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Motivation

The idea of this paper is to add some elementary examples of appli-
cations to the wide spread and very few others that seem to exist in
the interval mathematics literature. The examples presented here are
intended to motivate engineer students very early to deal with interval
mathematics. They can be inserted into the first lessons of a lecture
on calculus, e.g. after having introduced inequalities ( and interval
arithmetic ! ), as well as into the exercise collection of a program-
ming course for all sorts of students that need mathematics as an instru-
ment of practical support in their future professions.

Note that the technical surroundings of the examples are the bridge
to the engineer student's ear, whereas the simplicity of the formulas
dealt with is the way to surround his fear : Interval mathematics are
useful an d easy !

Interval Arithmetic in HP BASIC

All printed programs or numerical results are produced on the desk
top computers HEWLETT PACKARD 9845T of the Mathematisches Labor I, Fach-
hochschule Darmstadt. The programming language used here is a very high
level structured BASIC which is at least as powerful as FORTRAN 77. It
is combined with a BASIC-written precompiler of Heinz LERCHE and the
author and completed by a BASIC interval arithmetic package developed
by the students Marika GAUCH, Bernd GUTHIER, Gerhard HORNBERGS and Rei-
ner UHL and the author. For more information, see /T/.

Electric Current Rules

When studying the elements of electricity, one is faced to many simple
formulas which can easily ( and should be ) written in terms of inter-
val arithmetic. The first example shows how to examplify all f o ur
elementary operations at once and how to demonstrate
the practical handling of c ons tants and n-th p o wer s.

Problem. Three bulbs of R=240 —
resistance each are connected by a L ) R R L
L=100m long aluminium line of dia- @
meter d=1.5mm and specific re- R®
sistance € =0.02857@mm* /m to a sour-

ce Uges=220V of electromotive force. %‘_
The accuracy of all data is + 0.5

percent. - Switch on one, two or three lamps. Which is the operating
voltage in each case ? (cf. /L/,Nr.947)
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1)

[ 218.9,221.1 ]

Solution. (a) One lamp
Resistance : Rges = R1 + R ,
current : Iges = Uges / Rges ,
voltage drop in the line : Ul = Rl * Iges ,
operating voltage (1 bulb): U1 = Uges - Ul .
First calculate Rl , in consideration of all possible errors. Then de-
fine
(R, := [ 238.8,241.2 ] ,  Uges , :=
and perform
Rges , = Rl ,06 ,R,,
vIges , =, Uges , @ Rges 6 ,
LUl , = Rl ,® Iges,h ,
U1, =,Uges , 0 Ul , .

(The ideal operations @ ,

ee e g

® will later be replaced by the corres-

ponding machine operations that provide rounded interval arithmetic.)

The determination of the line resistance Rl is done as follows
2 * L,

Line length

sectional area of line
line resistance

to fix the possible error of ¢

one gets

with  d, :=

L1

o >
=

BRho ,

LR,

Tx(d/2)°

(¢*1L1) /A
@ *L *8 / (> qa ).
Introduce the interval constant 0.0§857 of width zero and execute

1.5 ® [ 0.995,1.005 ] .

(b) Two lamps

Uges
leads to

Ul + Ul2

The equation
Rl * Iges + R * ( Iges /2 )= (Rl +R/ 2 ) * Iges

LRges , = , R1

]

R,0 2

which replaces the corresponding formula in (a).

(¢) Three lamps

Uges
now

holds.

Ul + Ul23

Rl * Iges + R * ( Iges / 3
 Rges , = Bl '@ LR, 0
(d) One to three lamps

Since

) =
3

All cases can be treated

ous ly when using interval arithmetic :

Numerical results.

R

L

D
Rho
Uges

R1
Rges
Iges

Ul
Ut

1) The index

1ges!

~ e

PP — o N

o

MOS0 r

Rges , =, Rl |

.387999999599E+02
.94999999999E+@1
.482499999938E+00
.84271493999E-02
.188999399999E+02

. 16843518253E+00

.41969435181E+02
.95300878457E-01
.83759842007E+00
. 15885730836E+02

('gesamt') should

]

—_—_ N

[N IS ]

O

N Olwor

be

R,® [1/3,

.41200000001E+02

.00500000001E+02

.58750000001E+02@
.87128500001E-02

.21100000021E+02

.29878338595E+20

.44438783388E+02

LA3751771317E-01

0142651621 1E+00

.18262401582E+02

read as

0.02857 ® [ 0.995,1,005 ]

. After the definition of 8 and JL ,
a7

LRho,® , L,o80 (N 6 d4,6,4,)

(RL+R/ 3 ) * Iges ,

simul¢tane -

o L s

'total',
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Rges [ 1.22569435180E+02 , 1.23898783389E+02 ]

Iges [ 1.76676472529E+@@ , 1.B0387549047E+00 1] (EJ
ul [ 5.59964627958E+0@ , 5.95@59449823E+00 1

ua2 [ 2.12849405500E+02 , 2.15500353722E+02 1

Rges [ B8.27694351820E+01 , 8,36587833865E+01 1 r——@—-—

Iges [ 2.61533072684E+00 , 2.67127593073E+00 1 (k)
ul [ 8.28812121991E+00 , 8.81196065859E+00 1

U3 [ 2.10088039338E+02 , 2.12810878782E+@2 ]

Rges [ 8.27694351820E+@1 , 1.23858783383E+02 1

Iges [ 1.76676472529E+0@ , 2.67127593073E+00 1

ul [ 5.59964627958E+00 , 8.81196065353E+00 1 (6) or é:)

ua23 [ 2.10088039338E+02 , 2.155Q0353722E+02 1

The operating voltage varies between 210 and 218.3 V .

Alternating Current Measuring Bridge

The capacity of the unknown
condenser Cl and the resistance

of the unknown resistor R1 may \::;/
be found out by using a circuit

as shown. The idea is to balan- o7
ce the variable capacity C2 and -T
the variable resistance R2 un-
til the tone in the earphone K

(which must be of little re- | I
sistance) reaches a minimum or cx'l |
vanishes. In this case,

i

2

Cc1 R4 * C2 / R3
and ;Ez

R1 R3 * R2 / R4
hold (ef. /G/, S20).

Problem. Given are two resistors of resistance
R3 € [ 9.9,10.1 ] and R4 € [ 6.8,6.9 ]Q ,

according to the producers declaration. Due to uncer tainties
o f perception, C2 and R2 are estimated by

c2 € [ 40.2,41.5 JF and R2 € [ 18.3,19.8 ]R.
Compute the values of Cl1 and R1 !

Solution.
12 Kanal=7 t DRUCKER 150  Genauigkeit=4 | 4~STELLIGE AUSGABE
20 Adresse=2 160 I MIT AUSSENRUNDUNG
30 170 I INT OUTPUT R23;R3;R4;C2
40 ! 180 !
50 ! INT INTERVAL R13;R2;R3;R4;C1;C2 190 I INT Ci1=R4/R3+C2
60 ! 200 I INT R1=R3/R4*R2
70 I INT RZ2:=[18.3,19.81 ! OHM 21@ t
8@ I INT R3:=[9.9,10.11 | OHM 220 PRINT LIN(2);"AUSGABEDATEN :"
20 I INT R4:=[6.8,6.91] ! OHM 230 PRINT
100 I INT C2:={40.2,41.51 | FARAD 240 Vorschub=1 { JEDE AUSGABE EINZELN
110 ! ’ 250 Genauigkeit=12 I UOLLE GENAUIGKEIT
120 PRINT "EINGABEDATEN :" 260 I INT OUTPUT Ct;R1
130 PRINT 270 END

140 Vorschub=0
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Numerical results.

EINGABEDATEN :

R2 [1.829E+@1,1.981E+@11R3 [9.899E+00,1.011E+011R4 [6.799E+00,6.901E+001C2 [4.01
9E+@1 ,4.151E+011

AUSGABEDATEN :

c1 [ 2.70653465345E+01 , 2.89242424244E+01 1

R1 [ 2.62565217389E+@1 , 2.94088235298E+01 1

The condensers capacity is C1 = (28.0+1.0)F, the unknown resistance

is Rl = (27.9+1.7)R.

Lens Equation

This example may convince all engineers who '"believe" in the classi-
cal error estimation method.

——

G : object

B : image

~o AN .
6 So \\ f : focal length
NG N\
> o g : object distance
~ AN
S \\ b : image distance
\'\ AN A;
\\ N
~ N Lens egation for thin
S lenses :
—A <
1/ f=1/b+1/8
[4 s’ |72 As ']
A A 7

Problem, Let f = (20i1)cm be the focal length of a thin lens. The
image distance b has been metered to b = (25+1)cm, - How large is the
distance between the object and the lens ?

Solution., This question is usually handled as follows

g=g(f’b)=1/(1/f_1/b)’
g0=g(f0’b0)’
g Tg,*+A¢

with Aeg = (1 -1 b)_z*'Af+(bo/fo—1)"2*Ab,

H

In this case, one has o
=1/ (1/20 - 1/25 )
= (100i41)cm or

20cm, bo = 25cm, Af = Ab = 1. Hence,
100, Ag = (1-20/25)"2 4+ (25/20-1)"2 = a1,

gO
g
g € [59,141 Jem.

This result is wr ong !

Calculate instead

g € . & =%®(J..(D.f,e}0|b,)
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which leads to the ( c o rr e c t ) statement
g € [70.5,168.1 ] cm .

It can easily be seen that the endpoints of this interval ( see the more
precise representation in the computer output beneath or the abbreviated
version above ) are nearly sharp, i.e. the values can be taken leaving

rounding effects aside.

The latter is not true for the result produced with the interval ver-
sion of the algebraically slightly transformed equation

g=(b*f )/ (b-1f).
This observation helps to explain the need of dependent interval arith-

metic or,
formations

examples ).

for practical reasons,
before evaluating formulas ( see the following

of special

algebraic trans-

INTERVAL Bildweite_b;i;Brennueite_f;Ggnstandswte_gsEins

Ggnstandswie_g=Eins/(Eins/Brennweite_f-Eins/Bildweite_b)
Grosses_g=Bildweite_b*Brennweite_f/(Bildweite_b-Brennweite_f)

2.60000000000E+01 1
2.10000000000E+01 )

Numerical results.

60 !

70 I INT

80 1

30 I INT Bildweite_b:=024,261]

100 ! INT Brennuweite_f:=[19,21]

110 { INT Eins:=[11]

120 |

130 PRINT "EINGABEDATEN :"

140 PRINT

150 I INT OUTPUT Bildweite_b;iBrennweite_f
160 !

172 I INT

180 I INT

190 t

200 PRINT LIN(2);"AUSGABEDATEN :"

218 PRINT

220 I INT OUTPUT Ggnstandswte_g;Grosses_g
250 END

EINGABEDATEN :

Bildweite_b [ 2.40000000000E+01 ,
Brennweite_f [ 1.30000000000E+01 ,
AUSGABEDATEN :

Ggnstandswte_g [ 7.05714285695E+01

Grosses_g

The idea of this problem has been

[ 6.51428571425E+@1 ,

Berthold SCHOLL.

1.68000000009E+02 1
1.82000000002E+02 ]

given to the author by his student

Usable Frequency Range of Fiber Optical Waveguides

Look at an optical fiber line of length 1 with a steplike profile of
indices of refraction ( next page ). According to SNELLIUS, one has

sine / s1n[3 =c, /e, =n2/r1c> = n,

with ¢
o

city of an axial light pulse is given by v

velocity of light and ng

2

aerial index of refraction. The velo-

c, = Cy / n,, its time of
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¢

(ndkx of  nm<h,
refraction

\j

&

Y

SA ¢ axial ray, SG : marginal ray of total reflection, c(G : marginal
angle of total reflection, n orc : index of refraction or velocity

of light of medium O (air) or 1 or 2 (fiber), respectively.

transit is given by tA =1/ Vo The time of transit of a light pulse

on the marginal ray S, is determined by

G

tG=1/(vz*sinocG)=(l*n2)/('vz*nl).

Every pulse transmitted at the input side will be received distorted
(broadened) on the output side of the line. This is due to the running
time difference tG - tA> 0.

It means that the line cannot be used to transmit pulse sequences of
arbitrary choosen frequencies. The usable band width b is to be calcu-
lated as follows

1 1 \
b = - -
2%( b, - t,) 1%*n 1 n
G AT owg 2 o) oxix( 2 1)
*

Voihy

2
(nz/nl—l))

b = cy / (2 * 1 % n, *
(cf. /C/).

Problem, Given a fiber optical waveguide of lenght 1 = (220i 0.2)m.
The values of its indices of refraction (steplike index profile assumed)

are known with an accuracy of 1 per mil : n, = 1.51, n, £ 1,58, Estima-

te the usable band width?b by computing

,bl,:,oo,@(go,l,m,nl,o,nzf -206,1,06,n2,),
(b2,=4co,;® (261,06 (,n2f @ nl,-,n2,) ) and
b3,=,co,® (26 ,1,06 ((n2, ¢,nl, - ];)O|n2,) .

According to newer mensurations, the velocity 5 of light comes to
(299 792 456.2 + 1.1)m/s .
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Numerical results.

203

L [ 2.19800000000E+02 2.20200000000E+02 1
N1 [ 1.50848999599E+00 1.51151000001E+00 ]
N2 [ 1.5784:933899E+00 1.58158000001E+202 1
co [ 2.98792455100E+08 2.99792457300E+08 ]
B1 [ 8.23540866264E+06 1.26834884099E+07 1
B2 [ 8.53134233801E+06 1.022256@2737E+07 1
B3 [ 8.88314390012E+06 9.76023867343E+0@6 1
B [ 8.88314390012E+06 9.76023867343E+06 1

There is a guaranteed band width of 8.8MHz. This value is sufficient to
perform a telephone communication ( 3.1kHz ) or to transmit music ( 15
kHz ) or a TV program ( 6 MHz ).

Note that the result with the largest 1 e f t endpoint ( which
needs not necessarily to be the result of smallest interval width to
fit the practical aspect of the question ) is the most relevant one.

The interval E 0, b3 j

represents all possible frequencies the fiber optic waveguide may be
used for.

Bleeding an Electrical Potential

The configuration shown may be used to
transform a given voltage U to a consu-
mer voltage Uv ( at the load resistor

Rv ). It is given by 3

. - U_Uv LL_\

R2 * Rv
v * *
R1 * R2 + R1 RV + R2 Rv
see /G/, chapter S8.

Problem., What is the range of the
consumer potential Uv in a voltage-
divider circuit as shown in the figure 00—
it U € [ 210,230 Jv, Rv € [ 900,910 JR ,

R1 € E9.9,1o.1 JR and
R2 € 19.8,20.2 ]@ *?

Solution. Reduce the formula to the algebraically equivalent form

UV=U/(R1*(1/RV+1/R2)+1).

Since each variable does not occur but once in the expression, its in-
terval version will not produce an overestimation.

59 I INT INTERVAL R13;R2;RviUsUviEins

60 |

70 1 INT R1:={9.9,10.11 | OHM

80 I INT R2:=[18.8,20.21 | OHM

380 ! INT Rv:=[900,910] I OHM

100 I INT U:=[210,2301 I VYoLT

110 I INT Eins:=[1]

120 l

130 Genauigkeit=4 | 4-STELLIGE AUSGABE
140 I MIT AUSSENRUNDUNG

150 tINT QUTPUT R13R25RviU
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160 !

170 ! INT Uv=R2#Rv*U/(R1*R2+R1*Rv+R2*Rv)

180 PRINT LIN(2);"Rv naiv"

190  Vorschub=1 | JEDE AUSGABE EINZELN
200 Genauigkeit=12 ! UOLLE GENAUIGKEIT
210 I INT OUTPUT Uv

220 |

230 I INT Uv=U/(RI1*(Eins/Rv+Eins/R2)+Eins)
240 PRINT LIN(2);"Rv optimiert"

250 I INT QUTPUT Uv

260 |

270  END

Numerical results.,

R1 [9.893E+0@,1.011E+011]

R2 [1.979E+01 ,2.021E+011

Rv [8.999E+02,9.101E+021

U [2.099E+02,2.301E+02]

Rv naiv

Uv [ 1.34722875237E+02 , 1.57017635733E+02 1

Rv optimiert
Uv [ 1.38037726326E+02 , 1.53233411791E+082 1]

The consumer voltage will vary between 138.0V and 153.3V .

Density Determination of an Unknown Fluid

This example demonstrates the influence of "implicit" constants
that can but have not been removed before evaluating a formula., Further-
more, it can be used to teach that sometimes there are error dependent
optimal algebraic transformations in absence of a total reduction as
could be used in the examples above.

Take a test specimen and handle it as follows :

< m, m,

l.sp.

my | =g k=g b=myg
?

*~

1. Weighing in the air. 2. Weighing in distil- 3, Weighing in the un-
led water known fluid

Any body of volume V in a fluid of density @ meets a lifting force
_9*V*gy
where g is the acceleration of the fall. Formally, the following holds :
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v*g - * Vo *
g -gri-gr—. S 2

v*g _1*v*g
Being aware of the fact that the density of water is

- Q * |V * -
8, *Vre Fy-TF

8, = = .

- 8€up0*V * &8 Fy-F)

Problem. Determine the density of an unknown fluid by an amber cube
of edge length lcm using the method explained above. The cube's weight
ml is about 1. Since the density of amber is nearly the same as that of
water, O<Km2 2 O will be observed. Let the cube's weight be m3 £ 0.3 if
it is circumcirculated by the unknown fluid. - All masses are given in
grams. Assume at first an accuracy of + 0.001, then change the error
successively for each mass from + 0.001 to + 0.005. Compute for all four
cases fourdifferent values :

81,=( F3,0,F1,) @ ( F2,06,F1,),
L$2,=(mye m3,)0 (miyo6  m,),

5H20 =1, this

leads to

1 83,=10( m2,6 m3,)0 ( m,6, m,),
f4,=10 (106 (m3,6,m2,)0 (,m,-y m3,)).
Solution.
20 !
40 I INT INTERVAL F<1:3,1:45;M<1:3,1:4>;Rho<1:4,1:4>
50 ! INT INTERVAL Mwert<3>;Fehler;Eins;G
60 !
70 | INT Mwert<1>:=[.899,1.001] I MASSEN GENAU
80 I INT Mwert<2>:=[0,.0011
90 I INT Mwert<3>:=[.,289,.3011]
100 | INT Fehler:=[~.004,.004] | FEHLERZUSCHALG
110 I INT 6:=[9.8063,9.81511 I FALLBESCHLEUNIGUNG
120 I INT Eins:=[11] I PUNKTINTERVALL
130 l
140 FOR I=1 70O 4
150 FOR J=1 T0 3
160 I INT M<J,I0:=Mwert<J> I MASSEN DEFINIEREN
170 NEXT J
180 IF I>1 THEN
180 K=I-1
200 I INT M<K ,I>=M<K,I>+Fehler | FEHLER ANBRINGEN
210 IF K=2 THEN M(2,I,1)=0 ! MASSE NICHT NEGATIV
220 END IF
230 NEXT I
240 FOR I=1 TO 4
250 FOR J=1 T0 3
260 I INT F<J,I>=M<J,I>*6 | KRAEFTE BERECHNEN
270 NEXT J
280 NEXT I
290 FOR I=1 TO 4 | SPEZ. GEWICHT
300 I INT Rho<1,I>=(F<3,I>=F<1,I>)/(F<L2,I>-F<1,1»)
310 I INT Rho<2,I>=(M{1,Ix=M<3,1>)/(M<1 ,I5>-M<2,1I>)
320 | INT Rho<3,I>=Eing+(M<2,I>-M<3,I>)/{M<T,I>-M<2,1>)
330 I INT Rho<4,I>=Eins/(Eins+(M<3,I>=-M<2 I>)/(M{1 ,I>-M<3 1))
340 NEXT I

350 !



206

Numerical results.

M1t [ 9.389E-01, 1.002E+0@]

M2 i [-1.@@QE-99, 1.001E-03)

M3 [ 2.989E-01, 3.011E-01] worst of all results
Rhot | [ 5.9B3E-@1, 7.044E-01] eseseses  worst result leaving
Rho2 | [.5.972E-01 7 .035E-01] Rhol aside
Rho3 | [ B.865E-01, 7" 024E201]

Rho4 | [ 5.986E-01, 7.021E-011

M{ ! [ 9.949E-01, 1.Q0BE+@@1 [ 9.983E-81, 1.002E+@03 [ 9.989E-01, 1.0@2E+0@]
M2 | [-1.000E-99, 1.0@1E-@3] [-1.@@BE-99, 5.001E-03] [-1.000E-99, 1.001E~03]
M3 | [ 2.989E-01, 3.011E-@11 [ 2.989E-01, 3.011E-Q1] [ 2.94SE-01, 3.051E-01]
Rho! | [ £.895E-01, 7.113E-011 [ 5.963E-01, 7.072E-@11 [ 6.923E-01, 7.084E~01]
Rho2 | E..Q.“—‘.@.“.E.P.‘.a.l JQ4E-@LT [ 6.972E-01, 7.063E-011 [ B.937E-Q1, 7.0756-0]1
Rho3 | [ 6.371E-01, 7.036E-011 [,,6,971E-0], '"Q‘E‘@E 211 [''6.943E- B TR ESGT ]
Rho4 | [ 6.974E-@1. 7.033E-011 [ &.986E-01 . 7 .G43E-61] [ 6.94BE-01 . 7.061E-011

It is obvious, that the formula for .gl y§ 1s bad in all cases since the
superfluous constant g has not been removed in time . More surprising is,
that |94,produces ( although using 5 instead of 4 or 3 arithmetic opera-

tions ! ) the best result for all cases. It does so even if the error of
m3 is the largest one. This is a contradiction to the idea that the num-
ber of occurrences of a large width interval variable in a formula should
be minimized in any case.

Remark : For the choice of the interval ( acceleration of the fall )
see the last example. - Known fluid densities next to the results above
are those of petro ether ( 0.67kg/dm® ), benzine or hydrocyanic acid
(0.7 kg/dm each ), ether ( 0.73kg/dm’ ) and alcohol or acetone

( 0.79kg/dm® each ). If the fluid is no emulsion and the experimenter is
still alive, all results indicate benzine.

Hydrostatic Pressure in Open Reservoirs

The last example may help to illustrate why there is a need for
functions of type R —+=I(R) or even I(R)—w=TI(R),.

Consider a fluid of known den- Ps
sity @ in an open reservoir.
Let the bathometer be normed as 1
shown in the figure. Let Py be

the hydrostatic pressure at z = O,
Then follows for the hydrostatic
pressure

p(z)=pB+g*9*z' ceodaee
prBe'aolandg*gelalp F?
one has
p(z) €
with an

interval
hand side.

L20 6 al, 9o z
straight 1ine
on the right

<> gegrz=msg

§= 1¢1~z

Problem. Plot a diagram / calculate a table for a diver to show the
underwater pressure for bar ometric air pressures between 930mbar and
1070 mbar (HPa) and depths of water between Om and 100m. - Take into
account, that the density of natural water (depending upon its salt con-
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tent ) varies between 0.99kg/dm® and 1.03kg/dm® and that the accelera-
tion g of the fall differs in its value depending on the terrestrial
latitude

Latitude 0° 20° D 40° D 45° D 50° 556° 60° 90°

m/s? +1E-4]9.7805[9.7865(9,801879,8063(9.8108|9,.815119.8192(9.8322

D : Germany
( ¢ef. /GE/ ). - For practical reasons, use steps of 20 for the barome-
tric air pressure.

Solution.

10 ! INT INTERVAL P;PbiGiRhojZ;AnstiegsZuschlag | DEKLARATION

20 I INT 6:=[9.7804,9.83231 | FALLBESCHLEUNIGUNG
30 | INT Rho:=[.99,1.031] | DICHTE H20

40 { INT Anstieg=G*Rho ! GERADENANSTIEG
50 !

420 !

430 I INT Zuschlag:=Anstieg | GERADEN ZEICHNEN
440 Zuschlag(1)=Zuschlag(1)*100

450 Zuschlag(2)=Zuschlag(2)*182

460 FOR X=930 T0 1058 STEP 20

470 I INT Pb:=[X X+20@1

480 I INT P=Pb+Zuschlag

490 MOVE Pb(1),0 I LINKE ECKE

500 LINE TYPE 1

510 DRAW P(1),~100

520 MOVE P(2),-100 | RECHTE ECKE
530 LINE TYPE 4

540 DRAW PB(2),0

550 NEXT X

560 DUMP GRAPHICS #Kanal ,Adresse

570 END

( All parts of the program that do not use interval arithmetic have
been suppressed. )

Graphic result, The diagram is given on the next page.

A pearl-fisher will not reach a deepness of more than 35m. Assume a
barometric air pressure of 1000mbar, The diagram says that he will suf-
fer a water pressure of at most between 1320mbar and 1370mbar.

A man who uses a diving dress may reach 90m to 100m. According to
the diagram, he will find a water pressure of between 1860mbar and
2030mbar at that depth.

It might be interesting to plot one straight line interval for
PICARD and WALSH that reached in 1960 with their bathyscaph "Trieste"
the depth of 10912m. Since the air pressure of the two days experiment
may not be available, take [ 930,1070 ]mbar, the interval of all possi-
ble natural values. Otherwise take the interval observed during the
22nd and 23rd of January 1960 by the experimenters.
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For more examples see /T/.
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Remark : All the standard literature on interval mathematics needed in
this paper has been ommitted for the sake of shortness.





