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1. INTRODUCTION 

Circular arithmetic, introduced by I. Gargantini and P. Henrici 

[2J as an extension of the complex arithmetic, provided the formulati

on of methods for solving some problems of computational complex anal

ysis (e. g. tl:e inclusion of the polynomial complex zeros [2J, [3J, cir

cular approximation of the closed regions in the complex plane [IJ, [4J , 
~J, [8J, the evaluations of complex functions over a disk as an argum

ent [4J, [5J, [6J , [8J , [9J, etc.). Applying these methods, sometimes a 

problem of evaluation with the disks which contain the origin arises 

(for example, inversion of a disk Z, evaluation of the complex functi

ons z 1-+ In z, z l-+ z 11k over a disk Z, where 0 E Z). In some cases, this 

problem can be overcome by evaluation with the annulus {z:r ~ Iz-c I ~R} 

instead of the disk {z: Iz-cl ~R} if the origin is contained in the in

ternal disk {z: Iz-cl ~r}. In this way, an isolation of zero has been 

done. Besides, in some cases, a set of points n in the complex plane 

(e.g. an opened or closed curve which is characterized by the circula

rity) can be enclosed by an annulus, say Z. For a given analytic func

tion f, this inclusion enables to consider in the sequel an annular' 

function F such that 

F(Z) ;;;> f(Z) = {f(z): z E Z};;;;;J f(n) (n c: Z). 

Note that T.J. Rivlin [7J used the annulli for assignation of a 

measure of circularity to a given compact set in the plane. His appro

ach is to determine the best annulus which contains the given set acc

ording to the size of the annulus. 

In this paper we shall pay attention only to the problem of defi

ning the basic arithmetic operations with the circular rings. Further, 

we shall poin t out sane possibi Li,ties to use the ari thmetic of annulli , 

which is an extension of circular arithmetic. Note that this generali

zation carries some disadventages, for example, more complicated arith
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metic operations and reduction of these operations to the operations 

in circular arithmetic in some cases. 

2. ARITHMETIC OPERATION~ 

A set Z={z :r~lz-cl ~R, ceC, O~r~R}, denotedby Z={c;(r,R)}, 

will be called a oi roul.a» ping or annulus. Here c is the center, r and R 

are internal and external radii of the annulus Z, respectively. The set 

of all circular rings will be denoted by A(e). In the special case, for 

r =0, the annulus Z = {c i (O,R)} reduces to the disk Z = {z~ Iz-cl ~R}, 

denoted shorter by Z = {c iR}. 

Sometimes, an annulus whose center is at the origin, will be mar
o 

ked by Z, that is 

~ = {O; (r,R)} = {pei~: r~p ~R, 0 ~<I>~21T}. 

An annulus Z = {c i (r,R)} can be presented in the form 

o 
Z = {c	 i (r, R)} = c + Z , (1) 

because of 

Z {c+pei<l>: r~p~R, O~<I>~21T} 

Ic I + {pei<l>: r ~p ~R, 0 ~<I> ~21T}. 

ADDITION OF A SCALAR AND AN ANNULUS 

Since 

w + {c (r ,R) } {w + z: r ~ Iz-c I ~ R} {z: r ~ Iz-(w+c) I ~R}, 

we have 

w + {c; (r,R)} = {w+c i (r,R)}. 

MULTIPLICATION OF A SCALAR AND AN ANNULUS 
o 

Le t WEe, z {0 ; (r, R)} and Z = { c (r , R) }. Firs t , we have 
o 

W.Z	 w· {O ; (r,R)} = w· {z = pei<l>: r ~p ~R, 0 ~<I> :f:21T} 

Lz " [w/pei(<I>+argw): r~p~R, O~<I>~21T} 

{z " o ...ei<l>"': Iwlr~p'" ~lwIR, 0 ~<I>'" ~21T}, 

where Erom 
o 

w· Z =	 {O ; (Iwi r , Iwi R) } • (3) 

On the	 basis of (2) and (3) we find 

o 0 
w· Z	 w· Ic i (r, R)} = w· (c + Z) = wc + w· Z 

wc + { 0 ; (Iw Ix , Iw IR)} = {wc ( Iw Ir, IwIR) i. 
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that is, 

w· {c ; (r,R)} = {wc ; (Iwlr, IwIR)}. (4) 

INCLUSION AND DISJUNCTION OF THE ANNULLI: 

Let Zi = {C i ; (ri,Ri)} EA(C), i =1,2. The annulus Z2 contains the 

annulus ZI' denoted by ZI~ Z2' if and only if 

((R2 >RI)A(r l <min{rl-r2,R2-Rln)V(R2-RI > Icll>r2)A(lc2-c ll >r2+RI)· 

The annulli ZI and Z2 are disjoint (i.e. ZI nZ2 =Z) if and only 

if one of the following conditions is valid: 

ADDITION AND SUBSTRACTION: 

(ri ' Ri ) }, i = 1, 2. Then 

icP1 icP2
{PIe + P2e r i ~Pi ~Ri' 0 ~cPi ~21T, i = 1,2} 

{O ; (r , R) } , 

where 
icP1 icP2 

r = min IPIe + P2e I , 
Pl,P2 

cP 1 ' cP 2 
icP1 icP2
R m a x
 I PIe + P2e I •
 

PI' P2
 

cPl,<I>2
 

It is sufficient to take cP i E [0,1TJ (i = 1,2). E>bviously, 

R = m a x PI + m a x =P2 R1 + R2,
rl ~Pl ~Rl r2 ~P2 ~R2 

r = min IPI - P21. 
rl ~Pl .1: Rl 

r2 ~P2 ~R2 

The value of r is given by 

r - R if r 2 > R
2 1, 1, 

r = r - R if r > R (5 )
1 2, 1 2, 

0, otherwise, that is, if 
0)
ZI n ~ 

2:f ~ • 

Now, we have 
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{a ; (r 1 ' R2 )} + {a (r 2 ' R ) } { Q (r , R1 +R2 ) } , (6 )2 

where r is defined by (5). 

According to (6) it follows 

Ic 1 ; ( r 1 ' R1 )} + {c 2 ; (r 2 ' R2 ) } 

o 0 0 0 
(c 1 + Zl) + (c 2 + Z2) = c 1 + c2 + (Zl + Z2)~ 

or 

Z1 + Z2 : = {c 1 + C 2 ; (r , R 1+R2 ) } • (7 ) 

Thus, the addition in the set A(e) is defined by (7), where r is given 

by, (5) • 

It is easy to prove that for the addition of the annulli the fo

llowing is valid: 

Zl + Z2 Z2 + Zl (commutativi ty) , 

(Zl + Z2) + Z3 = Zl + (Z2 + Z3) (associativity) • 

Let Zi = {ci; (ri,Ri)} (i=l,2,3) fI The final result of the addition of 

three annulli we denote by Zl +Z2 +Z3' and it is given by 

Z1 + Z2 + Z3 = { c 1 + C 2 + C 3 ; (r, R1 + R2 + R3) }, (8 ) 

where 

- - if r 1 > R2 + Rr 1 R2 R3, 3, 

r 2 - R1 - if r 2 > R + RR3, 1 3,r =
 
r 3 - R1 - if r 3 > R1 + R2,
R2, 

o , otherwise. 

The Bubstpaction of the annulli is defined using (3) and (7): 

(r 2 ' R2) }: = { c 1 ; (r1 ' R1 ) } + {-c2 ; (r2 ' R2) } 

{c 1 - c 2 ; (r , R1 + R } , ( 9 ) 2) 

where,again, r is given by (5). 

MULTIPLICATION: 

The product of two annulli is not an annulus in general. ForZlZ2 
this reason, an extended set Zl @Z2 in the form of an annulus, such that 

Zl @Z2 a Zl Z2' is introduced. The symbol @ denotes the multiplication 

in the set A(e) • 
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The product of the annulli {OJ (r ) } and {OJ (r is given
1,R1 2,R2)} 

by 

{a ; (r1 ' R1 ) } 0 {a; (r2 ' R2) } 

where p 

{a ; (r1 ' R1 )} 0 {a ; (r 2 ' R2)} = {a (r 1r 2 ' R1R2) } .. (10) 

It is obvious that 

o 0 0 0 
ZI 0 z2 = ZI Z2 

By induction we show that 

n~k= i 0 ; ( nr k , n~) l 
k=1 l k=1 k=1 f 

is valid, wherefrom, in a special case, we have 

{a ; (r, R) }n = {a ; (rn, Rn ) } _ (11 ) 

Let Zi {ci; (ri,Ri)} E A(e) (i=I,2) - According to (10) we find 

Z1 Z2 { c 1 ; (r 1 ' R1 ) } - {c2 ; (r 2 ' R2) } 

(c 1 + {a; (r 1 ' R1 ) } ) - (c2 + {a ; (r2 ' R2 ) }}' 

S;;;; c + C - {Oi (r , R ) } + C - {Oi (r , R ) } +
1c2 2 1 1 1 2 2 

{a ; (r 1 ' R1 ) } - {a ; (r2 ' R2 ) } 

Applying (4) and (10), we obtain that 

Z1 Z2 £: c 1c 2 + {a; ( Ic21 r 1 ' IC 2 IR1 )} + {O; ( Ic 1 Ir 2' Ic 1 IR2 )} + 

{a ; (r 1r 2 ' R1R2 ) } 

In view of (8) and (9), it fol.lows 

(r,R)}, 

where 

(12 ) 

and 
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Rr 1r 2 - Ic 2 1 1 -l c 1 IR2 , if r 1r2 > IC2 /R1 + Ic11R2 

Ic 1 Ir 2 - - if I c > RIc 2 IR1 R1R2 ' 11 r 2 I c 21 1 +R1R2 r = (13 )
Ic 2 Ir 1 - Ic 11 R2 - R1R2 ' if I c 21 r 1 > I c 11 

R
2 +R1R2 

0, otherwise. 

For the product Zl ® Z2 of the annulli Zl and Z2 we shall adopt 

the extended set {c
1c2 ; (r,R)}, that is 

Zl Z2 ~ Zl ® Z2:= {c 1c2 ; (r ,R) }, (14) 

where rand R are given by (12) and (13) respectively. 

It is e.asy to show that four cases in (13) are disjoint. Let us 

show, for example, that the inequalities 

Ic 1 1r 2 > IC 2 /R1 +R1R2, 

Ic 2 Ir 1 > Ic 11 R2 + R1R2, 

can not be valid simultaneously. Rewrite the above inequalities in the 

form 

y = I c 11 r 2 - Ic 2 1 R1 > R1R2 ' 

I c 2 I r 1 - 1c 1 I R2 > R1R2 ' 

and put 

R1 = r 1 + 8 1 , R2 = r 2 + 8 2 (8 1 ' E 2 > 0 ) • 

Suppose that (*) holds. Then s >», while the left-hand side of (**) 

becomes 

Ic 2 I (R1 - £ 1) - Ic 11 (r2 +£ 2) 

I c R - I c 8 1 - - I c 1 1£2 21 1 21 I c 11 r 2 

-y - I c 2 I 8 1 - 1c 1 I 8 2 < 0 • 

Thus, if (*) is valid, then (**) does not hold. 

Note that, in the case when Zl and Z2 are disks, that is, Zl = 

{c ; (O,R = {c ; R and Z2 = {c ; (O,R = {c ; R the defini
1 1)} 1 1} 2 2)} 2 2}, 

tion (14) for the product of annulli reduces to the definition for 

the product of disks introduced by I. Gargantini and P. Henrici [2J. 

Since the exchange of the indice.s at (12) and (13) (i.e. 1-+2 

and 2 -+ 1) does n.ot cause any modification in, the e.xpressions for R 

and r, we conclude that 

Zl ® Z2 = Zz 0 Zl' 

i .. e., the product of the annulli, introduced by (14), is eommu t a t i ve , 
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INVERSION OF ANNULUS: 

Defining the inversion of an annulus, we shall use the formula 

for the inversion of a disk {c ir} which does not contain the origin, 

I.c i r}- 1 = J -c (15)
2 2 

I C 1 - r 

An inverse annulus z-l, where Z = {c;(r,R)}, will be defined in 

the case when 0 If: Z, i.e. if [c ] >R or [c ] <r holds (which is equival

ent to 0 ¢ Ic i R} and 0 E Ic ; r}, respectively). Defining the inverse 

annulus we. shall use the inverse disks 

-1 -1 
{c i R} = {wI i PI}' Ic ; r } 

where, on the basis of (15), 

-R c rw = 
22' 1 2 2 [c I - rIC 1 - R

We observe that the centers wI and w2 are not overlapping, which 

means that the circles f = {w: Iw-w 1 =P } and r 2 = {w: Iw-w2 1 =P2}1 1 1 
are not concentric (see Fig. 1 and 2). For this reason, an extension 

of the exact set {z-l: r~lz-cl ~R} must be taken to be the inverse 

annulus Z-I. The extension has to be performed so that the implication 

a ¢ z => 0 $ Z-1 

holds, which is of the essential interest in executing the arithmetic 

operations in the set A(e). We shall distinguish two cases: 0 $ {CiR} 

and 0 E (c sr } • 

a) 0 $ {a ; R} 

In this case the or1g1n is outside of the external circle and, 

thus, Icl >R is valid. The circumferences r and r 2 are not concent
1 

ric so that we shall construct the inverse annulus z-1 by extending 

the exact range {z-1: r ~ Iz-cl ~R} over the internal disk (c i z I ta

king the point wI for the center of the inverse annulus z-l. In this 

manner the implication 0 $ Z => 0 ~ Z-1 is provided (because the con

dition 0 ~{c iR} provides that 0 ~{c i R } - I ) . 

From Fig. 1 we have 

-1
Z : = {WI (max {O , P2 - IwI -w 2 I} , Ip 1 ) 

1 - rlcl-R 
20 2 c; max 0, 2 f , R )} ·{ ([c ] -R I lei -r 
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• exact 

- range 

III +~ inverse 
.. ~ annulus 

Fig. 1 Inverse annulus: the case 0 ~ Ic ; R} 

b ) 0 E {a ; r-} 

In this case we have Icl <r and 

{c ; R} - 1 = {w: Iw-w 1 I ~ PI} , {c ; r}-l 

where 

c c r w = w = 2 2 2'1 [c I -r 

The oza qa,n belongs to the interior of the smaller circle r = {w: Iw

w11 = PI} because of Iw11 < Pl. For this reason the extension 
] 

of the ex

act range will be performed outside of the circle r 2 , taking the point 

wI for the center of inverse annulus. 

- exact 
- ran9=! 

II+~ =: 

Fig. 2 Inverse annulus: the case a E {c ; r} 
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From Fig. 2 we find
 

Z-
1 

: {WI; (PI' Iw2-w1 I + P 2) }
 

R2 ~ IcI2 { -c (R R: =~~~ I) }. 
Thus, the	 inverse annulus Z-l (0 t Z) is defined by 

if Ic I > R	 ,Icj/-R2 {c ;( maxl0 ri~1 =:2 f, R)} 
(16) 

1'cI 
2 2	 if [c ] <r ·R	 {-c (R,R:=~~II)}_ 

DIVISION: 

Let the symbol CD denotes the division in A(C). Using the defini

tions (14) and (16) for the multiplication and the inversion, we define 

the operation of division in A(C) as follows: 

(17) 

3. ANNULAR FUNCTIONS 

Let f be an analytic function defined on the region D in the com

plex plane, and let Z be an annulus contained in D. The set feZ) = {f(z): 

Z E Z 1s not~ an annulus in general. In order to use the arithmetic of 

annulli, a necessity arises for introducing an annular !unction F:G ~H 

(G,H	 c: A(D» such that the following is valid: 

F(Z) ~ f (Z) for all ZEA(D), 
(18) 

F (z) fez) for all z E Z. 

The function F such that (18 ) is satisfied is cal.l.ed an annuZar incZu

sive extension of f. 

Let n be a set of points in the complex plane such that it can be 

suitably "enclosed" by an annulus Z, that is, Q ~ Z. Assume that f is a 

complex function such that the set feZ) is a closed region and let F be 

an annular inclusive extension of f. Since fen) ~ f(Z)~ F(Z), we can 

consider the annulus F(Z) (for a given Z), which presents an annular app
roximation of the set fen), instead of the image fen). The approximation 

("covering") of the set n by an annulus Z is of special interest if the 

set n is characterized by a certain circularity. n can be also some ope

ned or closed curve, Q = {w(t): wet) =u(t) +i vet) , t E (a,B)}, as it has 
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been mention.ed in the beginning. For example, an el.li.pse given by w. (t) 

a cos t + i b sin t (t E [O,27T), a > b), can be bounded by an annnl.us 
o 
Z {O (b,a)}. This approximation is better if the quotient Sis clo

ser to 1. 
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