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1., INTRODUCTION

Circular arithmetic, introduced by I. Gargantini and P. Henrici
[2] as an extension of the complex arithmetic, provided the formulati-
on of methods for solving some problems of computational complex anal-
ysis (e.g. the inclusion of the polynomial complex zeros [2],[3], cir-
cular approximation of the closed regions in the complex plane (1], [4],
[6],[8], the evaluations of complex functions over a disk as an argum-
ent [4],[5],[6],[8],[9], etc.). Applying these methods, sometimes a
problem of evaluation with the disks which contain the origin arises
(for example, inversion of a disk Z, evaluation of the complex functi-
ons zk1ln z, zl-»zl/k over a disk Z, where 0 € Z). In some cases, this
problem can be overcome by evaluation with the annulus {z:r z|z-c| <R}
instead of the disk {z: |z-c| <R} if the origin is contained in the in-
ternal disk {z: |z-c| <r}. In this way, an isolation of zeroc has been
done. Besides, in some cases, a set of points @ in the complex plane
(e.g. an opened or closed curve which is characterized by the circula-
rity) can be enclosed by an annulus, say Z. For a given analytic func-
tion £, this inclusion enables to consider in the sequel an annular

function F such that
F(Z2) =2 f(2) = {f(2): ze€2} =2 £(Q) (o= 2).

Note that T.J. Rivlin [7] used the annulli for assignation of a
measure of circularity to a given compact set in the plane. His appro-
ach is to determine the best annulus which contains the given set acc-

ording to the size of the annulus.

In this paper we shall pay attention only to the problem of defi-
ning the basic arithmetic operations with the circular rings. Further,
we shall point out same possibilities to use the arithmetic of annulli,
which is an extension of circular arithmetic. Note that this generali-

zation carries some disadventages, for example, more complicated arith-
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metic operations and reduction of these operations to the operations

in circular arithmetic in some cases.

2. ARITHMETIC OPERATIONS

Aset Z={z:r <|z-c| <R, ceC, 0 <r <R}, denotedby 2 ={c; (r,R)},
will be called a e¢ircular ring or annulus. Here c is the center, r and R
are internal and external radii of the annulus Z, respectively. The set
of all circular rings will be denoted by A(C). In the special case, for
r =0, the annulus 2 = {c ; (0,R)} reduces to the disk Z={2% |z-c| <R},
denoted shorter by Z = {c ; R}.

Sometimes, an annulus whose center is at the origin, will be mar-

o}
ked by %, that is

Q

S ¢

{0 ; (r,R)} = {pe*?: r<p <R, 02¢ <27},
An annulus Z = {c ; (r,R)} can be presented in the form

Z

o
{¢;(t,R)} =c + 2, (1)
because of

Z

it

{c+pe1¢: r<pz<R, 0<¢ <27}

i¢,

{c} + {pe r<p<R, 0<¢<2n}.

ADDITION OF A SCALAR AND AN ANNULUS :
Since
w+ {c;(r,R)} = {w+z: r <|z-c| <R} = {z: r < |z~ (w+c) | <R},
we have

w + {c; (r,R)} {w+c ; (x,R)}. (2¥

MULTIPLICATION OF A SCALAR AND AN ANNULUS :

o]
letweC, 2= {0;(r,R)} and 2 = {c; (r,R)}. First, we have
o .
weZ = we{0; (£,R)} = w-{z=pe™®: r <p <R, 0 <¢ g2}

i(¢+argw)

= {z" = |w]|oe r<p <R, 0<¢ <2}
= {z7 = pelt’; |wlr <o” <|wW|R, 0 ¢~ <27},
wherefrom
we? = {0 ; (|w|r,|w|R)}. (3)

On the basis of (2) and (3) we find
0o o)
weZ = w+{c ; (r,R)} = wWe(c+2) =wc + W3

we + {0 ; (|w|z,|w|R)} = {we ; (|w]|z,|w|[R)},

[



135

that is,

we{c ; (xr,R)} = {wc ; (|w|r,|w|R)}. (4)

INCLUSION AND DISJUNCTION OF THE ANNULLI:
Iet Zi = {ci ; (ri,Ri)} €A(C), 1=1,2. The annulus z, contains the
annulus Zl, denoted by 2= 7y, if and only if
((R2 >Rl)!\(rl >r2)A( |c2-cl| <min{rl-r2,RZ—Rl}‘))V(Rz-R1 > Icll >r2+R1).

The annulli Zl and 2, are disjoint (i.e. Zlﬂ Z, =g) if and only

if one of the following conditions is valid:
(|c2-cl| >R1+R2)V <(r2 >R1)A(|c2—cl| <r2—Rl))V ((rl >R2)A(]c2-cl| <r;-R, ))

ADDITION AND SUBSTRACTION:

o)
Let z; = {0 ; (r;,R;)}, 1=1,2. Then

o o i¢, i,
Z1 + Z2 {ple + pye T ry<ey

<R, 0 <¢, <2%, i=1,2}

{0 H (rIR)}I

where
i¢ i¢
r=min |ple 1, 0 e 2|,
P1sP2
b0,
i¢l i¢2
R=ma x |ple + pye
PyrPy

1,92

It is sufficient to take ¢, € [o,] (i=1,2). 6bviously,

R = ma x pl+ ma X p2=Rl+R2,
r; 2e1 2R r; 2e2 2Ry
r= min |pl = eyl
r; 2e1 £R)
r, <pz2 <Ra
The value of r is given by
r, - R, 1if ry >R,
r = r, - Ry, if r, >Ry, (5)
o
0, otherwise, that is, if Zlﬂ 82 #4s

Now, we have
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{05 (rysRy)} + {0 ; (ry,R)) Y = {0 (r,Ry+Ry) 1, (6)

where r is defined by (5).
According to (6) it follows
Z, + 12, = {c1 ;(rl,Rl)} + {c2 i (ry,Ry) 1}

o o
= (¢ +Zl)+(c2+Z

1 2) 1 2

or

Z2. + 2, := {c, + ¢

1 5 7 (r,R

1TRy) 3. (7)

Thus, the addition in the set A(C) is defined by (7), where r is given
b¥. (5).

It is easy to prove that for the addition of the annulli the fo-
llowing is valid:

Z1 +Z, = Z, + Z1 (commutativity),

(2, + ZZ) + 2, =2+ (2, + Z.) (associativity).

1 3 1 2 3
Let Zi = {ci ; (ri,Ri)} (i=1,2,3). The final result of the addition of
three annulli we denote by Zl +Z2 +Z3, and it is given by

Z, +2, +25 = {c, +c, +cg 5 (r,R1+R2+R3)}, (8)
where
rl—Rz-R3, if rl>R2+R3,
.- rZ-Rl—R3, if r2>Rl+R3,
r3—R1—R2, if r3>R1+R2,
0, otherwise.

The substraction of the annulli is defined using (3) and (7):
{cl i (rl'Rl)} = ey s (r2,R2)}:= {cl ; (rl,Rl)} +{-c, ; (r2,R2)}
= {c;-¢cy i (£r,R +R)}, (9)

where,again, r is given by (5).

MULTIPLICATION:

The product of two annulli lez is not an annulus in general. For
this reason, an extended set Z1®Z2 in the form of an annulus, such that
zl®z2 _'—_=’lez, is introduced. The symbol &) denotes the multiplication_
in the set A(C).
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The product of the annulli {0;(r1,Rl)} and {0; (rz,Rz)} is given

by
i¢l
{0;(r; R} ®{0;(ry,R))} = {pje “:r, <p; <R, 024, 20}@
i¢2
{pze : r2;¢2;R2, 0;¢2;2ﬂ}

{pe’?: rry, 2p sRiR), 0 <¢ <27}

{0 ; (rlrz,Rle)},

where p = P1Py and ¢ = ¢l+¢2. Accordingly,

{0; (r; /R ®{0; (ry,R))} = {0; (r;ry,RiR)) . (10)
It is obvious that
0o ®o _ % o _ o o
Zl 22 = lZ2 = {zlzz. zle Zl,zzezz}.
By induction we show that
n o n n
Al (B i)
k=1 ¥ S NI
is valid, wherefrom, in a special case, we have
(11)

{0 ; (r,R) ™ = {0; (", RN} .
{cy i (ri,Ri)}EA(C) (1=1,2). According to (10) we find

Z,%2, = {cy; (rl,Rl)}-{c2 7 (rz'Rz)}

It

(cl+{0;(r1,R1)})'(c2+{0;(r2,R2)}}'
= cc, + c2-{0;(rl,Rl)} + cl-{O;(rz,Rz)} +

{0; (rl'Rl) }-{0; (r2,R2) }.

Applying (4) and (10), we obtain that
212, = 16, + 05 (leyfryrley [R Y + {05 (fey |ryife; Ry} +
{0;(r1r2,RlR2)}.
In view of (8) and (9), it follows
2,2, ¢,¢c, + {0 ; (r,R)} = {clc2 ; (r,R)},

where

R = |c2|Rl+|cl|R2+RlR2 (12)
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rr, - lc, R - |e Ry, if rr, >|c2]Rl+|c1|R2
. - |cl|r2 -|c2]R1-R1R2, if |c1]r2 >|c2|R1+RlR2 (13)
leyley = le IR, =R)R,),  if leyley > e IR, +R R,
0, otherwise.
For the product ZIC) Z2 of the annulli Z1 and Z, we shall adopt
the extended set {clc2 ; (r,R)}, that is
lezg Zl ® Z2 = {Clcz H (r,R)}, (14)
where r and R are given by (12) and (13) respectively.

It is easy to show that four cases

show, for example, that the inequalities

ley [z, >]c2|R1-+R1R2,
leylxy >|cl|R2-+R1R2,

can not be valid simultaneously. Rewrite

in (13) are disjoint. Let us

the above inequalities in the

form
y = 'Cl|r2'|CZ|R1>RlRZ, (*)
leglxy = ley IRy > RiRy, ()
and put
Rl=rl+el, R2=r2+r52 (81,52 >0).
Suppose that (*) holds. Then y >0, while the left-hand side of (xx)
becomes
leglry = hey IRy = Jep [(Ry=ey) = fo | (xy+ey)
= |c, IR, - |C2|€1 = leylry = le)le,
==y - |c2|51 - Icllez <0.
Thus, if (*) is wvalid, then (**) does not hold.
Note that, in the case when Zl and Z2 are disks, that is, Z1=

{c, ;(O,Rl)} = {cl ;Rl} and 7, = {c2 ;(O,Rz)} =
tion (14) for the product of annulli reduces to

{c2 ;Rz}, the defini-
the definition for

the product of disks introduced by I. Gargantini and P. Henrici [2].

Since the exchange of the indices at (12)

and 2 +1) does not cause any modification in the expressions for

and r, we conclude that
2, ®2, = 2, ® 2,

i.e., the product of the annulli, introduced by

12
R

and (13) (i.e.

(14), is commutative.
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INVERSION OF ANNULUS:

Defining the inversion of an annulus, we shall use the formula

for the inversion of a disk {c ;r} which does not contain the origin,
_1 -
{c;r} = c ; L . (15)
|c|2_r2 |c|2_r2

An inverse annulus Z—l, where Z = {c;(r,R)}, will be defined in
the case when 0€¢Z, i.e. if |c| >R or |c| <r holds (which is equival-
ent to 0 ¢ {c ; R} and 0 e {c ; r}, respectively). Defining the inverse
annulus we shall use the inverse disks

1

{e¢ ; R} * = w0}, {cir) = = {wyiny),
where, on the basis of (15),
& R c r
w = e—————, P = 5 w = 0751 P = —_—
1 |c|2_R2 1 lch_RZ 2 ]c12_r2 2 'CIZ_rZ

We observe that the centers v, and w, are not overlapping, which
means that the circles r; = {w: ]w-wl| =p;} and r, = {w: ]w—w2| =0,}
are not concentric (see Fig. 1 and 2). For this reason, an extension
of the exact set {z ': r <|z-c| <R} must be taken to be the inverse
annulus z7l. The extension has to be performed so that the implication

06z = 06€z L

holds, which is of the essential interest in executing the arithmetic
operations in the set A(C). We shall distinguish two cases: 0 ¢ {c;R}

and 0 € {c;r}.
a) 0 ¢{ec; R}

In this case the origin is outside of the external circle and,
thus, |c| >R is valid. The circumferences T, and r, are not concent-
ric so that we shall construct the inverse annulus 771 by extending
the exact range {z ': r <|z-c| <R} over the internal disk {c ;r} ta-
king the point W, for the center of the inverse annulus z7l. In this
manner the implication 0¢2Z2 = 0¢ 27! is provided (because the con-
1
).

dition 0 ¢ {c ; R} provides that 0 & {c ; R}

From Fig. 1 we have

Z_l:

{w, ; (max {0 ,p,- |w1-w2|} rpy)

-———ql———{a;(max;o ,FJ—"J‘—Rif, R)}.

le|® -®? le| -z

1]
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From Fig. 2 we find

-1
27 = {wy g (py o |wymw | 4050 )

1 -5 R® -rlc| §
R2—1c|2{ '(R’ r-fc| )}

1

Thus, the inverse annulus Z - (0 & Z2) is defined by

1 - rle| -®°
—— 9§ c i maxgo , —/——— 1}, R if el >R,
gL, le]” -r le| -x

: = ) (16)
1 -z ; R,R -rlc iflc|<r
R? - |c|? r-|c|

*
DIVISION:

Let the symbol (® denotes the division in A(C). Using the defini-
tions (14) and (16) for the multiplication and the inversion, we define
the operation of division in A(C) as follows:

_ -1
Z2,®2,: =2, @12, (0¢2,). (17)

3. ANNULAR FUNCTIONS

Let f be an analytic function defined on the region D in the com-
plex plane, and let Z be an annulus contained in D. The set f£(2) = {f(z):
ze€Z } 1is not an annulus in general. In order to use the arithmetic of
annulli, a necessity arises for introducing an annular function ¥ :G +H
(G,H —= A(D)) such that the following is valid:
F(2) =2 £(2) for all Ze A(D),
(18)
F(z) = £(2) for all ze Z.
The function F such that (18) is satisfied is called an annular inclu-

sive extension of f.

Let Q@ be a set of points in the complex plane such that it can be
suitably .enclosed" by an annulus Z, that is, @ & Z. Assume that f is a
complex function such that the set £(Z) is a closed region and let F be
an annular inclusive extension of f. Since f(9) &< f(2)&< F(Z), we can
consider the annulus F(2Z) (for a given 2), which presents an annular app—
roximation of the set £(Q), instead of the image f(Q). The approximation
(wcovering") of the set @ by an annulus Z is of special interest if the
set 9 is characterized by a certain circularity. @ can be also some ope-
ned or closed curve, § = {w(t): w(t) =u(t) +iv(t), te(a,B)}, as it has
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been mentioned in the bheginning. For example, an ellipse given by w (t)
=acost + ibsint (te[0,27), a>b), can be bounded by an anntlus

2 is clo-

o
Z = {0 ; (b,a)}. This approximation is better if the quotient 5

ser to 1.
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