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1. INTRODUCTION 

Consider the time-optimal control of a system described by the dif­

ferential equation 

(1.1 ) X (t) = A (t )x (t) + B (t )u (t ) 

with fixed initial data x(t = x where x is the n-dimensionalo) o' 
state vector, u is the r-dimensional vector control function, A(t) , 

B(t) are the nxn, nxr - matrix functions, respectively. A(t), B(t), 

are assumed to be piecewise continuous for t ~ to on any finite in­

terval. 

A control function u(t) is said to be admissible if it is measur­

able over any finite interval and takes its values from a given compact 

Er.set U of 

Let U denote the set of all admissible control functions. Given 

an initial state 

(1.2) 

and a control function u(t) E U, to ~ t ~ t 1 , then equation (1.1) 

has a unique solution x(t,u). 

Let ~(t) be the principle matrix solution of the homogeneous sys­

tern 

(1.3) X(t) A(t)x (t) 

satisfying ~(to) = J - the identity matrix. Then, for an admissible 

control u, the solution of (1.1) is given by 

t -1 .
(1.4) x (t,u) ~(t)~-l (t )x + ~ (t) J ~ (-r)'B (r Iu (t Id t , o 0 

to 
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Applying the change of coordinates in equation (1.1), defined by 

the transformation x = ~(t)y, we get that system (1.1) is equivalent 

to 

(1.5) y = lIJ(t)u(t) 

with the ~nitial	 data y(to'u) 0, where lIJ(t) ~ 
-1 

(t)B(t). 

Define 

(1.6) R(t) {y(t,U)i u measurable, U(L) E U for ~ E [to,t]} 

where 

y(t,u) 

R(t) is called a reachable set. 

The time-optimal control problem is to find an admissible control 

u*, subject to its constraints, in such a way that the solution 

x(t,u*) of (1.1) reaches a continuously moving target in En in mini­

mum time t * ~ to. 

The equivalent statement of the time-optimal control problem is to 

find an admissible control u for which w(t) E R(t) for a minimum 

value of t ~ to' where w(t) stands for a moving target at time t. 

2. PROPERTIES OF THE REACHABLE SET 

We are now restricting ourselves to values of the control function 

Er.Crin the unit cube of The set of admissible controls on 

[to,t] is given by 

(2.1) 

The reachable set R(t) is then of the form
 

t
 
(2.2)	 R(t) {I lIJ(L)U(~)dLi u E c[to,t]}. 

to 

It is known [2] that if W is an nxr-matrix-valued function with 

components lIJ in L [ t , t * ] and C is the set of r-vector­i j 1 o 

-valued measurable functions u whose components u satisfy IU (t)l~
j j 

~ 1, j = 1,2, ... ,r, and CO is that subset of C for which l u . (t) 1= 
J 

1, then 

t* 
{I W(L)u(L)dL, u E C} is convex, compact, and 
to 
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(2.3) 
t 

{ f l!J(-r)u(-r)d-r; u E g} 
t 
f l!J(-r)uo(-r)d-r; 0 

u E Co}. 
t 

0 to 

From this statement we have 

THEOREM 1. The reachable set R(t) is convex and compact. 

Formula (2.3) contains the statement which is called in control theory the 

"bang-bang" principle. The set of bang-bang controls on [to,t] is 

(2.4) gO[t ,t] = {u; u	 measurable, i u. (-r) 1 = 1, j 1, ... , r,
o	 J 

-r E [to,t]}. 

These are the controls which at all times utilize all the controls 

available. Then 

t 
(2.5)	 RO't) = {f l!J(-r)uo(-r)d-r, 

to 

is the set of points reachable by the bang-bang control. 

THEOREM The Bang-Bang Principle : 

(2.6)	 for each 

The bang-bang principle says that any point that can be reached by 

an admissible control in time t can also be reached by a bang-bang 

control in the same time 

There are several other properties of the reachable set. 

THEOREM 2. R(t) is a continuous function on [to'~}. 

Proof. Since,	 for each t ~ 0 and t ~ to' we have o 

t t 
Iy(t,u) - y(to,u)I ] f l!J(-r)u(-r)d-r1 ~ f IIl1J(-r)nd-rI, 

to t o 

therefore, by the definitions of the reachable set and of the metric 

space, 

t 
If I1l1J(-r)lId-r. 
to 

Since	 is absolutely continuous, the theorem is true. 
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THEOREM 3. If Y is an interior point of R(t*) for some 

then it is an interior point of R(t) for some t E (to' t * ). 

Proof. Let V be a neighbourhood of y of radius 6 inside 

R(t*). Suppose, for each t E (t ,t*), that y is not an interior o 
point of R(t). Then there is a support hyperplane p(n) through y, 

such that R(t) lies on one side of p(n). Let the neighbourhood V 

of y be inside R(t*); then there is a point q of R(t*) whose 

distance from R(t) is at least 6 for each t E (t ,t*). This con­. 0 

tradicts	 the continuity of R(t) and completes the proof. 

Let a nonzero vector n define a direction in En. Suppose that 

we want to find an admissible control u that maximizes the rate of 

change of y(t,u) in the direction n, that is, we want to maximize 

(2.7) n'llJ(t)u(t). 

We see that if u * is of the form 

(2.8)	 u*(t) = sgn [n 'llJ(t) ], n t- 0, 

then	 r 
n'4J(t)u*(t) E I [n' llJ (t) ] j I. 

j=l 

Equation	 (2.8) means that, for each j = l, .•. ,r, 

u~(t) = sgn l n 'llJ(t) ] . when [n'llJ(t)]. t- o. 
]	 J J 

When lu~(t)l = 1 almost everywhere for j l, .•. ,r, we say
] * that the	 control u is bang-bang. 

Thus, the control u* maximizes n'y(t,u) over all admissible 

controls if and only if it is of form (2.8). So, for any fixed t* > 
> t and any u* of form (2.8), the point q* = y(t*,u*) lies on o 
the boundary of R(t*). Moreover, n'(s - q*) ~ 0 for all s E R(t*) 

and the hyperplane p(n) through q* normal to n is a support 

plane of R(t*) at q*. Note also that if u is any other control 

of form (2.8), then y(t*,u) lies on this hyperplane p(n). Con­

versely, if q* lies on the boundary of R(t*), then there is a 

support plane P(n) of R(t*) through q* and we may take n, which 

is a nonzero vector, being an outward normal. Hence we have proved the 

following 

THEOREM 4. A point q* y(t*,u*) is a boundary point of R(t*) 

with n an outward normal to a support plane of R(t*) through q* 

if and only if u* is of the form u*(t) = sgn [n'llJ(t)] on [t ,t*]
o 
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for	 some n:f o. 

Define 

We say that system (1.1) is normal on [t ,t*] if E. (n) has 
o J 

measure zero for each j = 1, ..• ,r and each n:f O. 
It is known [2] that system (1.1) is normal on [t0' t*l

J 
if and 

only if R(t*) is strictly convex. 

3.	 A COMPUTATIONAL METHOD 

As it follows from the considerations above, in the computational 

realization we have to compute the minimum time t* = inf {t, pER(t)" 

and to find the reachable set R(t) at time t*~ 

We now want to present an algorithm for finding the minimum time 

t * . 
Let a(n,t) be a function defined by 

(3.1 ) a(n,t) = n'~(t) - n'w(t) for 

where 

n'S(t)	 max n'y.
 

yER(t)
 

It can easily be seen that a necessary and sufficient condition for 

w(t' ) to belong to R(t' ) for some t' is 

a(n,t') ~ 0 for each 

The function a(n,t) is continuous, hence the set 

(3.2) T = {t: a(n,t) < O}
 

is open for any n E En and can be composed as follows:
 

(3.3)	 T U (an,bn)·n=l 

Let 1: ~ and let N denote the set of indices m for whichto' 1: 

if 

and 

b	 > t if 1:" = t . m 0	 o 
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be defined for nE S (S - the uni t sphere of and 

sup b if N ~ ~ m 1:' 
mEN 

(3.4) 

if N f4.
1:' 

If it is known that w(t) ~ R(t), to ~ t < 1:'0 and, for some n E S, 

1:'1 = p(n,1:'o) > 1:'0' then w(t) ~ R(t), to ~ t < 1:'1· 

Let ( nk ) (k	 = 0, 1 , · · · ,nk E S ) and to be given. 

Assign the sequence (1:'k) to them as 

p(no'1:'o) , 

o= 1:' 

The sequence (1:'k) is nondecreasing and bounded with respect to (ni) 

as a consequence of the assumption that there exists a solution of 

problem (1.1). Therefore lim T exists.
ki-+ oo 

DEFINITION 1. The sequence is said to be maximizing if, 

for the corresponding sequence the equality 

* 1 ,(3.5)	 1:'* 1m 1:'k 
k-+oo 

holds. 

It is easily proved that there exists a maximizing sequence. 

THEOREM 5. Let 1:'* be determined by a maximizing sequence. Then 

1:'* = t* is the optimal time of the control problem. 

Proof. Suppose the contrary. Then only the inequality 1:'* < t* 

can hold, hence w(t) ~ R(t) for t E [t ,1:'*]. Thus there exists an 
oo,1:'*)

nO for which -g = a(n < 0 with some positive E.	 Since 
o,1:'*)a(n,t) is continuous, there exists a neighbourhood V of (n

such that, for any (n,1:') E V, we have 
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< ~ 
2 

and 

Moreover, there exists an no such that -r~ E (-r' ,-r") for n ~ n . 
o 

Consider	 any Tl E V and let 
Tl o 

* 
Tlk' 

Tl k {
Tl, 

oFrom p(n,-r > -rtf > -r* -r it follows that	 for n o 

which contradicts the definition of -r 
o 

. 

It is very difficult to compute the set R(t). For the purpose, 

using formula (2.2), we have to know the optimal control u* with all 

its switching points. In the general case, it is not possible to find 

exactly all the switching points. In order to avoid these difficulties, 

we shall use the interval integrals. 

Let F denote a function on [O,~) to the vector interval space. 

Using the definition of the interval integral, we define the vector 

interval integral. 

DEFINITION 2. If F = (fl, ... ,f is a vector interval function
n) 

defined on the interval [a,b], then the vector integral of F over 

[a,b] is defined to be the interval vector 

b b b 
(3.6)	 J F(t)dt (J fl(t)dt, ... ,J fn(t)dt) 

a a a 

b 
where J fi(t)dt, i l, ... ,n, denote the interval integrals. 

a 

Define 

(3.7) 

THEOREM 6. Let us assume that system (1.1) is normal; then, for 

any nonzero vector Tl, there exists an optimal control u* 6f the 

form 

-1(3.8) sgn [Tl'~ (t)B(t)] 
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for which the reachable set at time t * satisfies the best possible 

inclusion 
t* t* t* 

(3.9) R(t*) c: ([- J f (L)dL,f f (L)dL])f 1(L)dL], ... ,[-f 
n t nt too o 

where ~(t) is the principle matrix solution of homogeneous system 

(1.3), ~-l(t)B(t)Q [~ij(t)]nxrQ stands for an extended vector in­

terval function, Q is the r-dimensional interval vector whose coor­

dinates are the intervals of the form [-1,1], 

i 1,2, ... ,n. 

Proof. The result follows from a series of simple observations. 

Since system (1.1) is normal, the boundary points of R(t*) can, and 

can only, be reached by a control that is bang-bang. By theorem 4, 

there exists an optimal control of form (3.9). Thus, the optimal con­

trol is the r-dimensional vector function whose coordinates take the 

values -lor 1. Consequently, the optimal control will be contained 

in the interval vector Q whose coordinates are the intervals of the 

form [ -1 , 1 ] . Mul t.LpLydnq the matrix ~-1 ( t; ) B(t ) by the interval vec­

tor Q, we get the vector interval function. Applying the methods for 

integration of interval functions and the Bang-Bang Principle, we ob­

tain formula (3.9). On the other hand, since system (1.1) is normal, 

it follows that the reachable set R(t*) is strictly convex,' so the 

best possible inclusion (3.9) holds. 

EXAMPLE. Consider a simple control system xl 

ru I s 1, Iu I s 1. Here1 2 

B = (: :). 

The vector interval function will be of the form 

[- 1, 1 ]) 
( [-1,1] . 

The reachable set R(t*) is given by the formula 
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This	 means that R(t*) is a square with sides of length 2t*. 
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