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Abstract. 

We describe a new algorithm named Region Contraction Algorithm for 

solving certain nonlinear equations, and establish the convergence of 

the algorithm and give an error estimation. It is shown that this gene

ral theory includes all of present existing ball iterations as special 

cases. 

To find a zero of a quasi-strongly monotone mapping, which arises ofren 

from the field of differential equations, variational calculus and 

optimization etc., the authors [2] recently proposed a new algorithm 

called Region Contraction Algorithm (abbreviated RCA henceforth) in 

real Hilbert spaces. Stemming from T.E. Williamson's geometric estima

tion for fixed points of contractive mappings [3], the algorithm 

establishes a convergent iterative process which keeps well defined 

and automatically covers the errors by constructing a sequence of 

closed balls containing the zero set. Later on, proceeding in a com

pletely different view from the authors, Wu Yujiang and Wang Deren [4] 

rewrited our algorithm in the language of interval analysis, and also 

suggested a new globally convergent scheme in the case that F is 

strongly monotone. It showed the authors that the RCA is almost Nickel's 

Ball Newton Method [1] (abbreviated BNM henceforth) except for the 

difference of the class of mappings to which it applies. 

In this paper we develop a more general algorithm called stationary 

region contracting algorithm (abbreviated SRCA) with RCA, BNM and some 

other methods as its specializations. 
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In Section 1 we present the algorithm and give some basic properties 

in Section 2. In Section 3 we prove convergence of the algorithm and 

discuss some specializations in the last section. 

In what follows, we always let H be a real Hilbert space with inner 

product (.,.), and use B(x,r) to denote the closed ball with center x 

and radius r. 

1. Algorithm. 

Let D be a subset of H, B(b,d) c D a given closed ball with d > 0, and 

F: D c H ~ H a given nonlinear mapping. We want to find a zero of the 

mapping F in the ball B(b,d). Let us suppose that there exists a non

linear mapping g: B(b,d) ~ H and a nonnegative functional r:B(b,d) ~R+ 

such that for all x E B(b,d) 

r(x) ~ IIg(x) II (1 • 1 ) 
and 

N(F) c GX, (1 .2) 

where N(F) is the set of zeros of F in B(b,d) and Gx is qefined as 

Gx = B (x - g (x), r (x) ) . 

For any two closed balls B' and B", let <B' n B"> stand for the mini

mum-volume closed ball which contains their intersection if B ' n B" ~ ~, 

and <B' n Bit> = ¢ if B' n Bit = ¢. 

We develop our general algorithm SRCA as follows: 

I. Initial Step
 

Set BO = B(xO,rO) B (b,d) .
 

II. Continuation Step
 

Suppose that B(xk,r has been constructed; we then continue to
k) 
construct the next ball B in the following way:k+ 1 

II.1. Starting Step. If r = 0, then stop the algorithm at (*)k
 
when FX ~ 0, otherwise (**) when FX = O. If r ~ 0, then


k k k 
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calculate Gxk• 

11.2. Contraction Step. Stop the algorithm at (*) if GXk n Bo = ¢ ' 
otherwise set Bk + 1 = B(xk+ 1,rk+ 1) = <Gxk n Bk > .
 

II.3.Modification Step. Stop the algorithm at (*) if B nB = ¢ '
 k +
1 o 

otherwise set 

III. Return to II. with k := k+1. 

A continuation step 'from B to B for SRCA is shown in the followingk k+
12)figures (where H = R . 
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Remark. (1) It is easily seen (see Theorem 1 in next section) that 

the SRCA generates successively a sequence of closed balls which 

contain N(F), whose centers arelocated in B and whose radii decreaseO' 
step by step. Thus, the algorithm is always well defined, the error 

of computation is automatically covered, and we may expect to find 

N(F) . 

(2) If B' = B(c and B" are any two closed balls, and1,s1) = B(c2,s2) 
s1 ~ s2 > 0, then <B' n B"> can be represented by the following formu

la (see Lemma 2 in [ 3] and [ 1 ] ) : 

{¢
 if IIc, - c 2 11 > s1 +s2'
 
1 

2 2 ~ <B' n Btl> - B" if II c 1 - c 2 11 s (s1 -82 ) 2 , (1 .3) 

B(c,s) otherwise, 

where 

c = w1c1 + (1 -w = (1 -w E B' n B",1)cZ 2)c 1 +w2c 2 
1 1 

2 2 2 '2 2 2 2 -2 
s = (s2 -w1 IIc 1 -c2 11 ) = (51 -w2 IIc 1 -c2 11 ) , (1 .4) 

1 2 2 2
"2(1 - (s1 -s2)/ IIc 1 -c2") 1 -w2 • 

Particularly, if <B' n B"> B(~,n) :f: ¢, then ~ E B' n B" and 

n ~ min ( s 1 ' s 2) · 

(3) A natural idea is that one always takes B <B n B in thek+ 1 k+ 1 O> 
Modification Step of II.3., but a simple analysis shows that this mo

dification affects only weakly the convergence of the algorithm, and 

hence, there is no need to do so for saving time of computation. 

2. Basic Properties. 

Let {B be the sequence of closed balls generated by the algorithm,k} 
and for convenience, we define B = B for all j > k if the algorithmj k 
stops at (**) in the (k+1)-th step. 
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Theorem 1. 

The following statements are all valid: 

( 1) xk E BO for each k • 

(2) N(F) C Bk for each k . 

(3) If the algorithm stops in the (k
O

+1)- t h step, then either N(F) ¢ 

if (*) appears or N(F) {x*} if (**) appears. 

(4) If N(F) ~ ¢ and r* = lim 
(k) 

r k 0, then xk converges to x*, the 

unique element of N(F), and 

IIxk - x* II ~ r k V k. ~ o. 

Proof. (1) and (2): It is obvious for k = o. Suppose that the con

clusions hold for some k > 0 and B can be produced, then by (1 .2)k+ 1 
N(F) C GXk n Bk C <Gxk n Bk > If x E BO' then Bk+ 1 == Bk+ 1. k + 1 Bk+ 1 
and = by the definition of the algorithm; otherwise,x k+ 1 xk+ 1 

= <Bk + 1 n B > ' and hence N(F) c n B c and EBk+ 1 O
Bk + 1 O 

Bk+ 1 x k+ 1 Bk+ 1 
n BO C BO. Therefore, the conclusion also holds for the case k+1. By 

induction, (1) and (2) are valid. 

(3): If the algorithm stops at (*), then N(F) = ¢ because it comes 

about if and only if one of the following cases occurs: either Bk o 
{xk } c BO and FXk ~ 0, or GXk n BO = 0 or Bk +1 n BO = ¢. If the 
000 0 

algorithm stops at (**), then Bk {x } and FX 0, i.e.,k k000 

N(F) = {x*} with x* = x •k o 
(4): If N(F) ~ ¢, the algorithm is never stopped at (*), so {r is

k} 
infinite. Therefore, the result is direct consequence of (2) and (3). 

Theorem 2. 

The sequence {r decreases in the following wayk} 

2s {rk / 2~ if IIg(xk ) II 2 +r(xk ) 2 '~ r k 
(2 • 1 ) 

2 2 ~ 
(1 - r k/ (4l1g(xk) II » 2rk otherwise 

and 

(2.2) 
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Proof. If IIg (x II + r (xk) s r k ' then Bk + 1 = <Gxk n Bk >

k) 
(1.3) and hence (1.1) yields that 

-2 2 2 2 2
2r(x II g (xk) II +r (xk) ~ r2rk+ 1 k) ~ k, 

1 
2 2 2

that is, r k + 1 
r 2 '2. If II g (x II +r (x > then it follows~ k/ k) k) r k,

2 2 2
from (1 . 1 ) that Ilg (x II ~ Irk - I, so (1. 1 ) and (1.3)-(1.4)

k) 
r (xk) 

give that 

2 2 2 22 21.. 
r [r - (1Ig(x II + r -r(xk) ) /(2 Ilg(xk) II) ] 2

k+ 1 k k) k 

2 2 2 1 2 2 1.. 
~ [r - (r II )]'T r » 2

k k/(21Ig(xk) k(1 -rk/(4I1g(xk) II 

therefore, (2.1) follows. 

Furthermore, if xk + 1 E BO' then because Bk + 1 = Bk + 1 . Ifr k+ 1 = r k+1 
E BO' then IIxk + 1- b l l > d and = n BO> ' and hence onex k+ 1 Bk + 1 <Bk+ 1 

gets 

from Lemma 3 in [2]. Thus, the proof of (2.2) is completed. 

A simple consequence of Theorem 2 is that r* lim r always existsk(k)
if the algorithm is never stopped at (*). 

Theorem 3. 

For each pair m ~ n > 0, {Bk } satisfies that 

m-1 2
! IIx k +1 - xk II • 

k=n 

Proof. Obviously, it is only necessary to prove the following ine

quality 

(2.3) 

for each k ~ a in the case that Bk + can be produced. We complete the1 
proof considering two cases: 
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(1) x E B then Bk+ 1 = Bk + 1 = <Gxk As done in the proofk+ 1 O' n Bk>.
 
2


of Theorem 2, II g (x 11 + r (x 2 s r~ implies that B + = <Gx n Bk >
k) k) k 1 k 

GX and hencek 

(2.4) 

2 2 2 2
Similarly, f r om IIg(x II + r(x > r we get that Ilg(x II ~ k) k) k, k)2 2 
~ Irk -r(x I, so (1.3)-(1.4) gives directly thatk) 

Therefore, (2.3) holds in this case. 

(2) then Bk + 1 <B k + 1 n BO> . Since ~ ~ d byxk + 1 E BO' r k+ 1 r k r O 
Theorem 2, it follows that 

1 
- 2 -2 2"

Ilxk+1-bll> d > (d -rk+ 1) 

and hence we conclude from (1.3)-(1.4) that x =w'kb + (1-wk )x andk+ 1 k+ 1 

(2.5) 

where 

1 2 -2 2 
wk = 2"(1-(d Ilxk+ 1 -bll ). (2.6)-rk+1)/ 

Noting the following identity 

and the fact that (2.4) indicates that 

obtain 

2 2 2 -2 - 2
Ilxk+1-xkll ~ wkd +(1-wk) (rk -rk+ 1 -wk(1-wk)llxk+ 1 -bll 

2 -2 -2 2 -2 - 2 
(1-wk) (rk -rk+1)+wkrk+1+wk((d -rk+1)/lIxk+ 1-bll 

-1+w IIxk + _b11 
2 

k) 1 

2 -2 2 2
(1-wk) r k + (2wk -1 ) r k+ 1-wk IIxk+1 - b II • (2. 7) 
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Combining (2.5) with (2.7), we therefore know a sufficient condition 

for (2.3) holds is the following 

or equivalently, 

(2.8) 

But from (2.6), 

2 2 -2
IIxk+ 1 -bll -d +rk+ 1 

so (2.8) is equivalent to 

-2 + d 2 2 - 2 
~ - b II ·r k+ 1 r k + II x k+ 1 

Consequently, the validity of (2.3) immediately follows from r ~ r kk+ 1 
and d ~ Ilxk+ 1 -bll. 

Remark. Theorems 1-3 generalize Theorems 1-3 of [2]; for a nonexpan

sive mapping T.E. Williamson, Jr. has proved a similar estimation as 

in Theorem 3 (see Theorem 6 in [3]). 

Using the parameter A E [0,1] defined by 

A = Sup{r(x)/llg(x)ll; x E B and g(x) ~ O}O 

we characterice now the algorithm in ~nother way. 

Theorem 4.
 

The sequence {r decreases in the following form
k} 

2Proof. For any possible k ~ 0, if II g (xk) 11 + r (x 2 ~ r~, then
k) 

Ilg(xk) II ~ and hence r k + ~ r(xk) = [I ~ Ark;r k, 1 (r(xk)/I[g(xk) II) I[g(xk) 
2 2 2 2 2 1..2if Ilg(xk) II + r(xk) > then Ilg(~)[1 ~ Irk -r(x 1 and byr k, k) 

(1.3)-(1.4) 
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2 2 2 2 2 
r k - [( II g (x ) II + r k - r (x ) )/ ( 2 II g (x ) II )1 · (2.9)

k k k 

Hence, from the simple inequality 2ab ~ a+b, it follows that 

2 21. 2 2 2
2r ) II - r(x ) )2 ~ r + (1Ig(x ) II - r(x ) );

k(llg(xk k k k k 

therefore we conclude from (2.9) that 

1 
-2 2 2 2 2" L 
r k + 1 ~ r k - [2 r k (IIg (xk ) II - r (xk ) ) / (2 II g (xk ) II)] 

2 2 2 2
(r (xk ) / II g (xk ) II) r k ~ Ark' 

i.e., r ~ Ark. Thus, the conclusion immediately follows from thek+ 1 
fact ~ rk +1 •r k+ 1 

3. Convergence 

We now establish the convergence of the SRCA. In the first result,
 

a generalization to Theorem 2 of [2], we only presuppose the bounded


ness of g.
 

Theorem 5 (Bounded Convergence) .
 

If g is bounded on BO and N(F) 1 ¢, then x converges to x*, the uni
k 
que element of N(F), in the following way 

II xk - x* II ~ r k -+ 0 as k -+ 00. 

Proof. By (4) of the Theorem 1, it is sufficient to show r* =limr o.
k 

= 

We assume the contrary, namely that r* > 0 and the algorithm never 

stops. Since g is bounded on there is a constant M > r* such thatBO' 

It follows from E B that 2 II g (x II ~ M for all k z O. Thus, wex k O k) 
have for all k ~ 0 that 
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and	 hence from Theorem 2 that 

(3 .1 ) 

where 

1 2 ~ 
q	 Max { 2-2 , (1 - r */M ) 2} < 1. 

Taking the limit as k ~ ~, we get the obvious contradiction: 

r* ~ qr* < r* which shows that r* must be zero. 

Generally speaking, some additional conditions are necessary for 

guaranteeing the sequence {Bk } shrink to N(F) . We below consider a 

important particular case in which g and r are of the following forms 

g(x) u(x)P(Fx)	 (3.2) 

r(x) v (x) IIP (Fx) II ,	 (3.3) 

where u and v are nonnegative functionals on B and P: H ~ H is aO' 
mapping with 0 as its unique zero. 

Recall that a mapping T: C c H ~ H is said to be closed if its graph
 

{(x,Tx) E HxH; x E C} is closed in the product space HxH.
 

Theorem 6 (Global convergence) •
 

If A < 1, then {B shrinks as k ~ ~ to a singleton containing N(F)
k} 
provided the algorithm never stops at (*). In addition, if the c~sed 

mapping PF restricted to B is closed (especially, continuous), andO 

t = Inf {v(x) i x E BO and u(x)P(Fx) ~ O} > 0 (3.4) 

then 

(1)	 N(F) ¢ iff the algorithm terminates at (*); 

(2)	 N(F) ~ ¢ iff the algorithm never terminates at (*), and in this 

case x converges to N(F) = {x*} with the following estimationk 



219 

Proof. If A < 1 and the algorithm never stops at (*), then {Bk} is 

infinite, and r k ~ 0 as k ~ 00 by Theorem 4. Also, since 

Ilx k+ 1 -xkll ~ r ~ dAk by (2.3) and Theorem 4,{xk} is a Cauchy sequenk 
ce so that it is convergent, and hence the first part follows. 

For the last part, by the definition of the algorithm and {B wek}, 
only need to prove the sufficiency of (2). Suppose that the algorithm 

never stops at (*), then {Bk} must be infinite. If the algorithm stops 

at (**), the conclusion follows directly from (4) of Theorem 1, so it 

remains to discuss the case that the algorithm never stops. 

For any k ~ 0, B'k+1 = <Gxk n Bk> #- ¢ implies that Ilg{xk) II ~ r{xk)+rk. 
It follows from (3.2)-{3.3) that 

-1and hence r{x ~ A{1-A) r Thus, we conclude from (3.4) thatk) k. 

which shows P{Fx ~ 0 as k ~ 00. On the other hand, by the first partk) 
of the Theorem, there exists an x* E BO such that x k ~ x* as k ~ 00 and 

we have that P{Fx*) = 0 since PF is closed,hence x* E N{F) because 

o E H is the unique zero of P. The uniqueness of x* is obvious. 

Remark. Theorem 6 is a generalization of a main result established by 

K. Nickel for his BNM (see Theorem 1 in [1]). 

It should be noted that in application the functionals u and v in 

(3.2)-{3.3) can both often taken to be positive and constant. In this 

case, the assumption (3.4) is naturally satisfied. 
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4. Specializations 

In this section we specify the SRCA and its convergent properties to 

some concrete classes of nonlinear ~appings. 

4.1 Nickel's Class of Functions r and His BNM. 

The class of functions 7, introduced by K.L. Nickel [1], is the set 

Rnof mappings f: B ~ which satisfy the following property: For eachO 
set C, of the form C B(x,r) n BO with x E BO and r ~ 0, there exists 

a regular nxn matrix A = A(C) and a real number A = A(C) such that 

o ~ A < 1 and for all x,y E C 

IIx-y-A(f(x) -f(y))II~ A IIA(f(x) -f(y))II. (4.1) 

It is known that f is a subset of the Lipschitz bicontinuous mappings 

and for such a class Nickel established his BNM. We observe that every 

f in T obviously satisfies the hypotheses (1.1)-(1.2) of Section 1 

for the choice 

u(x) 1, v (x) A, and P A (4.2) 

in (3.2)-(3.3), and hence Nickel's BNM and his Theorem 1 on global 

convergence are proper specializations of the SRCA and Theorem 6 of 

this paper. 

Based on the approach here, however, Nickel's class 7 can now clearly 

be amplified so that the BNM is applicable and convergence still holds. 

E.g., suppose that N(f) ~ ¢ and allow A ~ 1 and (4.1) holds just for 

all y E N(f), then (1.1)-(1.2) are also satisfied and hence the Theo

rems of Section 2-3 are all valid for the BNM. 

4.2 Quasi-contractive Mappings and Williamson's Geometric Estimation 

Method. 

A mapping T: D ~ H is said to be contractive if, there exists a positi

ve constant a < 1 such that for all x,y E D 
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II Tx - Ty II ~ <X IIx - y 11 (4 .3) 

if the inequality holds just for all y E F(T), the fixed point set of 

T, we call such a T quasi-contractive mapping (in what follows, we 

always use "quasi" in the same way to indicate this restriction of y) . 

2 -1 2 -1Let t = <X (1 - <X) , 0 = (1 - <X) . T. E. Williamson, Jr. [3] has esta

blished the global estimation 

F(T) c B(x - cS (x -Tx), E: IIx -Txll) v x E: D (4.4) 

for a contractive mapping T, and in virtue of the estimation, designed 

a geometric estimation algorithm (abbreviate GEA) to construct a fixed 

point of T. Except for the difference of the choice of the initial 

point, his algorithm corresponds basically to the SRCA,namely when 

u(x) =~, v(x) = E: in (3.2)-(3.3). But, his algorithm is not globally 

convergent. From the discussion here, cf. Theorem 6, apparently, the 

defect has been completely removed. 

All conclusions for a contractive mapping can naturally extend to a 

quasi-contractive one, for the estimation (3.4) is really true for the 

latter. However, it is easily shown that the latter class of mappings 

is much larger than the first. 

4.3 Quasi-strongly Monotone Mappings and the Authors' RCA. 

A mapping F: D ~ H is said to be strongly monotone if, there exists a 

constant <X > 0 such that for all x,y E D 

(Fx - Fy, x - y) ~ <X IIx - y II 2 
(4.5) 

holds. We call the mapping F monotone if the inequality holds for 

<X = O. For the equation Fx 0, with F a quasi-strongly monotone 

mapping, we have really shown all of the convergence properties (ex
-1cept for Theorem 6) of the SRCA with the choice u(x) = v(x) = (2<X) 

and P = I in (3.2)-(3.3). Especially, it is emphasized that, by the 

boundedness of a monotone mapping, the Bounded Convergence Theorem 

indicates that the SRCA is unconditional and always locally convergent 

for a finite and infinite dimension space, respectively. 



222 

In order to get the global convergence, we assume that F is also 

Lipschitzian, i.e., for some constant L > 0, IIFx -Fyll ~ L Ilx -yll, and 

specify the algorithm by 

1 -2 -2 1..
u(x) = a- and v(x) (a - L ) 2. 

Then the SRCA is globally convergent. To see this, notice that,
 

A = (1-cx 2L-2) ~ < 1, by the defini tion of A, and every xED and y E N(F) ,
 

the quasi-strongly monotonicity and L-continuity of F gives that
 

2 2 2 2 -2 2
Ilx -aL- Fx -yll = Ilx -yll - 2aL (Fx, x-y) + (aL IIFx -Fyll) 

2
[Ix-yll 

2Fxwhich shows that the mapping T defined by Tx = x -aL- is really a 

contractive mapping with modulus of contractivity A, so it immediately 

follows from 4.3 that 

N(F) c B(x-g(x),r(x)), 

i.e., the hypotheses (1.1)-(1.2) and assumptions of Theorem 6 are all 

satisfied. 

4.4 Strictly Pseudo-contractive Mappings. 

A mapping G: D ~ H is said to be strictly pseudo-contractive if, there 

is a positive constant a < 1 such that for all x,y E D 

IIGx _ Gy 112 ~ IIx _y\\2 + a II (x -Gx) - (y -Gy) 11 2 . (4.6) 

It is known [6] that G is strictly pseudo-contractive iff F I - G is 

monotone with the following property 

1 2
(Fx -Fy, x -y) ~ "2(1 - a) IIFx -Fyll • (4.7) 

So, we consider the latter class here, where t (1- 13) is replaced by a > o. 

Let F be a monotone mapping with the property (4.7) and assume that F
 

satisfies the following quasi-expansive condition
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IIx - y II .s L IIFx II Y x E BO' Y E N(F) . (4.8)
 

We then easily show that the SRCA with the specialization 

1 

g(x) = a- 1L 2px and R(x) = L2 ((a 2 -L-2» 2" IIFxl1 

is globally convergent (the reasoning is almost similar to the pre

vious one). 

1 

Remark. Under the.lassumption that a < L < (~(1 + 5»"2 a in Subsection 

4 • 3 and a < L ~ 2 2 a in Subsection 4.4, Wu and Wang [4] specify the 
- 2 -2 -2 ~ 

SRCA by setting u(x) aiL, v(x) = (a -L )2 , P = I and u(x) = a, 
1 

v(x) = ((L 2 _( 2 ) 2 , P I, respectively. Clearly, our specializations 

here not only abstain from their restrictions onL and a, but also 

increase the speed of convergence greatly. 

Some more sophisticated specializations can also be done, for example, 

see	 [7]. 
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