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Abstract. This is a short survey of theory and techniques for the so­

lution of linear interval equations with square or rectangular coeffi­

cient matrix. 

Notation. lImn denotes the set of interval vectors with n components, 

and lIlRmxn the set of interval mxn-matricesj an interval matrix con­

taining only one element is called thin. In this survey we shall use 

the terms vector and matrix as synonyms for interval vector and inter­

val matrix. The midpoint, radius, and absolute value of a matrix 
mxn .....

A E lIlR are understood componentwise and denoted by A = mid A, 

p(A) = radA, and IAI, respectively. Similar definitions apply for 

lImmxn vectors. In the following, A E is a fixed interval matrix, and 

b E lIlRn a fixed interval vector. 

A linear interval equation with coefficient matrix A and righthand si­

de b is defined as the family of linear equations 

AX = b (A E A, b E b) j ( 1 ) 

the solution set of (1) is the set 

L (A,b) := {x E lRn I AX = b for some A E A, b E b l , 

By a result of Beeck [6], the solution set can also be described as 

L(A,b) {x E lRn I Ax n b 1: ¢}. (2) 
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The criterion x E L(A,b) iff Ax n b ~ ¢ is equivalent to a famous per­

turbation theorem of Oettli and Prager [26]. 

The splution set L(A,b) is bounded if A is regular, i.e. if all matri­

ces A E A have rank n. A sufficient condition for the regularity of a 

square matrix A is (Ris [29]): 

¥-1 1v

A exists and IA- Ip(A) has spectral radius < 1; (3) 

let us call such matrices strongly regular. Since the solution set of 

a linear interval equation may be very complicated, we are interested 

in finding interval enclosures for L(A,b). The interval vector with 

smallest radius containing L(A,b) is the hull of the solution set, 

AHb:= OL (A,b) = l Lnf L (A,b), sup L (A,b) ] . (4) 

1. The square case 

In this section, we treat the case of a square coefficient matrix (i.e. 

m = n). 

1.1 Computing the hull. The computation of AHb is, in general, a very 

difficult problem; the known algorithms seem to have a worst case 

complexity exponential in n. However, for n = 1, the hull is computable 

by simple division, AHb = blA, and for n = 2, a simple method is des­

cribed in Apostolatos and Kulisch [4]. For general n, several algori~ 

have been given by Rohn [30], [31], [32]; the algorithm of the first 

paper is iterative and assumes that A is strongly regular, the other 

two papers treat the case of general regular A. The algorithms are 

very time-consuming for large nj moreover, in their present form, they 

do not account for rounding errors in the computation. 

For dimensions n larger than about 5, practical methods are available 

only in special cases. If A is thin then AHb = A- 1b (Beeck [7]), and 

if A is an M-matrix then Gauss-Seidel iteration yields the hull (Barth 

and Nuding [5]). In case that the righthand side b satisfies one of 

the conditions b ~ 0, b ~ 0, or b 3 0, the hull can be computed for 
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H --1 -1
inverse positive A as A b = [A '~ ]b (Beeck [7]); and for the more 

special case of M-matrices, Gauss elimination gives the hull for these 

righthand sides (Barth and Nuding [5], Beeck [7]). Further methods for 

the computation of the. hull for M-matrices and inverse positive ma­

trices are described in Beeck [8] and Neumaier [24]. 

For other matrices we are, at present, restricted to the use of meth~ 

which do not compute an opt-ima.l enclosure. 

1.2 Gauss elimination. We denote by AGb the result of Gauss elimuation 

applied without pivoting to the linear interval equation (1). Depending 

on the type of the coefficient matrix, the results may be very good or 

very bad. 

Gauss elimination is almost optimal if A is an M-matrix: We have 

AGb ~ [X-1 , ~-1]b (Neumaier [24]), and in special cases we get the hull 

(Barth and Nuding [5],Beeck [7] for b ~ 0, b ~ 0, or b 3 0, and 

Schwandt [37] for thin A). But we warn that standard column pivoting 

may destroy the M-matrix property, leading to a loss of upto 3 decimals 

in accuracy (Schatzle [34]) 

Gauss elimination without pivoting is also reliable for diagonally 

dominant matrices (experiments of Kopp [17]) and Hessenberg matrices 

with a special sign structure (Reichmann [27]); it also works well 

with pivoting for n = 2 (Alefeld [3] and Reichmann E28] show that AGb 

exists for n = 2 iff A is regular). 

Gauss elimination can also be performed without pivoting if A is an 

H-matrix (Alefeld [2]), and with pivoting if A is regular and p(A) is 

sufficiently small (Neumaier [24]). However rounding errors and de­

pendency may lead in these cases to catastrophic overestimation 

(exponential in n) or even to breakdown due to division by an interval 

containing zero (Wongwises [40], Schatzle [34]). 

Gauss elimination can be coupled with iteration by splitting A as 

A = AO -,E and considering the iteration 

R,+1 G R,x ::;;: AO(EX +b); (5) 

cf. Alefeld [3] for A A, Mayer [21] for more general splittings. AO 
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fixpoint x~ of (5) is an enclosure for AHb. If this iteration converges 

for all xO,b then, by Neumaier [24], Gauss elimination cannot break 

down, and, if b = 0, rad AGb ~ rad x~ . However, if A is an M-matrix 

and A = A then the iteration converges for all xO,b, and the limit isO
 
the hull, x~ = AHb.
 

1.3 Gauss-Seidel iteration. If an initial enclosure x O for AHb is 

known, a nested sequence of enclosures x t for AHb can be defined by 

Gauss-Seidel iteration with componentwise intersection, 

t+1 t x := r(A,b,x ) (t = 0,1,2, ... ), (6) 

where the vector y := r(A,b,x) is defined by 

1, ..• ,n); 

cf. Ris [29], Neumaier [23]. Clearly the method applies only when

° ~ (i = 1, ••. ,n), although it can be modified for the general caseAi i
 
(cf. Hansen and Sengupta [14]).
 

If A is an M-matrix then the iteration (6) converges to the hull AHb 

(Barth and Nuding [5]); if A is an H-matrix it can at least be shown 

that the limit x~ is contained in a vector AFb independent of the 

initial enclosure xO (Neumaier [23]), thus guaranteeing that at least 

very bad enclosures will be improved. Gay [12] proved that Gauss-Seidel 

iteration is faster and has a smaller limit radius than the whole-step 

iteration 

t+1 x 

more generally, Neumaier [23] proved the same optimality result within 

the class of iteratiansdefined by triangular splittings. In particular, 

overrelaxation cannot improve the iteration (cf. Mayer [22], Cornelius 

[9]). Recently, based on ideas of Alefeld [1], a symmetric Gauss-Seidel 

iteration was discussed by Schwandt [35] and Shearer and Wolfe [38] in 

a nonlinear setting; this iteration is still faster than (6). 

An easy way to get an initial enclosure for arbitrary H-matrices A uses 

Ostrowski's comparison matrix <A> (see Neumaier [23]) and the implication 
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H 
u > 0, <A>u ~ v > ° • A b =[-u, u l IIb II v ' (7) 

where IIb II v = max { lb. I /v . I i 1 , ... ,n}. If e := II I - A II < 1 then 
1 1 T -1 co 

one can take v = e : = (1, ..• , 1) , u = (1 - e) 'e; in general, since 

u* := <A>-1 e satisfies u* > ° and <A>u* = e > 0, any sufficiently good 

approximation u of u* leads with v = <A>u to a valid bound. 

1.4 Preconditioning. To improve the performance of Gauss elimination, 

Hansen and Smith [15] suggest to precondition (1) by multiplying with 

a matrix C (they use an approximate inverse of A), leading to the pre­

conditioned system 

AX = b (A E CA, b E Cb) . (8) 

.... -1
The preconditioning with C = A leads to a regular system (8) iff A 

is strongly regular (Ris [29]); in this case, CA is an H-matrix, and 

Gauss elimination can be performed with the matrix CA. More generally, 

if CA is an H-matrix for some matrix C then A must be strongly regular, 

and if 

e := II I - CA II < 1 (9) 

in some scaled maximum norm then e takes its minimal value for the 

choice C = A- 1 (Neumaier [23]). Unless e > 1 or e is very close to 1, 

the overestimation inherent in the transformation from (1) to (8) is 

small since by Neumaier [25], 

(10) 

If A is inverse positive and C = A- 1 then we even have (CA)H(Cb) = AHb 

(Neumaier [24]). 

For e < 1, CA is almost the identity, and it is faster to compute an 

enclosure for the solution set of (8) by iteration. The oldest method 

(cf. Krawczyk [18]) uses 

R.+1 x ( 11 ) 

where the initial enclosure xO is found as 
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xO := [-u,u] 1, ... ,n), 

assuming that (9) holds in the maximum norm. Every xi is an enclosure 

of ARb, and by Neumaier [25], who improved a similar result of Gay 

[12], the radius of the limit x~ is still bounded by the righthand 

side of (10). Ris [29] observed that it is better to use Gauss-Seidel 

iteration in place of (11); we mentioned already that Gauss-Seidel 

iteration is indeed faster, and leads to a limit with smaller radius • 
.... -1

For the special choice C = A , Proposition 2.5 of Krawczyk and 

Neumaier [19] implies that (CA)G(Cb) has a still smaller radius; but 

the improvement is slight if a« 1. 

To get least significant bit accuracy for thin A and b, Rump [33] 

proceeds slightly differently. He computes a sufficiently accurate 
"'-I -1

approximation. x of x* = A b, constructs the smallest machine-repre­

sentable interval x containing X, and uses the implication 

Cb + (I -CA)x c int x .. A regular, AHb C x, (12 ) 

a consequence of Brouwer's fixpoint theorem, to check whether x really 

contains the solution x*. 

1.5 Options for sparse M-matrices. For sparse matrices, the inverse 

is generally full (Duff et ale [11]), and preconditioning is too time 

and/or space consuming. Also, Gaus-Seidel iteration is much too slow 

for most practical sparse problems. At present, no fast and reliable 

method is known for sparse linear interval equations whose coefficient 

matrix is neither an M-matrix nor diagonally dominant; the apparently 

quite general methods proposed by Rump [33] and Hahn et. ale [13] 

suffer from the overestimation problem of Gauss elimination (except 

for thin problems where the overestimation can be counteracted by using 

sufficiently accurate multiprecision approximations of the solution) • 

We survey here the M-matrix case; all methods ('but not the optimality 

results) generalize to H-matrices, and in particular to the diagonally 

dominant case. The methods known to me are: 

a) Gauss elimination for matrices with small bandwidth or profile. This 

is almost optimal for sparse M-matrices', and the standard profile 

optimization algorithms can be used. 
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b)	 Gauss elimination coupled with the iteration (5); see Mayer [21], 

Schwandt [37]. If A is sparse and thin and A = A -E is an M­O O
 
matrix with A ~ then the iteration converges to the hull
AO'
 
(Neumaier [24]).
 

c)	 Iteration with incomplete factorizations; see Mayer [20]. This 

iteration is closely related to method b) but makes more flexible 

use of the zero pattern. 

d)	 An interval Buneman algorithm; see Schwandt [36]. This algorithm 

applies to a restricted class of interval equations related to 

certain elliptic partial differential equations. 

e)	 Aposteriori enclosure of a good approximate solution by Brouwer's 

fixpoint theorem (Rump [33]) or perturbation theorems (Hahn et al. 

[13]). The methods proposed are efficient only for special classes 

of coefficient matrices like M-matrices or diagonally dominant 

matrices; they behave badly e.g. on thin banded triangular H­

matrices A with Ai i = 3, = 4, = 5 = 0 forAi i-1 Ai i-2 and Ai k 
k ~ i,i-1,i-2, especially when the righthand side is not thin. 

f) Modified Gauss-Seidel iteration. The iteration starts with the in~ 

Otial enclosure x : = [-u, u l IIb II from (7) and uses an accompanyingv 
t	 to A-1b.approximate iteration x (t = 1,2, ... ) converging A 

sequence of enclosures x t for AHb is found as 

x t + 1/ 2 := 

t+1 x 

This iteration converges for M-matrices A to the hull AHb inde­

pendently of the choice of the "forcing sequence" it; however, the 

convergence speed is at least that of the fo.rcing sequence. Thus, 

any fast-converging iteration scheme for the approximate solution 

of sparse linear equations can be used to speed up the process. It 

is also possible to use only one or two steps of (13) aposteriori, 
,..,,1 .... -1

i.e. with a good approximation x to A b. 
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2. The rectangular case 

In this section we treat the case 'of a rectangular coefficient matrix. 

We restrict ourselves to the overdetermined case (i.e. m > n)j for the 

underdetermined case cf. Rump [33]. The problem was posed first by 

Jahn [16] who suggested Gauss elimination to solve the equationjhow­

eve~ by the same reasons as for the square case this is reliable only 

for n = 2. 

2.1 The least squares hull. All other authors concerned with innroval 

methods for overdetermined systems replace the problem of finding AHb 

by that of finding the least squares hull 

nALb := O(x E m I A:'AX = A:E for some A E A, b E b l , (14) 

and reduce this problem to the square case by observing that 

( 15) 

(Spellucci and Krier [39], Rump [33]) or 

( 16) 

(Deif [10]). Unless one has specific reasons to work with ALb in place 

of AHb, the approach via (1St (16) is not recommended since ALb ~ 

(I A) T 
very sensitively on scaling and since AT 0 and A A are generally 

much nore ill-conditioned than A (squared condition number) . 

In the thin case, where usually AHb = ¢ and the original problem (1) 

makes no sense, ALb can often be computed in spite of ill-conditioning 

by using a sufficiently accurate approximate least squares solution x 
and a residual form of (15)j conditioning problems are reduced by the 

use of a highly precise arithmetic. See Rump [33]. 

.... 
2.2 Preconditioning. With an approximation C of a pseudo inverse of A 

one gets 

AHb c (CA) H (Cb) • ( 17) 
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.... 
If	 the rank of A is nand peA) is sufficiently small then CA is a 

square nxn-matrix, almost the identity. Therefore, the methods dis­

cussed in Section 1.4 can be applied to enclose the righthand side 
~	 -1 T -1

of	 (17). C is computed in a stable way as C = R Q D from an ortho­
.... 

gonal decomposition of the diagonally scaled matrix DA = QR; here 

lRmxn lRn xn D E is the diagonal scaling matrix, R E is upper trian­

gular, and Q E ~mxn consists of the first n columns of a square 

orthogonal mxm-matrix (Q,Q'). 

Since the righthand side of (17) is defined even if the system (1) is 

inconsistant, a consistency check is useful. By (2), a sufficient 

condtion for consistency is Ax n b ~ ¢ for an approximate solution X; 
on	 the other hand, 

c x,	 ( 18) 

lRm.holds for all a E If inconsistency of (18) is suspected one 

should check (18) for several choices of a; suitable vectors are e.g. 

of D- 1Q'the columns . 
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