), but none of the criteria presented in this section applies. O

3.1.2 Improvements if the Input Interval does not Contain Zero

In this section we consider two improvements of the Horner form if the input interval does not contain
zero in its interior. Section 3.1.2.1 contains an algorithm for evaluating the Horner form which is faster
than Algorithm 3.1.7 (HF) if 0 ¢ int(X). Sometimes it is sufficient to compute only the upper or the
lower bound of the Horner form. Obviously this can be done by evaluating the Horner form and selecting
the desired endpoint. In Section 3.1.2.2 we show a more efficient method for the case 0 ¢ int(X).

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 58

3.1.2.1 Efficiency Improvement

If 0 ¢ int(X) then some interval power computations of Algorithm 3.1.7 (HF) can be replaced by number
power computations. More precisely, if 0 € P;11 and X > 0, then

_ ~Vdoii—d ~ digr—di
Pi+1xdz+1 d; — PZ,+1Xd,+1—d, — Pz+1X +1)

The case X < 0 is treated analogously. The case distinction 0 € P;;; does not introduce additional
overhead because it is necessary anyways during the interval multiplication Py X%+1=% Thus, we
obtain the following algorithm.

Algorithm 3.1.33 (HFS) [Horner Form, Special Case for 0 ¢ int(X)]

In: f(2) = apet 4+ ap_gz@-t + 4 agz? € Fz),
X eIl.

Out: HF(f,X).

(1) [Reduce to case X > 0.]
if 0 € int(X) then return HF(f, X).
if X <0 then f(z) — f(—2), X — —-X.

(2) [Initialize.]

P, — a,.

(3) [Accumulate.]
fori=n—-1,...,1
if 0 S PZ'_|_1 then
P — Pi+1 PéW (Y, di+1 — dl) + a;
else
P, — PZ'+1Xd’+1_d’ + a;.

(4) [Last power.]
if 0 € P; then
PO — P1 POW (7, dl)
else
PO — Plel .

(5) [Return.]

return .

3.1.2.2 Separate Computation of Upper and Lower Bound

There are many algorithms, in particular algorithms for optimization, which require the computation of
an upper (or lower) bound of f(X). If u is an upper bound of —f in X then —u is a lower bound of f
in X, hence it suffices to consider the computation of upper bounds. Obviously an upper bound of f in
X can be obtained by evaluating H;(X) and selecting the upper bound of the result. In this section we
present a more efficient method if 0 ¢ int(X). The results in this section are original.

From now on assume 0 ¢ int(X). It suffices to consider the case X > 0. If X < 0, then we form the
polynomial g(x) = f(—z), compute Hy(—X), and according to Theorem 3.1.6, Hy(—X) = H;(X). In
the following let p; and f as in (3.1.7).

Theorem 3.1.34 Assume X > 0 and define & € R" recursively as
A { X i pil@igr, o dn) > 0

vi= X else.

Then

f(®) = Hp(X). O

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 59

Proof. Let X and & as in Theorem 3.1.34. By induction we show for ¢ =n,...,0
Pi(Zig1, -y &n) > Pi(@ig1,. .., xpn) forall z;41,...,2, € X. (3.1.17)

Obviously (3.1.17) holds for ¢ = n. Assume (3.1.17) holds for some i = i > 0 and let Ty .., € X
arbitrary but fixed. Then

. ~ A
pg—l(xf""axn) == p;(l‘;_l_l,,xn)x; M —|—a2¢_1
~ /A N A~
S pf(xf+1"~~a$n)xg ¢ +Clg_1
N LA o R
< Pi(@ipqs @)X ey i pi(@, ., %0) 20
- ﬁi(i‘§+1a~~~ai‘n)iAi+a;_1 else
~ ~ ~ AA,
= p;(l‘;_l_l,...,xn)x;, ta;,
= ﬁ;—l(jiaain) O

Based on Theorem 3.1.34 we give algorithms for computing H(X) and H;(X). In order to prevent

wrong results in case of overflow we have to check the invalid operation flag explicitly.

Algorithm 3.1.35 (HFUB) [Upper Bound of Horner Form)]

In: f(z) = apzdn + ap_rz¥ -1 + .+ ayxh € Flz],
X e1IF.

Out: HFUB(f,X) €T, HFUB(f, X) > H;(X).

(1) [Reduce to case X > 0.]

if 0 € int(X) return HF(f, X).

if X <0 then f(z) «— f(—-z), X «— —X.
(2) [Initialize.]

Pn < Qn.

clear invalid operation flag.

(3) [Accumulate.]
fori=n—1,...

if pip1 >0
then]32 — ﬁi-l—l Q PéW (7, di+1 - dz)
else fi — pi1 3 POW (X, digy — d;)

1

—A|— a;.
—A|— a;.
(4) [Last power.]
ifpr >0
then po — p1 ¥ POW (X, d)
clse o — p1 & POW (X, dy).
(5) [Check invalid operation and return.]

if invalid operation flag is raised, then py «— T.
return pg.

Algorithm 3.1.36 (HFLB) [Lower Bound of Horner Form)]

In: f(2) = apet 4+ ap_gz@-t + 4 agz? € Fz),
X eIl.

Out: HFLB(f,X) € I, HFLB(f, X) < H;(X).

(1) [Reduce to upper bound.]
return —HFUB(-f, X).

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 60

w(Hp([—1,c])w Hy([c,2]))
A
100

80

60

40

20

\/
o

-1 0.898 2

Figure 3.1.4: w(H([X,¢]) U H¢([e, X])) in dependence of ¢ for f(z) = #° + 2* — 323 — 52? 4+ T2 and
X =[—1,2]. The optimal bisection point is ¢ a2 0.9.

Theorem 3.1.37 (Complexity)

(i) If 0 € int(X) then Algorithm 3.1.35 and 3.1.36 cost

n interval power computations,
n interval multiplications and
n — 1 interval additions.

(ii) If0 & int(X) then Algorithm 3.1.35 and 3.1.36 cost

n number power computations,
n number multiplications and
n — 1 number additions. O

3.1.3 Bisection of the Input Interval

The overestimation error of the Horner form can usually be reduced by dividing the input interval X at a

point ¢ € int(X) into two subintervals X; = [X, ¢], X2 = [¢, X] and evaluating the Horner form on both
intervals separately. From the inclusion monotonicity of the Horner form it follows that

Hp(X) 2 Hp(X1) U Hy(X2) 2 f(X).

It seems to be non—trivial to compute an optimal bisection point ¢ for a given polynomial f and X € IR,
for example in the sense that

w(H([X.) U Hp (e, X)) < w(Hp (X,) U Hy([e, X)) for all c€ X. (3.1.18)

Figure 3.1.4 shows w(H([X, c]) U Hf([c, X])) in dependence of ¢ for f(z) = 2° + 2* — 3% — 5z? + Ta
and X =[-1,2].

As the computation of an optimal or at least a “good” bisection point seems too expensive just for the
purpose of reducing the overestimation error, we consider two special cases.

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 61

e Bisection at zero. In general, the computation of H;(X1) U Hy(X») is twice as expensive as the
computation of H¢(X). However, as shown in Section 3.1.3.1, the costs are comparable if ¢ = 0.

This means that if 0 € int(X), then the computation of H;([X,0]) U Hs([0,X]) is roughly as
expensive as the computation of H;(X), but gives usually better inclusions of the range.

e Bisection at the midpoint. The midpoint is usually not an optimal bisection point in the sense of
(3.1.18). Yet, it is a “standard choice” in many cases and in Section 3.1.3.2 we give some bounds
for the reduction of the overestimation error through bisection at the midpoint.

The results presented in this section are new. They will be used later on in Section 3.3 for the improvement
of the Taylor form.

3.1.3.1 Bisection at Zero
In the sequel let Hf : TR — IR be defined as

. H([X,0) U H([0,X]) if0€int(X
iy = { IO ILE.T) 0 €in()

We give an algorithm for evaluating Hf (X), which costs less than twice as many arithmetic floating point
operations as Algorithm 3.1.7 (HF). The efficiency improvement is due to the fact, that an endpoint of

[X, 0] and [0, X] is zero, and multiplications by zero can be saved.

Algorithm 3.1.38 (HFBZ) [Horner Form with Bisection at Zero]

In: f(2) = apet 4+ ap_gz@-t + 4 agz? € Fz),
X eIl.

Out: HFBZ(f, X) € IF, HFBZ(f, X) D H(X).

(1) [Case 0 € int(X).]
If 0 ¢ int(X) then return HFS(X).

(2) [Bisect and evaluate.]
Y, — HFLZ(f(—-=),[0, —X]).

Y — HFLZ(f(x), [0, X]).

(3) [Join.]
return Y7 U Ys.

Algorithm 3.1.39 (HFLZ) [Horner Form for X = 0]

In: f(2) = apet 4+ ap_gz@-t + 4 agz? € Fz),
X €1F, X = 0.

Out: HFLZ(f, X) € IF, HFLZ(f, X) D H(X).

(1) [Initialize.]
P, — an.
clear invalid operation flag.
(2) [Accumulate.]
fori=n—-1,...,1
P —POW (Y, di+1 — dl)
if Piy1 <0then P — P ¥p —vi— a;, else B «— a;.
if Pipq > OthenFZw—T_H@p—Ai—ai, else P; — aj;.

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 62

| Monomials I 5 | 6 | 9| 2] 1] 18] 2a |
Flops for H (X 95.59 | 40.86 | 52.65 | 63.19 | 73.79 | 85.87 | 102.14
Flops for H (X 31.15 | 47.15 | 58.50 | 68.25 | 77.57 | 87.00 | 96.72
a(H;(X), f(X))/w(x) || 005 [015 | 024 | 037 | 049 | 062 | 075
a(H(X), f(X))/w(x) || 003 [009 | 012 [016 | 019 | 022 [025

)
)

Table 3.1.1: Comparison of Horner form Hy(X), computed by Algorithm 3.1.7 (HF), and Horner form
with bisection at zero H;(X), computed by Algorithm 3.1.38 (HFBZ), for random polynomials of degree
20and 0 € X C[-1,1].

(3) [Last power.]
ifdy >0
p —POW (X, dy)
if&<0then&%&¥p,else&%0
if P, > 0 then E%E@p, else Py — 0

(4) [Check invalid operation and return.]
if invalid operation flag is raised, then Py «— [L, T]
return .

Theorem 3.1.40 (Complexity) Algorithm 3.1.39 (HFLZ) costs

n number power computations,
2n number multiplications and
2n — 2 number additions. O

Theorem 3.1.41 (Complexity)

(i) If 0 ¢ int(X) then Algorithm 3.1.38 (HFBZ) costs

n Interval power computations,
2n number multiplications and
2n — 2 number additions.

(ii) If0 € int(X) then Algorithm 3.1.38 (HFBZ) costs

2n number power computations,
4n number multiplications and
4n —4 number additions. O

Theorem 3.1.41 does not justify the claim that the costs for computing H¢(X) and Hf (X) are comparable.
The reason is, that the operations were counted for the worst case. For the average case, an experimental
comparison seems to be more appropriate.

Table 3.1.1 shows the average cost and overestimation error of Algorithm 3.1.7 (HF) and Algorithm
3.1.38 (HFBZ) for 10* random polynomials f of degree 20 with different numbers of monomials and
random intervals X. The polynomial coefficients are randomly chosen from [—1,1], X from [—1,0] and
X from [0, 1]. All random numbers are uniformly distributed. The cost is the total number of arithmetic
floating point instructions, including those which were executed during interval operations. The quantity

q(He(X), f(X))/w(X), respectlvely q(H(X), f(X))/w(X) was chosen to measure the overestimation
error.

Finally, one should mention that there are cases where H(X) # f(X), 0 € int(X), but H(X) = H;(X),
i.e. bisection at zero does not reduce overestimation. This can happen, even if 0 is the midpoint of X | as
is shown in Figure 3.1.5. However, in the next section we show that this is not possible if f is dense.

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 63

w(Hp([-1,c]) W Hy([c,1]))
A

0.5

\/
o

-1 -0.5 0.5 1

Figure 3.1.5: w(H([X, c])U H([e, X])) in dependence of ¢ for f(z) = 2% — 2 and X = [~1,1]. Bisection
at ¢ = 0 does not reduce the overestimation error.

3.1.3.2 Bisection at the Midpoint for the Dense Horner Form

In this section we study the reduction of the overestimation error of the dense Horner form H}‘, when
the input interval X is bisected at its midpoint. In particular, if mid(X) = 0, then the overestimation
error is reduced at least by half. First, we show that if H7(X) # f(X), then bisection leads always to a
reduction of the overestimation error (Corollary 3.1.44), i.e.

Hi([X,) UHj([e,X]) C H}(X) forall € int(X).

Throughout this section let X € IR,

n

fe) =Y it

1=0
and let
dn i
fler,. o xa,) = a [z =
i=0 j=1
ay, T2 Ta, 4T,
+ Clzn_l T1T2 T, _4
+ a3 r1xo
+ aT 1
+ aj.
Note that R
H3(X)={f(z1,...,2q,) | 2 € X forall i}.
Let

0
8902»

be the partial derivatives of f As f is linear in each variable, ﬁ does not depend on z;.

ﬁ'(xl,...,xn): f(xl,...,xn), i=1,....n

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS

The following lemma states that f achieves its maximum and minimum in the n—cube (X, ...

corner of (X,..., X).

Lemma 3.1.42 There exist &1,...,2q,,%1,...,%q4, € {X, X} such that

max _ f(x1,...,2q,) = f(i‘l,...,i‘dn)
T1,..,%d, €
xl,..%iieXf(xl’”"xd") = f(i‘l,...,i‘dn). a

Proof. Follows immediately from the linearity of f in each variable. O

64

,X) at a

If 3 (X) # f(X) then bisection at any point in the interior of X reduces the overestimation error.

Theorem 3.1.43 For all ¢ € int(X) it holds that

(i) If f(X) < H}(X) then

H([X,) U H ([e, X]) < HF(X).

(ii) If f(X) > H}(X) then

H3([X,) U HF([e, X]) > Hp(X). O

Proof. As (ii) follows from (i) if f is replaced by —f, it suffices to prove (i). Assume

HE([X,) U HF([e, X]) = HF (X)

and let
oo f g) 2 B (e X))
[c, X] else.
Then
H3(Y) = H; (X).
Note that
H}"(Y) = max f(xl,...,xdn)
T1,..,%d, €
H}‘(X) = xl,.?lxi)iEXf(xl’.u’xdn).

According to Lemma 3.1.42 there exist y1,...,yq, € {Y,Y} such that

f(yl""’ydn) = max f(xla'”axdn)
T1,..,04, €Y

max fley, ... za,).

T1,..,8d, €

From the linearity of f it follows that if y; = ¢ for some ¢, then

f(yla"'ayi—laiayi-l—la'"ayn):f(yla"'ayn):f(yla"'ayi—laXayi+1a~"ayn)~

Repeated application of (3.1.19) yields
) Y =[X,] —

X""’X
X% 7 /0

i [A
f(y1,~~~aydn)—{f() Y =[¢, X]

Hence,

(3.1.19)

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 65
Corollary 3.1.44 If f(X) C H}(X) then
HY([X,) U H}([e, X]) C H}(X)
for all ¢ € int(X). O
In the following we consider the special case mid(X) = 0, i.e. the input interval is centered. Here,

bisection at the midpoint reduces the overestimation error of the dense Horner form at least by half. This
result is used later on for the reduction of the overestimation error of the Taylor form, see Section 3.3.

Theorem 3.1.45 (Bisection if Midpoint is Zero) Assume mid(X) = 0 and let

¢ = H3([X,0) U HF([0, X]).

Then

Proof. Let X and C as in Theorem 3.1.
suffices to show (3.1.20). From

it follows that (3.1.20) is equivalent to

Further,

hence 1t suffices to show

a
IAIA

(3.1.20)
(3.1.21)

45. As (3.1.21) follows from (3.1.20) if f is replaced by —f, it

(3.1.22)
(3.1.23)

The proofs of (3.1.22) and (3.1.23) are analogous, but for the sake of completeness we give both of them

explicitly.

e Proof of (3.1.22). According to Lemma 3.1.42 there exist &1, ..

max

fler, .. xa) = f(21,...,2q,).

T1,...,&a, €[0,X]

., %4, € {0, X} such that

Let k be the largest index such that #; = X for all i < k. If no such k exists, let £ = 0. Then

Hy([0, X)) =
<

As mid(X) = 0, it holds that

H}(X) = |aa,

bl

f(ya"'ayaoaik+2a"'ain)

-k —k—1 —
apX “+ap_1X +...+a1 X +ag

<k —k—1 —
lap X 7|+ |lag1 X |+ ...+ |ar X]| + ap.

1

—d, —d, — —
X |+ lag, -1 X |+ ...+ a1 X| + ao.

—d —d,—1 —k+1
> ag, | X" +lag, -1 |X" T+t farga |X

—dn —dn— =k
> —(aan —|—adn_1X 1—1—...—|—ak+1X +1)
= H3([0,X]) - f(X)

> Hi([0,X]) - F(X)

1) = fF(X).

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 66

e Proof of (3.1.23). According to Lemma 3.1.42 there exist &1,...,%q, € {X,0} such that

xl,...g}ii)é[g,o]f(xl’ coorg,) = (&1, 24,).

Let k& be the largest index such that z; = X for all « < k. If no such k exists, let £ = 0. Then
H}‘([K,O]) = f(ia"'aiaoaizk-l—za"wi;n)

= a4 X' +ta Xt aX +a
< apXF| 4 Jap o XY+ 4 e X+ ao.

As mid(X) = 0, it holds that
Hi(X) = lag, X™ + |ag, -1 X7+ .+ |ar.X] + ao.

Thus,
H3(X) - HF([X,0]) > laa, X 4 |ag, -1 X7+ o 4 |app XY
> —(ag, X" +ag, 1 X" b 4 ap XY
= H3([X,0]) - f(X)
> Hi([X,0])- f(X).O

Another special case, where bisection at the midpoint reduces the overestimation error of the dense
Horner form at least by half, are parabolas.

Theorem 3.1.46 (Bisection for Parabolas) Assume d,, = 2, let ¢ = mid(X) and

C = (X,) U H3 ([c, X)),
Then

(3.1.24)
.0 (3.1.25)

a
IAIA

Proof. Let f, ¢ and C as in Theorem 3.1.46. As (3.1.25) follows from (3.1.24) if f is replaced by —f, it
suffices to show (3.1.24). From

it follows that (3.1.24) is equivalent to

Let o o

Y= (X, e, [X, ey U ([e, X, [e, X]).

Note that C' > f(yl,yz) for all (y1,y2) €Y, f(X) > f(x, z) for all z € X, and H}‘(X) > f(xl, x2) for all
z1, 22 € X. Hence, it suffices to show that for all (y1,y2) € Y there exist z, 21,22 € X such that

Fly,v2) — f(z,2) < flar,22) — fyr,).
In fact, we show that for all (y1,y2) € Y there exist #, 1, 22 € X such that

fly,92) = f(z,2) = f1,22) — F(y1, v2).
Let (y1,y2) € Y arbitrary but fixed.

o Ify; >ys >cory <ys<cthenlet o =y, v1 =y and x5 = 2y» — y1. Note that zo € X. As f
is linear in its second argument, it holds that

fy,y2) = flz,2) =

(y1,92) = f(y1,91)

f
fi(yl,Qyz —y1) — f(y1,v2)
f

(96‘1, l‘z) - f(yl, y2)~

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 67

e Ifys >y >cory, <y <cthenlet v = ys, x1 = 2y1 — y2 and x9 = yo. Note that x; € X. Asf
is linear in its first argument, 1t holds that

f(yl,yz)—f($,$) = (yl,yz)—f(yz,yg)

f
= fj(2y1 - yz,y~2) — f(y1,42)
f

(z1,22) — f(y1,y2). O

Remark. In general it is not the case that bisection of the input interval at its midpoint reduces the

overestimation error of the dense Horner form at least by half. For example, let f(z) = —323 — 2 + 9z,

X =[0,1] and ¢ = mid(X). Then

f(X) = H3(X)
yu e

— 3.9
F(X) = Hi([X,d)UH([e,X]) ~ 2.6,

X

i.e. the error of the upper bound was reduced by less than half.

According to extensive experimental results, the reduction of the overestimation error of the dense Horner
form, which is obtained through a bisection of the input interval at its midpoint, can be estimated

optimally as follows:

Conjecture 3.1.47 (Bisection at Midpoint in General) Let X € IR such that X # 0, X £ 0,
X # X, let ¢ = mid(X) and let

_ X/X ife>0
"= X/X else
t = 7“—1—1.
2r
Further
b _ 2/t=2 if0¢g X
max (r—1)/(rtd»=t — 1) else
1+t ifd, =2
bmin = 1+1/r%=2 ifd,>2 and 0¢ X
1 else
and o
C = H3(X,) U H}([e, X)),
Then
bnin(HF (X) = C) < Hj(X) = f(X) < bnax(H}(X)=C
bmin(C — H} (X)) < f(X) = H}(X) < bnax(C— Hf(X)). O

3.1.4 Horner Form for Interval Polynomials

Several interval extensions of polynomials which are considered in subsequent sections require the over-
estimation of the range of a polynomial with interval coefficients. Therefore, we extend the Horner form
in a straight forward way to interval polynomials. In the following let F': R — IR,

F(z) = Apzfr + A, 2%+ 4+ At e TR[z]
be an interval polynomial. F' can be considered as a set of real polynomials, i.e.

F(z) = {anxd" tap_ 1zt + 4+ age® | an €EAn,ap_1 €Ay_1,...,a1 € Al}.

Definition 3.1.48 The Horner form Hp : IR — IR of F is defined as

Hp(X) = ((...(AHXA" + Ap)X Bt 44 Ag) XA +A1)XA1. m]

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 68

The following theorem shows that splitting F' into Fy, Fy by splitting a coefficient and evaluating the
Horner form of F and F5 separately does not lead to a better inclusion than evaluating the Horner form
of F' directly. More precisely, if F' = Fy U Fy then

Hp(X) = Hp, (X) U Hp, (X).
Theorem 3.1.49

Hp(X)={H;(X)| feF} O

Proof.

Hp(X) (((A XA b A XA b Ay XA Al)XAl

{((...(anXA" —|—an_1)XA"—1 —|—...—|—a2)XA2 —|—a1)XA1 | a; € Aj i = 1,...,n}
= {H;(X)|feF}.O

Algorithm 3.1.50 (HFI) for evaluating Hp(X) differs from Algorithm 3.1.7 (HF) only in that the the
coefficients of the input polynomial are floating point intervals instead of floating point numbers.

Algorithm 3.1.50 (HFI) [Horner Form of Interval Polynomial]

In: F(z) = Apz® + Ap_jz¥-1 4 4 Ajed € TH=],
X eI

Out: HFI(F,X) € IF, HFI(F, X) D Hp(X).

(1) [Initialize.]
P, — A,.

(2) [Accumulate.]
fori=n—-1,...,1
P, — PZ'+1Xd’+1_d’ + A;.

(3) [Last power.]
PO — Plel .

(4) [Return.]

return .

Theorem 3.1.51 (Complexity) Algorithm 3.1.50 (HFI) costs

n Interval power computations,
n Interval multiplications and
2n — 2 number additions. O

Theorem 3.1.52 (Complexity) If 0 ¢ int(X) then Algorithm 3.1.50 (HF1) costs
n Interval power computations,

2n number multiplications and
2n — 2 number additions. O

3.2 Mean Value Form

The mean value form is a quadratically convergent interval extension and gives therefore tighter inclusions
than the Horner form if the width of the argument interval is sufficiently small. The convergence of the

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 69

mean value form is discussed e.g. in [Alefeld and Herzberger, 1974], [Skelboe, 1974], [Caprani and Madsen,
1980], and [Alefeld and Herzberger, 1983]. The inclusion monotonicity of the mean value form is proved
in [Caprani and Madsen, 1980].

The mean value form can be derived easily from the mean value Theorem: For all z,¢ € X there exists
¢ € X such that

f(z) = fle) + F(O)(x = o).
Hence, for all z,c € X
fz) € fle) + f'(X)(x =)
and for all c € X
FX) C o)+ (X)X = o).

Thus, every interval extension F’ of f’ and any choice of ¢ € X, give rise to an interval extension
F TR — TR of f:
F(X) = f(e) + F/(X)(X = ¢) D f(X). (3.2.1)

The mean value form is a special case of (3.2.1), where F” is the Horner form of f* and ¢ = mid(X). The
choice ¢ = mid(X) is justified later on by Corollary 3.2.23.

Definition 3.2.1 (Mean Value Form) The mean value form My : IR — IR and the dense mean value
form My : IR — IR are defined as

My(X) = F(mid(X)) + Hp(X)(X - mid(X))
MF(X) = f(mid(X))+ H5(X)(X = mid(X)). O

Theorem 3.2.2 M; and M}" are interval extensions of f. O

Proof. Follows from (3.2.1). O
The following theorem is taken from [Caprani and Madsen, 1980].

Theorem 3.2.3 (Inclusion Monotonicity) M; and M} are inclusion monotone. O

Proof. Let X¢ C X, co = mid(Xy), ¢ = mid(X), ro = rad(Xe), r = rad(X). We show inclusion
monotonicity of My, i.e. Mf(X¢o) C My(X). The proof for M7 is analogous. As X — ¢ is a centered
interval, it holds that

Mi(X) = f(c)+mag(Hp(X))r[—1,1]
Mi(Xo) = [fleo)+mag(Hp(Xo))ro[—1,1].

fleo) +mag(Hp(Xo))re < f(e) +mag(Hy (X))r
fleo) —mag(H(Xo))re > f(e) —mag(Hp (X))r
Note that
leg —cl = 1/2[(Xo + Xo — X — X))
= 1/2max{Xe + Xo — N - X, X + X - Xy — Xo}
< 12X+ X — Xo — X)

r—re¢.
Further, Hy(X¢) C Hp(X) by Theorem 3.1.4. Let £ € X such that

fleg) = fe) + [(€)(co — o).

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 70

Then

fleo) +mag(Hp(Xo))re = [fle)+ [(E)(co —) +mag(Hp(Xo))ro
< F) 1 EN(e —)] +mag(Hp(Xo))reo
< fle) + mag(Hp (X)) (r — ro) +mag(Hp (X))ro

fe) + mag(Hp (X))r

fleo) —mag(Hp(Xo))re = [fle)+ [(E)(co —) —mag(Hp(Xo))ro
> fle) = ' (Oll(co —)] —mag(Hp (Xo))reo
> fle) — mag(Hp(X))(r — ro) — mag(Hp(X))re
= [f(e) —mag(Hp(X))r. O

Theorem 3.2.4 (Convergence) M; and M}" converge quadratically to f. O

Proof. Let g(x,¢): 2% — I be the uniquely defined polynomial, such that
fl@)=fle)+ g(z,c)(z—c) forall x,celR.
From the mean value Theorem it follows that
g(z, mid(X)) € f/(X) C H}/(X) forall =€ X.

According to Theorem 1.3.19, H}", is Lipschitz. Hence M7 is a centered form and quadratically convergent
by Definition 1.3.25 and Theorem 1.3.27. As M;(X) C M7 (X) for all X € IR, the quadratic convergence
of M; follows. O

Algorithm 3.2.5 (MF) for evaluating the mean value form follows immediately from Definition 3.2.1. The
algorithm requires evaluation of the Horner form of f’. As the coefficients of f' need not be floating
point numbers we have to enclose them by intervals. Further, as the midpoint of X is computed using
Algorithm 2.3.33 (MID), which gives only an approximation of mid(X'), the output interval need not be

a superset of M*()(X), but at least contains f(X).

Algorithm 3.2.5 (MF) [Mean Value Form]

In: f(2) = apet 4+ ap_gz@-t + 4 agz? € Fz),
X eIl.

Out: ME(f,X) € I, ME(f, X) ~ My (X), ME(f, X) 2 f(X).

(1) [Midpoint.]
¢ — MID(X).

(2) [Evaluate f(¢).]
Y — HF(f(x), [c]).

(3) [Inclusion of f'.]

ifd; #0

fori=1,...,n do A — [di¥ai,di$ai].

Fl(z) e— Al gdn=l 4 Al pdn—a=lp 4 Afpdi—t
else

fori=2,...,ndo A — [di¥ai,di$ai].

Fl(z) e— Al gdn=l 4 AL pdn—a=lp 4 Alpda—l
(4) [Evaluate Hy(X).]
F' — MFI(F'(z), X).
(5) [Return.]
return Y + F' * (X — ¢).

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 71

Note that no invalid operation can occur in Step 3, because d; # 0.

Remark. As F' (X —c¢) = mag(F’) (X —¢), it would be sufficient to compute “only” mag(F”) instead
of F'. However, it seems that there is no algorithm, which computes mag(Hp: (X)) faster than Hp/ (X)
for arbitrary X. (An exception is the case mid(X) = 0, see Section 3.3.) O

Theorem 3.2.6 (Complexity) Algorithm 3.2.5 (MF) costs

2n interval power computations,
n + 1 interval multiplications,
4n 4+ 1 number multiplications, and
4n + 2 number additions. O

Proof.

e Step 1 costs 1 number multiplication and 2 number additions.

e Step 2 costs n interval power computations, 2n number multiplications and 2n — 2 number additions

(Theorem 3.1.9).

Step 3 costs 2n number multiplications.

Step 4 costs n interval power computations, n interval multiplications and 2n — 2 number additions

(Theorem 3.1.51).

Step b costs 1 interval multiplication and 4 number additions. O

3.2.1 Slope Form

The slope form can be viewed as an improvement of the mean value form, see for example [Hansen,
1978b], [Alefeld, 1981], [Krawczyk and Neumaier, 1985] [Neumaier, 1990], [Hansen, 1992]. It has the same
“shape” as the mean value form, but the overestimation of f/(X) in the mean value form is replaced by
an overestimation of the set of slopes between z and the midpoint of X, where ranges over X.

It is well known that for every ¢ € R, there exists a polynomial g. € R[] such that
f(@) = f(e) +ge(x)(x — c). (3.2.2)
for all z € R. Thus, a whole class of interval extensions of f is given by
F(X) C flo)+ G(X)X —e), (3.2.3)

where G is an interval extension of g.. The slope form is a special case of (3.2.3), where G is the Horner
form of ¢g. and ¢ is the midpoint of X.

Definition 3.2.7 (Slope Form) Let ¢ = mid(X) and let g. be the uniquely defined polynomial such
that

f(@) = fe) +ge(@)(x —c).
The slope form MJ(CS) : TR — IR is defined as
MY (X) = J(e) + Hy (X)(X —).
The dense slope form M;(s) : TR — IR is defined as

M (X) = f(e) + Hj (X)(X = ¢). D

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 72

Obviously M}s)(X) C M;(s)(X) for all X € IIR. In the sequel let ¢ and g¢. as in Definition 3.2.7.

For the sake of clarity we give an explicit formula for g. and Hj . Let a; be the coefficient of ' in f, let

bu(e) = ay
bi(c) = bizi(c)et+a;, i=n—1,...,1
and let .
ge(x) = Zbi(c)xi_l.
i=1
Then
O+ ge@)@—c) = fle)+) bi(e)a™ (@ —0)
i=1
= flo)+ Z bi(c)xi — Z bi(c)xi_lc
i=1 i=1
n n—1
= flo)+ Z bi(c)xi — Z bi+1(c)xic
i=1 i=0
n n—1
= S+ bile)e = (bi(c) — ai)ax’ — bi(c)e
i=1 i=1
n—1
= aj+arz” + Z a;z’
i=1
Further,

H; (X) = ((bo(mid(X))X + bl(mid(X)))X 4.+ bn_z(mid(X))) X + bp—1(mid(X)). (3.2.4)
In contrast to the mean value form, neither the slope form nor the dense slope form are inclusion monotone.

Theorem 3.2.8 (Inclusion Monotonicity) There exist polynomials f such that neither MJ(CS) nor

M;(s) are 1nclusion monotone. O

Proof. Consider the example
flz) =22° —2? =22, X =[0,09], X, =[0,0.5].

We obtain
M (f,X) M;®(f,X) = [~1881,0.0405]

MP(f,Xe) = M(f,Xe) = [~1.125,0.0625],

1.e.

MP(FX) < MP(f,Xo)

MO X) < MY X o),
although X D X,. O

Theorem 3.2.9 (Convergence) MJ(CS) and M;(s) converge quadratically to f. O

Proof. From (3.2.4) and Corollary 1.3.19 it follows that [} is Lipschitz. Further, g.(z) € H} (X) for
all € X. Hence M;(s) is a centered form of f and is quadratically convergent by Definition 1.3.25 and
Theorem 1.3.27. As M}s)(X) C M;(s)(X) for all X € IR, the quadratic convergence of M;(s) follows. O

The similarity of the slope form and the mean value form motivates a comparison.

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 73

Lemma 3.2.10 For all X € IR it holds that
9.(X) C f(X). O

Proof. Let y € g.(X) arbitrary but fixed. We have to show that y € f/(X). Let & € X such that
Y= gc(£)~
o Assume & = c. As g.(c) = f'(c) (see for example [Lipson, 1981]), it follows that y € f/(X).
e Assume & # ¢. From the mean value Theorem it follows that there exists & € X such that
f(@) = fle) + F'(©)(z — o).
According to (3.2.2),
f(@) = fle) +y(z — o).
Hence y = f/(¢) € f/(X). O

Lemma 3.2.10 gives rise to the conjecture that the slope form yields always tighter inclusions than the
mean value form. However, this is not true.

Theorem 3.2.11 There exist polynomials f and intervals X such that

M () D My(X). O (3.2.5)
Proof. Let
flx)=a®> =20, X =1[-05,1] (3.2.6)
We obtain
Mi(X) = [-1.984375,1.015625]
ME(X) = [~2.40625,1.4375). O

The reason why (3.2.5) holds in the example above is that f' is sparse, whereas g. is dense. Therefore,
the superiority of the interval power function over interval multiplication reveals in the Horner evaluation
of f’, but not in the Horner evaluation of g.. This gives rise to the following conjecture.

Conjecture 3.2.12 For all X € IR it holds that

M;(X) € M7 (X).

Justification. It suffices to show that
H; (X)C Hf(X). (3.2.7)
Equation (3.2.7) can be written explicitly as
((ah X +afe+ah_)X +are® +a_jetay o)X +...+ayc ' +ai_1"?+ ... +dse+d]
C ((napX +(n—1)a_)X +(n—2)a;_s)X +...+2a5) X + af,

where a} is the coefficient of z* in f. Experimental results indicate that the following inclusions are valid
for arbitrary ¢ € X. We give formulas for the case n = b, the generalization is straight forward.

(((aEX +ate+ai)X +asc® +aje+ay) X +asc® + aje’ + ae + aZ)X

* 4 * 3 * 2 * *
tagc” + auc” + aze” + asc+ ay

C (((QazX +aie+2a3)X + aje® + dje+ 2a5) X + afe® + ahe” + ae+ QaZ)X + aj
- (((3a5X +ate+3ai)X + ate’ + aje+ 3a3) X + 2a§)X +a

C (((4a5X +ae+4a3)X + 3a3) X + 2a2)X tal

C (((5a5X +4a3)X + 3a5) X + 2a2)X tal.

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 74

Similar inclusions have been proved by [Alefeld, 1981]. However, for the case above, it seems that no
proof is known. O

We give an algorithm for the dense slope form and not for the slope form because of the following reasons:

e Usually g. 1s dense, even if f is sparse. This 1s in particular the case if the coefficients of ¢. are
computed by rounded interval arithmetic. Hence, in general M;S)(X) = M;(s)(X).

e In a concrete implementation, an algorithm for M;(s) is usually faster than a corresponding algo-

rithm for MJ(CS), because some integer operations and the power function calls are saved.

Algorithm 3.2.13 (DSF) evaluates M;(s)(X). The coefficients of g. and the function value of f at ¢ are
obtained simultaneously by the Horner scheme. As the midpoint of X is computed using Algorithm
2.3.33 (MID), which gives only an approximation of mid(X'), the output interval need not be a superset

of M;(s)(X), but at least contains f(X).

Algorithm 3.2.13 (DSF) [Dense Slope Form)]

In: f(2) = apet 4+ ap_gz@-t + 4 agz? € Fz),
X eIl.

Out: DSF(f,X) € [T, DSF(f, X) ~ M;®(X), DSF(f, X) 2 f(X).

(1) [Midpoint.]
¢ — MID(X).

(2) [Coefficients of g.(x) and f(¢).]

k+—d,.

Bk<—an.

fori=n—-1,...,1
fOI'deH_l,...,dZ’—I—l

k+—Fk— 1, Bk — Bk+1c.

By «— Bp +a;.

for j=dy,..., 1
k—k— 1, Bk — Bk+1c.

(3) [Evaluate H} (X)]
if d,, < 1 then G «—— 0, goto Step 4.
G — Bdn~
fore=d,—-1,...,1do G — GX + B;.

(4) [Return.]
return By + G * (X — ¢).
Theorem 3.2.14 (Complexity) Algorithm 3.2.13 (DSF) costs

d,, Interval multiplications
2d, + 1 number multiplication and
2d,, + 2n number additions. O

Proof.

e Step 1 costs 1 number multiplication and 2 number additions.
e Step 2 costs 2d, number multiplications and 2n — 2 number additions.
e Step 3 costs d,, — 1 interval multiplications and 2d,, — 2 number additions.

e Step 4 costs 1 interval multiplication and 2 number additions. O

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 75

3.2.2 Bicentered Mean Value Form

The bicentered mean value form is a modification of the mean value form, which was introduced by
[Baumann, 1988]. The basic idea is to evaluate the mean value form twice with different centers ¢! and
¢t and intersect the results. The centers are optimal in the sense that ¢! minimizes the upper bound and
¢! maximizes the lower bound. The bicentered mean value form is therefore particularly suitable for the
separate computation of an upper or lower bound of f in X.

In the sequel let
My(X,¢) = () + Hp(X)(X — o).

Example. Let f(z) = 2 — 2 — 5 and let X = [0,4]. Then H; (X) = [—1,7] and we obtain
My (X, mid(X)) = M;(X) = [-17, 11].

Let ¢! =35, ¢t =0.5. Then

Mi(X,cl) = [-20.75,7.25]
Mi(X,ct) = [-8.75,19.25]
Mp(X, e)ynM;(X, ety = [-8.75,7.25].

An illustration of this example is given in Figure 3.2.1. The dashed lines are the linear functions

fle)+ Hp(X)(x—¢) and f(e)+ Hp(X)(z —¢) (3.2.8)
where ¢ = mid(X), ¢ = ¢! and ¢ = ¢! from left to right. From the picture it is clear, why ¢! and ¢! can
be called optimal centers. Further, we can see the following important property, which will be used later
on:

F+Hp(X)(X =) = fle)+ Hp(X)(X =)
F+ Hp (X)X —cl) = fleh)+ Hp(X)(X —ch)
(Note that this is only true if 0 € H (X)).
0 4 S0 A 0 4
5 5
1 2 3 1 2 3] 2 3
5 -5 5
a0 | 0 | a0 |
15 15 15

Figure 3.2.1: Geometric interpretation of the mean value form of f(z) = ? —z —5 with different centers.
From left to right: M; (X, mid(X)), M;(X,cl), M;(X,cl).

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 76

Definition 3.2.15 (Bicentered Mean Value Form) The bicentered mean value form Mf (IR — TR
is defined as

My(X) = [My(X,eb), M; (X, el], (3.2.9)

where the optimal centers ¢! and ¢! are

X if F' >0
o= X if F7<0

(FIX — F' X)/w(F') else

X if />0
b= X if F7<0

(FFX —F'X)/w(F') else

and F' = Hf/(X). O
In the sequel let ¢!, ¢t and F’ as in Definition 3.2.15.
Theorem 3.2.16 (Interval Extension) Mf is an interval extension of f. O

Proof. As ¢! ¢! are convex linear combinations of X and X it holds that ¢!, ¢! € X. From (3.2.9) it
follows that)
Mp(X) D Myp(X,ehyn My(X,cl).

According to (3.2.1), f(X) C M;(X,c) for all c € X. Hence,
FX) € My(X,eh) n My (X, el) C Mp(X).

Finally, if X € R then obviously Mf (X)eR. O

Theorem 3.2.17 (Non—Overestimation) If £/ > 0 or F/ < 0 then

Proof.

e Assume F' > 0.

Mp(X) = [M;(X,X), Mp(X,X)]
= [fX)+F (X - X), [(X)+ F'* (X - X)]
= [f(X), (X))

e Assume F7 < 0.

Mp(X) = [M;(X,X), Ms(X,X)]
= [fXO)+F (X -X), f(X)+ F'« (X - X)]
= [f(X), [(X)]

In both cases f is monotone in X, hence [f(X), f(X)] = f(X). D

Theorem 3.2.18 (Optimality of Centers) For all ¢ € X it holds that

Mf(X,CT)
M (X, e

M; (X, c) (3.2.10)
M (X, c). (3.2.11)

IV IA

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 77

Proof. If F/ > 0 or F/ < 0 then (3.2.10) and (3.2.11) follow from Theorem 3.2.17. Hence assume
0 € int(F’) and let ¢ € X arbitrary but fixed. We show (3.2.10), the proof of (3.2.11) is similar.

Mi;(X,e) = flo)+F'«(X —c¢)
> feHY+ Fx(e—c)+ Frx(X —o). (3.2.12)
Next, we show that
Flx(c—c) 4+ F s (X —¢)=F'* (X —cl). (3.2.13)

As0 € F’ and 0 € X — ¢ we have
Fra(X —c)=max{F' (X —¢), F/ (X —¢)} (3.2.14)
and from the definition of ¢! it follows that

Firx(X —e)=F'+ (X —c) = F (X =). (3.2.15)
e Assume ¢ > ¢!. From (3.2.14) and (3.2.15) it follows that

Flx(e—cly = Flx(c—ch.

Flre(X —e) = F'x(X—o¢)

Hence,
Fla(e—c+F (X —c)=F'« (X —ch)=F «(X —¢).

e Assume ¢ < c!. From (3.2.14) and (3.2.15) it follows that
Frs(X—c) = F'x(X—o¢)
Flx(e—cly = Frx(c—ch.
Hence,
Fls(c—cHY+F'x (X —c)=F' (X =)= F'« (X —¢).
After having shown (3.2.13), we can continue with (3.2.12).

F(e) + Fr s (X —cl)
= Mf(X,CT). (]

Mf(X,C)

v

Corollary 3.2.19

Mp(X) = (] Mg(X,¢c). O

Corollary 3.2.20 (Convergence) Mf converges quadratically to f. O

Proof. According to Corollary 3.2.19, Mf(X) C M;(X) for all X € IR, and M; is quadratically
convergent by Theorem 3.2.4. O

Theorem 3.2.21 (Inclusion Monotonicity) Mf is inclusion monotone. O

I;lroof.h I;et X¢o C X, let cg, c% be the optimal centers of f in X, and let Fiy = Hy(X¢). We have to
show tha

iy (Xo) € AL (X), (3.2.16)
or equivalently
My(Xo,ch) < Mp(X,cl) (3.2.17)

My(Xo,ch) > Mp(X,ch) (3.2.18)

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 78

We give a proof of (3.2.17), the proof of (3.2.18) is analogous. If ', > 0 or F_é> < 0 then

M;(Xo) = f(Xo) C F(X) C My(X)

by Theorem 3.2.17. In the sequel assume 0 € int(Fé). Inclusion monotonicity of the Horner form implies
0 € int(F").

e Assume cg > ¢!. Then

Flel) < feh)+F (el —). (3.2.19)
Hence,
My(Xo,ck) = fleh)+Ff+(Xo —cl)

(3.2.15) -
=" flel) + L+ (Ko —cl)

(3.2.19) Nt N —
< JE) F Tl —el) + T x (X —)
< H)+F (el =)+ F (X —cly)
= FE) +F % (X =l

(3.2:.15) f(CT) + F'x (X _ CT)
= Mf(X, CT) O

e Assume cg < ¢!. Then
Fleh) < (el + Fl (el —). (3.2.20)
Hence,
My(Xo,cl) = fleh)+Ff+(Xo —cl)

3.2.15

CET fel) + Py (Xo —)

(3.2.20)
<) B el) 4 F (X)
< fEHE (el — e+ For (X —cly)
= f)+E (X~

(3.2:.15) f(CT) + F'x (X _ CT)

Mf(X, CT) O

In Figure 3.2.1 one sees that the width of the mean value form is the same for all centers ¢ between c!
and ¢'. In this case the width is determined by the steeper dashed line. If the center is chosen outside
[e},c1] then the width of the mean value form is larger. The following theorem is new.

Theorem 3.2.22 Let C = [c},c!]. For all ¢ € X it holds that
w(My (X, ¢)) = mag(F')w(X) + w(F')mig(C — ¢). O

Proof. Assume 0 ¢ int(F”’). Then C' = X and for all ¢ € X it holds that mig(C' — ¢) = 0. Thus,

w(M;(X,¢)) = w(F'*(X —¢))
= w(mag(F)(X -)
= mag(F)w(X).
Assume 0 € int(F’). Further, assume F/ > —F’ ie. mag(F’) = F’. The case F/ < —F’ can be treated
similarly. Note that

—(F"+ F)(X - X)

i
=
|
g
[
v
el
e
|
E

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 79

Hence, ¢! < ¢!, Further, for all c € X

Fra(X —c) = max{F' (X —c¢), F/+(X —¢)} (3.2.21)
F's(X—¢) = min{F'+«(X —c¢), F/%(X —¢)} (3.2.22)
and
Frs(X—c) = Fr's(X=cl) >0 (3.2.23)
F's(X—c)y = F'x(X-¢chH <o. (3.2.24)

e Assume ¢ € C. Note that mig(C' —¢) = 0. As ¢ < ¢! and ¢ > ¢!, we obtain from (3.2.21) — (3.2.24)

F's(X—c) = F'x(X—0)
F's(X—¢) = F'x(X—o).
Thus,
w(Mi(X,¢)) = F's(X—c)— F'x(X —¢)
= W*(Y—X)
= Fw(X).

e Assume ¢ ¢ C. We give a proof only for the case ¢ > ¢!, the case ¢ < ¢! is analogous. As ¢ > ¢!
and ¢ > ¢! we obtain from (3.2.21) — (3.2.24)

Frs(X—e) = Flx(X—o¢)
F's(X—¢) = F'x(X—o).
Thus,
w(Mi(X,¢)) = F's(X—c)—F'x(X —¢)

= (E-THx -0
(- FYE =) + (=T~ o)

= Fx(X - —F+(X—c)+w(F)mig(C — ¢
= Fx(X—c)—F 5 (X —c)+w(F)mig(C — ¢
= F'w(X)+w(F)mig(C —¢). O

The midpoint of X is an optimal center for the mean value form in the following sense:

Corollary 3.2.23 (Optimality of the Midpoint for the Mean Value Form) Forallc € X it holds
that
w(M; (X)) < w(M;(X,c)). O

Proof. According to Theorem 3.2.22, we have to show that mid(X) € [c!,e!]. In fact, we show that
mid(X) = mid([c!, ¢!]). If 0 ¢ int(F’) then [¢!,¢1] = X. If 0 € int(F’) then

F'X-FX+FX-FX
1/2(cb +¢) = ot Ao

A comparison between the slope form and the bicentered mean value form might be of interest. The
bicentered mean value form returns the range without overestimation if 0 € int(H(X)). This is not the
case for the slope form, e.g. f(z) = 2> + 3z, X = [-1,2]. If 0 € int(H (X)) sometimes the slope form
is better than the bicentered mean value form, sometimes vice versa:

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 80

o fz)=—a®+2%—2, X =[-1,1].
MP(X) = [-3,3] C [-4.968,5.048] = M (X)
o fla)y=—23+22+2, X =[-04,1].
M (X) = [~1.254,1.98] D [-0.551826, 1.35286] = M (X).

Algorithm 3.2.26 (BMF) for evaluating the bicentered mean value form follows immediately from Def-
inition 3.2.15. First, we give Algorithm 3.2.24 (OC) for computing the optimal centers. Note that an
approximation of the optimal centers is sufficient for the correctness of Algorithm 3.2.26, provided that
the approximations are elements of X.

Algorithm 3.2.24 (OC) [Optimal Centers]

In: F' €I,
X e1F.

Out: ¢!, ¢l € X, approximations of the optimal centers according to Definition 3.2.15.

(1) [Monotonicity test.]
if /> 0 return 7,&.
if F/ <0 return X, X.

(2) [Approximate.]
clear invalid operation flag
J— FEIXIFIX)
el FFEX T FEX)

(72 F).

72 F).

~.u 1

(3) [Check invalid operation and rounding errors.]
if invalid operation flag is raised then ¢! — X, ¢} — X
if ¢! < X then ¢! — X.
if ¢! > X then ¢! — X.
if et < X then ¢t — X.
if ¢t > X then ¢! — X.
(4) [Return.]

return ¢! , et

Note that in Step 2 F' > 0 and F < 0, hence F’ z F’ # 0 and division by zero cannot occur.

Theorem 3.2.25 (Complexity) Algorithm 3.2.24 (OC) costs

2 number divisions,
4 number multiplications and
3 number additions. O

Algorithm 3.2.26 (BMF) [Bicentered Mean Value Form]

In: f(2) = apet 4+ ap_gz@-t + 4 agz? € Fz),
X eIl.

Out: BMF(f, X) € IF, BMF(f, X) ~ M;(X), BMF(f, X) D f(X).

(1) [Inclusion of f'.]

F'(x) — f'(x) (use interval arithmetic for coefficients).

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 81

(2) [Evaluate f/(X).]
F! —— HFI(F'(z), X).

(3) [Optimal centers.]
cl el — OC(F', X).

(4) [Evaluate at Centers.]
yl — HFUB(f(x), [c']) + F"* (X —).
y! — HFLB(f(x),[c!]) + F' % (X — cb).
return [y}, y'].

Theorem 3.2.27 (Complexity) Algorithm 3.2.26 (BMF) costs

n interval power computations,
n+ 2 interval multiplications,
2n number power computations,
2 number divisions,
4n +4 number multiplications and
4n+5 number additions. O

Proof.

e Step 1 costs 2n number multiplications.

e Step 2 costs n interval power computations, n interval multiplications and 2n — 2 number additions

(Theorem 3.1.8).
e Step 3 costs 2 number divisions, 4 number multiplications and 3 number additions (Theorem 3.2.25).

e Step 4 costs 2n number power computations, 2n number multiplications and 2n—2 number additions
during the calls of HFLB and HFUB (Theorem 3.1.37). Further, it takes 2 interval multiplications
and 6 number additions. O

3.2.3 Experimental Results

An experimental comparison of the mean value form M;, computed by Algorithm 3.2.5 (MF), the dense

slope form M;(s), computed by Algorithm 3.2.13 (DSF) and the bicentered mean value form Mf, com-
puted by Algorithm 3.2.26 (BMF) for dense and sparse polynomials with different degrees is given in
Table 3.2.1, respectively Table 3.2.2. The coefficients of the polynomials and the endpoints of the input
intervals are uniformly distributed in [—1,1]. For each degree d,,, the average cost and overestimation
error of 10* random polynomials is reported. The cost is the total number of arithmetic floating point
instructions, including those which were executed during interval operations. As the forms are quadrati-
cally convergent, the distance to the range divided by w(X)? was chosen to measure accuracy. In almost

all cases Mf 1s more accurate than MJ(CS), which is significantly more accurate than M;. The costs of Mf
and M; are almost the same. If the polynomials are “sufficiently” sparse, then Mf and M; are more
efficient than M;(s). In the dense case M;(s) is cheaper.

3.3 Taylor Form

The basic idea of the Taylor form is to translate f by mid(X) to the left and evaluate the Horner form
of resulting polynomial on the centered interval X — mid(X). The Taylor form is a centered form and
hence quadratically convergent.

The Taylor form for polynomials and rational functions was studied thoroughly in the literature, see

e.g. [Alefeld and Herzberger, 1974], [Alefeld and Rokne, 1981], [Alefeld and Herzberger, 1983], [Hansen,

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 82

Degree of f | 2] 6 10 1a] 18] 2] 2 | 30 |
Flops for M;(X) 98.6 | 71.2 | 113.7 | 156.2 | 198.8 | 241.3 | 283.7 | 325.8
Flops for M;®(X) 203 | 54.2 | 88.5 | 122.7 | 157.1 | 191.5 | 225.8 | 259.7
Flops for M (X) 953 | 73.2 | 116.5 | 159.1 | 202.1 | 2445 | 287.1 | 329.1
q(M(X), fF(X))/w(X)? | 036 | 150 | 255 | 347 | 440 | 548 | 6.24 | 7.00
a(M;®(X), F(X)/w(X)? || 0.23 | 0.70 | 1.05 | 1.30 | 1.56 | 1.87 | 2.07 | 2.16
q(M(X), F(X))/w(X)2 | 007|043 | 077 | 1.04 | 1.34 | 1.66 | 1.90 | 2.24

Table 3.2.1: Comparison of My, M;(s) and Mf for dense random polynomials f with different degrees
and random intervals X. The coefficients of f and the endpoints of X are uniformly chosen in [—1,1].

Degree of f | 2] 6 [10] 1a [18 | 22] 26] 3 |
Flops for M;(X) 28.6 | 46.0 | 57.6 | 65.3 | 7T1.4 | 75.7 | 795 | 82.9
Flops for M;®(X) 20.3 | 47.3 | 74.6 | 102.4 | 130.3 | 158.2 | 186.3 | 213.9
Flops for M;(X) 25.3 | 45.0 | 56.5 | 64.1 | 705 | 74.6 | 784 | 816
a(M;(X), F(X))/w(X)? [036]095| 126 1.42 | 1.55 | 1.72 | 1.71 | 1.90
a(M;P(X), F(X))/w(X)? || 0.23 | 0.46 | 054 | 057 | 0.59 | 0.64 | 0.60 | 0.66
a(M;(X), F(X))/w(X)? [0.07]0.16]017 | 016 | 0.19 | 0.18 | 0.20 | 0.21

Table 3.2.2: Comparison of M, M;(s) and Mf for sparse random polynomials f with different degrees

and random intervals X. Each polynomial has only 3 non—zero coefficients. The coefficients of f and the
endpoints of X are uniformly chosen in [—1, 1].

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 83

1969], [Moore, 1966], [Rall, 1983], [Ratschek, 1978], [Ratschek, 1980a), [Ratschek, 1980b], [Ratschek and
Rokne, 1980b], [Ratschek and Rokne, 1980a], [Ratschek and Schréder, 1981], [Ratschek and Rokne, 1984].
Interval polynomials are considered in [Rokne, 1981] and complex polynomials in [Rokne and Wu, 1982],
[Rokne and Wu, 1983]. In Section 3.3.1 we give a new improvement of the Taylor form which is obtained
through a bisection of the input interval. The overestimation error is thereby reduced at least by half.

According to Taylor’s Theorem we can rewrite f for arbitrary ¢ € R as

dn_ £(i)(, .
oy =S oy

; i
+=0

If we translate f by ¢ to the left, we obtain the polynomial

dn

(e) .
O =3 f—u() i (33.1)

i=0
and obviously
fz) = [—e).
Thus, a whole class of interval extensions of f is given by

f(X) CFOX - o), (3.3.2)

where F'(¢) is an interval extension of f(¢). The Taylor form is a special case of (3.3.2), where F(©) ig the
Horner form of f(¢) and ¢ is the midpoint of X.

Definition 3.3.1 (Taylor Form) The Taylor form Ty : IR — IR of f is defined as
Ti(X) = Hjmiacx) (X —mid(X)).
The dense Taylor form T} : IR — IR of f is defined as

T;(X) = H;(mid(X))(X - Hlld(X)) O

From Theorem 3.1.3 it follows that 77 (X) C 1% (X) for all X € TIR. The reason why it is still worthwhile
to consider 7% is that 1t can be evaluated more efficiently than T}. This is surprising, because the
evaluation of Hy is usually cheaper than the evaluation of H;. Another reason is that 775 is inclusion
monotone, whereas T} is not. Finally, T¢(X) C 17 (X) only if a Taylor coefficient vanishes, which is “in
general” not the case, especially if rounded interval arithmetic is used for their computation.

In the sequel let ¢ = mid(X) and f(°) as in (3.3.1). Further, let

d .
¢ - f(l)(c) i—
¢)= et

i=1 :

and note that
TH(X) = f(c)—l—H;‘(c)(X—c)*(X—c). (3.3.3)

A corresponding representation is not possible for T if f/(¢) = 0.
The following Theorem shows, why T; can be evaluated faster than 7. Further, it will be used to prove

inclusion monotonicity of T}".

Theorem 3.3.2 Let by, ..., b4, —1 such that

dn—1

g(x) = bt
i=0

let
dn—1

gif (@)= > Ihila?,
=0

and let r = rad(X). Then
Jo(X =) (X —o) =g (r)r[-1,1]. O

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 84

Proof. Let r and bg,...,bgs,—1 as in Theorem 3.3.2. As X — ¢ is a centered interval, it holds that
g (X =) (X —¢) = mag(H) (X — ¢))r[-1,1].
It remains to show that
mag(Hyo (X =) = g/ ().

Let
Pn—l = bn—la PZ = PZ+1(X_C)+I)Z }Z:n—Q,,O
Pn-1 = |bn—1|a i = pi+1r+|bi|

Note that Py = H;‘(C) (X —¢)and pg = gl(lc)(r). Obviously mag(Pn—1) = pn—1. If mag(P;) = p; for some
1<i<n-—1then

mag(P;_1) = mag(P; # (X — ¢) + b;_1) = mag(P)r + |bi—1| = pi—1,
hence mag(Py) = pg. O

In [Caprani and Madsen, 1980] inclusion monotonicity of a centered form similar to the Taylor form (see
[Ratschek, 1978], [Ratschek, 1980a]) is disproved by a counterexample. Apparently, inclusion monotonic-
ity of the Taylor form was not studied before. In particular, Theorem 3.3.3 1s new.

Theorem 3.3.3 (Inclusion Monotonicity of Dense Taylor Form) T} 1s inclusion monotone. O

Proof. Let Xo C X, ¢ = mid(Xy), r¢ = rad(Xe) and r = rad(X). Note that

leo =l = 1/2|(Xs + Xo = X = X))
= 1/2maX{X_O+&—7—X,7+X_X_O_&}
1/2(X + Xo — Xo — X)

= r—=rg.

IN

We have to show that 77} (X¢) C 1% (X), which can be rewritten according to Theorem 3.3.2 as

d ; d .
1@ (e : @
fleo) +[-1,1) UM% C fle)+[-1,11> | (3.3.4)
i=1 ’ i=1
The corresponding inequalities for the endpoints are
d ; d .
@ (e : 1@ (e :
fleo)+Y UM% < flo+ | Z.,(A, (3.3.5)
i=1 ’ i=1 :
d ; dn
S (e)] SO
fleg) _Z#% N GOEDY Z'(M, (3.3.6)
i=1 ’ i=1 :
First, we express the derivatives of f at c¢ in terms of derivatives of f at c.
dn (e ,
F () Zf (co —)i~
j=i (G-
Thus,
d ; d, | d :
SOl i NN () j—i| i
ZZ:; e = 2 JZ_; G- Z);(co ey T

IN
'M
\
paX
o
=
A
31
=
(o}
Se—
<
1
.

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 85

o dn (@) (e o
Z Z Z'|[j(:j _(z))|' (r—re) ™'

<
i=1 j=i
dn J
[f9(¢)] i
dn 1 £(5) i /5 o
= Z|f j'(C)|Z<Z-)(r_rO)]_ZTZO
ji=1 ’ i=1
du | () . ,
= Z WOQJ —(r—ro))
j_l ’
(J) (J) .
_ Z |f Z |f gy
< Z |f(]) Z |f(]) B c|],
j=1 ’
dn dn (]))
< Z Z (co —c)f
(J))
- Z 5~ i fteo) - s
Finally, (3.3.5) and (3.3.6) follow from
fleo) = 1fleo) = ()] < [fle).
fleg) +1flco) = fle)] = fle). O
Theorem 3.3.4 T} is not inclusion monotone. O
Proof. Let f(r) = 2% — 3% 2%
e Let X =[0,2], ¢ = 1. The Taylor coefficients are
f(c) = =2
PO/ = -3
@)/2! = 0
)3t = 1,

and

TH(X) = =2+ ([-1,1° = 3)[-1,1] = [-5,1].
Note that f”’(c)/2! = 0, which caused that the interval square function was used instead of multi-
plication.

o Let X, =[0,1.8], ¢, = 0.9. The Taylor coefficients are

fleg) = —1.701
Fleo)/1! = —2.97
Fllee)/2 = —0.3

f’”(co)/3! = 1,
and

Ty (Xe) = —1.701 + (([-0.9,0.9] — 0.3)[-0.9,0.9] — 2.97)[—0.9,0.9] = [—5.346, 1.944].

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 86

Thus Xo C X but T7(Xe) D T3 (X). O
Theorem 3.3.5 (Convergence) T; and T; converge quadratically to f. O

Proof. According to (3.3.3) the dense Taylor form can be written as
TF(X) = f(e) + Hjo (X —e) (X —¢).

Let G(X) = H;‘(C) (X —¢). From Corollary 1.3.19 it follows that H;‘(C) and hence G are Lipschitz. Further,

gD (x—c) € G(X) for all # € X. Hence T} is a centered form and quadratically convergent by Definition
1.3.25 and Theorem 1.3.27. As T¢(X) C 1% (X) for all X € IR, T} is also quadratically convergent. O

We give an algorithm for computing Taylor coefficients by the extended Horner scheme first.

Algorithm 3.3.6 (TC) [Taylor Coefficients]

In: f(2) = apet 4+ ap_gz@-t + 4 agz? € Fz),
cec T

Out: TC(f,¢) =(Ao,...,Aq,), A; ETT, fO(e)/i' € A;, i=0,... dy.

(1) [Initialize.]
fori=0,...,d, do A; — coefficient of z! in f.

S ——cAg,.

(2) [Horner scheme.]
fore=0,...,d, —1
Ad,-1— Ag, 1+ S.
forj=d,—1,...;i4+1do A;_1 — A;j_1 +cA;.

(3) [Return.]
return Ag,..., Ag, .

n

Theorem 3.3.7 (Comlexity) Algorithm 3.3.6 (TC) costs

d? —d, +2 number multiplications and
d?> + d, number additions. O

Proof.

e Step 1 costs 2 number multiplication.

e The i-th iteration in step 2 costs 2(d, —i—1) number multiplications and 2(d, —7) number additions.
Hence step 2 costs d,,(d,, — 1) number multiplications and d,,(d, + 1) number additions.

Algorithm 3.3.8 evaluates the dense Taylor form. For the evaluation of the translated polynomial we
use Theorem 3.3.2 instead of Horner form. This allows to replace interval operations by floating point
operations.

Algorithm 3.3.8 (DTF) [Dense Taylor Form]

In: f(2) = apet 4+ ap_gz@-t + 4 agz? € Fz),
X eIl.

Out: DTF(f,X) € IF, DTF(f, X) D TF(X).

(1) [Special case X = X]
if X = X then return H;(X).

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 87

(2) [Midpoint and radius of X.]
¢ — MID(X).

r%max{yic,cii}.

(3) [Taylor coefficients.]
(Ao, ..., Aq,) — TC(f,¢).

(4) [Magnitude of H (X —o)(X —¢)]
m — mag(Aq,) ¥ r.

fori=d,—1...1dom — (m 3 mag(4;)) % r.
(5) [Return.]

return Ag + [—m, m].

The special case X = X was excluded in Step 1, hence r > 0 in Step 4 and an invalid operation cannot
occur.

Theorem 3.3.9 (Complexity) If X # X then Algorithm 3.3.8 (DTF) costs

d?> +3 number multiplications and
d% + 2d, +5 number additions. O

Proof.

e Step 2 costs 1 number multiplication and 4 number additions.
e Step 3 costs d2 — d,, + 2 number multiplications and d2 + d,, number additions (Theorem 3.3.7).
e Step 4 costs d, number multiplications and d,, — 1 number additions.

e Step b costs 2 number additions. O

3.3.1 Bisection at Zero

The Taylor form reduces the computation of the range of f on an arbitrary interval X to the evaluation of
the Horner form of the Taylor polynomial f(*) on a centered interval X —e. According to Theorem 3.1.45,
the overestimation error of the Horner form can be reduced at least by half if X — ¢ is bisected at zero
and Horner form is evaluated separately on both halves. In Section 3.1.3 it was pointed out that such a
bisection 1s relatively inexpensive. The following new modification of the Taylor form is therefore slightly
more expensive than T, but gives significantly tighter inclusions. In the sequel let

ey) HF([X,0)UHg([0,X]) if 0 € int(X)
H3(X) = { ! H;(X)f else.

Definition 3.3.10 (Dense Taylor Form with Bisection) The dense Taylor form with bisection T; :
IR — IR of f is defined as § §
T7(X) = Hmiax (X —mid(X)). O

The following theorem states that the overestimation error of T; i1s at most half as big as the overesti-
mation error of 7.

Theorem 3.3.11 For all X € IR it holds that

A
—
~—
o~

A
—
~—
o~

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 88

Proof. Follows immediately from Theorem 3.1.45. O

Algorithm 3.3.12 (DTFBM) evaluates T; In order to improve efficiency, we apply the techniques devel-
oped in Algorithm 3.1.38 (HFBZ).

Algorithm 3.3.12 (DTFBM) [Dense Taylor Form with Bisection at Midpoint]

In: f(2) = apet 4+ ap_gz@-t + 4 agz? € Fz),
X eIl.

Out: DTFBM(f, X) € I, DTFBM(f, X) ~ T7(X), DTFBM(f, X) D f(X).

(1) [Midpoint of X.]
¢ — MID(X).

[Coefﬁc1ents of f(c)()]
(Ao, ..., Aa,) — TC(f,).

(3) [Initialize floating point operations.]
clear invalid operation flag.

(4) [Right half.]
r— X2
R<—Adn.
fore=d,—1,...,0
ifR>0thenR&R@x@Zi,elseR%Zi.
if R<0then R— R¥z+ A, else R— A,.

(5) [Coefficients of f(°)(—x).]
fori=1,...,d, step 2 do A; — —A;.

(6) [Left half.]

fori=d, —1,...,0
iff>0thenf&f@xfi—zi,elseszi.
ifL<Othen L— L¥a+ A else L — A,.

(7) [Check invalid operation and return.]
if invalid operation flag is raised, then return [L, T], else return R U L.

Theorem 3.3.13 (Complexity) Algorithm 3.3.12 (DTFBM) costs

d? + 3d, +3 number multiplications and
d? + 5d, +4 number additions. O

Proof.

e Step 1 costs 1 number multiplication and 2 number additions.
e Step 2 costs d2 — d,, + 2 number multiplications and d2 + d,, number additions.

e Step 4 and 6 costs each 2d, number multiplications and 2d,, + 1 number additions. O
Hence, Algorithm 3.3.12 (DTFBM) costs 3d, number multiplications and 3d,, — 1 number additions more
than Algorithm 3.3.8 (DTF).

3.3.2 Experimental Results

An experimental comparison between Algorithm 3.3.8 (DTF) and Algorithm 3.3.12 (DTFBM) for dense
polynomials with different degrees is given in Table 3.3.1. The coefficients of the polynomials and the

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 89

| Degree of f L 2] 6 | w0] e] 18] 22] 26 | 30 |
Flops for T} (X
Flops for T; (X
q(T7 (X)), f(X
q(T7(X), f(X

20.0 | 92.0 | 228.0 | 428.0 | 692.0 | 1020.0 | 1412.0 | 1868.0
22.3 | 104.1 | 250.0 | 459.8 | 733.8 | 1071.7 | 1473.6 | 1939.1
Jw(X)? || 0.23 | 0.70 1.06 | 1.31 1.58 1.90 2.10 2.22
Jw(X)? || 0.11 | 0.26 | 0.36 | 0.43 | 0.52 0.60 0.66 0.69

)
)

X), f(X))
X), f(X))

Table 3.3.1: Comparison of TJZ" and TJZ" for dense random polynomials f with different degrees and random
intervals X. The coefficients of f and the endpoints of X are uniformly chosen in [—1,1].

endpoints of the intervals are uniformly distributed in [—1,1]. For each degree d,,, the average cost and
overestimation error of 10 random polynomials is reported. The cost is the total number of arithmetic
floating point instructions, including those which were executed during interval operations. As the forms
are quadratically convergent, the distance to the range divided by w(X)? was chosen to measure accuracy.

While the measured costs of Algorithm 3.3.8 (DTF) correspond exactly to Theorem 3.3.9, the measured
costs of Algorithm 3.3.12 (DTFBM) are significantly smaller than stated by Theorem 3.3.13. The reason
18, that the worst case assumption of Theorem 3.3.13 does not hold in most cases.

3.4 Bernstein Form

It is well known that the k 4+ 1 Bernstein polynomials of order & form a basis of the vector space of
polynomials of degree at most &. This means that every polynomial f with degree < k can be written as
a linear combination of k-th order Bernstein polynomials. The coefficients of such a linear combination
have an important property, namely the largest and the smallest coefficient bound the range of f in the
interval [0, 1]. This observation can be generalized to bound the range of f on arbitrary intervals X.

Experimental results indicate that the Bernstein form gives very tight inclusions compared to the other
forms described so far. There are many situations when Bernstein form yields the range without over-
estimation. An a posteriori test, whether such a situation is given, does not require any additional
computation.

The idea to use Bernstein polynomials for range computation goes back to [Cargo and Shisha, 1966]
and [Rivlin, 1970]. The case X # [0, 1] was considered first by [Rokne, 1977]. Efficient algorithms for
real and for interval polynomials are presented in [Rokne, 1979a] respectively [Rokne, 1982]. Complex
polynomials are studied in [Rokne, 1979b] and [Grassmann and Rokne, 1979]. The multivariate case is
treated in [Garloff, 1985]. An application to real root isolation can be found in [Lane and Riesenfeld,
1981]. The inclusion monotonicity of the Bernstein form (Theorem 3.4.17) was proved by [Hong and
Stahl, 1995]. A new criterion when the Bernstein form gives the range without overestimation is subject
of Theorem 3.4.19. In Section 3.4.1 we give a new improvement of the Bernstein form which reduces both,
the overestimation error and the computing time. The improvement is achieved through a bisection of
the input interval at 0.

Let us first review some basic properties of Bernstein polynomials.
Definition 3.4.1 (Bernstein Polynomial) The j-th Bernstein polynomial of order k is defined as

pi»’“)(x):(];)ﬂ(l—x)k-% E>0, j=0,.. k0O

The Bernstein polynomials {pgk)(x) | J =0,...,k} form a basis of the vector space of polynomials of
degree < k. All we have to show is that the elements x?, i = 0,...,k of the power basis are linear
combinations of Bernstein polynomials.

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 90

Lemma 3.4.2 For all 0 < i < k it holds that

Proof.

H@
Il
Eol
l/—t
3]
+
—
—_
|
3]
~
~—
kol
|

,3
I
=)

Il
’ kol
TN
.
[
<. .
N
]
<,
Py
—
|
X
s
kol
d

<
Il
Y

l
.
i
.
—~

“
i+
.
—~
o, 7
~—
AN
o
o
—
&
~—
O

In the sequel let k > d,, and let a be the coefficient of z* in f, i =0,..., k. According to Lemma 3.4.2
there exist coefficients b;k) such that

fa) = S a

]~
-
=
s
N Fray
~ [~
-
kol
Z
—_
3]
~—

This motivates the following definition.

Definition 3.4.3 (Bernstein Coefficient) The j-th Bernstein coeflicient of f of order k is defined as

b; :Zai<k>, j=0,...,k. 0O

i=0

The following theorem shows the relationship between Bernstein coefficients and the range of polynomials
over [0, 1].

Theorem 3.4.4 (Range Overestimation)
A0) S [=0, k). D (3.4.1)

Proof. Note that
pg»k)(x) >0 forall 2€[0,1], 7=0,...,k.

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 91

Further,

Z By = i:(lc,)xj(l—x)k_j

Hence, for all x € X

f(l‘) — Zb(k) (k)

< maxtD3 5P

= max b;k)
J

Fx)y = S upP ()

j=0
k
. k k
> mindl" 35)

= mint'®. o
j J

The following theorem gives a necessary and sufficient condition when equality holds in (3.4.1).

Theorem 3.4.5 (Non—Overestimation)

F0.D) = max{b{ |j=0,... k) (3.4.2)
ift max{o | j=0,...,k} € {50767}
£0,1) = min{oi" | j=0,... k) (3.4.3)

ift - min{p!") | j=0,....k} € {o5",5{"}. O
Proof. We give a proof of (3.4.2), the proof of (3.4.3) is analogous.

“<” Assume HlaX{b;»k) |j=0,... k)= max{bék), bgck)}. As

5~ Q)
i=0 i
0= (0§
1=0 7 1=0

it holds that HlaX{b;»k) | J=0,...,k} < f(]0,1]). Hence, by Theorem 3.4.4,

max{8{") | j=0,...,k} = F([0, 1]).

“=” Assume f([0,1]) = HlaX{b;»k) | J=0,...k}.

165 = 6 = = 0 then trivially max{8*) | j =0,..., k} = max{o}", 5"}

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 92

— Otherwise, if 0 < # < 1 then 0 < pg»k)(x) < 1 for all j and
k
Sy = Yo
j=0

k
< max b;k) Zpgk)(x)
j=0

(k)
by

= max
J

Hence, f achieves its maximum in [0, 1] either for # = 0 or for z = 1 and
max{b{") | j=0,..., k} = F([0, 1]) = max{£(0), f(1)} = max{b", b"'}. O

So far we restricted our considerations to the case X = [0,1]. In order to extend Theorem 3.4.4 and
Theorem 3.4.5 to arbitrary intervals, we introduce Bernstein basis polynomials pg»k’X) which depend on
X. The relevant properties which were needed for the case X = [0, 1] are supposed to carry over to the
generalized case. Hence, we expect

" (@)

k
Zpﬁk’x)(l‘)
j=0

In the sequel let X € TR, w(X) # 0.

v

0 forall ze€ X,

Il
—_

Definition 3.4.6 (Generalized Bernstein Polynomial) The j-th Bernstein polynomial of order k

over X 1s defined as ()(_)k)
(k,X) _ k r — X JI(X —x)* O
e = (5)

As in the case X = [0, 1], we show that {pg»k’X)(x) | J=0,...k} forms a basis of the vector space of
k.

polynomials of degree <

Lemma 3.4.7 For every k > i > 0 it holds that

(=X = W)Y

(=3 = —wx)]
Proof.
B W<X1>k—i 2 (k . Z) (v = X)) (X —a)
- Z (71— xper— o

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS

I
= ©

=
ESI
|

ZIL
’I\‘/,
(]

TN TN
~3

I
.o
el
|
o,
|
-

g
]
|
S|4
kol el
|
O
(1
—~
—~ &
[
S’ <,
. ~—
N
. oF
N
Vo
3]
|
=
<
B
|
3]
p—
ES
J

.
I
=)

=
|
o
~—~
=
.|
<
~—
—~
=

93

Let us transform f from the power basis to the generalized Bernstein basis. For that purpose, it is useful
to introduce Taylor coefficients first: In the sequel let

a2 = fOx)/m

K3

X = O/

K3

be the i-th Taylor coefficient of f with developing point X respectively X i.e.

Thus,

dr
fle) = Y a®(@- Xy
=0
dn _
_ agx)(x_y)i
=0

=%
3

N
2
o

o
1l
o
<
1l
o
~~
. o
~—

(1~
-
S F

j=04=0 \¢
dn _
ot (@ = X)
2=0
dy _ k—1 k—]
3 - ><—w<x>>ip§.’“‘><x>
1=0 3=0 (z)
k k—j (k—j _
S5 L@ wny P

<
Il
o
o
Il
o
~
oo,
~—
S

This motivates the following definition.

Definition 3.4.8 (Generalized Bernstein Coefficient) The j-th Bernstein coeflicient of f of order

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS

k over X is defined as

(k,X)
bj

forj=0,...,k. O
Thus, Theorem 3.4.4 can be generalized as follows:
Theorem 3.4.9 (Range Overestimation)
SO S [i=0,. k). O

Proof. Note that
pg»k’X)(x) >0 forall z€ X, j=0,... k.

Further,

S = e (- 2 -
1

Hence, for all x € X
k
EX) (kX
OREED DU
j=0

k
< m]axbgk’x) S op (@)

j=0

= maxb(»k’X)
j J
k
k,X) (kX
f) = 3ou 0w
j=0
k
> minb 3P ()

j=0

= min b(»k’X). O
j J

The generalization of Theorem 3.4.5 is as expected:

Theorem 3.4.10 (Non—Overestimation)

X)) = max{el" [j=0,... k)
iff max{bg»k’x) | j=0,...k} € {bék,X)’ bEf’X)}
fx) = min{bg»k’x) |i=0,....k}

it min{s"Y) | j=0,.. k) € (005 0

94

(3.4.4)

(3.4.5)

(3.4.6)

(3.4.7)

(3.4.8)

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 95

Proof. We give a proof of (3.4.7), the proof of (3.4.8) is analogous.

“<” Assume maX{b(k X) | J= Lk} = max{b(k X b(k X)} As
bgk’X) Z E(Z);)W(X) — EX) = f(X) (3.4.9)
B = 3 et = = 506 (3:4.10)
i =0

it holds that max{bg»k’x) | J=0,...,k} < f(X). Hence, by Theorem 3.4.9,

max{b{"*) | j=0,... k) = F(X).

“=” Assume f(X) = max{bg»k’x) | J=0,...k}.
- If b(k’X) = b(k’X) =...= b(k’X) then trivially max{bg»k’x) |j=0,... k}= max{bgk’x), bgck’X)}.

— Otherwise, if X < # < X then 0 < p(k X)() < 1 for all j and
k
BX) (kX
fx) = Zb§ ()

< maxb(X)Z (kX) (2)

j=0
b,

= max
J

Hence, f achieves its maximum in X either for # = X or for £ = X and
max{p ¥ | j =0, k} = TX) = max{f(X), f(X)} = max{s)"*), 4{")} D

The range of f is bounded by the smallest and the largest Bernstein coefficient. This defines an interval
extension of f, which is called Bernstein form.

Definition 3.4.11 (Bernstein Form) The k-th order Bernstein form Bj(fk) : IR — IR of f is defined
as

k EX) | .
B (x) =" | j=0,... k). O
Theorem 3.4.12 (Interval Extension) Bj(fk) is an interval extension of f. O

Proof. From Theorem 3.4.9 it follows that f(X) C Bj(fk)(X) for all X € TR. If X € R then b;k’X) =
FX) = f(X) for all j, hence B (X) e R. O
For the parameter k it was required so far merely that it is greater or equal the degree of f. By

incrementing k, usually better approximations of the range are obtained.

Theorem 3.4.13 (Overestimation Error Bounds)

GO BRO) < 13- 1) (34.11)
(k) LSS) i
a0, B(X0) < 13- 1)l w(x) 0 (3.4.12)

2

o
1l

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS

96

The proof of Theorem 3.4.13 requires some preparation and will be given after Lemma 3.4.15. As the

proofs of (3.4.11) and (3.4.12) are analogous, we give only the proof of (3.4.11).

Lemma 3.4.14 Letlc(kX)E}R,i:O,...,k,j:O,...,ksuch that
k k
Z]/kw z (kX) ch X)) (kX)
j=0 j=0

Then)
. i1 .
0 S Zc‘gk,X) S (Z) W(X)Z O

Proof. As p(k X) , J =0,..., k span the space of polynomials of degree < k, the coefficients ¢
and are umquely deﬁned.

For ¢ = 0 and 7 = 1 we obtaln

chk’X) = 1c§»k’X) =0, j=0,...,k
For ¢ > 1 it holds that
k
> (/k w(X) P (@ - X
j=0
- Cex e () (k)
= D (/R w(X)) i = Hw(X) "
j=0 j=i (z)
— (k,X) 4 () (k,X)
= SO =3 (3 w00~)) 8
j=0 j=i g

o

_ Z (k,X) (kX)

Comparing the coefficients of the Bernstein polynomials we get for j < ¢

0 < = ik wx)y < iy

k
and for j > 1 '
%““=QWW—%gwwy
! ;)
It remains to show for j > i > 1 '
i W) _ (i1
) _ g dk =D
_ i_JU=-D--G-itl)
= (/k) Ck(k—1)---(k—i+1)

A
—~
o,
~
o
©

IN
—~
(.
\
el
~=. .
P N
—
|

i (

X)

exist

(3.4.13)

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 97

Applying the mean value Theorem to (1 — z)'~1,

N .o
1_<1_z.1) S(z .1)’
J J

we obtaln

hence
e = gy E R < 2D
Finally,)
()
k 2
< (j/k) -)

follows from comparison of the factors in the numerator and the denominator of (3.4.13). O

The following lemma gives a bound for the difference between a Bernstein coefficient and f(z) for certain
r e X.

Lemma 3.4.15 Let
) = F(kW) + X) =655 =0,k

Then

dy
(kX)) < 1 Vel Xy
|Qj %'EE:). Od

Proof. With the definition of cg»k’X) as in Lemma 3.4.15 1t holds that

k

37 Gk w(X) + X5 @) — f(x)
j=0
k k
kX X))\ (kX k,X) (kX
I R R R CORD DU
j=0 j=0
k
= 3PP), (3.4.14)
j=0
Using the coefficient, (k %) of Lemma 3.4.14 we obtain
k
STk wX) + X)p (@) = f(=)
j=0
k dn dy
= 3OS @ik w0 + X)) = Y apa
j=014¢=0 i=0
k dn dy
= 305 a0k W) @) = 3 0P e - X))
j=014¢=0 i=0
dy k
= Zai“Za/kw X)) p () - (& - X
i=0
dy k
_ ZGEX) Zc;k ,X) (k X) (2)
i=0
k dn
= SN @b 0pte N g, (3.4.15)

j=014¢=0

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 98

Comparing the coefficients of pg»k’X) in (3.4.14) and (3.4.15) we obtain

dn
LBK) 2 37 (i),

i=0

From Lemma 3.4.14 and chk’X) = 1c§»k’X) = 0 1t follows that

dy
kX X i (B, X
FOL < 3 el e
i=0
1 & .
< 2D laE -)P w(X)
=2

d
1 - X))/ ;
£ 2 la i - 1)Pw(x). o

i=2
Proof of Theorem 3.4.13. Let juin, jmax be the index of a smallest respectively largest Bernstein
coefficient of f in X. From Theorem 3.4.9 and Lemma 3.4.15 it follows that

% Ty . kX
BY(X) = FX) < | fGimax/k w(X) + X) = b0%)]

Jmax

d

1 & . X ;

< D= 1la w(X)
i=2

F(X) = BY(X) < | fGmin/ b w(X) + X) — b5
1 & :
< - men' o

Corollary 3.4.16 (Convergence) Bj(fk) converges quadratically to f. O

Proof. Let A € IR arbitrary but fixed. Let
a4 = maX{|a§£)| | X €14}

The maximum exists because A is bounded and all derivatives of f are continuous. From Theorem 3.4.13
it follows that

d
1 <& R i
a(f(X), B(x) < (z (i = D% Vw(x)) w(X)?
=2
dn
< (% (i - 1>2di<A>w<A>i-2) w(xX)?
=2
= ABJ@)VAW(X)?,
where .
1 & R i
AB(k)VA =7 Z(z —1)%d (A)W(A) 2 o
=2

The following theorem is taken from [Hong and Stahl, 1994a).

Theorem 3.4.17 (Inclusion Monotonicity) Bj(fk) is inclusion monotone. O

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 99

Before giving a formal proof of Theorem 3.4.17 we explain the key idea at an example. Consider the
polynomial

fle) =2+ 022" 4+ 0.52° + 0.72° — w,

and let X, Y € IR such that X C Y. For simplicity, we first consider the special case where Y has one
endpoint in common with X. Actually, this is already sufficient for the general case because the general
case can be viewed as applying the special case twice on each endpoint. Precisely, consider the interval

[Y, X]. This interval shares an endpoint with X and Y. Thus, if the special case is true, we have

B (X) C By ([Y, X]) C Bf(Y).

In Figure 3.4.1 we show the Bernstein coefficients of order k = 5 of f over all X, where X = —1 and X
)

varies between —1 and 1. The curve for b;s’X
makes the following observations:

is labeled by j. By careful inspection of this picture one

)

. . . 5X) . . 5,X
e The enveloping curves (bold lines) are monotone, i.e. max; b; 7 increases and min; b; X decreases

as X grows. This precisely means inclusion monotonicity.

(5, X)
i1
Further, the curve for bgs’X) is constant. This observation is the key for the proof of inclusion
monotonicity because, as one sees, it implies immediately monotonicity of the enveloping curves.

o Whenever the curve for some 5>%) has a local extremum, it is intersected by the curve for b

Next, we fix the right endpoint X to 1 and observe the Bernstein coefficients as X varies between —1
and 1 in Figure 3.4.2. Again, the enveloping curves are monotone, but this time, if b;s’X) has a local

X X
b\>%) and 5>

41 1s constant.

extremum, it is intersected by and

. . . . EX
Lemma 3.4.18 makes the experimental observations more precise. From now on we view b;) as a

function in the variables X, X.

Lemma 3.4.18

¥ ab(k,X)

R y éy L i=1,...k (3.4.16)
x) optkX)

b;ﬁ_’f)—b;k’x) = ‘Z(?j) éX , j=0,..k—1.0 (3.4.17)

Proof.

e Proof of (3.4.16). Let 1 < j < k and note that

(-67) - €

pkX) _ (k. X) (344

o
o

|

A
MN'

[l
o, e, o, s,
Cl M| i
= O = O
—
o, S
S—’
|
—
>
.
S—’
=
2
[>
[
=
A~
=
2
+
—
=]
>
>
=
A~
=
2

ay ™ w(X)". (3.4.18)

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 100

n—

0 0 0 0

Figure 3.4.1: Bernstein coefficients b;s’[_l’y]) of f(z) = 2+ 0.22% 4 0.52% 4+ 0.72% — z in dependence of
X.

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 101

5[X1
b5 % 1D)

A

IP<

Figure 3.4.2: Bernstein coefficients b;s,[g,l])’ of f(z) = 2° 4+ 0.22* 4+ 0.523 + 0.72? — z in dependence of
X.

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 102

apk) (3.4.4) 0O J (]) —

e B U B Y Xy
0% DONULEERE
i
= Z <;€> agz)iw()()l_1

i=1 (Z)
_ <]Z:i) (X) i—1
=1 g

(k,X) (k,X) (34.5) & (k_g_l) (X) i < (k;j) (X) i
b -yt TR Y @ (—w(X)' - 0" (=w(X))

41 pat *y P *
S Gl o Kl G e S PPN N s PRy
Lo e e e

_ _Z< (;)1 >a§7>(_w(x))l (3.4.19)
3b§»k’X) (345 0] (kz_]) (x) Say
xS

= O @iy

Loy
B R CED) @ ey
= (k-0 oo (=w(X))"7". O

Finally, we come to the proof of Theorem 3.4.17.

Proof of Theorem 3.4.17 According to the remarks above, we have to show the following:

mjin b;k’X) is monotonically decreasing in X (3.4.20)
max b;k’X) is monotonically increasing in X (3.4.21)
mjin b;k’X) is monotonically increasing in X (3.4.22)
max b;k’X) is monotonically decreasing in X. (3.4.23)
Note that for all X € IR
bt = AX)
N (0]

The proofs of (3.4.20) — (3.4.23) are similar, but for the sake of completeness we give them all in detail.
Let X € IR arbitrary but fixed.

e Proof of (3.4.20). Let jmin such that
b2 <) for all . (3.4.24)

Jmin

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 103

We have to show that
Bt X)

“dmin
ox

As bgk’X) does not depend on X, this is obviously true if jyui, = 0. Hence, assume jyin # 0 and

(%)
Jmin
— > 0.
0X
From 3.4.16 we obtain)
pUE XD _ gk X) M% >0
Jmin Jmin=1 7 jmin ay ’
which contradicts (3.4.24).
e Proof of (3.4.21). Let jmax such that
b2 >) for all . (3.4.25)
We have to show that
(kX
—dmax >,
ox -

As bgk’X) does not depend on X, this is obviously true if jyax = 0. Hence, assume jynax # 0 and

bt X)
75% < 0.
From 3.4.16 we obtain)
g X) _pix) (X —X) O} s

Jmax Jmax—1 jmax ay < 0’
which contradicts (3.4.25).
o Proof of (3.4.22). Let jmin such that
b2 <) for all . (3.4.26)
We have to show that
Bt X)
—Lmin_ > 0.

0X

As bgck’X) does not depend on X this is obviously true if jmin = k. Hence, assume jmin # k and

abex)
753“; < 0.
From 3.4.17 we obtain)
plkX) plkxX) _ M% 0
Jamintl T Tmin T k— jmin ai <
which contradicts (3.4.26).
e Proof of (3.4.23). Let jmax such that
b2 >) for all . (3.4.27)
We have to show that
bt X)
]max S 0.

0X

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 104

As bgck’X) does not depend on X this is obviously true if jpmax = k. Hence, assume jmax # k and

a(kX)

Jmax 0
ox =

From 3.4.17 we obtain)
G X yex) _ (X = X) 06 L

max+1 max ;
] + J k— Jmax ai

which contradicts (3.4.27). O

>0,

Figure 3.4.1 reveals another property of the Bernstein coefficients. Let ¢ € X. If X ~ —1, then
b <l < b for all
Similarly, Figure 3.4.2 shows that if X a1, then
b <) < X for all
According to Theorem 3.4.10, this gives rise to the conjecture that Bj(fk)(X) = f(X) if w(X) is small

enough. Yet, this conjecture is true only if we make the notion “small enough” more precise. This is
done in the following Theorem, which is new.

Theorem 3.4.19
(i) For all X € R there exists ¢ > 0 such that for all X € [X, X +¢] it holds that
B(X) = 1),
(i) For all X € R there exists ¢ > 0 such that for all X € [X — ¢, X] it holds that
B (X) = f(X). O
Proof. The proof of (i) and (ii) is analogous but for the sake of completeness we give both of them.

(i) Let X € R arbitrary but fixed. According to Theorem 3.4.10 it suffices to show that there exists
£ > 0 such that for all X € [X, X + €]

X > WX forall j=1,.k or (3.4.28)
b < b forall j=1,.. k. (3.4.29)

From (3.4.18) it follows that for all X > X

J
kX k X X i
BER) e X) Z (X

(k,X) (k,X)
e

= O
=G (X)
= W(X)l Z(-l'k_> aZ:lW(X)Z
i=0 i+l

Depending on the sign of a;i) we show that either (3.4.28) or (3.4.29) holds.

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 105

— Assume a;i) > 0. Then for all j = 1,..., k there exists ¢; > 0 such that for all w(X) <¢;

= (zil) S
Z_HW(X) > 0.

Let ¢ = min; ;. Then for all X € [X, X + ¢]
(B, X) _ 3(k,X)
bj — bj_1 > 0.

— Assume a() < 0. Then for all J=1,... k there exists ¢; > 0 such that for all w(X) <¢;

(i) Let X € R arbitrary but fixed. According to Theorem 3.4.10 it suffices to show that there exists
¢ > 0 such that for all X € [X — ¢, X]

b(»k’X) > b;k’X) forall j=0,...,k—1 or (3430)
bglif) < 5% forall j=0,... k-1 (3.4.31)

From (3.4.19) it follows that for all X < X

—J k] 1 —
EX EX i
b -8 = Z IO
Let 0 <1<k —1 be the smallest index such that a?y) # 0. If no such ! exists, then let [= &k + 1.
Thus,
kE—j (k—j—
b(k X) b(k,X) 3 (i£11) (X) X))
j+1 i - k) a; (_W())
i=] i
k—j—1 (k—j—l)
itl— x ;
= —w(X) (1)l (—w(X))
i=0 (Z-I—l)

Depending on the sign of (—1)la§Y) we show that either (3.4.30) or (3.4.31) holds.

— Assume (—1)la§Y) > 0. Then for all j = 0,...,k — 1 there exists ¢; > 0 such that for all
w(X) <¢j

e
m
o -
5'“
S

Let ¢ = min; €;. Then for al

kXD (k,X)
]+1] <0.

— Assume (—1)la§Y) < 0. Then for all j = 0,...,k — 1 there exists ¢; > 0 such that for all
w(X) <¢j

e
m
=
5L
>

Let ¢ = min; €;. Then for al

b — b > 0.

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 106

Remark. Note that it is not true that for all ¢ € R there exists ¢ > 0 such that for all 0 < r <¢
Bj(tk)([c —rc+r])= f([e—=rc+7r]).

As a counter example consider f(z) = 2% and ¢ = 0. The Bernstein coefficients in dependence of r are

ng,[—r,r]) _ 7“2
PRl o e
PRl e

Hence, b(lz’[_r’r]) is the smallest Bernstein coefficient, and according to Theorem 3.4.10,

B ([=r, 1) # f([-r,7])
forall » £0. O

Remark. If |f/(X)] is sufficiently large compared to | f())(X)| for all i > 1 and w(X) is sufficiently small,
then the sign of b;k’X) — bgk_’f) is the same for all j. Similarly, if | f/(X)| is sufficiently large compared to

| (X)) for all i > 1 and w(X) is sufficiently small, then the sign of b;ﬁ_’f) — b;k’X) is the same for all j.
In both cases we obtain Bj(fk)(X) = f(X). This qualitative result is illustrated in Figure 3.4.3, where the
overestimation error of the Bernstein form is computed for f(z) = (z—1)(#—=2)(z —3)(x —4), w(X) = 0.5
and k =4, 8 and 16. One sees that the Bernstein form is exact if X is not close to a local extremum of
f. However, it is not true, that monotonicity of f in X is a sufficient condition for non—overestimation,
although this is claimed sometimes in the literature. For example let f(z) = —23 + 0.72% — 0.22 + 0.9,
k =3 and X = [0,1]. Note that f is monotone in X because f'(z) < 0 for all z € R. The Bernstein
coefficients are

B = 0.9,
BB = 0.8333,
b = 1o,
b = 04,

Thus, we obtain By (X) = [0.4,1.0], but f(X) = [0.4,0.9]. O

Algorithm 3.4.23 (BF) for evaluating the Bernstein form proceeds in 3 steps: Compute the Taylor coeffi-

cients agz), compute the Bernstein coefficients b;k’X) according to (3.4.4), find the largest and the smallest
Bernstein coefficient. Equivalently, one could compute the Taylor coefficients aEX) and the Bernstein co-
efficients according to (3.4.5). The Taylor coefficients are obtained by the extended Horner scheme. An

efficient method for computing the Bernstein coefficients is given by the following lemma [Rokne, 1979a].

Lemma 3.4.20 Let lbg»k’X), l=0,...,dy,j=0,...,k — [be defined recursively as

X l
e WE’“)) & for 1=0,...,d, (3.4.32)
l
Anplf) = dapleX) for j=1,....k—d, (3.4.33)
B = B D o =1k, 1=0,..,min{d, — Lk—j}. (3.4.34)

Then
b =) for =0, kO

Figure 3.4.4 illustrates the computation of the Bernstein coefficients according to Lemma 3.4.20. The left
column is computed by (3.4.32), the upper row by (3.4.33) and the remaining points by (3.4.34). The
Bernstein coefficients appear in the last row.

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS

0.1

0.08

0.06 T

0.04 +

0.02

f(mid(X))

107

A
l\ 1.5 2 2.5

q(f(X), BfR(X)

i

I

16—4—8—16—4—8L

“4—8—16

4
{
N\/\ ,/\/s)
// 16
16
; 8—16—4—8—16—4

> mid(X)

2 2.5

4—8» mid(X)
3 3.5 4

Figure 3.4.3: Overestimation error of the Bernstein form for f(x) = (v — 1)(x — 2)(z — 3)(z — 4), in

dependence of mid(X), where w(X) =0.5 and k£ = 4,8, 16.

.
NN

Figure 3.4.4: Computation of the Bernstein coefficients for d, = 3 and k£ = 5.

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 108

Proof. Inductively we show for {=0,...,d,, 7 =0,...,k — [that

I3
IbEk,X) _ Z (2) a%)w(X)“”. (3.4.35)
i=0 (i-l—l)

Obviously (3.4.35) holdsfor j = 0,{ =0,...,dy, andforl =d,,j =1,...,k—d,. Further,forj=1,... k
[=0,..., min{d, — 1,k —j}

(k’X) (k‘,X) (k‘,X)
lb] — lb]'_l +l+1b]’_1
J=1 /5—1 j-1 i1 '
L S TN
i=0 \itl i=0 \itit1
J=1 5-1 ' J (]—1) '
= Y O ey 3)
i=0 (z+l> i=1 (z+l>
S04 o e, 1 |
= Xy e+)+ ey
i=1 i+ ! j+
izl , 1 1 ,
= <(;>)a§fﬁw<x>l+’+@a§@w<x>’+(v aw(X YT
i=1 \itl ! j+
i
_ Z <]Z<;> ag%)W(X)ZH
i=0 (i+l>
In particular, if { = 0 we obtain from (3.4.35)
i
(k,X) (X) (k,X)
%; Z =5"" 0O

i=0

Algorithm 3.4.21 (BCB) takes the Taylor coefficients as input and returns the smallest and the largest
Bernstein coefficient.

Algorithm 3.4.21 (BCB) [Bernstein Coefficient Bounds]

In: X €I,
Ag, ..., Aq, ETF, fO(X)/i'€ A, i=0,...,dn,
ke, k> d,.
Out: BCB(X, Ao, ..., An, k) € IT,
BCB(X, Ao, ..., A, k) < 0" < BCB(X, Aq, ..., An, k), forall j=0,... k.

(1) [Left column.]
w — WIDTH(X).
W — w.
'B — 1.
fori=1,...,d, do'B— """ BW/(k =1+ 1), W — W + w.
for{=0,...,d, do'B «— 'B A;.

(2) [Inner points and bounds for Bernstein coefficients]
F—YB.
fory=1,...,k
fori=0,...,min{d, — 1,k —j} do'B — B+ '*+1B,
F — min{"B,F}, F — max{°B, F}.

(3) [Return.]

return .

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 109

Theorem 3.4.22 (Complexity) Algorithm 3.4.21 (BCB) costs

2d,, number divisions,
4d,, + 2 number multiplications and
dn(2k —d,, +3)+ 1 number additions. O

Proof.

e Step 1 costs 2d, number divisions, 2d,, + 1 interval multiplications and 2d,, + 1 number additions.
As 0 ¢ int(‘B) for all [, each interval multiplication costs 2 number multiplications.

o Step 2 costs dp(2k — dp, + 1) number additions. O

An algorithm for computing the Bernstein form is now straight forward.

Algorithm 3.4.23 (BF) [Bernstein Form]

In: f(2) = apet 4+ ap_gz@-t + 4 agz? € Fz),
X e1IF,
kel k>d,.

Out: BF(f, X, k) € IF, BF(f, X, k) 2 B¥)(X).

(1) [Taylor coefficients.]
(Ao, ..., Aq,) — TC(f, X).

(2) [Bounds for Bernstein coefficients.]
F — BCB(X, Ao, ..., Aq,, k).

(3) [Return.]
return F'.
Theorem 3.4.24 (Complexity) Algorithm 3.4.23 (BF) costs

2d, number divisions,
d? + 3d, +4 number multiplications and
2kd,, +4d,, +1 number additions. O

Proof.

e Step 1 costs d2 — d,, + 2 number multiplications d2 + d,, number additions (Theorem 3.3.7).

e Step 2 costs 2d, number divisions, 4dy, + 2 number multiplications and d,,(2k — d,, + 3) 4+ 1 number
additions (Theorem 3.4.22). O

3.4.1 Bisection at Zero

If 0 € X then we can avoid the expensive computation of Taylor coefficients in Algorithm 3.4.23 if we
bisect X at 0 and compute the Bernstein coefficients separately for both halves of X. Note that the
Taylor coefficients with developing point 0 are precisely the power basis coefficients. This reduces overall
computing time if d,, is large and k& = d,,. Further, due to the inclusion monotonicity of the Bernstein
form, bisection leads usually to a reduction of the overestimation error. The content of this section is
new.

Thus, in the sequel let

) BY(x,0)uBY (0, X)) ifoex
;w(X):{ (0 B];?mx’ﬂ O3 iro.

The following algorithm computes B;k)(X).

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 110

Algorithm 3.4.25 (BFBZ) [Bernstein Form with Bisection at Zero]

In: f(2) = apet 4+ ap_gz@-t + 4 agz? € Fz),
X €T,
kel k>d,.

Out: BFBZ(f, X, k) € IF, BEBZ(f, X, k) D B (X).

(1) [Test 0 € X]
if X >0 or X <0 then return BF(f, X, k).

(1) [Coefficients of f(x).]
fori=0,...,d, do A; — coefficient of z! in f.

(2) [Bounds for Bernstein coefficients in [0, X].]
Ft «— BCB([0, X], Ag, ..., Ag, , k).

(3) [Coefficients of f(—z).]
fori=1,...,d, step 2 do A; — —A;.

(4) [Bounds for Bernstein coefficients in [0, —X].]
F~ — BCB([0, —X], Ao, ..., Aa,, k).

(5) [Return.]
return FT U F~.

Theorem 3.4.26 (Complexity)

o If0 & X then Algorithm 3.4.25 costs

2d, number divisions,
d? + 3d, +4 number multiplications and
2kd,, + 4d,, +1 number additions.

o If0 € X then Algorithm 3.4.25 costs

4d,, number divisions,
8d, +4 number multiplications and
2d,(2k — d,, + 3) + 2 number additions. O

Proof.

e If 0 ¢ X then Algorithm 3.4.25 (BFBZ) and Algorithm 3.4.23 (BF) are identical.

e If 0 € X then step 2 and step 4 cost each 2d,, number divisions, 4d,, + 2 number multiplications
and d,, (2k — dp, + 3) + 1 number additions. O

Thus, if 0 € X then Algorithm 3.4.25 (BFBZ) costs d2 —5d,, number multiplications less, but 2d,, number
divisions and 2d,(k — d,, + 1) + 1 number additions more than Algorithm BF. In particular, if k& = d,,,
the difference in number additions is only 2d,, + 1. In this case BFBZ costs d? — 9d,, — 1 floating point
operations less than BF, hence BFBZ is cheaper than BF if d,, > 9.

3.4.2 Experimental Results

An experimental comparison of Algorithm 3.4.23 (BF) and Algorithm 3.4.25 (BFBZ) for dense polyno-
mials with different degrees is given in Table 3.3.1. The coefficients of the polynomials are uniformly
distributed in [—1,1] and the order of the Bernstein form is k& = d,,. Further, X and X are uniformly
chosen in [—1, 0] respectively [0, 1], such that in all cases 0 € X. For each degree d,, the average cost and
overestimation error of 10 random polynomials is reported. The cost is the total number of arithmetic

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 111

Degree dy, of f 2 6 10 14 18 22 26 30

X 35.0 167.0 | 395.0 | 719.0 | 1139.0 | 1655.0 | 2267.0 | 2975.0
X 50.0 186.0 | 386.0 | 650.0 | 978.0 | 1370.0 | 1826.0 | 2346.0
Jw(X)? || 0.0523 | 0.0363 | 0.0252 | 0.0205 | 0.0174 | 0.0154 | 0.0137 | 0.0133
Jw(X)? || 0.0194 | 0.0120 | 0.0092 | 0.0079 | 0.0069 | 0.0062 | 0.0057 | 0.0054

Flops for B;d")(
Flops for B;d")(
a(By"(X). f(X
T
a(By"™(X), (X

)
)

(X))
, (X))

Table 3.4.1: Comparison of Bernstein form B;d") and Bernstein form with bisection at zero B;d")(X) for
random polynomials f with different degrees and random intervals X, where 0 € X.

floating point instructions, including those which were executed during interval operations. As the Bern-
stein form is quadratically convergent, the distance to the range divided by w(X)? was chosen to measure

accuracy. According to Table 3.4.1, the error of Bj(fd") is between one half and one third of the error of

Bj(td"). The measured cost of both algorithms corresponds exactly to Theorem 3.4.24 respectively Theo-
rem 3.4.26. Note that the overestimation error gets smaller as the degree of the polynomials increases.
The reason is that & is equal to the degree. If k& would be the same for all polynomials, then the error
would grow with increasing degree.

3.5 Interpolation Form

Interpolation forms were introduced by [Cornelius and Lohner, 1984]. They are the first interval extensions
which have convergence order higher than 2. The original definition of interpolation forms comprises a
whole class of interval extensions with different convergence orders. A particular instance, which is
cubically convergent, and which allows efficient evaluation, is suggested in [Cornelius and Lohner, 1984].
In this section, we consider only this instance and call it “the” interpolation form. Section 3.5.1 and
Section 3.5.2 contain some modifications, which are new. Another cubically convergent interpolation
form, the parabolic boundary value form, was introduced by [Neumaier, 1990] and is reviewed in Section

The basic idea of interpolation forms is to approximate f by a low degree polynomial ¢ such that

e the range of ¢ can be computed without overestimation,

e the remainder f — g can be enclosed with high convergence order.

Let us now derive the interpolation form. Using Taylor expansion of f at ¢ we obtain

F@) = fe) + f'(e)(x —) + 1/2f"()(x — ¢)?

for some & between ¢ and x. For arbitrary m € R we can continue with

F(2) = $(0)+ L =)+ 1/2m{z — 0+ /2AL"(E) = m)(z — o).

ge,m(w) re,m ()

Thus, a class of interval extensions is defined by

F(X) C gem(X) + Rem(X), (3.5.1)

where R, ,, is an interval extension of r. ,,,. Note that g.,, is a polynomial of degree two, hence g, », (X
can be computed cheaply. The interpolation form is an instance of (3.5.1), where ¢ = mid(X), m =
Hlid(HfH (X)) and

Rem(X) = 1/2(Hpn(X) —m)(X —¢)?.

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 112

Definition 3.5.1 (Interpolation form) The interpolation form I; : IR — IR is defined as
I3 (X) = gem(X) + 1/2(H g (X) = m)(X = ¢)?,

where
gem(x) = flo)+F(e)(x —) +1/2m(x —)’

mid(X)
m = Hlid(HfH(X)).D

C

In the sequel let ¢, m, and g, as in Definition 3.5.1 and let r. ,, = f — g m.
Theorem 3.5.2 (Convergence) I; converges cubically to f. O

Proof. Let A € IR arbitrary but fixed and let X range over subintervals of A. Note that for all z € X
it holds that

[f(2) = gem(@)] = |rem(2)]
mag (1/2(H»(X) — m)(X —¢)?) .

IN

Thus,
A(F(X), ge,m (X)) < mag (1/2(H s (X) = m)(X — ¢)?)

and

a(f(X), 1; (X))

Ol<f(X)agC,m(X) + 1/2(Hpn(X) = m)(X — c)2>
mag ((Hpn(X) — m)(X — 7).

IN

Hence, it suffices to find a constant A such that for all X € 14
mag ((Hy(X) — m)(X —¢)?) < Aw(X)?.
As Hyn(X) —m is a centered interval we have

mag ((Hfu (X)—m)(X — c)z) = mag([-1, 1]rad(Hfu(X))rad(X)2)
1/2w(H g (X))rad(X)?

< 1/2Xg,,, aw(X)rad(X)?
1
= gAHf//,AW(X)Sa

where /\Hf,,,A is a Lipschitz constant of H;» in A. O

The interpolation form requires exact range computation of parabolas. The following theorem ([Aposto-
latos and Kulisch, 1967]) shows, how this can be done efficiently.

Theorem 3.5.3 (Range of Parabola) Let g(z) = azz? + a1z + ag. Then

a1 X + ag ifas =0
g(X) = L (<a2X+%l)z_ (2_1)2) Cap a0, D (3.5.2)

Proof. The case az = 0 is trivial, hence assume a; # 0. Note that

L (e +2) - (2)) b= {2 ((war+) = (2)) b [e).

because X occurs only once in the expression on the left hand side. Further

1 2 2 1 2 2
(w2 - ()) e = o (et (3) - (3)) + e

= azxz +aix + ag. O

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 113

An implementation of (3.5.2) using floating point numbers is numerically unstable if a3 & 0. Therefore,
we prefer to evaluate ¢ at the endpoints of X, test whether ¢ has a local extremum in X, and if so, evaluate
g at the extremum. Algorithm 3.5.4 (PE) computes bounds for the range of parabolas Asz? + Ajx + Ag,
where A5, A1 and Ay are intervals. However, it is assumed that the width of A and A; 1s small, which
will be the case when PE is called later on by other algorithms. Otherwise, the overestimation error of PE
might be large. If 0 € Aa, then PE evaluates the Horner scheme. This does not lead to big overestimation
errors if w(A4s) is small.

Algorithm 3.5.4 (PE) [Parabola Evaluation]

In: Az, Al, Ag € 1TF,
X elF.

Out: PE(As, Ay, Ag, X) € IT, PE(Ag, Ay, Ag, X) D {Asa® + Az + Ay | 2 € X}.

(1) [Case 0 € Aa.]
if 0 € As then return (42X + A1) X + A,.

(2) [Evaluate at endpoints.] o

(3) [Extremum.]
Bl — 05A1
B — (—Bl/Az) ﬂX
if E#0then Y «— [V UB E].

(4) [Return.]
return Y + Ag.

Theorem 3.5.5 (Complexity) Algorithm 3.5.4 costs

1 interval multiplication,
2 number divisions,

10 number multiplications and
6 number additions. O

Proof. If 0 € Ay then Algorithm 3.5.4 (PE) costs 2 interval multiplications and 2 interval additions.
Assume 0 & As.

e Step 2 costs 8 number multiplications and 4 number additions.
e Step 3 costs 1 interval multiplication, 2 number divisions and 2 number multiplications.
e Step 4 costs 2 number additions. O
Algorithm 3.5.6 (IF) evaluates the interpolation form I;. We assume that f is sparse, hence we do not

use the extended Horner scheme for evaluating f’ at ¢ but compute the coefficients of f’ explicitly. A
modification of the algorithm for dense polynomials is given in Section 3.5.2. The coefficients of g. ,, are

Gem () = 1/2mab2 + (f'(e) = me)x + f(e) — f'(c)e + 1/2mc2.

Algorithm 3.5.6 (IF) [Interpolation Form]

In: f(2) = apet 4+ ap_gz@-t + 4 agz? € Fz),
X eIl.

Out: IF(f.X) € IF, IF(f, X) ~ [;(X), IF(f, X) 2 J(X).

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 114

(1) [Midpoint.]
¢ — MID(X).

(2) [Derivatives of f, use rounded interval arithmetic for the coefficients.]
F'(x) «— formal derivative of f.
F"(x) — formal derivative of F'(z).

(3) [f(e), f'(e), F"(X).]
F'— HFI(F'(x),[c]).
F" — HFI(F"(z), X).
(4) [Coefficients of g,]
M — [MID(F").
Ay — 05M.
Al — F/ — Me.
Ao — (AZC_F/)C+F.

(5) [Evaluation of parabola.]
Y — PE(AQ,Al,AQ,X).

(6) [Add remainder and return.]
r— mag(X —c¢).
return Y + (F" — M)[0,0.5 % r % r].

Theorem 3.5.7 (Complexity) Algorithm 3.5.6 (IF) costs

3n interval power computations,
n+ 1 interval multiplications,
2 number divisions,
8n + 23 number multiplications and
6n + 16 number additions. O

Proof.

e Step 1 costs at 1 number multiplication and 2 number additions.
e Step 2 costs 4n number multiplications.

e Step 3 costs 3n interval power computations, n interval multiplications, 4n number multiplications
and 6n — 6 number additions.

e Step 4 costs 9 number multiplication and 8 number additions.

e Step b costs 1 interval multiplication 2 number division, 10 number multiplications and 6 number
additions.

e Step 6 costs 3 number multiplications and 6 number additions. O

3.5.1 Reduction of the Overestimation Error

In this section we present an improvement ff of the interpolation form I;. The costs for evaluating ff
and I; are comparable (Theorem 3.5.12), but ff gives always at least as tight bounds as I; (Theorem
3.5.10). The idea is to evaluate I; twice with different choices of m and intersect the result. The content
of this section is new.

Definition 3.5.8 The modified interpolation form ff : TR — IR of f is defined as

I;(X) = [ph(X), pl(X)],

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS

where

F// —

r!

Pt

()
()

Hin(X) and ¢ = mid(X). O

—c)+ 1/2F"
—e)+ 1/2F" x

In the sequel let £, ¢, pl and p! as in Definition 3.5.8.

(x =)
($ - C)Z’

115

Remark. If I;(X) is evaluated twice with m = F” and m = F" and the results are intersected, then
If (X) is obtained. O

Theorem 3.5.9 ff is an interval extension of f. O

Proof. Let x € X arbitrary but fixed and let £ € X such that

Flo)+ £ — o)+ 1/2f"(€)(x — 0)*.

Then

Proof. Note that

fle) =

Hence, we have to show that

> fle)+ (o)
> fle)+ (o)
= f(=)
< flO+ (o
< flO+ (o
= [f(=),

S
ol
IN TV

—c)+ 1/2F"
— o)+ 1/2f"(&)(x -

—e)+ 1/2F" x
— o)+ 1/2f"(€)(x — ¢)?

(x —¢)?
c)?
(x —¢)?

e We begin with (3.5.3). Let g. , as in Definition 3.5.1 and let a,b € X such that

Then

S~y

IN
=

Sl I

(
(

)

)

c,m

A/_\

i

pe(a) =

a) + 1/2rad(F")(a —
m(b) + 1/2rad(F") (X

(

X

).

)
max p; (z)

gleégg<gc,m(x)~

f'(a—c)+1/2F"(a — c)*
f(a—c)+1/2mid(F")(a

)2

—c)?

—¢)? 4+ 1/2rad(F

//)(a _ 0)2

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS

o Similarly, for (3.5.4), let g. n, as in Definition 3.5.1 and let a,b € X, such that

pe(@) = minpi(z)
gem(b) = ;Iél)l(lgcm(x)
Then
PHX) = pla)
= flo)+ f'(a—c)+1/2F"(a —c)?
= f(&)+ Fa—c)+1/2mid(F")(a — ¢)* — 1/2rad(F")(a — ¢)*

gem(a) —1/2rad(F")(a —)2
Ge,m(b) — 1/2rad(F”)(— 6)2
If (X) O

v

The following algorithm evaluates If As in Algorithm 3.5.6 (IF) we assume that f is sparse.

coefficients of p! and p! are

pl(x) = 1/2F"% 4+ (f'(c) = F'e)x + f(c) — f'(c)e 4+ 1/2Fc?
p(z) = /2B 4 (f'(e) = Fle)x + f(c) = f'(c)e + 1/2E7¢".

Algorithm 3.5.11 (MIF) [Modified Interpolation Form)]

In: f(2) = apet 4+ ap_gz@-t + 4 agz? € Fz),
X eIl.

Out: MIF(f, X) € IIF, MIF(f, X) ~ I[;(X), MIF(f, X) D I;(X).

(1) [Midpoint.]
¢ — MID(X).

(2) [Derivatives of f, use rounded interval arithmetic for the coefficients.]
F'(x) «— formal derivative of f(z).
F"(x) — formal derivative of F'(z).

(3) (), f'(e), ["(X)]
F — HF(f(x),[c)[

]
F' — HFI(F'(2), [c]).
F" — HFI(F"(z), X).

(4) [Coefficients of p! and p!.]
Ay — 05F".
Al — Ay Al — P [F)xe, A} — (Ale = F')e.
AL — Ay AV — FP— [F" e, AL — (Abe— F')e.

(5) [Evaluate parabolas.]
Y — [PE(4}, A}, A}, X), PE(A3, A7, Ag, X)] + F.

(6) [Return.]

return Y.

Theorem 3.5.12 (Complexity) Algorithm 3.5.11 (MIF) costs

3n interval power computations,
n+ 2 interval multiplications,
4 number divisions,
8n + 35 number multiplication and
6n + 18 number additions. O

116

The

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 117

Proof.

e Step 1 costs 1 number multiplication and 2 number additions.
e Step 2 costs 4n number multiplications.

e Step 3 costs 3n interval power computations, n interval multiplications, 4n number multiplications
and 6n — 6 number additions.

e Step 4 costs 14 number multiplications and 8 number additions.

e Step 5 costs 2 interval multiplications, 4 number divisions, 20 number multiplications 14 number
additions. O

3.5.2 Slopes Instead of Derivatives

The comparison of the mean value form and the slope form in Section 3.2.1 turned out, that using slopes
instead of derivatives improves efficiency and accuracy for dense polynomials. In the following, we apply
this 1dea to the modified interpolation form.

Definition 3.5.13 (Slope Interpolation Form) The slope interpolation form f;s) IR — IR of f is
defined as

79 (X) = [ph(). pH(X).

where ¢ = mid(X),

pl(x) = fle)+ f'(e)(x =)+ H(x —c)’
pe(e) = fle)+ f'(e)(x —¢) + Hx —c)?
H = H; (X)

and h. is the uniquely defined polynomial such that
Fa) = f(e) + f'(e)(x = ¢) + he(z)(z —). O

In the sequel let p!, p!, k. and H as in Definition 3.5.13. The proof that f;s) is an interval extension of
f, 1s analogous to the proof of Theorem 3.5.9.

Theorem 3.5.14 (Convergence) f;s) converges cubically to f. O

Proof. Let A € IR and let X range over subintervals of A. For all x € X it holds that

[f(x) = pl(x)] = [H—he(x)l(x—c)* < w(H)w(X)
|f(x) = pl(x)] lH = he(z)l(x—)* < w(H)w(X)”.

According to Corollary 1.3.19, H} is Lipschitz, and there exists Ag 4 € IR such that

hmia()

W(H}(X) < A aw(¥)

for all X € TA. Hence,

w(H)w(X)?
/\HyAW(X)S. O

a(f(X), I8 (x))

IN A

The following algorithm evaluates f;s). For the computation of f(c), f'(¢) and the coefficients of h, we

use the extended Horner scheme. The coefficients of p! and p! are

plx) = Ha?4 (f'(c) —2Hce)x + fle) — f/(c)e+ He?
pi(x) = Hae®+(f'(c) = 2He)e + f(e) = f'(c)e + He™.

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 118

Algorithm 3.5.15 (SIF) [Slope Interpolation Form]

In: f(2) = apet 4+ ap_gz@-t + 4 agz? € Fz),
X eIl.

Out: SIF(f,X) € IR, SIF(f, X) ~ I\ (X), SIF(f,X) D f(X).

(1) [Trival cases.]

if dp, < 2 return HF(f, X).
(2) [Midpoint.]

¢ — MID(X).

(3) [Dense coefficients.]
fori=0,...,d, do A; — coefficient of z! in f.

(4) [Horner scheme, f(¢), f'(e), h..]
fori=d,,...,1do A;_1 «— A;_1 + cA;.
fori=d,,...,2do A;_1 «— A;_1 + cA;.

(5) [Compute H}; (X).]
H— A4,
fori=d,—1,...,2do H— HX + A;.

(6) [Coefficients of parabolas.]
Hl — [H) e, H — Ay —H! Pl — 0l — 1l Pl — —1lc
HY — [H] e, H} — A —H} P} — gl —) P} — —Hle

(7) [Evaluate parabolas.]
Y — [PE(H, P], P}, X),PE(H, P}, P}, X)] + Ao.
(8) [Return.]

return Y.

Theorem 3.5.16 (Complexity) Algorithm 3.5.15 costs

d, interval multiplications,
4 number divisions,
4d,, + 27 number multiplication and
6d,, + 18 number additions. O

Proof.

e Step 2 costs 1 number multiplication and 2 number additions.
e Step 4 costs 4d, — 2 number multiplications and 4d, — 2 number additions.

e Step b costs d,, — 2 interval multiplications and 2d,, — 4 number additions.

Step 6 costs 8 number multiplications and 8 number additions.

Step 7 costs 4 number division, 2 interval multiplications, 20 number multiplications and 14 number
additions. O

3.5.3 Parabolic Boundary Value Form

The parabolic boundary value form 1s a modification of the interpolation form, which was introduced by
[Neumaier, 1990]. For the approximation of f, the values f(X), f(X) are used, whereas the interpolation
forms in the previous sections used f(c) and f'(c).

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 119

Definition 3.5.17 (Parabolic Boundary Value Form) The parabolic boundary value form INJ(CS) :
IR — IR is defined as

19X = [k (30, Pk (X)),

where

(z) = ax+bxe+H(x— X)(x—

py(z) = aX—i—be—i—F(x—X)(x—
H = H; (X)

)
)

=l >

and ax,bx,hx are uniquely defined by
f(z) =ax +bxz+ hx(z)(z — X)(z — X). O
In the sequel let ax, bx and hx as in Definition 3.5.17.

Theorem 3.5.18 (Convergence) INJ(CS) converges cubically to f. O

Proof. See [Neumaier, 1990]. O

For the computation of ax, bx and the coefficients of hx we use the extended Horner scheme. More
precisely, we compute first f(X) and the coefficients of the polynomial gx such that

f(@) = f(X) + gx(2)(x — X).
Next, we compute gx (X) and the coefficients of hx, where
gx(x) = gx (X) + hx (2)(z = X).

Thus,

ph(e) = FX)—gx(X)X +gx(X)z + H(x — X)(z — X)

= Ha’+ (gx(X)—HX + X))o+ f(X) —gx(X)X + HXX
pi(e) = F(X)—gx(DX 4+ gx(X)e + H(zr — X)(z — X)

= He’ 4 (gx(X) - HX + X))o+ f(X) —gx(XNX + HXX

Algorithm 3.5.19 (PBF) [Parabolic Boundary Value Form]

In: f(2) = apet 4+ ap_gz@-t + 4 agz? € Fz),
X eIl.

Out: PBF(f,X) € IR, PBF(f, X) 2 I'”(X).

(1) [Trivial cases.]
if dp, < 2 return HF(f, X).

(2) [Dense coefficients.]
fori=0,...,d, do A; — coefficient of z! in f.

(3) [Horner scheme, f(X), gx(X), hx]

fori=d,,...,1do A;_y «— A;_1 + X A;.
fori=d,,...,2do A;_1 «— A;_1 —I—YAZ

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 120

(4) [Compute Hy (X)]
H— A4,
fori=d,—1,...,2do H— HX + A;.

(5) [Coefficients of parabolas.]

X* — [X] *[X].

Pl — A —HXY Pl — HX*

Pl — Ay —HXY P} —HX"
(6) [Evaluate parabolas.]

Y — [PE(H, P}, P, X), PE(H, P}, P}, X)] + Ao.
(7) [Return.]

return Y.

Theorem 3.5.20 (Complexity) Algorithm 3.5.19 (PBF) costs

d, interval multiplications,
4 number divisions,
4d,, + 28 number multiplications and
6d,, + 12 number additions. O

Proof.

e Step 3 costs 4d,, — 2 number multiplications and 4d,, — 2 number additions.
e Step 4 costs d, — 2 interval multiplications and 2d,, — 4 number additions.
e Step b costs 10 number multiplications and 6 number additions.

e Step 6 costs 2 interval multiplications, 4 number divisions, 20 number multiplications and 12 number
additions. O

3.5.4 Experimental Results

An experimental comparison of the interpolation form I, computed by Algorithm 3.5.6 (IF), the mod-
ified interpolation form ff, computed by Algorithm 3.5.11 (MIF), the slope interpolation form f(s),
computed by Algorithm 3.5.15 (SIF), and the parabolic boundary value form INJ(CS), computed by Al-
gorithm 3.5.19 (PBF), for dense and sparse polynomials with different degrees is given in Table 3.5.1,
respectively Table 3.5.2. The coefficients of the polynomials and the endpoints of the input intervals are
uniformly distributed in [—1,1]. For each degree d, the average cost and overestimation error of 10*
random polynomials is reported. The cost is the total number of arithmetic floating point instructions,
including those which were executed during interval operations. As the forms are cubically convergent,
the distance to the range divided by w(X)? was chosen to measure accuracy.

o The accuracy of I; and ff is almost the same, but ff 1S ore expensive.

e In all cases f;s) and INJ(CS) return significantly tighter inclusions than /; and If If f is dense, then
f;s) is cheaper than /; and If

o 1 gives usually tighter inclusions than f}s). However, the following experiment shows that this
depends on w(X).

Figure 3.5.1 shows a comparison of the slope interpolation form f;s) and the parabolic boundary value

form I for dense polynomials of degree 10. In the left graph, the input intervals X are chosen such
that mid(X) = 0.5 and w(X) varies between 0 and 1, in the right graph mid(X) = 0 and w(X) varies
between 0 and 2. The curves are averages over 1000 random polynomials with coefficients in [—1, 1].

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 121

Degree of f (dense) || 2 [6 | 10 | 1 | 18 | 22 | 26 | 30 |
Flops for I;(X) 68.6 | 136.9 | 203.9 | 270.6 | 337.4 | 404.3 | 470.7 | 537.4
Flops for I;(X) 87.2 | 154.2 | 221.3 | 288.1 | 354.9 | 421.8 | 488.2 | 554.9
Flops for 1} (X) 69.2 | 118.9 | 169.2 | 219.5 | 270.0 | 320.6 | 370.7 | 421.2
Flops for It (X) 712 | 1208 | 171.0 | 221.2 | 271.7 | 322.1 | 372.2 | 422.7
q(I;(X), (X)) /w(X)® || 000 | 1.14 | 3.26 | 6.26 | 10.52 | 14.73 | 19.82 | 26.92
q(Ir (X), (X)) /w(X)® || 000 | 1.14 | 3.26 | 6.25 | 10.51 | 14.73 | 19.81 | 26.92
a(I$(X), F(X))/w(X)? || 0.00 | 0.15 | 0.26 | 0.37 | 049 | 059 | 0.72 | 0.87
(I (X), F(X))/w(X)? || 0.00 | 011 | 0.32 | 059 | 0.97 | 1.23 | 1.66 | 2.26

Table 3.5.1: Comparison of interpolation form [;, modified interpolation form ff, slope interpolation

form f;s) and parabolic boundary value form 1% for dense random polynomials f with different degrees
and random intervals X. The coefficients of f and the endpoints of X are uniformly chosen in [—1,1].

Degree of f (sparse) H 2 ‘ 6 ‘ 10 ‘ 14 ‘ 18 ‘ 22 ‘ 26 ‘ 30 ‘
Flops for I;(X) 68.6 | 101.4 | 120.9 | 1335 | 143.4 | 150.5 | 156.4 | 162.1
Flops for I;(X) 87.2 | 117.2 | 136.4 | 148.9 | 158.6 | 165.4 | 171.1 | 176.7
Flops for 1} (X) 69.2 | 119.8 | 171.0 | 222.8 | 274.7 | 326.5 | 378.6 | 430.2
Flops for It (X) 712 | 121.3 | 1721 | 223.4 | 2748 | 326.4 | 378.0 | 429.3
QI (X), F(X))/w(X)® | 0.00 | 0.79 | 1.85 | 2.95 | 4.19 | 5.71 | 6.82 | 8.94
q(I(X), F(X))/w(X)® | 0.00 | 0.79 | 1.85 | 2.95 | 4.19 | 5.71 | 6.81 | 8.94
a(I$(X), F(X))/w(X)? || 0.00 | 0.08 | 0.12 | 0.14 | 0.16 | 0.18 | 0.25 | 0.31
a(I(X), F(X))/w(X)? || 0.00 | 0.10 | 0.22 | 0.32 | 044 | 056 | 0.65 | 0.87

Table 3.5.2: Comparison of interpolation form [I;, modified interpolation form ff, slope interpolation

form f;s) and parabolic boundary value form 1 for sparse random polynomials f with different degrees
and random intervals X. Each polynomial has only 3 non—zero coefficients. The coefficients of f and the
endpoints of X are uniformly chosen in [—1, 1].

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 122

‘ﬂ(F(X),f(X)) I w(X)3 ‘ﬂ(F(X),f(X)) I w(X)3
1.2
0.6 T
1
08 7 04 1
0.6 T
04 T 02 +
A
02 T
> A ‘ ‘ >
; ; ‘ > w(X) ‘ ‘ ‘ > w(X)
0.2 0.4 0.6 0.8 0.5 1 1.5
—— Slope Interpolation Form (166 flops)
A Parabolic Boundary Value Form (168 flops)

Figure 3.5.1: Comparison of 7% and ' for dense random polynomials of degree 10. In the left graph
the input intervals X are such that mid(X) = 0.5 and w(X) varies between 0 and 1, in the right graph

mid(X) = 0 and w(X) varies between 0 and 2. In both cases f;s) is more accurate than INJ(CS) for large

intervals whereas INJ(CS) 1s better than f;s) for small intervals.

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 123

3.6 Experimental Comparison

After having defined several interval extensions of univariate polynomials in the previous sections, we
now come to a comparison. The computational cost for the evaluation of the interval extensions can
be compared easily because it depends basically only on the degree and on the sparsity of the input
polynomial. A comparison of the overestimation errors is more involved, because the overestimation
error depends on the actual value of the polynomial coefficients and on the input interval.

The main theoretical results of the previous sections concerning accuracy can be summarized as follows.

e For input intervals with small width, interpolation forms are superior because of their cubic conver-
gence (Theorem 3.5.2, 3.5.14, 3.5.18), the Horner form is worst because it is only linearly convergent
(Theorem 3.1.5), and the chances, that the bicentered mean value form and the Bernstein form are

exact are high (Theorem 3.2.17, 3.4.19).

e If the Horner form of f’ evaluated on X does not contain zero, then the bicentered mean value form
is exact (Theorem 3.2.17). Note that every interval extension can be modified to be exact in this
case, simply by executing the monotonicity test first.

e The bicentered mean value form gives always at least as tight inclusions as the mean value form

(Corollary 3.2.19).
e The dense slope form is at least as accurate as the dense mean value form (Conjecture 3.2.12).
o If mig(X) is large enough, then the Horner forms are exact (Theorem 3.1.12).

e If mid(X) = 0, then the (dense) Horner form, the (dense) Taylor form and the (dense) slope form
are equivalent.

e The overestimation error of the dense Taylor form with bisection is at most half as large as the
overestimation error of the dense Taylor form (Theorem 3.3.11).

e If 0 € int(X) then a bisection at zero is inexpensive for the Horner forms (Algorithm 3.1.38) and
the Bernstein form (Algorithm 3.4.25), and usually reduces the overestimation error.

Section 3.6.1 contains an experimental comparison of interval extensions for various classes of random
polynomials and a fixed input interval X. This kind of comparison shows statistically, which interval
extension is best for a given input interval X.

Every interval extension is a compromise between computational cost and accuracy. For individual algo-
rithms, which evaluate interval extensions as subroutines, the optimal choice may therefore be different.
For example, in an iterative algorithm it may be cheaper to choose an inaccurate and inexpensive interval
extension (like the Horner form) and execute some more iterations, or to choose an accurate and expen-
sive interval extension (like the Bernstein form) and save some iterations. In Section 3.6.2 and 3.6.3 we
tackle this problem for two typical applications of interval arithmetic, namely finding the roots and the
global minimum of univariate polynomials.

In the sequel, when we refer to the Bernstein form of a polynomial, we implicitly assume, that the order
of the Bernstein form is equal to the degree of the polynomial.

3.6.1 Efficiency and Accuracy for Random Polynomials

In this section we compare the average overestimation error of some interval extensions for 3 classes of
random polynomials and for 2 classes of input intervals.

e The classes of random polynomials f are:

— Dense polynomials with degree 5 (Figure 3.6.1, 3.6.2).
— Dense polynomials with degree 15 (Figure 3.6.3, 3.6.4).

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 124

— Sparse polynomials with degree 10, where only 3 coefficients are non-zero (Figure 3.6.5, 3.6.6).
The coefficients are uniformly chosen from [—1, 1].
e The input intervals X are as follows:

~ mid(X) =0, 0 < w(X) < 1.0 (Figure 3.6.1, 3.6.3, 3.6.5).
~ mid(X) =0.3, 0 < w(X) < 1.0 (Figure 3.6.2, 3.6.4, 3.6.6).

In order to measure the overestimation error of some interval extension F' of f we use

a(F(X), [(X))
wX)

In each experiment we report the average overestimation error of 1000 random polynomials in dependence
of the input interval as well as the average number of floating point operations for the evaluation.

3.6.2 Newton’s Method

The (one-dimensional) interval Newton method is an iterative algorithm, which computes inclusions
of all roots of a polynomial f in an interval A. It was studied thoroughly in the literature, see for
example [Moore, 1966], [Krawczyk, 1969], [Alefeld, 1970], [Hansen, 1978a], [Hansen, 1978b], [Hansen,
1979], [Alefeld and Herzberger, 1983, [Hansen, 1992], [Hammer et al., 1993] and many others. In each
iteration, an interval extension of f’ has to be evaluated. In this section we compare the efficiency of
the interval Newton method in dependence of the chosen interval extension. The number of Newton
iterations depends on the accuracy of the interval extension. Thus, a more accurate and more expensive
interval extension reduces the number of Newton iterations, but increases the cost of each iteration.

First, we give a skeleton algorithm for Newton’s method. In the algorithm, F’ denotes an interval
extension of f’.

Algorithm 3.6.1 (NEWTON) [Newton Method for Univariate Polynomials]
In: flz) € Tlz],

AcIF,

celF, e>0.

Out: Z € P(IT) such that
o for every X € Z it holds that w(X) < e or w(X) is so small that X cannot be bisected,
o if f(x) =0 for some z € A then z € |J Z.

(1) [Initialize.]
S —— empty stack.
compute the coefficients of f”.

push A on §.

(2) [Tterate.]
if § is empty, then return Z.
pop X from §.

(3) [Test if w(X) is too small.]
¢ — MID(X).
if WIDTH(X) < ¢ or ¢ € int(X) then Z — Z U {X}, goto Step 2.

(4) [Compute interval extensions.]
Y — HF(f, [¢]).
D — F(X).

0.14 +

0.1

0.08 +

0.06 T

0.04 +

0.02 +

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS

q(F(X),f(X)) / w(X)
A

o
O
[T
A
4 —=53 A O : " ‘ " " "
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
I e Horner Form (HF), 23 flops
— X Horner Form with Bisection at Zero (HFBZ), 21 flops
—— Bicentered Mean Value Form (BMF), 60 flops
— Dense Slope Form (DSF), 33 flops
—O— Dense Taylor Form with Bisection at Midpoint (DTFBM), 53 flops
—— Bernstein Form with Bisection at Zero (BFBZ), 146 flops
— 4 Slope Interpolation Form (SIF), 78 flops
—A Parabolic Boundary Value Form (PBF), 108 flops

Figure 3.6.1: Average overestimation error for dense polynomials of degree 5, mid(X) = 0.

125

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 126

q(F(X),f(X)) / w(X)

A
0.45
0
04
0.35
03 +
0.25 O
O
X
O
02 +
YA
0.15
0.1
0.05 +
/—//'/'//
‘ ‘ ‘ ‘ ‘ ‘ > W(X)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
I e Horner Form (HF), 23 flops
— X Horner Form with Bisection at Zero (HFBZ), 21 flops
—— Bicentered Mean Value Form (BMF), 59 flops
— Dense Slope Form (DSF), 45 flops
—O— Dense Taylor Form with Bisection at Midpoint (DTFBM), 77 flops
—— Bernstein Form with Bisection at Zero (BFBZ), 133 flops
— 4 Slope Interpolation Form (SIF), 106 flops
—A Parabolic Boundary Value Form (PBF), 108 flops

Figure 3.6.2: Average overestimation error for dense polynomials of degree 5, mid(X) = 0.3.

0.14 +

0.1

0.08 +

0.06 T

0.04 +

0.02 +

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS

q(F(X),f(X)) / w(X)

A

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
I e Horner Form (HF), 67 flops
— X Horner Form with Bisection at Zero (HFBZ), 64 flops
—— Bicentered Mean Value Form (BMF), 165 flops
— Dense Slope Form (DSF), 97 flops
—O— Dense Taylor Form with Bisection at Midpoint (DTFBM), 306 flops
—— Bernstein Form with Bisection at Zero (BFBZ), 726 flops
— 4 Slope Interpolation Form (SIF), 161 flops
—A Parabolic Boundary Value Form (PBF), 232 flops

Figure 3.6.3: Average overestimation error for dense polynomials of degree 15, mid(X)

0.0.

127

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 128

q(F(X),f(X)) / w(X)
A

04 71

03 / A

02 1

0.1

0.05 +

‘ ‘ ‘ ‘ ‘ ‘ w(X)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

I e Horner Form (HF), 66 flops

— X Horner Form with Bisection at Zero (HFBZ), 64 flops

—— Bicentered Mean Value Form (BMF), 164 flops

— Dense Slope Form (DSF), 128 flops

—O— Dense Taylor Form with Bisection at Midpoint (DTFBM), 520 flops

—— Bernstein Form with Bisection at Zero (BFBZ), 779 flops

— 4 Slope Interpolation Form (SIF), 229 flops

—A Parabolic Boundary Value Form (PBF), 230 flops

Figure 3.6.4: Average overestimation error for dense polynomials of degree 15, mid(X) = 0.3.

0.018

0.016 T

0.014

0.012 +

0.01

0.008 +

0.006

0.004 +

0.002 +

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS

q(F(X),f(X)) / w(X)

A
o O
0
/ JAN
O
d

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
I e Horner Form (HF), 19 flops
— X Horner Form with Bisection at Zero (HFBZ), 22 flops
—— Bicentered Mean Value Form (BMF), 52 flops
— Dense Slope Form (DSF), 61 flops
—O— Dense Taylor Form with Bisection at Midpoint (DTFBM), 134 flops
—— Bernstein Form with Bisection at Zero (BFBZ), 354 flops
— 4 Slope Interpolation Form (SIF), 128 flops
—A Parabolic Boundary Value Form (PBF), 181 flops

Figure 3.6.5: Average overestimation error for sparse polynomials of degree 10, mid(X)

129

w(X)

0.0.

0.024

0.022

0.02

0.018 +

0.016 +

0.014 +

0.012 +

0.01

0.008 +

0.006 +

0.004 +

0.002

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS

q(F(X),f(X)) / w(X)

A
|
A
|
A
r
K
|
/X
[
/X
l—‘*"/ .4 @ I | I I | | >
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
I e Horner Form (HF), 22 flops
— X Horner Form with Bisection at Zero (HFBZ), 22 flops
—— Bicentered Mean Value Form (BMF), 54 flops
— Dense Slope Form (DSF), 72 flops
—O0— Dense Taylor Form with Bisection at Midpoint (DTFBM), 249 flops
—— Bernstein Form with Bisection at Zero (BFBZ), 379 flops
— 4 Slope Interpolation Form (SIF), 168 flops
—A Parabolic Boundary Value Form (PBF), 168 flops

Figure 3.6.6: Average overestimation error for sparse polynomials of degree 10, mid(X)

130

w(X)

0.3.

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 131

(5) [Newton step if 0 & D.]
ifog D
X' — (c—Y/D)N X.
if X’ = 0 then goto Step 2.
if X’ # X then push X’ on § and goto Step 2.
push [X, ¢] and [¢, X] on § and goto Step 2.
(6) [Split X if 0 € D]
X1, X2 — GDIV(—Y, D, X —¢)
le1 ;é @ then X1 — (X1 —|—C)ﬂX
le2 ;é @ then X2 — (X2 —|—C)ﬂX
le1 #@and X2 #@and X1 ﬂXz I@
if X1 # X and X3 # X then push X, X2 on § and goto Step 2.
push [X, ¢] and [¢, X] on § and goto Step 2.
else
X/ — X1 U Xz.
if X’ =0 goto Step 2.
if X’ = X then push [X,] and [¢, X] on S and goto Step 2.
push X’ on & and goto Step 2.

Algorithm 3.6.1 (NEWTON) is modified slightly if the bicentered mean value form or the dense slope
form is used.

e During the evaluation of the bicentered mean value form of f’, the coefficients of f” have to be
computed. This is done only once in Step 1.

e As a side product of the evaluation of the the dense linear factor form of f on X, we obtain an
overestimation of f(¢) and an overestimation of the set of slopes of f between z and ¢ for all € X

and ¢ = mid(X). This set of slopes is used instead of M*,(s)(X). Thus, in Step 4 the computation
of f(e) and M;,(s)(X) is basically replaced by the evaluation of M;(s)(X).

Finally, one should mention, that the coefficients of f’ in Step 1 have to be computed by rounded interval
arithmetic. Hence, for the computation of D in Step 4, we have to overestimate the range of an interval
polynomial. The necessary modifications of the algorithms are straight forward.

In the experiments we compute the roots of random polynomials in [—1,1]. We consider three classes of
polynomials:

e Dense random polynomials of degree 10. The coefficients are uniformly chosen from [—1, 1] (Table

3.6.1, left chart).

e Sparse random polynomials of degree 10. Only 3 coefficients are non—zero and chosen uniformly
from [—1, 1]. Note that these polynomials have a multiple root at zero if the constant coefficient is

zero (Table 3.6.1, middle chart).

e Dense random polynomials of degree 10 with at least 5 roots in [0.5,0.6]. The polynomials are
generated as follows: 5 points are randomly chosen from [0.5,0.6] and the unique polynomial of
degree 5 is computed which vanishes on these points. The polynomial is multiplied by a random
polynomial of degree 5, whose coefficients are uniformly chosen from [—1,1] (Table 3.6.1, right
chart).

In Table 3.6.1 we report the number of floating point operations and iterations of Algorithm 3.6.1
(NEWTON), averaged over 1000 random input polynomials. The accuracy is ¢ = 107° in all cases.
The results can be summarized and explained as follows.

e For dense random polynomials (left chart) the dense slope form (M;,(s)) is best. This is mainly
due to the modification described above, i.e. instead of overestimating f/'(X) in Newton’s method,

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 132

Dense Sparse Root Cluster

Kflops | Iterations Kflops | Iterations Kflops | Iterations
Hyp 0.95 10.83 Hyp 1.32 30.21 Hp | 1224.54 | 13957.25
M 1.61 12.08 M 2.06 30.80 M 99.01 686.76
M| 062 | 753 M| 152 | 2545 M| 564.09 | 6596.54
1% 2.67 10.68 1% 14.99 | 63.56 1% 19.53 76.82
BY | 319 8.41 BY | 914 | 2871 BY | 2068 | 5457
13| 11 9.56 13| 706 | 39.98 i | 1907 | 9367
% 2.45 11.89 19 | 111 | 58.09 % 18.91 91.84

Table 3.6.1: Newton’s method for finding the roots of f in [—1,1] in dependence of the chosen interval
extension for overestimating f/(X). In each chart, the average of 1000 random polynomials of degree 10
is reported. In the left chart, the polynomials are dense, in the middle chart, the polynomials are sparse
with only three non-zero coefficients, and in the right chart, the polynomials have a cluster of at least 5
roots in [0.5,0.6].

merely an overestimation of the set of slopes of f between mid(X) and arbitrary points in X is
used. This explains also the small number of iterations of the slope form.

For sparse polynomials (middle chart), the Horner form with bisection at zero (H;/) is comparable

to M;,(s). The reason is that Hf/ exploits the sparsity of f’ for improving both efficiency and

accuracy, whereas the accuracy of M;(s) is not affected, and the costs are reduced by a smaller

amount as compared to Hf/.

The high accuracy of more expensive interval extensions pays only in the presence of root clusters
(right chart). Here, most iterations are done when w(X) is very small. This explains the bad
performance of the only linearly convergent Horner form. Further, it explains why the bicentered
mean value form (Mf/) is now much better than M;,(s): If w(X) is small, then the chances are high,
that 0 € Hpn(X) and My is exact. The smallest number of iterations is achieved by the Bernstein
form with bisection at zero (BJ(J,C)), but as it is more expensive than the interpolation forms and the
dense Taylor form with bisection (T;,), the methods perform about equally well. It is interesting

to note that T;,, which is relatively inefficient for dense and sparse random polynomials, is one of
the best in the presence of root clusters.

From our experimental observations we conclude that it 1s very important to choose an appropriate
interval extension for overestimating f'(X) in Newton’s method. Tt seems that the following strategy can
be recommended:

If w(X) is large and f is dense, then use the dense linear factor form.
If w(X) is large and f is sparse, then use the Horner form with bisection at zero.
If w(X) is small and mid(X) a 0 then use the Horner form with bisection at zero.

If w(X) is small and mid(X) % 0 then use the Bernstein form, the Taylor form with bisection or
an interpolation form.

3.6.3 Global Optimization

In this section we compare interval extensions at the problem of finding the global minimum with given
accuracy of a univariate polynomial f in an interval A. The problem is solved by an iterative algorithm,

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 133

which evaluates an interval extension of f on a subinterval of A in each iteration. As in the case of
Newton’s method, the number of iterations and the cost of each iteration depend on the chosen interval
extension.

Global optimization is one of the standard applications of interval arithmetic and was studied thoroughly
in the literature, see for example [Skelboe, 1974], [Moore, 1976], [Ichida and Fujii, 1979], [Hansen, 1979],
[Hansen, 1980], [Hansen and Sengupta, 1980], [Hansen, 1988], [Ratschek and Rokne, 1988], [Hansen,
1992], [Hammer et al., 1993] and many others.

In order to facilitate the interpretation of the experimental results, we use a very simple optimization
algorithm and omit all kinds of accelerating devices. In the experiments below, we compute the global
minimum of random polynomialsin [—1, 1]. We consider the same classes of random polynomials as in the
previous section on Newton’s method, but multiply each polynomial by 2% —1 Without this multiplication,
the probability that f achieves its minimum at the boundary of X is very high, and the experimental
results might not be meaningful.

The comparison i1s done using the following optimization algorithm. As usual, F' denotes an interval
extension of f. The algorithm keeps a list £ of intervals which contains initially only the input interval
A. In each iteration, we chose the interval X of £ for which F/(X) is smallest, bisect it in the middle
and add both halves to £. Obviously, F/(X) encloses the global minimum of f in A. The algorithm
terminates if w(F (X)) < ¢, where ¢ is the desired accuracy of the result, or if X cannot be bisected any
more because of finite precision arithmetic. For efficiency reason it is best to store pairs (X, F(X)) in £
and sort them according to increasing F'(X).

Algorithm 3.6.2 (MIN) [Global Minimum of Univariate Polynomials]
In: flz) € Tlz],

AcIF,

celF, e>0.

Out: Y €IF such that

e mingey f(z) €Y
o w(Y) < ¢ if the precision of the floating point numbers is sufficiently high.

(1) [Initialize.]
L— ((4, F(4))).

(2) [Tterate.]
pop (X,Y) from L.

(3) [Terminate.]
if WIDTH(Y') < ¢ then return Y.
¢ — MID(X).
if ¢ ¢ int(X) then return Y.

(4) [Bisect.]
X1 — [K, C].
XZ — [C,_].
(5) [Insert.]
insert (X1, F'(X1)) and (X2, F/(X2)) in £ such that the elements (X,Y") in £ are sorted with increasing
Y.
goto Step 2.

Algorithm 3.6.2 is modified slightly in dependence of the chosen interval extension F":

o The bicentered mean value form requires the computation of the coefficients of f’. Apparently, this
should be done only once in Step 1. Further, instead of M;(X), the smaller interval

[Mf(X’ cl)’ Hf(cl)]

CHAPTER 3. INCLUSION OF THE RANGE OF UNIVARIATE POLYNOMIALS 134

Dense Sparse Root Cluster
Kflops | Iterations Kflops | Iterations Kflops | Iterations
H; 10.57 | 107.90 H; 5.78 86.33 Jir 73.22 | 740.69
M; 2.45 11.98 M; 1.64 11.56 M; 6.31 29.44
M | 3.07 15.83 M;® | 2.56 15.50 M | 4.22 21.32
17 7.61 11.68 17 6.95 10.75 17 7.33 11.26
BY | 525 5.53 BY | 511 5.44 B | 6.07 6.22
1| 3.06 8.79 Y] 2.99 8.61 I | 325 9.24
1Y 2.20 6.40 1Y 2.15 6.25 1Y 2.92 8.17

Table 3.6.2: Computation of the global minimum of f in [—1,1] in dependence of the chosen interval
extension for overestimating f(X). In each chart, the average of 1000 random polynomials of degree 12
is reported. In the left chart, the polynomials are dense, in the middle chart, the polynomials are sparse
with at most 6 non—zero coefficients, and in the right chart, the polynomials have a cluster of at least 5
roots in [0.5,0.6]. Every polynomial vanishes at —1 and 1.

is used in Step 1 and Step 5. This saves the computation of ¢! and Hf(cT), see Section 3.2.2.

e As a side product during the evaluation of M;(s)(X), TJZ" (X) and f;s)(X) we obtain an overestima-
tion Y of f(mid(X)). Thus, in Step 1 and Step 5 we use the smaller interval [F(X), Y] instead of
F(X), where I is M;(s), T; and f;s) respectively.

e Similarly, during the evaluation of Bj(tk)(X) and INJ(CS)(X) we obtain overestimations L, R of f(X)
respectively f(X). Thus, in Step 1 and Step 5 we use the smaller interval [F(X), min{L, R}] instead
of F(X), where F is Bj(fk) and INJ(CS) respectively.

In Table 3.6.2 we report the number of floating point operations and iterations of Algorithm 3.6.2 (MIN),
averaged over 1000 random input polynomials. The accuracy is € = 1073 in all cases. It does not seem
reasonable to choose a higher accuracy unless quadratically convergent accelerators like Newton’s method
are used.

The results can be summarized and explained as follows.

e For dense random polynomials (left chart) the parabolic boundary value form INJ(CS) is best, followed by

the bicentered mean value form M;. The good performance of Mf 1s mainly due to the modification
described above. The Horner form with bisection at zero Hf is significantly worse than the other
methods. Whereas all methods could be improved because an upper bound of f at the center or
the boundary of X was available, this was not possible for the Horner form.

e For sparse random polynomials (middle chart), Mf is better than INJ(CS), because the former exploits
sparsity to improve both efficiency and accuracy, whereas the latter does not. This explains also,
why H; is much better compared to the dense case, whereas all other methods remain basically the
same.

e In the presence of a root cluster, interpolation forms are best. A closer analysis shows that this is
only true if the global minimum is near the root cluster. In this case many iterations are executed
when the width of X is small, and the cubic convergence order of interpolation forms pays.

Note that the smallest number of iterations is achieved by the Bernstein form in all cases. However, as the
evaluation of the Bernstein form is relatively expensive, its overall performance i1s not good. Further, the
experiments show that Hf is not a good choice for global optimization problems. Not only the number of
floating point operations is large, but each iteration requires insertion of elements in a sorted list, which
causes additional overhead.

Chapter 4

Inclusion of the Range of
Multivariate Polynomials

In this chapter we consider the problem of finding an overestimation of the range of multivariate poly-
nomials over an interval vector. Most of the methods for univariate polynomials presented in Chapter 3
can easily be generalized. However, for efficiency reasons, it is very important to exploit sparsity in the
multivariate case. Hence, we restrict our considerations to methods which fulfill this condition.

In the following let f(x1,22,...,2n) € Rz, ..., 2]
m
dix d;
fleg,xa, ..) = Zai a gt gl
i=1

be a multivariate real polynomial in n > 0 variables, such that a; # 0 for all ¢ and
(di,la di,z, R dz,n) - (djyl, djyz, R djyn) forall 1<i<yj<m,

where > means lexicographically greater. For the zero polynomial we define m = 1 and a3 = 0. The
term

dz,l dz,2 d
A; X1 To Ty,

i,

is called ¢-th monomial of f.

4.1 Horner Form

The Horner form of multivariate polynomials is defined recursively: If n = 0 then f = a; 1s a real number
and the Horner form of f is a;. Otherwise, we consider f(z1,...,%,) as a univariate polynomial in z;
with coefficients in R[xs, ..., 2,]. By evaluating the Horner form of the coefficients recursively, we obtain
a univariate interval polynomial F'(x1) € IR[z;], and the Horner form of the multivariate polynomial f
is the Horner form of the univariate interval polynomial F' (see Definition 3.1.48). Before giving a formal
definition of the multivariate Horner form, we introduce some basic notions.

Definition 4.1.1 (Coefficient) The coefficient of ¢ in f is defined as

m

coef(f,d) = Z a; xg”ng”a coezdin € Ry, ... 2,). O

=1
d;1=d

Definition 4.1.2 (Degree) The degree of f is defined as

d ifn>0
deg(f) = { 671 else. O

135

CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS 136

Definition 4.1.3 (Multivariate Horner Form) The multivariate Horner form Hy : IR" — IR of f is
defined recursively as

_ ay fn=0
Hyp(Xy,o Xn) = { Hp(Xy) else,
where
deg(f) '
F(l‘l) = Z Hcoef(f,i)(XZa .. ,Xn) le S HR[l‘l] O
i=0

We are using the same symbol H for the univariate and the multivariate Horner form, because the forms
coincide if the number of variables is 1.

Theorem 4.1.4 (Inclusion Monotonicity) H; is an inclusion monotone interval extension of f. O
Proof. Follows from Corollary 1.3.5 and Theorem 1.3.22. O
Theorem 4.1.5 (Convergence) H; converges linearly to f. O

Proof. H; is an interval extensions of f (Theorem 4.1.4) and Lipschitz (Corollary 1.3.19). Hence H;
converges linearly to f (Theorem 1.3.24). O

From Definition 4.1.3 we obtain the following recursive algorithm for evaluating the multivariate Horner

form.

Algorithm 4.1.6 (HFM) [Multivariate Horner Form)]

;o f(an, . e) = S0 a2 e et € Flan,),
X e IF".

Out: HFM(f, X) € IF, HFM(f, X) D H;(X).

(1) [Recursion base.]
if n = 0 return a;.

(2) [Coefficients of univariate interval polynomial.]
for i =0...deg(f)

gi(xa, ..., xn) — coef(f,1).
A — HFM(g; (22, ..., 20), X2, ..., Xp).

(3) [Evaluate univariate interval polynomial.]
Fen) — 587 Asaf.
return HFI(F(#z,), X1).
Theorem 4.1.7 (Complexity) Algorithm 4.1.6 (HFM) costs at most

nm interval power computations,
nm interval multiplications and
2m — 2 number additions. O

Proof. Let w(m,n) be the number of interval power computations and interval multiplications, and let
a(m,n) be the number of interval additions of Algorithm 4.1.6 (HFM). By induction on n we show that

a(m,n) <mn, a(m,n)<2m—2 (4.1.1)
for all m > 1 and n > 0. Obviously (4.1.1) holds for n = 0. Let n arbitrary but fixed and assume

a(m,n—1)<m(n—-1), a(mn-—1)<2m-—2

CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS 137

for all m. Let k& be the number of different powers of z; occuring in f and let m; be the number of
monomials in the ¢-th coefficient, ¢ = 1,... k. Step 2 costs Zle 7(m;,n — 1) power computations

and multiplications and Zle a(m;,n — 1) additions. Step 3 costs at most k& power computations and
multiplications and k — 1 additions. Hence, by induction on n we obtain

k
a(m,n) < k—i—Zﬂ'(mi,n—l)
i=1

k
< k—l—Zmi(n—l)
i=1
= mn—1)+k
< nm
k
a(m,n) < k—l—i—Za(mi,n—l)
i=1
k
< k=14 (mi—1)
i=1
= m-—1.0

Theorem 4.1.8 If 0 ¢ int(X;) for all i, then Algorithm 4.1.6 (HFM) costs

nm interval power computations,
2nm number multiplications and
2m — 2 number additions. O

4.1.1 Nested Form

A simple way to obtain interval extensions F' of f is as follows:

e Find an arithmetic expression e for f.

e Let F/(X) be the interval which is obtained by evaluating e on X using interval arithmetic.

The Horner form is obtained in this way, where the expression e has a particular shape. For example, let
flay,zq) = il 4 rixd 4+ xxa.
Then
e = xfx% + z1(w2 + Dag

is an expression for f, and the Horner form of f is the interval evaluation of e. Another expression for f
is
e = zywa(aa(zr + 1)+ 1).

Usually, the interval evaluation of e and e’ yield different results. Further, it depends on the value of X
which expression gives a tighter interval. For example let

X = ([Oa 1]a [_L 1])

then
e(X) = [_Qa 3] C [_3a 3] = e/(X)a

whereas 1f

X = ([_L O]a [_L 1])

CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS 138

then
e(X)=1[-2,3]D[-2,2] = ¢'(X).

It is non—trivial to find an expression for given f and X which yields an interval with smallest width
efficiently. In the literature on optimizing compilers a similar problem is treated. For a given expression an
equivalent expression is searched, which allows evaluation with a minimal number of machine instructions,
see e.g. [Sethi and Ullman, 1970], [Ullman, 1973], [Aho et al., 1977]. However, the arithmetic operations
are not assumed to be commutative or associative but mainly the register usage 1s optimized. Thus,
the results cannot be applied here. Our experience is that searching an expression which minimizes the
overestimation error is very expensive and other interval extensions with comparable costs give usually
tighter inclusions. Thus, instead of searching an optimal expression we are content with a suboptimum.
In applications it is often the case that the same polynomial has to be evaluated over many different
intervals. As the determination of a suboptimal expression can be costly, it should be done only once
and not each time the polynomial is evaluated. Therefore, we are interested in an expression which gives
tight inclusions for arbitrary input intervals.

Having in mind the subdistributivity law of interval arithmetic, one might be tempted to say that e’ is
always better than e. However, this is wrong because the interval power function gives tighter inclusions
than iterated multiplication. On the other hand, there are many cases where an application of the
distributivity rule

Az® + BX" — (AX*° + BX"=)X® 0 < ¢ < min(a,b)

leads to better expressions. The following theorem is new.

Theorem 4.1.9 Let A, B, X € IR, let a,b, c € N such that 0 < ¢ < min(a,b). Let

Y = AX“+BX'
Yy = (AX*° 4 BX'Y)X°
Y, = (AXa—min(a,b) + BXb—min(a,b))Xmin(a,b).

(1) If0 ¢ Hlt(X) then Y3 g Y2 g Yl.
(ii) Ifa,b are both even then Y3 C Y7.
(iii) If a,b are both odd and Y2 C Y} then Y3 C Y5. O

Intuitively (iii) can be read as “if factoring out something gives an improvement, then factoring out as
much as possible is best”.

Proof.

(i) Assume 0 ¢ int(X). Then the d-th power of X is equal to d times the product of X with itself for
all d € N and Y3 C Y5> C V) follows from the subdistributivity law (Theorem 1.1.3).

(ii) Assume a,b are even and without loss of generality b > a. Then b — a is even and
Xb — Xb—aXa

and thus

Y3 (A4 BXt—9)x
AX® 4 BXxb-axe
AX® + BX?

Y.

N

(iii) Assume a,b are odd, Y2 C Y] and without loss of generality b > a. As A, B occur only once in
each expression of Theorem 4.1.9, it suffices to consider the case when A= a € R and B =7 € R.
Further, the case a < 0 can be reduced to the case o > 0, hence we may assume o > 0. If
0 ¢ int(X) then (iii) follows from (i), hence in the following assume 0 € int(X). The case X < —X
can be reduced to the case X > —X by replacing X by —X, hence we may assume X > —X. We
distinguish two cases depending on the sign of 3.

CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS

e Assume > 0. Then

Y2 _ (aya—c + Byb—c)yc
(a n ﬁyb—a)ya

= Ys;.

— If ¢ i1s odd then a — ¢, b — ¢ are even and

— If ¢ is even then a — ¢, b — ¢ are odd and

Y, = (aY"_C+BYb_C)XC
< (a+pXTHxe
= Y,

Y, = (aX*74 X)X
< (aX"+8X")

= Zla

1.e. the assumption Y5 C Y] is not satisfied.

e Assume § < 0.

— If ¢ i1s odd then a — ¢, b — ¢ are even and

Y,

I=

= max{(aya_c + 60)70, (aO + ﬁyb_

max{ aX’, Byb_ ‘
max{ aX’, Byb_ ¢
= 73a

X7}
X%

v

= min{(aya_c + 80)X° (a0 + ﬁyb_c)yc}

min{a X" “X°, 6717}
min{aX® ﬁyb_aia}

IN

Y.

— If cis even then a — ¢, b — ¢ is odd and

Yy = (oX 48X X"
> (aX" +pX")
= Y,

Y, = (aX* 44X X’
< (aX° 4 %)
= Y,

1.e. the assumption Y5 C Y] is not satisfied.

139

Thus, it seems reasonable to search for expressions which are highly nested. Although intuitively it is

clear what is meant by nested, this notion does not define a unique expression. For example, let

Then

nesting.

fler,20) = w122 + 21 + 22,

zi(za + 1)+ 2o, wo(x1+ 1)+

are two locally optimal expressions for f. This means that even after rewriting the expressions using the
commutativity or associativity law, the distributivity law cannot be applied in the direction of higher

We give a simple algorithm which computes such a locally optimal expression for a given polynomial.

CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS 140

Algorithm 4.1.10 (NEP) [Nested Expression for Polynomial]
In: e=> " a xf’ lxg’ 2. ~J:fll”", an expression.

Out: NEP(e), an expression equivalent to e up to commutativity, associativity and distributivity.

(1) [Initialize.]

. diy ds dijn | -
L List(a; 7" ey x| i=1,...,m).
(2) [Tterate.]
The elements of £ are expressions of the form axflxg2, -zl where a is a (compound) expression.

while Length(£) > 1

(2.1) [Search.]
d/ d/ d/ d// d// d// n . .
Choose ¢ = a'z;* xz ,oxn” and € = a’z) 2y, - xn” from £ such that)7 | min(d}, d}f) is
maximal. Remove ¢’ and e” from L.

(2.3) [Combine.]
fori=1,...n do d; — mm(d’ dy).

27 e

e<—(a’Hn11xl 4l T

al#d, d”;&d

Add e to L.

(3) [Return.]
return First(L).

d” diy . dy da d
Daitag?xpn.

Note that Step 2.1 is non—deterministic. For example, if e = 2122+ 21 + 2 then Algorithm 4.1.10 (NEP)
may either return x1(xs+ 1)+ 23 or xa(x1 + 1)+ 21. In the sequel we assume that an arbitrary but fixed
strategy 1s used.

Definition 4.1.11 (Nested Form) The nested form N; : IR" — IR of f is the interval evaluation of
the expression obtained by Algorithm 4.1.10 (NEP) with input expression

m
d;, d ds n
E, R SR

An algorithm for evaluating the nested form is now straight forward.

Algorithm 4.1.12 (NF) [Nested Form)]

In: o f(rn) = Sy el € Bl),
X eI,

Out: NF(f, X) € IF, NF(f,X) D N;(X).

(1) [Nested expression.]
e — NF(ZZ 1@ xf’ lxg’ 2. ~xg”").

(2) [Evaluate.]
Y «—— evaluation of e on X using floating point interval arithmetic.

(3) [Return.]

return Y.

Remark. In the univariate case the nested form and the Horner form are identical.

Remark. If N; has to be computed repeatedly for different intervals X using Algorithm 4.1.12 (NF),
then Step 1 has to be executed only once, 1.e. e can be pre—computed.

CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS 141

Theorem 4.1.13 (Complexity) Algorithm 4.1.12 (NF) costs

nm interval power computations,
nm interval multiplications and
2m — 2 number additions. O

Proof. Step 1 involves merely symbolic and integer operations. For the cost of Step 2 we have to count the
number of operation symbols in the expression e. Therefore, we count the number of operation symbols
of all expressions in £ of Algorithm 4.1.10 (NEP). Upon termination of this algorithm £ contains the
single element e. In Step 1, every element of £ comprises n power computations and n multiplications,
hence there are nm power computations and nm multiplications. In each iteration in Step 2 we remove
in Step 2.1 the operations for a’,a’”, 2n power computations and 2n multiplications and add in Step 2.2
the operations for a’,a”’, at most 2n power computations, at most 2n multiplications and 1 addition.
Hence, in each iteration in Step 2 we add 1 addition and, in the worst case, keep the number of power
computations and multiplications constant. As m — 1 iterations are performed, we add m — 1 additions.
Hence, upon termination there are at most nm power computations, nm multiplications and m — 1
additions in £. O

4.1.2 Experimental Results

In this section we compare the Horner form H;, the nested form N; and the distributed form D; which

1s defined as .

iy v di
Di(X) = a; Xy Xgh7 o X,
i=1
The distributed form is the evaluation of the “least nested” expression for f, hence D; and N; can be
viewed as two extremes where H; is in between.

As the computation of the exact range of a multivariate polynomial is expensive, we do not report over-
estimation errors. Instead, we compare the width of the nested and the dense form with the width of
the Horner form. The costs are given in terms of arithmetic floating point instructions. The coefficients
of the test polynomials and the endpoints of the components of the input interval vectors are uniformly
distributed in [—1,1]. We report the average over 1000 random polynomials and input interval vec-
tors. Table 4.1.1 shows a comparison for random polynomials with different numbers of variables n and
monomials m.

e In the first experiment (Table 4.1.1) each degree vector contains n non—zero components and the
degree in each variable is at most 5. The accuracy of all three forms is roughly the same. However,
the cost of Ny is significantly smaller than for i, in particular if the number of monomials is large.

In fact, we expected that the accuracy of N; would be much better than the accuracy of H;.
According to Theorem 4.1.9, N is at least as accurate as Dy if 0 ¢ X; for all .

e Thus, in Table 4.1.2 we repeat the experiment, but consider only cases where 0 € X; for all ¢. The
result is disappointing. In general, N; is only slightly more accurate than D; and H;.

e Table 4.1.3 shows the same experiment as in Table 4.1.1, but this time each degree vector has at
most 2 non—zero components. Qualitatively, we obtain the same result concerning accuracy and
costs.

e Finally, in Table 4.1.4 we repeat the experiment of Table 4.1.3, but this time the degree in each
variable is up to 15. Again, the result is qualitatively the same as in the previous experiments.

Thus, we conclude that N; is in general not more accurate than H; but costs significantly less in terms
of arithmetic floating point operations. The non—numeric overhead for computing the nested expression
for Ny pays only if f has to be evaluated several times for different input intervals.

CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS 142

Degree b, Dense Monomials

Variables n, Monomials m || 2,3 | 206 | 4,4 | 48 | 85 | 810] 166 | 16,12 |

Flops for H(X) 318 | 53.6 | 87.5 | 157.7 | 232.1 | 440.8 | 589.5 | 1148.6
Flops for N;(X) 228 | 363 | 532 | 86.9 | 127.0 | 215.9 | 300.9 | 531.1
Flops for D;(X) 40.9 | 82.6 | 104.5 | 208.0 | 258.7 | 515.9 | 625.8 | 12515
w(N; (X)) /w(H (X)) 0.960 | 0.937 | 1.016 | 0.996 | 1.066 | 1.051 | 1.061 | 1.056
w(Ds(X))/w(H; (X)) 1.086 | 1.205 | 0.989 | 0.997 | 0.985 | 0.982 | 0.988 | 0.990

Table 4.1.1: Comparison of Hf, N; and D for random polynomials Each degree vector contains n
non-zero components and the degree in each variable is at most 5.

Degree 5, Dense Monomaals, 0 ¢ X;
Variables n, Monomials m || 2,3 | 206 | 44 | 48 | 85 | 810] 166 | 16,12 |

Flops for H;(X) 332 | 54.6 | 90.7 | 162.5 | 237.6 | 449.7 | 588.1 | 1146.2
Flops for N(X) 235 | 35.9 | 527 | 84.3 | 121.9 | 204.4 | 283.1 | 495.3
Flops for D;(X) 44.6 | 88.7 | 110.6 | 221.0 | 265.9 | 531.5 | 626.8 | 1253.3
w(N; (X)) /w(H (X)) 0.903 | 0.882 | 0.907 | 0.864 | 0.971 | 0.962 | 0.998 | 0.997
w(D;(X))/w(H; (X)) 1.166 | 1.334 | 1.029 | 1.054 | 1.000 | 1.001 | 1.000 | 1.000

Table 4.1.2: Same experiment as in Table 4.1.1, but this time 0 ¢ X; for all i.

Degree b, Sparse Monomials
Variables n, Monomials m || 2,3 | 2,6 | 44 [48 | 85 | 8,10 166 | 16,12 |

Flops for H;(X) 318 | 53.6 | 62.3 | 113.7 | 114.9 | 211.8 | 218.7 | 404.2
Flops for N(X) 228 | 36.3 | 47.0 | 775 | 70.7 | 116.1 | 102.8 | 163.3
Flops for D;(X) 40.9 | 82.6 | 69.5 | 140.1 | 124.1 | 248.1 | 238.8 | 476.1
w(N; (X)) /w(H (X)) 0.960 | 0.937 | 0.993 | 0.982 | 0.993 | 0.982 | 0.995 | 0.991
w(D;(X))/w(H (X)) 1.086 | 1.205 | 1.020 | 1.054 | 1.012 | 1.019 | 1.009 | 1.010

Table 4.1.3: Same experiment as in Table 4.1.1, but this time each degree vector has at most 2 non—zero
components.

Degree 15, Sparse Monomaials

Variables n, Monomials m || 2,3 | 206 | 44 [48 | 85 | 810] 166 | 1612 |
Flops for H;(X) 53.0 | 935 | 909 | 166.7 | 149.6 | 278.7 | 250.2 | 483.5
Flops for N;(X) 432 | 721 | 747 | 130.1 | 105.6 | 184.0 | 144.3 | 246.1
Flops for D;(X) 62.3 | 125.4 | 98.4 | 195.6 | 1595 | 317.8 | 278.2 | 556.6
w(N; (X))/w(H; (X)) 0.978 | 0.978 | 0.991 | 0.991 | 0.998 | 0.995 | 1.004 | 1.003
w(Dy(X))/w(H; (X)) 1.014 | 1.028 | 0.995 | 1.007 | 1.000 | 1.000 | 0.999 | 0.998

Table 4.1.4: Same experiment as in Table 4.1.3, but this time the degree in each variable is at most 15
and each degree vector has at most 2 non—zero components.

CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS 143

4.2 Mean Value Form

The mean value form of multivariate polynomials is a straight forward generalization of the univariate
case. It is quadratically convergent ([Alefeld and Herzberger, 1974]; [Skelboe, 1974], [Caprani and Mad-
sen, 1980], [Alefeld and Herzberger, 1983]) and inclusion monotone ([Caprani and Madsen, 1980]). An
important improvement of the mean value form, called successive mean value form [Hansen, 1968] is
subject of Section 4.2.1. The successive mean value form with slopes instead of derivatives is studied in
Section 4.2.2. In Section 4.2.3 we generalize the bicentered mean value form to the multivariate case. A
new combination of the successive mean value form and the bicentered mean value form is introduced in
Section 4.2.4. Finally, in Section 4.2.5 we compare the different mean value forms experimentally.

The multivariate mean value form can be derived easily from the mean value Theorem: For all X € IR"
and for all &, ¢ € X there exists £ € X such that

f(®) = f(e) + Z@'f(ﬁ)(l‘i -),

where o
Oif = e
Hence,)
flm) € Fle)+ D dif(X)(Xi — c).
i=1
Thus, every interval extension F; of §;f, ¢ = 1,...,n and any choice of ¢ € X give rise to an interval

extension F' of f:

F(X) = f(e)+ Y Fi(X)(Xi — i) 2 f(X). (4.2.1)
i=1
The mean value form is a special case of (4.2.1), where F; is the Horner form of 9;f and ¢ = mid(X).

Definition 4.2.1 (Multivariate Mean Value Form) The multivariate mean value form M; : IR" —
IR is defined as

M(X) = f(mid(X)) + Z Ho,p(X)(X; — mid(X;)). O

Theorem 4.2.2 (Interval Extension) My is an interval extension of f. O
Proof. Follows from (4.2.1). O
Theorem 4.2.3 (Convergence) M; converges quadratically to f. O

Proof. Straight forward generalization of Theorem 3.2.4. O

The following theorem is taken from [Caprani and Madsen, 1980].
Theorem 4.2.4 (Inclusion Monotonicity) M; is inclusion monotone. O

Proof. The proof is a straight forward generalization of the proof of Theorem 3.2.3. Let Xo C X,
co = mid(X), ¢ = mid(X), 7o =rad(X), » = rad(X). We have to show that M(X) C M¢(X).
As X; —¢; and X; — ¢; are centered intervals for all 7, it holds that

fle)+ Z mag(Ho, ;(X))ri[-1,1]

Mi(Xo) = fleo)+ Y mag(Ho (X o))rio[—1,1].

i=1

M;(X)

CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS

Hence, we have to show that

fleo)+ Y mag(Ho (X o))rig

i=1

fleo) =Y mag(Ho g (Xo)rig >

i=1

Note that for all ¢

|cig — cil

IN

r; —

1/2|(Xig + Xip — Xi = X))
1/2max{X;e + Xie — X; — X,
1/2(X; + Xip — Nig — X))

7”2'0.

fle)+ > mag(Hs, 1 (X))r;

i=1

fle)— Z mag(Ho, r(X))r;.

IN

Xi+ X, = Xip — Xio}

2 =

Further, Hp,;(X o) C Hp,¢(X) by Theorem 3.1.4. Let £ € X such that

flee) = fle) + Z&f(ﬁ)(cm -).

Then

fleo)+ Y mag(Ho (X o))rig

i=1

fleo) =Y mag(Ho (X o))rig

i=1

IN

IN

v

v

fle)+ Z 9i f(€)(eio — ¢i) + mag(Ho,p (X o))rig
fle)+ Z 0: F(E)(cio — ci)| + mag(Ha,; (X o))rig

fle)+ Y mag(Ho (X))(ri — rig) + mag(Ha, (X))rig

i=1

fle)+ > mag(Ho 1 (X))r;

fle)+ Z 0if(€)(cio — ¢i) —mag(Ho, 1 (X o))rig
fle)+ Z —0: f(E)[(eie — ¢i)| — mag(Ho, 1 (X ¢))rig
fle)+ > —mag(Ho,;(X))(ri — rig) — mag(Ho,;(X))rie

i=1

fle)— Z mag(Ho,f(X))r;. O

144

Algorithm 4.2.5 (MFM) for evaluating the multivariate mean value form follows immediately from Defini-
tion 4.2.1. The algorithm requires evaluation of the Horner form of the partial derivatives &; f,i = 1, ... n.
As the coefficients of J; f need not be floating point numbers, we have to enclose them by intervals. The
Horner form of multivariate interval polynomials is computed by Algorithm HFMI, which is a trivial
modification of Algorithm 4.1.6 (HFM) and which is therefore not given explicitly. Further, we extend
Algorithm 2.3.33 MID and Algorithm 2.3.44 (CONVERT) to interval vectors component wise.

Algorithm 4.2.5 (MFM) [Multivariate Mean Value Form]

m iy di2
In: fle) =500 a " ay”
X eI,

..~xg"n c F[l‘l,...

a$n]’

CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS 145

Out: MFM(f,X) € IF, MEM(f, X) ~ M;(X), MFM(f, X) D f(X).

(1) [Midpoint.]
¢ — MID(X).

(2) [Evaluate f(¢).]
Y «—— HFM(f(=),[c]).

(3) [Partial derivatives.]
fori=1,...,n do Fi(x) — % (interval arithmetic for coefficients).

(4) [Evaluate partial derivatives.]
fori=1,...,n do F; — HFMI(F;(x), X).

(5) [Accumulate.]
fori=1,...,ndoY «— Y 4 F; (X; — ¢;).

(6) [Return.]

return Y.

Theorem 4.2.6 (Complexity) Algorithm 4.2.5 (MFM) costs

n’m 4 nm interval power computations,
n’m +n interval multiplications,
4nm +n number multiplications and
2nm 4 4n 4 2m — 2 number additions. O

Proof.

e Step 1 costs n number multiplications and 2n number additions.

e Step 2 costs nm interval power computations, 2nm number multiplications and 2m — 2 number
additions.

e Step 3 costs 2nm number multiplications.

2

o Step 4 costs n?m interval power computations, n?m interval multiplications and 2nm — 2n number

additions.

e Step b costs n interval multiplications and 4n number additions. O

In Algorithm 4.2.5 (MFM) we explicitly computed polynomials for the partial derivatives of f and eval-
uated all of them on X. A new possibility for obtaining the value of the i-th partial derivative is to
evaluate f first in the variables x;y1,..., 25, next compute the formal i-th partial derivative of this
t-variate interval polynomial and evaluate it. This can be done successively as follows. Let

F(")(xl,...,xn) = flz1,...,zpn).

For i =n—1...0 evaluate F(H'l)(xl, ..., ®i41) in its last variable z; by X; using the Horner scheme and
obtain an i-variate interval polynomial F)(zy,. .. x;).

F(i)(l‘l, e xl) = F(H_l)(xl, ce ey Ty, Xi+1)~

Next, let Fi(i) be the formal i-th partial derivative of F(V) and evaluate Fi(i) on Xi,...,X, using the
Horner scheme. One checks that

Hoo (X1, .., Xi) = Ho (X1,..., Xp).

F(’)

An advantage of this method is that F°() = H;(X), i.e. we obtain the Horner form as a side product
with minimal additional costs, such that we can compute easily M;(X) N H;(X).

CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS 146

Definition 4.2.7 (Mean Value — Horner Form) The mean value — Horner form MJ(CH) : IR" — IR
is defined as

MIM(X) = Mp(X)N Hy(X). O

We formalize the procedure described above in Algorithm 4.2.11 (MHF) and compare its complexity with
Algorithm 4.2.5 (MFM). First, we give an auxiliary algorithm for evaluating an interval polynomial in
its last variable.

Algorithm 4.2.8 (HFIL) [Horner Form in Last Variable]

In: F(x) = Z:nﬂ A; xf”lxg”Q . ~J:fll”" € Iy, ..., 25
such that (di,la di,z, .. ~,di,n) - (djyl, djyz, R djyn) for 7 < j,
X eTF.

Out: HFIL(F, X) € IFxy, ..., #n_1], HFIL(F, X) D Hp(xy, ..., an_1, X).

(1) [Partition f.]
Let
k={(di1,dia, ... din_1)|i=1,....,m}|

and let 1 =my < ... < mggp1 = m+ 1 such that

mjq1—1

Fi(zn)= > Awir €llz,], j=1,...k

i=mj
and

Ami1 s A
F(w):ZFj(l’n)%]’ll’z]’2"'9%—]1’ g

j=1

(2) [Evaluate.]
forj=1,...,k do B — HFI(F;(z,), X)

(3) [Return.]
A1 o, dm i
return Z?Il Bjx, " e, Tt

Theorem 4.2.9 (Complexity) Algorithm 4.2.8 (HFIL) costs

m Interval power computations,
m Interval multiplications and
2m — 2k number additions,

where

k={(di1,dia....din_1)|i=1,...,m}.O

Proof. The computation of HFI(F;, X) in Step 2 costs m;41—m; interval power computations, m;4q—m;
multiplications and mj 41 — m; — 1 interval additions (Theorem 3.1.51). Hence, Step 2 costs

k
ij+1 — My = Mgy — M1 =M
j=1
interval power computations and multiplications and
k
ijH—mj—l:mkH—ml—k:m—k
j=1

iterval additions. O

CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS

Theorem 4.2.10 (Complexity) If 0 ¢ int(X) then Algorithm 4.2.8 (HFIL) costs

m Interval power computations,
2m number multiplications and
2m — 2k number additions. O

Algorithm 4.2.11 (MHF) [Mean Value — Horner Form]

In: fl®)=" a xf”lxg"Q . ~J:fll”" € Flzy, ..., 2.,
X eI,

Out: MHF(f, X) € IF, MHF(f, X) ~ M{"(X), MHF(f, X) D f(X).

(1) [Midpoint.]
¢ — MID(X).

(2) [Evaluate f(¢).]
Y «—— HFM(f(=),[c]).

(3) [Convert f to an interval polynomial.]

FOl ey, wn) — flzr,... 20).
(4) [Evaluate f successively in X.]

fori=mn,...,1do FO-U(xy, ... 2; 1) —— HFIL(FO (2, ..., 2;), X;).
(5) [Partial derivatives.]

fori=mn,...,1do Fi(l)(xl, e) — %F(i)(l‘l, Ce).
(6) [Evaluate partial derivatives.]

fori=n,...,1do F; — HFMI(F(zy, ..., 25), X1,..., X;).
(7) [Accumulate.]

fori=n,...,1doY «— Y 4 F; (X; — ¢;).
(8) [Intersect with H;(X).]

Y — Y nFO)).

(9) [Return.]

return Y.

Theorem 4.2.12 (Complexity) Algorithm 4.2.11 (MHF) costs

1/2n%m +5/2nm interval power computations,
1/2n?m + 3/2nm +n interval multiplications,
4nm +n number multiplications and
2nm 4 4n 4+ 4m — 4 number additions. O

147

Proof. We assume the worst case where all F(*) have m monomials, i.e. no two degree vectors of f have

a common prefix.

e Step 1 costs n number multiplications and 2n number additions.

e Step 2 costs nm interval power computations, 2nm number multiplications and 2m — 2 number

additions.

e Step 4 costs nm interval power computations, nm interval multiplications and 2m — 2 number

additions.

e Step b costs 2nm number multiplications.

e The ¢-th iteration in Step 6 costs im interval power computations, im interval multiplications
and 2m — 2 number additions. Hence, Step 6 costs 1/2n(n + 1)m interval power computations,

1/2n(n 4+ 1)m interval multiplications and 2nm — 2n number additions.

CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS 148

e Step 7 costs n interval multiplications and 4n number additions. O

Thus, asymptotically Algorithm 4.2.11 (MHF) is half as expensive as Algorithm 4.2.5 (MFM).

4.2.1 Successive Mean Value Form

An important improvement of the mean value form is presented in [Hansen, 1968]. Recall that for the
mean value form we have to evaluate the partial derivatives of f on (X1,..., X,)). If, instead, we evaluate
the i-th partial derivative only on

(Xla"'aXiaci-I—la"'acn) g (Xla"'aXn)a

we still obtain an interval extension, which is called successive mean value form. Obviously, the successive
mean value form is usually tighter than the mean value form.

In order to show that the successive mean value form is an interval extension, we apply the mean value
Theorem successively to the variables of f. Let X € TR" and let @, ¢ € X. First, consider f(z1,...,2,)
as a univariate function in z,. According to the mean value Theorem there exists &, € X,, such that

f($1a~~~a$n) = f($1a"'a$n—1acn)+anf($1a~~~a$n—1a€n)($n _cn)~

Next, consider f(z1,...,2n_1,¢s) as a univariate function in x,_1. Applying the mean value Theorem
again, we obtain

f($1a sy Tn—1, cn) = f($1a <oy n—2,Cn—1, cn) + an—lf($1a sy $n—2a€n—1a cn)(xn—l - cn—l)

for some &,_1 € X,,_1. Hence,

f($1a~~~a$n) = f($1a~~~axn—2;cn—1acn)
+ 8n—1f(x1a~~~axn—2;€n—1acn)(xn—1_Cn—l)
+ Onf(mr, . 2no1,8n)(Tn —cn).
Next, we apply the mean value Theorem to f(z1,...,%n—2,¢n—1,¢n) as a univariate function in x,_s,

and so on. Finally, we obtain

f($1a"'a$n) :f(cla"'acn)+Zaif(xla"'axi—lagiaci-l-la"'acn)(xi_ci)
i=1

for some & € X and

n

F@1yeeoan) € fler, o oyen) + S0 (X0, oy Xy eigns oo en)(Xi — o).

i=1
Thus, every interval extension F; of §;f, ¢ = 1,...,n and every choice of ¢ € X give rise to an interval
extension F' of f:
F(X)=fle)+ > Fi(X1,..., Xi cigr, - en)(Xi —) D f(X). (4.2.2)
i=1

The successive mean value form is a special case of (4.2.2), where F; is the Horner form of 9;f and

¢ = mid(X).

Definition 4.2.13 (Successive Mean Value Form) The successive mean value form Mg IR* — IR
is defined as

M7 (X) = fle)+ Y Hop (X1, .., Xi cigr, .o en) (X — i),
i=1

where ¢ = mid(X). O

CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS 149

Theorem 4.2.14 (Interval Extension) M7 is an interval extension of f. O
Proof. Follows from (4.2.2). O

Theorem 4.2.15 (Accuracy) For all X € IR" it holds that

M7 (X) € My(X). O
Proof. Obvious. O

Corollary 4.2.16 (Convergence) M7 converges quadratically to f. O
Theorem 4.2.17 (Inclusion Monotonicity) M}” is not inclusion monotone. O

Proof. Consider the polynomial f(z1,z2) = z722. We obtain
M7 (X1, X5) = mid(X1)’mid(Xs) + 2X1mid(X2)(X; — mid(X7)) + X7(X; — mid(X5)).
Obviously
([_L 1]a [Oa 2])T D ([_L 1]a [Qa 2])Ta

but
M ([=1,1],[0,2]) = [-3,3] C [-4,4] = M} ([-1,1],[2,2]). O

Algorithm 4.2.18 (SMTF) for evaluating the successive mean value form follows immediately from Definition
4.2.13. As in Algorithm 4.2.11 (MHF), we do not compute the i-th partial derivative of f and evaluate
iton (X1,...,X;,¢41,...,0n). Instead, we first compute successively i-variate polynomials

f(i)($1a~~~axi):f($1a~~~a$iaci+1a~”acn)

and then evaluate the i-th partial derivative of f() on (X1,...,X;). As a side product, we obtain
fler, ..., cn) which is needed anyways. As usual, the intermediate polynomials have to be enclosed by
interval polynomials because of rounding errors.

Algorithm 4.2.18 (SMF) [Successive Mean Value Form)]

In: fl®)=" a xf”lxg"Q . ~J:fll”" € Flzy, ..., 2.,
X eI,

Out: SMF(f, X) € IT, SMF(f, X) ~ M7 (X), SMF(f, X) 2 f(X).

(1) [Midpoint.]
¢ — MID(X).

(2) [Convert f to an interval polynomial.]
FOl ey, wn) — flzr,... 20).

(3) [Evaluate f successively in ¢.]

fori=mn,...,1do FO-V(zy, ... i 1) —— AFIL(FO(xy, ... z;), [ei]).
(4) [Partial derivatives.]

fori=mn,...,1do Fi(l)(xl, e) — %F(i)(l‘l, Ce).
(5) [Evaluate partial derivatives.]

fori=n,...,1do Fy — HFMI(F? (21, ..., 2:), X1,..., X3).

(6) [Accumulate.]
Y — F(O)()
fori=n,...,1doY «— Y 4 F; (X; — ¢;).

CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS 150

(7) [Return.]

return Y.

Theorem 4.2.19 (Complexity) Algorithm 4.2.18 (SMF) costs

1/2n%m + 3/2nm interval power computations,
1/2n*m +1/2nm +n interval multiplications,
4nm +n number multiplications and
2nm 4 4n 4 2m — 2 number additions. O

Proof. We assume the worst case where all F(*) have m monomials, i.e. no two degree vectors of f have
a common prefix.

e Step 1 costs n number multiplications and 2n number additions.

e Step 3 costs nm interval power computations, 2nm number multiplications and 2m — 2 number
additions.

e Step 4 costs 2nm number multiplications.

e The ¢-th iteration in Step 5 costs im interval power computations, im interval multiplications
and 2m — 2 number additions. Hence, Step b costs 1/2n(n + 1)m interval power computations,
1/2n(n 4+ 1)m interval multiplications and 2nm — 2n number additions.

e Step 6 costs n interval multiplications and 4n number additions. O

4.2.2 Successive Slope Form

The univariate mean value form was improved significantly by replacing the derivative by a slope. Now,
we apply this idea to the multivariate case. The interval extension which we derive can also be ob-
tained by applying the formulas of [Krawczyk and Neumaier, 1985] for rational expressions in a specific
way. However, for polynomials there is a more direct method, which reveals possibilities to optimize a
corresponding algorithm.

Generalizing the univariate case means finding polynomials g;(#, ¢), i = 1,...,n such that

fl®) = fle)+ g(e, c)(x —¢) (4.2.3)
for all ®, ¢. As the g; are not uniquely determined by (4.2.3) we have to impose a further condition: We
require that g; depends only on #1,...,%;,¢,¢i41,...,¢cn. Therefore, we write

Gi(@1, o 5,6, Cip1, -y Cn)

instead of g; (@, ¢).

The polynomials g; can be constructed as follows. First, consider f(xy,...,#,) as a univariate function
in z,. Let gn(1,...,2n,cn) be the uniquely defined polynomial such that

f($1a~~~a$n) = f($1a~~~a$n—1acn)+gn(x1a~~~a$nacn)(xn _cn)~

Next, consider f(#1,...,%n—1,¢n) as a univariate function in #,_1 and let g,_1(21,...,Zn—1,¢n-1,¢n)
be the uniquely defined polynomial such that

f($1a sy Tn—1, cn) = f($1a <oy n—2,Cn—1, cn) + gn—l(xla <y Tp—-1,Cn—1, cn)(xn—l - cn—1)~
Hence,
f(xla"'axn) = f(xla"'axn—Zacn—lacn)
+ gn—l(xla~~~a$n—1acn—1acn)(xn—1_Cn—l)

+ gn(x1a~~~a$nacn)(xn_cn)~

CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS 151

Applying this procedure successively to z,,_a,...,#1 we obtain polynomials g;(%1, ..., %, ¢, Cig1, .-, 6n)
such that
n
fleg, ..o en) = Zgi(l‘l, ey By Gy Cig Ly e Cp) (X —). (4.2.4)
i=1
Thus, every interval extension G; of ¢;, i = 1,...,n and any choice of ¢ € R" gives rise to an interval

extension F' of f:
F(X) = fle)+ > Gi(X1,..., Xi,ci,cipn, - en)(Xi —) D f(X). (4.2.5)
i=1
The successive slope form is a special case of (4.2.5) where G; is the Horner form of g;.

(=)
Definition 4.2.20 (Successive Slope Form) The successive slope form M TR — TR is defined as

©) i
M7 (X) = fle)+ > Hy (X1, Xi i iga, o en)(Xi = ¢i),
i=1

where ¢ = mid(X) and g; is as in (4.2.4). O

(s)
Theorem 4.2.21 (Convergence) M} converges quadratically to f. O

Proof. Straight forward generalization of Theorem 3.2.9. O
(s)
Before we devise an algorithm for My we give formulas for the polynomials g;.

Theorem 4.2.22 Let

m
— dg1 dji—1 7 (d; djit1 d.
Gi(®1, o 5,6, Cig1, ey) = E ajzett At “)(xi, ci) ey e,
ji=1
where
d _ u v
h()(xi, ¢) = E ziel.
wtv=d—1
©>0,0>0
Then

f(®) = f(e) + Zgi(l‘l, s T €y Cigy e) (@ —). O
i=1

Proof. We have to show that for all ¢

Jlre, .oz, cipn, o en) = floen, o @im1, 6,0 0n) = i1, o0, &4, Gy Cigety - Co) (2 —).

Note that
h(d)(xi,)@ —¢) = xfl — cfl.

fler, oo @, ciqry oo yen) — flo1, oo @21, ¢, -y Cn)
m m
_ dg1 dgi djit1 d; dg1 dgi—1 dj d;
= E aj eyt e T et — E aj et T e e
j=1 ji=1
m

_ dg1 dgi—1 djit1 d; dg,i dg,i
= E:aj% e e (2 =)

j=1
m
_ djn djim1 dj,it1 djnp(dsi)
= D aja e T e el B (g,) (s — i)

= gilx1, ... 2,0, C41, - en) (@i —). O

(s)
The following observations are important for the efficiency of an implementation of M.

CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS 152
e First, the polynomials A9 have the property
RUAD (1 e) = W'D (2, ¢)as + 2.
As the intervals H, ;) (X;, ¢;) have to be computed for j = 1,...,m, it is usually advantageous to
pre—compute the intervals
q% = 0
HZ»(d) = HZ»(d_l)XZ' + cgl_l for d=1,..., maxd;;
J
as well as the powers ¢, d = 0,..., max; dj ; — 1 where X is the input interval and ¢ = mid(X).
e Further, by evaluating f successively in its last variable on ¢;, ¢ = n, ..., 1 we obtain polynomials
f(n)(l‘l,...,l‘n) = f(xla "axn)
f(l)(xlaaxl) = f(i-l—l)(xla"'axiaci)
m9 0 d;’)l d;’z
= a]» Ty i
ji=1

The coefficients of these polynomials can be used

for the evaluation of ¢;, as

m i (%) (+) ()
Gi(®1, o 5,6, Cig1, ey) = ag»)xfj’l xfi’i_lh(diﬂ)(xi,ci).
ji=1
e Finally, let af, i = 0,...,deg(f!)) such that
deg(fV)
f @)= Y el
i=0
Then
deg(f)
g1(1’1,61,62a~~~,cn): Z b?xll_l
i=1
where
b [@ ifi=deg(s0)
i biic1 +aj else.
Thus,
fler,ooen) + Hy (X, eq,c0, 00, en) (X1 — 1) = M}?f)(Xl),

i.e. we end up with the univariate slope form (see Definition 3.2.7).

Remark. The polynomials A(?)(z;, ¢;) have an interes
putation of the exact range h(X;, mid(X;)) is cheap.
0 € int(X;) then

Y = D (x;,

Further, if d is even, then h{?(x;, ¢;) is monotone in x;

ting structure and one may expect that the com-
In fact, from Theorem 3.1.12 it follows that if

mid(X;)).

, hence

(R (X, mid(Xy)), AN, mid(X;))] = b (X, mid(X;)).

However, this would introduce additional costs and we

Algorithm 4.2.23 (SSF) [Successive Slope Form]

fle) =0 a)
X eI,

~~~J:fll”" € Flay, ...

d
In.' z,1x21,2

will not make use of 1t. O

a$n]’



CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS 153

Out:  SSF(f,X) € IF, SSF(f, X) ~ M;?S”)(X), SSF(f, X) D f(X).

(1) [Powers of ¢; and HZ»(j).]
fore=2,....)n

(1.1) [Degree.]
d — degree of f in z;.
(1.2) [Powers of ¢;.]
¢i — MID(X;).
C(O) — 1.
for _] = 1, .. .,d— 1 do Cz(]) — CZ'(j_l) * [cz]

(1.3) [Compute HZ»(d).]
' —o.
Y — 1.
for j=2,...,ddo HY — gU=Yx, 4+ clU~Y.
(2) [Sucessively evaluate slopes.]

FOl ey, wn) — flzr,... 20).
fori=mn,...,2

(2.1) [Slope.]

. m® (i) d(f)l d(vfz
Let F(xy, ..., 2) :ijl a; z;’
~ . (1) . d(vl) d(vl) d(vl)
m 2 s st 5T
FOy, o wio) — Y0y a7 i

(2.2) [Successively evaluate f.]
FO=D HAFIL(FO(2q,..., %), [c])

(3) [Univarate slope form.]
Y «— DSF(FM(x1), Xy).

(4) [Add Slopes.]
fori=2,...,ndoY «— Y 4 F;  (X; — ¢;).

(5) [Return.]

return Y.

Remark. In Step 3 we call Algorithm 3.2.13 (DSF) for evaluating the dense univariate slope form.
As the first argument of DSF is an interval polynomial, we have to modify Algorithm 3.2.13 (DSF).
However, the modification is trivial and the complexity remains the same. In order to conform precisely
to Definition 4.2.20, we would have to evaluate the slope form instead of the dense slope form. But for
the reasons discussed in Section 3.2.1, we use the dense slope form. O

Theorem 4.2.24 (Complexity) Let d be the maximum degree of f in each variable. Then Algorithm
4.2.23 (SSF) costs

1/2n%*m + 1/2nm — m  interval power computations
1/2n%*m +1/2nm+nd — m +d — 1 interval multiplications
2nm+2nd—n —2+xm+2+d+ 1 number multiplications
2nm + 2nd + 2n 4 2m + 2d — 4  number additions. O

Proof.

e Let d be the maximum degree of f in each variable. First, we compute the cost of the ¢-th iteration
of Step 1. Step 1.2 costs 2d — 1 number multiplication and 2 number additions. Step 1.3 costs



CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS 154

d — 1 interval multiplications and 2d — 2 number additions. Thus, Step 1 costs nd — n interval
multiplications, 2nd — n number multiplications and 2nd number additions.

o The i-th iteration of Step 2.1 costs m(?) interval multiplications Q(m(i) — m(i_l)) number additions
for the computation of the coefficients of F(*) and (i — 1)m(i_1) interval power computations,
(i — 1)m(i_1) interval multiplications and 2m~1) — 2 number additions for its evaluation. In the
worst case m*) = m for all i > 0 and we obtain 1/2(n? — n)m interval power computations,
1/2(n?+n — 2)m interval multiplications and 2(n — 1)(m — 1) number additions for all iterations of
Step 2.1. The total cost of Step 2.2 is bounded by (n — 1)m interval power computations, 2(n —1)m
number multiplications and 2m — 2 number additions. So, Step 2 costs 1/2(n* + n — 2)m interval
power computations 1/2(n? + n — 2)m interval multiplications, 2(n — 1)m number multiplications
and 2n(m — 1) number additions.

e Step 3 costs d interval multiplications, 2d+ 1 number multiplications and 2d+ 2m number additions.

e Step 4 costs n — 1 interval multiplications and 4(n — 1) number additions. O

4.2.3 Bicentered Mean Value Form
The multivariate bicentered mean value form is a straight forward generalization of the univariate case,
see Section 3.2.2. Both have been introduced by [Baumann, 1988].

The basic idea is to evaluate the mean value form twice with different centers ¢! and ¢! and intersect the
results. The centers are optimal in the sense that ¢! minimizes the upper bound and ¢! maximizes the
lower bound among all centers ¢ € X. The bicentered mean value form is therefore particularly suitable
for the separate computation of an upper or lower bound of f in X.

In the sequel let

M (X, ¢) = f(e) + ZHalf(X)(Xi —¢i).

Definition 4.2.25 (Multivariate Bicentered Mean Value Form) The multivariate bicentered mean
value form My : IR" — IR is defined as
My (X) = [My(X, e!), My (X D],

where the optimal centers ¢! and ¢t are

X; if £, >0
o = X, it F; <0

(F; X; — F, X,)/w(F;) else

X if £; >0

(F; X, — F, X;)/w(F;) else

and Fi = H(’),f(X)~ (]

In the sequel let ¢!, ¢! and F; as in Definition 4.2.25.

The following theorems are generalizations of the corresponding theorems for the univariate case. As the
proofs are completely analogous, we omit them.

Theorem 4.2.26 (Interval Extension) Mf is an interval extension of f. O

Theorem 4.2.27 (Non—Overestimation) If 0 € int(F;) for all i then



CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS 155

Theorem 4.2.28 (Optimality of Centers) For all ¢ € X it holds that

Mf(X’CT) < Mf(X’c)
Mi(X, ety > Mi(X,e). O

Corollary 4.2.29

My(X)= () My(X,c). O
ceX

Corollary 4.2.30 (Convergence) Mf is quadratically convergent. O
Theorem 4.2.31 (Inclusion Monotonicity) Mf is inclusion monotone. O

Theorem 4.2.32 Let C; = [c}, cZT] and let c € X.

w(M; (X, ¢)) Zmag X;) + w(F;)mig(Cy —¢;). D

Corollary 4.2.33 (Optimality of the Midpoint for the Mean Value Form) For all ¢ € X it holds
that
w(M; (X)) < w(Mp (X, ¢)). O

Algorithm 4.2.34 (BMFM) for evaluating the bicentered mean value form follows immediately from Def-
inition 4.2.25. As in the univariate case, we use Algorithm 3.2.24 (OC) for approximating the optimal
centers ¢! and ¢t.

Algorithm 4.2.34 (BMFM) [Multivariate Bicentered Mean Value Form]

In: f(w) = Zzn:l ¢} l{ll ll’gl 7. ~xfll”" S F[l‘l, . ..,xn],
X e IF".

Out:  BMFM(f, X) € IF, BMFM(f, X) ~ M;(X), BMFM(f, X) D f(X).

(1) [Initialize.]
yl — 0, yt —0.

(2) [Iterate over all variables.]
fori=1,...,ndo

(2.1) [Partial derivative.]
Fi(x) — Of(®)/0x; (interval arithmetic for coefficients).

(2.2) [Evaluate partial derivative.]
F; — HFMI(F;(=), X).

(2.3) [Optimal centers. ]
CZT’ zl - OC( Z)
(2.4) [Accumulate.]
yT — yT —A|— Fz*(Xz —CZT).
yl — yl —\|/— Fz*(Xz —Cll).
(3) [Evaluate at centers.]
y! — y! F HEM(f(2), [¢1]).
yt —y! + HEM(f(=), [¢']).
return [y}, y'].



CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS 156

Theorem 4.2.35 (Complexity) Algorithm 4.2.34 (BMFM) costs

n’m + 2nm interval power computations,
n’m 4 2n  interval multiplications,
2n  number divisions,
6nm + 4n  number multiplications and
2nm 4+ Tn+4+4m — 2 number additions. O

Proof. The costs for one iteration of Step 2 are as follows:

e Step 2.1 costs 2m number multiplications.

e Step 2.2 costs nm interval power computations, nm interval multiplications and 2m — 2 number
additions.

e Step 2.3 costs 2 number divisions, 4 number multiplications and 3 number additions (Theorem

3.2.25).

e Step 2.4 costs 2 interval multiplications and 6 number additions.

Summarizing, Step 2 costs n?m interval power computations, n?m + 2n interval multiplications, 2n
number divisions, 2nm + 4n number multiplications and 2nm + 7Tn number additions. Further, Step 3
costs 2nm interval power computations, 4nm number multiplications and 4m — 2 number additions. O

As in the case of the mean value form, we can evaluate the partial derivatives successively and intersect
with H;(X) which is obtained as a side product.

Definition 4.2.36 (Bicentered Mean Value — Horner Form) The bicentered mean value — Horner
form M}EH) :IR" — TR is defined as

M{™(X) = Mp(X)N Hy(X). O

Algorithm 4.2.37 (BMHF) [Bicentered Mean Value — Horner Form]

In: fl®)=" a xf”lxg"Q . ~J:fll”" € Flzy, ..., 2.,
X eI,

Out:  BMHF(f, X) € IF, BMHF(f, X) ~ M| (X), BMHF(f, X) D f(X).

(1) [Initialize.]
yl — 0, y! —0.
FOl ey, wn) — flzr,...,20).

(2) [Iterate over all variables.]
fori=mn,...,1do
(2.1) [Partial Derivative.]
Fi(l)(xl, Cey ) — 6F(i)(x1, coox)/ 0.

(2.2) [Evaluate partial derivative.]
Fy — HFMI(F (21, .. 2), X1, ..., X)),

(2.3) [Optimal centers.]
CZT, CZl — OC(FZ, Xz)
(2.4) [Accumulate.]
yT — yT —Ai— FZ*(XZ —CZT).
yb — yl I Fi* (X; —c}).
(2.5) [Evaluate f successively.]
FOD(gy, i) — HFIL(FO (2, ..., 2;), X;).



CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS 157

(3) [Evaluate at centers.]
yl — y! 3+ HEM(f(=), [eT]).
yb — yb 4 HEM(f (=), [¢!]).
YV — [yhy'].

(4) [Intersect with H;(X).]
Y — Y n FO).

(5) [Return.]

return Y.

Theorem 4.2.38 (Complexity) Algorithm 4.2.37 (BMHF) costs

1/2n%m 4+ 9/2nm  interval power computations,
1/2n*m + 5/2nm + 2n  interval multiplications,
2n  number divisions,
6nm 4+ 4n  number multiplications and
2nm+ Tn+ 8m — 6 number additions. O

Proof. As in the proof of Theorem 4.2.12 we assume the worst case where all F(¥) have m monomials.
Hence, the successive evaluation of f in Step 2.5 costs 2nm interval power computations, 2nm interval
multiplications and 4m — 4 number additions. The remaining costs for the ¢-th iteration of Step 2 are:

e Step 2.1 costs 2m number multiplications.

e Step 2.2 costs im interval power computations, im interval multiplications and 2m — 2 number
additions.

e Step 2.3 costs 2 number divisions, 4 number multiplications and 3 number additions (Theorem

3.2.25).

e Step 2.4 costs 2 interval multiplications and 6 number additions.

Summarizing, Step 2 costs 1/2(n? + 5n)m interval power computations, 1/2(n + 5)nm + 2n interval
multiplications, 2n number divisions, 2nm + 4n number multiplications and 2nm + 7n + 4m — 4 number
additions. Further, Step 3 costs 2nm interval power computations, 4nm number multiplications and
4m — 2 number additions. O

4.2.4 Successive Bicentered Mean Value Form

In this section we present a new interval extension which combines the 1deas of the successive and the
bicentered mean value form: The successive mean value form is evaluated twice with different centers and
the results are intersected. The centers are chosen in a similar way as for the bicentered mean value form.
However, the centers are not optimal and it can even happen that the successive mean value form gives
more accurate results than the successive bicentered mean value form. On the other hand, the successive
bicentered mean value form is always at least as accurate as the bicentered mean value form.

In the sequel let
My (X, ¢)= f(e)+ Y Hop(X1,. ., Xiscig1, - cn).

i=1

Definition 4.2.39 (Successive Bicentered Mean Value Form) The successive bicentered mean value
form M7" : TR" — TR is defined as

My (X) = [M7 (X, ¢h), M7 (X, )], (4.2.6)



CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS 158

where the centers ¢! and ¢! are defined recursively as

Xi it 2] >0
CZT = X; ifflT <0
(Fj Xi— EZT XZ)/W(FZT) else
X, if F}>0
o = {5 ifF <0
(Fj X, - FIX)/w(F})  else
and
Fl' = Hap(Xy,..., Xielpy, el
F' = Hay(X1,...,Xischy, .. ch). O

In the sequel let ¢!, ¢t and FT, F'! as in Definition 4.2.39.

Theorem 4.2.40 (Interval Extension) MJ?” is an interval extension of f. O

Proof. As cZT, ¢; are convex linear combinations of X; and X, it holds that ¢!, ¢} € X. From (4.2.6) it
follows that )
M7 (X, eHyn M7 (X, ) C M7 (X).

According to (4.2.2)
J(X) S My (X, ¢)

for all ¢ € X. Hence, )
F(X) C M7 (X, ey n My (X, el) € My (X).

Further, M;”(az) = f(&) for all . € R". O
Theorem 4.2.41 (Non—Overestimation)

o If0 ¢ int(FZ»T) for all ¢ then
M7 (X) = (X). (4.2.7)

o If0 ¢ int(FZ»l) for all ¢ then )
M;”(X) = f(X). O (4.2.8)

Proof. We give a proof of (4.2.7), the proof of (4.2.8) is analogous. According to Definition 4.2.39

My (X) = My(X,c)

= S+ Hop (X1, ... Xivelpy, o eb)(Xi =]
i=1

= fe)+Y Fle(Xi—c)).
i=1

Assume 0 ¢ int(FZ»T) for all 4. If EZT > 0 then cZT =X;. If FZT < 0 then cZT = X,. In both cases

hence, as ¢! € X,



CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS 159

From f(X) C MJ?” (X), it follows that

My (X) = f(X). o

The centers ¢!, ¢! are not optimal in the sense that ¢! minimizes the upper bound of the successive
mean value form and ¢! maximizes the lower bound. In particular there are cases where M 1s more

accurate than MJ?’*, i.e. ¢ = mid(X) leads to a smaller upper bound than ¢! and to a larger lower bound
than ¢!.

Theorem 4.2.42 (Comparison with Successive Mean Value Form) There exist f € Rlay, ..., 2,]
and X € IR" such that )
My (X)Cc My (X). D
Proof. Let f(xy,r5) = 225 and let X = ([-1,1],[~1,1]). Then
My (X)=[-1,1]C [-2,2] = M} (X). O

On the other hand, MJ?” 1s always at least as accurate as Mf

Theorem 4.2.43 (Comparison with Bicentered Mean Value Form) Forall f € Rlz, ..., x,] and
for all X € TR" it holds that ) )
My (X) € Mp(X). 0

Proof. Let f € R[zy,...,z,] and let X € TR" arbitrary but fixed. We have to show that

=
X
IN

(4.2.9)

My (X) > (4.2.10)

We give a proof of (4.2.9), the proof of (4.2.10) is analogous. In order to avoid confusion of notation, we

replace cZT by dZT and FZ»T by GZT for the successive bicentered mean value form and keep the symbols cZT,
F; for the bicentered mean value form. Thus,

X, ifGl >0
d = x it Gl <0
(G X = Gl X)) /w(G]) else
where
Gl = Hop(X1,..., Xs,dl,,,....d})
and _
T, it F >0
CZT ={ X, if F/; <0
(Fy Xi — F; X)) /w(l;)  else
where

F; = Hp (X, ..., X5).
We have to show that

n

f(dT)JrZGZT*(Xi—dJ)Sf(CT)Jan:Fi*(Xi—CJ)

i=1

From the mean value Theorem it follows that there exists £ € X such that

Fdl) = f(eh) + 2o f(€)d] — b,



CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS 160

Thus,

ZGT Xi—d)) l +Z§if(£)(d3—cZT)+GZT*(Xi—dZT)

< +ZF* D+ al«(x; —d.

In order to complete the proof, we show for each ¢ that

Fix(d] — )+ Gl (X; —d]) < Fixe (X5 —¢]).
Hence, let ¢ arbitrary but fixed. We distinguish the cases whether or not 0 € int(GZT).
e Assume 0 ¢ int(G]). From the definition of d! it follows that

Gl (x;—dl) =0,

hence

ik (d e+ Gl (X —dl) = Fix(d =]
S FZ*(XZ—CZT)

e Assume 0 € int(GZT). As GZT C Fj, it holds that 0 € int(F;) and from the definition of dZT and cZT it
follows that
GL(Xi—d) = G +(Fi—d) = Gl+(X,—d)
Fis(Xs—c) = Fis(Xi—c) = Fi+(X;,—¢)).

Next, we distinguish the cases d; > ¢; and d; < ¢;.

— Assume d; > ¢;.

Fia(d —c)+Gla(x;—d) = Fie(d =)+ G« (X, - d))
< Fix(d —e)+F;+(X; —d))
= FZ*(YZ—CZT)
= Fix(X;—¢))

— Assume d; < ¢;.

Fix(dl —ehy+Gls(xi—dl) = Fix(d —c))+ Gl (X, - d])
< Ei*(dJ—CT)‘FEi*(Xi_dZT)
= Fix(X;—c))
= Fi*(X;—¢)). 0

Corollary 4.2.44 (Convergence) MJ?” converges quadratically to f. O
Theorem 4.2.45 (Inclusion Monotonicity) MJ?” is not inclusion monotone. O

Proof. Consider the polynomial f(z;,zs) = z7z5. Obviously

([_L 1]a [Oa 2])T D ([_L 1]a [Qa 2])Ta

but
M7y ([=1,11,0,2]) = [0,2] C [-4,4] = M} ([-1,1],[2,2]). O

Algorithm 4.2.48 (SBM) computes the successive bicentered mean value form. First, we have to modify
Algorithm 3.2.24 (OC), because now the centers cZT and c} depend on different derivatives F! and Fil.

K3



CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS

Algorithm 4.2.46 (OC’) [Centers for Successive Bicentered Mean Value Form]

In: P, Fl €T,
X e1F.

Out: ¢! ¢l € X, approximations of the centers according to Definition 4.2.39.

(1) [Computation of ¢!.]

(1.1) [Monotonicity test.]
if 71 >0 then ¢! — X, goto Step 2.
it 7! < 0 then ¢! «— X, goto Step 2.

(1.2) [Approximate.]
clear invalid operation flag.

 F'EIXZIX))(F ZE

(1.3) [Check floating point errors.] o
if invalid operation flag is raised then ¢! «—— X.
if ¢! < X then c! — X
if ¢! > X then ¢! — X.

(2) [Computation of ¢! .]

(2.1) [Monotonicity test.]
if 7V >0 then ¢! — X, goto Step 3.
it 7t < 0 then ¢! «— X, goto Step 3.

(2.2) [Approximate.]
clear invalid operation flag

e T IxZPix)7(F

= El)

(2.3) [Check floating point errors.]
if invalid operation flag is raised then ¢t «—— X.
if ¢! < X then ct — X
if ¢! > X then ¢! — X.

(3) [Return.]

return ¢! , et

Theorem 4.2.47 (Complexity) Algorithm 4.2.46 (OC’) costs

2 number divisions,
4 number multiplications and
4 number additions. O

161

In Algorithm 4.2.48 (SBM) the n-th variable is handled separately because F}] = F! and therefore the

n-th partial derivative has to be computed only once.

Algorithm 4.2.48 (SBM) [Successive Bicentered Mean Value Form]

In: J®)=3" a; xf”lxg”Q = Flay, ..., 2],
X e IF".

Out:  SBM(f,X) € IF, SBM(f, X) ~ M7 (X), SBM(f, X) D f(X).

(1) [Last variable.]

(1.1) [n-th partial derivative.]
Fo(ey, .. mn) — Of(x1,...,20)/0nn.



CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS 162

(1.2) [Evaluate n-th partial derivative.]
Fpy —— HEMI(Fy (21, . ., 23), X1, -+, Xn).

(1.3) [Centers.]

el el — OC(F,, X,).
(1.4) [Accumulate.]

yl — F % (X, —ch).

yb — Fp x (X, —cl).
(1.5) [Evaluate successively.]

Fl(zy, ..., xq_1) «— HFIL(f(z1, ...
Fl(zy, ... xn_1) «— HFIL(f(z1, ...

(2) [Other variables.]

fori=n—-1,...,1do

Jan), [eh]).
n))-

(2.1) [é-th partial derivative.]
FZ»T(xl, coxg) — OF N (zy, . ..
Fil(xl, coxg) — OF Wz, ..

(2.2) [Evaluate i-th partial derivative.]
Pl — HFMI(F] (21, ... 25), X1,.. ., Xi).

FY — HFMI(FHay, . 2), X, X

K3

(2.3) [Centers.]
el el —oc(r, Fl xy).
(2.4) [Accumulate.]
yT %yT —?—F;*(XZ'—CZT .
yl — yl —\|/— FZ»l * (Xz — Cll)

~—

(2.5) [Evaluate successively.]
Fl(zy, ..., xi_1) = HFIL(F(zy,..., %), [c
Fl(zy, ... xi_1) «— HFIL(F(zy,. .., %), [c
(3) [Add f(e!), f(eh)]
yl —y! 3 F1(),
yh— gt + FL).
return [y}, y'].

Theorem 4.2.49 (Complexity) Algorithm 4.2.48 (SBM) costs

n?m + 2nm
n’m + 2n

2n

8nm + 4n — 2m

interval power computations,
interval multiplications,
number divisions,

number multiplications and

dnm + 6n + 2m — 3 number additions. O

Proof. Asin the proof of Theorem 4.2.12 we assume the worst case that during the successive evaluation
of f in its last variable the number of monomials does not decrease. Hence, the successive evaluation
of f in Step 1.5 and Step 2.5 costs 2nm interval power computations, 4nm number multiplications and
4m — 4 number additions. The remaining costs for Step 1 are:

e Step 1.1 costs 2m number multiplications.

e Step 1.2 costs nm interval power computations, nm interval multiplications and 2m — 2 number

additions (Theorem 4.1.7).

e Step 1.3 costs 2 number divisions, 4 number multiplications and 3 number additions (Theorem

3.2.25).



CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS 163

e Step 1.4 costs 2 interval multiplications and 4 number additions.

Summarizing, Step 1.1 — Step 1.4 cost nm interval power computations, nm + 2 interval multiplications,
2 number divisions, 2m + 4 number multiplications and 2m + 5 number additions. In the i-th iteration,
the costs for Step 2.1 — Step 2.4 are:

e Step 2.1 costs 4m number multiplications.

e Step 2.2 costs 2¢m interval power computations, 2¢m interval multiplications and 4m — 4 number
additions (Theorem 4.1.7).

e Step 2.3 costs 2 number divisions, 4 number multiplications and 4 number additions (Theorem

3.2.25).

e Step 2.4 costs 2 interval multiplications and 6 number additions.

Summarizing, in the ¢-th iteration Step 2.1 — Step 2.4 cost 2¢m interval power computations, 2¢m + 2
interval multiplications, 2 number divisions, 4m+4 number multiplications and 4m+6 number additions.
Summing up for i = n—1,...,1 we obtain n?m — nm interval power computations, n?m — nm + 2n — 2
interval multiplications, 2n — 2 number divisions, 4nm + 4n — 4m — 4 number multiplications and 4nm +
6n — 4m — 6 number additions. Finally, Step 3 costs 2 number additions. O

4.2.5 Experimental Results

We compare the mean value forms which were described in the previous sections experimentally at some
classes of random polynomials and input intervals. As the computation of the range of a multivariate
polynomial 1s expensive, we do not report overestimation errors. Instead, we compare the width of the
refined mean value forms and the width of the ordinary mean value form. The cost for evaluating each
mean value form is given in terms of arithmetic floating point instructions. The coefficients of the test
polynomials are uniformly distributed in [—1, 1]. The midpoints of the components of the input interval
vectors are uniformly distributed in [—1, 1], the widths are uniformly distributed in [0,0.1]. The reason
why we use relatively small widths is that otherwise the Horner form or the nested form are preferable, as
will be shown in Section 4.3. In each experiment we report the average over 1000 random polynomials and
input interval vectors. Table 4.2.1 shows a comparison for random polynomials with different numbers
of variables n and monomials m. Each degree vector contains n non—zero components and the degree in
each variable is at most 5.

Accuracy. The intersection with H; leads to a significant improvement of M}EH) and M}EH) compared to
M; respectively Mf, especially if the number of variables is large. In all cases MJ?” 1s more accurate

(s)
than M, My and Mf The accuracy of Mf 1s usually better than the accuracy of M7", but with

increasing n, the difference shrinks. In the last column, M}” is more accurate than Mf

Cost. The successive evaluation reduces the cost of M(H) and M(H) almost by half compared to M;
and Mf respectively if the number of variables is large Otherw1se the costs are comparable. The

evaluation of M“” is only about half as expensive as My, Mf and M“” These observatlons conform

to the complexity considerations in the previous sections. The evaluation of Mf is even a bit
cheaper than M.

Table 4.2.2 shows the same experiment, but this time the polynomials are such that each degree vector
has only 2 non—zero components.

Accuracy. The accuracy is almost independent of the number of variables and monomials in all cases.
Again, M; is significantly more accurate than M7", even if the number of variables is high. The

(s) . . . .
accuracy of M};” 1s between M} and My. The accuracies of M;”, My and MJ(CH) are comparable.
Intersection with H;(X) leads to an improvement of MJ(CH) over M; but not of MJ(CH) over Mf



CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS 164

Cost. In contrast to the previous experiment, the costs of M; and MJ(CH) and the costs of Mf and MJ(CH)
are comparable. As the degree vectors are sparse, the worst case assumptions in the complexity

(s)
considerations in Theorem 4.2.12 and Theorem 4.2.38 are not adequate. Again, My and My~ are
about half as expensive as Mf and MJ?”

4.3 Experimental Comparison

4.3.1 Efficiency and Accuracy for Random Polynomials

In this section we compare the accuracy of Hy, Ny, My, Mf, M and MJ?” experimentally. As the compu-
tation of the exact range of a multivariate polynomial 1s expensive, we compare the widths of the interval
extensions and the width of the Horner form. More precisely, we report the average over 1000 random
polynomials and inputs of

w(F(X))/w(H (X)),
where F' is one of Ny, My, Mg, My or M7".
For the experiments, we use 2 classes of random polynomials and 2 classes of input interval vectors.
e In both classes of random polynomials the number of variables is n = 8, each polynomial consists

of m = 10 monomials and the degree in each variable is at most 5.

— In the first class of random polynomials, all components of the degree vectors are randomly
chosen (Figure 4.3.1,4.3.2).

— In the second class, each degree vector has only two non-zero components (Figure 4.3.3,4.3.4).

e The input interval vectors X are such that w(X;) is randomly chosen from [0, w] for all ¢ where w
s a parameter.

— In the first class of random input interval vectors we fix mid(X;) = 0.5 for all ¢ (Figure

43.1,4.3.3).
— In the second class we fix mid(X;) = 0 for all ¢ (Figure 4.3.2,4.3.4).

It seems that the results of these and several other experiments can be generalized as follows:

e The accuracy of N; is usually slightly better than the accuracy of H;.

o If mid(X;) =~ 0 (Figure 4.3.2/4.3.4) then Hy, Ny, MJ(CH) and MJ(CH) are best. An explanation is that
if mid(X;) = 0 then Hy is equivalent to the quadratically convergent multivariate version of the

(s)
Taylor form. My is only slightly less accurate.

(s)
o If mid(X;) ~ 0 (Figure 4.3.2,4.3.4) then M}~ is best among all mean value forms which are not in-

(=) .
tersected with the Horner form. In particular, M and even M7 are better than M. If all degree
vectors are dense (Figure 4.3.2). and if mid(X;) = 0 then ¢; = 0 and &; f(X1,. .., Xi, ¢iq1, ..., 0n) =
0 for ¢ # n. Hence,

M7(X) = f(0,...,0) + Ho, ¢ (X1, ..., Xn)(Xn —cn)
which explains the good performance of M compared to the bicentered forms.
o If mid(X;) # 0 (Figure 4.3.1,4.3.3) then M}” is more accurate than My, M;", M}~ and M;. If

w(X) is small, then MJ?” is more accurate than Hy and N; because of its quadratic convergence.
If the degree vectors are sparse (Figure 4.3.3) then Mf is better than M3”.



CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS

Dense Monomzials

165

Variables n, Monomialsm || 2,3 | 206 | 44 [ 48 | 85 | 8,10 | 166 | 16,12 |

Flops for M;(X) 124.0 | 197.9 | 500.5 | 878.4 | 2215.9 | 4147.4 | 10087.4 | 19530.9
Flops for M}™(X) 134.2 | 205.7 | 431.8 | 724.0 | 1555.4 | 2808.8 | 6103.0 | 11527.8
Flops for M;"(X) 102.6 | 152.9 | 342.8 | 563.4 | 1321.5 | 2366.3 | 5541.2 | 10442.2
Flops for M} (X) 92.9 | 123.0 | 3004 | 437.3 | 1170.5 | 1941.9 | 5093.0 | 9241.7
Flops for M(X) 169.1 | 265.3 | 622.0 | 1075.5 | 2534.9 | 4686.5 | 10895.3 | 20908.6
Flops for M{"(X) 179.3 | 273.1 | 553.4 | 921.1 | 1874.3 | 3347.9 | 6910.9 | 12905.5
Flops for M;"(X) 155.2 | 231.6 | 574.2 | 944.0 | 2382.7 | 4262.7 | 10493.3 | 19748.4
w(M}"(X))/w(M; (X)) || 0.810 | 0.876 | 0.617 | 0.697 | 0.348 | 0.393 | 0.160 | 0.176
w(M ( N/w(M; (X)) | 0.919 | 0.909 | 0.767 | 0.764 | 0.558 | 0.572 | 0.319 | 0.330
w(MP (X)) /w(My (X)) || 0818 | 0.822 | 0.671 | 0.679 | 0.479 | 0.502 | 0.264 | 0.279
w(M ( )/ w(M; (X)) 0.721 | 0.739 | 0.561 | 0.591 | 0.415 | 0.457 | 0.326 | 0.370
W(M<H>( X))/w(M;(X)) | 0.714 | 0.730 | 0.536 | 0.569 | 0.333 | 0.371 | 0.160 | 0.176
w(Mp (X))/w(M;(X)) || 0.710 | 0.719 | 0516 | 0.532 | 0.323 | 0.347 | 0.168 | 0.183

Table 4.2.1: Comparison of mean value forms for random polynomials with different numbers of variables

and monomials. Each degree vector has n non-zero components and the degree in each variable is at

most 5.

Sparse Monomaials

Variables n, Monomials m || 2,3 | 206 | 44 [ 48 | 85 | 8,10 | 16,6 | 16,12 |
Flops for M;(X) 124.0 | 197.9 | 239.1 | 416.3 | 437.8 | 788.2 | 841.1 | 15325
Flops for M}"(X) 134.2 | 205.7 | 256.6 | 434.3 | 454.3 | 800.7 | 841.7 | 1503.5
Flops for M} (X) 102.6 | 152.9 | 192.7 | 318.6 | 335.8 | 581.4 | 614.9 | 10825
Flops for M} (X) 92.9 | 123.0 | 190.1 | 286.4 | 348.8 | 569.8 | 645.3 | 1101.2
Flops for M;(X) 169.1 | 265.3 | 321.7 | 553.8 | 584.3 | 1041.6 | 1114.0 | 2006.0
Flops for M}"(X) 179.3 | 273.1 | 339.2 | 571.8 | 600.9 | 1054.1 | 1114.6 | 1976.9
Flops for M} (X) 155.2 | 231.6 | 325.7 | 547.8 | 595.8 | 1057.1 | 1117.7 | 2020.3
w(MM (X)) /w(M(X)) | 0.810 | 0.876 | 0.829 | 0.884 | 0.825 | 0.879 | 0.818 | 0.860
w(M ( N/w(Mp (X)) | 0.919 [ 0.909 | 0.935 | 0.927 | 0.938 | 0.935 | 0.944 | 0.941
w(M (X)) /w(My (X)) || 0.518 | 0.822 | 0.859 | 0.850 | 0.867 | 0.866 | 0.878 | 0.875
w(M ( )/ w(M(X)) 0.721 | 0.739 | 0.758 | 0.746 | 0.767 | 0.764 | 0.781 | 0.776
W(M<H>( X))/w(My (X)) | 0.714 | 0.730 | 0.755 | 0.745 | 0.766 | 0.763 | 0.780 | 0.776
w(M7 (X)) /w(Mp(X)) | 0.710 | 0.719 | 0.755 | 0.740 | 0.765 | 0.760 | 0.780 | 0.774

Table 4.2.2: Same experiment as before, but this time each degree vector has only 2 non—zero components.



CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS 166

W(F (X)) I w(Hg(X))

A
45 +
|
O
m
4
|
35 T
O
I
3
0
25 T .
O A
S
A
S
[] A
2 £
/5
15 | A AS VAN AS A\ A
o O
1
0.5 +
> w
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
—_—X— Horner Form (HFM), 449 flops
—t— Nested Form (NF), 206 flops
—O0— Mean Value Form (MFM), 4183 flops
—— Mean Value Horner Form (MHF), 2831 flops
A Successive Mean Value Form (SMF), 2380 flops
—A— Successive Slope Form (SSF), 1949 flops
—— Bicentered Mean Value Form (BMFM), 4749 flops
—a— Bicentered Mean Value Horner Form (BMHF), 3398 flops

—O— Successive Bicentered Mean Value Form (SBM), 4311 flops
Figure 4.3.1: Accuracy for random polynomials with n = 8 variables, m = 10 monomials and degree < 5
in each variable. The degree vectors have 8 non—zero components. The widths of the X; are randomly
chosen from [0, w] and mid(X;) = 0.5 for all i.



16+

14 1

12 1

CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS 167

W(F (X)) I w(Hg(X))

$ W

> W
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
—_—X— Horner Form (HFM), 461 flops
—t— Nested Form (NF), 244 flops
—O0— Mean Value Form (MFM), 4042 flops
—— Mean Value Horner Form (MHF), 2752 flops
A Successive Mean Value Form (SMF), 533 flops
—A— Successive Slope Form (SSF), 621 flops
—— Bicentered Mean Value Form (BMFM), 4444 flops
—a— Bicentered Mean Value Horner Form (BMHF), 3153 flops

—O— Successive Bicentered Mean Value Form (SBM), 611 flops
Figure 4.3.2: Accuracy for random polynomials with n = 8 variables, :m = 10 monomials and degree < 5

in each variable. The degree vectors have 8 non—zero components. The widths of the X; are randomly
chosen from [0, w] and mid(X;) = 0 for all ¢.



22 1

0.8

06 T

04

02 1

CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS

W(F (X)) I w(Hg(X))

A

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
—_—X— Horner Form (HFM), 222 flops
—t— Nested Form (NF), 105 flops
—O0— Mean Value Form (MFM), 794 flops
— Mean Value Horner Form (MHF), 807 flops
A Successive Mean Value Form (SMF), 585 flops
—A— Successive Slope Form (SSF), 572 flops
—— Bicentered Mean Value Form (BMFM), 1069 flops
—a— Bicentered Mean Value Horner Form (BMHF), 1082 flops
—O— Successive Bicentered Mean Value Form (SBM), 1077 flops

168

Figure 4.3.3: Accuracy for random polynomials with n = 8 variables, m = 10 monomials and degree < 5
in each variable. The degree vectors have 2 non-zero components. The widths of the X; are randomly
chosen from [0, w] and mid(X;) = 0.5 for all i.



CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS 169

W(F (X)) I w(Hg(X))

o

| o

25 1

05
> w
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
—_—X— Horner Form (HFM), 207 flops
—t— Nested Form (NF), 98 flops
—O— Mean Value Form (MFM), 650 flops
— Mean Value Horner Form (MHF), 670 flops
A Successive Mean Value Form (SMF), 324 flops
—A— Successive Slope Form (SSF), 363 flops
—— Bicentered Mean Value Form (BMFM), 1000 flops
—a— Bicentered Mean Value Horner Form (BMHF), 1020 flops

—O— Successive Bicentered Mean Value Form (SBM), 881 flops
Figure 4.3.4: Accuracy for random polynomials with n = 8 variables, m = 10 monomials and degree < 5
in each variable. The degree vectors have 2 non-zero components. The widths of the X; are randomly
chosen from [0, w] and mid(X;) = 0 for all ¢.



CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS 170

4.3.2 Global Optimization

In this section we compare interval extensions at the problem of finding the global minimum of a mul-
tivariate polynomial f in a given box A. The problem is solved by a straight forward generalization of
Algorithm 3.6.2 to the multivariate case. In Step 4 of this algorithm, we bisect in a coordinate direction
where the width of X is maximal. Algorithm 3.6.2 is modified slightly in dependence of the interval
extension which is used to bound f(X):

e For M; and Mf the coefficients of the partial derivatives are computed only once and not in every
iteration.

e Instead of Mf (X), M}H)(X) and MJ?” (X)) we use the intervals

[M; (X, ¢!), Hy(eh)]
[M; (X, ¢!), Hy(eh)] N Hy(X)
[M}W(X,C )’Hf(c )]a

where ¢! is as in Definition 4.2.25 respectively Definition 4.2.39. In the case of M“’*, this reduces
the costs approximately by half.

(=)
e Instead of M;(X), M}H)(X), Mz (X) and Mg~ (X)) we use the intervals

[M;(X), Hy(c)]
[M;(X), Hy(e)] 0 Hp(X)
(M7 (X), Hy(e)]

(s)
(M} (X), He(e)],
which give tighter inclusions of the minimum with no additional costs.

The algorithms can be improved if intermediate results such as partially evaluated polynomials are
memorized between the iterations. However, in order to keep the presentation simple we will not make use
of this. In Figure 4.3.5 — 4.3.6 we trace the width of the inclusion of the global minimum in dependence
of the number of executed arithmetic floating point operations. The figures show the average over 1000
random polynomials where each polynomial has m = 5 monomials and the degree in each variable is at
most 5. The search interval A is in all cases the n-cube [—1,1] x --- x [—1,1].

e In Figure 4.3.5 the polynomials have 3 variables and each degree vector has 2 non-zero components.
The computation is stopped after 20 Kflop. The bicentered forms are best in the order M7, M}H),

. (s)
M;. Next comes Ny, which is slightly better than H; and M.

e In Figure 4.3.6 the polynomials have n = 6 variables and each degree vector has 2 non-zero com-
ponents. The computation is stopped after 150 Kﬂop As in Figure 4.3.5, the bicentered forms are
best, but this time M( ) is slightly better than M“’*. Intersection with the Horner form gives a
s1gn1ﬁcant 1mprovement

o In Figure 4.3.7 we repeat the experiment of Figure 4.3.6 but this time the degree vectors are dense.
Here, Ny is clearly best, followed by H; and M}H).

4.3.3 Solution of Systems of Nonlinear Equations

In this section we compare interval extensions at the problem of finding all solutions of a system of
polynomial equations f(«) : IR® — IR" in a box A. The algorithm is a simple bisection and range test
algorithm in the case of H; and N;. Every mean value form gives rise to a Newton operator, where the



CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS 171

Accuracy
1 A
05 1
0.25
0.125 +
0.0625 +
0.03125
0.015625
0.0078125
0.00390625 +
2 4 6 8 10 12 14 16 18
— X Horner Form (HFM)
—t— Nested Form (TF)
—O— Mean Value Form (MFM)
—— Mean Value Horner Form (MHF)
—D— Successive Mean Value Form (SMF)
—A—— Successive Slope Form (SSF)
—— Bicentered Mean Value Form (BMFM)
— Bicentered Mean Value Horner Form (BMHF)
— O Successive Bicentered Mean Value Form (SBM)

Figure 4.3.5: Optimization of random polynomials with n = 3 variables, m = 5 monomials and degree
< 5 in each variable. The degree vectors have 2 non—zero components.



CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS 172

Accuracy
N\ \ N\ﬁ\@\ﬂ\&
4 A
|
Q 0
2
1
05 +
0.25
0.125
Kflop
20 40 60 80 100 120 140 160 180
— X Horner Form (HFM)
—t— Nested Form (TF)
—O— Mean Value Form (MFM)
—— Mean Value Horner Form (MHF)
—D— Successive Mean Value Form (SMF)
—A—— Successive Slope Form (SSF)
—— Bicentered Mean Value Form (BMFM)
— Bicentered Mean Value Horner Form (BMHF)

— O Successive Bicentered Mean Value Form (SBM)
Figure 4.3.6: Optimization of random polynomials with n = 6 variables, m = 5 monomials and degree
< 5 in each variable. The degree vectors have 2 non—zero components.



CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS 173

Accuracy
A W
O—
16
8
4
2
1
05 71
0.25
0.125
0.0625 +
0.03125 +
0.015625 +
Kflop
20 40 60 80 100 120 140
— X Horner Form (HFM)
—t— Nested Form (TF)
—O0— Mean Value Form (MFM)
—— Mean Value Horner Form (MHF)
—D— Successive Mean Value Form (SMF)
—A—— Successive Slope Form (SSF)
—— Bicentered Mean Value Form (BMFM)
— Bicentered Mean Value Horner Form (BMHF)

— O Successive Bicentered Mean Value Form (SBM)
Figure 4.3.7: Optimization of random polynomials with n = 6 variables, m = 5 monomials and degree
< 5 in each variable. The degree vectors have 6 non—zero components.



CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS 174

Jacobian matrix i1s obtained in the same way as the partial derivatives or slopes for the corresponding
mean value form. We are using the Hansen-Sengupta operator [Hansen and Sengupta, 1981], which is
an interval version of the Newton—Gauss—Seidel method.

The bicentered mean value forms are problematic. First, it is not clear which center to use during the
Newton step. Second, for each component of f the optimal centers are usually different, which makes
preconditioning as it i1s used for the other forms impossible. Therefore, as in the case of the ordinary
mean value form, we are using the midpoint for the Newton step and take the optimal centers only for a
range test. Note that this is not possible for the successive bicentered mean value form because here we
have slopes at the optimal centers and not a derivative.

First, we give an algorithm for the simple bisection and range test method. The algorithm terminates
if all solutions are enclosed by interval vectors whose total volume is less then a given constant €. The
volume w*(X) of an interval vector X € TR" is defined as

The volume was chosen as a termination criterion because the sum of volumes of a set of interval vectors
remains unchanged if some element is bisected.

Algorithm 4.3.1 (SBR) [Solving with Bisection and Range Test]

In: f(e) € Iy, ..., 2,7,
A € IF" such that f has only finitely many solutions in A,
celF, e>0.

Out: L= {Z(j) €IF | j=1,...,k}, such that
o {zea|f(x)=0ycUj, 2
o S w20 <

(1) [Initialize.]
(2) [Termination test.]
if Yz w(Z) < e then return L.

(3) [Take largest box.]
X —— an element of £ with largest volume.
remove X from L.

(4) [Range test.]
fori=1,...,n
Y —— overestimation of f;(X).
if 0 ¢ Y goto Step 2.
(5) [Bisect.]
bisect X at the midpoint in a direction where its width is largest into XM and X@.

(6) [Store the sub—boxes.]
L—Lcu{x® x®)
goto Step 2.

Next, we give an algorithm which solves systems using bisection, range test and Newton’s method, see
[Hansen and Sengupta, 1981], [Neumaier, 1990]. The specification of the algorithm is the same as before.

Algorithm 4.3.2 (SBRN) [Solving with Bisection, Range Test and Newton’s Method]



CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS 175

In: f(e) € Iy, ..., 2,7,
A € I such that f has only finitely many solutions in A,
celF, e>0.

Out: L= {Z(j) e I | Jj=1,...,k}, such that
c (zealf(x)=01CU, 2V
o« TE W (W) <.

(1) [Initialize.]
L— {A}

(2) [Termination test.]
if Y.z W(Z) < ¢ then return L.

(3) [Take largest box.]
X —— an element of £ with largest volume.
Remove X from £

(5) [Gradients and range test.]
¢ — mid(X)
fori=1,...,n

(5.1) [Gradients.]

for j=1,...,n do J;; «— overestimation of derivative or slope of f; w.r.t. z; evaluated at X.

(5.2) [Range test.]
Y; «—— overestimation of f;(¢).

if0egVY,+ Z;zl Jij (X; — ¢;) then goto Step 2.

(6) [Solve linear system.]
X — X.

(6.1) [Precondition.]
m «— approximation of mid(J)~!.
J—mJ.
Y «— mY.

(6.2) [Gauss—Seidel iteration.]
fore=1,...,n
@1, Q2 — GDIV(-Y; — Zriz Jij(Xj —¢5), Jig, Xi — ¢i).
Q1 +— (Q1+¢) N X,
Q2 — (Q2+ )N X;. .
if Q1 # 0 and Q2 # 0 then Gy = [Q1, Q2] else G; = 0.

if Q1 =0 and Q2 = 0 then goto Step 2.
Xi — [@1U Q2]

(7) [No bisection if sufficient improvement.]
if whH(X) <0.9wH(X') then £ «—— LU {X}, goto Step 2.

(8) [Bisect.]
ifGy=0foralli=1,...,n then
bisect X at the midpoint in a direction of largest width into X and X®.
else
let ¢ such that w(G;) is maximal.
XY (Xy,. XL G X)),
X — (X1,..,[G, X, .., Xn).
L—rLuf{x®V x®y
goto Step 2.



CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS

The value of J;; in Step 5.1 corresponds to the the partial derivatives or slopes of the chosen interval

extenslon.

The pictures on the following pages show the total volume of the boxes in the list £ of Algorithm 4.3.1
(SBR) and Algorithm 4.3.2 (SBRN) in dependence of the number of executed floating point instructions
at some sample polynomial systems from the literature. The costs of Step 2 for computing the total

volume of all boxes in the list is neglected in both algorithms.

e Brown’s almost linear system:

i+ r+r2+r3+rs+25—6
To+x1+ T2+ x3+2s+25—06
r3+ 1 +x2+r3+24+25—06
s+ +x2+r3+24+25—06

L1X2X3X4L5 — 1

Initial box: [—2,2]°.

There are two solutions within the box. The Jacobian is ill-conditioned at these roots, see [Kearfott,

Il
o o o o o

1987], [Morgan, 1983], [Morgan and Shapiro, 1987]. (Figure 4.3.8)

e Combustion chemistry problem.

A1T2&4 + A2%2 + A321T4 + 421 + 524

bixoxs + boxixs + bazi124 + bazszs + bszs + bgxs + by

a; = —1.697e7 a, = 2.177-107
ag = 0.45 as = —-1.0
by = 4.126-107 by = —8.285-10°
bs = —1918-107 bg = 484

Initial box: [0, 1]%.

There is a unique solution within the box, see [Kearfott, 1987], [Morgan and Shapiro, 1987]. (Figure

4.3.9)

e Robot kinematics problem.

as
by
by
b7

l‘% — T2

l‘i — I3
= 0.b5
= 1.58
= 2.28
= =27

Arzie3 4+ Aszoxrs + Asxy + Agzo + Asza + Aszr + Ar
Agxims + Agzoxs + Arory + Apyxo + Arawg + Ags
Arazers + Arszy + Agsxo

Az + Argzo + Ao

e 4l -1
ity —1
xg + xg —1

2425 -1

Ay = 4.731-1073 A; = —0.3578

Ay = —1637-107 A5 = -0.9338

Ar = -0.3571 As = 0.2238

Ay = 0.2638 Ay = —0.7745- 107!
Az = —0.6022 Ag = 1.0

Ajg = 4.731-1073 Az = —0.7623

A1 = 0.3461

Initial box: [—1,1]®. There are 16 solutions within the box, see, [Kearfott, 1987], [Tsai and Morgan,

1984]. (Figure 4.3.10)

As
As
Ao
A12
A15
AlS

o o o O

5-10%
4.107
73

o O O o o o o ©

—0.1238
1.0
0.7623
—0.6734
0.3578
0.2238



CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS 177

(s)
In the first two examples, M and M}~ are clearly best. In the robot kinematics problem N; is best,
followed by Hy, at least after the first 50 Mflops. At this time the inclusion of the solutions is still not

very precise.



128 A

05 1

0.03125

0.00195312 +

0.00012207 +

7.62939e-06 T

4.76837e-07 +

2.98023e-08

1.86265e-09 T

1.16415e-10 ¢

CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS 178

Accuracy
¥
1
Q
\ \.
@
0
q
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ » Kflops
1000 2000 3000 4000 5000 6000 7000 8000 9000
—_—%— Horner Form (HFM)
—t— Nested Form (NF)
—O0— Mean Value Form (MFM)
— Mean Value Horner Form (MHF)
—D— Successive Mean Value Form (SMF)
—A— Successive Slope Form (SSF)
—— Bicentered Mean Value Form (BMFM)
— Bicentered Mean Value Horner Form (BMHF)

Figure 4.3.8: Brown’s almost linear system, 5 variables. There are two solutions within the box. The
Jacobian is ill-conditioned at these roots.



05 1

0.03125

0.00195312

0.00012207

7.62939%-06 T

4.76837e-07 +

2.98023e-08

1.86265¢-09

1.16415e-10

CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS

Accuracy

T

+
+
407
4.7
I
Y
S
+

50 100 150 200

Horner Form (HFM)

Nested Form (NF)

Mean Value Form (MFM)

Mean Value Horner Form (MHF)

Successive Mean Value Form (SMF)
Successive Slope Form (SSF)

Bicentered Mean Value Form (BMFM)
Bicentered Mean Value Horner Form (BMHF)

250

179

Kflops

Figure 4.3.9: Combustion chemistry problem, 4 variables. There is a unique solution within the box.



CHAPTER 4. INCLUSION OF THE RANGE OF MULTIVARIATE POLYNOMIALS 180

Accuracy
b\
128 A
32 ¢
8
2
05 1
0.125 +
0.03125 +
0.0078125 +
0.00195312 +
0.000488281 +
0.00012207 +
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ » Kflops
5000 10000 15000 20000 25000 30000 35000 40000 45000
—_—%— Horner Form (HFM)
I — Nested Form (NF)
—O0— Mean Value Form (MFM)
—— Mean Value Horner Form (MHF)
—D— Successive Mean Value Form (SMF)
—A— Successive Slope Form (SSF)
—— Bicentered Mean Value Form (BMFM)
— Bicentered Mean Value Horner Form (BMHF)

Figure 4.3.10: Robot kinematics problem, 8 variables. There are 16 solutions within the box.



Chapter 5

Isolating Boxes for Systems of
Nonlinear Equations

In this chapter we study the following problem: Given a differentiable function f : R® — R" and a box
B € IR, find disjoint sub-boxes XV ... X") of B such that

e every solution of f in B is contained in some X(i),
e every X9 contains a unique solution of f,

e starting from X(i), an iterative method converges to the unique solution of f in X for every 1.

The boxes X(l), .. .,X(T) are called isolating boxes for the solutions of f in B.

Finding isolating boxes for the solution of systems of nonlinear equations is a very important problem
in scientific computing, constraint logic programming, geometric modeling, engineering, etc. Various
methods for this problem based on the Krawczyk operator [Krawczyk, 1969] and the Hansen—-Sengupta
operator [Hansen and Sengupta, 1981] have been described for example in [Moore, 1966] [Hansen, 1968],
[Krawczyk, 1969], [Moore, 1977], [Moore and Jones, 1977], [Hansen, 1978a), [Hansen, 1978b], [Jones,
1978], [Moore, 1978], [Moore, 1979], [Jones, 1980], [Krawczyk, 1980a], [Moore, 1980a], [Moore and
Kioustelidis, 1980], [Moore, 1980b], [Qi, 1980], [Wolfe, 1980], [Hansen and Sengupta, 1981], [Qi, 1981],
[Moore and Qi, 1982], [Qi, 1982], [Rump, 1982], [Hansen and Greenberg, 1983], [Krawczyk, 1984], [Rump,
1984], [Krawczyk, 1985], [Shearer and Wolfe, 1985b], [Shearer and Wolfe, 1985a), [Krawczyk, 1986b],
[Krawczyk, 1986¢], [Krawczyk, 1986a), [Rump, 1988], [Zuhe, 1988], [Frommer and Mayer, 1989], [Kear-
fott, 1990a), [Kearfott, 1990b], [Neumaier, 1990], [Dimitrova, 1993], [Hong and Stahl, 1994b] and many

others.

The algorithms considered in this chapter consist of three main conceptual steps:

Prune: Reduce the search space by eliminating regions which do not contain a solution.
Test: Decide whether a box contains a (unique) solution.

Bisect: Divide the search space and work on the sub—regions separately.

In Section 5.1, 5.2, 5.3 we give conditions for the existence, uniqueness and non—existence of solutions of f
in a box X respectively. The key idea 1s to enclose f by a linear interval function i.e. a linear function with
interval coefficients, and derive corresponding properties of the linearization. The non—existence condition
in Section 5.3 is new. In Section 5.4 we introduce the notion of linear tightening. Linear tightening is an
operator which serves for both pruning and testing. Unfortunately the conditions for the uniqueness and
existence tests are too strong and are usually not satisfied. This problem is solved by preconditioning,
which was introduced for systems of linear interval equations already in [Hansen, 1965]. In Section 5.5
and Section 5.6 we present two strategies for linear tightening, the linearized tightening operator, and

181



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 182

the Hansen-Sengupta operator [Hansen and Sengupta, 1981]. The Hansen-Sengupta operator applies
preconditioning whereas the linearized tightening operator does not. Therefore the linearized tightening
operator is cheaper but less powerful. The main properties of both operators are proved in an elementary
geometric way.

Usually the operators are applied repeatedly until the (unique) existence test succeeds. In Section 5.7 we
generalize the existence condition of the Hansen—Sengupta operator to iterations of the Hansen—Sengupta
operator. A similar generalization of the uniqueness condition is not possible. In Section 5.8 we give
conditions under which a sequence of boxes generated by iteration of the Hansen—Sengupta operator
converges, some of them are new. Termination of a general algorithm for finding isolating boxes for
the solutions of systems of nonlinear equations is studied in Section 5.9. A particular problem arises if
a solution lies on the boundary of a box and we present a new method for resolving this difficulty by
using results of Section 5.7 and 5.8. In Section 5.10 we review a method for finding all solutions of a
system of polynomial equations when the search space 1s unbounded. Finally, in Section 5.11 we give an
experimental comparison of two nonlinear equation system solvers, which indicates that combining the
Hansen—Sengupta operator with the linearized tightening operator gives often a speed up.

5.1 Existence of Solutions in a Box

In this section we give a condition for the existence of solutions of a continuous function f : R" — R” in
a box X € TR". Further, we introduce some notations which will be used in the following sections.

Definition 5.1.1 (Upper and Lower i-Face) The upper and lower i-face Xm, X9 of X € TR are
defined as

D= (Xy, o Xis, X X, - X))
) (X1, Xic1, Xy Xig, -, Xn).

f
l

Further,

xO - xOyx® g
The following Theorem is due to [Miranda, 1940].

Theorem 5.1.2 (Existence of Solutions) If there exists a permutation

:{l,...,n} —{1,...,n}

such that ' '
fila)fi() <0 forall ae X" pexT) =1 p

then f has a solution in X . O

Theorem 5.1.2 can be directly applied by evaluating an interval extension of f on )(m and on X% for
all i, see for example [Moore and Kioustelidis, 1980]. In the following, we use a mean value form of f.
First, we give some basic definitions which will be used throughout the chapter.

Definition 5.1.3 (Linear Interval Function) A function G : R" — TR is called linear interval func-
tion if there exists y € R, ¢ € R"™ and A € IIR” such that

Ge)=y+ A(x —¢). O

Note that a linear interval function is not linear. For example, let G(z) = [—1, 1]z, then

G(1) + G(=1) = [-2,2] £ 0 = G(0).



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 183

However, a linear interval function can be considered as a set of (real) linear functions. Let g : R" — R
be a linear function. We write ¢ € GG if there exist y € R, A € IR" and a € A such that

G®) = y+ A(®w—c) and
g() = y+a(x—c)

for all # € R™. Note that
G(w) ={g(x) | g € G}.

In the following let G be a linear interval function and let f: R" — R.

Definition 5.1.4 (Interval Linearization) G is called interval linearization of f in X if there exist
c €R" and A € TIR" such that
Ga) = fle) + Az — ¢)

and

f(®) e G(w) forall ® € X. DO

Note that in Definition 5.1.4 it is not required that ¢ € X. Hence, if GG is an interval linearization of f
in X, then G is an interval linearization of f in ¥ for all Y C X.

Definition 5.1.5 (Variety of Interval Function) The variety of G is defined as

Z(@)={xcR" |0€G(x)}. O

Notation. For an interval X € TR" we write G(X) to denote the set
{y | y € G(x) for some =€ X}.

Further, we write X ~ 0 if & ~ 0 for all ® € X, where ~ € {>,<,>,<}. O
Note that if G(®) = y+ A(x — ¢) then

G(X)=y+ A(X —¢).
Definition 5.1.6 (Face Enclosed Linear Interval Function)

o (G is weakly X@ enclosed if

(G(X@) > 0 and G(X™) < o) or (G(X@) <0 and G(X™) > o) .

o (i is strongly X@ enclosed if

(G(X2) > 0and GXD) <0) or (G(XD)<0and GXD)>0). 0

Due to the natural embedding of R into IR, a (real) linear function is a special case of linear interval
function. Therefore, all definitions and properties of linear interval functions carry over to linear functions.

In particular, if G is X9 enclosed then g 1s X9 enclosed for all g €.

Figure 5.1.1 illustrates Definition 5.1.6 of face enclosedness. An easy way to understand this notion is
to think of a sandwich, where the bread is X% and the ham is Z(G). G is x@ enclosed, then the

variety of G in X is enclosed between X and X%, In the upper two pictures, the variety (shaded
area) of the linear interval function

G(l‘l, l‘z) = 04—|— [04, 05]1‘1 + [03, 04]l‘2



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 184

is displayed. In the left graph G is strongly XD enclosed where X = ([-2.3,1.0],[—1.5,1.0D)", in the

right graph G is weakly (but not strongly) X@ enclosed where X = ([-2.0,0.5],[—2.8,2.0])". In the
lower left graph the variety of

G(x1,25) = 0.24[0.2,0.35]21 + [—0.15,0.2] 25

and the box X = ([-2.5,1.5],[—1.5,1])" is displayed. As one sees, GG is strongly XD enclosed and there

exists no X such that G would be X2 enclosed. In the lower right graph, the variety of

G(x1,25) = 0.3+ [=0.15,0.3]21 4+ [~0.25, 0.15] x5

is displayed. Apparently there is no X and ¢ such that G would be X@ enclosed. The following lemma

gives an equivalent condition for strong X9 enclosedness.

Lemma 5.1.7 (Strong Face Enclosedness) G is strongly XD enclosed iff 0 ¢ G(Xm), 0¢ G(XQ)
and 0 € G(X). O

Proof.

“=” Assume G is strongly X@ enclosed. By Definition 5.1.6, 0 ¢ G(Xm), 0¢ G(X@) It remains to
show that 0 € G(X). Let ¢ € G and z; € X; for all j # ¢ arbitrary but fixed. Note that

gz, Xy en)g(@, ., Xy w,) < 0.

P

As g is continuous, there exists #; € X; such that g(#) = 0. Hence, 0 € G(«) and therefore
0eG(X).
“<” Assume 0 ¢ G()(_(T)), 0¢ G(X@) and 0 € G(X). From the continuity of G it follows that all

elements of G(X(i)) have the same sign and all elements of G(X@) have the same sign. It remains

to show that the sign of G(Xm) and G(XQ) is different. As 0 € G(X) there exists ¢ € G and
x € X such that g(#) = 0. From the linearity of ¢ it follows that

g(wr, . Xy mn)g(m, o X m,) < 0.

Hence, the sign of G(X(i)) and G(X@) is different and G is X enclosed. O
We generalize the definitions of a linear interval function to tuples.

Definition 5.1.8 (Linear Interval Function) A function G : R" — TR" is called linear interval func-
tion if G is a linear interval function for i = 1,... n, i.e. if there exist

Yi,--sYn € ]Ra
cl,...,¢c, € R?
Ay, ... A, € Imvn

such that
Gi()=yi+ Ai(® —¢;) for i=1,...,n. O

In the following let G be a linear interval function. We call the matrix
A=(A1,..., 4,7

coefficient matrix of G.



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 185

X2 X2
A A
2 5
: > > xy
2 2 P 2
2 -2
G(l‘l, l‘z) =04 + [04, 05]l‘1 + [03, 04]l‘2
X2 X2
A A
2 2
> X > X
2 2 2 2
-2 -2
G, 29) = 0.24[0.2,0.35]21 + [—0.15,0.2] 2o G, 29) = 0.3+ [—0.15,0.3]2, 4 [<0.25,0.15]2s

Figure 5.1.1: Tlustration of Definition 5.1.6.



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 186

Definition 5.1.9 (Interval Linearization) G is called interval linearization of f in X if there exist

ci,...,c, € R
A, A, € IR™"

such that for all 1
Gi(®) = file)) + Ai(m — ¢;)

and

fi(z) € Gi(x) forall € X. D

Definition 5.1.10 (Variety of Interval Function) The variety of G is defined as
Z(G)={xzcR" | 0€ Gi(x) forall i=1,...,n}. O
Definition 5.1.11 (G Orthogonal in X) G is weakly respectively strongly orthogonal in X if there

exists a permutation

:{l,...,n} —{1,...,n}

such that G; is weakly respectively strongly X") enclosed for all i. O

Now, Theorem 5.1.2 can be specialized as follows:

Theorem 5.1.12 (Existence of Solutions) If there exists an interval linearization G of f in X which
is weakly orthogonal in X, then f has a solution in X. O

Proof. Let G be an interval linearization of f in X which is weakly orthogonalin X. Let 7 : {1,... ,n} —

{1,...,n} be a permutation such that G; is X)) enclosed for all i. As fi(x) € Gi(w) for all ® € X | it
follows that ' '
fila)fi() <0 forall ae X" pexT) -1  p

and f has a solution in X by Theorem 5.1.2. O

5.2 Uniqueness of Solutions in a Box

In this section we give a condition for the uniqueness of solutions of a differentiable function f : R" — R"
in a box X € TR". The main result is that if there exists a strongly orthogonal linearization G of f in
X where the coefficient matrix is a Jacobian, then f has at most one solution in X.

Definition 5.2.1 (Jacobian Matrix) 2 € IR"*" is a Jacobian of f in X if

f/(w) e forall z€ X. 0O

Definition 5.2.2 (Regular Interval Matrix) An interval matrix 2 is regular, if every a € 2 is regu-
lar. O

Theorem 5.2.3 (Regular Jacobian Implies Uniqueness) If there exists a regular Jacobian 2 of f
in X, then f has at most one solution in X. O

Proof. Assume 2 is a regular Jacobian of f in X and assume f(x) = f(y) = 0 for some &,y € X.
According to the mean value theorem

f(x) = fy) +a(z —y)

for some a € 2. Hence a(w — y) = 0 and from the regularity of a it follows that @ = y. O



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 187

Theorem 5.2.4 (Linearization by Jacobian) Let % be a Jacobian of f in X and let ¢, ..., ¢, € X.
Let
Gi(e) = file))+ Aj(e—¢) for i=1,... n.

Then G is a linearization of f in X . O

Proof. Let ¢;, A;, G; as in Theorem 5.2.4. Let @ € X and ¢ € {1,...,n} arbitrary but fixed. We have
to show that f;(#) € G;(®). According to the mean value theorem there exists a; € A; such that

fi(x) = file;) + ai(x — ).
Hence

fi(z) € fi(ei) + Ai(® — ¢;) = Gi(=x). D

In the remainder of the section we derive a criterion for the regularity of an interval matrix. Let
G(z) =y+ A(x — ¢)

be a linearization of f in X.

Lemma 5.2.5 If G is weakly X@ enclosed then for all ¢ € G and for all
(T1, ooy i1, Tig1, -y n) € (X1, ooy X1, Xig1y oo Xn)

there exists x; € X; such that g(x1,...,2;,...,2,) = 0.0
Proof. Lemma 5.2.5 can easily be verified at Figure 5.1.1. Assume G 1s weakly X@ enclosed. Let ¢ € G
and z; € X; for all j # ¢ arbitrary but fixed. Let A : R — R be defined as

h(as) = g(Z1, .. @iy, &n).
As g 1s weakly X@ enclosed, it holds that

sign(h(X2)) sign(h(X,)) < 0.
From the continuity of & it follows that there exists #; € X; such that h(z;) = 0 and hence g(x) = 0. O

Corollary 5.2.6 (Enclosed Function Intersects all other Faces) IfG is WeaklyX@ enclosed, then
for all g € G and for all j # ¢

0€g(X9), 0eg(xL
and thus

0€GXY), 0ea(x¥). o
The following lemma states an important property of the coefficient matrix of an enclosed function.

Lemma 5.2.7 If G is strongly X@ enclosed then

mig(A;)w(X;) > Y mag(A;)w(X;). O
J#t

Proof. Assume G is strongly X@ enclosed and let @ € A arbitrary but fixed. we have to show that

laslw(X;) > > Jaj|[w(X;).

J#



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 188

We consider the case a; > 0, the case a¢; < 0 is similar. According to Lemma 5.2.5 there exists ; € X;
such that

DX+ > aj X+ +y=0. (5.2.1)
e Eh
Assume
a;w(Xi) <Y la|w(X;),
j#i
1.e.

aw(Xi) < Y ai(X;— X))+ Y a(X; — X)),
Then there exist 2; € Xj, j # ¢ such that

aid; — X;) = Y aj(@;— X))+ Y aj(@; — X)) (52.2)
Adding (5.2.1) and (5.2.2) we obtain
Zaji‘j +aX;+y=0
J#t
re. 0 € g(X@), which contradicts the assumption that ¢ is strongly X@ enclosed. O

From Lemma 5.2.7 it follows immediately that if 0 € A; then there is no X € TR" such that G is X@
enclosed. This explains the observations in the second row of Figure 5.1.1. In the following let

GZ(:B) = fl(cl) + AZ(:B — CZ'), 1=1,...,n
be a linearization of f; in X and let % = (A4,..., A,)" € IR**".

Theorem 5.2.8 (Strong Orthogonality Implies Regularity) If G is strongly orthogonal in X, then
2 is regular. O

Proof. Assume G is strongly orthogonal in X. For simplicity we reorder the GG; such that G is strongly

X@ enclosed for all i. We have to show that every a € 2 is regular. Hence, let a € 21 arbitrary but fixed.
According to Lemma 5.2.7 it holds that

|ai; [w(X;) > Z la;;|w(X;) forall i.

J#i
Hence, the matrix
CllylW(Xl) CllyzW(Xz) N alan(Xn)
ClzylW(Xl) CllyzW(Xz) N azan(Xn)
an 1W(X1) anow(X2) ... anaw(Xy)

is strictly diagonally dominant and hence regular. Thus,

ay 1 ay 2 c.. A1 n
az 1 ay 2 ... QG2n
apn 1 Ap 2 N/ P )

is also regular. O

Corollary 5.2.9 (Orthogonality Implies Uniqueness) If2l is a Jacobian of f in X and G is strongly
orthogonal in X | then f has a unique solution in X. O

Proof. Follows from Theorem 5.1.12, Theorem 5.2.3 and Theorem 5.2.8. O



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 189

X x / X
/
/
Z(92) 2(g1) Z(g1)
Z(g2) Z (gz)/
g not face digjoint from X, g face disjoint from X, g face disjoint from X,
g not orthogonal in X g not orthogonal in X g orthogonal in X

Figure 5.3.1: Hlustration of face disjointness and orthogonality.

5.3 Non—Existence of Solutions in a Box

In this section we give a new condition for the non—existence of solutions of a continuous function f :
R"™ — R" in a box X € IR".

Definition 5.3.1 (G Face Disjoint from X) A linear interval function G : R" — TR" is face disjoint
from X if for every face T of X there exists i € {1,...,n} such that
ZGi)NT =0.0

Obviously, if G is strongly orthogonal in X then G is face disjoint from X . Now, the main non—existence
theorem of this section is as follows:

Theorem 5.3.2 (Non—Existence of Solutions in a Box) Let G be a linearization of f in X. If G
is face digjoint from X but not strongly orthogonal in X then f has no solution in X. O

Theorem 5.3.2 is new. Before going into details of the proof, we give an illustration of the notions face
disjointness and orthogonality in Figure 5.3.1. For simplicity, we consider only real linear functions g
there. Figure 5.3.1 motivates the following Theorem, where g : R" — R" is a linear function:

Theorem 5.3.3 (Non—Existence of Solutions in a Box) Assume g is face disjoint from X but g is
not strongly orthogonal in X. Then g(®) #0 for allx € X. O

For the proof of Theorem 5.3.3 we need some preparation. First, we show that if some g; is not strongly

X9 enclosed for any j, then already one half of X can not contain a solution of g. Next, we show that
if g is face disjoint from X but not strongly orthogonal in X, then the halves corresponding to such g}s
together cover X entirely.

Definition 5.3.4 (Half Box) Let U,V be non-opposite faces of X. The set H(U, V'), is defined as
HU,V)={au+(l—aw |[0<a<l,ucU,veV}. O

From the convexity of X it follows that H(U, V) C X. Geometrically, H(U, V') is the half of X spanned
by U and V| see Figure 5.3.2. In the following let g(#) = y + ax be a linear function.

Lemma 5.3.5 (No Solution in Half Box) Let U,V be non—opposite faces of X. If
ZnU=0, Zgnv =10

then
Z(g)NHU,V)=90.0



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 190

H(U,V)

Z(g)

\4

Figure 5.3.2: Hlustration of Lemma 5.3.5

Proof. Let U,V be non—opposite faces of X and assume Z(g) NU =0, Z(¢9) NV = 0. AsU,V are
not disjoint and g(®) # 0 for all ® € U U V| it follows that ¢ has the same sign on U and V. Let
x € H(U,V) arbitrary but fixed. By Definition 5.3.4 there exists 0 < o < 1 and w € U, v € V such
that

x=au+(1—a)w.

Thus,

Y+ Zai (ozui +(1- oz)vi)
= a (y—i—Zaiui) +(1—«w) (y—l—Zawi)

= ag(u)+ (1 - a)g(v)
# 0.0

An illustration of Lemma 5.3.5 is given in Figure 5.3.2

glau+ (1 —a)v)

Lemma 5.3.6 (El_ement Test for Half Box) Let U,V be an i- respectively j-face of X, i # j and
assume X; # X;, X; #X,;. Let ® € X and let

- (%—XZ)/(YZ—XZ) if U:X%
"o Xi—2)/(Xi - X;) it U=XxD

R (%—Xj)/(yj—ij) if V:X%
T —a)/(X—x,) it v=x0)

Then ® € H(U,V) if and only ife; +¢; < 1. O
Proof. Let i # j arbitrary but fixed and assume X; # X, X; # X ;. We give a proof for the case
U=x9 v=x0
The other cases can be treated analogously. Assume & € X. According to Definition 5.3.4
x € H(X@, Xm)
if and only if there exist u € X@, v E X9 and 0 < a < 1 such that ® = au + (1 — a)v, or equivalently

r, = aX;+(1—-a)y
r; = ozuj—i—(l—oz)yj.



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 191

As v; € X, u; € X; this is equivalent to

Li

IV IA
|

Ly

By some formula manipulation we obtain

(vi — X))/ (X; — X)) >

(zj = Xj)/(X; - X;) < o,
(vi —X)/(Xi—X;) £ 1-a
(X —2)/(X; -X;) £ a

and thus
e; + €; < 1.0

The following lemma is trivial but will be useful later.

Lemma 5.3.7 (Condition for x® £ x9) gr Z(g) N X # 0 and either Z(g) N XD =0 or Z(g)yn
X% = ¢, then X # x12,

Proof. Assume Z(¢9) N X # 0 and X0 = X9 Then X = X = X and therefore Z(9) NX® £,
ZnxD+£9. o

Lemma 5.3.8 (Cycle Implies Non—Existence of Solutions) Let 2 < m < n and let
C:A{L...,omy—{1,... ) n}
be injective. Let U, V) be opposite C(i)-faces of X fori=1,...,m, ie.
(UH, vy = (xC0O) xEhHi

and let
{hla"'ahm} g {gla"'agn}'

If
o Z(h;) is digjoint from U and VU fori=1,...,m—1 and

o Z(hp,) is disjoint from U™ and vV
then g(x) #0 for allx € X. O

Proof. Let (, h;, U(i), V(i),i =1,...,masin Lemma 5.3.8. If Z(h;) N X = () for some i, then obviously
g(x) # 0 for all ® € X. Hence assume Z(h;) N X # 0 for all i. As every ((i)-face of X is disjoint from
some Z(h;) it follows from Lemma 5.3.7 that X ;) # X, ;) for all 4.

According to Lemma 5.3.5 there exists no solution of g in
m—1 ) )
X =W viryurwt™, vy,
i=1
It remains to show that X C X. Let & € X arbitrary but fixed. Let

- K v — i () = x ) (&) — x e
[ (5= X (T = ) it U = XD, y10 4
(Xeny — e/ Koy — Xey) if Ul = x) oy - x@)



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 192

for i =1,...,m. According to Lemma 5.3.6 ® ¢ A if and only if

1
1 (5.3.1)

e1+ (1 —eo)
62—|—(1—63)

>
>
em+(1_61) > 1.

Summing up all inequalities in (5.3.1) we obtain m > m, i.e. the inequalities are inconsistent and therefore
zxe k.0

Proof of Theorem 5.3.3. Assume g is face disjoint from X but g is not strongly orthogonal in X. If
Z(g;) N X = 0 for some g¢; then obviously Z(g) N X = . Thus, in the following assume Z(g;) N X # 0
for all i. As g is face disjoint from X, there exists

e XM x1 x x@ o xt) xth g g

such that
Zlp(THNT =0

for all faces T of X. Note that according to Lemma 5.3.7 no two faces of X are equal. Let G be an
(undirected) graph whose set of vertices V is

V={gi|i=1,...,n}
and whose set of edges £ is o
E={xY|j=1..n}
where X4 is an edge between the nodes gp(Xm) and @(X@) If
A(X V) = p(X1) = g,

for some 1, j thgl gi 1s strongly X@ enclosed and by Corollary 5.2.6 ¢(T') # ¢; for all T # Xm, x),
Tn this case X is an edge between g; and itself and g; is an isolated vertex in G, i.e. no edge except

XY s connected to gi- As g 1s not strongly orthogonal in X | not all vertices are isolated. The number
of non-isolated vertices and edges between non-isolated vertices i1s the same, hence there exists a cycle
consisting of m > 2 vertices in G. Let

C:A{L...,omy—{1,... ) n}

be injective and {hy,..., hm} C {g1,...,gn} such that

XL xEE xlm-ny)  x &)

m — hl
is a cycle. Let U(i), V) be the ((i)-faces of X such that
e h; is disjoint from U and VUt for = 1,...,m—1and
e h,, is disjoint from U™ and VD,

Now, an application of Theorem 5.3.8 completes the proof. O

In order to prove Theorem 5.3.2, we have to generalize Theorem 5.3.3 to linear interval functions. The
following observation is useful therefore.

Lemma 5.3.9 If G is face digjoint from X and not strongly orthogonal in X | then g is face disjoint
from X and not strongly orthogonal in X for all g € G. O



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 193

Proof. Assume G is face digjoint from X and not strongly orthogonal in X and let g € G arbitrary
but fixed. Obviously g is face digjoint from X. Assume g is strongly orthogonal in X. Then there

exists a permutation 7 such that ¢; is strongly X)) enclosed and by Corollary 5.2.6 Z(g;) intersects
)((”(j)),)(M for all j # i. Therefore Z(G;) intersects )((”(j)),)(M for all j # i. As G is face

digjoint from X it follows that Z(G;) is disjoint from X(”(i)), XM, hence G is strongly orthogonal in
X by Lemma 5.1.7, which contradicts the assumption. O

Lemma 5.3.10 If G is face digjoint from X and not strongly orthogonal in X then 0 ¢ G(X). O

Proof. Let G be face digjoint from X and not strongly orthogonal in X. Assume to the contrary that
0 € G(X). Then there exists g € G and @ € X such that g(«) = 0. But according to Lemma 5.3.9 g is
face digjoint from X and not strongly orthogonal in X and therefore g(#) # 0 for all ® € X by Theorem
5.3.3. 0

Now the proof of Theorem 5.3.2 is straight forward.

Proof of Theorem 5.3.2. Let G be a linearization of f in X and assume G 1s face disjoint from X
but not strongly orthogonal in X. Then 0 ¢ G(X) by Lemma 5.3.10, hence f(®) Z0forall®x € X. O

5.4 Linear Tightening

In this section we introduce the notion of “linear tightening”. Linear tightening is an operator which
takes a linear interval function G and a box X and shrinks the box in one coordinate direction optimally
such that no solution of G in X gets lost thereby. Linear tightening is illustrated at two examples in
Figure 5.4.1. From left to right, linear tightening is first applied in vertical direction (middle graph) and
then horizontally (right graph). Note that in the second example horizontal tightening did not give any
improvement. From this picture one can see already that after having applied linear tightening in both
coordinate directions, no more reduction can be achieved by further tightening steps. One also observes
that it does not matter whether we tighten first horizontally and then vertically or vice versa. Further, a
reduction can be achieved only if Z(G) is disjoint from some face of X. Note that in the second example
vertical tightening gave a simultaneous reduction on both faces of X. As will be shown in this section,
linear tightening in some other direction will not give a further improvement in such a situation.

5.4.1 Elementary Properties of Linear Tightening
Throughout this section let G : R™ — IR be a linear interval function and let X € IR".

Definition 5.4.1 (Linear Tightening) The function
tight : TR" x (R™ — IR) x {1,...,n} — IE}
is defined as o
tight(X, G, j); = { Hz,; e X;|0€ G())?l, oz XN leflsje.#DZ

In the following we implicitly extend all interval functions to empty interval arguments such that if some
argument is empty, then the function value is also empty.

Theorem 5.4.2 (Linear Tightening Preserves Solutions) Let Y = tight(X, G, j). Then
ZG)NX =Z(G)NnY. O
Proof. Let j € {1,...,n} arbitrary but fixed. Let Y = tight(X, G, j) and let ® € X such that 0 € G(x).

Assume # ¢ Y. As X; = Y; for all ¢ # j it holds that #; € Y;. From Definition 5.4.1 it follows that
0 € G(@), which is a contradiction to the assumption 0 € G(#). D

The following corollary gives a condition when linear tightening does not give an improvement.



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 194

Figure 5.4.1: Illustration of linear tightening. From left to right, tightening is first applied vertically and
then horizontally.

Corollary 5.4.3 (Face Condition for Linear Tightening) Let X # 0 and Y = tight(X,G,j).
Then

=X, iff 0eG(xY)

- ()
;=X iff 0eG(xY) o

[~ <l

Next, we establish a connection between linear tightening and face enclosedness.

Corollary 5.4.4 (Linear Tightening and Strong Face Enclosedness) Let Y = tight(X,,j) #
0 such that Y; C int(X;). Then G is strongly XY enclosed. O

Proof. Follows from Corollary 5.4.3 and Lemma 5.1.7. O

Definition 5.4.5 (Generalized and Hull Division) The function gdiv : TRy x TRy x TRy — P(R) is
defined as
gdiv(iN, D, X)={r e X | n=dz for some n € N,d € D}.

The function hdiv : IRy x IRy x TRy — IRy is defined as
hdiv(N, D, X) = [gdiv(N, D, X)]. O
Note that if 0 € D then gdiv(N, D, X) = hdiv(N, D, X) = N/D N X. The following theorem shows how
to evaluate the linear tightening function efficiently.
Theorem 5.4.6 (Algorithm for Linear Tightening) Let G(x) = y + A(x — ¢). Then
. L X; ifj 4
tlght(Xa Ga])z — { e + hle(—R, Ai, Xz _ Ci) else,

where
R= y—I—ZAk(Xk — Ck). O
ki



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 195

Proof. Let G, R as in Theorem 5.4.6. We have to show that

[{l‘Z € X; | 0€e G(Xl, R T ,Xn)}] = ¢ —I—hdiV(—R,Ai,XZ' — Ci)~

M, € X | 0€ G(Xy, ...z, X))

= [z €eX; | 0€ Ai(w; —¢) + R}
[{z; € X; | a;j(x; —¢;)+r =0 forsome r € R a; € A;}]
e +[{e, € Xi—e | —r = a;x; for some r € R, a; € A;}]
= ¢+hdiv(—R, A;, X; —¢;). O

Let Y = tight(X, G, j) # 0. Geometrically it is easy to see that if ¥; C int(X;), then G is strongly x@

and weakly YY) encl_osed. By slightly enlarging Y in its j-th coordinate direction we can achieve that
G is also strongly Y enclosed. Therefore, we define the following modification of linear tightening:
Definition 5.4.7 (Linear é—Tightening) For all § > 0 the function

tights : TR x (R" —IR) x {1,...,n} —IR"
1s defined as

, o tight(X, G, j); ifj#1i
tights (X, G, j); = { (tight(X, G, )i + [, 6]) NX; else. O

Now, we consider iterated application of linear tightening steps.
Definition 5.4.8 (Reduction, Path) Let X, Y € IR". We write
x %y respectively X ﬂm Y
if
Y = tight(X, G, j) respectively Y = tights(X, G, j)
and say X was (6—)reduced toY by G in direction j. Let

p* = <(Gi1’j1)a(Gi2aj2)a"'a(Gimajm)>
8 = {b1,82,...,6m)
where i¢,jo € {1,...,n}, 8 > 0 and G;, is a linear interval function for all £ = 1,... m. Then p* is

called path. The {-th component (G;,, ji) of of p* is denoted by p,. We write

x2vy respectively X LY

if
X 2 Iy respectively X Lél TP

m

Further, we write

X L respectively X Lg*
to denote the uniquely defined Y such that X A Y respectively X Lg* Y. O
Notation. Let 6" = {61,...,6y) and let § € R. For ~€ {=,<, >, <, >} we write §* ~ ¢ if §; ~ ¢ for all
1=1,...,m.

For a single linear interval function G it does not matter in which order linear tightening steps are applied.
At the end of such a tightening sequence we always obtain the smallest box in each coordinate direction
where tightening was applied:



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 196

Theorem 5.4.9 (Order Independence of Tightening Steps) Let
P =G | t=1,....m)

and let X LY. Then for all 1
v X; ifie{ji,. .., dm}
T Has € Xy |0€G(X1,...,l‘i,...,Xn)}] else. O

Proof. Let p* as in Theorem 5.4.9, let X A Y and let Y such that for all ¢

o X, ifi¢ (e jm)
! [{z; € X; |0€G(X1,...,l‘i,...,Xn)}] else.

Further, let
X="y Iy 2  Immy_vy.

e We show that ¥ C Y, ie. Y; CY; for all i. Let i arbitrary but fixed. If i & {j1,...,jm} then
Y; = X; = Y;. Otherwise, let £ such that ¢ = j;. Then

;i € 'Y
= e e |0eGE Yy, a0
C HeieX; |0€G(Xy,. ..z, Xn}]

= Y.

o We show that Y C Y. Assume to the contrary there exists y € Y such that y €Y. Then there
exists ¢ such that y; € }N/Z but y; € Y;. From the definition of Y and y € Y it follows that there
exists z € X such that z; = ¢ and 0 € G(z). Thus, z is a solution of G in X, which is not in
Y. Hence, there exists 0 < ¢ < m such that z € “~'Y but z € *Y’, which is a contradiction to the
solution preservation property of linear tightening (Theorem 5.4.2). O

From Theorem 5.4.9 it follows immediately that for a single linear interval function (G, a sequence of
tightening steps may be permuted arbitrarily.

Corollary 5.4.10 (Permutation of Tightening Sequence) Let

pro= (G| e=1,...,m)
¢ = <(G,jﬂ(z)) |f: 1,...,m)
where 7 : {1,...,m} — {1,...,m} is a permutation. Then

x2 - x
for all X € IR*. O

Note that neither Theorem 5.4.9 nor Corollary 5.4.10 can be generalized to é-tightening.

5.4.2 Face Disjointness by Linear Tightening
Throughout this section let G : R™ — TIR" be a linear interval function and let
p* = <(Gi[ajﬁ) | = 1a"'am>

for some m > 0 and i5, 5, € {1,...,n}. We show that X Lg* Y C int(X) for some §* > 0 implies
that G is face digjoint from Y. Further, we show how to obtain for each face T of Y an index ¢ such



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 197

that Z(G;)NT = 0 as a side product during computation of the tightening sequence. Unfortunately this
works only if 6* > 0, but in the next section we show that the case 6* = 0 is in some sense equivalent to
the case 6* > 0 if 6* is “small enough”.

For a given direction j it is sometimes useful to know the last tightening step in p*, which gave a reduction
in direction j or whether no reduction in direction j was achieved at all. We define functions A; A which
give us this information.

Definition 5.4.11 (Face Disjointness Functions) For 6* > 0 the partial functions As«, Ag. are
defined as follows. Let

X ='x Lél lx &62 .”P_mwm mx £ .
Then
—_— ~A . A_ Z_l_' Z_' .
Aé*(X,p*,j) — ZZ if £ = HlaX{E | X] > X]} exists
1T else
. o if 0= max{¢ | ©"LX. < £X} exists

AL (X, p* — L X; X;
Ase (X77,J) { 1 else. O

A necessary and sufficient condition for the totality of As«, A;. is given by the following lemma.

Lemma 5.4.12 Assume X Lg* Y # 0 for some 6* > 0. Then
Zé*(Xap*aj) #T and éé*(Xap*aj) #T for all .7

if and only if
Y Cint(X). O

Proof. Follows immediately from Definition 5.4.11. O

The following theorem captures the essential property of the face disjointness functions Ags, Ag.. It tells
us which G; are disjoint from which faces of the tightened box.

Theorem 5.4.13 (Face Disjointness Function) Assume X Lg* Y # 0 for some §* > 0.

(i) IfRs- (X, p*, j) = i #] then Z(G;)n YD) = .
(ii) If Ago (X, p*,j) = i #] then Z(G)NnYL = 9. O

For the proof of Theorem 5.4.13 we need the following two lemmas. First, we show that Theorem 5.4.13
holds for paths of length one. Let G : R™ — IR be a linear interval function.

Lemma 5.4.14 Let
0 #Y =tights(X,G,j)
for some 6 > 0.
(i) IfY; < X; then Z(G)nY) =,
(ii) IfY; > X, then Z(G) NYY =¢ o

Proof. We give a proof of (i), the proof of (ii) is analogous. Let

for some § > 0 and Y; < X;. Assume to the contrary that Z(G)N y @ # 0. Then 0 € G(y) for some

y € v As > 0 and Y; < Xj, it holds that y & tight(X,, j), which is a contradiction to the
solution preserving property of linear tightening (Theorem 5.4.2). O



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 198

Lemma 5.4.15 (Face Disjointness from Sub—Box)

(i) Assume Z(G)N X =0 LetY C X such that Y; = X;. Then Z(G)N Y =

0
(ii) Assume Z(G) NXY) = . Let Y C X such that Y, =X, Then Z(G) NYY=9¢ o

Proof. We give a proof of (i), the proof of (ii) is analogous. Assume Z(G)N X0 = g andlet Y cXxX
such that Y; = X;. Then YY) C XU and hence Z(G)n YU =¢. 0

Proof of Theorem 5.4.13. We give a proof of (i), the proof of (ii) is analogous. Let 6* > 0 and let ¢X,
£=0,...,m as in Definition 5.4.11. Assume A« (X,p*,j) = i #1. Then there exists ¢ such that

Z_ly]' > Zy]' = Z+1y]' =...= ij
and

From Lemma 5.4.14 it follows that G; N ZAAX(]) = () and from Lemma 5.4.15 it follows that G; N me =

¢. 0O

In an algorithm for solving systems of equations one would want to use linear tightening and not linear
d-tightening because the former produces more accurate inclusions. Theorem 5.4.13 is essential because it
gives conditions for face enclosedness or orthogonality of G in some box and thus ultimately for existence,
uniqueness and non—existence of solutions of nonlinear systems of equations. However, the assumptions of
this theorem are that 6* > 0. Now, one expects that if 6* is small enough, then As« = Ag and A, = A,.
Yet, there are counterexamples where this is not true, so we have the following slightly weaker theorem.

Theorem 5.4.16 (Face Disjointness Function for é = 0) For all § > 0 there exists 0 < 6* < 6 such
that for all j

ZO(Xap*aj) = Zé*(Xap*aj)
AO(Xap*aj) = éé*(Xap*aj)'D

The content of the next section is to prove Theorem 5.4.16 by using a continuity property of linear
tightening. As Theorem 5.4.16 18 geometrically quite obvious, the reader may skip this rather lengthy
proof.

5.4.3 Pseudo Continuity of Linear Tightening

In this section we prove Theorem 5.4.16. First, we show a continuity property of the hull division which
is generalized to linear tightening and to linear tightening sequences.

Lemma 5.4.17 (Inclusion Monotonicity of Hull Division) Let N C N,DC D and X CX. Then

hdiv(N, D, X) C hdiv(N, D, X). O

Proof. Let N,N,D,D, X, X as in Lemma 5.4.17.

hdiv(N, D, X) [{z € X | n=dx forsome n € N,d € D}]
[{x € X | n=de forsome ne N,de D}]

hdiv(N, D, X). O

N



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 199

Lemma 5.4.18 (Pseudo Continuity of Hull Division) Let N, D, X € IR. For all¢ > 0 there exists
6 > 0 such that for all

NCN+[-66], DCD+[-56], X CX+[-63]
it holds that o
hdiv(N, D, X) C hdiv(N, D, X) + [—¢,¢]. O (5.4.1)

Remark. Note that hdiv is not continuous, even if its arguments are restricted such that hdiv(N, D, X) #
(. For example,

hle(L [_L 1]a [_L 1]) = [_L 1]a
but for every 0 < € < 2 it holds that

hdiv(1,[-1,1],[-1,1—¢]) = —1. O

Proof. Let N, D, X € IR and let ¢ > 0 arbitrary but fixed. Let ¢ : B* — R be defined as
gn,d,x) =n —dx.

Note that
hdiv(N, D, X)=[{z € X | g(n,d,x) =0 forsome n € N,de D}].

o Assume hdiv(N, D, X) = 0. Then
g(n,d,2) #0 forall ne Nde D,z € X.
From the continuity of ¢ it follows that there exist 6 > 0 such that
g(,d, &) # 0 forall 7 €n+[—606], ded+[-66], &ex+][—606]
Hence
hdiv(N, D, X) =0 forall NCN +[—66], DC D+[-6,6, X CX +[-6,6]

and in particular

hdiv(N, D, X) C hdiv(N, D, X) + [—¢,¢].
In the following assume hdiv(N, D, X) # 0.
e Assume 0 € D, 0 € N. Then
hdiv(N,D,X) =X forall N,D, X eIR.
Hence,
hdiv(N, D, X) C hdiv(N, D, X) + [—¢,¢] forall N,DeIR, X C X + [—¢,¢].
Thus, (5.4.1) holds for § = ¢.

e Assume 0 ¢ D. From the continuity of interval division restricted to denominators which do not
contain zero, it follows that there exists 0 < §' < mig(D) such that

Q(N/D,N/D) < ¢eif q(N,N)< ¢, qD,D)<é.
From the inclusion monotonicity of interval division it follows that
N/D CN/D +[—¢,¢] forall NCN +[=¢§,6],DC D+ [-¢8,6].
Let & = min{e, &'}. Then
N/DNX CN/DNX +[—¢,¢] forall NCN+[=606],DCD+[-66,XCX+[-66],
hence,

hdiv(N, D, X) C hdiv(N, D, X)+[—¢,¢] forall N C N+[=66],DC D+[—6,6],X C X +[-6,6].



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 200

e Assume 0 € D, 0 ¢ N. We consider the case N > 0, the case N < 0 is treated analogously.
For arbitrary § > 0 let Ny = N 4+ [=6,68],D5 = D 4+ [-6,68],Xs = X + [-6,6]. Using inclusion
monotonicity of hdiv 1t suffices to show that there exists 6 > 0 such that

hdiv(N, D, X) + ¢
hdiv(N, D, X) — ¢

hdiV(N&, D&, X&)

2
S hdiV(N&, D&, X&).

We show (5.4.2), the proof of (5.4.3) is analogous.
— If hdiv(N, D, X) = X then
hdiv(N,D, X)+¢ = X+e

Xe
hdiv(N., D., X.)

v

and (5.4.2) holds for 6 = ¢.
— Otherwise, hdiv(N, D, X) < X. First, we show that in this case D < 0. Assume to the

contrary D = 0. From hdiv(N, D, X) < X it follows that n # dX for all n € N, d € D,
and as N > 0, D = 0 it holds that N > D X. As hdiv(N, D, X) # 0 there exist # € X such
that n = dx for somen € N, d € D, 2 € X and X > 0. But de < DX < N, which is a
contradiction to dez = n for some n € N. Hence, D < 0.

Next, we show that there exists 6; > 0 such that for all 0 < § < &
Xs & hdiv(Ns, Ds, Xs). (5.4.4)
As X ¢ hdiv(N, D, X), it holds that
g(n,d, X)#0 forall n€ N,de D.
From the continuity of g it follows that there exists 6; > 0 such that for all 0 <6 < &
g(n,d, Xs) # 0 for all n€ Ns,d € Ds.

and (5.4.4) holds.
Finally, for all 0 < 6 < min{é;, N, —D} it holds that

Xsn{zeR |2 <Ns/Ds or «>Ns/Ds} if Ds#0

gdiv(Ns, Ds, X5) = { Xsn{zeR | xgﬁé/Qa} else.

From X4 € hdiv(Ns, Ds, X5) it follows that X4 & gdiv(Ns, Ds, X5), hence

hdiv(Ns, Ds, Xs) = Ns/Ds.

Thus, there exists 6 > 0 such that

=

hdiv(Ns, Ds, X5) — hdiv(N, D, X) = —+5 _

>

o] =l
IN
)

IS

and (5.4.2) holds. O
Lemma 5.4.19 (Inclusion Monotonicity of Linear Tightening) Let X C X. Then
tight(X, G, j) C tight(X, G, j). O

Proof. Follows immediately from Lemma 5.4.17. O

We apply the pseudo continuity of the hull division to sequences of linear tightening steps. In the following
we write [—1, 1] to denote the n-dimensional interval vector with each component [—1, 1].



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 201

Lemma 5.4.20 (Pseudo Continuity of Linear Tightening) For all ¢ > 0 there exists ¢ > 0 such
that for all X C X +6[—1,1]"

tight(X, G, j) C tight(X, G, j) + ¢[-1,1]". O
Proof. Follows immediately from Lemma 5.4.18. O

Theorem 5.4.21 (Pseudo Continuity of Linear Tightening Sequence) Let
x 2y,
For all £ > 0 there exists § > 0 such that for all 0 <6< 6

X C Y 41,17 0

Proof. Assume X 2 Y and let € > 0 arbitrary but fixed. We prove Theorem 5.4.21 by induction on
the length of p*. If the length of p* is zero, then
X2 X=YCY4e[-11

for all 8*. Now, assume Theorem 5.4.21 is proved for all paths of length m — 1 and let p* be a path of
length m. Let
X='x 2 frammlxy Pnomyx vy,

Let 0 < &' < £ arbitrary but fixed. According to Lemma 5.4.20 there exists ¢’ > 0 such that
molX 41,1 2 C X 4 (e — 61, 17
Hence,
molX 41,1 B © X e[ 1)
By induction hypothesis, there exists §” > 0 such that
X Lg// .. .piggu - molx 4 E/[—l, 17",

Now, for

§ = min{d’, 6"}
it follows from the inclusion monotonicity of linear tightening (Lemma 5.4.19) that
X2 C Y e[-1,1]
for all 6* < 6. 0

Proof of Theorem 5.4.16. Let X arbitrary but fixed. We give a proof by induction on the length of
p*. If the length of p* is zero, then obviously

Ao(X,p",J) = A (X,p%]) (5.4.5)
AO(Xap*aj) = éé*(Xap*aj)
for all 6* and for all j. Now, let p* be an arbitrary but fixed path of length m, let p*l ={p1,-- -, Pm-1)

and let p,, = (G, k) for some G, k. The induction hypothesis is as follows: For all § > 0 there exists
0 < 6* < 6 such that for all 5

O(Xap* a.]) = 5*’(Xap* a.]) (546)
O(Xap* a.]) =

Let & > 0 arbitrary but fixed. If j # k then (5.4.5) holds for §* = §*' 08, where 6* satisfies (5.4.6) and
8m is arbitrary. Hence, it remains to show that there exists §* < é such that (5.4.5) holds for j = k. Let
x 2y %tz

and
7

X2 Y.
We distinguish 4 cases.



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 202

e Assume Zj = Y}. According to the induction hypothesis and Theorem 5.4.21 there exists 5 <é
such that 5.4.6 holds and Y3 C Y3 + [—4, 6]. Let

Then Z; = Y} and (5.4.5) holds for 6* = 5 08,

e Assume 7, C int(Y3). Then Z(G) is disjoint from both k-faces of Y. From the continuity of
G it follows that there exists ¢ > 0 such that Z(() is disjoint from both k-faces of Y’ for all
Y CY' ' CY +¢[-1,1]". According to the induction hypothesis and Theorem 5.4.21 there exists
§* < & such that 5.4.6 holdsand Y CY CY + e[=1,1]", i.e. Z(G) is disjoint from both k-faces
of Y. Therefore, there exists 0 < 8, < é such that

vz

Zi C int(Vz) and (5.4.5) holds for 6* = 6* o 6,,.

e Assume 7y < Y and Z, = Y,. According to the pseudo continuity (Lemma 5.4.20) and the
inclusion monotonicity (Lemma 5.4.19) of linear tightening there exists ¢ > 0 such that for all
Y CY' CY +¢[—1,1]" it holds that

Yy -2, > 2, - Y,

and
Zy, = Y3, <6,
where
v’ ﬂ VA

According to the induction hypothesis and Theorem 5.4.21 there exists 5 < é such that 5.4.6 holds
and Y CY CY +¢[—1,1]". Let é,, < é such that

where

y &£ 7
Now, let

¥, 7

Then Ek < ?k and Zk = zk and (5.4.5) holds for §* = 5 06,

e Assume Z; = Yy and Z, > Y. This case is analogous to the previous case. O

In the following we write A, A instead of Ag, A,.

5.4.4 Existence, Uniqueness and Non—Existence by Linear Tightening

In this section we derive existence, uniqueness and non—existence tests for solutions of a nonlinear system
of equations f in a box X. The tests are based on the results of Section 5.1, 5.2, 5.3. Hence, we consider
a linearization G of f in X and derive conditions for orthogonality of G in X, for the regularity of the
coefficient matrix of G and for 0 ¢ G(X). The conditions are given by properties of the boxes in a linear
tightening sequence of G starting at X . In the following let G : R" — IR" and let

p* = <(Gi1aj1)a (GizajZ)a B (Glm’jm»

Theorem 5.4.22 Assume X 2—Y + 0 and

AX,p",J) = A(X p",j) =i #]

for some i,j € {1,...,n}. Then the following holds.



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 203

(i)
(i)
(iii)
(iv)

For all 6 > 0 there exists 0 < 6" < é such that the linear interval function G; is strongly f’@

enclosed, where X Lg* Y.
G; is weakly Y@ enclosed.

AX,p*,j) #i, AX,p*,j) #iforallj #3j.

Y YUY for all jf # 5.

Proof. Assume X 2 Y # 0 and A(X,p*,j) = A(X,p*,j) =1 #].

(i)

(i)

(iii)

Let 6 > 0 arbitrary but fixed. According to Theorem 5.4.16 there exists 0 < §* < é such that
Ase = A and Az = A Let

xX=x 2 1x B, I, mx-v.

2 m

We have to show that G; is strongly f’@ enclosed. Let £1,f5 < m such that

Zly]' > Zl+1y]' =...= my]'
Lo L2+1 _ _m
X, <tHY = =7

Assume {1 < {5, the case £1 > £y is analogous. According to Lemma 5.4.14
Gi(hXD) >0 or Gy X0y < 0.
Assume Gi(lem) > 0, the case Gi(lem) < 0 1s analogous. From Lemma 5.4.15 it follows that

Gi(* XUy > 0 for all £> 0,

and in particular, L
Gi(2 X9y > 0. (5.4.7)
Now, it suffices to show that Gi(Z2X@) < 0 because then Gi(ZX@) < 0 for all £ > £5, hence

Gi(YY) >0, Gi(YL) <o
Assume to the contrary Gi(bX@) > 0. According to Lemma 5.4.14, 0 & Gi(ZQX@), hence
Gi( x4y > 0. (5.4.8)

As G is a linear interval function, (5.4.7) and (5.4.8) imply Gi(**X) > 0 and thus =1 X = 0.
Hence Y =0 and as Y DY, it follows that Y = §§, which is a contradiction to the assumption.

Assume G; 18 not weakly Y9 enclosed. From the continuity of G, it follows that G; is not strongly

f’@ enclosed for all Y in a neighborhood of ¥, which contradicts (i) and Theorem 5.4.21.

Let 6* asin (i), and let X Lg* Y. Then G; is strongly f’@ enclosed and by Corollary 5.2.6

2GynY) 20, 2G4

for all j/ # j. From Theorem 5.4.13 it follows that As (X, p*, ') # i, As (X, p*, ') # i and thus

A(X,p*,j/) # 1, A(X,p*,j/) #1.0

According to (i) G is weakly Y@ enclosed. By Theorem 5.2.6 Z(G;) intersects Ym, YU for
all j # j/. Hence, by Corollary 5.4.3Y LY for all Jj#£3j. 0



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 204

In the following let 2 be the coefficient matrix of G.

Theorem 5.4.23 (Orthogonality, Regularity and Non—Existence) Assume X Ty C int(X)
andY # 0.

(i) Assume A(X,p*,j) = A(X,p*,j) for all j. Then for all § > 0 there exists 0 < 6* < & such that G

is strongly orthogonal in Y where X 25 Y.
(i) Assume A(X,p*,j) = A(X,p*,j) for all j. Then 2 is regular and G is weakly orthogonal in Y.
(iii) Assume A(X,p*,j) # A(X,p*,j) for some j. Then 0 & G(x) for allz € X. O

Proof. Assume X - Y Cint(X) and Y # 0. From Theorem 5.4.12 it follows that

A(X,p™, ) #1, AX,p",j) #1 forall j.

Let 6 > 0 arbitrary but fixed and let 0 < 6* < é such that
Zé*(Xap*aj) = Z(Xap*aj)a éé*(Xap*aj) = A(Xap*aj)

and

Y CY Cint(X)

where

x 2.y

(i) Assume A(X,p*,j) = A(X,p*,j)ﬁr all j. From Theorem 5.4.22 (i) it follows that for all j there
exists ¢ such that Gj is strongly f’@ enclosed. According to Theorem 5.4.22 (iii) no G; is strongly
(] ) and YQ enclosed for j7 # j. Hence, G is strongly orthogonal in Y.
(ii) From (i) and Theorem 5.2.8 it follows that 2 is regular. Weak orthogonality of G'in Y follows from
Theorem 5.4.22, (ii) and (iii).

(iii) Assume A(X, p*,j) =1 #¢'" = A(X,p",j) for some j. First, we show that G is not strongly
orthogonal in Y. Assume to the contrary that G is strongly orthogonal in Y. Then there exists
(@)

a permutation 7 such that G; is strongly Y enclosed for all ¢. According to Corollary 5.2.6,

Z(G) intersects Y(]) (]) for all i # 7#71(j). From Theorem 5.4.13 it follows that Z(Gy/) is

disjoint from Y(]) and Z(G ) is disjoint from Y( 1)
to the assumption.

As A« and A;. are total functions, it follows from Theorem 5.4.13 that G is face disjoint from Y.
Applying Lemma 5.3.10 we get 0 ¢ G(@) for all ® € Y and according to Theorem 5.4.2 it holds
that 0 ¢ G(&) for all z € X. O

, hence i’ = i = 771(j) which is a contradiction

Theorem 5.4.24 (Non—Existence) If X 2" then 0 g G(x) foralle € X. O

Proof. Follows from Theorem 5.4.2. O

Remark. It is not obvious whether there are cases where Theorem 5.4.23 (iii) is algorithmically advan-
tageous over Theorem 5.4.24 for proving non—existence of solutions. Figure 5.4.2 displays such a situation
for the two—dimensional case. In order to apply Theorem 5.4.24 more tightening steps are necessary as
compared to Theorem 5.4.23. O



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 205

X X

Z(Gh) Z(Gh)
Z(G2) Theorem 5.4.24 Z(G2) Theorem 5.4.23 (iii)

Figure 5.4.2: In order to apply Theorem 5.4.24 for proving non—existence, tightening steps have to be
applied until an empty box is obtained. For Theorem 5.4.23 (iii) the tightening sequence can be stopped
as soon as a box is obtained which is in the interior of the original box.

5.4.5 The Unique Existence Condition of Linearized Tightening is Too Strong

Theorem 5.4.23 can be used for testing whether a system of nonlinear equations f has a unique solution
in X in the following straight forward way: Choose a linearization G of f in X, where the coefficient
matrix of G is a Jacobian of f in X. Choose a path p* consisting of pairs (G}, j) and check whether the
conditions X £~ X' C int(X), X' # 0 and A(X, p*,j) = A(X,p*,j) for j = 1,...,n of Theorem 5.4.23
are satisfied. Unfortunately, even if f has a unique solution in X, these conditions will usually not be
satisfied. ;I‘he reason is as follows. Assume the conditions are satisfied. Then there exists 6* > 0 such

that X 25+ Y and G is strongly orthogonal in Y. Hence, there exists a permutation m such that G ;)
is strongly Y enclosed. According to Lemma 5.2.7 this means that

mig(Ar))w(¥;) > > mag(Az;))w(Y;) (5.4.9)
J#i
for all 7. Let
a=f'(=)

where @ 1s the unique solution of f in X. It follows that

|ax@y [ W(Yi) > D Jan(|w(¥y)

J#L
for all 7. This means that the matrix
Cll’lW(Yl) Cll’zW(Yz) N alan(Yn)
Clz’lW(Yl) ClzyzW(Yz) N azan(Yn)
an 1W(Y1) anow(Ys) ... anaw(Yy)

is strictly diagonally dominant after some row permutation. Hence, a necessary condition for the assump-
tions of Theorem 5.4.23 is that there exists a permutation matrix p and a diagonal matrix ¥ such that
pad is strictly diagonally dominant. In general such matrices p, 0 do not exist if n > 2. As an example
consider the matrix

3 2 2
a=| 2 3 2
2 2 3
5.5 Linearized Tightening Operator

In this section we present the linearized tightening operator, which defines a strategy for choosing a path

p* and a linearization G of f and returns X L .. The main objective of this strategy is that X L. can



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 206

be computed efficiently and that each G is tightened once in every direction j in p*. As pointed out in
Section 5.4.5, the linearized tightening operator will usually not detect whether f has a unique solution
in X. However, as will be shown in Section 5.11, it can give significant speedups in combination with a
more powerful method.

Informally, the linearized tightening operator can be described as follows: Let X = X . Find a lineariza-
tion G of f; in "X . Tighten (G4 in every coordinate direction with starting box ° X obtaining * X. Find
a linearization G5 of fo in 1 X. Tighten G5 in every coordinate direction with starting box ! X obtaining
2X, etc. Finally, return " X. Note that G; is a linearization of f; in ="' X, but not necessarily in X.
This results usually in tighter inclusions as if we would require that G is a linearization of f in X. The
following algorithm describes this process more formally.

Algorithm 5.5.1 [Linearized Tightening Operator]

In: f: R - R"
X e TR".

Out: 'Y C X such that Y contains all solutions of f in X.

(1) [Initialize.]
°X — X.

(2) [Tterate over equations.]
fori=1,...,n

(2.1) [Linearize.]
Choose ¢; € R" and A; € TIR” such that G;(®) = f(¢;) + Ai(® — ¢;) is a linearization of f; in
i_lX.

(2.2) [Path.]
iy — (G4, 1),(G1,2),...,(Gs,n)).

(2.3) [Tighten.]
Let ‘X such that =1 X ﬂ iX.

(3) [Return.]
Y —"X.
return Y.

Definition 5.5.2 (Linearized Tightening Operator) Let ¢;, A;, i = 1,...,n and Y as in Algo-
rithm 5.5.1. Let ¢ = (¢1,...,¢,)" and A = (Aq,..., Ap)". Then the linearized tightening operator LT
is defined as

LT(f, X, A)=Y.0O
In the following let ¢;, A;, ‘X, ’p* and Y as in Algorithm 5.5.1.

Theorem 5.5.3 (Properties of Linearized Tightening Operator)

(i) If f(#) =0 for some ® € X then ® € LT(f, X,c, ).
(ii) If'X = for some 0 < i < n then f has no solution in X.
(iii) If*X Cint(X) for some i < n then f has no solution in X.

(iv) IfY Cint(X) and there exists 1 < i < n such that for all j it holds that X; € int(*~1X;) then f
has no solution in X.

(v) If) #Y Cint(X) and for all i there exists j such that 'X; C int(*~'X;) then f has a solution in
X.



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 207

(vi) If0 #Y C int(X) and for all i there exists j such that *X; Cint(*~'X;) and 2 is a Jacobian of f
in'Y, then f has a unique solution in X . O

Proof.

(i) Follows from the solution preserving property of linear tightening (Theorem 5.4.2).
(ii) Follows from (i).

(iii) Assume ‘X C int(X) for some i < n. Let p* = 1p* o...0!p*. From Lemma 5.4.12 it follows that

A(Xap*aj) #Ta A(X,P*,j) #T fOf all _]

As i < n it follows from Theorem 5.4.22 (iii) that

A(X,p",j) #A(X,p",j) for some j.

According to Theorem 5.4.23 (iii) it holds that 0 € G(=) for all ® € X and hence for all # € Y.
As Gl is a linearization of f in Y it follows that f(a) # 0 for all ®# € Y and by (i), f(=) # 0 for all
x e X.

(iv) Assume Y Cint(X) and there exists ¢ such that
'X; g int(*TLX;) for all .

Then there exists no j such that A(X,p*,j) = A(X,p*,j) = i, where p* = 1p* o...0"p*. From
Theorem 5.4.22 (iii) it follows that

A(X,p*,j) # A(X,p*,j') for some j'.
The rest of the proof is the same as for (iii).

(v) Assume ) # Y C int(X) and for all i there exists j; such that *X;, C int(""1X;,). Then G is

strongly i_lX(j’) enclosed by Corollary 5.4.4. Hence, by Corollary 5.2.6 in = i_lXj for all j # j;.
AsY Cint(X) it follows that i # ¢ implies j; # ji. Hence,

A(X,p",j)=A(X,p",j) forall j

where p* = p* o...0"p*. Thus, G is weakly orthogonal in Y by Theorem 5.4.23 (ii). As G is a
linearization of f in Y, it follows from Theorem 5.1.12 that f has a solution in Y and hence in X.

(vi) Assume @ # Y C int(X) and for all i there exists j such that X; Cint(*~1X;) and 2 is a Jacobian
of finY. According to (v) f has a solution in X. From Theorem 5.4.23 (ii) it follows that 21
is regular. As 2 is a Jacobian of f in Y, it follows from Theorem 5.2.3 that f has at most one
solution in Y. Hence, by (i) there exists a unique solution of f in X. O

Below, we give an optimized algorithm for evaluating the linearized tightening operator. During compu-
tation of the reduction sequence

iy dol | Gutix
some intermediate results can be precomputed and reused. This is possible because the order of the
tightening steps does not matter as long as G; is fixed, see Theorem 5.4.9. Further, Theorem 5.4.22 (iv)
is used in Step 2.5 to cancel a tightening sequence 'p* as soon as it is clear that no further reduction will
be achieved. We assume that 2l is sparse, i.e. each row of 2 has at most n’ < n non—zero elements.

Algorithm 5.5.4 (LTO) [Linearized Tightening Operator]

In: feR” - R",
X eI,



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 208

Out: X' D LT(f,X,c,2), for some suitably chosen ¢, 2,
exist € {true,false} such that if exist = true then 2 is regular and f has a solution in X,
nonexist € {true,false} such that if nonexist = true then f has no solution in X.

(1) [Initialize.]
"X «— X, exist — false, nonexist — false, orthogonal — true.

(2) [Tterate over equations.]
fori=1,...,n

(2.1) [Linearize.]
Choose ¢; € F" and A; € ITF" such that G;(®) = f(¢;) + Ai(® — ¢;) is a linearization of f; in
i_lX.

(2.2) [Translate.]
for j=1,...,n where A4;; #0 do Y; «— 71 X; — ¢;;.

(2.3) [Precompute products.]
for j=1,...,n where A;; # 0 do P; +— Ay Y;.

(2.4) [Accumulate sums right to left.]
Sp41 —— fi(e;) (overestimate).
for j =mn,...,2 where A;; #0 do Sj_1 «— S; + F;.
(2.5) [Tighten along ‘p*.]
R—0.
for j=1,...,n where A;; #0
YVj «— HDIV(=R = Sj11, Aij, Y).
ity £,
if Y; = () then return (§), false, true).
iff/j Cint(Y;) then ¥V; — }N/j, goto Step (2.6).
Y; — }N/j, orthogonal —— false.

R<—R+P]’.

(2.6) [Translate Back.]
for j=1,...,n where A;; #0
if Aij 75 0 then iX]' — }/] + ¢, else iX]' — i_lX]'.

(3) [Test if in interior.]
if "X Cint(X)
if orthogonal = true then exist «—— true, else nonewist —— true.

(4) [Return.]

return ("X, exist, nonexist).
Theorem 5.5.5 (Complexity) The costs of Algorithm 5.5.4 (LTO) except for Step 2.1 and the over-
estimation of fi(¢;) in Step 2.4 are

n’'n  interval multiplication,
2n'n  number divisions,
10n'n  number additions. O

Proof.

e Step 2.2 costs 2n’ number additions.
e Step 2.3 costs n’ interval multiplications.
e Step 2.4 costs 2n’ number additions.

e The j-th iteration in Step 2.5 costs 2 number divisions and 4 number additions. Hence, Step 2.5
costs 2n’ number divisions and 4n’ number additions.



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 209

e Step 2.6 costs 2n’ number additions.

As Step 2 1s iterated n times, Theorem 5.5.5 follows. O

Remark. If ¢; is chosen to be the midpoint of *~'X in Step 2.2, then all interval multiplications can be
turned into number multiplications using the formula

A(X —mid(X)) = mag(A4)rad(X)[-1,1].

5.6 Hansen—Sengupta Operator

As pointed out in Section 5.4.5, the unique existence condition of linearized tightening (Theorem 5.4.23)
is too strong. Unless the Jacobian of f at some solution # has certain diagonal dominance properties,
then for all X containing # and for all linearizations G of f in X the condition of Theorem 5.4.23 is
not satisfied. In this section we present the Hansen-Sengupta operator [Hansen and Sengupta, 1981],
which solves this problem. Instead of weakening the conditions of Theorem 5.4.23, we modify the given
equations f by premultiplying a matrix m € R"*”. The matrix m is called preconditioning matrix.
If m 1s regular, then f and m f have the same solution set. Now, we choose m such that the interval
Jacobian of m f in X is approximately the identity matrix. If this approximation is close enough, then
the necessary condition (5.4.9) holds and the problem pointed out in Section 5.4.5 is solved.

In order to obtain a linearization of m f in X, it is not necessary to multiply m and f, as the following
lemma shows:

Lemma 5.6.1 (Linearization of Preconditioned System) If G = f(¢)+2(x — ¢) is a linearization
of f in X, then m G is a linearization of m f in X. Further, mG(x) = m f(¢) + (m2A)(x — ¢). O

Proof. Assume G(x) = f(¢)+ U(® — ¢) is a linearization of f in X and let ¢ € {1,...,n} arbitrary but
fixed. Then

(mG(x)); = (m(f(c)+ Uz —c)))
= Z my; (fj(e) + Aj(x — ¢c))
= Z m; fi(e) + Z m;j Aj(® — c)

i=1 k=1

=1
= > mifi(e)+ )Y mijAj(ar — cr)
j=1 j=1k=1

= Z my; fi(e) + Z(mz’jAj)(w —c)

= mf(c)+ (mA)(x — ¢

= (mf(c)+(mA)(z —c))i.
Hence m G is a linear interval function and m f(2) € m G(x) for all # € X follows immediately from
flx) e G(x). O

The choice of m has been studied thoroughly in the literature. If m = g~! for some a € 2, then i € m%,
where i denotes the identity matrix. In this case we may view m%l as an approximation of i. In [Xiaojun



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 210

\

\

X1 X1

/

Figure 5.6.1: Preconditioning of the linearized system.

and Deren, 1987], [Neumaier, 1990] optimality properties of the choice
m = (mid(A))~*

are given. The effect of preconditioning is illustrated in Figure 5.6.1. The left graph shows a system of
linear interval equations G, the right graph shows m G, where m = (mid(2())~! and 2 is the coefficient
matrix of G. The varieties of the equations in the right graph are approximately parallel to the coordinate
axes, which reflects the fact that m2 contains the identity matrix. Note that Z(G) C Z(m G). It is easy
to see that this is always the case.

In the following let G(x) = f(c) + U(x — ¢) be a linearization of f in X and let m € R"*". We use the

notation
mf o= = (T S
mA = A" = (AT AT, .. AT
mG = G = (G",GY,....GM)".

If i € m%, then we know a priori that certain tightening steps will not give a simultaneous reduction on
opposite faces.

Lemma 5.6.2 (Failing Tightening Steps) Assume 0 € AT} and Y = tight(X, Gy, j) # 0. Then
}/j ¢ int(X]'). (]

Proof. Assume 0 € AT}, Y = tight(X, G, j) # 0 and Y; € int(X;). Then G is strongly XY enclosed
by Corollary 5.4.4 and thus
mig(Af)w(X;) > Y mag(AR)w(Xr)
k#j
by Lemma 5.2.7. But this is a contradiction because mig(A4;;) =0 as i€ m2 and ¢ # j. O
Lemma 5.6.2 can be verified at the right graph of Figure 5.6.1.

In order to apply Theorem 5.4.23 we are only interested in tightening steps (G, j) which reduce the
given box simultaneously on both j-faces. This justifies why the Hansen—Sengupta operator uses only
tightening steps (G, j) where ¢ = j.

Definition 5.6.3 (Hansen—Sengupta operator) Let G(x) = f(c) + 2(® — ¢) be a linearization of f
in X and let m € R™*". Then the Hansen—-Sengupta operator HS is defined as

HS(f, X, e, A m)=Y



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 211

where p* = (G}, 1),(GF,2),...,(G®,n)) and X Y y. o
Algorithm 5.6.4 gives the main steps in the computation of the Hansen—Sengupta operator.

Algorithm 5.6.4 [Hansen—Sengupta Operator]

In: f R" = R"
X e IR".

Out: 'Y C X such that Y contains all solutions of f in X.

(1) [Initialize.]
°X — X.

(2) [Linearize.]
Choose ¢ € R", 20 € TR" such that G(x) = f(c)+ A(x — ¢) is a linearization of f in X.

(3) [Precondition.]
m «—— mid(2A)~L.
Compute m f(c¢) and m®2 and let G™ (&) = m f(c) + m2A(x — ¢).

(4) [Tighten.]
fori=1,...,n
'X — tight(*T1 X, GP D).

(5) [Return.]
Y —"X.
return Y.

Comparing Algorithm 5.6.4 for the Hansen—Sengupta operator and Algorithm 5.5.1 for the linearized
tightening operator one makes the following observations:

e The matrix 2 is computed at the beginning of the Hansen—Sengupta algorithm, but is computed
successively in the linearized tightening algorithm. Successive computation is preferable because it
gives usually tighter inclusions. However, as already for the computation of m and for each AT the
entire matrix 2 is needed, this is not possible for the Hansen—Sengupta operator. Before the i-th
tightening step of the Hansen—Sengupta operator one could recompute 2 using * X, but this seems
too costly.

e The linearization of f chosen for the Hansen—Sengupta operator is such that for every f; the same ¢
is used, whereas for the linearized tightening operator we allow different ¢;. We could have allowed
the same generality for the Hansen—Sengupta operator but there is no necessity for it. As the
computation of f* (¢;) requires evaluation of f;(¢;) for all j, the choice of different ¢; would cost n
times as many evaluations of f as needed if the same ¢ 1s used for the linearization of all f;.

The following theorem states the most important properties of the Hansen—Sengupta operator.

Theorem 5.6.5 (Properties of Hansen—Sengupta Operator) Let ¢, 2 as in Definition 5.6.3, let
m e R and let Y = HS(f, X, ¢, U, m).

(i) If f(#) = 0 for some ® € X then ® € HS(f, X, ¢, A, m).
(il

(iii

IfY = ( then f has no solution in X .
If) #Y Cint(X) then f has a solution in X .

)
)
)
(iv) If0 Y Cint(X) and U is a Jacobian of f in X, then f has a unique solution in X. O

Proof. Let ¢, U, G, m, Y as in Theorem 5.6.5 and let p* as in Definition 5.6.3.



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 212

(i) Follows from Theorem 5.4.2.
(ii) Follows from (ii).
(iii) Assume ) #Y C int(X). Then

A(Xap*al) IA(X,P*,Z) =1 fOf all 7.

From Theorem 5.4.23 (ii) it follows that G™ is weakly orthogonal in Y and f™ has a solution in
Y and hence in X by Theorem 5.1.12. In order to prove that f has a solution in X, we have
to show that m is regular. According to Theorem 5.4.23 (i) there exists §* > 0 such that G" is

strongly orthogonal in X L .5+, From Theorem 5.2.8 it follows that m2 is regular and therefore
m is regular.

(iv) Assume ) #Y C int(X) and 2 is a Jacobian of f in X. In the proof of (iii) we have already shown
that 2 is regular and f has a solution in X. According to Theorem 5.2.3 this solution is unique. O

Below, we give an optimized algorithm for evaluating the Hansen—Sengupta operator. As in the case of
the linearized tightening operator, we assume that 2 is sparse, i.e. each row of 2 has at most n’ < n
non-zero elements. Note however that if m = mid(2)~!, then m and m%l are usually dense.

Algorithm 5.6.6 (HSO) [Hansen—Sengupta Operator]

In: felR” —R",
X eIr”.

Out: X' DHS(f, X,c, A m), for some suitably chosen ¢, 2, m,
exist € {true,false} such that if exist = true then 2 is regular and f has a solution in X,
nonexist € {true,false} such that if nonexist = true then f has no solution in X.

(1) [Initialize.]
exist —— false, nonexist — false.

(2) [Linearize.]
Choose ¢ € T, 2 € IF"*" such that G(x) = f(c) + 2(« — ¢) is a linearization of f in X.

(3) [Precondition.]
m «— mid(2A)~! (approximate, perturb if singular).
A — ma.
B™ —— m f(c) (use interval arithmetic).

(4) [Translate.]
Y —X—c.

(5) [Tighten.]
fori=1,...,n
R— Zj;éi A?}YJ + B".
Y; — HDIV(-R, AT, Y;).
if ¥; = 0 then return (0, false, true).
(6) [Translate Back.]
X —Y+e

(7) [Test if in Interior.]
if X' C int(X) then exist «—— true, else exist — false.

(8) [Return.]

return (X', exist, false).

Theorem 5.6.7 (Complexity) The costs of Algorithm 5.6.6 (HSO) except for Step 2, the overestima-



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 213

tion of f(c) and the approximation of mid(21)~! in Step 3 are

n'n? +2n% —n  interval multiplications,
2n  number divisions,
2n'n? — 2n'n + 4n? number additions. O

Proof.

e The computation of 2A™ in Step 3 costs n'n? interval multiplications and 2n'n? — 2n’n number
additions. The computation of B™ costs n? interval multiplications, and 2n%—2n number additions.

e Step 4 costs 2n number additions.

e The ¢-th iteration in Step 5 costs n — 1 interval multiplications, 2 number divisions, and 2n — 2
number additions. Hence, Step 5 costs n? — n interval multiplications, 2n number divisions, and
2n? — 2n number additions.

e Step 6 costs 2n number additions. O

Note that the linearized tightening operator is significantly cheaper than the Hansen—Sengupta operator,
even if the costs for the inversion of m% are ignored.

5.7 Iterated Linear Tightening

If the Hansen—Sengupta operator is applied to a box X, it is often the case that the resulting box Y is
a proper subset of X but not in the interior of X. This means that some reduction was achieved but
we do not know whether f has a (unique) solution in X. Hence, one would apply the Hansen—Sengupta
operator again on Y and so on. Let us assume after several iterations we obtain a box § # Z C int(X).
Can we conclude from this that f has a solution in X and that this solution is unique if in each iteration
the linearization had a Jacobian coefficient matrix? In both cases the answer is no, counterexamples exist
already for n = 1. However, for the existence property the examples show why this is not the case and
how the problem can be solved. There seems to be no useful way for preserving the uniqueness property
though. As in the previous sections we give more general proofs by using arbitrary linear tightening
sequences. The results in this section are new and can be applied directly to the Hansen—Sengupta
operator and to the linearized tightening operator.

We begin by giving counterexamples for n = 1, where the Hansen—Sengupta operator is applied twice and
the resulting box is in the interior of the starting box but in one case there is no solution in the box and
in the other case there are three solutions. Note that these are also counterexamples for the linearized
tightening operator, applied to the preconditioned system.

Counterexample for Existence. Let f(z) = 1 and let X = [0,2]. Then A = [—2,4] is a (widely
overestimated) Jacobian of f in X. For ¢(') = 0.2 we obtain a linearization G()(x) = 14[=2,4](x — 0.2)
of fin X. The inverse midpoint preconditioner is in this case m = 1 and we obtain mA = [-2,4],
mf(c)) = 1 and thus ¥ = HS(f, X, ¢, A, m) = [0.7,2]. We apply the Hansen-Sengupta operator
again with the same A and m but this time we choose ¢(2) = 1.8. We obtain Z = HS(f,Y, 2 A, m) =
[0.7,1.65]. Now, § # Z C int(X) but obviously f has no solution in X. This example is shown in
Figure 5.7.1, left graph.

Counterexample for Uniqueness. Let f(z) = 2% — 2 and let X = [~1.5,1.5]. Then A = [-2,6]is a
Jacobian of f in X. For ¢{!) = —1.4 we obtain a linearization G()(z) = —1.3444[—2,6](x+1.4) of f in X.
The inverse midpoint preconditioner is in this case m = 0.5 and we obtain mA = [—1,3], mf(¢) = —0.672
and thus ¥ = HS(f, X, c(l),A,m) = [-1.176,1.5]. We apply the Hansen—Sengupta operator again
with the same A and m but this time we choose ¢/2) = 1.4. We obtain Z = HS(f,Y, 6(2),A,m) =
[-0.176,1.176]. Now, § # Z C int(X) but f has 3 solutions in X. This example is shown in Figure 5.7.1,
right graph.



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 214

15 ¢ ; .
\ 1 I 0.5 1

05 1/ " /
05+ j
1

0.7 1.55

Figure 5.7.1: Counterexamples for iterated Hansen—Sengupta operator.

Let us analyze what happened in the first example. Here, we have two linearizations mG(), mG() of
mf in Z, where
mGV(z) = 14[-2,4)(z—0.2)
mGP(z) = 14 [-2,4)(x—18).
Let G"(x) = mGM(x) N mGP)(x). Then mf(x) € G"(x) for all # € X. Extending the definition of
face enclosedness to intersections of linear interval functions in the natural way, one would expect that
G" is KQ enclosed. However, this is not the case. Instead, GT(X(1)) > 0, GO(XQ) > 0 but neither
GM(X™M) < 0 nor G" (XQ) < 0. Therefore Theorem 5.1.12, which is the basis of the existence proof,
can not be applied in this case.
In the counterexample for uniqueness we have 7 C int(X) but A is not regular and therefore Theorem
5.2.3 does not apply. One might conjecture that this situation will not arise if we apply only linear
tightening steps where the denominator in the hull division of Theorem 5.4.6 does not contain zero. At
least in the one—dimensional case this would trivially hold, because if the derivative does not contain
zero, then f has at most one solution. But as Figure 5.7.2 shows, 1t 1s not true for n = 2. Here,

filzr,29) = 2055 —xy

fo(zi,m9) = 3+ 0.5x0— 13

and X = ([-2,2],[-2,2])". Then
(05,125 -1
A= ( ~1  [0.5,12.5] )

is a Jacobian of f in X. The inverse midpoint preconditioner is

_ { 0.157576  0.024242
T\ 0.024242  0.157576

and thus
[0.054545,1.945455]  [—0.145455,0.145455] )

maA ( [—0.145455, 0.145455]  [0.054545, 1.945455]

In the first graph of Figure 5.7.2 one sees that m f has 3 solutions in X. In the second row we show
the first application of the Hansen-Sengupta operator, where ¢(!) = (—=1.5,1.5). Here, we have the



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 215

0
-1
10
X X
1 1,/
0 0 7
-1 -1t
0 10
1 1t
0 0 7
-1 11
. — ]

Figure 5.7.2: Counterexample for the uniqueness property of the iterated Hansen—Sengupta operator.
The denominator in the hull division does not contain zero.



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 216

4 |
2 |
0 |
2
-4 —é 0 2
4 4
2 2
0 0
2 -2
4 2 0 2 4 2 0 2
1 1
0 0
-1 -1
2 -2
-1 0 1 2 -1 0 1 2

Figure 5.7.3: Counterexample for the uniqueness property of the iterated Hansen—Sengupta operator. The
denominator in the hull division does not contain zero and the center is always chosen as the midpoint.



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 217

linearizations
G M(@) = —0.75+[0.054545, 1.945455)(z1 + 1.5) + [—0.145455, 0.145455] (z — 1.5)
G2 M(@) = 0.75 +[0.145455,0.145455] (21 + 1.5) + [0.054545, 1.945455](25 — 1.5)
and thus

HS(f, X, D A m) =Y ~ ([-1.376168, 2], [-2, 1.376168])".

In the second row of Figure 5.7.2 we apply the Hansen—Sengupta operator again on Y with the same %,
m, but this time we choose ¢(?) = (1.5, —1.5)". We obtain the linearizations

G () 0.75 + [0.054545, 1.945455)(x1 — 1.5) + [—0.145455, 0.145455] (22 + 1.5)
G (@) = —0.75+ [0.145455,0.145455](x1 — 1.5) + [0.054545, 1.945455] (x5 + 1.5)

and

HS(£, X, A m) = Z ~ ([—-1.376168, 1.329527], [ 1.329527, 1.376168])".

Hence, Z C int(X) but in none of the tightening steps a hull division with a denominator containing
zero occured.

Looking at Figure 5.7.2, one sees that the choice of ¢(1), ¢(®) close to the corners of the box played an
essential role. If, as an additional restriction we would require that the chosen ¢ is always the midpoint
of the current box, would then the uniqueness property hold for iterated application of the Hansen—
Sengupta operator? Again the answer is no, as Figure 5.7.3 shows. We use the same f as above but

X = ([-6,3],[-3,6])", the Jacobian

o — ( 10-5,108.5], -1
=\ —1,[0.5,108.5]

and the inverse midpoint preconditioner m. For ¢(*) = mid(X) we obtain Y = ([-1.4902, 3], [-3, 1.4902])",
and for ¢(*) = mid(Y) we get Z = ([—1.4902,2.188772], [—2.188772,1.4902])". Again, Z € int(X), in

none of the tightening steps a hull division with a denominator containing zero occured and ¢ was in

both iterations the midpoint of the current box. One possibility to restrict the Hansen—Sengupta opera-

tor such the uniqueness property holds also for iterated application would be to allow only simultaneous

reductions on opposite faces. However, instead of pursuing such strong restrictions, we give a different

uniqueness criterion in Section 5.8.

In the remainder of this section we modify the existence conditions of the Hansen—Sengupta or linearized
tightening operator such that they still hold if the operators are applied iteratively.

5.7.1 Existence by Intersected Linearizations

Iterative application of operators like the Hansen—Sengupta operator or the linearized tightening operator
is a special case of a tightening sequence, where different linearizations of the same nonlinear function
occur. In this section we use such tightening sequences in order to prove existence of solutions of systems
of nonlinear equations. As in the case of linear interval functions, the existence condition is based on the
notion of weak face enclosedness and orthogonality. Given two linearizations Ggl), ng) of a nonlinear

function f; in X and a direction j, it can happen that neither Ggl) nor ng) 1s weakly x4 enclosed, but

Ggl)(X(j)) > 0, ng)(X@) < 0, and thus Ggl) N ng) is XY) enclosed. However, the intersection of two
linear interval functions is usually not a linear interval function. Therefore, we first extend some basic
properties shown in Section 5.1 for linear interval functions to intersections of linear interval functions.

Definition 5.7.1 (Intersected Linear Interval Function) A function G" : R" — IRy is called in-
tersected linear interval function if there exist linear interval functions G, G(*) such that

G (x) = GW(x) N GD(x)

forallz ¢ R". O



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 218

In the following let G be an intersected linear interval function and let f : R" — R.

Definition 5.7.2 (Intersected Interval Linearization) G" is called intersected interval linearization
of f in X if there exist interval linearizations GV, G® of f in X such that G" = G N G3). O

If G" is an intersected interval linearization of f in X then f(x) € G"(x) for all ® € X, hence G"(x) # 0
for all # € X. Further, G" is an intersected interval linearization of f in every Y C X.

Let G0 = G N G®) where G| G are linear interval functions. The variety Z(G7) of G™ is defined
as

Z2(G") ={z e R" | 0 G (=)}
and obviously

Z(G™) = 2(GW)n 2(G?).
As in the case of linear interval functions we use the following notation.
Notation. For an interval X € IR" we write G" (X)) to denote the set
{y | y€ G"(x) for some =€ X}.

Further, we write X ~ 0 if & ~ 0 for all ® € X, where ~ € {>,<,>,<}. O

Next, we extend the notion of face enclosedness to intersected linear interval functions in a straight
forward way.

Definition 5.7.3 (Face Enclosed Intersected Linear Interval Function)

o G" is weakly XD enclosed if G" (=) # 0 for all x € X and

(G“(X@) >0 and GN(X D) < o) or (G“(X@) <0 and G"(XD) > o) .

e G" is strongly X9 enclosed if G"(=)# 0 for all # € X and

("X > 0and GYXT) <0) o (GM(XD) <0 and G*(XD)>0). 0

As Figure 5.7.1 shows, there exist intersected linear interval functions G” such that G™(x) # § for all

x € X, 0¢ Gn(Xm), 0¢ GO(X@), 0 € G"(X) but still G" is not strongly X% enclosed. This is

the crucial difference to linear interval functions, see Lemma 5.1.7. The following lemma gives a useful

criterion when G is X9 enclosed.

Lemma 5.7.4 (Face Enclosed Intersected Linear Interval Function) Let G = G N G such
that G"(x) £ 0 for all x € X.

o If

(Vx> 0and ¢(xT) <0) o (¢D(XD) <0and ¢(XT) > 0)

then G" is weakly X@ enclosed.
o If

(X D) >0 and ¢(XT) <0) o (G(XD) <0 and G(XD) > 0)
then G" is strongly X@ enclosed. O

Proof. Obvious. O

The definitions of intersected linear interval function and intersected interval linearization extend to
tuples component wise. In the following let G" : R" — IRy be an intersected linear interval function.



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 219

Definition 5.7.5 (G" Orthogonal in X) G" is weakly respectively strongly orthogonal in X if there
exists a permutation

:{l,...,n} —{1,...,n}
such that Gf' is weakly respectively strongly X"0) enclosed for all i. O

Now, Theorem 5.1.2 can be specialized as follows.

Theorem 5.7.6 (Existence of Solutions) If there exists an intersected interval linearization G of f
in X which is weakly orthogonal in X | then f has a solution in X . O

Proof. Let G" be an interval linearization of f in X which is weakly orthogonal in X. Let 7 :

{1,...,n} — {1,...,n} be a permutation such that G{ is X)) enclosed for all i. As Ji(z) € G (=)
for all ® € X, it follows that

fila)fi() <0 forall ae X" pexT) -1  p

and f has a solution in X by Theorem 5.1.2. O

5.7.2 Tightening with Multiple Linearizations

In Theorem 5.4.22 it was shown that if A(X,p*,j) = A(X,p*,j) = i, then G; is weakly Y@ enclosed,
where X £~ Y. From Figure 5.7.1, left graph, we see that this Theorem does not generalize to intersected
linear interval functions: If Z(G") N YU =g, Z2(GY N Y'Y = § then GO N G need not be YY)
enclosed, even if G, G(2) are linearizations of the same f in X. However, Lemma 5.7.4 shows that if

the signs of G, G(*) on Xm, XY are opposite, then G N G?) is in fact XY enclosed. Thus, after
having computed the tightening sequence, we have to check this sign condition. Actually it is possible to
compute the signs already during tightening and memorize them. Let us now formalize this method.

In the following let
v = (G50 e gee {1, o} 0= 1,...,m)
and ”
£) .
iy ey
where Ggf) is a linearization of f; over ~'X and °X = X. We modify the definition of the face

disjointness functions A, A as follows:

Definition 5.7.7 (Face Disjointness Functions)

ANX,pj) = (iZ,E, sign(Gg?(Z_lX(])))) if ¢ = max{¢ | ©=1X; > “X;} exists
1 else
AX,pj) = (ié,é, sign(Gg?(Z_lX@))) if ¢ = max{¢ | X, < fX[ Y exists
- 1 else. O
Note that .
1%, > X, implies 0 ¢ GO(C1x V)
j j mmp is
and (© G)
-1 Ly oo -1yl
X; <'X; implies 0¢ G,/ (" X==),
hence

sign(GLO( 1 X)), sign(GL)(71 X 1)
are well defined.

The essential property of the face disjointness functions is captured by the following theorem.



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 220

Theorem 5.7.8 (Face Disjointness Functions) Let X 2y +0.

(i) IFA(X,p*,j) = (3,0,5) ] then sG\O(Y 1)) > 0.

(i) If A(X,p",j) = (i,£,5) #] then sG\” (YY) > 0. D

Proof. We give a proof of (i), the proof of (ii) is similar. Assume X Py + 0. Let

Z(X,p*,j) = (i,ﬁ,s) #1.

Then _
sGIOE1x ) 5 0,
hence e
SG(»Z)(ZX(j)) >0
As o -
ZX Z+1X] — — i)

it holds that e

Y@ cixV

hence

Theorem 5.7.9 (Weak Enclosedness) Assume X Py + 0 and

A(Xap*aj):(iagas)a A(Xap*aj):(iagla_s)

forsomei € {1,...,n}, £, €{1,...,m} and s € {—1,1}. Then ng) N GEZI) is weakly Y@ enclosed. O

Proof. Assume X 27— Y # ) and

A(Xap*aj):(iagas)a A(Xap*aj):(iagla_s)'

As GEZ), GEZI) are linearizations of f; in Y, it holds that GEZ)(:B) + 0, GEZI)(:B) #+ @ forallz € Y. From

Theorem 5.7.8 it follows that SGEZ)(Ym) > 0, SGEZI)(Y@) < 0 and thus ng) N GEZI) is weakly y@
enclosed by Lemma 5.7.4. O

Theorem 5.7.10 (Existence of Solutions) Assume X 2y + 0 and there exists a permutation
7:{1,...,n} —{1,...,n} such that
Z(Xap*aj) = (ﬂ-(.])agjasj)a A(Xap*aj) = (ﬂ'(_]),f;, _5])

for all j. Then f has a solution in X. O

Proof. Follows from Theorem 5.7.9 and Theorem 5.7.6. O

In the following let
G(Z)(w) = F() + A0 (& — )

be a linearization of f in =X for £=1,...,m.

Theorem 5.7.11 (Weak Enclosedness) Assume X Py + 0 and

Z(Xap*aj):(iagas)a A(X’p*’j):(i’f/’sl),



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 221

(i) If ALY > 0 and AL >0 then s =1, &' = —1.

(i) If A% <0 and AL <0 then s = 1,5 = 1.
In both cases ng) N ngl) is weakly Y@ enclosed. O

Proof. We give a proof of (i), the proof of (ii) is analogous. Assume X Ty +0,

A(Xap*aj):(iagas)a A(Xap*aj):(iaglasl)'
and Agf) > 0, Agfl) > 0. Using Theorem 5.7.8 it suffices to show that

GOe1xy s 0, ¢E-x <o)

As
X = tight(""' X, Gl j)
and Z_lyj > Zyj, it holds that
0¢ ¢ x ),
Assume _
¢Oetx"y <o,
As ng) is a set of linear functions and Agf) > 0, 1t holds that
¢Oetxy <o,
and hence 0 ¢ ng)(z_lX). But then X = (), which contradicts the assumption ¥ # (. The proof of
GE-1xy

is analogous. Hence ng) N GEZI) 1s weakly Y@ enclosed by Theorem 5.7.9. O

Theorem 5.7.12 (Existence of Solutions) Assume X 2y + 0 and there exists a permutation
7:{1,...,n} —{1,...,n} such that for all j

A(X,p*,j) = (ﬂ-(j)’g]"sj)’ A(X,p*,j) = (T(j)aE}’S})

and either )
(45) j
A 200 Ay 20
or -
(45) j
Azl =0 Azl =0
Then s; = —sé» and f has a solution in X . O

Proof. Follows from Theorem 5.7.11 and Theorem 5.7.6. O

5.7.3 TIteration of the Hansen—Sengupta Operator
In this section we use Theorem 5.7.12 for proving existence of solutions through iterated application of
the Hansen—Sengupta operator. Let XYW =X mer™",

XEHD =y 8(p, X B g )

such that
Gk — F(eP) +2AF) (@ — )

is a linearization of f in X(k), k=1,...,rforsomer >1andlet Y = XU+D . Note that throughout
the iteration the preconditioning matrix m is fixed.



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 222

Theorem 5.7.13 (Existence of Solution by Iterated Hansen—Sengupta Operator) If A?;(k) >

Oforallk=1,...,r,i€{l,....;n} and Y Cint(X), then f has a solution in’Y . O

Proof. Assume A?;(k) > 0forall k, i and Y Cint(X). Let
pro= < (G?(l)’ 1)’ (G?(l)’ 2)’ ER) (G?;(l)a n)a
(GT D (GFP ), (GO ),
(G D,(E5 2), (G0 n) )

AsY Cint(X) it holds that

A(Xap*ai):(iakiasi)a A(Xap*al):(lak;asg)

for all ¢ and for some k;, kf € {1,...,r}, s;, s € {—1,1} and an application of Theorem 5.7.12 completes
the proof. O

5.8 Convergence of the Hansen—Sengupta Operator

In this section we give criteria when iterated application of the Hansen—Sengupta operator converges.
First, let us define what we mean by a convergent sequence of interval vectors. In order to simplify the
presentation, we define w(f)) = 0.

Definition 5.8.1 (Convergent Sequence of Interval Vectors) A sequence of interval vectors
(X® cIry | k=1,2,..)
is called convergent if for every € > 0 there exists k € N such that for all k > k it holds that W(X(k)) <e. O

Note that this is the usual definition for convergence of the sequence (W(X(k)) eR | k=1,2,..) to 0,

but not for convergence of the sequence (X(k) € Ry | k=1,2,...). We will use the following well known
criterion for convergence.

Theorem 5.8.2 (Criterion for Convergence) If there exists o < 1 such that
WX DY < aw(X*)
for all k, then (X(k) | k=1,2,...) is convergent. O
Throughout this section let
x k1) — HS(f,X(k), B AR m)

where

Gk — F(eP) +2AF) (@ — )

is a linearization of f in X(k), c®) e X and Ak CAD for k = 1,2,.... Instead of AN we will
simply write 2. The following theorem is a slight generalization of [Hansen and Sengupta, 1981] to the
case when ¢®) is arbitrarily chosen from X ™) and X need not contain a solution of f.

Theorem 5.8.3 (Convergence of Hansen—Sengupta Operator) Let

di = q(A™)1)

22 )

o= Y mag(An)

Jj#i



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 223

and let
_202diri 4 dF + di + 1)
- 1—d?

(871 .
Ifd; <1 and oy <1 foralli=1,... n then (X(k) | k=1,2,...) is convergent and
FXH) < (X))

where o = max; ;. O

Proof. Let d;,r;, a;,« as in Theorem 5.8.3 and assume d; < 1, a; < 1 for all . We show that
\?V(X(k‘l'l)) < aW(X(k)) for all k, and apply Theorem 5.8.2. Hence, let k > 1 arbitrary but fixed. We
distinguish two cases.

e Assume

0¢ f™ (™) + A?(k)(X(k) — )y for some . (5.8.1)
We show that X**D = (. From (5.8.1) it follows that

AP = (—ff“(c(’“)) =D Ategh - cﬁ“)) = 0.
J#t
As d; < 1it holds that 0 ¢ A™*) and

—/P () = e AT (Y = )

NCEYCH 5 .
AP
Hence, XD = HS(f,X(k), c(k),Ql,m) =0.
e Assume
0€ M (e®)+ ATMF(X®) _ ) for all i, (5.8.2)

As dy < 11t holds that 0 & AT for all 7 and

m m v (k) (k)
o ED T ARG )

ax

O ) T magAR (X)L 1]

- AR

C o ) (X 1]

- é [1 —d;, 1+ dz]

C o P (X))

- ¢ [1—dl,1—|—dl] 1—d; '
Hence,

m (b)) 2rw(X*))
Dy o I (e ; .
W( ! )_W [1—dl,1—|—dl] + 1—d;

Now

W( 1 () ) _ R 1)
[ -

1—di,1—|—di] 1—d; B 1+ d;

2d;
= e (25).




CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 224

From 5.8.2 it follows that

) e =3 apgt - gt —an i - o)
J#i
C > magAR)w(X )= 1 1] 4 mag(AR)w(X(*)[~1,1]
J#i
C WX )1, 1]+ (14 di)w(X ) [=1,1].
Hence
] < (s 4+ di+ WD),
Summarizing, we obtain
W(XZ»(k+1)) < Qdi(m’ + d; + 1) i 2r; W(X(k))
—d; 1—d;
2d(m+d + D+ 2n(1+di) s
= ) w(X")
1—d;
22diri + df +di + i)
- X hi ) (x )
= a;w(X W),
Thus,
WX D) < aw(X )
and { X | k=1,2,...) is convergent by Theorem 5.8.2. O

Theorem 5.8.4 (Convergence of Hansen—Sengupta Operator) Let

o= mag(A%) + mag(1 - A7)
=
and let &« = max; «;.

(i) If o« < 1/2 then (X(k) | k=1,2,..) is convergent and
W(X(k+1)) < QQW(X(k))

(ii) If o < 1 and ¢®) = mid(X®)) for all k, then (X®) | k =1,2,..) is convergent and
WX < aw(X™). O

Proof. See [Neumaier, 1990], Corollary 5.2.4 and Theorem 4.3.5. O

Before we give another convergence theorem for the Hansen—Sengupta operator, we state the following
two technical lemmas about the width of an interval quotient and an interval product.

Lemma 5.8.5 (Width of Quotient) Let N, D € IR and y € R such that 0 € N, 0 ¢ D. Then

(i) w(N/D) = w(N)/mig(D).
(ii) w(N/D) < w((N +y)/D). O

Proof. Let N, D,y as in Lemma 5.8.5. As w(N/D) = w(—N/D) we may assume D > 0.



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 225

(i)

w(N/D) = N/D-N/D
= N/mig(D) - N/mig(D)
= w(N)/mig(D).
(ii) If 0 € N + y then according to (i)
w(N/D) = w(N)/mig(D)
= W(N 4 y)/mig(D)

= w((N+y)/D).
Otherwise, as w((N + y)/D) = w(—(N + y)/D) we may assume N +y > 0. Then

w(N/D) = w

w

N)/mig(D)

N +y)/mig(D)

(N +y)/mig(D) — (N + y)/mig(D)
(N +y)/mig(D) — (N + y)/mag(D)
(N +y)/D—(N+y)/D

w((N +y)/D). O

(I VAS

Lemma 5.8.6 (Width of Product) Let A, X € IR and let ¢ € X. Then

w(A(X —¢)) < 2mag(A)q(X,¢). O

Proof. Let A, X, ¢ as in Lemma 5.8.6. Then

w(A(X —¢))

AX —)—AX —0¢)

max{|a(z —¢)| | a € 4,2 € X} —min{—|a(z —¢)| | a € A,z € X}
mag(A)q(X, ¢) + mag(A)q(X, ¢)

2mag(A)q(X,c). O

lIA

The following theorem is new. It gives a convergence condition for the Hansen—Sengupta operator which
is even weaker than Theorem 5.8.4.

m

Theorem 5.8.7 (Convergence of Hansen—Sengupta Operator) Assume 0 € A® fori =1,...,n,

let .
a; = Y mag(Af)/mig(Af})

Jj#i

and let &« = max; «;.

(i) Ifor < 1/2 and X®) £ § then
WX D) < w(x )

for all k.
(i) If X™®) £ ¢ and there exists # < 1 such that

(et x(") < pw(x ()
for all k, i and af < 1/2 then (X(k) | k=1,2,...) is convergent and

WX *H)) < gmax(20, Hw(X™H). O



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 226

Proof. Let o;, @ as in Theorem 5.8.7 and assume 0 & A7} for all 7. Let k arbitrary but fixed and assume

X ) £ (. Further, let i such that W(Xi(k‘l'l)) = w(XF+),

e Assume ¢,

(6) g x (4D,

(i) As c(k) = X(k) and X(k+1) C X(k) it holds that X(k+1) - X(k) Hence w(X (k+1)) 4 (X(k)).

(ii) Assul(q]:_el_l(;l( k) X(k)()k)< Bw(X (k)). Then w(X; x* +1)) < qle; (k) X(k)) < BW(X( )). Hence
W(XTTY) < pw (X)),

e Assume cgk) € XZ»(k-H). Let
Y = tight(X®), G\¥) 4).

According to Lemma 5.4.19 it holds that XZ»(k-H) CY;. As 0 ¢ A 1t holds that

Jile) 4 3, AR (X — )
A7 |

vi— e C -

As cgk) € Y; 1t follows that
0€ fi(e®™)+ 37 AB (X — ),
i#i
Further, as cg»k) € X](»k) for all j, obviously
0e Y An (X _ )
J#i

Hence, by Lemma 5.8.5

w(Yi)

IN
E

(fz (M) + 32, AR (XD — (’“>))
Am

Z];m Am (k) (k))
Am

_ (zmm (- %)
= W )

mig( AR

l
E

= Y owAR (G = ) /mig(AT), (5.8.3)

J#i

(i) Assume o < 1/2. As cg»k) € X](»k) for all j it holds that

w(¥;) <Y 2mag(AR)w(X (") /mig(AR)
J#i

> 2mag(AT})/mig(A% ) w(X ™))
b=

= 20;w(X™)

< w(Xx®),

IN

Hence, w(X**+D) < w(x ™),
(ii) Assume q(cg»k),X](»k)) < 6W(X](»k)) for all j and a8 < 1/2. According to Lemma 5.8.6

m k k
w(AR (X" — Py

IN

2mag(AR (X1, )
2fmag(A% )w(X{")

IN



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 227

for all 5, and thus

w(¥;) <> 28mag(A7)w(X(")/mig(AT)
J#i

< ) 28mag(A})/mig(AT) w(X ")
J#i
= 20; 0w (X)),

Hence, w(X"*) < 208w(X*). O

Corollary 5.8.8 Let o as in Theorem 5.8.7. If ¢¥) = mid(X(k)) for all k and o < 1 then (X(k) | k=
1,2,...) is convergent and

W(X DY < max(a, 1/2)w(X®). O

The following Theorem is known for the Krawczyk operator [Qi, 1982], but is new for the Hansen—
Sengupta operator. It states that if a box is mapped into its interior by the Hansen—Sengupta operator,
then further application of the Hansen—-Sengupta operator converges.

Theorem 5.8.9 (Convergence of Hansen—Sengupta Operator) Assume 0 # X2 C int(X(l))
and ¢¥) = mid(X(k)) forallk=1,2,.... Then (X(k) | k=1,2,...) is convergent and

w(x ") < max(a, 1/2)Ftw(x V)
for all i, where
a = maxw(X{*)/w(x{"). O
Proof. Assume §) £ x® c int(X(l)) and ¢*) = mid(X(k)) for all k =1,2,.... According to Theorem
5.6.5 (i) and (iii), X*) # @ for all k. From Lemma 5.6.2 it follows that 0 & A™ for all i. Let o; such that
w(X[?) = aw(X V).
As X&) C int(X(l)) it holds that «; < 1. By induction on k we show that
w(X™) < max(a, 1/2) " tw(xM) for all i. (5.8.4)

Obviously (5.8.4) holds for k = 2. Assume (5.8.4) holds for some k£ > 2 and let ¢ arbitrary but fixed.

o It @ XD then w(x ) < 1/2w(X*)) and by induction w(X* ) < max(a, 1/2)Fw(X ).

e Assume cgk) € XZ»(kH). From (5.8.3) it follows that

mig(Af Jw(X{ ) <37 w(an (" — o).
J#

By induction hypothesis and the assumption ¢(*) = mid(X(k)) it holds that
(k) _ (k) k—10v(D) _ (1)
(X;" —¢;) Cmax(a, 1/2)"7H(X; 7 —¢; 7).

Hence,
mig(AT )w(X{ ) < max(a, 1/2)1 3 wAR (XY — lV)).
J#i



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 228

Now, as 0 € Z]»# AY (X](l) - cg»l)), it follows from Lemma 5.8.5 that

S w(AR (XY — 1)) /mig(AR)

J#i
m (1) (1)
- W Z]’;ﬁz’Aij(Xj _Cj)
iy
< w fi(c(l))+2j¢iA?}(Xy('l)_cg'l))
- A%
= w(x{")
< aW(XZ»(l)).

Thus,
W(XZ»(kH)) < max(«, 1/2)kW(XZ»(1)). |

5.9 Termination

Let f : R" — R™ be a continuous functions with finitely many solutions in R" and let B € TR". We
want to find isolating boxes for all solutions of f in B. In the previous sections we studied algorithms
for testing existence, uniqueness and non—existence of solutions of f in a box. As the tests may fail, it
is not clear whether an algorithm based on these tests will terminate. In this section we give necessary
conditions for termination and a terminating algorithm. The content of this section is new.

In the following let &, A be predicates on IR" such that if £(X) = true then f has a unique solution
in X and if N(X) = true then f has no solution in X. Note that the Hansen—Sengupta operator, the
linearized tightening operator or simply a function which returns always false can be used to implement
& and . The following algorithm is a skeleton for many interval methods for solving systems of nonlinear
equations. From now on we will not take care of problems arising from finite precision arithmetic any
more. However, the results still hold in the case of finite precision arithmetic, if the accuracy is “high
enough”.

Algorithm 5.9.1 [Isolating Boxes]

In: f €R" — IR" continuous with finitely many solutions,
B ¢ IR".

Out:  Solutions, a list of sub—boxes of B such that each X in Solutions contains a unique solution of
f in B and each solution of f in B is contained in some X in Solutions.

(1) [Initialize.]
Work «— {B}, Solutions «—— empty list.

(2) [Terminate.]
if Work = empty list, then return Solutions.

(3) [Get box to work on.]

choose and remove an element X from Work.

(4) [Test unique existence.]
if £(X) = true then add X to Solutions, goto Step 2.

(5) [Test non—existence.]
if N(X) = true then goto Step 2.

(6) [Bisect.]
bisect X in the midpoint of its component with largest width, add both halves to Work and goto
Step 2.



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 229

Algorithm 5.9.1 is correct but need not terminate. For example, if £(X) = N(X) = false for all
X € IIR", then Algorithm 5.9.1 will not terminate. So, we impose further conditions on £ and N which
guarantee termination.

Theorem 5.9.2 (Termination)

o Assume there exists ¢ > 0 such that if X C B, w(X) < ¢ and X contains a unique solution of f,
then £(X) = true.

e Assume there exists A > 0 such that for all X C B it holds that

min{|fi(x)| | 2 € X} > AWw(X) for some i implies N (X) = true.
Then Algorithm 5.9.1 terminates. O

Proof. Assume £ and A satisfy the conditions of Theorem 5.9.2 for some e > 0, A > 0 but Algorithm 5.9.1
does not terminate. According to Konig’s Lemma there exists a sequence (X(k) e IRr? | k=1,2,..),

such that X (kD) C X(k), limg oo W(X(k)) =0 and S(X(k)) = N(X(k)) = false. Let k > 0 such that
W(X(k)) < £. From the condition on & it follows that X ) does not contain a solution of f for all £ > k.

According to Theorem 1.2.8 " = limj_ o X% exists. As 2* € X for all k, it holds that f(=*) # 0.
Hence, there exists ¢ such that f;(x*) # 0 and from the continuity of f; it follows that fi(x) # 0 for all

@ in a neighborhood X of x*. Let k> 0 such that X CX. As X(k{ is a closed subset of R™ and
fi is continuous, there exists 6 > 0 such that |f;(x)] > ¢ for all @ € X Now, let & > k such that
W(X®)) < 6/x. As XD € X®) it holds that

min{|fi(z) | 2 € X} > min{|fi(x)| | 2 € XP}
> 6
> Aw(X ).

By the condition on A, it holds that N(X(ly)) = true, which is a contradiction to the assumption
N(X®)) = false for all k. O

As a next step towards an algorithm for finding isolating boxes for the solutions of systems of nonlinear
equations, we try to use interval methods for computing £, A. For A this is easy, all we need is an
interval extension F' of f, which 1s Lipschitz in B.

Theorem 5.9.3 Let F' be an interval extension of f, which is Lipschitz in B, i.e. there exists A > 0
such that
w(F (X)) < Aw(X) forall X C B.
Let N be defined as
true if0¢ F(X)

false else.

N(X) = {

Then the following holds:

(i) Let X € IR". If N(X) = true then f has no solution in X.

(i) If X C B and
min{|fi(x)| | 2 € X} > AWw(X)} for some i

then N'(X) = true. O
Proof. Let F, A and A as in Theorem 5.9.3.

(i) Let X € IR" arbitrary but fixed. If A'(X) = true then 0 ¢ F(X), hence f(x) # 0 for all # € X.



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 230

(ii) Let X C B and assume y = min{|f;(z)| | # € X} > AW(X) for some i. From the Lipschitz
property of F it follows that y > W(F(X)), hence y > w(F;(X)). As y < mag(F;(X)) it follows
that mag(F;(X)) > w(F;(X)). Therefore 0 ¢ F;(X) and 0 € F(X). Hence, N(X) = true. O

Using Theorem 5.6.5 (iv) one could define & for example as

true IfHS(f, X, ¢, m) Cint(X)

false else,

ex) = |

where f(¢) +4(X — ¢) is a linearization of f in X and 2l is a Jacobian of f in X. But no matter what
restrictions we impose on the choice of ¢, /U, m, the condition of Theorem 5.9.2 on £ will not be satisfied
for the following two reasons:

e If f has a multiple solution in X, i.e. there exists # € X such that f(z) = 0 and f'() is singular,
then 2 and A™ are singular and HS(f, X, ¢, A, m) € int(X) for any choice of ¢ and m.

o If f(#) = 0 for some @ € 9(X) then by Theorem 5.6.5 (i), HS(f, X, ¢, %4, m) € int(X) for any
choice of ¢,2A, m.

From now on we assume that f has no multiple solutions in B. In the next section we give a terminating
algorithm for finding isolating boxes of the solutions of f, which solves the problem of solutions at the
boundary of boxes.

5.9.1 Solutions at the Boundary of Boxes

The key idea to solve the problem with solutions of f at the boundary of X is as follows. First, enlarge X
in each direction obtaining a box X such that X C int(X). Let 2 be a Jacobian of f in X and assume
(X(k) | k=1,2,..) converges, where xW = x, x*+) = HS(f,X(k), c®) 2 m) for some m € R™*"?
and ¢*) € X*) Then there exists k such that X *) satisfies one of the following two conditions:

o X5 N X = (. In this case f has no solution in X.

o« XH C int(j(). According to Theorem 5.7.13, f has a unique solution in X i A% > 0 for all s

Note that X® need not be a subset of X, hence we do not know whether f has a solution in X
or not.

In the following let F’ be an interval extension of the Jacobian of f and let C be a predicate on IR” such
that if C(X) = true then

e the sequence (X(k) | k=1,2,...), where xW = x, x*+) = HS(f,X(k), c®) 9 m) converges,
o A% >0 for all ¢, and
e mid(2) is regular

where ¢¥) = mid(X(k)), A= F/()g) and m = mid(2A)~!. Further, let ¥ € R, v > 0 be a constant, which
determines the amount by which X is larger than X. Now, we modify Algorithm 5.9.1 as follows:

Algorithm 5.9.4 [Isolating Boxes]

In: f €R" — R" continuous with finitely many solutions, all of them are simple,
B e IR w(B) > 0.

Out:  Solutions, a list of sub—boxes of B such that every X in Solutions contains a unique solution of
f and every solution of f in B is contained in some X in Solutions.



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 231

(1) [Initialize.]
Work «— {B}, Solutions «—— empty list.

(2) [Terminate.]
if Work = empty list, then return Solutions.

(3) [Get box to work on.]

chose and remove an element X from Work.

(4) [Test unique existence.]
choose X such that X C int(X) and X C X +yw(X)[—1,1]".
A— F'(X), m — mid(2)~".
if C(X) = true
(4.1) [Initialize Hansen—Sengupta iteration.]
ke—1x" —X.

(4.2) [Test.]
it xX*®nx = 0 goto Step 2.
it x*) ¢ int(X') then add X*) 4o Solutions and goto Step 2.

(4.3) [Hansen—Sengupta operator.]
XEHD) 1 S(F, XH) mid(X®) 2 m).

(4.4) [Tterate.]
k— k41, goto Step 4.2.

(5) [Test non—existence.]
if N(X) = true then goto Step 2.

(6) [Bisect.]
bisect X in the midpoint of the component with largest width, add both halves to Work and goto
Step 2.

We modify Theorem 5.9.2 such that it gives sufficient conditions for the termination of Algorithm 5.9.4.
Let B = B+ yw(B)[-1, 1]".

Theorem 5.9.5 (Termination)

o Assume there exists ¢ > 0 such that if X C B, w(X) < ¢ and X contains a unique solution of f,
then C(X) = true.

e Assume there exists A > 0 such that for all X C B it holds that

min{|fi(x)| | 2 € X} > AWw(X) for some i implies N (X) = true.
Then Algorithm 5.9.4 terminates. O

Proof. The proof is similar to the proof of Theorem 5.9.2. First, we show that the loop in Step 4
terminates, i.e. there exists k such that either X®ANX =0or X(k) C mt(X). As C(X) = true, it
holds that X( ) converges and there exists k such that

w(X®) < minmin{|X; - X4, X, - £}
®) 7 int(X *) c X ists g P _ % (M _ 3
Assume X' & int(X). As X' C X, there exists ¢ such that X; " = X; or X;"' = X,. Assume
Yglf) = X;. Then ng) > X;, hence X® A X = 0§ and the loop in Step 4 terminates. The case
ng) = XZ is analogous.

Assume C and A satisfy the conditions of Theorem 5.9.5 for some ¢ > 0, A > 0 but Algorithm 5.9.4 does
not terminate. According to Konig’s Lemma there exists a sequence (X(k) e IRr? | k=1,2,..), such



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 232

that X+ ¢ X®) limy_ o W(X(k)) = 0 and C(X(k)) = N(X(k)) = false where X*) C int(j((k))
and X(k) C x4 'yv?f(X(k))[—}, 1]™. Hence, there exists k > 0 such that W(X(k)) < ¢. From the

condition on € it follows that X*) and hence X*) does not contain a solution of f for all k& > k. The
rest is the same as in the proof of Theorem 5.9.2. O

Now, we can use any of the convergence theorems of Section 5.8 to obtain an algorithm for C, which
satisfies the conditions of Theorem 5.9.5. For simplicity, we use Theorem 5.8.4.
Theorem 5.9.6 Let C be defined as

C(X) = { true if o< 1/2, A% > 0 for all ¢ and mid(2) is regular

(X3
false else,

for all X C B, where « is as in Theorem 5.8.4, % = F'(X)) for some continuous Lipschitz interval
extension F' of f' in B and m = mid(2)~" if mid(2) is regular. Then there exists ¢ > 0 such that
X C B, w(X) < ¢ and X contains a unique solution of f implies C(X) = true. O

Proof. Let o, 2, F/', m as in Theorem 5.9.6. As f has no multiple solutions, there exists ¢/ > 0 such that
F'(X) is regular for all X € X where

XY={XCB

w(X) <&, f(2)=0 forsome =€ X}.

As X is closed and F’ is continuous, the set {mid(F’(X))~! | X € X} is component wise bounded, i.e.
there exists m such that

m > |my;| forall i,j and m € {mid(F'(X))™"' | X € x}.

As F’ is Lipschitz in B, there exists A > 0 such that W(F;j (X)) < Aw(X) for all 4, j and X C B. Hence,
forall X € X
W(mid(F'(X))" F'(X)) < nmAw(X).
From i € mid(F'(X))~'F'(X) it follows that
a < n?mAw(X).

Thus, let

. 1 p
£ < min { m, £ } .
Now, if X C B, W(X) < e and X contains a solution of f, then v < 1/2 and mid(2l) is regular. Further,
a < 1/2 implies AJ} > 0 for all ¢, hence C(X) = true. O

22

The output of Algorithm 5.9.4 1s not precisely what one would expect from an algorithm for finding root
isolating boxes. It is true that every X in Solutions contains a unique solution of f and that every
solution of f in B is contained in some X € Solutions. However, the elements of Solution need not be
disjoint and it 1s even possible that there are two different elements X | Y in Solution which contain the
same unique solution of f. The reason is that in Step 4 of Algorithm 5.9.4 the box was enlarged and it
can happen that the enlarged box contains a solution but the original box does not or has a solution on
its boundary. However, this deficiency can easily be repaired:

Let X,Y € Solutions such that X N'Y # 0. Let (X(k) | k= 1,2,..), (Y(k) | k= 1,2,..) be
sequences which are generated by repeated application of the Hansen—Sengupta operator starting with
X respectively Y using the respective 2, m as in Algorithm 5.9.4, Step 4. Then both sequences are
convergent and there exists k such that either

xXPAy® =g
or . .
C[X™ Uy ™)) = true.

In the first case, X% and Y*) each contain a unique solution of f. In the second case, x® yy®
contains a unique solution. By simultaneous computation of X(k), Y for k = 1,2,... 1t is therefore
possible to refine the list Solutions such that it has the same properties as stated in Algorithm 5.9.4 and
all its elements are mutually disjoint.



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 233

5.10 Unbounded Start Regions for Polynomial Systems

So far we were searching for the solutions of a nonlinear system of equations f within a given search
interval B. In this section we tackle the problem of finding all solutions of f in R" where f is a polynomial
system. The method was invented by [Neumaier, 1990]. We give a more comprehensive description, point
out the problem of solutions at infinity and generalize it to polynomial inequalities.

The idea of the algorithm is to decompose R™ into n + 1 subsets D(Z), £=1,...,n+1 and map each
subset to the interval [—1, 1]™. For each subset DY the polynomial system f is transformed into a system
g9 such that the roots of f in P correspond to the roots of g in [—1,1]". After having found the roots
of g in [—1,1]™ using a method for bounded start regions, we have to map them back to o, First, we
give a simple but more general theorem which forms the theoretical basis of the algorithm.

Let D be a set, let p be a predicate on D and let D(Z), £=1,...,m be subsets of D such that
P 2 {zeD|p(x)}
=1
Let €% be a set and let
+0 . g) _ p©
be surjective for all £. Further, let gt be a predicate on S(Z), which is defined by
q(y) iff p(t(y))

for all y € &w,

Theorem 5.10.1 For all ® € D it holds that p(®) if and only if there exists £ € {1,...,m} and y € &
such that ¢'9(y) and t)(y) = =. O

Proof. Let ® € D arbitrary but fixed.

“=” Assume p(x). Then = € DY for some ¢ € {1,...,m}. As t\9 is surjective, there exists y € &
such that t(z)(y) — 2. Hence q(f)(y).

“<” Let £ € {1,...,m} and y € &W arbitrary but fixed such that q"(y) and t(z)(y) = ®. Then
p(t(z)(y)) and hence p(®). O

In the following we apply Theorem 5.10.1 to the special case when D = R" and p(«) = f(x) = 0, where
f is a polynomial system R" — IR"™ with finitely many solutions in R". We make the following choices
for D(Z), S(Z), t(®) which are justified later: Let m=n+ 1, and for £=1,...,n let

DO = fw e B | ol > 1, Ja| < || for i # 0},

£ = {ye[-L1" [w#0},
() _ Yi/ye 1F£L .

ti(y) = { Vg i=t. for i=1,...,n

and let
D(”-l-l) = [_L 1]n
g(”+1) = [_L 1]n
() = .

One easily checks that ¢ : ew . p g surjective and U?If P = p.

Let g(®) - EW . R™ be defined as
9" (y) = F(t“(y)).



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 234

From Theorem 5.10.1 it follows that @ is a solution of f in R" if and only if there exists £ € {1,...,n}
and § € €Y such that g (y) = 0 and t(z)(’!j) = &. Thus, it suffices to find the solutions of g(® in
the bounded set £ for all £. Before we go into details of solving this problem let us consider a simple
example.

Example. Let n = 2 and let

file) = x%—i—xz—l
fz(aﬂ) = l‘ll‘z—l.

The decomposition of R? into Dy, Dy, D3 is displayed in Figure 5.10.1. We obtain

Dy

Dy D3 Dy

Dy

Figure 5.10.1: Decomposition of R?.

t(l)(y) = (1/3/1,3/2/3/1)
tD(y) = (y1/y2,1/y2)
3 (y) = (y,9)
and thus
d V) = HEV@) = 1)y +ya/mn — 1= 1/ (1 + yiys — o2)
d () = V() = 1y yafyr — 1 = 1/y (g2 — v?)
0 y) = LD (W) = /63 + Uye — 1 = 135 +y2 — 3)
05 (y) = F2(80(y)) = vi fya 1/yo — 1 = 1/52(01 — 43).
0P y) = HEP () =i+ — 1

0P (y) = LD (y) = iy — 1

Applying interval methods directly for finding the solutions of g(®) in £ is not possible because of the

singularity of gl(»z) at y, = 0 and because W is not an interval for ¢ # n+ 1. However, the special choice
(&)

of t¥) and the fact that f is a polynomial system allow us to write g; ~ in the form
i = 15w
i = )

O

)

9(y) = 0iff 3 (y) =0

where d; is the total degree of f; and g; " is a polynomial. Obviously

for all y € &Y. Note that §¢ has the same number of terms as f;, which means that sparsity of the input
system 1is preserved.



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 235

In the next step we solve the Q(Z) with starting box [—1,1]". For each £ we obtain a set A of sub-
intervals of [—1, 1]” such that each solution of g'Y is contained in some A € A). In order to obtain a

set B of interval vectors which enclose all solutions of f in R"™ we have to transform the A back using
t(). Note however, that t(z)(A(Z)) is defined only if A C £ je.

0g A"

If this is not the case, then extended interval arithmetic has to be used during the back transformation
and for the corresponding solutions of f enclosures by unbounded intervals are obtained. This situation
occurs whenever f has solutions at infinity.

In the following we extend the method described above to systems of polynomial inequalities
fi(®) ~; 0
where ~,€ {=,#4 <, > <, >}fori=1,...,r
A straight forward generalization does not work because
0" () ~i 0iff G (y) ~: 0 forall ye £

holds only if ~;€ {=,#} or if d; is even. The problem can be solved if R" is decomposed into 2n + 1
subsets instead of only n + 1 subsets as in the case of polynomial equations. Let

PO _ {® € | 2y > 1, |z < ool for i€} (=1,...,n
o {2 € R | 2y < —1,|2;| < |zg| for i £ 0} L=n+1,...,2n

ye[-1L,1" |y <0} £=1,...,n
ye[-1,1" |y >0} L=n+1,... 20

{ vilve BFC g o

£

tEZ)(yla ey yn)

1y i=¢
and let
pentl — [ 1]
gt = L)
t () = g

As before let gt (y) = f(t(z)(y)). For £=1,...,2nlet g : R® — R™ be polynomial systems such that

(Z)( ) = ﬁf»z)(y)/yj’ if € >n or d;iseven
=N S5O v ife<n and d is odd

and g**t(y) = §(2"+1)(y). Then §Z(»Z)(y) ~; 0iff gl(»z)(y) ~; 0 for all y € &Y. Back transformation of
the solution intervals is done in the same way as for polynomial systems of equations.

5.11 Experimental Results

In this section we compare two algorithms for finding isolating boxes for all solutions of a given system
of equations. The first algorithm, RHB (Range test, Hansen—Sengupta operator, Bisection) repeats the
following operations until isolating boxes for all solutions of f are found, see [Hansen and Sengupta,

1981].

¢ Range test:
Overestimate f(X) and test if it contains zero.

¢ Hansen—Sengupta operator:
Replace a box X by the result of the Hansen—Sengupta operator applied to X using Algorithm 5.6.6.
Check the existence, uniqueness and non—existence conditions of Theorem 5.6.5.



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 236

e Bisection:

Bisect a box X in the midpoint of the largest width direction.

In the second algorithm, RLHB (Range test, Linearized tightening, Hansen-Sengupta operator, Bisec-
tion), we use in addition the linearized tightening operator:

¢ Linearized tightening operator:

Replace a box X by the result of the linearized tightening operator applied to X using Algo-
rithm 5.5.1. Check the existence, uniqueness and non—existence conditions of Theorem 5.5.3.

A few remarks are needed here:

e In the examples below we consider only polynomial equations. For the range test and the evaluation

of the derivatives we use the linearly convergent Horner form.

After application of the Hansen—Sengupta operator, a Jacobian of m f in some box X is available
and we use Theorem 5.8.4 for testing convergence of the Hansen—Sengupta operator starting from
X . If the conditions of this Theorem are satisfied, we use the technique described in Algorithm 5.9.4
for avoiding non—termination if a solution of f is on the boundary of X.

If the hull division in a linear tightening step is replaced by a generalized division, then the result
is sometimes the disjoint union of two intervals. In such a situation we memorize the gap between
the intervals and instead of a bisection we split the box at the widest gap.

If slopes are used instead of derivatives for the Hansen—Sengupta or for the linearized tightening
operator, then the computed boxes are usually smaller but the uniqueness property as stated by
Theorem 5.6.5 and Theorem 5.5.3 does no longer hold. Thus, one might use slopes until existence of
a solution in a box is proved and from then on derivatives. However, in order to keep the algorithms
simple, we use derivatives from the beginning.

Based on experimental observations, we found that the following strategy seems to work well:

Range test.

(Only for RLHB.) Apply successive linearized tightening. If the box is reduced “significantly”
thereby, go back to (2).

Next, apply Hansen—Sengupta operator. If the box is reduced “significantly” thereby, go back to (2).

If during (2) or (3) some gaps were detected, split the box at the widest gap. Otherwise bisect in
the midpoint of the largest width direction.

Goto (1).

In order to apply this heuristics, one should decide how much change is “significant”. In our implemen-

tation, we consider a change significant if it is greater than 10% in size, where the size of a box is the
sum of the widths of its components. We compared the algorithms on the following examples.

A:

This example is taken from [Moore, 1977].

i o= 1
¥l —xy = 0

Starting box: [—1.5,1.5]%.

This example is taken from [Morgan, 1987].
ri+rotarzt+rs—1 =
1+ xo—ra+Ta—3
il bai4 el —4

x%—i—x%—l—x%—i—xi—?xl—iﬁ =

o o o ©

Starting box: [—10, 10]%.



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS 237

C1:

C2:

C3:

C4:

D1:

D2:

D3:

This example is taken from [Moore and Jones, 1977], where the specific values of the coefficients
a;, b; and the indices ¢, 15, i3 are given.

Xy — Uy — bil‘ill‘in‘Z’a = 0, 1= 1, . ..,10

Starting box: [—2,2]'°.
This example is also taken from [Moore and Jones, 1977]. The difference from C1 is that it has

20 variables.
Xy — Uy — bil‘ill‘in‘Z’a = 0, 1= 1, ey 20
Starting box: [—1,2]%°.
This example is a modification of C1 in that each variable z; is replaced by z?. Note that if

(z1,...,710) is a solution of C4 then (%z1,...=+ z1g) is also a solution, hence the number of
solutions i1s a multiple of 1024. In fact, both methods found exactly 1024 isolating boxes.

2 2,2 2 _ _
iy —a; —bixi xr ey =0, i=1,...,10

Starting box: [—1, 1]%°.

This example is another modification of C1, where we use the same coefficients but increase the
degrees of some variables and add one more term.

3,3 .3 4,7 _ _
xp —a; — by xpwy +xp e, =0, i=1,...10.

Starting box: [—1, 1]*°.

This is a sparse system with 12 variables and low degree.

—T3T10T11 — T5T10T11 — L7L10T11 + L4212 + TeT12 + 2gx12 = 0.4077
ToXalog + Tolgly + ToxgXg + 119 = 1.9115
r3xo + xswo + w79 = 1.9791
3xoxq + 2wox6 + xoxg = 4.0616
3xixq + 20126 + 128 = 1.7172
3xz+ 225 +x7 = 3.9701
x?—i—x?_l_l = 1, 70dd

Starting box: [0.38,0.40] x [0.92,0.93] x [0.56,0.57] x [0.82,0.83] x [—1, 1].

This example is the same as D1. The only difference is that its starting box is larger. Starting

box: [0.38,0.40] x [0.92,0.93] x [—1, 1]*°.

This example is again the same as D1. The only difference is that its starting box is even larger.
Starting box: [—1, 1]*2

In Table 5.11.1, we report various statistics. At top, we report the number of arithmetic floating point
operations. It seems that the RLHB method is usually faster.

The second table shows that the number of bisections is much smaller for RLHB, which explains why
RLHB is usually faster.

For the readers who might be interested in more details, we provide further statistics such as the number
of Hansen—Sengupta operator, linearized tightening and range test calls. The reason why a Hansen—
Sengupta operator call is faster for RLHB than for RHB is that for RLHB the Jacobian is already
evaluated from the previous linearized tightening iteration when the Hansen—Sengupta operator is called.



CHAPTER 5. ISOLATING BOXES FOR SYSTEMS OF NONLINEAR EQUATIONS

238

| A | B C1 cC2 | Cc3 | c4 D1 D2 D3
Total (Kflop)

RLHB 3.19 165 5405 54904 63728 12170 1830 19360 41177
RHB 4.10 169 5511 959077 | 167244 14185 22254 181307 433538
Bisections / Splits
RLIB 5/0 | 44/1 | 480/1 656/0 | 5119/0 | 867/1 | 36/0 413/4 877/20
RHB 5/2 | 71/4 | 495/2 | 10232/169 | 9215/0 | 1191/0 | 794/48 | 6671/337 | 16899/874

RLHB

Range Test
calls 11 130 979 1337 10239 1737 113 1185 2545
avg (Kflop) | 0.03 0.18 0.46 2.03 0.47 0.74 1.01 1.02 1.01
percent 10.3 14.0 8.40 4.96 7.55 10.5 6.26 6.23 6.23
Linearized Tightening
calls 25 163 630 1759 12287 1079 199 2001 4107
avg (Kflop) | 0.08 0.45 1.74 6.85 1.76 3.09 3.18 3.16 3.16
percent 64.4 | 44.2 20.3 22.0 33.9 27.4 34.6 32.6 31.6
Hansen—Sengupta Operator
calls 5 86 497 680 5119 868 84 887 1943
avg (Kflop) | 0.12 0.75 7.62 58.7 7.14 8.57 12.7 13.2 13.0
percent 18.2 39.1 70.1 72.7 57.3 61.1 58.4 32.6 61.5
RHB
Range Test
calls 25 214 1084 24849 25599 2403 2056 16697 41659
avg (Kflop) | 0.03 0.16 0.43 1.75 0.51 0.69 0.90 0.90 0.87
percent 18.7 20.6 8.49 4.53 7.86 11.8 8.31 8.28 8.41
Hansen—Sengupta Operator

calls 21 149 605 14765 17407 1212 1393 11309 27381
avg (Kflop) | 0.15 0.87 8.25 61.8 8.78 10.23 14.6 14.6 14.4
percent 75.2 76.9 90.6 95.2 91.41 87.4 91.2 91.2 91.1

Table 5.11.1: Experimental comparison of RLHB and RHB



Chapter 6

Nonlinear Tightening

In the previous chapter we introduced the notion of linear tightening. The idea was to iterate the following
process:

(1) Choose an equation f; and a direction j.
(2) Find a linearization G; of f; in X.

(3) Shrink X in direction j optimally obtaining X', such that all solutions of G; in X are in X'.

In this chapter we do not linearize f; but apply tightening directly to the nonlinear equation. This
operation was introduced in [Hong and Stahl, 1994b]. Nonlinear tightening does not have uniqueness,
existence and non—existence properties corresponding to linear tightening, but gives in many cases better
reductions as the linearized tightening operator or the Hansen—Sengupta operator, especially for “large”
boxes. Thus, nonlinear tightening is a pure pruning operation and can not be used for testing existence
or uniqueness of solutions.

Roughly put, nonlinear tightening works as follows: Choose an equation f; from the system f and a
direction j. Evaluate f; in all variables except for z; on the given box X, obtaining a univariate function
F: IR —IRin z;. Next, find enclosures 71, ..., 7, for the solutions of F' in X;. Now, every solution of

fin X and hence every solution of f in X is still contained in one of X(l), .. .,X(T) where
XM = (Xy, . X1, Zk, Xigr, - X))

Nonlinear tightening has been investigated in Al community [Mackworth, 1977, Cleary, 1987, Older and
Vellino, 1990], for solving simple equations and inequalities such as zy = z and z > 0.

In Section 6.1, we give a precise definition of nonlinear tightening. In Section 6.2, we describe an algorithm
for finding isolating boxes, which uses the tightening operation. In Section 6.3, we illustrate the algorithm
described in the previous section on a simple example. In Section 6.4, we give a general description of
a tightening procedure, and a more detailed one for multivariate polynomials. In Section 6.5, we report
some experimental results.

6.1 Definition of Nonlinear Tightening

In this section we define the notion “nonlinear tightening”. Throughout this section, let f : R® — R and
X e IR".

Definition 6.1.1 (Variety) The variety Z(f) of f, is defined by

Z(f)={zeR" | f(x)=0}. O

239



CHAPTER 6. NONLINEAR TIGHTENING 240

Definition 6.1.2 (Projection) Let @ € R". The i-th projection of =, written as m;(«), is defined by
mi(®) = 2.
Let 8 CIR". Then the i-th projection of S, written also as m;(8S), is defined by

mi(S) = {mi(x) | = € §}. O

Definition 6.1.3 (Optimal Tightening) The optimal tightening of X on x; by [ is defined as the set
m(Z(f)nX). O
Theorem 6.1.4 (Solution Preservation) Let X! be the optimal tightening of X on x; by f, and let
X' =(X1,...,X;-1,X!, Xi41,...,Xpn). Then we have
ZHnX=Z2(/)nX'.O
Thus, we can always safely replace X by X' when we are interested only in the solution of f in X.

Unlike in the case of linear tightening, it is expensive to compute the optimal tightening, since in general
it requires exact computations with real algebraic numbers. Thus we relax the definition as follows:

Definition 6.1.5 (Tightening) A tightening of X on x; by f is a finite set of disjoint sub—intervals of
X; whose union contains the optimal tightening. More precisely, it is a set

(x® . xOy
such that X'*) e TR, X € x;, X' n X = 0 for k # j, and W, X'*) D m(Z(f) N X). O

Definition 6.1.6 (Tightening Operator) A tightening operator is a procedure that, given f, X and
1, produces a finite set of boxes X(l), ce X9 such that for every k=1,...,(

X0 = (X, X, X X, LX)

where the set {X;l), e XZ»(Z)} forms a tightening of X on x; by f. O

One extreme tightening operator is the most expensive one which computes the optimal tightening and
the other extreme is the cheapest one which trivially returns {X}. Obviously, we are interested in one
between these two extremes, which strikes a “good” compromise between accuracy and computational
cost. One such tightening operator for multivariate polynomial functions will be described in Section 6.4.

6.2 Combined Algorithm for Finding Isolating Boxes

In this section, we use the Hansen—Sengupta operator together with a tightening operator for finding
isolating boxes for all zeros of a function within a box.

Algorithm 6.2.1 [Isolating Boxes by Hansen—Sengupta Operator and Tightening]
In: f: R —R"
X e IR".

Out:  Solutions, a finite set of isolating boxes for the solutions of f in X,
TooSmall, a finite set of sub—boxes of X that are too small to work on.

(1) [Initialize.]
Work «— {X}. Solutions — {}. TooSmall — {}.



CHAPTER 6. NONLINEAR TIGHTENING 241

(2) [Choose a box and an operation.]
Choose and remove a box from Work.
Choose one of the following operations:

range test,

tightening,
e Hansen—Sengupta operator,

e bisection.

(3) [Process the box.]
Apply the operation on the chosen box, obtaining possibly one ore more sub—boxes.
Insert the resulting boxes into the proper sets: Solutions, TooSmall, or Work.

(4) [Loop]
If there is a box in Work, then go to Step (2). Otherwise, we are done. O

Algorithm 6.2.1 is correct no matter which boxes and operations are chosen in Step (2). Since we are
interested in finding all isolating boxes (not just one), the efficiency of the algorithm does not depend
on which box we choose, because we need to analyze every box eventually. Thus, it is fine to choose the
first one in the data structure of Work. But the efficiency of the algorithm depends heavily on which
operation is chosen. Based on experimental results, we found that the following strategy seems to work
well.

(1) First, apply tightening with respect to every equation and variable. During tightening carry out
range test, since it can be done cheaply using the intermediate results of tightening.

(2) Next, apply Hansen-Sengupta operator.
(3) If the state has been “significantly” changed during (1) and (2), then goto (1).

(4) If during tightening or during the Hansen—Sengupta operator a gap was detected, split in the
direction of the largest gap. Otherwise bisect in the midpoint of the largest width direction.

(5) Goto (1).

In order to apply this heuristics, one should decide how much change is “significant” to avoid bisection.
In our implementation, we consider a change significant if it is greater than 10% in size, where the size
of a box is the sum of the widths of its components. For comparison purpose, we have implemented the
method described in [Hansen and Sengupta, 1981], and we applied a similar strategy.

6.3 Illustration

Before jumping into the details of tightening operation, we illustrate the main algorithm described in the
previous section on a simple example, taken from [Moore, 1977]:

4yt -1
-y

The graph on the left hand side of Figure 6.3.1 traces the boxes produced during the execution of the
algorithm of the last section. The one on the right hand side provides the same information produced
by the algorithm of [Hansen and Sengupta, 1981] which is basically run by Hansen-Sengupta operator,
range test, and bisection.

From the picture on the left hand side, we see that the initial box [—1.5,1.5]% is first tightened by the circle
and then by the parabola. The white patch is the portion that has been tightened out. The remaining box
can neither be reduced by the Hansen—Sengupta operator nor by tightening, so it is bisected vertically.



CHAPTER 6. NONLINEAR TIGHTENING 242

1 1 O
0.5 05 + \ /
0 0
-0.5 0.5
N N ~_

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

[ ] Hansen-Sengupta Operator [ ] Hansen-Sengupta Operator
(| Tightening [ ] Range Test

Figure 6.3.1: Tlustration of the main algorithm at a simple example

In each sub—box tightening is not successful, but the Hansen—-Sengupta operator leads to some reduction,
pruning out the gray strip. The remaining box is tightened by the circle and then by the parabola. Now,
the Hansen—Sengupta operator detects that the remaining box is an isolating box.

For the picture on the right hand side we do not go into details, but note that it produced more inter-
mediate boxes. This is partly due to the increased number of bisections (the left picture has 1 bisection,
while the right one has 7 bisections). The experimental results in Section 6.5 show that this effect seems
to become more dramatic for higher dimensional problems.

6.4 Algorithm for Tightening

In this section, we describe a general scheme for tightening continuous functions, and in particular give
a detailed procedure for the case of multivariate polynomials. Let us begin by recalling the problem of
tightening.

In: R =R X elR", and i € {1,...,n}.
Out: a tightening of X on z; by f.

In the following, we will reduce this problem into two sub—problems. Note that
m(ZHNX)={r; € X; | 0€ f(Xy, .., Xioy, 20, Xigy -, X))
Let F': R — TR be defined as
Fla;) = [f( X1, .., Xic1, 24, Xig1, -, X0
Using this function, we can rewrite the above formulas as
m(Z()NX)Clx; € X; | 0€ Fx)}. (6.4.1)

Note that if f is continuous then equality holds in (6.4.1). Now, let F, F : R — R be the bounding
functions of I, i.e.

F(xi) = [ F(x), F(:) ].



CHAPTER 6. NONLINEAR TIGHTENING 243

Continuing using these two functions, we have

m(Z(HNX) 2 {zieXi|0eF(x)}
= {w€X; |0 [ F(a), Fxi)]}
= {w€X; | F(z;) <0 A Fx;) >0}
= {m€Xi | Fle)) <0} N {wi€X; | Fay) >0}

Thus, we have reduced the problem of tightening into two sub—problems:

1. finding the functions F and F,

2. solving the inequalities F(2;) < 0 and F(x;) > 0.

For the purpose of just tightening (not necessary optimal), it is sufficient to overestimate. This gives us
the following main algorithm:

Algorithm 6.4.1 (Tightening)

(1) Compute the functions F and F' (suitably overestimate).
(2) Solve the two inequalities < 0 and F' > 0 (overestimate again).

(3) Return the intersection of the two solution sets. O

In the following two sections, we show the details of the first two steps. For the first step, we present an
algorithm for polynomials only, while for the second step, we give a general algorithm. Thus we present
the second step first in the order of generality.

6.4.1 Solving Inequalities

We begin with the second step, namely that of solving the inequalities. The two inequalities are solved
in the same way, and thus we describe how to solve only one of them, F > 0. So, here is the sub—problem
statement:

In: F:R—Rand X € IR
Out: disjoint intervals P, ..., Pj such that t"Jj P,o{zeX | F(x)>0}.

The basic idea is to compute all real roots of F within X, which induces a finite set of intervals on which
the sign of F is constant. From these, we only need to select the ones with non-negative signs. In doing
this, we face the following technical problems: due to finite precision arithmetic and multiple roots, we
get not the exact roots, but intervals which contain them. Moreover such an interval may contain more
than one root. The following algorithm handles such difficulties.

Algorithm 6.4.2 (Solving Inequality)

(1) Compute disjoint (root) intervals Ry,..., R, such that ti-Jj R; D{reX | F(z) = 0}. (This can be
done for instance by the Interval Newton Method.)

(2) The following code extracts intervals where F' is non—negative. It essentially scans the root intervals
from left to right while picking up solution intervals. In the code, R; is the current root interval being
checked, k keeps track of the number of the solution intervals extracted so far, b holds the upper end
point of the previous root interval, and Y is the interval evaluation of F' on the middle of the gap
between two consecutive root intervals.

Initialize b — X and k «— 0.

fori=1,...,r
Y «— F(1/2(b+ R,)) using interval arithmetic.
case: Y < 0 k—%k+1 P,— R;.



CHAPTER 6. NONLINEAR TIGHTENING 244

case: Y >0 and k > 0: Py, = hull( Py, [b, R;]).

case: Y >0 and k = 0: k—k+1 P, — [b R].
b— R;.

if b£ X or (X=X and r=0)
Y «— F(1/2(b+ X)) using interval arithmetic.

case: Y >0 and k > 0: Py, = hull( Py, [b, X]).
case: Y > 0 and k£ = 0: k—1 P — X.0O

6.4.2 Finding Bounding Functions

Now we tackle the problem of finding the bounding functions for the case of polynomial functions. Here
is the problem statement.

In: feR[ey,...,x,], X € IR and i€ {l,...,n}.
Out: F and F as defined above (overestimated).
Recall that /' and F are defined by
F($Z) = [{f(Xla'"aXi—1a$iaXi+1a"'aXn}]
= [E(zi), F(xi) ]

The following algorithm solves the problem.
Algorithm 6.4.3 (Bounding Functions for Polynomials)

(1) Obtain the coefficients A; € IR of an interval polynomial F(z;) = Z?:o Ajx! by evaluating f on
x; = X; for every j # ¢, using interval arithmetic.
(2) Compute the bounding functions of F'(x): (We drop the subscript ¢ for simplicity.)

S _Ax if 2>0
E(l‘) = Z%l_o A{nf J 1
j=o Ay’ else

Ty = { Zjmo ke i 220
Z;lzo AFPal else.
where .
Ainf _ A; if jis even g A; if jis even
;T Aj if jis odd j o A, if jis odd.

The proof of Step (2) is straightforward. One remark is needed here. The resulting bounding functions
are piecewise differentiable but not differentiable at 0. This does not cause problems in solving the
corresponding inequalities since one only needs to apply the method of the previous section on each piece
separately and merge the resulting intervals. While merging, it might be necessary to concatenate two
intervals containing 0.

6.5 Experimental Results

In the sequel THB denotes the method described above (tightening, Hansen—Sengupta operator, bisection)
and RHB stands for the method described in [Hansen and Sengupta, 1981] (range test, Hansen—Sengupta
operator, bisection). We have tested the algorithms on the same examples as described in Section 5.11.

In Table 6.5.1, we report various statistics. At top, we report the number of arithmetic floating point
operations. It seems that the THB is faster, in particular for the problems with many variables.

The second table shows that the number of bisections is much smaller for THB, which explains why THB
is usually faster. The reduction in the number of bisections is mainly due to the tightening operation.



CHAPTER 6. NONLINEAR TIGHTENING

| A | B C1 cC2 | Cc3 | c4 D1 D2 D3
Total (Kflop)

THB 1.87 | 74.9 24.4 211 30557 57.1 573 7655 17340
RHB 4.10 169 5511 959077 | 167244 14185 22254 181307 433538
Bisections / Splits
THOB /0] 8/0] 0/0 0/0 | 0/1023 1/0 5/1 100/3 240/3
RHB 5/2 | 71/4 | 495/2 | 10232/169 | 9215/0 | 1191/0 | 794/48 | 6671/337 | 16899/874

THB
Tightening
calls 6 42 2 3 3072 4 34 427 987
avg (Kflop) | 0.17 | 0.93 3.03 8.81 2.83 6.40 3.59 3.52 3.48
percent 55.5 52.0 24.8 12.5 28.5 44.8 21.3 19.6 19.8
Hansen—Sengupta Operator
calls 6 40 2 3 3072 3 33 421 951
avg (Kflop) | 0.13 0.87 9.13 61.7 7.06 10.4 13.6 14.6 14.6
percent 41.3 | 46.8 74.8 87.4 71.0 54.8 78.4 80.1 78.8
RHB
Range Test
calls 25 214 1084 24849 25599 2403 2056 16697 41659
avg (Kflop) | 0.03 0.16 0.43 1.75 0.51 0.69 0.90 0.90 0.87
percent 18.7 | 20.6 8.49 4.53 7.86 11.8 8.31 8.28 8.41
Hansen—Sengupta Operator
calls 21 149 605 14765 17407 1212 1393 11309 27381
avg (Kflop) | 0.15 0.87 8.25 61.8 8.78 10.23 14.6 14.6 14.4
percent 75.2 76.9 90.6 95.2 91.41 87.4 91.2 91.2 91.1
Table 6.5.1: Experimental comparison of THB and RHB

245



Chapter 7

Solution of the Robot Inverse
Kinematics Problem

In this chapter we apply the interval methods presented in the previous chapters for solving the robot
inverse kinematics problem. The inverse kinematics problem is stated as follows: Given a parametric
description of a robot and a desired position and orientation of the end effector, find all possible sets of
joint values such that the end effector is in the desired position and orientation.

There are important classes of robots where this problem has a closed form solution. In general, however,
one has to rely on iterative methods. In the following we consider robots with 6 joints corresponding to
the 3 degrees of freedom of the end effector in both position and orientation. The joints are either revolute
or prismatic. For an introduction to robot kinematics we refer to the excellent monographs [Paul, 1981]

and [Craig, 1986].

7.1 Kinematic Equations

The kinematic equations of a robot are given by
G109 - -0 = ¢, (7.1.1)

where ay,...,a5,¢ € R*™*  FEach a; corresponds to a joint and a connected link of the robot and e
describes the end effector position and orientation. More precisely,

a; = rot,(6;) trans,(d;) transy (a;) roty (o)

where

cos(f;) —sin(d;)) 0 0O
rot,(6;) = sm(()ﬁi) cosé@i) ? 8
0 0 01
1 0 0 0
o) = | g S st o
0 0 0 1

1 0 0 O

iy = [§00 2

00 0 1

246



CHAPTER 7. SOLUTION OF THE ROBOT INVERSE KINEMATICS PROBLEM 247

g

transg(a;) =

OO O =
OO = O
O = OO
_— o O

If the ¢-th joint of the robot is revolute, then d;, a;, ; are constants given by the structure of the robot
and 6; 1s a variable describing the joint angle. If the i-th joint is prismatic, then 6;, a;, a; are constants
and d; 1s a variable describing the joint distance.

The matrices rot,(6), roty(«) and trans,(d), transy(a) are called elementary rotation and translation
frames respectively. Frames are a class of 4 x 4 matrices with special properties.

Definition 7.1.1 (Frame) A matrix a € R*** is called frame if

_ 0 p
a‘(o 0 0 1)

for some orthogonal o € R3*® and p € R®. The matrix o is called orientation of a, the vector p is called
position of a. O

Obviously rot, (@), rot,(«), trans,(d), trans,(a) are frames, and as the product of two frames is a frame,
it holds that a1, ..., as and e are frames.

7.2 Forward Kinematics

Before we come to the inverse kinematics problem, we discuss the forward kinematics problem, which
is much simpler. The results of this section will be used in an algorithm for computing the inverse
kinematics. The forward kinematics problem can be stated as follows: Given 8;,d;, a5,a;, i = 1,...,6,
find e such that

€= 0109 ---0g.

In the following let
~_J di if the i-th joint is prismatic
Yi= 1 6 if the i-th joint is revolute
and let ® = (x1,...,26)". Note that a; depends only on x; but not on z; for j # i. If the 7-th joint is
prismatic, then we call z; distance variable, otherwise x; is called angle variable.

Computing the forward kinematics for a given robot means simply evaluating the function f : R® — R***,
f(x) = maz - - ae. (7.2.1)

Now, we want to compute the forward kinematics where the joint values are given by intervals X; € IIR.
Therefore, we define an interval extension § of f. As the associative law does not hold for interval matrix
multiplication, we have to explicitly specify the order in which the matrices are multiplied. It seems
that the smallest number of arithmetic operations are needed if the elementary matrices are multiplied
successively from left to right. Hence, let

3(x) ="
where

0 4

W =

D Sgo)rotz(ﬁi) if the 7-th joint is prismatic
L Sgo)rotz(Xi) if the i-th joint is revolute

S(z) B Sgl)transz(di) if the ¢-th joint is revolute
. Sgl)transz (X;) if the i-th joint is prismatic

3’53) = ng)transx(ai
354) = SES)rOtx(Oﬁ)



CHAPTER 7. SOLUTION OF THE ROBOT INVERSE KINEMATICS PROBLEM 248

fore=1,...,6 and let
3’84)21.

Obviously ® € X implies f(x) € F(X) but due to interval dependencies usually

F(X) D f(X).

In order to obtain closer inclusions of f one can apply standard techniques like centered forms as described
in Chapter 4 for polynomials. However, the special structure of (7.2.1) gives us further possibilities as
described below.

Frame Property. Note that each ng), t=1,...,6,7=1,...,4 bounds a set of frames. Eliminating
all matrices which are not frames from 3’5]) would in general not give an interval matrix. Hence, we

reduce ng) in a sub—optimal way without leaving the class of interval matrices. So, the problem can be
stated as follows: Given § € IR*** find § C F such that each frame in F is also in §. This problem can
be solved by tightening using the orthogonality properties of the orientation of frames.

Dependency between sin(X) and cos(X). For revolute joints, overestimation occurs already during
the multiplication of a matrix § by rot,(X) because of the dependency between sin(X) and cos(X).

Let
011 O12 O3 P
3= 031 Oz 023 P
031 O3z O3z P
0 0 0 1
Then
011 012 013 COS(X) —sin(X) 0
_ 021 022 023 sin(X) COS(X) 0
Sroto(X) = O34 032 033 0 0 1
0 0 0 0

021 COS(X) + 022 SIH(X) —021 SIH(X) + 022 COS( ) 023 P2
031 COS(X) + 032 SIH(X) —031 SIH(X) + 032 COS( ) 033 P3
0 0 0 1

0
0
0
1
011 COS(X —|—012 SlIl X —011 SIH(X) —|—012 COS(X) 013 P1
X
X

In order to avoid this kind of overestimation, we have to solve the following problem: Given A, B, X € IR,
find
{Asin(z) + Beos(z) | x € X}.

When solving the inverse kinematics problem, we are are usually given the intervals sin(X), cos(X) but
not X. Therefore, the problem is slightly different: Given A, B, S, C' € IR, find

{As+Be | s +c?=1,s€ S,ceC}.

In order to simplify the problem, we assume 0 ¢ int(S), 0 € int(C'). This can always be achieved through
bisections. As

{(—A)5+Bc|52—|—cz—156 —-S,ceC}
= {As+ (- c|5 +ct=1,s€8ce-C}

{As+Be | s’ +c?=1,s€ S ceC}

we can reduce the problem to S > 0, C' > 0. Thus,

{As+Be|s24+c2=1,5€S5,c€C} = max{Ads+Bec|s’+c?=1,s€5,cecC}
{AS—|—BC|52—|—62:1,SES,CEC} = min{As—|—§c|52—1—62:1,565,660}

and the problem can be solved for example by the Lagrange multiplier method.



CHAPTER 7. SOLUTION OF THE ROBOT INVERSE KINEMATICS PROBLEM 249

7.3 Inverse Kinematics

In this section we give an algorithm for solving the inverse kinematics problem
ajds---dg = ¢ (7.3.1)

based on tightening and the Hansen—Sengupta operator. The algorithm is in principle the same as the
one presented in Chapter 6, but exploits the structure of the kinematic equations (7.3.1).

7.3.1 Tightening

The idea of tightening is to evaluate an equation in all variables except for one and solve the univariate
interval equation. For the kinematic equations (7.3.1) this is particularly straight forward, because (7.3.1)
can be solved explicitly for each variable:

For revolute joints we can rewrite (7.3.1) as

rot:(z1) = [4 a6_1 a5_1 a;l a;l a;l rot; (oq)transm_1 (a1)trans; 1 (d1)
rotz(z2) = a1_1 [4 a6_1 a5_1 a;l a;l rot; (ozg)transm_1 (a2)trans; 1 (d2)
rotz(z3) = a;l a1_1 [4 a6_1 a5_1 a;l rot; (ozg,)transm_1 (a3)trans; 1 (ds)
rotz(zs) = a;l a;l a1—1 [4 a6—1 a5—1 rot; ! (oq)transm_1 (a4)trans; 1 (ds)
rotz(zs) = a;l a;l a;l a1_1 [4 a6_1 rotm_l(oz5)trans$_1(a5)transz 1 (ds)
rotz(zg) = CL5_1 a;l a;l a;l a1_1 [4 rot; (oz(g)transm_1 (ag)trans; 1 (de)
For prismatic joints we have

trans;(z1) = rot; ! (61) [4 a6_1 a5_1 a;l a;l a;l rot_l(al)transzl(al)
trans; (z2) = rot; ! (62) a1—1 [4 a6—1 a5—1 a4—1 a;l rot; ! (a2)trans$_1 (a2)
trans;(z3) = rot; ! (63) a;l a1_1 [4 a6_1 a5_1 a;l rot; ! (ozg,)transm_1 (a3)
trans;(zy) = rot; ! (04) a;l a;l a1_1 [4 a6_1 a5_1 rot;l(a4)trans$_1(a4)
trans; (zs) = rot; ! (05) a;l a;l a;l a1_1 [4 a6_1 rotm_l(ozg))trans;l(ag))
trans; (zg) = rotz ! (0s) a5_1 a;l a;l a;l a1_1 [4 roty ! (oz6)trans$_1 (as)

Thus, tightening means simply evaluating the right hand sides of the above equations by interval arith-
metic and intersect with the matrix on the left hand side. If tightening is done successively in each
variable, then intermediate results of the right hand side evaluation can be reused and overestimation
1s reduced because most recently updated values are used in the computation. Further, as all matrix
products on the right hand side are frames, we can use the techniques described in the previous section
for reducing overestimation during frame multiplication. Inverse frames can be handled in the same way
as ordinary frames because

a7l = rot;(a;)transy (a;)trans] (d;)rot; (6

i )
= roty(—a;)trans,(—a;)trans,(—d;)rot,(—6;).
In order to avoid trigonometric function calls during tightening, we replace each angle variable z; by two

new variables s; = sin(#;), ¢; = cos(#;). Whenever a new interval S; for s; or C; for ¢; is computed, we
tighten the other interval optimally using s? + ¢? = 1.

7.3.2 Hansen—Sengupta Operator

Note that the matrix kinematic equation

fw) =¢
consists of 16 equations in 6 variables. Still, it is not overdetermined as due to the frame property
there are only 6 independent equations. In order to apply the Hansen—-Sengupta operator, the number of

variables must be the same as the number of equations. Hence we choose 6 independent equations, for
example

f11(93) = €11
f12(93) = €12



CHAPTER 7. SOLUTION OF THE ROBOT INVERSE KINEMATICS PROBLEM 250

far(e) = e (7.3.2)
f14(93) = €14
f24(93) = €24
f34(93) = €34.

In the following let
f(x) = (fir, fiz, fo1, fia, foa, f3a)"

—_ T
e = (611,612,621,614,624,634)~

In order to compute the partial derivatives of f efficiently, we use

0
axlf(w) — alaz...a; s 1
where
—sin(x;) —cos(z;) 0 0
cos(z; —sin(z;) 0 0
a = (() ) 0( ) 0 0 trans,(d;) trans, (a; ) roty (o)
0 0 0 0

if the i-th joint is revolute and

a; = rot,(6;) transg (a; ) rot, (o)

o oo o
o oo o
o oo o
O = OO

if the i-th joint is prismatic. This allows to reuse intermediate results for the computation of all partial
derivatives as well as a reduction of the overestimation error in the same way as described in Section 7.2
for the forward kinematics.

As in Chapter 6 we apply tightening and the Hansen—Sengupta operator alternately. During tightening
we compute intervals for the sine and the cosine of each angle variable, hence no trigonometric function
calls are needed for the computation of the Jacobian. But in order to obtain a starting box for the
Hansen—Sengupta operator we need an interval version of the arctan function, and for the evaluation of
f(mid(X)) interval versions of the sine and the cosine function are necessary. Finally, in order to get
the sines and cosines of the result of the Hansen—Sengupta operator for the next tightening step, further
interval sine and cosine function calls are needed. The interval versions of trigonometric and inverse
trigonometric functions which we use in our experiments are based on direction rounded, truncated
Taylor series, see for example [Rothmaier, 1971], [Braune and Kramer, 1987], [Braune, 1987].

7.4 Experimental Results

In this section we compare three algorithms for solving the robot inverse kinematics problem.

e The first algorithm IKG (Inverse Kinematics General algorithm) is the same as in Chapter 6. For
the Hansen—Sengupta operator we use the system of equations (7.3.2). For tightening we use all
12 non-trivial equations of (7.3.1). Each angle variable #; is replaced by two variables s;, ¢; for its
sine and cosine and an equation s? + ¢ = 1 is added.

e The second algorithm IKS (Inverse Kinematics Specialized algorithm) is as described in this chapter
and exploits the special structure of the kinematic equations.

e The third algorithm TKO (Inverse Kinematics Optimized algorithm) is the same as TKS, except
that for the Hansen—Sengupta operator we are using slopes instead of derivatives. The slopes are
defined as for the successive mean value form, see Section 4.2.1. Only after the Hansen—Sengupta
operator with a slope maps a box into its interior, we use a Jacobian for testing uniqueness of the
solution in the box.



CHAPTER 7. SOLUTION OF THE ROBOT INVERSE KINEMATICS PROBLEM

251

In our experiments we consider the following four examples. The costs for the computation are reported

in Table 7.4.

¢ Elbow manipulator, see for example [Paul, 1981]. This robot has only revolute joints.

Starting Box: [—m, @] X [—m, @] X [=7, 7] X [-7, 7] X [-7, 7] X [—-7, 7).

End Effector Frame:

The problem has 4 solutions.

—0.611

0.018
0.791
0

—0.767

—0.258

—0.587
0

1 92 dz (871 a;
1l 0 #/2 0
21z2 O 0 2
31z O 0 3
41wy 0 —-m/2 4
5 s 0 7T/2 0
6|z O 0 0

0.194 0.571

—-0.966 0.177

0.171  7.537
0 1

e Stanford manipulator, see for example [Paul, 1981]. This robot has 5 revolute joints and 1 prismatic

joint.

Starting Box: [—m, 7] X [—m, 7] X [0, 1] X [=7, 7] X [—=7, 7] X [, 7].

End Effector Frame:

The problem has 4 solutions.

0.020
0.871

—0.491

0

—0.762
0.332
0.556

0

0.647

0.363

0.670
0

1 92 dz (871 a;
1y 0 —w/2 0
21z 2 @/2 0
310 s 0 0
4lay 0 —x/2 0
5 s 0 7T/2 0
6|zs O 0 0

—0.345
1.987
0.306

1

e Modified Stanford manipulator. All parameters are the same as for the Stanford manipulator except
for as and as. Note that neither sin(as) = 0 nor cos(as) = 0, hence the corresponding algebraic
system of equations is more dense than in the previous example.

Starting Box: [—m, 7] X [—m, 7] X [0, 1] X [=7, 7] X [—=7, 7] X [, 7].

End Effector Frame:

The problem has 3 solutions.

0.006
0.860
—0.511
0

—0.907 0.422

0.220 0.461

0.360 0.781
0 0

1 92 dz (871 a;
1y 0 —w/2 0
21z 2 @/2 0
310 23 0 0
4lay 0 —x/2 0
5| x5 0 1.3 2
6|zs O 0 0

—0.153
3.653
—0.783
1



CHAPTER 7. SOLUTION OF THE ROBOT INVERSE KINEMATICS PROBLEM 252

e This example is the same as the previous one except that the last joint is replaced by a prismatic

joint.
1] 68; d; o; a;
1y 0 —w/2 0
21z 2 @/2 0
310 s 0 0
4lay 0 —x/2 0
5| x5 0 1.3 2
61 0 e 0 0

Starting Box: [—m, @] X [—m, #] X [0, 1] x [=7, 7] x [-7, @] x [0, 1].
End Effector Frame:
0.096 —0.902 0422 -0.111
0.833  0.304 0.461 3.700
—0.544 0.307 0.781 —-0.705
0 0 0 1

The problem has 1 solution.

In all examples except for the Stanford Manipulator IKS is faster than IKG and in all cases TKO is faster
than TKS. While the difference between IKO and TKS is roughly the same in all cases; the performance
of IKG deviates significantly. In the Elbow Manipulator example IKG is more than 200 times more
expensive than IKO whereas in the case of the Stanford Manipulator the difference is negligible.

7.5 Parallelization

We parallelize algorithm IKO on a workstation network and on the super computer CS-2HA using
PVM [Geist et al., 1994] for the parallelization primitives. In both cases we apply a manager—worker
scheme. For the super computer implementation this works well up to about 30 processors. If more
processors are used, the manager is a bottle neck. We solve this problem by using a more sophisticated
load balancing method and report experimental results with up to 65 processors.

7.5.1 Parallelization on a Workstation Network

In this section we describe the parallelization of algorithm IKO on a workstation network and report
experimental results with up to 9 machines. For the parallelization we use the following simple manager—
worker scheme.

Manager. The manager holds the list of boxes which have to be worked on and a list of idle workers.
If there is a box in the list and an idle worker, he sends the box to the worker. Otherwise he waits for
a message from a worker and updates the list of boxes, solutions and idle workers. If there are no more
boxes and all workers are idle, he sends a termination message to each worker.

Worker. Each worker performs the following loop.

(1) Receive a message from the manager which tells the worker either to terminate or contains a box
to work on.

(2) Perform tightening and the Hansen—Sengupta operator as described in the previous section as long
as the box 1s reduced significantly. If the box is canceled thereby then send a message to the
manager indicating that the worker is idle and go to (1). If the box is too small to continue working
on it or if it is detected that it contains a unique solution, then send the box to the manager and
indicate that the worker is idle.



CHAPTER 7. SOLUTION OF THE ROBOT INVERSE KINEMATICS PROBLEM

Elbow Manipulator

Total (MFlop) | Hansen—Sengupta Tightening Bisections

calls | avg. (Flop) calls | avg. (Flop)
IKG 12966.0 | 377717 19641 | 495439 11139 161451
IKS 66.4 7191 4760 | 12251 2606 5703
IKO 56.8 6702 3858 | 11745 2581 5446

Stanford Manipulator

Total (MFlop) | Hansen—Sengupta Tightening Bisections

calls | avg. (Flop) calls | avg. (Flop)
IKG 8.1 408 11601 482 6940 113
IKS 8.9 1177 3840 1744 2476 745
IKO 6.5 994 2738 1527 2432 647

Modified Stanford Manipulator 1

Total (MFlop) | Hansen—Sengupta Tightening Bisections

calls | avg. (Flop) calls | avg. (Flop)
IKG 662.0 | 25358 14624 | 31147 9296 10077
IKS 121.4 13503 4623 22342 2589 10450
IKO 95.1 | 11517 3905 | 19074 2574 8918

Modified Stanford Manipulator 2

Total (MFlop) | Hansen—Sengupta Tightening Bisections

calls | avg. (Flop) calls | avg. (Flop)
IKG 85.3 4274 11282 4860 7585 1550
IKS 4.4 507 4470 858 2485 389
IKO 3.7 465 3608 760 2512 342

Table 7.4.1: Experimental comparison of 3 algorithms for solving the inverse kinematics problem.

253



CHAPTER 7. SOLUTION OF THE ROBOT INVERSE KINEMATICS PROBLEM 254

(3) Bisect the box, send one half to the manager and continue with the other half at (1).

The algorithm is implemented in the C4++ language using PVM for the parallelization primitives. The
network consists of Silicon Graphics workstations with MIPS R2000A /R3000 processors and 33 MHz
clock frequency. The manager and each worker runs on a separate machine. Experimental results with
up to 8 workers are reported in Table 7.5.1. The utilization is obtained by dividing the speedup with n
workers by n, i.e. the manager is not taken into account. For the experiments we are using the same
examples as in the previous section. All computing times are measured in seconds using wall clock.

7.5.2 Parallelization on the Super Computer CS-2HA

In this section we parallelize algorithm IKO on the MIMD super computer CS-2HA at the Furopean
Center for Parallel Computing in Vienna (VCPC).

In its current configuration the CS-2HA has 128 processing elements, each consisting of 2 Super SPARC
shared memory 50 MHz processors, 1 MB cache and 64 MB RAM. The CS-2HA is divided into several
partitions where the largest partition comprises 68 processors. The communication is supported by
proprietary communication and switching chips. Each processing element interfaces the network through
an Elan communications chip, which relives the CPU from communications processing. The Elan is
a RISC processor which has a shared memory interface to the CPU and has two 2-way 70 MHz byte
wide data links to connect to the network providing 50 MB/s user bandwidth. The network itself is a
multi-stage packet switch with 100 MB/sec/link and is built of Elite 8 x 8 crosspoint switches. As well as
supporting point—to—point connectivity, the data network provides hardware broadcast at full bandwidth.

Manager—Worker Scheme. First; we tested the same simple manager—worker scheme as for the
workstation implementation described in the previous section on the CS-2HA. Both implementations are
based on PVM, hence only minor modifications of the program were necessary. Experimental results
are reported in Table 7.5.2. As loading and starting the processes involves negotiation with the resource
manager, which can cause arbitrary delays, we do not take the startup time into account.

For the larger two examples (Elbow and Modified Stanford 1) the worker utilization is higher than 90%
up to 20 processors! However, in all cases the maximum speedup is already achieved with roughly 25-30
processors and using more than 30 processors increases the computing time. There might be two reasons
for this:

e Limited number of boxes which can be worked on simultaneously.

e The manager i1s a bottle neck.

Modified Manager—Worker Scheme. Let us first assume that there are not enough boxes available
which can be processed at the same time. Note that at the beginning of the program only one box is
processed, after that there are two boxes which can be worked on in parallel and so on. This means that
although a large number of boxes has to be processed, it is possible that there are only few boxes which
are avallable at the same time. The low parallelization degree especially at the beginning of the program
execution can be resolved if the strategy of the manager is modified slightly as follows: If there is more
than one idle worker but only one available box, then the manager splits the box and assigns one half
to a worker. This means that immediately after the program starts, all workers are busy. Experimental
results obtained with this modification are reported in Table 7.5.3.

Apparently the modification in the manager strategy does not resolve the problem that using more than
30 processors gives no performance improvement. Qualitatively the results in Table 7.5.3 are the same
as in Table 7.5.2. Hence, it seems that the manger is the bottleneck.

Explicit Load Balancing Scheme. The idea to overcome the manager bottleneck is to employ several
managers and assign a fixed number of workers to each manager. Further, there is a meta manager which
is in charge of load balancing between the managers.



CHAPTER 7. SOLUTION OF THE ROBOT INVERSE KINEMATICS PROBLEM

Elbow Manipulator
Workers seq 1 2 3 4 5 6 7 8
Time (sec) || 485.2 | 552.5 | 292.9 | 201.4 | 151.7 | 124.7 | 105.7 | 91.6 | 81.8
Speedup — | 0.88 ] 166 | 241 | 320 | 3.89 | 459 | 5.30| 5.93
Utilization — | 0.88| 0.83| 0.80| 080 | 078 | 077 | 0.76 | 0.74
Stanford Manipulator
Workers seq 1 2 3 4 5 6 7 8
Time (sec) 59.3 | 66.6 | 353 | 244 | 198 | 159 | 13.7| 12.0| 11.1
Speedup — | 0.89 | 168 | 243 | 299 | 3.73 | 433 | 494 | 5.34
Utilization — | 0.89| 0.84| 081 | 075 | 075| 072 | 0.71| 0.67
Modified Stanford Manipulator 1
Workers seq 1 2 3 4 5 6 7 8
Time (sec) || 781.7 | 876.7 | 466.5 | 318.5 | 239.6 | 195.8 | 169.1 | 149.4 | 133.7
Speedup — | 089 | 168 | 245 | 326 | 399 | 462 | 523 | 5.8
Utilization — | 089 | 0.84| 082 | 082 080 | 0.77 | 0.75 | 0.73
Modified Stanford Manipulator 2
Workers seq 1 2 3 4 5 6 7 8
Time (sec) 32.1 1 352 | 19.2| 13.0] 10.2 8.4 7.3 6.3 5.9
Speedup — | 091 1.67 | 246 | 3.15| 3.82| 440 | 510 | b5.44
Utilization — | 091] 084 | 082| 079 | 076 | 0.73| 0.72 | 0.68

255

Table 7.5.1: Workstation network implementation of algorithm IKO for the inverse kinematics problem.



CHAPTER 7. SOLUTION OF THE ROBOT INVERSE KINEMATICS PROBLEM 256
Elbow Manipulator
Workers seq 2 4 8 16 24 32 40 48 56 64
Time (sec) || 144.3 | 76.6 | 39.3 | 18.9 9.8 7.3 6.8 7.3 6.7 6.9 7.1
Speedup — | 1.88 | 3.67 | 7.63 | 14.72 | 19.77 | 21.22 | 19.77 | 21.54 | 20.91 | 20.32
Utilization — | 094109209 | 092 | 0.82| 066 | 049 | 045 | 037 | 0.32
Stanford Manipulator
Workers seq 2 4 8 16 24 32 40 48 56 64
Time (sec) 16.4 85| 46| 2.3 1.4 1.2 1.2 1.3 1.4 1.4 1.5
Speedup — | 1.93 | 3.57 | 7.13 | 11.71 | 13.67 | 13.67 | 12.62 | 11.71 | 11.71 | 10.93
Utilization — | 0.96 089089 | 0.73| 0b57| 043 | 032 024 | 021] 0.17
Modified Stanford Manipulator 1
Workers seq 2 4 8 16 24 32 40 48 56 64
Time (sec) || 220.7 | 115.3 | 57.2 | 29.8 | 15.1 11.6 | 105 | 103 | 104 | 105 | 145
Speedup — | 1.91 | 3.86 | 7.41 | 14.62 | 19.03 | 21.02 | 21.43 | 21.22 | 21.02 | 15.22
Utilization — | 0.96]09 | 093 | 091 | 0.79| 0.66 | 054 | 044 | 038 | 0.24
Modified Stanford Manipulator 2
Workers seq 2 4 8 16 24 32 40 48 56 64
Time (sec) 840 | 434|223 |1.18| 08| 073 | 075 | 083 | 091 | 093] 1.02
Speedup — | 1.94 | 3.77 | 7.12 | 10.50 | 11.51 | 11.20 | 10.12 | 9.23 | 9.03 | 8.24
Utilization — | 0971094089 | 066 | 048 | 035 | 0.25| 0.19| 0.16 | 0.13

Table 7.5.2: Manager—worker implementation of algorithm IKO for the inverse kinematics problem on a

super computer.



CHAPTER 7. SOLUTION OF THE ROBOT INVERSE KINEMATICS PROBLEM 257
Elbow Manipulator
Workers seq 2 4 8 16 24 32 40 48 56 64
Time (sec) || 144.3 | 75.3 | 37.6 | 19.1 9.9 7.2 6.7 6.7 7.1 7.0 7.5
Speedup — | 1.92 | 3.84 | 7.55 | 14.58 | 20.04 | 21.54 | 21.54 | 20.32 | 20.61 | 19.24
Utilization — | 096096 |094| 091 | 0.84| 067 | 054 | 042]| 037 | 0.30
Stanford Manipulator
Workers seq 2 4 8 16 24 32 40 48 56 64
Time (sec) 16.4 84| 46| 22 1.3 1.2 1.3 1.3 1.5 1.6 1.7
Speedup — | 1.95 | 3.57 | 745 | 12.62 | 13.67 | 12.62 | 12.62 | 10.93 | 10.25 | 9.65
Utilization — | 098089093 | 079 | 0.57| 039| 032)| 0.23]| 0.18 | 0.15
Modified Stanford Manipulator 1
Workers seq 2 4 8 16 24 32 40 48 56 64
Time (sec) || 220.7 | 114.1 | 57.3 | 29.2 | 15.1 11.1| 104 | 106 | 10.5| 103 | 10.7
Speedup — | 1.93 | 3.85 | 7.56 | 14.62 | 19.88 | 21.22 | 20.82 | 21.02 | 21.43 | 20.63
Utilization — | 0971096 | 094 | 091 | 0.83| 066 | 052| 044 | 038 | 0.32
Modified Stanford Manipulator 2
Workers seq 2 4 8 16 24 32 40 48 56 64
Time (sec) 840 | 438|220 |1.22| 077 | 07| 097 092 | 103 | 1.19 | 143
Speedup — | 1.92] 382|689 1091 | 11.20| 866 | 9.13 | 816 | 7.06 | b.87
Utilization — | 096095 |086| 0.68| 047| 0.27| 0.23)| 0.17]| 0.13 ] 0.09

Table 7.5.3: Modified manager—worker implementation of algorithm IKO for the inverse kinematics prob-
lem on a super computer. The manager bisects a box if there are more than one idle workers and only
one available box.



The task of the managers and workers 1s basically the same as in the previous approach except that from
time to time each manager reports his current load to the meta manager. The load of a manager is the
difference between the number of boxes on his stack and the number of his idle workers. If the meta
manager detects a significant load imbalance, he sends a message to the most loaded manager indicating
that he should give work to the least loaded manager.

This approach requires that some parameters are fixed. Experimentally the following values turned out
to be reasonable.

e The number of managers is determined such that each manager has approximately 10 workers.

e A manager reports his load to the meta manger if the load information at the meta manager differs
at least by 3.

e If according to the information available at the meta manager the most loaded manager has a load
of at least 2 and the least loaded manager has a load of less than 0, then the meta manager issues
a work shift between these two managers.

e If a manager is told to send work to another manager, he attempts to send as many boxes such that
both managers are equally loaded. The information about the load of the recipient of the work is
provided by the meta manager.

A problem with this approach is how to detect termination. Each manager sends a message to the meta
manager when he has no more work and all his workers are idle. But this information is not sufficient
for the meta manager to decide whether all work is done because there might still be some load balance
messages under way. Hence, in addition each manager counts the number of sent and received messages
between himself, other managers and the meta manger. If a manager has no more work and all his
workers are idle, then he sends these numbers to the meta manager. After the meta manager received
such a message from every manager, he checks whether the total number of sent and received messages
is consistent with his own message count and if so, he sends a termination message to all managers and
workers.

Experimental results of this implementation are reported in Table 7.5.4. For the larger examples (Elbow
and Modified Stanford 1) we obtain a worker utilization of at least 75% even with the maximum number
of processors. In this case the computing time is less than half of the manager—worker approach. For
the Stanford Manipulator example we get speedups until the maximum number of processors which are
significantly higher than in the previous approach. Only for the Modified Stanford Manipulator 2 example
no improvement over the simple manager—worker scheme is achieved. However, as shown in Table 7.4,
in this example the total number of boxes which are processed is only 343 and it seems that this is not
enough for an efficient parallelization.

258



Elbow Manipulator

Workers seq 1 3 7 15 22 29 36 44 51 58
Managers — 1 1 1 1 2 3 4 4 5 6
Time (sec) || 144.3 | 149.9 | 49.5 | 22.0 | 10.5 7.3 5.8 4.9 4.1 3.7 3.3
Speedup — | 0.96] 292 | 6.56 | 13.74 | 19.77 | 24.88 | 29.45 | 35.20 | 39.00 | 43.73
Utilization — | 096097094 | 092| 090 | 086 | 0.82| 0.80]| 076 | 0.75

Stanford Manipulator

Workers seq 1 3 7 15 22 29 36 44 51 58
Managers — 1 1 1 1 2 3 4 4 5 6
Time (sec) 164 | 169 59| 26 1.4 1.1 1.0 1.0 1.0 0.9 0.9
Speedup — | 097 ] 278|631 | 11.71 | 14.91 | 16.40 | 16.40 | 16.40 | 18.22 | 18.22
Utilization — | 097109309 | 0.78| 0.68| 057 | 046 | 037 | 036 | 0.31

Modified Stanford Manipulator 1

Workers seq 1 3 7 15 22 29 36 44 51 58
Managers — 1 1 1 1 2 3 4 4 5 6
Time (sec) || 220.7 | 238.1 | 77.3 | 34.0 | 16.2 | 11.2 8.4 7.1 5.9 5.2 4.8
Speedup — | 0.93] 286 | 6.49 | 13.62 | 19.71 | 26.27 | 31.08 | 37.41 | 42.44 | 45.98
Utilization — | 093109 093 091 | 09| 091 | 086 | 0.85| 083 ]| 0.79

Modified Stanford Manipulator 2

Workers seq 1 3 7 15 22 29 36 44 51 58
Managers — 1 1 1 1 2 3 4 4 5 6
Time (sec) 840 | 855 (290|141 | 088 | 0.75| 072 | 078 080 0.85| 0.90
Speedup — | 0.98]290|596 | 9.55 | 11.20 | 11.67 | 10.77 | 10.50 | 9.88 | 9.33
Utilization — | 098097085 | 064 | 051| 040 | 030 | 0.24| 0.19 | 0.16

Table 7.5.4: Explicit load balancing implementation of algorithm IKO for the inverse kinematics problem
on a super computer. The work is distributed dynamically between the managers.

259



260



Bibliography

[Aho et al., 1977]
A. V. Aho, S. C. Johnson, and J. D. Ullman.
Code Generation for Expressions with Common Subexpression.
J. of the Association for Computing Machinery, 24(1):146-160, 1977.

[Alefeld and Herzberger, 1974]
G. Alefeld and J. Herzberger.
Einfihrung in die Intervallrechnung.
Bibliographisches Institut, Mannheim-Wien—Zurich, 1974.

[Alefeld and Herzberger, 1983]
G. Alefeld and J. Herzberger.
Introduction to Interval Computations.
Academic Press, N.Y., 1983.

[Alefeld and Lohner, 1985]
G. Alefeld and R. Lohner.
On Higher Order Centered Forms.
Computing, 35:177-184, 1985.

[Alefeld and Rokne, 1981]
G. Alefeld and J. Rokne.
On the Evaluation of Rational Functions in Interval Arithmetic.

SIAM J. Numerical Analysis, 18:862-870, 1981.

[Alefeld, 1970]
G. Alefeld.
Eine Modifikation des Newtonverfahrens zur Bestimmung der reellen Nullstellen einer reellen Funk-
tion.

ZAMM, 50:T32-T33, 1970.

[Alefeld, 1981]
G. Alefeld.
Bounding the Slope of Polynomial Operators and some Applications.
Computing, 26:227-237, 1981.

[Alefeld, 1990]
G. Alefeld.
On the Approximation of the Range of Values by Interval Expressions.
Computing, 44:273-278, 1990.

[Apostolatos and Kulisch, 1967]
N. Apostolatos and U. Kulisch.
Grundlagen einer Maschinenintervallarithmetik.

Computing, 2:89-101, 1967.

[Armstrong, 1983]
M. A. Armstrong.
Basic Topology.
Springer, 1983.

261



[Baumann, 1988]
E. Baumann.
Optimal Centered Forms.
BIT, 28:80-87, 1988.

[Braune and Kramer, 1987]
K. Braune and W. Kramer.
High Accuracy Standard Functions for Real and Complex Intervals.
In E. Kaucher, U. Kulisch, and C. Ullrich, editors, Scientific Computation and Programmaing Lan-
guages, pages 81-114, Teubner, Stuttgart, 1987.

[Braune, 1987]
K. D. Braune.
Hochgenaue Standardfunktionen fur reelle und komplexe Punkte und Intervalle in beliebigen Gleit-
punktrastern.
PhD thesis, Universitat Karlsruhe, 1987.

[Caprani and Madsen, 1980]
O. Caprani and K. Madsen.
Mean Value Forms in Interval Analysis.

Computing, 25:147-154, 1980.

[Cargo and Shisha, 1966]
G. T. Cargo and O. Shisha.
The Bernstein Form of a Polynomial.

Journal of Research of Nat. Bur. Standards, 7T0B:79-81, 1966.

[Chuba and Miller, 1972]
W. Chuba and W. Miller.
Quadratic Convergence in Interval Arithmetic, Part 1.

BIT, 12:284-290, 1972.

[Cleary, 1987]
J. G. Cleary.
Logical Arithmetic.
Future Computing Systems, 2(2):125-149, 1987.

[Cornelius and Lohner, 1984]
H. Cornelius and R. Lohner.
Computing the Range of Values of Real Functions with Accuracy Higher than Second Order.
Computing, 33:331-347, 1984.

[Craig, 1986]
J. J. Craig.
Introduction to Robotics, Mechanics and Control.

Addison-Wesley, 1986.

[Dimitrova, 1993]
N. Dimitrova.
On Some Properties of an Interval Newton Type Method and its Modification.
In R. Albrecht, G. Alefeld, and H. J. Stetter, editors, Validation Numerics — Theory and Applica-
tions, pages 21-32, Springer Verlag, 1993.

[Frommer and Mayer, 1989]
A. Frommer and G. Mayer.
Safe Bounds for the Solution of Nonlinear Problems using a Parallel Multisplitting Method.
Computing, 42:171-186, 1989.

[Garloff, 1985]
J. Garloff.
Convergent Bounds for the Range of Multivariate Polynomials.
In K. Nickel, editor, Interval Mathematics, pages 37-56. Springer, 1985.

262



[Geist et al., 1994]
A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.
PVM 8 User’s Guide and Reference Manual.
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, September 1994.

[Grassmann and Rokne, 1979]
E. Grassmann and J. Rokne.
The Range of Values of a Circular Complex Polynnomial over a Circular Complex Interval.

Computing, 23:139-169, 1979.

[Hammer et al., 1993]
R. Hammer, M. Hocks, U. Kulisch, and D. Ratz.
Numerical Toolboz for Verified Computing I.
Springer, 1993.

[Hansen and Greenberg, 1983]
E. Hansen and R. I. Greenberg.
An Interval Newton Method.
Appl. Math. Comp, 12:89-98, 1983.

[Hansen and Sengupta, 1980]
E. R. Hansen and S. Sengupta.
Global Constrained Optimization using Interval Analysis.
In K. Nickel, editor, Interval Mathematics, pages 25-48. Springer, 1980.

[Hansen and Sengupta, 1981]
E. Hansen and S. Sengupta.
Bounding Solutions of Systems of Equations using Interval Analysis.

BIT, 21:203-211, 1981.

[Hansen, 1965]
E. Hansen.
Interval Arithmetic in Matrix Computations, Part 1.

SIAM J. Numerical Analysis, 2(2):308-320, 1965.

[Hansen, 1968]
E. Hansen.
On Solving Systems of Equations using Interval Arithmetic.

Math. Comp., 22:374-384, 1968.

[Hansen, 1969]
E. Hansen.
On the Centered Form.
In E. Hansen, editor, Topics in Interval Analysis, pages 102-106, Clarendon Press, Oxford, 1969.

[Hansen, 1978a]
E. Hansen.
A Globally Convergent Interval Method for Computing and Bounding Real Roots.
BIT, 18:415-424, 1978.

[Hansen, 1978b]
E. Hansen.
Interval Forms of Newtons Method.

BIT, 20:153-163, 1978.

[Hansen, 1979]
E. Hansen.
Global Optimization using Interval Analysis: The One-Dimensional Case.
Optimization Theory and Applications, 29:331-344, 1979.

[Hansen, 1980]
E. Hansen.
Global Optimization using Interval Analysis: The Multidimensional Case.

Numerische Mathematik, 34:247-270, 1980.

263



[Hansen, 1988]
E. Hansen.
An Overview of Global Optimization using Interval Analysis.
In R. E. Moore, editor, Reliability in Computing, pages 289-307, Academic Press, London, 1988.

[Hansen, 1992]
E. Hansen.
Global Optimization Using Interval Analysis.
Marcel Dekker, Inc., 1992.

[Hong and Stahl, 1994a)
H. Hong and V. Stahl.
Bernstein Form is Inclusion Monotone.
Technical Report 94-52, Research Institute for Symbolic Computation, Johannes Kepler University,
Linz, Austria, 1994.

[Hong and Stahl, 1994b]
H. Hong and V. Stahl.
Safe Starting Regions by Fixed Points and Tightening.
Computing, 53:323-335, 1994.

[Hong and Stahl, 1995]
H. Hong and V. Stahl.
Bernstein Form is Inclusion Monotone.

Computing, 55:43-53, 1995.

[Houscholder, 1970]
A. S. Householder.
The Numerical Treatment of a Single Non-Linear Equation.

Mec Graw-Hill, 1970.

[Ichida and Fujii, 1979]
K. Ichida and Y. Fujii.
An Interval Arithmetic Method for Global Optimization.
Computing, 23:85-97, 1979.

[IEEE, 1985]
IEEE.
IEEE Standard 754-1985 for Binary Floating Point Arithmetic.
Reprinted in SIGPLAN, 22(2):9-25, 1985.

[Jones, 1978]
S. T. Jones.
Searchning for Solutions of Finite Nonlinear Systems — An Interval Approach.
PhD thesis, University of Wisconsin—Madison, 1978.

[Jones, 1980]
S. T. Jones.
Locating Safe Starting Regions for Iterative Methods: A Heuristic Algorithm.
In K. Nickel, editor, Interval Mathematics, pages 377-386. Springer, 1980.

[Kearfott, 1987]
R. Baker Kearfott.
Some Tests of Generalized Bisection.

ACM Trans. Math. Software, 13(3), 1987.

[Kearfott, 1990a]
R. Baker Kearfott.
Interval Arithmetic Techniques in the Computational Solution of Nonlinear Systems of Equations:
Introduction, Examples and Comparison.

Lectures in Applied Mathematics, 26:337-357, 1990.

[Kearfott, 1990Db]
R. Baker Kearfott.

264



Interval Newton / Generalized Bisection When There are Singularities Near Roots.

Annals of Operations Research, 25:181-196, 1990.

[Knuth, 1981]
D. E. Knuth.
The Art of Computer Programming, Seminumerical Algorithms.

Addison—Wesley, 1981.

[Krawczyk and Neumaier, 1985]
R. Krawczyk and A. Neumaier.
Interval Slopes for Rational Functions and Associated Centered Forms.

SIAM J. Numerical Analysis, 22(3):604-615, 1985.

[Krawczyk and Nickel, 1982]
R. Krawczyk and K. Nickel.
Die zentrische Form in der Intervallarithmetik, ihre quadratische Konvergenz und ihre Inklusionsiso-
tonie.

Computing, 20:117-137, 1982.

[Krawczyk, 1969]
R. Krawczyk.
Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken.

Computing, 4:187-201, 1969.

[Krawczyk, 1980a]
R. Krawczyk.
Interval Extensions and Interval Iterations.

Computing, 24:119-129, 1980.

[Krawczyk, 1980b]
R. Krawczyk.
Zur ausseren und inneren EinschlieBung des Wertebereichs einer Funktion.
Fretburger Intervall-Berichte, 7:1-19, 1980.

[Krawczyk, 1982]
R. Krawczyk.
Zentrische Formen und Intervalloperatoren.
Fretburger Intervall-Berichte, 1:1-30, 1982.

[Krawczyk, 1983]
R. Krawczyk.
Intervallsteigungen fiir rationale Funktionen und zugeordnete zentrische Formen.
Fretburger Intervall-Berichte, 2:1-30, 1983.

[Krawczyk, 1984]
R. Krawczyk.
Interval Iterations for Including a Set of Solutions.

Computing, 32:13-31, 1984.

[Krawczyk, 1985]
R. Krawczyk.
Interval Operators and Fixed Intervals.
In K. Nickel, editor, Interval Mathematics, pages 81-94. Springer, 1985.

[Krawczyk, 1986a]
R. Krawczyk.
A Class of Interval Newton Operators.
Computing, 37:179-183, 1986.

[Krawczyk, 1986b]
R. Krawczyk.
An Improved Interval Newton Operator.
J. Mathematical Analysis and Applications, 118:194-207, 1986.

265



[Krawczyk, 1986¢]
R. Krawczyk.
Properties of Interval Operators.

Computing, 37:227-245, 1986.

[Lane and Riesenfeld, 1981]
J. M. Lane and R. F. Riesenfeld.
Bounds on a Polynomial.

BIT, 21:112-117, 1981.

[Lipson, 1981]
J. D. Lipson.
Elements of Algebra and Algebraic Computing.
Addison—Weseley, 1981.

[Mackworth, 1977]
A. K. Mackworth.
Consistency in Networks of Relations.

Artificial Intelligence, 8:99-118, 1977.

[Miller, 1972]
W. Miller.
Quadratic Convergence in Interval Arithmetic, Part 2.

BIT, 12:291-298, 1972.

[Miller, 1973]
W. Miller.
More on Quadratic Convergence in Interval Arithmetic.

BIT, 13:76-83, 1973.

[Miller, 1975]
W. Miller.
The Error in Interval Arithmetic.
In K. Nickel, editor, Interval Mathematics, pages 246-250. Springer, 1975.

[Miranda, 1940]
C. Miranda.
Un ’Osservatione su un Teorema di Brouwer.

Bolletino Unione Math. Ital., 2(3):5-7, 1940.

[Moore and Jones, 1977]
R. E. Moore and S. T. Jones.
Safe Starting Regions for Iterative Methods.
SIAM J. Numerical Analysis, 14:1051-1065, 1977.

[Moore and Kioustelidis, 1980]
R. E. Moore and J. B. Kioustelidis.
A Simple Test for Accuracy of Approximate Solutions to Nonlinear (or Linear) Systems.

SIAM J. Numerical Analysis, 17:521-529, 1980.

[Moore and Qi, 1982]
R. E. Moore and L. Qi.
A successive interval test for nonlinear systems.

SIAM J. Numerical Analysis, 19:845-850, 1982.

[Moore, 1966]
R. E. Moore.
Interval Anaysis.

Prentice-Hall, Englewood Cliffs, N.J., 1966.

[Moore, 1976]
R. E. Moore.
On Computing the Range of a Rational Function of n Variables over a Bounded Region.

Computing, 16:1-15, 1976.

266



[Moore, 1977]
R. E. Moore.
A test for Existence of Solution to Nonlinear Systems.

SIAM J. Numerical Analysis, 14:611-615, 1977.

[Moore, 1978]
R. E. Moore.
A computational test for convergence of iterative methods for nonlinear systems.

SIAM J. Numerical Analysis, 15:1194-1196, 1978.

[Moore, 1979]
R. E. Moore.
Methods and Applications of Interval Anaysis.
SIAM, Philadelphia, 1979.

[Moore, 1980a]
R. E. Moore.
Interval Methods for Nonlinear Systems.
Computing, Suppl., 2:113-120, 1980.

[Moore, 1980b]
R. E. Moore.
New Results on Nonlinear Systems.
In K. Nickel, editor, Interval Mathematics, pages 165-180. Springer, 1980.

[Morgan and Shapiro, 1987]
A. P. Morgan and V. Shapiro.
Box—Bisection for Solving Second—Degree Systems and the Problem of Clustering.
ACM Trans. Math. Software, 13(2):152-167, 1987.

[Morgan, 1983]
A. P. Morgan.
A Method for Computing All Solutions to Systems of Polynomial Equations.
ACM Trans. Math. Software., 9(1):1-17, 1983.

[Morgan, 1987]
A. P. Morgan.

Solving Polynomual Systems Using Continuation for Engineering and Scientific Problems.
Prentice Hall, 1987.

[Neumaier, 1990]
A. Neumaier.
Interval Methods for Systems of Equations.
Cambridge University Press, 1990.

[Older and Vellino, 1990]
W. Older and A. Vellino.
Extending Prolog with Constraint Arithmetic on Real Intervals.
In Proceedings of the Eight Biennial Conference of the Canadian Society for Computational Studies
of Intelligence, 1990.

[Paul, 1981]
R. P. Paul.
Robot Manwpulators: Mathematics, Programming and Control.
MIT Press, 1981.

[Qi, 1980]

L. Qi.
A Generalization of the Krawczyk—Moore Algorithm.
In K. Nickel, editor, Interval Mathematics, pages 481-488. Springer, 1980.

[Qi, 1981]
L. Qi.

267



Interval Boxes of Solutions of Nonlinear Systems.

Computing, 27:137-144, 1981.

[Qi, 1982]
L. Qi.
A Note on the Moore test for nonlinear system.

SIAM J. Numerical Analysis, 19:851-857, 1982.

[Rall, 1983]
L. B. Rall.

Mean Value and Taylor Forms in Interval Analysis.

STAM, J. Math. An., 14:223-238, 1983.

[Ratschek and Rokne, 1980a]
H. Ratschek and J. Rokne.
About the Centered Form.
SIAM J. Numerical Analysis, 17(3):333-337, 1980.

[Ratschek and Rokne, 1980b]
H. Ratschek and J. Rokne.
Optimality of the Centered Form.
In K. Nickel, editor, Interval Mathematics, pages 499-508. Springer, 1980.

[Ratschek and Rokne, 1984]
H. Ratschek and J. Rokne.
Computer Methods for the Range of Functions.
Ellis Horwood Limited, 1984.

[Ratschek and Rokne, 1988]
H. Ratschek and J. Rokne.
New Computer Methods for Global Optimization.
Ellis Horwood Limited, 1988.

[Ratschek and Schroéder, 1981]
H. Ratschek and G. Schroder.
Centered Forms for Functions in Several Variables.
Mathematical Analysis and Applications, 82:543-552, 1981.

[Ratschek, 1977]
H. Ratschek.
Mittelwertsatze der Intervallarithmetik.
Beitrage Numer. Mathematik, 6:133-144, 1977.

[Ratschek, 1978]
H. Ratschek.
Zentrische Formen.

ZAMM, 58:434-436, 1978.

[Ratschek, 1980a)
H. Ratschek.
Centered Forms.

SIAM J. Numerical Analysis, 17(5):656-662, 1980.

[Ratschek, 1980b]
H. Ratschek.
Optimal Approximations in Interval Analysis.
In K. Nickel, editor, Interval Mathematics, pages 181-202. Springer, 1980.

[Rivlin, 1970]
T. J. Rivhin.
Bounds on a Polynomial.

Journal of Research of Nat. Bur. Standards, 74B:47-54, 1970.

268



[Rokne and Wu, 1982]
J. G. Rokne and T. Wu.
The Circular Complex Centered Form.
Computing, 28:17-30, 1982.

[Rokne and Wu, 1983]
J. G. Rokne and T. Wu.
A Note on the Circular Complex Centered Form.
Computing, 30:201-211, 1983.

[Rokne, 1977]
J. G. Rokne.
Bounds for an Interval Polynomial.

Computing, 18:225-240, 1977.

[Rokne, 1979a)
J. G. Rokne.
A note on the Bernstein Algorithm for Bounds for Interval Polynomials.

Computing, 21:159-170, 1979.

[Rokne, 1979b]
J. G. Rokne.
The Range of Values of a Complex Polynomial over a Complex Interval.

Computing, 22:153-169, 1979.

[Rokne, 1981]
J. G. Rokne.
The Centered Form for Interval Polynomials.

Computing, 27:339-348, 1981.

[Rokne, 1982]
J. G. Rokne.
Optimal Computation of the Bernstein Algorithm for the Bound of an Interval Polynomial.
Computing, 28:239-246, 1982.

[Rokne, 1985]
J. G. Rokne.
A Low Complexity Explicit Rational Centered Form.
Computing, 34:261-263, 1985.

[Rokne, 1986]
J. G. Rokne.
Low Complexity k—dimensional Centered Forms.

Computing, 37:247-253, 1986.

[Rothmaier, 1971]
B. Rothmaier.
Die Berechnung der elementaren Funktionen mat beliebiger Genauigkeit.
PhD thesis, Universitat Karlsruhe, 1971.

[Rump, 1982]
S. M. Rump.

Solving Nonlinear Systems with Least Significant Bit Accuracy.
Computing, 29:183-200, 1982.

[Rump, 1984]
S. M. Rump.
Solution of Linear and Nonlinear Algebraic Problems with Sharp, Guaranteed Bounds.
Computing Supplement, 5:147-168, 1984.

[Rump, 1988]
S. M. Rump.
Algorithms for Verified Inclusions: Theory and Practice.
In R. E. Moore, editor, Reliability in Computing, pages 109-126, Academic Press, London, 1988.

269



[Sethi and Ullman, 1970]
R. Sethi and J. D. Ullman.
The Generation of Optimal Code for Arithmetic Expressions.
J. of the Association for Computing Machinery, 17:715-728, 1970.

[Shearer and Wolfe, 1985a]
J. M. Shearer and M. A. Wolfe.
Some Algorithms for the Solution of a class of Nonlinear Algebraic Equations.

Computing, 35:63-72, 1985.

[Shearer and Wolfe, 1985b]
J. M. Shearer and M. A. Wolfe.
Some Computable Existence, Uniqueness, and Convergence Tests for Nonlinear Systems.

SIAM J. Numerical Analysis, 22(6):1200-1207, 1985.

[Skelboe, 1974]
S. Skelboe.
Computation of Rational Interval Functions.

BIT, 14:87-95, 1974.

[Tsai and Morgan, 1984]
L. W. Tsai and A. P. Morgan.
Solving the Kinematics of the most general Six— and Five— Degree—of~Freedom Manipulators by
Continuation Methods.
Technical Report Rep. GMR-4631, General Motors Research Labs., Warren, Mich., 1984.

[Ullman, 1973]
J. D. Ullman.
Fast Algorithms for the Elimination of Common Subexpressions.

Acta Informatica, 2:191-213, 1973.

[Wolfe, 1980]
M. A. Wolfe.
A Modification of Krawczyk’s Algorithm.
SIAM J. Numerical Analysis, 17(3):376-379, 1980.

[Xiaojun and Deren, 1987]
C. Xiaojun and W. Deren.
On the Optimal Properties of the Krawczyk—Type Interval Operator.
Freiburger Intervall-Berichite, 5, 1987.

[Zuhe, 1988]
Shen Zuhe.
A Note on Moore’s Interval Test for Zeros of Nonlinear Systems.

Computing, 40:85-90, 1988.

270



271



Vita

Address:

Volker Stahl

Research Institute for Symbolic Computation
Johannes Kepler Universitat
A-4040 Linz, Austria

vstahl@risc.uni-linz.ac.at

Personal Data:

Born March 19, 1966 in Albstadt, Germany
German citizen, not married.

Education:

1976- 1985
May 85

Oct. 86- Aug.91
Aug.91

Oct. 91-Dec. 95

Diploma Thesis:

Primary and high school.

Graduation from high school, emphasis on mathematics and
physics.

Student at the University Erlangen in Computer Science.
Graduation as Diplom Informatiker (equivalent to M.S. in
Computer Science).

Graduate student at the Research Institute for Symbolic Com-
putation, University Linz (Prof. Buchberger).

Formale Untersuchung gebrauchlicher und unkonventioneller
Datenkompressionsverfahren unter Berucksichtigung der Fin-
satzmoglichkeit hochparalleler Spezialhardware.

272



Awards:

1985 High school final exam with honors.
1991  University diploma exam with honors.

1992  DAAD scholarship.

Professional Experience:

Nov.90- Aug.91 Working student at Siemens AG Erlangen, Medical Technology

Department.

Jan. 93 Implementation of a symbolic algorithm for solving linear

equation systems on a Sun workstation network at the Univer-
sity Tubingen, using the distributed thread system developed
there.

Jul. 93 -Dec. 95 Development of a library for parallel constraint solving in a

group of 12 graduate students.

Research Interests:

Interval methods for constraint solving and optimization.

Parallel computing.

Publications:

V. Stahl: Solving a System of Linear Equations with Modular Arithmetic on a MIMD Computer.
Technical Report No. 92-62, Research Institute for Symbolic Computation, Linz, 1992

V. Stahl: Fzact Real Root Isolation with Sturm Sequences on a Shared Memory Multiprocessor.
Technical Report No. 93-27, Research Institute for Symbolic Computation, Linz, 1993

H. Hong and V. Stahl: Safe Start Regions by Fized Points and Tightening. Proc. of the SCAN
(International Symposiumon Scientific Computing, Computer Arithmetic and Validated Numerics),

Wien, 1993

H. Hong and V. Stahl: Safe Start Regions by Fized Points and Tightening. Computing 53, 323-335,
1994

V. Stahl: The Quverestimation Error of the Centered Form for Univariate Polynomials can be Re-
duced by Half. Technical Report No. 94-03, Research Institute for Symbolic Computation, Linz,
1994

V. Stahl: Interval Horner Evaluation of Univariate Polynomials gives Sometimes the Range. Tech-
nical Report No. 94-04, Research Institute for Symbolic Computation, Linz, 1994

H. Hong and V. Stahl: Bernstein Form is Inclusion Monotone. Computing 55, 43-53, 1995



