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I. INTRODUCTION 

A number of techniques have been proposed for nonlinear opti­
mization problems. Some of them are conjugate gradient method, 

simplex method, variable metric method and random search method [1]. 
However, if the objective function is multimodal, we have few 

methods for finding the global maximum or minimum [2]. 

Interval analysis is very effective for this global optimi­

zation problems[3],[4],[S]. The simple way to apply this method is to 

divide the original domain into sUbregions, and to delete sUbregions 

that can not have the global maximum [6]. This algorithm is not 

very efficient since a great many of sUbregions remain without being 

discarded. 

In this paper we describe an interval method to compute the global 

maximum value of the multivariable function over the hyperrectangle. 
The interval Newton method is used for finding the stationary 
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points in the domain and on the boundary. On the boundary one or 
more variables are fixed as constants, so that the dimension of the 
Hessian matrix decreases. 

The constrained optimization with equality or inequality condi­
tion can be solved by the Lagrange multiplier method. 

Our interval arithmetic system is written with FORTRAN 77 and 
the assembly language. The upper and the lower bounds of the number 
can be calculated at an arbitrary digit. 

II. UNCONSTRAINED MAXIMIZATION 

11-1. One-Dimensional Case 

We consider how to compute the greatest value of the function 
C2•f(x) on a closed interval [a, b], where f is supposed to belong to 

The global maximum is obtained by computing the maximum of relative 
maxima in (a, b) and function values at the two end points. 

The interval Newton algorithm is used to obtain the stationary 
values of f(x) by solving the equation f'(x)=O [7]. It is given as 

F'(m(X )) 

N(X ) = m(X	 ) ­p 
F"(X ) 

p 

.}( 1)	 
P 

p (p=O,1, ••• )
 

= X nN(X ),
Xp+1 p p 

where capital letters X,F',F" denote interval extensions of x,f',f" 
respectively and m(X ) is the midpoint of X • The maximization 

p p 
algorithm for one-variable function is as follows. 

Step 1: Compute f* = max[f(a),f(b)] and the point(s) x* at which 
f(x.) = f*. 

Step 2: Divide the original interval A=[a, b] into two subintervals 
at the midpoint m=(a+b)/2. 

Step 3: If the widths of the undiscarded interval(s) are sufficiently 

small, then stop. Otherwise pick out an interval (let it 

be Ai)' and calculate F' (~) and F" (~ ). 
Step 4: If F'(A

J
• )~O, then there is no stationary point in A.• So 
.	 l 

delete Ai and go to Step 3. Otnerwise go to Step 5. 
Step 5: If F"(Ai»O, then the stationary value is a relative minimum 
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and A. can be discarded. If F" (A: ) < 0, compute this relative 
1 1 

maximum by use of the interval Newton method. Replace f* and 
x* if the obtained relative maximum is greater than f*. If 

F"(A. )30, divide A. into two at its midpoint and go to Step 3. 
1 1 

II-2. Multi-Dimensional Case 

Compute the maximum of multimodal function f(x
1,x2 , ••• ,x ink)

C2 over a k-dimensional box A =[aI' b ]x...X[ ak ' bk ] • To seek the
1 

maximum of f, it is necessary to compute the values of relative maxima 

in A and maximum values on the boundary of A. As compared with the 

one-dimensional case, we have the following difficulty. 
[i] In the one-dimensional case we can distinguish relative maximum 
from relative minimum. In the multi-dimensional case the sign of the 

Hessian can not distinguish relative maximum from minimum or saddle 

point. 
[ii] In the one-dimensional case the boundary consists of only two 
end points. In the multi-dimensional case the boundary becomes the 

lower-dimensional region on which the maximum must be sought. 
As concerns [i] we calculate each stationary value, and replace 

the maximum value so far obtained with this value if it is larger. 
Concerning [ii] we apply the interval Newton method in various 

dimensions (from 1 to k-1) to seek the stationary value on the bound­
ary. For example if the original domain is four-dimensional, its 
boundary becomes three-dimensional on which three-dimensional Newton 
method is applied. Moreover the boundary of this three-dimensional 

region becomes two-dimensional, and so on. It should be noted that 
even if a region is deleted since no global maximum exists in it, we 
must save its boundary if it has a common boundary with the original 
domain. 

The multi-dimensional interval Newton method corresponds to 
equation (1) is given as 

N(X )
n 

(2) 
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2F 2a4F a a F
--2 .........
 
aXl ax1axaxiax2 k 

2 2F 2(4) J : a F a a F.........
--2 ax2ax1 aX2 ax2axk 

To get the Newton sequence (2), we set 

( 5 ) H : - J- 1 V F 
n 

and solve the linear equation 

(6) J H·: - 17 F 
n 

with Gauss' elimination method. 
On the boundary xl: a (6) becomes the following (k-1)-dimen­

l 
sional equation since the elements differentiated with respect to Xl 
vanish. 

o oo o 0 

o 

o 

The maximization algorithm for multi-variable function is as 

follows 

Step 1: Let f* be the maximum value of f at the 2k vertices. 
Step 2: Divide A at the midpoint of the maximum side to generate two 
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regions Al and A2• 
Step 3: If the widths of the undlscarded .r eg Lon s are sufficiently 

small, then stop. Otherwise take out a region Ai' and eval­

uate VF(A.), J(A.) and D =det(J).
1 1 

Step 4: If O~VF(A. ), there is no stationary point in A.. So discard 
1 1 

Ai and go to Step 3. However, if Ai has a common boundary 
with A, then this common boundary should be saved as a 

(degenerate) region. 

If OEVF(A.), go to Step 5. 
1 

Step 5: If OE:D, divide Ai at the midpoint of its maximum side and 
go to Step 3. Otherwise apply the interval Newton method 

to find the stationary value. If the obtained value is 

greater than f*, f* is replaced with it. Then go to Step 3. 
If A. has a common boundary with the original domain A, the 

1 
common boundary should be saved whether Ai has a stationary 

point or not. 

III. CONSTRAINED MAXIMIZATION 

We consider to find the value of X that maximizes 

(8) f (x ) = f ( xI' x2 ' • • • , xk ) 

in the bounded region [aI' b ] X •••• X [a b ] subj ect to the r
k

,
1 k 

equality constraints 

(9) g.(X) = 0 (j=1, ••• ,r).
J 

To solve this problem we use the Lagrange function 

r 
( 10) L(X,p) = f(X) + L P.g.(X),
 

j=1 J J
 

where P=(Pl, ••• ,Pr)T i S a Lagrange-multiplier [8]. The necessary 
condition at a maximum of the function is 

af r 

( 11 ) +LP. = 0 ( i= 1 ,2 , ••• , k ) , = 
ax. ax. j=l J 

1 1 
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aL( 12) = g. (X) = 0 (j=l,2, ••• ,r).
Jap.

J 

We can apply the interval Newton method in section II-2 to 
solve these nonlinear simultaneous equations. The constrained 
global maximum is obtained among the stationaly values of L. 

Inequality constraints can be converted to the equality 
constraints by introducing "an extra slack variable. The expression 

(13) g.(x)<O (j=1, ••• ,r)
J = 

can be written as 

( 14) (j=1, ••• ,r). 

Then Lagrange function L is written as 

r 2 
( 15) L(x,p) = f(x) + E p.(g.+ xk+ · ).


j=l J J J
 

The stationary points can be computed by the interval Newton 
methoa as before. The case that both equality and inequality 
constraints are contained can be treated similarly. 

IV. NUMERICAL EXAMPLES 

Several numerical examples have been computed by the method 
described above. 

The calculations were done with HITAC M200H (corresponds to 

IBM 3083JX) of the Educational Center for Information Processing of 
Kyoto University. 

Example 1: Three Hump Camel-Back Function. 
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This function is known to have three maxima and two saddle 

points in the domain -5 ~ xl ~ 5, -4 ~ x2 ~ 4. 
The computed result is: 

XI=[-0.49630 83675 31816 600-22, 0.49630 83675 31816 600-22 ], 
X 33880 50906 570-22, 0.79409 33880 50906 570-22 ],2:[-0.70409 

F(max):[-0.15173 43493 40171 690- 43, 0.19705 75965 45677 710-45 ]. 

Example 2: Six Hump Camel-Back Function. 
This function is known to have six maxima, two minima and seven 

saddle points in the domain -5 ~ xl ~ 5, -4 ~ ~ 4.x2 

Global maximum is obtained at the following two points. They are 
symmetric with respect to the origin. 

Xl =[ O.08984 20131 00318 030, 0.08984 20131 00318 099 ] , 
X2 =[-0 .71265 64030 20739 90 , -0.71265 64030 20739 40 ] , 

F(max)=[ 1.03162 84534 89873 6 1.03162 84534 89881 2 ] . 
Xl =[ -0 .08984 20131 00318 099, -0.08984 20131 00318 030 ] , 
X 0.71265 64030 20739 40 0.71265 64030 20739 90 ] ,

2=[ 
F(max)=[ 1.03162 84534 89873 6 1.03162 84534 89881 2 ] . 

Example 3: Five-variable Function [9] • 

where 

f I (xl) =xl (xl +13) ( xl -1 5) *0 .01 , 
f (x ):(x (x (x2 2 2+15) 2+1) 2-8)*0.01,
 
f 3 (x ) =(x +9) (x -2) (x -9) *0.01 ,


3 3 3 3
 
f (x


4 4):(x4+11)(x4+5)(x4-9)*0.01,
 
f5 (xs ) =( Xs+9) ( Xs-9) (x -1 0) *0 .01 •
 s

Case (i): -10 ~ xi ~ 10, (i=1 ,2, ••• ,5). 
This function has 24 maxima and 24 minima in this domain. 

The computed result is: 

Xl =[ 8.75644 07330 077312, 8.75644 07330 077312 ], 

94911 5, -9.35828 66332 94911 5 ],X2=[-9.35828	 66332
 
78818 33903 6, -4.57207 78818 33903 6 ],
X3=[-4.57207 
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X 3.59212 96115 43726 2, 3.59212 96115 43726 2 ],
4=[


X =[-2.84008 63924 84045 8, -2.84008 63924 84043 4 ],

5 

F(max)=[ 24416.03065 50573 60, 24416.03065 50574 10 ]. 

Case (ii): -10 ~ xl ~ 8, -10 ~ xi ~ 10, (i=2,3,4,5). 
The	 maximum value is obtained on the boundary xl =8. 

Xl=[ 8.00000 00000 00000 0, 8.00000 00000 00000 0 ], 
X 66332 95584 2, -9.35828 66332 94234 0 ],
2=[-9.35828

X 78818 50185 3, -4.57207 78818 17701 7 ],
3=[-4.57207


X 3.59212 96114 94123 9, 3.59212 96115 93839 5 ],

4=[


X 63924 86292 4, -2.84008 63924 81793 2 ],

S=[-2.84008

F(max)=[ 24139.85650 22284 47, 24139.85650 22284 95 ]. 

Case (iii): -10 ~ xl ~ 8, -10 ~ xi ~ 12, (i=2,3,4), -10 ~ Xs ~ 10. 
The maximum value is obtained on the boundary x2=x3=x4=12.
 

X 42310 73996 74397 9, -7.42310 73996 74397 9 ],
I=[-7.
X2~[12.00000 00000 00000 ,12.00000 00000 00000 ],
 
X 00000 00000 ,12.00000 00000 00000 ],

3=[12.00000


X 00000 00000 ,12.00000 00000 00000 ],

4=[12.00000
 

84044 7, -2.84008 63924 84044 7 ],
Xs=[-2.84008 63924 
F(max)=[ 90193.85088 59564 90, 90193.850088 59567 52 ]. 

Example 4: Equality constrained problem. 
Maximize 

subject to -1 0 ~ xi ~ 10, ( i= 1 ,2 ,3) •2x I +x3=0, 
The computed result is: 

X 0.14285 71428 57138 21 , O. 14285 71428 57148 04 ] ,
I=[
 

0.21428 57142 85700 95, 0.21428 57142 85725 15
X2=[	 ] , 
X 42857 14316 56, -0.28571 42857 14258 47 ] ,

3=[-0.28571 
F(max)=[-0.35714 28571 42908 72, -0.35714 28571 42803 86 ] . 
The Lagrange-multiplier obtained is: 

P =[-0.71428 57142 85766 82, -0.71428 57142 85662 45 ] . 
Example 5: Inequality constrained problem. 
Maximize 
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(20) 

sub j ec t to 3Xl +4x2 ~ 6, - 10 ~ xi ~ 10, (i=1 ,2) • 
The computed result is: 

X =[ 1.45945 94594 59459 4 , 1.45945 94594 59459 4 ],
I 

X =[ 0.40540 54054 05405 44, 0.40540 54054 05405 46 ],
2 

F(max)=[ 5.35135 13513 51348 2 , 5.35135 13513 51354 0 ], 
The	 values of Lagrange-multiplier p and slack valiable x are:

3 
X =[ 0.0	 0.10297 26133 56609 95D-24],

3
 
P =[ 0.32432 43243 24324 40, 0.32432 43243 24324 40 ].
 

v. CONCLUSION 

We described an algorithm for maximizing functions by use of in­
terval analysis. It enables us to obtain the maximum in the domain 
or on the boundary. Both unconstrained and constrained global maxi­
mum can be computed. So far we have calculated maxima of the func­
tions up to five variables. If effective devices for reducing inter­
val width of functions are developed, this method can be applied to 

higher-dimensional problems. 
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