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Abstract. Considered is an interval algorithm producing bounds for the
solution of the initial value problem for systems of ordinary differen-
tial equations x(t)=f(%,c,x(t)), x(to)-xo, involving inexact data o,
X,, taking values in given intervals C=[g, ¢] , resp. X = [Eo’ Eo] .
An estimate for the width of the computed inclusion of the solution

set is given under the assumption that f is Lipschitzian . In addition,
if £ is quasi~isotone, the computed bounds converge to the interval
hull of the solution set and the order of global convergence is O(h).

l.Notations. As usually, we denote by I(R) the set of all compact
intervals on the real line R of the form A= [5, E] ; Vn(I(R)) means
the set of all n-dimentional interval vectors on R of the form

( [2758;] » ooy [8n) By )+ The width of A=[a, &] , B=[b, ¥] € I(R)
is denoted by w(A) = a - a , the joint of A and B is denoted by
AV3B = [min {fa, b}, max {73, F}] .

2.Formulation of the problem. We consider the initial walue problem
for systems of n ODE’s:
(1a) X = f(t,e,x(%))

x(to)-xo
involving inexact (interval) data for the parameter vector ¢ and the
initial condition vector Xy that is
(1b) cC€C = [g, E]_e v, (I(R)),

X, € X, '[50’ xo]elvn(I(R))‘
We shall seek an enclosure [g, E] of the set {i }of all solutions of
(1) on an interval Ta [to,¥] (assuming that all solutions x of (1)
does exist on T), that is s (%)< x(t)< 5(t) for every solution X of
(1) and every t €T.
We shall assume that f is an n-vector function defined on TXCXD,
D:([gl,ai],...,[gn,ah]), such that f is continuous with respect to ¢,
Lipschitzian with respect to t and x, and quasiisotone with respect
to x.



104

The algorithm described below requires the effective computation of:
a) the intervals f,(t,C,x)= {fyt,c,x):c€C} ,i=1,...,n, for every
t€T, x €D; the end-points of these intervals will be further denoted
by £ (t,x), resp. f. (t,x),

b) the intervals P, ('1‘ B)i= {£;(¥,x):tel,xeD}, i=1,...,n, and the
intervals F (m, 5).-{1‘ (t,x): tGT,xeﬁ Y, i=1,...,n,for every fcT,bcn,

3.Description of the algorithm. Let h>0 be a sufficiently small step,
defining a mesh t, =% +kh €T, k=0,1,...,k. The bounds g(t)u(gl(t),...,
8,(%)), 8(t)=(5(%),...,5,(t)) for the solution set{x} are seeked in
the form of polygones with vertices at the mesh points tk‘

We set g(to)-go, E(to)aio. Assuming that s, 8 are already computed at
some t,, that is s(t,), E(tk) are such that gi(tk):éii(tk)é Ei(tk),
i=1,2,.4.,n, we then compute s, & in the interval Tk-[tk, Tp1 Y
means of the following iteration procedure:

i) for the upper bound s we have for r=0,1,2,...,T

(0) =ld;, § 1, i=1,..0,n,
(=), g, 7 = 7, (0,7, .2, 00,7 (), 1w 1,000,

i
31 yeeesZy
(r+l)=

"N

El(tk)v(_s-i(tk)+_p-1(r)h)v(gi(tk)+ai(r)h) ’ i-= l,oon,n,
Si(t) = 5, (t,) + Ei(r)(t-tk), tET, 1 = 1,.00,n5
ii) for the lower bound s we compute for r=0,l,...,T
(0) =
gl =[§_i, d1] ’ is= l,...,n,
[Ri(r)’ g-j_(r)] = Ei(Tkvgl(r):ﬁz(r);---s&n(r)), 1= 1l,e0e,yn,

A N CR I EH RS S IVICHC R I TS SR I TRy

8, (%) = 5,(%) + pi(?)(t-tk), €D, 1= 1,...,n0.

Theorem. For any nonnegatlve integer r=0,1, 2,...
+1) - z, (r) z, (r+l)c
._1 H
Proof. We have for r=0
(1)

2,07 = (8 )VI(s i(tk)+g( )h)\/(si(t )+gi( )h) , i=l,4..,0.

Since si(tk)e(gi, Ei), we can take h sufficiently small so that
(l)c [d i] = gi(o). Assume that .Zi(r)C gi(r"l) for some r> 2.
Then, since Ei is inclusion isotone, we have
[pi(r), Cli(r)] - B (1, Z_l(r)’.“,_z_n(r))
Z - c Ei(Tk’gl(r—l)"”’én(r—l)) . [p r—l) (r—l)]
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pi(r--l) Pl( )é 9y (r) < Ei(r—l)

8y (t)+p; TV < g, (1) 4m, (P,

Thus, and therefore

tnat is, 2, (F*He g, (7),

The inclusion 7i(r+1)<: fi(r) is proved analogously.

We shall now prove that s, 8 are bounds for the solution set.

Theorem. s(t)<{X(t)}<s(%), te€T,.

Proof. For any nonnegative integer r (and, in particular r=y) we have
gi(t)agi(r)f I_‘_i(t,xl,...,xn), téTk, X E'_Z_j(r), j=lyeeeyn

Since glj(r”')C gj(r), we have for every t €T,

8y (8)=s (5,04, (P (6-ty) € 2, (7D € 2, (P, yar, L m,
Therefore, gi(t) < £ (t sl(t),...,s (£)), d=mlyeeeyn.

Analogously, it can be shown that

E;(t) > T (6,50(8) 0008, (1)), i=l,.0.,n.
Let x(%t) be be an arbitrary solution of (1) corresponding %o some
c€C and xoéXo. We have

8’ (%) € £(t,8(%)) £ £(%,c,8(%),

8 (%) > T(4,8(%)) > £(%,c,8(%),

8(tg)=xy € x5 & Xy=8(t).

From the relations

(%) € £(t,c,8(%)), x (t)=£(%,0,%(t)), 8 (4)2£(t,c,3(%)),
0’ x(to)"xoa g(“70)?.. xo’
assuming that f is quasiisotone in x, we obtain s(%) < x(t) < 3(%),

according to an well known theorem of M.Miiller [2.].
Remark. The inclusions [p(r+l) _(r+l?]C[p(r) —(r)] ’ [p(r+l), q(r+1ﬂ

C [p(r), q(r)} show that the the computed bounds of the solution

set are improved at each step of the iteration procedure. Each step
produces a local (that is in the interval Tk) approximation of the
solution set of order O(h )3 thus T=2 is a suitable choice for
practical applications. If computer arithmetic with directed roundings
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is available, then the effect of finite convergence can be recommended
as stopping criteria of the local iteration procedure {11,

4, An estimate for the width of the obtained inclusion. For any fcT,
C [di’ a ] ] i=l’ooo’n’ we have

(F (f, XypeeesXy ))= max fj(t,xl,...,xn) - min ;.(t,xl,...,xn)

dJ
t ef, t €18,
X éxi,inl,...,n xie Xi,i=1,...,n

i £
n)
(assuming that £ is Lipschitzian in t and x)

< L[t - 4" |+ZL [x; - x;

<1 w(l) + ZZ LiW(Xi)
where L Ll,...,L are some constants. Analogously we have
w(Fj(T,Xl,...,Xn)) < T w(l) + Z: L. W(X )
for any TCT, Xic [gi’ -d-i] ] i-l’c.o,no

= ij(t;xi,...,xé) - ij(t:xi,...,x

1 l

The above estimates are used in the proof of the following

Theorem. The bounds s, 8 for the solution set {i} of problem (1)
satisfy the 1lnequality

8;(%)-8;(%) & Ay WA MeAzh, i=1,...,0, tET,
wherein

-W(X )= max | Xni=%xns |, M = max (F,(t,x)-£; (t,x))
ial,...,n 01 =01 teT,x€p, * R
i=l,.eeyn

and the constants Al, A2, A5 do not depend on Woo M and h.
Proof. Let Ei(tk)—gi(tk) < W, i=1,.00,0, k=0,1,...,E. We have

Ei(tk+1)'§i(tk+1)’gi(tk)+ai(¥)h_§i(tk)'fi(r)h

= si(tk)-gi(tk) + (Ei(r)-Pi(r))h

< wk+hw(F1(mk,71(?),...,Eh(?))\/gi(mk,gl(?),...,gn(¥)))
gwk+h(w(Fi(Tk,7l(¥),...,Zn(¥))+w(gi(mk,§1(?2...,gn(¥)))

+h l ?i(tk’g(tk)) - ii(tk’—s-(tk))l
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£ wrn (Lt ~ty)+ 2T ij(zj(¥))+t(tk+l_tk)+ Z&ij(g‘_](?))
n( | T (6,5 (5,0)-F; (08080 | + | T (6,8(8,))-£; (t,8(5)) | )
éwk+h(2ﬁh+zjtil.j(w(7j(¥))+w(§j(¥))))
+bw(F, (1, [ S(5)V 8(5,)]))+nM

< wk+25h2+hﬁf L.(w(f.(?))+w(g.(?)))+h 25 L jwy +Mh

k

- (l+hL)wk+2Ih +hjZ1L (w(Z (¥))+w(z (£)))4)n, where La i Ly

we nave w(z; () £ (g,(t)+[ay T m)~(g; (8,02, F | m)

s(lq (z- l)l + Ip (- 1)‘ )Yh £ 2Gh, wherein G= max lf (t,c x)]
téT,xéb,
c €C,i=l,...,n
Similarly, we obtain w(23(¥)) £ 26Gh.

We thus have 5, (ty,;)=8;(t,,1) < W, 1=(1+hL)w, +Mh+(20+46L)0%, 11, .. 0.
From the equalities
=(1+hL)wO+Mh+(2ﬁ+4GL)h
-(1+hL)wl+Mh+(2L+4GL)h ,
wk=(l+hL)wk_l+Mh+(25+4GL)h2
we obtain
we = (LenD)Swoenat SIS (14nL)dn®(2Leacl) 205 (140I)?

We have h £ (?—to)/ﬁ S’(?—to)/k, k=1l,...,k, and, therefore

(1+hI)%¥ é-(l+(?—to)L/k)k < a(¥"to)L =4,

n 353 (uenn)da((1enn)5o1) /8 £ (Pt Ty /1 - ay

Finally, we obtain for W

W, < AW O+A2M+A5 3-A2(25+4GL), k=1,2,...,Kk.

From the relation Ei(tk)—gi(tk) < Wy é;Alwo+A2M+A3h, i=i,es.,n,
for k=1,2,...,k and the fact that Ei(t) and gi(t) are polygones on T
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we may conclude that Ei(t)—g(t) < Ale+A2M+A5h, i=l,+se,n,t €T, which
proves the theorem. Let us remark that in the above estimate LA and M
can be considered as measures for inexactness of the initial condition
data, resp. of the right-hand side f of problem (1).

5.Convergence. Convergence of the enclosure [s,s ] to the interval hull

of the solution set hull{il = [inf{x}, sup{x}] can be demonstrated

under the assumption that there exist Cy1y Cp €C, such that
i(tyx)'f(ttclyx)y -f(tv'x)'f(tyczyx)y te€T, x€D.

Denote by x, x the solutions of the initialvalue problems(2), resp.(3)

(2) x = £(t,%),  x(%,) = x,,

(3) x = T(%,x), x(to) - Eo
Let X Dbe an arbitrary solution of (1) corresponding to some c €C,
x € X . We then have x = £(%,x) £f(%,¢,x), X = T(+,%) 2 £(%,¢,X),
X, <%, < Eo’ and, by the quasi-isotonicity of £, x(t)< x(t)% X(%).
Since x(t), x(t) are solutions (belong to {x}! ), we have

null § x} =[x(t), X(+)].
Apply the algorithm to problems (2) and (3) and denote by gh,ﬁh,and
Yyr Vp the corresponding bounds for x, resp. x, produced by the algo-
rithm. Since x, x are solutions of particular exact problems, we have
Eh—gh — 0, Vh-zh — O with 0(h). The functions u, and Vh are bounds
for hull{x} . The relations x - w, &0 -w = 0, ¥V, - X
£ ¥, - ¥, = O show that the computed bounds wu,, Vv, tend to hull{x}
with O(h).
A FORTRAN program realizing the above algorithm is available (as part
of a program package called RINA).
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