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Abstraot. Considered is an interval algorithm produoing bounds for the 
solution of the initial value problem for systems of ordinary differen
tial equations x(t)-f(t,c,x(t», x(to)-xo' involving inexact data 0, 

x ' taking values in given intervals C-[£, 0] ,reap. X • [~o' x ] •o o o
An estimate for the width of the computed inclusion of the solution 
set is given under the assumption that f is Lipachitzian • In addition, 
if f is quasi-isotone, the computed bounds converge to the interval 
hull of the solution set and the order of global oonvergenoe is D(h). 

1.Notations. As usually, we denote by I(R) the set of all oompaot 
intervals on the real line R of the form A- [~, a] ; Vn(I(R» means 
the set of all n-dimentional interval veotors on R of the form 

( [~l'al] , ---, [~n' an] ). The width of A-[~, aJ ' B-[l, 'ti] E I(R) 
is denoted by w(A) - a - ~ , the joint of A and B is denoted by 
AVB - [minI!!, £}, max {a, l>}] • 

2.Formulation of the problem. We consider the initial ·value problem 
for systems of nODE's: 

x.. f(t,c,x(t»(la) 
x(to)-xo 

involving inexact (interval) data for the parameter vector c and the 
initial condition vector x ' that iso 
(lb) c E C =- [.Q., 0] E Vm(I(R», 

€ Xo -[~o' X ] € Vn(I(R».xo o
We shall seek an enclosure [£!o' a] of the set {i } of all solutions of 
(1) on an interval T- [to,t] (assuming that all solutions i of (1)
 
does exist on T). that is ~ (t)~x(t)~ s(t) for every solution i of
 
(1) and every t E T.
 

We shall assume that f is an n-vector function defined on T X ex D,
 

D-([£l,dlJ , ••• , [.!!n,dnJ), such that f is continuou.s with respect to 0,
 

Lipschitzian with respect to t and x, and quasiisotone with respect
 
to x.
 



104 

The algorithm described below requires the effective computation of: 
a) the intervals f i (t,C,x)- {fi(t,c,x):o € C} ,i=l, ••• ,n, for every 
t €- T, x IE D; the end-points of these intervals will be further denoted 
by !1(t,x), resp. fi(t,x); 
b) the intervals !i (~,n):- l!i (t,x): tf~,XEn }, i-l, ••• ,n, and the 
int erval a Fi (T,1)) :. l f i ( t , x) : t E-~ , x f 1) }, i -1 , ••• , n, for every ~ C T, 15 C De 

3.Description of the algorithm. Let h>O be a sUfficiently small step, 
defining a mesh tk-to+kh fT, k-O,l, ••• ,i. The bounds ~(t)=(~l(t),••• , 
~n(t)), s(t)=(sl(t), ••• ,sn(t)) for the solution settx} are seeked in 
the form of polygones with vertices at the mesh points t k• 
We set ~(to).~o' e(to)=xo• Assuming that ~, S are already computed at 
some t k , that is ~(tk)' s(tk) are such that !.i(tk ) ~ii(tk)~ Bi(tk),
i-l,2, ••• ,n, we then compute ~, s in the interval Tk-[tk, byt k+l l 
means of the following iteration prooedure: 
i) for the upper bound s we have for r-O,1,2, ••• ,r 

- (0) r - JZi • ~i' di ' i = l, ••• ,n,
 

[ - (r) - (r)] - ( - (r) - (r) - (r))
Pi ' qi = Fi Tk,Zl ,Z2 , ••• ,Zn ' i = l, ••• ,n, 

Z1(r+l)oo Si(tk)\!(Si(tk)+Pi(r)h)\!(Si(tk)+qi (r)h) , i • 1, ••• ,n, 

si(t) • si(tk) + qi (r)(t-tk), t ETk, i .. 1, ••• ,n; 
1i) for the lower bound ~ we compute for r-O,l, ••• ,r 

(0) I Z. • d., d.] , i • l, ••• ,n,-J. -J. J. 
( r ) (r)] ( (r) (r) (r)).[ ],i ,.9..i = .£:i Tk'~l ,E.2 , ••• '~n ' J. • 1, ••• ,n, 

~i (r+ 1)• .§.i ( t k) V (.§.i ( t k )+.l?1(r) h) V (.§.i ( t k) +.9..1 (r)h ) , 1 .. 1,...,n , 

a . (t) == s , ( t k) + p. (r) ( t-tk), i = 1, ••• , n,
-J. -J. _J. 

t GTk, 

Theorem. For any nonnegative integer r-0,1,2, ••• 
Z. (r+l) C z. (r) Z. (r+l)C Z. (r) • 
-J. -J.' J. J. 

Proof. We have for r-O 
~i(l)- , i-l, ••• ,n..§.i(tk)\!(.§.i(tk)+.l?(O)h)\!(.§.i(tk)+.9..i(O)h) 

Since ~i(tk)E (~i' di ) , we can take h SUfficiently small so that 

Z (l)C [d d.] == z. (0). Assume that 7.. (r)C z (r-l) for some r_> 2.
-i -i' J. -J. JlLJ. -i 
Then, since .£:i is inclusion isotone, we have 

[Pier), qi(r)J - !i (Tk, !l(r)'··.'~n(r» 
- - C F (T Z (r-l) Z (r-l)) [p (r-l) q (r-l)]

-i k'-l '···'-n = _i '_i • 
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(r-l ) ( r)., ( r)., (r-l ) d th f
Thus, ~i ~ ~i ~ ~i =: ~i an ere ore 

(r-l) . ( ) (r)( )~i t k +~i h ~ ~i t k +~i h,
 

(r-l) () (r)

~i ( t k )+~i h ~ ~i t k +q1 h, 

that is Z. (r+l)C z (r). 
, -:1 -i 

The inclusion Zo (r+l) C z. (r) is proved analogously.
:1 J. 

We shall now prove that ~, s are bounds for the solution set. 

Theorem. .!!(t) ~ {xC t) }5 s( t) , t € Tk• 

Proof. For any nonnegative integer r (and, in particular r=r) we have 
, () (r) ( ) r L (r) o s . t -p 0 L. f 0 t ,xl' ••• ,x ,t c: Tk, x . C" ZJO ,J == 1, ••• ,n

-J. -J. - -J. n J -
Since Z (r+i)C Z (r) we have for every t E T

-.j -j' k 

s' (t)-s o(t )+p (r-) (t-t ) E Z (r+l) C Z 0 (r) j-l, ••• ,n.
-j -J k _j k -j -J' 

Therefore, ~~ (t) f £:i (t '.!l (t) , • • • '~n (t) ) , i.l, •••.,n. 

Analogously, it can be shown that 

s~ (t) ~ f i ( t, sli( t) , ••• ;Sn ( t) ) , r-i , ... ,n, 

Let i(t) be be an arbitrary solution of (1) corresponding to some 
o ~ C and Xo € Xo. We have 

~'(t) ~ !(t,~(t)) ~ f(t,o,~(t),
 

8' (t) ~ f(t,s(t)) ~ f(t,o,s(t)),
 

.!(to)-l£o f X o s xO·s(t).
 

From the relations 

~'(t) ~ f(t,c,~(t)), i'(t)-f(t,c,x(t)), 8'(t)~f(t,c,s(t)),
 

!t( to) ~ xo ' i ( to) == X o ' i ( to) :2:: xo '
 

assuming that f is quasiisotone in x, we obtain !!( t) s x( t) ~ i( t) ,
 
aocording to an well known theorem of M.MUller [2.).
 
Remark. The inolusions [p(r+l), q(r+l)]C[p(r), q(r)] , [p(r+l), q(r+l~
 

C [~(r), ~(r)1 show that the the oomputed bounds of the solution 

set are improved at each step of the iteration procedure. Each step 
produces a local (that is in the interval Tk) approximation of the 
solution set of order O(h2); thus r-2 is a suitable choioe for 
practioal applioations. If computer arithmetio with directed ro~nding8 
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is available, then the effect of finite convergence can be recommended 
as stopping criteria of the local iteration procedure [lJ. 

4. An estimate for the width of the obtained inclusion. For any TCT, 
Xi C [~i' di ] , i=l, ••• ,n, we have
 

w(!j(T,xl, ••• ,X ) ) = max !j(t,xl, ••• ,xn) - min !j(t,xl, ••• ,xn)
n 
t ET, tE"T, 

xi E Xi ' il:l1 , • • • , n xi E Xi' i= 1 , ••• , n 

( , , ') f ( " " ") <:.• !j t,xl,···,xn - _j t,xl,···,xn 

(assuming	 that f is Lipschitzian in t and x)
 

~ tit I t" I + i... L i I x~ - x~ I
-

~ 1.':]. 

L !, weT)	 + ?: Liw(Xi)1=1 
where !"Ll, ••• ,L are some constants. Analogously we haven 

'J1,.. 

w(Fj(~'Xl,···,Xn» ~ t w(~) + ~1 Liw(Xi) 
for any TCT, XiC [S1' d i ) , r-i , ... ,n. 

The above estimates are used in the proof of the following 

Theorem. The bounds .§!., a for the solution set t i: 1of problem (1) 
satisfy the inequality 

81 (t )-!.i (t) 5: AlwO+A2M+A3h , i-I, ••• , n , t E T, 

wherein 

M - max (fi ( t , x )- f 1 ( t , x ) ) , 
t~T,xfD, 
i-I, ••• ,n 

and the constants AI' A3 do not depend on we' M and h.A2, 
Proof. Let ii(tk)-~i(tk) ~ wk ' i-l, ••• ,n, k-O,l, ••• ,X. We have 

- ( ) ( ) - ( ) - (r) () (r)si t k+l -~1 t k+l -8 i t k +q1 h-~i t k -~i h 

• s1(tk)-~i(tk) + (qi(r)-~i(r»h
 

~wk+hw(Fi(Tk'Zl(r)' ••• 'Zn(r»\I!i(Tk'!l(r)'···'!n(r»)
 

~wk+h(W(Fi(Tk'Zl(r)'••• 'Zn(r»+w(!i(Tk'!l(r~···'!n(r»)
 

+h 11i (tk, s( t k» - 1i (tk'~( t k»I 
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~ wk+h(t( tk+l-tk) + .L.;~ Lj w('Z'j (r) )+t( tk+l-tk)+ Lj:Lj w(~j (r» 

I ) +h( If i (tk, s( tk»-fi (tk,!!.( t k) I + /1i (tk ,!!.( t k»-!i (tk ,!!.( t k» 

L.. wk+h ( 2th+ "?"~ L . (W('Z . (r ) ) +W( ZJ. (f ) ) ) ) 
- L.J:~ J J 

+hw(Fi (tk , [ s( tk)V .§.( t k )] ) )+hM 

~ Wk+2th2+h~ L.(W(Zj(r))+w(Z.(f)))+h 2: L.wk+Mh 
- j:i J -J j~ i J 

• (1+hL)Wk+2th2+h~ L.(W(Z.(r»+w(Zj(r»)+Mh, where L· ~~=l Li ,
j: i J J 

We have W(£j(r» ~ (!!.j(tk)+I~j(r-l)1 h)-(!!.j(tk)-I~j(r-l)}h) 

-(\q (r-l)1 + \p.(r-l)\ )h f 2Gh, wherein G- max /fi(t,c,x)},
_j _J 

t tT,xt.D, 
c E"C,i==l, .•• ,n 

Similarly, we obtain W(Zj(r» ~2Gh,
 

We thus have •• ,n.
Si(tk+l)-~1(tk+l)fwk+l.(1+hL)Wk+Mh+(2t+4GL)h2,i.l,

From the equalities 
Wl~(1+hL)Wo+Mh+(2t+4GL)h2, 
W2- (1+hL)wl +Mh+( 2t +4GL)h2 , 

Wka(1+hL)Wk_l+Mh+(2t+4GL)h2 

we obtain 
wk • (l+hL)kWO+hM L:~:6 (1+hL)j+h2(2t+4GL) ~~:6 (l+hL)j 

We have h s ('t-to)!k ~ (t.,.tO)/k, kal, ... ,ic, and, therefore 

(l+hL)k ~ (l+(t-to)L/k)k ~ e(t-to)L • Al ' 

Finally, we obtain for wk 

Wk ~AlwO+A2M+A3h, kal,2, ••• ,i.A3-A2(2t+4GL), 

From the relation Bi(tk)-~1(tk) ~ wk ~ iai, ••• ,n,Alw O+A2M+A3h, 
for k=1,2, ••• ,~ and the fact that si(t) and ~i(t) are polygones on T 
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we may conclude that si(t)-£!.(t) ~ i=l, ••• ,n,tET, whichAl wO+A2M+A3h, 
proves the theorem. Let us remark that in the above estimate Wo and M 

can be considered as measures for inexactness of the initial condition 
data, resp. of the right-hand side f of problem (1). 

5. Convergence. Convergence of the enclosure L~, s ) to the interval hull 
of the solution set hUll{i} • [inf{i}, sup{x}] can be demonstrated 
under the assumption that there exist c E C, such thatcl' 2 

! ( t , x ) • f ( t , c1 ' x ) , 1( t ,x) • f ( t , o2 ' x ) , t E T, xED. 
Denote by ~, x the solutions of the initialvalue problems(2), resp.(3) 

x = !(t,x), x(to ) • 3£0' 

x = l(t,x), x(to) • Xo 
Let i be an arbitrary solution of (1) corresponding to some 0 ec, 
x € X • We then have ~'= !(t,~) Sf(t,c,~), 'X'. l(t,i)~f(t,c,i),o o
~o~ xo~ x ' and, by the quasi-isotonicity of f, ~(t) ~ i(t)~ i'(t).o 
Since ~(t-); i(t) are solutions (belong to \it), we have 

hull { i} =- [ ~(t), x( t)] • 

Apply the algorithm to problems (2) and (3) and denote by ~h,uh,and 

Yh' vh the corresponding boun&for~, resp. i, produced by the algo
rithm. Since ~, i are solutions of particular exact problems, we have 
Uh-.!!h -+ 0, vh-Yh ....... 0 with O(h). The functions ~h and Vh are bounds 
for hull { i:} • The relations ~ - .!!h ~ uh - l!.h .... 0, vh - i 
~ vh - Yh ~ 0 show that the computed bounds ~h' vh tend to hUll{i} 
with O(h). 
A FORTRAN program realizing the above algorithm is available (as part 
of a program packageoolled RINA). 
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