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Abstract:	 The main purpose of this paper is 

not to give Theorems, Algorithms, .•. , 

but to give insight in the cause and the consequences of 

the wrapping effect and to derive herefrom indica­

tions of how to eliminate it. 

Notations:	 Small letters denote real values, vectors and functions of 

these. Capital letters denote both real matrices and 

matrix functions and sets of values, vectors and 

corresponding functions; in particular intervals of such 

quantities. 

1. The problem 

Considered in what follows is the initial value problem for systems of 

ordinary differential equations 

( 1 )	 u' (t) = f (t , u ( t) ) for tEI: = [0 , b l , 

(2)	 u(O) a, 

nwhere 0 < b € lR, a € m , u: I ... lRn, f: Ixmn ... lRn. It is always 

assumed that at last one solution u exists in I, where u is from an 

appropriate function space. For simplicity only "exact" solutions are 

treated; i.e. no approximations, no round off errors, no truncation 

errors are considered. In order to express the dependance of the solu­
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tion u with respect to the initial vector a the notation
 

u(tia) for the solutions of (1), (2)
 

is used.
 

Wanted are set functions U(t) C lRn such that
 

(3) u(t: a) E U(t) for t E I
 

for all solutions u of (1), (2). Herein the set U may bean n-dimensio­


nal interval, a baIlor another suitable set which is easy to deter­


mine.
 

Problem I:
 

Let A C lRn be a bounded set and replace the initial value condition
 

(2) by the initial inclusion condition 

(2' ) u(O) a E A. 

Wanted are again set functions U(t) such that the inclusion (3) holds 

for all a E A. 

Definition: The inclusion (3) is called Qptimal under the ~nitial in­

clusion (2') if 

V t E I V Y E U(t) 3 a E A: y u I t r a) i 

i.e. if the solutions u(t;a) "fill out completely" the set function 

U(t) for a E A. 

In the Sections 3, 5 and 6 of this paper also the extended 

Problem II: 

is considered: Let F(t,y) be a bounded set in lRn for t E I and y E lRn 

and replace the differential equation (1) by the differential inclusion 

(1 ' ) u' (t) E F (t, u (t) ) for tEl. 
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To be solved is again the inclusion (3) for all solutions of (1 '), 

(2') and special attention is given again to the above defined optima­

lity. 

In the paper [6] the author gave a survey on interval methods for the 

numerical solution of the problem (1), (2). It contains a list of 123 

publications from this field. In it also the wrapping effect is re­

garded. In the meantime a new publication on this effect appeared by 

Gambill and Skeel [2]. 

2. Moore's Example 

In Figure the well known example of R.E. Moore to the Problem I is 

sketched. It should be self-explaining and shows that by using inter­

vals U(t) (at the points t = n/6, t = n/3, t = n/2) no optimality can 

be obtained. This is due to the fact that the set {u(tia) I a E A} 

(a rotating square) can not optimally be wrapped in intervals. 

Figure 1. Solution of the 

differential system 

u 
(4) { ui 2, 

u' -u2 1 

with the initial data 

u(O) = A 

r---~ t=Tt/s 
I I
 

I
 
I I ~_.J"0--­

i·····,..·.:,· ..·..··..i t= Tt/3 
i~'i 

r:~J 

t 
r'- 07\ '-'-o-<?I t =Tt/2• I·... 

J--------------I~'~j:~;1 u,
i···.. ' ' I I . ....~' / i
b-._._::::'::"._..~ 

One can show rather easily that after only one revolution (t = 2n) a 

blow up of the optimal interval inclusion occurs by a factor of 

2n e = 535.4 ... (1). This is due to the use of intervals for U(t). Such 

a result is most certainly completely intolerable. It occurs, although 

the system (4) is extremely simple, namely 
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i) dimension n = 2, 

ii) linear system, 

iii) homogenous system, 

iv) constant coefficients, 

i.e. autonomous system. 

Hence, in a more general case (n > 2, nonlinear) one expects the worst. 

Is this true? What is the reason? What can be done? In the following 

Sections answers to these questions will be given. 

3. Systems without wrapping effect 

Fortunately, there are large classes of differential equations, where 

no wrapping effect occurs. A very simple such class is given in what 

follows. 

Definition: Let f: Ixmn 
~mn and denote f = (f and1,f2,···,fn) 

f i for i = 1 (1)n. Then f is called quasiiso­= f i(t'Y1'Y2'···'Yn) 
tone if all components f are isotone (monotonically ascending)i 
with respect to all variables Y1'Y2'···'Yi-1'Yi+1'···'Yn; but not 

necessarily to Yi for i = 1 (1)n. 

Remark: For n = 1 any function f is quasiisotone. 

The following Theorem solves Problem I for the class of (in general 

nonlinear) differential equations (1), where the right hand side f is 

quasiisotone: 

Theorem: Let the function f in the equation (1) be quasiisotone and 

continuous and consider as sets A and U only intervals A = [~,a] 

and U(t) = [~(t) ,u(t)]. Then no wrapping effect occurs and the 

inclusion (3) holds with the following weak optimality 

for all solutions a of (1) and (2'). Herein the functions ~ and u 

are the (existing) minimal and maximal solutions of (1), (2). 
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Remark: This Theorem can not be used for Moore's Example of 

Section 2 since the system (4) is not quasiisotone. 

There is a more general Theorem which solves both Problem I and Pro­

blem II. It will not	 be printed herej see [5]. 

4. Linear Systems. Problem I 

In this Section it will be shown that the wrapping effect can be 

completely explained, understood and avoided if the system (1) is li ­

near. Hence (1) is written in the form 

(5) u' Gu + h , 

n xn	 nwhere G: I -+ m and h: I -+ m . For simplicity it is assumed that 

G, h E C(I). Then the problem (5), (2) has exactly one solution 

u E C1 (I) which can be written as 

(6)	 u(tja) = X(t)a+X(t) It X 
-1 

(s)h(s)ds. 
o 

Herein the real matrix function 

t 
(7)	 X(t) := exp I G(s) ds 

o 

is given with the given function G(t). It is also the uniquely deter­

mined integral basis to the homogenous system (5) under the initial 

condition 

X(O) E (= unit matrix). 

1It is well known that for all tEl the inverse matrix x- (t) always 

exists. 

The dependence of the solution u(tja) in formula (6) with respect to 

the initial values a is obviously linear i.e. 

for all o , r E lRj 
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Hence, the transformation (6) which maps the initial values a E lRn 

for any fixed t E I into u(tia) E lRn is an affine transformation. 

From this fact follows immediately the 

Theorem: If the initial set A in (2') is a 

straight line,
 

simplex,
 

parallelepiped,
 

ellipsoid
 

convex set, etc.,
 

then the set {u(tia) I a E A} belongs to the same corresponding 

class. 

This Theorem explains immediately the negative result of Moore's 

Example in Section 2: An n-dimensional interval is an n-dimensional 

rectangle with axis-parallel sides. This will be transformed for t > 0 

by formula (6) into ann-dimensional parallelepiped. This can, in gene­

ral, be "wrapped" (included) by an interva1. only with a certain loss. 

By computing u(tia) at many steps 0 < t < t < and wrapping it1 2 
in an interval at each step this loss occurs at any time t 1,t2,··· and 

may, therefore, multiply and grow exponentially for large values of t. 

With this insight in the wrapping effect it is obvious to use the 

following 

countermeasure: For linear systems (5) do not use intervals for U(t) 

in the inclusion (3). Instead compute the transformation matrix 

X(t) as defined in (7). Then the set 

(8)	 U(t) := X(t)A +X(t) ft X-
1 

(s)h(s)ds
 
o
 

is the optimal inclusion of all solutions a to the initial systems 

(5), (2'). 

This neat formula (8), unfortunately, does not say how the matrix­

function X(t) should be computed. There are several possibilities. One 

of them is to evaluate all the eigenpairs of the matrix G(t) for each 

fixed value t E I. From them one could then construct locally an inte­

gral basis X(t) to the homogenous system (5). Another such possibility 

is to integrate the matrix function G(t) and then to compute the 
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exponential function in the formula (7) by, say, an infinite series. 

Both methods are, unfortunately, very laborious and time consuming. 

There is, fortunately, a much easier way by exploiting the formula 

(8) directly: If the set A is eigher a simplex or a parallelepiped it 

is completely determined by n+1 corners. Hence, it is sufficient to 

solve (5), (2) for those corners a of A for v = O(1)n. Then the so­v 
lutions u(t;a ) of those n+1 real problems (5)", (2) give the corners v
of the desired optimal inclusion; see Figure 2 for n = 2 and an ini­

tial interval A. 

A 

taO 

offine 
,- --. 
transformation 

t> 0 

Figure 2. The transformation (8) for n 2. 

This idea has been discovered independently by R. Lohner [3] and by 

the author [4]. A numerical evaluation has been performed by J. 

Conradt [1]. It has been applied to the system (4) of Moore's Example 

of Section 2. His results include numerical integration, round off 

errors, etc. At t = 2125 (approximately 338 revolutions) his numerical 

results show a loss of approximately 4 decimal digits. The naive use 

of an interval inclusion as in Section 2 would, in contrast, have gi­

ven a loss of 923 (!) decimal digits. What a difference due to the 

use of intelligence and formula (8) instead of a mindless naive inter­

val computation! 
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5. Linear Systems. Problem II 

In the las·t Section the following fact has been heavily exploi ted: The 

solution u(tia) is a linear function with respect to the initial value 

a. This can be seen from formula (6) .. The same formula indicates in 

addition, that the solution u of (5), (2) is also linearly dependent 

on the function h(t) in (5). Hence, at first sight, it looks as if the 

idea of Section 4 could also be applied to the differential inclusion 

( 5 ' ) u' E Gu + H • 

The difference between (5) and (5') lies in the fact that the real 

function h(t) has been "blown up" to a set function H(t). Assume, for 

simplicity, that H(t) is a bounded set in JRn for any t E I, consisting 

of continuous function h E H. 

This hope and desire is, however, not true, unfortunately. Hence the 

ideas and methods of the preceding Section 4 can not be carried over 

to the solution of Problem II. What a pity! 

The reason for this unfortunate fact is that the mapping 
t 
f X(t)X- 1 (s)h(s)ds in formula (6) is in general not an affine mapping. 
o 
Hence the utilisation of affinity of Section 4 can not be used with 

respect to the function h in (6). 

There is, however, one alternative. Define the continuous function 
n -1k: I -.. m by k(t) := X (t)h(t), i.e. let 

h(t) X(t)k(t). 

Then the system (5) is replaced by 

(9) u' Gu +Xk 

and the initial value problem (9), (2) has the (obvious) solution 

(see (6» 

t
 
u(t) X(t) [a + f k (s) ds] .
 

o
 

Kindly note that the matrix function X(t) is defined by formula (7). Hence 
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X(t) is "known" when G(t) is "given". Since X is always nonsingular 

the known function h defines an also known function k. Hence the two 

forms (5) and (9) of a linear system are both equivalent theoretically 

and from a computational point of view. 

There are even real life problems which lead to linear equations of 

the type (9) instead of (5) i where now the functions G,X and k are 

primarily given. In such a case naturally no transformation from (5) 

to (9) is needed. 

By expanding the function k(t) into a bounded function set K(t) one 

gets the inclusion 

( 9 ' ) u' E Gu + XK 

with the optimal inclusion set function 

t 
(10)	 U(t):= X(t) [A + f K(s)ds] 

o 

to	 all initial value inclusion problems (9'), (2').
 

Result:
 

It should be repeated that the set function U(t) as defined by formula
 

(10) gives an optimal inclusion for both problems I and II. 

Remarks: 

1)	 To simplify the computational work the two sets A and K in for­

mula (10) should have the same structure; e.g. they should both 

be intervals or both be parallelepipeds with parallel sides 

or 

2) The optimal inclusion of solutions of a differential inclusion 

(9') is possible, because only the function k in equation (9) 

is expanded into a set while the function G remains a real 

(matrix)' function. To my knowledge !l9. optimal inclusion is 

known to the solutions of an inclusion of the type (9'), where 

both functions K and G are set functions. 
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6. The nonlinear case 

In the two previous Sections 4 and 5 the wrapping effect could be 

controled completely for linear systems. Hence it suggests itself to 

linearize nonlinear systems and then to treat them by the methods of 

the Sections 4 and 5. 

There are infinitely many possibilities to linearize the system (1) 

locally by putting 

f(t,y) = G(t)y +X(t)k(t,y) 

with a suitable matrix function G(t) and X(t) correspondingly defined 

by (7). A possible choice of G is 

af ~ 
G(t) := ay (t,u(t» 

with a suitable approximation u to a solution u of (1), (2). If f in 

(1) is continuous then G and k may also be chosen as continuous 

functions. In this case the initial value problem 

u' (t) = G(t)u(t) +X(t)k(t,u(t» 

with the initial condition (2) is obviously equivalent to the Volterra 

integral equation 

t 
u ( t) = X '(t) [a + J k ( s , u ( s) ) d s ] • 

o 

All solutions u of this equation can be bounded as in (3) by suitable 

set functions U and these bounds U can be found and evaluated by 

standard methods of interval mathematics. These methods also apply if 

the initial value a and the function k(t,y) are replaced by sets A and 

K(t,y) . 

It is not to be expected that in the nonlinear case the wrapping effect 

can be eliminated completely with thip technique. One can expect, 

however, that the remaining wrapping effect will be "small" if the 

right hand side f of (1) is only "mildly" nonlinear. If, opposite to 

this, the function f(t,y) is "strongly" nonlinear with respect to y no 

method is known to the author to describe and to ban the occuring 

"nonlinear wrapping effects". 
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7. Final remarks 

The discusssion on the "wrapping effect" of interval methods for the 

numerical solution of differential equations goes on and on since 

more than 20 years. Nevertheless one should never lose sight of the 

following essential facts: 

The customary real numerical methods give approximations, not solu­

tions! The error of them is in general not known. It may be very large 

in particular cases, unknown to the user of such methods. 

Compared with this the interval methods have the big advantage to give 

always guaranteed bounds to the (normally unknown) solutions. Even 

if they are unfavorable (which may occur with the naive use of interval 

arithmetic; or without consideration of the wrapping effect) they do 

give an exact information. 

Summary: Any errorbound - even a pessimistio one ­

is better than no information at all about the error 

of an approximation. The responsibility of interval 

researah is to find favorable error bounds. 
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