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1. SEMANTIC RELATION BETWEEN INTERVALS AND REALS. 

The structure STR(RE) of real numbers ( would "ideal numbers" be a 
better name, to emphasize their being out of reach for digital compu­
ting? ) , is the seat of geometrical intuition , which is based on the 
system of relations and operations that allow the construction of 
predicates P: RE --> SET(FALSE,TRUE) • 

Otherwise, there is no computing system able to use the full STR(RE) 
and no finite digital set DI« RE «< is "included in" ) closed for 
the whole system of exact arithmetical operations. This fact makes the 
structure STR(I(DI» of digital intervals with outer rounding, into the 
only support for digital computing supplying the maximal approximating­
information accessible to the system STR(DI) ; and STR(I(RE» into its 
analytical frame. 

The computing/analytic system STR(I(RE),I(DI» displays, however, 
some critical problems ; let us look at three paradygmatic examples. 

First : supposing F ' <* I(RE) ( <* is "belongs to" ) to be the exact 
result of an interval computation , its outer digital approximation 
FO »F (» is II includes") keeps the validity of any predicate of' 
the form E(f,F ' )P(f) when FO substitutes F' ( E(f,F ') is "exists f <* 
F ' such that" ) ; but, in order to keep the validity of predicates of 
the form U(f,F ' )P(f) U(f,F ') is "for every f <* F' " ), an inner 
digital approximation FI« F ' ought to be used. The problem is that, 
though any F <* I(RE) bounded by the system I(DI) admits an outer' 
rounding FO, this property does not hold for the inner rounding FI 
( e.g. , the inner rounding of any x <* RE X -<* DI, does not 
exist in 01 ( -<* is "does not belong to" ) ). 

Second: the lack of inner rounding in STR(I(RE),I(DI» is also a 
drawback for the computation of the approximated interval solution of 
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I(RE)-systems like ( AI + XI = B' X' + Z' = C I ) where an inner 
rounded XI were needed to compute an outer rounded Zl. 

Third : when the solution of the equation AI + X' = B' in I(RE) 
exists, the relation AI + XII = BI is equivalent to the proposition 
.. BI is the inclusion-least interval for which U(a,A') U(x,XI') 
a + x <* BI holds"; but even when the interval solution of the 
equation AI + X' = B' fails to exist in the I(RE) context , an 
interval X" <* I(RE) does exist validating the proposition "B' is 
the inclusion-least interval for which U(a,A') E(x,X") a + x <* B' 
holds" • 

These three "non-sequitur" situations stated in terms of the system 
STR(I(DI),I(RE» ,are evidence enough to undermine the validity of 
this system as universal frame for the numerical-computing theory. 

To find out what is missing , let us analize the relation standing 
among intervalS , real numbers , interval predicates and predicates 
about real numbers. 

Two-variable predicates like (P(x), x <* X' ) , ( (pred,pred, ••• ) 
is "pred AND pred AND ••• " ) ,maybe would convey some P(.)-semantics 
from x <* RE to X' <* I(RE) but the resulting semantics would 
be ambiguous for an interval argument X' because of the different truth 
values that P(.) could take for different points x <* X' ; moreover, 
this predicates would have only a designational value and would be out 
of question in a computational context because of the unability to 
reach a general x <* X' by means of DI. 

But classical interval-predicates can be obtained from real-predica­
tes P(x) ,without any reference to particular x <* RE, by means of 
the transformations P(x) --> E(x,X')P(x) and P(x) --> U(x,X')P(x) 
which transport the meanings defined by the predicates P(.) , from the 
domain RE to the domain I(RE). 

Actually, the semantic transformation SEM: P(x) -> O'(x,X')P(x) 
( 0' <* SET(E,U» brings predicates P(x) of the single real 
arguments x <* X' into predicates P*«X',O'» := O'(x,X')P(x) about 
the arguments X = (X',O') <* I*(RE) ,I*(RE) := CART(I(RE),SET(E,U» 
( CART is "Cartesian product" ) , which we will name "modal intervals" 
( := is "defined by") . 

Indeed, if for X = (X',OX) we define SET(X) := X' and MOD(X) := OX 
( we will name SET(X) the set-component of X and MOD(X) its modality), 
the meaning of the predicate P*(X) = O(x,X)P(x) is fully determined by 
the definition: Q(x,X) := 

IF MOD(X) E THEN E(x,X') 
IF MOD(X) U THEN U(x,X') 

2. INTERVAL-SETS OF PREDICATES AND MODAL INCLUSION. 

Let be PRED( (X' ,QX» := SET(P(. )/(Q(x,X)P(x» the set -of real predi­
cates validated by the modal interval X = (X',QX) , and let us examine 
which are the conditions standing between the modal intervals A and B 
that correspond to the set inclusion PRED(A)« PRED(B). 
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LEMMA 2.1 PRED«A',E»« PRED«B',E» <==> A' « B' 

Since A' « B' implies that ( xl <* A' , P(xl) ) ==>
 
( xl <* B' , P(xl) ) obviously; and if A' -« B' ,
 
E(a,A') a -<* B' and (x=a) <* PRED( (A' ,E» but
 
(x=a) -<* PRED«B',E» and therefore
 
PRED( (A' ,E» -« PRED( (B' ,E».
 

LEMMA 2.2 PRED«A',U»« PRED«B',U» <==> A' » B' 

Since A'»B' implies that U(x,A')P(x) ==> U(x,B')P(x)
 
and if A' -» B' , then E(b,B') b -<* A' and
 
(x <* A') <* PRED«A',U» but (x <* A') -<* PRED«B'/U»
 
and therefore PRED«A',U» -« PRED«B',U».
 

LEMMA 2.3 PRED«A',U»« PRED«B'/E» <==> A' =* B' 
( =* is "intersects" ) 

Since A' =* B' implies that U(x,A' )P(x) ==> E(x/B' )P(x)
 
and if A' -=* B' then (x <* A') <* PRED«A'/U»
 
but (x <* A') -<* PRED«B'/E» and therefore
 
PRED( (A' I U» -<< PRED( (B' IE) ) •
 

LEMMA 2.4 PRED«A',E»« PRED«B'/U» <==> A' = B' INT(a) 
( INT(a) is "the point-interval with a = inf = sup" ) 

Since if al <* A' then (x=al) <* PRED«A',E» andI 

the only possibility for the validity of U(x,B')(x=al) 
is that B' = INT(al) ; but in this case if a2 -= al , 
a2 <* A' I would exist, the predicate (x=a2) would be 
validated by (A'/E) but not by (B',U) • The reverse 
implication is obvious • 

DEFINITION 2.1 For A = (A' ,OA) , B = (B' ,OB) modal intervals 
A « B :=	 IF OA = OB = E THEN A' « B' 

IF OA = OB = U THEN A' » B' 
IF ( OA U OB E THEN A' =* B' 
IF ( OA = E , OB = U THEN A' = B' = INT(a) 

DEFINITION 2.2 For A (A'/OA) <* I*(RE) 
INF(A) := IF OA E THEN INF(A' )
 

IF OA U THEN SUP(A' )
 
SUP(A) := IF OA E THEN SUP(A' )
 

IF OA =(U THEN INF(A' )
 

THEOREM 2.1 For A , B modal intervals I 

( INF(A) INF(B) SUP(A) = SUP(B) ) <==> A B 

DEFINITION 2.3 For a , b <* RE I 

INT(a,b) := ELEM( A / A <* I*(RE) , INF(A) a, SUP(A) = b 
(where ELEM( A / C) is the element named A fulfilling the 

condition C ) 

I 
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DEFINITION 2.4 
Ie(RE) := SET ( (A • ,0' ) / A' <* I(RE) , 0' = E ) 

lU(RE) := SET( (A • ,0' ) / A' <* l(RE) , 0' = U ) 
Ip(RE) := SET ( (A' ,0' ) / A' <* I(RE) , INF(A' ) = SUP(A' ) ) 

THEOREM 2.2	 I*(RE) <--> SET«a,b) / a , b <* RE )
 
Ie(RE) SET( A / A <* I*(RE) INF(A) <= SUP(A)
 
Iu(RE) SET( A / A <* I*(RE) INF(A) >= SUP(A)
 
lp(RE) SET( A / A <* I*(RE) INF(A) SUP(A)
 

THEOREM 2.3 A <* I*(RE) ==> PRED(A) -= VOID
 
( VOID is "the void set" )
 

Since, when	 A = (A',E) then (x = INF(A) ) <* PRED(A) , 
and when A	 (A',U) then ( x <* A' ) <* PRED(A) 

And the above lemmata and definitions yield easily the following 
theorems for A , B , •.. <* I*(RE) . 

THEOREM 2.4	 A« B <==> (INF(A) >= INF(B) , SUP(A) <= SUP(B) ) 

THEOREM 2.5	 A« B <==> PRED(A) « PRED(B) 

THEOREM 2.6 A = B	 <==> (A« B , A » B
 
<==> PRED(A) = PRED(B)
 

Theorems 2.1 to 2.6, by displaying the association (al,a2) <--> 
PRED(INT(al,a2» , provide the lattice completion of the inclusion 
structure of ordinary intervals with a definitive semantical 
meaning, and suggest to interpret the elements of I*(RE) as 
acceptors/rejectors or interval-tests for the predicates about the 
reals, and to read "A« B" as "A is more strict than B" or "B is 
more tolerant than A" • 

Maybe this semantics is clarified by the observation that for 
A <* l*(RE) if A is a proper or exitencial modal interval 
(that is A <* Ie(RE» then P(x) <* PRED(A) is equivalent to 
SET( x / P(x) ) =* SET (A) , and if B is an improper or universal 
modal interval ( that is B <* IU(RE) ) then P(x) <* PRED(B) is now 
equivalent to SET(B) « SET( x / P(x) ) • 

DEFINITION 2.5 For A <* I*(RE) ,
 
PROP(A) := INT( MIN(INF(A),SUP(A» , MAX(INF(A),SUP(A»
 
IMPR(A) := INT( MAX(INF(A),SUP(A» , MIN(INF(A),SUP(A»
 

The denomination PROP(A) comes from naming "proper intervals" the 
elements of Ie(RE) or existencial intervals, because of their 
identification to the corresponding elements of I(RE) that arises from 
the equivalence in Ie(RE) of A« Band SET(A)« SET(B) • This 
identification keeps its force along the whole theory about I*(RE) , 
since the relation « in I*(RE) generates all the structure 
STR( I*(RE) , l*(DI) ) . Moreover the "proper intervals" are the 
interval-acceptors of the "exact" real solutions that the ordinary­
interval approximations are meant to bound • 
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3. DUAL SEMANTICS OF MODAL INTERVALS. 

We mean by dual semantics of modal intervals , their association to 
the real predicates of PRED(RE) they reject • 

DEFINITION 3.1 COPRED(X) := SET( P(.) / -O(x,X)P(x) 

DEFINITION 3.2 DUAL(A) := INT(SUP(A),INF(A» 

Essential theorems in this context are : 

THEOREM 3.1 A <* I*(RE) ==> COPRED(A) VOID 

THEOREM 3.2 COPRED(A) = PRED(RE) - PRED(A) 

THEOREM 3.3 A« B <==> DUAL(A) » DUAL(B) 

THEOREM 3.4 P(.) <* COPRED(A) <==> -P(.) <* PRED(DUAL(A» 

THEOREM 3.5 A« B <==> COPRED(A) » COPRED(B) 

THEOREM 3.6 IMPR(A)« PROP(A) 

THEOREM 3.7 (A <* Ie(RE) , A -<* Ip(RE) ) <==> 
E ( P ( .) , PRED(RE » P ( .) <* PRED(A) , - P ( .) <* PRED( A) ) 

THEOREM 3.8 For P(.) <* PRED(RE) and A <* I*(RE) ,
 
one of the two following alternatives holds
 
(1)	 ( P(.) <* PRED(PROP(A» , -P(.) <* PRED(PROP(A» ) AND 

( P(.) <* COPRED(IMPR(A» , -P(.) <* COPRED(IMPR(A» ) 
(2)	 P(.) <* PRED(IMPR(A» «PRED(PROP(A» AND 

-P(.) <* COPRED(PROP(A» « COPRED(IMPR(A» 

Perhaps it may be of some use to observe that for A <* I*(RE) 
( A <* Ie(RE) , P(~) <* COPRED(A» is equivalent to SET(A) -=* 
SET(x / P(x» , and (A <* Iu(RE) , P(.) <* COPRED(A) is equivalent 
to SET(A) -« SET(x / P(x» • 

4.	 LATTICE SEMANTICS OF MODAL INTERVALS. 

The structure STR( I*(RE) , «) is isomorphic to the structure 
STR( CART(RE,RE) ) , CART(>=,<=) ) and , therefore, a distributive 
lattice like STR( RE , >=) and STR( RE , < =) • That is given 
A , B <* I*(RE) , their «-supremum or "join" JOIN( A , B ) , and 
their «-infimum or "meet" MEET ( A , B ) , do exist, and these 
operations are mutually distributive with the following operation 
laws : 
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MEET ( A(i) / i <* I) := 
ELEM( A / U(i,I) ( x « A(i) <==> X« A ) = 
INT( MAX ( INF(A(i» / i <* I) , MIN( SUP(A(i» / i <* I ) 

JOIN( A(i) / i <* I) := 
ELEM( A / U(i,I) ( X » A(i) <==> X» A ) = 
INT( MIN( INF(A(i» / i <* I) , MAX ( SUP(A(i» / i <* I ) 

Now, for a full identification of the modal intervals A <* I*(RE) 
with the predicates-set PRED(A), it would be fine that PRED( JOIN(A,B» 
would equal UNI(PRED(A),PRED(B» , and that PRED( MEET(A,B» wold stand 
in the same relation towards SEC( PRED(A),PRED(B) ) ; where SEC and UNI 
stand for the set operations "intersection" and "union" • 

This is far from certain , yet not so damaging to prevent a good 
semantical structure to hold on for the lattice of modal intervals. 

To test this property we take, for example , the predicates-set 
PRED( MEET ( INT(1,2),INT(3,4») PRED( INT(3,2» The predicate 
x <* SET( 1.5,3.5 ) belongs to PRED( INT( 1,2) ) and to PRED(INT(3,4» 
and therefore to the intersection of these two sets of predicates , but 
absolutely not to PRED( INT(3,2) ) • 

Also, x = 2.5 belongs to PRED( INT(1,4) ) which is equal to 
PRED( JOIN( INT(1,2) , INT(3,4) ) ) , but neither to PRED( INT(1,2) ) 
nor to PRED ( INT(3,4) ) • 

In terms of this set of predicates, Theorem 2.5 yields the following 
conclusion 

THEOREM 4.1 (1) PRED( MEET(A,B) « SEC( PRED(A),PRED(B) 
(2) PRED( JOIN(A,B) » UNI( PRED(A),PRED(B) 

From a structural viewpoint , this theorem with its "equality 
failure" , arises from the fact that , if we take 

DEFINITION 4.1 PRED( I*(RE) ) := SET( PRED(X) / X <* I*(RE) ) 

the system STR( PRED(I*(RE» , «) is a sublattice of the larger 
system STR( PSET(PRED(RE» ,«) and the lattice operations 
MEET and JOIN correspond to the smaller system of the interval-sets 
of predicates STR( PRED(I*(RE» , «) (PSET is "powerset") • 

Of course, the result of Theorem 4.1, failing to provide an 
equality , stands across the straight on path from the semantics of 
modal intervals to the semantics of their inclusion-lattice. For a 
better interpretation of this difficulty, we shall consider , instead 
of the sets of predicates PRED(X) , some more restricted sets which 
will provide equality relations replacing the mere inclusions of 
Theorem 4.1 • 

Let us define the sets of : 

DEFINITION 4.2
 
Interval predicates as
 

PRED*(RE) := SET( x <* XI/XI <* I(RE) )
 
Interval copredicates as
 

COPRED*(RE) := SET( x -<* XI/XI <* I(RE)
 
Interval predicates validated ( or accepted ) by A
 

PRED*(A) := SET( x <* XI / ( X <* XI ) <* PRED(A)
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Interval copredicates covalidated ( or rejected ) by A 
COPRED*(A) := SET( x -<* X' / ( x -<* X' ) <* COPRED(A) ) 

where we say that P(.) is covalidated by A when P(.) <* COPRED(A) • 

Now from Theorem 3.4 it follows: 

THEOREM 4.2 
( x -<* X' ) <* COPRED*(A) <==> (x <* X') <* PRED*(DUAL(A» 

Moreover , the following theorem shows that the belonging relations 
of (x <* X' ) and of (x -<* X' ) , to the sets PRED*(A) and 
COPRED*(A) , are interval relations indeed : 

THEOREM 4.3 
(1) (x <* X' ) <* PRED*(A) <==> IMPR(X')« A 
(2) (x -<* X' ) <* COPRED*(A) <==> PROP(X'»> A 
where	 PROP(X' ) : = (X' , E )
 

and IMPR(X') := (X' , U )
 

The statement (1) comes out from the left term being equivalent to 
SET(A) « X' when A is improper, and to SET(A) =* X' when A is proper. 
Statement (2) results from 

(	 x -<* X' ) <* COPRED(A) <==> 
(	 x <* X' ) <* PRED(DUAL(A» <==> 
IMPR(X') «DUAL(A) <==> 
PROP(X') » A 

Theorem 4.3 suggests the identifications 
(	 x <* X') <-----> IMPR(X') 
(	 x -<* XI ) <-----> PROP(X') 
PRED*(A) <-----> SET ( IMPR(X I) / IMPR(X') « A ) 
COPRED*(A) <-----> SET( PROP(X') / PROP(X') »A ) 

and remark that "point-intervals" X' = INT( xl) can be identified to 
the predicates x = xl or to the copredicates x -= xl , according to 
their conventional membership to the proper or improper class of modal 
intervals • 

Now , from these latter properties, the equalities missing in 
Theorem 4.1 for PRED( MEET(A,B) ) and PRED( JOIN(A,B) ) , which failed 
to establish a stronger association between the lattice of intervals 
and the latt~e of interval-sets of predicates, are shown to hold in 
some cases , but not all , for interval predicates and copredicates : 

THEOREM 4.4 
(1 ) PRED*( MEET(A,B) ) SEC( PRED*(A) , PRED*(B) ) 

(2 ) COPRED*( JOIN(A,B) SEC( COPRED*(A) , COPRED*(B) 
( 3 ) PRED*( JOIN(A,B) ) » UNI( PRED*(A) , PRED*(B) ) 

( 4) COPRED*( MEET(A,B) » UNI( COPRED*(A) , COPRED*(B) 

About (1) ,Theorem 4.3.(1) yields inmediatly that ( x <* X' <* 
PRED( MEET(A,B» ==> (x <* X' ) <* SEC ( PRED*(A) , PRED*(B) ) 
The contrarywise inclusion comes from the lattice property 
( IMPR(X') « A IMPR(X')« B) ==> IMPR(X') « MEET(A,B) 
The assertion (2) is the dual statement of (1) and, moreover, 
results (3) and (4) are supported by obvious inclusion relations and 
by Theorems 2.5 and 3.5 • Moreover PRED*( JOIN(A,B) ) can be larger 
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than UNI( PRED*(A) , PRED*(B) ) , as the example of ( x=2.5 ) <* 
PRED*( J01N( INT(1,2), 1NT(2,4») PRED*( 1NT(1,4) ) shows. All 
the same COPRED*( MEET(A,B» can be larger than 
UNI( COPRED*(A),COPRED*(B) ) , as it comes out from the example 
( x-=2.5 ) <* COPRED*( MEET(1NT(2,1),1NT(4,3» ) = COPRED*( INT(4,1) ). 

5.- CONCLUDING REMARKS. 

Theorems 2.3, 2.5, 2.6, 3.1 and 3.5 , bring out the set-theoretical 
nature of"the inclusion of modal intervals, since they tie modal 
intervals to the sets of predicates they accept ( validate ) or reject 
(covalidate) • 

Theorems 4.1 and 4.4 , show that the intrinsic structure of the set 
of modal intervals , with their «-meet and «-join operations , does 
not allow a once for all association of modal intervals , neither with 
the whole set of the predicates they accept or reject, nor with the 
more specialized sets of interval-predicates or interval-copredicates • 

Modal intervals are, indeed, intrinsically one-sided from the 
viewpoint of their association with sets of predicates upon the line 
of real numbers , as they can be identified with the set of interval­
predicates they validate, A <----> PRED*(A) , only when interval 
predicates common to some family of modal intervals SET( A(i) / i<*1 ) 
are to be accounted for, in which case SEC( PRED*( A(i) ) / i<*I ) is 
equal to PRED*( MEET ( A(i) / i<*I ) ) : and they can be identified with 
the set of interval copredicates they reject, A <----> COPRED*(A) , 
only when interval copredicates common to some family of modal 
intervals do matter, in which case SEC( COPRED*( A(i) ) / i<*1 ) is 
equal to COPRED*( J01N( A(i) / i<*1 ) ) • 

Anyway, remark that all the inclusions of Theorems 4.1 and 4.4 
become equalities when , between A and B , a relation A « B holds • 

An application of the previous theory to the interpretation of 
interval-rounding results, from the viewpoint of the information they 
display , is the following theorem : 

THEOREM 5.1 
If D1« RE is a digital scale for the real numbers , and if 
outer and inner interval-rounding are defined by 
OUT ( I NT( a , b » : = 

ELEM( 1NT(a',b ') / a'<*DI , b'<*D1 , INT(a',b ') » 1NT(a,b) 
INN( INT(a,b» := 

ELEM( 1NT(a',b ') / a'<*DI , b'<*D1 , 1NT(a',b ') « 1NT(a,b) 
then 
(1 ) PRED( 1NN(X» «PRED(X) 
( 2 ) COPRED( OUT(X) ) « COPRED(X) 
( 3) If the information supplied by some computing algorithm 

and/or some observation about a modal interval A is the 
pair of digital modal intervals Al , A2 ,with 
Al « A « A2 , then , the only predicates and 
copredicates that are A-decidable "a posteriori" are 
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the elements of PRED(Al) and of COPRED(A2) • 
(4)	 With the same assumptions as in (3) , the "a priori" 

information induced by A onto A2 is PRED(A) , and , 
onto Al , COPRED(A) • 

As a particular application of this theorem to the case of ordinary 
intervals with the standard outwards rounding A2» A , only the 
"a priori" information PRED(A) ( P(x) with E(x,A)P(x) ==> E(x,A2)P(x) ) 
and the "a posteriori" information COPRED(A2) ( P(x) with -E(x,A2)P(x) 
==> -E(x,A) P(x) , or U(x,A2) -P(x) ==> U(x,A) -P(x) ) are available. 

The system of modal intervals can be used for actual computation 
by using the programming language SIGLA and the simulation language 
SIMSIGLA developed by the authors • 
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