INTERVAL OPERATORS AND FIXED INTERVALS

by R. Krawczyk

1. Introduction

In order to enclose a solution x* of a nonlinear system of equations
g(x) =0, where g: B & Rr" o ]Rn, many interval operators F: IB - IR"

with the property
x*eX = x*eF(X) (*)

are discussed.
By applying the iteration method

X, € B

0 := F(Xk), k=0,1,2,...

RS

we obtain a monotone sequence of intervals

X02X12X22...

We distinguish between two cases:

1. There exists a ke N with Xk+1 =@. Then, because of (%) X0
contains no solution.
2. The sequence {Xk}’ is infinjte. It then follows that 1lim szxoo'
k = o

2.1 Additionally, if radX_=0 then X =x* is a unique solution.

2.2 On the other hand, if a solution x* €X, exists then it
follows that x*e X, for all ke N and x*€X_.

In all cases, we assume that the Jacobi matrix g' of g exists, and

that we know an interval extension G' of g', or more generally, that

g fulfills an interval Lipschitz condition
g(x,) - g(x;) € LX) (x,-%,), X,,X, € X € IB.

In many papers special interval operators for F are described, and
questicrs about existence and uniqueness of a solution x* or the question:

"under which assumptions do we get X, = x*?" are answered.
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(Some basic papers of this subject are: [3], [4], [6], [10], [12],
[201, [21], [23], [24], [25], [27], [28] and [29]. See also the re-
ferences of [13].)

Adams (1] and Gay [8], [9] have extended these studies to the case
that g is not exactly known (e. g., if the coefficients of g are
intervals). They thereby start from the function g: BESR"xDERP » K.
If x*(d) denotes 3 zero of g{(x,d) =0 with a fixed deD, then they
define a set of solutions X* by X* := {x*(d) |deD}, and they

give bounds or intervals, respectively, which enclose X*.

In another model we use a function strip CG: B € ®" » IR" instead
of a function g, and instead of a zero we get a zero set X¥,

which can be enclosed with the help of a fixed interval of an inter-
val operator F, or pseudofixed interval, respectively. (See [7],
(141, [151, [16], [17].)

2. Notation and basic concepts

Lower case letters denote real values (vectors, matrices and real-
valued functions). Capital letters denote sets (interval vectors,
interval matrices and interval functions). IR" [or ]I]RHXn, re-
spectively] denotes the set of all interval vectors [or interval
matrices, respectively], and IB := {Xe€ IR" | x € B}.

If ¥ is a bounded subset of ]Rn, we denote by oI := [inf ¥, supX] the
interval hull of Z.

(x-x) denotes the radius,

N —

Let X = [x,x] € IR"; then radX:= x
midX =% =%(_’E+;) the midpoint and IX| := sup(;{,-E) the absolute

value of X. Analogous notations apply to L= [l,i] e IRM™. 1f

re Ran s then o(r) denotes the spectral radius of r. Concerning
interval arithmetic we refer to [5] and [19].

By Neumaier [22] a map S: IR" -+ IR is called sublinear if the
following axioms are valid for all X,Ye IR".

(S1) X €Y = SX & sy (inclusion isotonicity),
(s2) ae€eR = S(Xa) = (SX)a (homogeneity),
(S3) S(X+Y) & SX+5Y (subadditivity).
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We extend S to matrix arguments by applying it to each column of the

matrix. Moreover, we set
k(S) := se and |[s| = [SE]|,

where e denotes the unit matrix, and E = [-e,e]. (In [22] the interval
matrix kK (8) € IR™™ is called the kernel and the nonnegative matrix

|s| is called the absolute value of S).

A sublinear map is called normal, if for all Xe :II]Rn,
(s4) rad(sSX) z |S|rad X;
it is called centered, if
(85) Xe IR", mid(SX) =0 = midXx=0,
and regqular, if
n
(S6) xeR ', 0esSx = x=0.

x
Let LeIR ™ be a regular interval matrix (i. e., each matrix leL

is regular). Then L_1 is defined by
AL lﬂ'[l-‘I | 1eL}.

Moreover, a sublinear map LI is called inverse of L, if

-1

1 xeLIX for all leL, xe€X.
L := {Lik} € ITR™"™ is called H-matrix, if the real matrix <L> := {lik}
with 1,, := inf{[1| |1 € Ly;} and 1., := -IL, | for i # k, i,k = 1(1)n,

is an M-matrix.

3. A function strip and its gzero set

Let G: BS R » IR" be a map which associates with each x€B an

interval
G(x) := [g(x), g(x)]. (1)

Such a map is called a function strip. We call

X* := {x€B|c(®) g0s5g(x)}

the zero set of G (which can be emptv).



84
Remark: This zero set X* encloses the set. of solutions defined by
Adams [1] or Gay [9], respectively.

We assume that G on each X e IIB satisfies an interval Lipschitz con-
dition, i. e., the real functions g and g both satisfy the same inter-

val Lipschitz condition

g(x,) —g(x,) € L(X) (xy=x,) 5 g(xg) - g(x,) €L(X) (x,-x,) } (2)

for all Xg9X%, € X € IB.

We call L: IB -» IR"*" a Lipschitz operator and assume that L is

inclusion isotone, i. e.

XEY = L(X)EL(Y). (3)

4. Interval operators of a function strip, properties of such operators

and some general theorems

Let the map F: IB - IR" be a continuous interval operator. We call

A
)Qe IB a fixed interval of F if F(ﬁ) =X, and we call Xe€ IB a pseudo-
fixed interval of F, if F(X) 2 X.

Properties of an interval operator (see definition in [15]):

Let X,Y € IB, X* € B the zero set of a function strip G and
X € IB a fixed interval of an interval operator F. Then we call F

(E1) inclusion isotone, if Xy = F(X) € F(Y),
(E2) normal, if X* ¢ )/2,

(E3) inclusion preserving, if xX*e¢ X = Xx*¢c F(X),
(E4) fixed interval preserving,if }/2 S X = )/E € F(X),
(E5) strong, if F(X) 2 X 2§ = X = )/2

The following theorems are valid.

Theorem 1: If the continuous interval operator F is inclusion pre-
—_ A
serving and @ * X*¢ XOEB [or fixed interval preserving and XEXOE B,
respectively], then the interval sequence {Xk} defined by

X := X

K+ 1 ﬂF(Xk), k=0,1,2,... (4)

k

converges; hence
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k-Doo k *
with F(Xw) 2 X,

lim X, = X_2 X* [or X_= ﬁ, respectively] }
(5)

holds.
(See Theorem 2.3 in [15]).

Theorem 2: If the continuous interval operator F is fixed interval
- . A
preserving and strong, and if F possesses a fixed interval X & XO,
then we get for the interval sequence {Xk} defined by (4)

A
lim X, = X,
k2w k

(See Theorem 2.4 in [15]).

Theorem 3: If the continuous interval operator F is inclusion isotone,
— A
and if F(X) £X then there exists a fixed interval X of F.

In the following sections we discuss three classes of special interval

operators.

5. Newton-like interval operators

Ny (x) := ¥ - tle(d), (6)

where I.:=L(X0) is a constant Lipschitz matrix of (2), and LI denotes
a normal and centered inverse of L.

Theorem 4 (conclusion from Theorem 4.2 in [17]): Let N, be defined by

(6), then N, is normal and inclusion preserving.

0

A A A A
Supposing, X := [&-rad X, x+radX] is a fixed interval of ¥. Then it
follows from (S5) that

mid G(X) = 0, (7)
and from (S4), as well as (3.8) in [17] that
I A
radX = |L  |rad G(X) . (8)

This means: the absolute value (matrix) ILII determines the "size" of

a fixed interval.
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A second "measure" is the matrix
rad(rfn),

which we call convergence matrix, because it is responsible for the

speed of convergence of the iteration (4). Moreover, the following
statement holds:

A
Theorem 5: Let N, be defined by (4). If a fixed interval X of N
exists, and if

0 0

olrad@lny) < 1, (9)

then N0 is a strong operator, i. e., the property (E5) is satisfied.

(See Proposition 6.2 in [17]).

Next we discuss four examples of an inverse LI of L.

1. 182 := 102(L,2),

where IGA denotes the interval Gauss algorithm (see [6]).
Sufficient conditions for the existence of LGare:

(1) L = regqular and n =2
(see Reichmann [30]).
(ii) L = H-matrix

(see Alefeld [2]).

Generally, the regularity of L is not sufficient for the existence
of LG. (See a variant of Reichmann [30] in the remark 3 of Theorem 3
in [22]).

For the following three inverses L1 we assume that the Lipschitz-

matrix L € TR™" is strongly regqular, i. e. by (7.1) in [17]:

The matrix
a := (mid1)”] (10)
exists, and with

r := |lalrad L (11)

the condition
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o(r) < 1 (12)

holds. Then

q := (e—r)_1r (13)

exists, and it is a nonnegative matrix.

2. =X X2 = az 4 (@B am), (14)

3. I =1V 1Yz := [e-q, etql (a2), (15)

(an)%(az) . (16)

-~
e
]
e
(=]
N
L]

Remark: For the one-dimensional case, and if G degenerates to a
function g, IF was introduced by Moore [19] and applied by Nickel [27]
and many other authors. Among other things, the multi-dimensional case
was discussed by Alefeld/Herzberger [4]. New results ﬂn?LG were derived
by Neumaier [22] and [26]. For the function strip,LK was. introduced by
Krawczyk [14], and LV by Krawczyk/Neumaier ([16]. o means precondi-
tioning of L with (midL)—1 (see section 6 in [22]), which was applied
by Hansen/Smith [11].

Theorem 6: If o(g)< 1, where g is defined by (13), then the inverses
LK, LV and LP are regular.

(See examples 2, 3 and 4 of section 7 in [17]).

Theorem 7: Let N0 be defined by (6} with Lt =LK (see (14)). Then N
is a fixed interval preserving operator.

(See Theorem 5.4 in [15]).

0

Remark: It is not necessary, however, that N0 with LG or LV, LP, re-

spectively be fixed interval preserving, as the following example shows:

Let be g(x) := {g::g: ;E zig: g(x) = 4x+6.

Then L=[2, 4] and LGZ=LP = Z x [T’ %]. X—[ -3,
interval of Nkoith L™ =L . Choosing X0 = [~3, 5]
X1 =[-3, 2] ® X, which is contrary to the statement of Theorem 7.

] 4is a fixed
A
2 X we obtain

(As far as LV is concerned, see example 5.3 in [15]).

be defined by (6) with LY =1X, and 1let g(q) <1,

Theorem 8: Let NO
where q is defined by (13). Then N0 is a strong operator.

(See Theorem 5.5 in [15]).
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Remark: In comparing this result with Theorem 5 we can say: g(g) <1
is a weaker assumption than (9) that is, G(rad(LILD< 1, because

rad(LKL)=

Comparison of the cases 1., 2. and 3.:

(1) V2 ¢ X2, 12152 for a11 zeim", (17)
(i1) P = Y = 0P = (emn T Nal (18)
(111) rad(t*L) = 2q , (19)
(iv) q s rad’n) < 2q, (20)
(v) q s radtfs 29 , (21)

From (17) it follows that the application of Lv and LP yields better
results than the use of LK. However, we cannot tell whether LV or LP
is more favorable. A comparison with LG is difficult, because the

fixed interval of Ng (applying LGin (6)) generally does not coincide

with the fixed interval Ng (applying X in (6)).

However, it follows from (18) that all interval operators: Ng, Ng and Ng
A

possess the same fixed interval X.

Conclusion from Theorem 8: If the assumptions of Theorem 8 are ful-

filled then N0 with LI LV or LI LP respectively, is strong.

Because of (17) 1t follows that N (X) € (X), as well as
(X)CINO(X) (N denotes the operator (6) w1th LI =Lv, and Ng is the

notatlon if 1t = LP. If a fixed 1nterval R of Ng exlsts, then by (18)

X is a f1xed interval of Ng and NO, too. Therefore N (X) = X =2 X

implies 0(X) 2 X = X, and by applylng Theorem 7 we obtaln X= x
A
Analogously, N (X) 2 X2 X implies X = X
Remark: Theorem 8 and the conclusions are true only if LI is constant.

However, it is not necessary that the interval operator
N(X) := x-LTx)G) (22)

with variable L(X) is strong, as the examples 5.4 and 5.5 in [15] show.
Furthermore, there can exist more than one fixed interval which all
have the same midpoint Q. In contrast, N0 has at most one fixed inter-
val if o(r) <1, since the zero Q of the equation midG(x) =0 is
unique, and by (8), radﬁ is independent of X (see example 6.1 in [16]).

It is even possible that there exists a fixed interval of N but not of
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Ng (see example 6.3 in [16]). The contrary statement is not true. If NO
possesses a fixed interval then there exists at least one fixed inter-
val of N (see Theorem 6.5 in [16]). If )/20 denotes a fixed interval of
N0 and )/2 a fixed interval of N, then )’2 c 5\(0 holds for each fixed

A
interval X of N (see Theorem 6.4 in [16]).

Overestimation: Let X* + ¢, then the iteration method (4) with the
operator (6) yields a limit interval X _ =2 X* (Theorem 1) or R 2 X*

(Theorem 2), respectively. The "distance" of the interval hull of X*

A
from X can be bounded by the following Theorem.
Theorem 9: Let Ll ve a regular and centered inverse of L. Suppose that

for each 1 € L the inequality

i <17 o+ 2rad («@h)) (23)
holds. Then it follows that
< Q _ * =1 I b
0 < rad rad oX* g 2(rad(L ') +rad(k (L)) rad G(X) (24)
(see Theorem (5.1), (iv) in [17]).
. . . I K v P
Remarks: 1. The assumption (23) is valid for L =L, L', L .
2. Since L_1 = K(LI), the bound (24) can be simplified by
2 * I A
rad X -rad oX* s 4rad («x(L7)) rad G(x).

3. If rad(K(LI)) = O(e) and radG(R) = O(e) then it follows from (24)
that rad X - rad oX* = O(ez) . This means quadratic vonvergence, if

e = 0.

6. K-operators

Instead of the Newton-like interval oprator (6) for iteration (4) we

can use the operator
Ko (X) := ¥-aG(X) + (rE) (X-%), (25)
where a and r are defined by (10) and (11).

If we assume (12) - such that o(r)< 1 - then there exists at most one
A A A
fixed interval X of KO' By setting X = [Xx - rad }?, §,+ rad ﬁ] we obtain

midG(x) =0, rad® = (e-r) ' a] radG(%). (26)
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From (8) and (18) it follows that a fixed interval of No with
LI==LK, LV, LP coincides with a fixed interval of KO. With respect

to the properties of Ko the following theorem holds.

Theorem 10: Under the assumption (12), the interval operator Ko de-
fined by (25) is inclusion isotone, normal, inclusion preserving, fixed
interval preserving and strong.

(See Theorem 5.1 - 5.5 in [15].)

Remarks: 1. For the statement: "KO is a strong operator™ the assumption
0(gq) <1 1is not necessary. In contrast, o(gq) <1 is necessary for N0 to
be a‘'strong operator.

(See example 5.4 in [15].)

2. The remark referring to the property: "strong” and to fixed inter-
vals of (22) with LI(X)==LK(X), LV(X), LP(X) yields an analogous result

for the interval operator

v v v
K(X) := x-a(X)Gi{x) + (r(X)E) (X-x) (27)

with a(x) := (mid L(X))—1 and r(X) :=la(X)|l radL(X).

Each fixed interval of N(X) is a fixed interval of K(X), too, and

vice versa.

In correspondence with the bound (24) with regard to the distance of

A
the solution set X* from a fixed interval X, the inequality

A -
0 £ radX-radx* s (2rad (L7') +glal) rad G(X) (28)

holds.

By comparing the bound (28) with (24) we obtain from (24) in the case

LI==LV, because of K(LI) = [a-qglal, a+qgqlal]l] (see example 3, (iv)

in [17]),

1

A -
rad X -radX* £ (2radl” ' +2qlal) rad G(;\{),

which is less favorable then (28).
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7. The optimal operator

Under special assumptions we can apply an operator eb or @ instead
of ND or N, respectively, Ko or K, which optimally encloses a
generalized zero set.

Assumption: Let a matrix lneimnxn exist such that
0 £ e-bL(X) for all Xe€ IB (29)
holds.

b can be splitas b =p* -b~, where b* := sup (b,0), b :=sup (-b,0).
Let

£(x) := x=-b'g(x) + b g(x),
£(x) := x-Db'g(x) + b gix).

Then the optimal operator is given by

o, (X) := [£(x), E(X)]. (30)

Remark: If b = constant then Go is indenpendent of L(X).

Theorem 11: If the assumption (29) holds, then the operator Gb defined

by (30) is inclusion isotone, normal, inclusion preserving and fixed
interval preserving. If, in addition,

ole ~bL{X)| < 1 for all Xe IB, (31)

then eb is a strong operator.
(The proof of this theorem will be published later).

We call the set
X*¥* := {xeD | £f(x) s x s £(x)}

a pseudo-zero set; note that

X*¥ © x**

holds.

Theorem 12: Let the assumptions (29) and (31) be fulfilled. If, addi-
tionally, X* # ¢, and a fixed interval R of ab exists, then the

iterated sequence (4) with the operator (30) converges, and we obtain
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A
lim X, = X = ox**,
k—boo
Theorem 13 (existence): Under the assumptions (29), (31) and

A
O‘O(X) € X there exists a fixed interval X = oX** of 90'

Theorem 14 (existence): Under the assumptions of Theorem 13, if X** #£¢
* A
and oX** ¢ intB ) there exists a fixed interval X =DX** of -

Theorem 15 (overestimation): Let X* # @ and a fixed interval of ¢,
—_— A - - A A

exist, s:=le-bL(X)I|, t=2(e-s) 1 and z :=radG(x) + rad L(X) radX.
Then

A -
rad X - rad ox* < inf{tb'z, tb z} (32)
holds.

Special cases: b =0 or b  =0: Then it follows from (32) that

A
X = ox*,

i.e., the zero set X* can be enclosed optimally by .

Remark: Let L (X) be inverse nonnegative for all X e IB. By choosing
b=1"" (X0)<=b+, b =0 we obtain the operator O, (X) =[x~ I—1§(§) .
%-1"'9(x)1. 1f bx) =T7"(X) is variable, we then get the interval
operator &(X) which was introduced in [7] (see (4.1) in [7])). In con-
trast to N0 and N, or K
interval of G‘O coincides with the fixed interval of ®, such that
under the given assumptions there exists at most one fixed interval

of &

0 and K, respectively the fixed

If the function strip G degenerates to a real function g then we ob-
tain the method of Li [18].

*) int B means the interior of B.
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