
ON THE OPTIMALITY OF INCLUSION ALGORITHMS 

Henryk Ko~acz 

Institute of Mathematics 

Technical University of Poznan 

Poznan, Poland 

Abstract. In this paper a general concept of inclusion algorithm 

is introduced. Any inclusion algorithm provides a set that includes 

the solution of a given problem. Inclusion algorithms are studied 

with respect to the information used by them. 

Some examples illustrate the presented concepts and results. 
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1.	 Introduction 

In computational practice we must take into consideration that the 

rounding and propagated errore can give a large and inestimable error 

of the final result. 

In general, it is difficult to provide a priori estimates of this 

error, and even in case they are available they produce bounds so pes­

simistic that they are of little practical importance. 

Therefore there is a need for automatic error control in numerical 

computations. 

A very useful tool for it is the interval analysis introduced by Moore 

[2J. The basic idea of this analysis is the inclusion of the solution 

of a given problem by intervals. 

In this paper we introduce the concept of inclusion algorithm. It is 

defined as an arbitrary operator ~ such that it provides a set in­

cluding the solution of a given problem. We shall assume that there 

exists an arithmetic such that the computed values of qp are outer 

approximations of the exact values of <P • 
We present a model of optimality for inclusion algorithms. It is based 

on the methodology introduced by Traub and Wozniakowski in [7J. 
The optimality of inclusion algorithms is studied with respect to er­

ror and computational complexity. It is shown that the intersection 

algorithm is a strongly optimal inclusion algorithm with respect to 

error. There are some connections between our optimality model and 

the ideas of Ratschek [6]. 
To illustrate concepts and results we present two examples: integra­

tion and range approximation. 

2.	 Basic definitions 

Let E,F be two given sets. By ~(E) we denote the power set of 

E, that is, the class of all subsets of E.
 

Let ~ C ~(E) be a fixed class of subsets of E. The family HE is
 

called a class of set representations in E.
 

For example HE is the class of all closed balls in a pseudometric 

space E or the class of all closed intervals in an ordered space E. 

We assume that there exists an operator H: peE) -+ ~ such that: 
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(2.1) H(X) = X for all X E ~ , 

(2.2) XC H(X) for all X ~ IP(E) , 

(2.3) x c Y implies H(X)CH(Y) for all X,YElP(E). 

The operator H satisfying the properties (2.1)-(2.3) is called a 

monotone upwardly directed rounding (see [2J). 

In our model we assume that the distance between elements of the 

family HE is measured by elements of a complete lattice K. Then 

every subset of K has an infimum and a supremum. 

Moreover, let inf K = a, that is, m ~ e for all m E K. 

Definition 2.1. We shall say that d: ~ X HE -+K is a distance 

operator in the class BE if 

(2.4) X,Y C Z ~ d(X,Y) ~ d(X,Z), d(Y,Z) 

for all X,Y,Z E HE • 

Let £ be a given element of K, e ~ e. 

Definition 2.2. We shall say that X E ~ is an € -inclusion of 

an element x E E if 

1
0 xE. X, 

2
0 

d(H( x ) ,X) ~ £. • 

We illustrate the above concepts by an example. 

Example 2.1. Let E be a normed linear space over the real or 

complex field. Let BE be an arbitrary class of set representations 

in E such that it includes the class of all singletons in E. 

We define the distance operator d in BE as 

d(X,Y) = [x - x] 

where [x ] = sup[11 xII: x E X]. The set U(x,€) defined as 

U( x , e) = {X E: HE: x EX, II x-X II~ e}, 
is the family of all E-inclusions of an element x c E, where t is 

a fixed nonnegative real number. 
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3. Information operators 

Let S: F -+ E be an arbitrary operator. We want for any f € F 

to find an C-inclusion of S(f). To find it, we must know something 

about the element f. Let 

be an arbitrary operator, where de is a given space. 

The operator N is called the basic information operator for F and 

the element N(f) is called the basic information of f. 

Definition 3.1. Let f 6 F and 1L be a given set. We shall say 

that L: f ~ 1L is an information operator for f (generated by N) 

if NCf) C L(f). 

We denote the family of all information operators for f, f € F by 
A A A 
IN(f). Obviously IN(f) is nonempty for all f ~ F because Ne IN(f) • 

We illustrate the concept of information operator by the following 

example. 

Example 3.1. Let M be a Banach space over the field of real 

numbers ~ and A be a nonempty subset of M. 

Let 'F be a nonempty class of operators mapping A into M, which 

are n-times Frechet differentiable on A, where n denotes a fixed 

natural number. We take F = ~ x R and ae = ~x \rX ••• XR
A M 

«n+1)-times), where R and \r denote fixed classes of eet repre­
A 

sentations in A and M, respectively. Let H: P(M) ~ ~ be a mono­

tone upwardly directed rounding. 

We define the basic information operator N in the following way: 

- -, -en) ]N(g,X) =[ H(g(X)),H(g (X)), ••• ,H(g (X)) , 

where g(j)(X) denotes the range of the jth Frechet derivative of 
A. 

g e ~ over X. Then every information operator L E: IN(g) has theg 
following form: 

LgeX) =[Gex),G'ex), ••• ,Gen)ex)], 

where at = U and G(j) is an extension of g(j) i.e. g(j)(X) C 

C Gej)ex) for all X ERA and j = O,1,2, ••• ,n. 
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The inclusion between elements of the space at is meant; ccmponentwise. 

A 

It is often necessary to impose some restrictions on L c IN(f) in 

order to guarantee that the information L(f) can be easily computed 

and enjoys some useful properties. 

Let IN be an operator defined on the set F such that I (f) is a 
N 

given family of information operators for f € F, IN(f)C: iN(f). 

The operator IN is called an information selection operator for F. 

We denote 

Example 3.2. Let ae and U be given nonempty families of subsets 

of a space T. Let d be a distance operator in peT) with values in 

C = [0,+ 00 ) and be a fixed nonnegative real number. Then the ope­

rator IN defined as 
At. 

IN( f) = {L 6 IN( f) : d (N( f), L(f) ) ~ € } , 

is an information selection operator for F. 

For a given element f E F and an information operator L ~ IN(f) 

we define the set V(f,L) as follows: 

V(f,L) ={ g f: F: there exists M E: IN(g) such that L(f)=M(g)}. 

Therefore V(f,L) is the set of all elements g c F which have the 

same information as f under L. It is obvious that V(f,L) is non­

empty for every f ~ F, L c IN(f) because f e V(f,L). 

Knowing L(f1 , it is impossible to recognize which element S(f) or 

S(g) is being actually approximated for all g c V(f,L). 

Analogously as in [7] we introduce the following definition. 

Definition 3.2. We shall say din (IN,f) is the local diameter of 

information if 

sup d(H(S(g1»),H(S(g2))). 
g1,g2 E V(f,L) 

We shall say din(I is the (global) diameter of information if
N) 
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(3.5) sup din(IN,f). 
fEF 

4. Error of inclusion algorithms 

To determine an £-inclusion of S(f) we use an inclusion algorithm 

which is an operator defined as follows. 

Definition 4.1. We shall say that qJ: I F) --+ ~ is an inclusion
N(

algorithm for the problem S if 

( 4. 1 ) S (f) € cP (Nf) 

for all fEa F and N E. IN(f).
f 

We denote the class of all inclusion algorithms using the informa­
tAo 

tion generated by the information selection operator IN by A(IN). 
Let us observe that "A(I

N} 
is an ordered set with the order rela­

tion ~ defined as follows: 

(4.2) (J)1 ~ 'P ¢=:> <P1(N ) C <P (N )
2 f 2 f 

J\ 

for all f Eo F and Nf E I N( f) , where q:> l' <p 2 Co A(IN) • 

Defini tion 4.2. We shall say e( q> ,f) is the local error of 

<P E 
J\

A(I ) if
N

( 4.3) e ( cP , f) sup 
N E IN(f)

f 

We shall say e ( '1') is the (global) error of cP if 

e ( <P ) 

It is obvious that if If')'1'1 --= ~ In then for allT 2 
A 

inclusion algori thms cP i ' <P 2 c A(IN) • 

From the inclusion (4.1) it follows that the local diameter of 

information is a lower bound on the local error of any inclusion algo­

rithm. A formal proof is provided by 
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Theorem 4.1. For any inclusion algorithm <P E A(IN) , 

( 4•5) e (CP , f ) ~ din ( IN ' f) 

for all f E F. Moreove r-, 

Proof. Let f € F and N C IN(f). It is obvious that S(g)cCP(N )
f f 

for all- g € V(f,N ) . From this by the formula (2.4) we obtain the
f 

inequality (4.5). 

The inequality (4.6) is a simple consequence of (4.5). The proof is 

complete. 

Example 4.1. For f ~ F, N t IN(f) we define
f 

(4.7) 

A 

It is obvious that U* is an inclusion algorithm, U·oM-E. A(IN). 
From the inclusion (4.1) it follows that 

( 4.8) 

for all f f: F, Nf E IN(f) and any inclusion algori thm c:P 

Moreover, taking ~:= IP(E) and d(X,Y) = Ilx-YII we obtain 

(4.9) e(U* ,f) 

for all f c F. This means that the inequalities (4.5), (4.6) cannot 

be improved in general. 

Let A(I be a nonempty class of inclusion algorithms using theN) 
infonmation generated by IN. 

Definition 4.3. We shall say that P E A(I is a strongly optimalN) 
error inclusion algorithm in the class A(I if

N) 

( 4. 10) inf [ ~ ( <P ,f): cP E: A( IN) J = e (P , f)
 

for all f € F.
 

We shall say that P e A(I is an optimal error inclusion algorithm

N) 

in the class A(I ifN) 

(4.11) e (P) • 
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Theorem 4.2. Let A(I be a nonempty family of inclusion algori­
N) 

.1\ 
thIns such that A(IN) = A(I

N
) () W, where W is a class of set opera­

tors. We define the operator qJ* as 

(4.12) <p*(Nf ) = H( CP~(~) <P(Nf» • 

Suppose <P*E W. Then cP* is a strongly optimal error inclusion algori­

thm in A( IN) • 

Proof. First let us observe that cP* is an inclusion algori thro. 

Therefore (J)*E. A( IN). Since q:>*~ <p for any inclusion al.gori thIn 

cp ~ A(I ) , e(<P*,f) ~ e(q> ,f) for all. f e F.
N

From this we obtain that ~* is a strongly optimal error inclusion 

algoritmn in A(I The proof is complete.
N). 

Corollary 4.1. The algori thIn U"*' defined by the formula (4.7) is 
A 

a strongly optimal error inclusion algorithm in the class A(I ) . N

Proof. It is a simple consequence of the inclusion (4.8). 

Remark 4.1. A strongly optimal error inclusion algorithm is also 

an optimal error inclusion algorithm but the converse is, in general, 

not true. Obviously U * is an optimal error inclusion algori thm in 
A 
A(IN)· 

5. Complexity of inclusion algorithms 

In this section we present a model of computation which consists of 

a set of primitive operations, permissible information operators, and 

permissible inclusion algorithms. This model is based on the general 

setting given in [7J. 
(i) Let t be a primitive operation in a given class of set repre­

sentations BE in E. Examples of primitive operations in I(E) are 

interval operations (the addition of two intervals, the multiplication 

of an interval by a real number etc.). Usually primitive operations 

in R are defined by some corresponding operations in the space EE 
(see [2]). 
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Let T be a given set of primitive operations in BE. We denote the 

complexity (the total cost) of t by comp(t). We assume that comp(t)· 

is finite. 

(ii) Let f E F and L c IN(f). We say that L is a permissible 

information operator for f with respect to T if there exists a 

program using a finite number of primitive operations from T which 

computes L(f). We assume that if L(f) requires the evaluation of 

operations t ,t ••• ,t E T, then comp(L(f)) = 2:i~1 comp(t1 2, k	 i). 

(iii) Let IN(f) be a nonempty class of permissible information 

operators for f, f E F. Let <P Eo A( IN). We say that q> is a permis­

sible inclusion algorithm with respect to T if for every f ~ F and 

L ~ I (f) there exists a program using a finite number of primitiveN	 . 

operations from T which computes Z € BE such that Z:> <P (Y),
 

where Y = L(f).
 

Let comp(q> (Y)) be the complexity of computing CP(Y). We assume that
 

if <p (Y) requires the evaluation of s1' s2' • • ., sm E T, then comp(q>(Y)) =
 
=~ .m comp(s.). We denote the class of all permissible inclusion

1J.= J.	 A A 

algorithms with respect to TinA A(I ) by AT(I ) . 
N N

We define the	 complexity of ~ € AT(IN) as 

comp( <:p ) =	 sup sup [ comp(L( f)) + comp( q> (L( f) »]. 
fEF L E IN(f) 

Let £ ~ e be a fixed element of a complete lattice K. 
A 

Let AT(I £,) be a nonempty subset of AT(I such that e(cp) ~ eN, N) 
for all <P E: AT(IN' €. ) • 

Definition 5.1. We shall say that P Eo AT(I f,) is an €-comple­
N, 

xity optimal inclusion algorithm in the class AT(IN, £ ) if 

inf [ comp( cP ): <P E: AT(I E )] = comp(P).
N, 

The analysis needed to characterize and construct an € -complexi ty 

optimal algorithm for a particular problem can be a difficult mathema­

tical problem. 
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6. Applications 

In this section we show some examples of how the above analysis 

can be applied to some concrete problems. 

We present two examples: integration and range approsimation. 

(i) Integration 

Let F be the class of all continuous real functions defined on 

the interval [a, b ] C 1:1. We take E = IR and ~ I( IR), where I( IR) 

denotes the class of all closed intervals over R. 

We define the distance operator d in I(~) as 

( 6.1 ) d (X, Y) = sup [ Ix-y I: x (: X, Yi:. Y ] • 

We define the operator S: F ~ ~ as 

b 
(6.2)	 S(g) = S g(t)dt, 

a 

for g € F. 

Let M be a positive integer and subdivide [a,b] into M subinter­

vals X ••• ,X so that
1,X2, M, 

(6.3)	 a = X < X = X < X < •.. < b,
-1 1 -2 2 XM 

where X for i 1 ,2, ••• ,M.
i = [~'XiJ 

We define the basic information operator N as 

(6.4) 

where g e F. Then any information operator for g has the form: 

(6.5) 

where G is an interval extension of g. The inclusion between elements 
M(

of I lR) (the Cartesian product of I( [R), M-times) is meant canponent-· 

wise. For g ~ F and L C I ( g l we define the interval operator
g N

as follows (see [3J): 
M 

(6.6)	 <p (L ) = L G(X.)w(X.), 
g 1=1 1 1 

where w(X) denotes the width of an interval X ~ I( ~).
 

Obviously by- the mean value theorem <P is an inclusion algori tJ:un.
 

Let Ex(g) be a nonempty family of interval extensions of g E F.
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Let IN(g) be the family of all information operators for g of 

the form (6.5) with G e Ex(g). 

Then it is not difficult to verify that 

(6.7)	 din(IN,g) = sup 
G c Ex(g) 

Moreover, let us observe that 

M 

(6.8)	 e( <p ,g) ~ sup 2 w(G(X.) )w(X.). 
G,Ex(g) i=1 1 1 

From this by Theorem 4.1 we obtain that ~ is a strongly optimal error 

inclusion algorithm. 

(ii) Range approximation 

Let U be the family of all real functions defined on an interval 

D C IR and diffe rentiable n- time s on D E: I ( JR.). 

We take F == U x l(D), E = I( lR) and ~ == I( lR). 

We define the distance operator d in I( ffi) by the formula (6.1). 
n:

For XES I(D) we define the power ~ of X by ~ ={x X'Eo X}, 

where n~O. We denote the absolute value of X €l(D) by IXI. 

We define the operator S: U X r o» ~ I( IR~ as 

S(g,X) == g(X), 

where g(X) denotes the range of g over X. 

Let N be the basic information operator defined as 

( 6 10)	 [' (n-1) -en) l~ N(g,X) == g(c),g (c), ••• ,g (c),g (X)J' 

where e = m(X) is the midpoint of X, n ~ N and g(j) denotes the 

jth derivative of g. We define an information operator N for g as 
g 

(6.11) Ng(X)	 = [gee) ,g'(e) , ••• ,g(n-1) (e) ,G(n) (X)] t 

G( n ) . . 1 . f (n)h 1S 1nterva 0 •were an extens10n g 

Let Ex(g(n)) be a nonempty class of interval extensions of g(n) 

Let IN(gJ be the family of information operators for g of the form 

( 6 • 11) wi th G(n) E: Ex(g (n) ) • Vie den0 t e w: == w(D) and 

( 6. 12) 
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Developing functions with the same information as g in Taylor series 

around c we obtain 

1 (k) k xn-n 
(6.13)	 kT g (c)w + 2 n! 

where 

if k is even, 
(6.14) if k is odd. 

For g ~ U and X E I(D) the Taylor form of g of order n, is defined 

by (see [4]): 

In ~ L (k) . k 1 (n) n(6.15)	 't' (N ,X) = L- k! g (c) (X-c) + -; G (X)(X-c) •
 
g k=O n.
 

It is obvious that ~ is an inclusion algorithm for the problem S. 

It is not difficult to verify that 

n-1 }. -k	 ~ -nk(6.16)	 e(q> ,g) ~ L 2 k ~, g(k) (e)w + 2 n 
k=1 . 

Now let U be the class of all polynomials of degree at most n-1 

defined on the interval D. We take EX(g(n)) ={G(n) }, where GCn)(X)= 

= [0,0] for all XE l(D). 

SuPPos e g ( k) ( c) ~ a 0 r g ( k) ( c) -< 0 for k = 1, 2 , ••• ,n-1 • 

We shall present our consideration for the first assumption. The 

considerations for the second assumption are analogous. 

1
0 

Let g(k)(c) = 0 for k=2,4,6, •••• Then it is easily veri ­

fied that 
n-1 1-k 1 (k) k 

(6.17)	 din(IN,g) = ~ 2 k! g (e)w • 
k=1,odd 

In this case the	 Taylor form has the following form: 

n-1 1 (k) k k 
(6.18) q> (Ng,X) = gee) + L k! g (e)[-z ,z ], 

k=1,.odd 

where z = w(X)/2. It is easy to show that 

(6.19)	 e( <P ,g) ~ dine IN,g) • 
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Therefore by Theorem 4.1, ~ is a strongly optimal error inclusion 

algorithm. 

20 Let g (k) ( c) o for k 1,3,5, •••• From this it follows 

that n-1 
2- k 1 (k) ( ) k ( 6.20)	 L k! g c w • 

k=2, even 

We have in this case 

n-1 
(6.21) <p (N ,X) g(c) + z= .L g(k) (c) [o,zkJ • 

g	 k!
k=2,even 

It is easy to verify that in this case the inequality (6.19) holds, 

too. Therefore ~ is a strongly optimal error inclusion algorithm. 

The problems connected with the range approximation by Taylor 

forms were considered in [3],[4],[5J (see also bibliography in [4]). 
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