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I. Acceptable Solutions 

Let us consider an integral equation of the form 

1I k(s,t)x(t) dt = y(s) (1) 

o 
where x E X, Y E Y, k E K. We assume that X and Yare linear spaces of real functions 

on [0,1] and K ;s a suitable collection of real functions on [0,1]2. 

Using the linear integral operator 

1 

A: X 1 Y, Au v, v (s) : = I k(s , t) u( t) dt
 

o
 

we can rewrite the equation (1) in the form 

Ax = y • (2) 

Suppose we have calculated an x E Xwith Ax ~ y, that is, x is an approximate solution 

of the given problem. Now one often says: 

x is acceptable iff x is an exact solution of a slightly disturbed problem. 

This notion is common, but it is mean-ingless as long as "s1ightly disturbed" is not 

defined. To be precise, we have to use some kind of tolerance regions, for instance 

intervals. We order the function spaces X and Y pointwise. The set L(X,Y) of all 

linear operators X~ Y can be ordered by 

SsT :-- Sx ~ Tx for all x E X, x ~ 0 . 
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Let LI be the set of all linear integral operators X~ Y. Of course the structure of 

LI depends on which linear operators are lIintegral ll We defer the definition of• 

lIintegral ll until later. Nevertheless the order in L(X,Y) induces an order in the 

subset LI. The order relations in X, Y, L(X,Y) and LI enable us to use intervals. If 

H is an ordered set and a,b E H we define 

[a,b]H := {hlh E H, a ~ h ~ b}.
 

We may drop the subscript of an interval, if the underlying ordered set is evident
 

from the context.
 

For a E LI with a ~ 0 and n E Y with n ~ 0 it makes sense to define
 

X E X is an acceptable approximate solution of problem (2) with respect to the toler


ances a and n iff 

3 A E [A - a, A+a.] LI ' YE [y - n,y +nl: Ax = Y . (3) 

A quite different way to handle tolerances in problem (2) is the Interval Analysis
 

approach.
 

For a E LI with a ~ 0 and n E Y with n ~ 0 we consider the following collection of
 

equations:
 

O\"x = YIA E [A - a, A+a] LI ' YE [y - n ,y +n]} ·
 

This collection may be written symbolically as
 

"Linear "interval integral equat i on" in the form
 

[A - a,A +a]LI x = [y - n,y +nJ · (4) 

An x E X satisfying ~ equations of (4) does not exist in general. It suffices if 

x E X satisfies at least one equation of (4). So we define 

x E X is an acceptable solution of problem (4) iff 

3 A E [A-a,A+a]LI' y E [y-n,y+n]: 7f:X = Y . ( 5) 

Notice that the formulas (3) and (5) are identical. For the special case of equations 



13 

in LP - spaces we shall present a means to check whether or not an x E '?( is acceptable. 

II. Lemma 

In this section we start anew. The notation here does not depend~ on section I. 

Let X be a Ri esz - space and 1et Y be a Dedeki nd - compl ete Riesz - space. Further 1et 

L(X,Y) denote the set of all linear operators X~ Y, ordered by 

SsT :~ Sx s Tx for all x E X+ . (6) 

The subset LB ~ L( X, Y) of all 1i near order -~ounded operators X~ Y is a Dedek i nd 

complete Riesz - space. For the definitions and properties of Riesz - spaces we refer 

to Luxemburg/Zaanen [2] and Vulikh [6]. The following lemma is a generalization of 

the Oettl i/Prager - Theorem [3]. 

Lemma 

For xE X, Y E Y, n E y+, A E LB, a E LB+ the following assertions are equivalent 

(a) 3 ~ E [A - a,A +a] LB' Y E [y - n,Y + nl : AX = Y 

(b) [Ax-y[ s alxl + n 

Proof. 

(a) ~ (b): This implication is simple to prove.
 

From (a) we know I~ - Al S a and IY - y[ :::; n. So we get
 

IAx-YI = IAx-1\X+y-yl :::; I(A-~)xl + IY-YI s IA-~I·lx[ +n:::; alxl +n
 

(b) • (a): The Oettli/Prager proof can not be used.
 

The case x = 0 is trivial: put ~ := A and y O. In the following we assume x* O.
 

(b) supplies an interval for Ax, 

Ax E [y-alxl -n,y+alxl +n] [-alxl ,alxlJ + [y-n,Y+n] . (7) 

Here we use a well - known formula for adding intervals. in a Riesz - space, see Schaefer 

[4] p. 207. From (7) we conclude 
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3 z E [-alxl ,alxl], Y E [Y-n,Y+n]: Ax = z + y .	 (8) 

Setting B: Rx ~ Y linear with Bx .- -z, we obtain 

Ax + Bx = Y .	 (9) 

The operator B is only defined on the one-dimensional linear subspace Rx of X. 

Now we need a suitable extension of B.
 

The mapping s: X~ Ywith s(x) := alxl is sublinear and for x = Ex E Rx we get
 

Bx	 ~ IBxl = IB(Ex)1 = IEI·IBxl = IEI-izi ~ IEI-alxl = alExl = alxl = s(x). 

Here we use Bx = -z (according to the definition of B) and Izl ~ alxl, which follows 

from (8). Thus we have 

B:	 Rx ~ Y linear with Bx ~ s(x) for all x E Rx. 

Using the Hahn/Banach extension theorem for linear operators into Dedekind - complete 

Ri esz - spaces, see Jameson [1] p. 64, we extend B to 

B: X~ Y linear with ~x ~ s(x) for all x E X. 

We deduce some properties of the operator ~. 

~x	 ~ s(x) = alxl = ax for all x E X+, so ~ ~ a. 

~ - +(-D)X = B(-x) ~ s(-x) = ai-xi = alxl = ax for all x EX, so -B S a.
 

Hence I~I = sup{B,-B} ~ a and 1f E LB.
 

Now we rewrite (9) using the extension B of B,
 

Ax + Bx = Y
 

(A+B)x = y
 

If	 we set ~: = A + B, we obta in 

AX = y 

and in addition I~-AI 181 s a, ~ E [A-a,A+a].	 QED 
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III. Special Case 

Let Mdenote the Riesz-space of all real Lebesgue-measurable functions on [0,1] 

with the usual identification of functions equal a.e. The subspaces LP ~ M, 1 ~ p < 00, 

of p-th power Lebesgue - i ntegrabl e functi ons are Dedeki nd - compl ete Ri esz - spaces 

and order - ideal s in M. In the sequel let 1 s p,q < 00. The set L(LP,Lq) of all 1inear 

operators LP ~ Lq is ordered as defined in section II. 

As far as linear integral operators LP ~ Lq are concerned we follow Schep [5]. 

Definition. The linear operator U: LP ~ Lq is called integral if there exists a 

Lebesgue - meas urab1e functi on k on [0,1] 2 such tha t 
1 

a) (Ux)(s) = Jk(s,t)x(t) dt a.e. on [0,1] for all x E LP, 

1 0 

b) J Ik(s,t)x(t)1 dt represents an element of Lq for all x E LP. 

o 
The subset LI ~ L(LP,Lq) of all linear integral operators LP ~ Lq carries the order 

inherited from L(LP,Lq). 

Now we consider the linear interval integral equation 

[A - a,A+a] LIx = [Y- n ,y +n l q , (10) 
L 

where A ELI, a E LI+, y E Lq, n E Lq+ are given. 

In the following theorem we show that an x E LP is an acceptable solution of the 

prob1em (10) iff IAx - y \ s a \x I + n , 

Theorem.
 

For x E LP, y E Lq, n E Lq+, A ELI, a E LI+
 

the following assertions are equivalent
 

(a )	 3 ~ E [A - a, A+a] LI ' YE [y - n,Y+nl q: -,s;x =Y 
L 

(b) IAx-YI s alx\ + n . 
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Proof. We use our Lemma and a result of Schep [5]. Schep showed that LI is a band 

in the Ri esz - space LB of all 1i near order - bounded operators LP -. Lq. 

(a) ~ (b): Because of LI ~ LB the operator 7I. is order - bounded. Then proceed as in 

(a) ~ (b) of the Lemma. 

(b) ~ (a): Because of LI ~ LB~ we may apply th~ Lemma. This yields 

3 -,. E [A - a,A+a] LB ' Y E [y - n ,y +n\ q: 7r:x = Y	 (11) 

It is clear that [A-a,A+a]LI ~ [A-a,A+a]LB. 

This inclusion is in fact an equality: 

An arbitrary element C in [A-a,A+a]LB can be written in the form C = A + B with 

B E LB, IBI s a. LI as a band in LB is in particular an order - ideal in LB. So 

IBI s	 a implies BELl. From C = A + BELl and IBI s a we get C E [A-a~A+a]LI. 

Hence [A - a,A +al LI = [A - a,A +al LB. 

With	 this information at hand we rewrite (11): 

QED 
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