
Chapter 4

Think Globally, Act
Locally

Stan Wagon

In order to find all common points, which are the so-
lutions of our nonlinear equations, we will (in general)
have to do neither more nor less than map out the full
zero contours of both functions. Note further that the
zero contours will (in general) consist of an unknown
number of disjoint closed curves. How can we ever hope
to know when we have found all such disjoint pieces?
— W. H. Press et al. in “Numerical Recipes” [PTVF92]

Problem 4

What is the global minimum of the function

esin(50x) + sin(60ey) + sin(70 sinx) + sin(sin(80y))

− sin(10(x+ y)) + (x2 + y2)/4 ?

4.1 A First Look
Let f(x, y) denote the given function. On a global scale, f is dominated by the
quadratic term

(
x2 + y2

)/
4, since the values of the other five summands lie in the

intervals [1/e, e], [−1, 1], [−1, 1], [− sin 1, sin 1], and [−1, 1], respectively. Thus the
overall graph of f resembles a familiar paraboloid (Figure 4.1). This indicates that
the minimum is near (0, 0). But a closer look shows the complexity introduced by
the trigonometric and exponential functions. Indeed, as we shall see later, there are
2720 critical points inside the square [−1, 1] × [−1, 1]. From this first look, we see
that a solution to the problem breaks into three steps:

1. Find a bounded region that contains the minimum.

2. Identify the rough location of the lowest point in that region.

77

78 Chapter 4. Think Globally, Act Locally

�20

0

20x
�20

0

20

y
0

100

200

300

�20

0

20x

�0.3

0

0.3
x

�0.3

0

0.3

y

�3

0

3

6

�0.3

0

0.3
x

Figure 4.1. Two views of the graph of f(x, y). The scale of the left-hand
view masks the complexity introduced by trigonometric and exponential terms. It is
this complexity that makes finding the global minimum a challenge.

3. Zoom in closer to pinpoint the minimum to high precision.

Step 1 is easy. A quick computation using a grid of modest size yields the
information that the function can be as small as −3.24. For example, one can look
at the 2601 values obtained by letting x and y range from −0.25 to 0.25 in steps of
0.01.

A Mathematica session. For convenience later we define f so that it accepts as
inputs either the two numeric arguments or a single list of length two.

f�x ,y � �� �Sin�50 x� � Sin�60 �y� � Sin�70 Sin�x�� � Sin�Sin�80 y���

Sin�10�x � y	� � �x2 � y2�/4

f��x ,y �� �� f�x,y�

Min�Table�f�x,y�, �x,�0.25,0.25,0.01�, �y,�0.25,0.25,0.01���

�3.246455170851875

This upper bound on the minimum tells us that the global minimum must
lie inside the circle of radius 1 centered at the origin, since outside that circle the
quadratic and exponential terms are at least 1/e+1/4 and the four sines are at least
−3−sin 1, for a total above −3.23. And step 3 is easy once one is near the minimum:
standard optimization algorithms, or root-finding algorithms on the gradient of f ,
can be used to locate the minimum very precisely. Once we are close, there is no
problem getting several hundred digits. The main problem is in step 2: How can be
pinpoint a region that contains the correct critical point, and is small enough that

4.2. Speedy Evolution 79

�1 �0.5 0 0.5 1

�1

�0.5

0

0.5

1

Figure 4.2. A density plot of f(x, y) with increasing values going from
black to white. The local minima are shown as black dots (693), the local maxima
as white dots (667), and the saddles (1360) as gray dots. There are 2720 critical
points in this square, computed by the method of §4.4.

it contains no other? Figure 4.2, a contour plot of f(x, y) with the contour lines
suppressed, shows what we are up against.

In fact, a slightly finer grid search will succeed in locating the proper mini-
mum; several teams used such a search together with estimates based on the partial
derivatives of f to show that the search was fine enough to guarantee capture of
the answer. But we will not discuss such methods here, focussing instead on general
algorithms that do not require an analysis of the objective function.

4.2 Speedy Evolution
While a grid search can be effective for this particular problem (because the critical
points do have a rough lattice structure), it is easy to design a more general search
procedure that uses randomness to achieve good coverage of the domain. An effective
way to organize the search is to use ideas related to evolutionary algorithms. For
each point in the current generation, n random points are introduced, and the n best
results of each generation (and its parents) are used to form the new generation. The
scale that governs the generation of new points shrinks as the algorithm proceeds.

Algorithm 4.1. Evolutionary Search to Minimize a Function.

Inputs: f(x, y), the objective function;
R, the search rectangle;
n, the number of children for each parent, and the number of points in the

80 Chapter 4. Think Globally, Act Locally

new generation;
ε, a bound on the absolute error in the location of the minimum of f in R;
s, a scaling factor for shrinking the search domain.

Output: An upper bound to the minimum of f in R, and an approximation to its
location.

Notation: parents = current generation of sample points, fvals = f -values for
current generation.

Step 1: Initialize: Let z be the center of R; parents = {z}; fvals = {f(z)};
{h1, h2} = side-lengths of R.

Step 2: The main loop:
While min(h1, h2) > ε,

For each p ∈ parents, let its children consist of n random points in
a rectangle around p; get these points by using uniform random
x and y chosen from [−h1, h1] and [−h2, h2], respectively;

Let newfvals be the f -values on the set of all children;
Form fvals ∪ newfvals, and use the n lowest values to determine

the points from the children and the previous parents that will
survive;

Let parents be this set of n points; let fvals be the set
of corresponding f -values;

Let hi = s · hi for i = 1, 2.
Step 3: Return the smallest value in fvals, and the corresponding parent.

This algorithm is nicely simple and can be programmed in just a few lines in
a traditional numerical computing environment. It generalizes with no problem to
functions from Rn to R. The tolerance is set to 10−6 in the Mathematica code that
follows because the typical quadratic behavior at the minimum means that should
give about 12 digits of precision of the function value. Note that it is possible
for some children to live outside the given rectangle, and therefore the final answer
might be outside the rectangle. If that is an issue, then one can add a line to restrict
the children to be inside the initial rectangle.

A Mathematica session. Some experimentation will be needed to find an appro-
priate value of n. We use n = 50 here, though this algorithm will generally get the
correct digits even with n as low as 30.

h � 1
gen � �f�#�,#�&/@��0,0��

While�h > 10�6,

new � Flatten�Table�#�2� � Table�h�2 Random�� � 1	,�2��,�50��&/@gen,
1�
gen � Take�Sort�Join�gen,�f�#�,#�&/@new��,50�

h � h/2�

4.2. Speedy Evolution 81

gen�1�
	�3.30686864747396, 	�0.02440308163632728, 0.2106124431628402

Figures 4.3 and 4.4 use a logarithmic scale to show the steady convergence of
the points in each generation to the answer. Figure 4.4 shows how the points swarm
into the correct one from all directions.

5 10 15 20 251
Generation

10�1

10�6

10�11

10�16

Error

Figure 4.3. The base-10 logarithm of the f-value error for each point in
each generation of a genetic search, in a run with n = 50 and tolerance of 10−8 in
the x-y coordinates. The convergence to the correct result is nicely steady.

For more confidence one would compute a sequence of values as n increases.
When n = 70, the algorithm solves the problem with high probability (992 successes
in 1000 runs). This approach has the virtue of being easy to program and very fast,
and so long as the resolution is fine enough to find the correct local minimum, it
will converge to the answer even if one requests many digits (and uses appropriate
working precision). Of course, it comes with no guarantee, and repeated trials will
usually be necessary to gain confidence in the correctness of the result (the next
section will present an algorithm that eliminates the uncertainty inherent in a ran-
dom search). Searches such as this have limitations — a move to higher dimensions
puts stress on the number of search points; a microscopic downward spike would be
impossible to find — but such issues are problematic for just about any optimization
method. Given the speed and minimal programming effort, this genetic approach is
a fine tool for an initial investigation into an optimization problem.

An obvious way to speed things up is to switch at some point to a method
that is designed to quickly converge to the nearest local minimum. It can be hard
to decide, in an automated fashion, when one is close enough to the right mini-
mum. However, for the problem at hand, switching to either a minimization routine
(Brent’s method is popular) or, better, a root-finder that finds the zero of the gra-
dient speeds things up a lot if one wants a large number of digits. Once we have a
seed that we believe in, whether from a random search or a more reliable interval
algorithm as in §4.3, using Newton’s method on the gradient is very fast and yields
10 000 digits in under a minute (see Appendix B).

82 Chapter 4. Think Globally, Act Locally

Figure 4.4. Survival of the fittest: the results of a genetic algorithm with a
high working precision, and accuracy goal of 10−13; the computation runs through 45
generations with 50 members of each. The scale is logarithmic, with each gray ring
representing another power of 10 away from the true minimum location (center).
Points of the same hue correspond to the same generation, so the innermost red
points are the last generation (28th). They are within 10−6 of the true best; the
point with the lowest f-value (which is not the point closest to the answer!) is the
one atop a black disc. The outermost points — the first generation — have f-values
between −1.3 and 4.2. But by the 9th generation all points are in the vicinity of
the correct critical point. The yellow discs mark the location of the 20 lowest local
minima; the clustering near those points at the early generations is visible.

If one wants to use a random search, there are some canned algorithms that can
be used. For example, the NMinimize function in Mathematica can solve a variety
of optimization problems, including problems with constraints and in any number
of variables. But there are several methods available for it, and several options for
each, so, as with all complicated software, it can be tricky finding a combination
that works. Simulated annealing and the Nelder–Mead method are available, but
they do not seem very good on this sort of continuous problem (they tend to end up
at a nonglobal minimum). An evolutionary algorithm called differential evolution
does work well (for more on this method see §5.2), and will reliably (85 successes
in 100 random trials) solve the problem at hand when called in the following form.

4.3. Interval Arithmetic 83

A Mathematica session.

NMinimize��f�x,y�,x2 � y2 � 1�,�x,y�,

Method � �"DifferentialEvolution","SearchPoints" � 250��

�	3.3.3068686474752402,

�x � 	0.024403079743737212,y � 0.21061242727591697��

This gives 14 digits of the answer, and cause the objective function to be evaluated
only about 6,000 times (the simpler evolutionary algorithm presented earlier can
get 15 digits with about 120,000 function evaluations).

Another approach is to use a more comprehensive global optimization package.
One such, based on random search and statistically based reasoning, is MathOpti-
mizer, a commercial package for Mathematica developed by Janos Pintér.1

4.3 Interval Arithmetic
Let R be the square [−1, 1] × [−1, 1], which we know must contain the answer.
Random search methods can end up at a local but nonglobal minimum; the best
algorithm will be one that is guaranteed to find the global minimum. Such an
algorithm arises from a subdivision process. Repeatedly subdivide R into smaller
rectangles, retaining only those rectangles that have a chance of containing the
global minimum. The identification of these subrectangles can be done by estimating
the size of the function and its derivatives on the rectangle. This point of view
is really one of interval arithmetic. In interval arithmetic, the basic objects are
closed intervals [a, b] on the real line; extended arithmetic is generally used, so that
endpoints can be ±∞. One can design algorithms so that elementary functions
can be applied to such intervals (or, in our case, pairs of intervals), and the result
is an interval that contains the image of the function on the domain in question.
However, the resulting interval is not simply the interval from the minimum to the
maximum of the function. Rather it is an enclosing interval, defined so as to make
its computation easy and fast; it well generally be larger than the smallest interval
containing all the f -values.

For example, it is easy to determine an enclosing interval for sin([a, b]): just
check whether [a, b] contains a real number of the form π

2 + 2nπ (n ∈ Z). If so,
the upper end of the enclosing interval is 1; if not, it is simply max(sin a, sin b).
Finding the lower end is similar. The exponential function is monotonic, so one
need look only at the endpoints. For sums, one follows a worst-case methodology
and adds the left ends and then the right ends. So if g(x) = sinx+ cosx, then this
approach will not yield a very tight result, as [−2, 2] is only a loose bound on the
actual range of g, [−

√
2,
√

2]. This phenomenon is known as dependence, since the
two summands are treated as being independent, when they are not. Nevertheless,
as the intervals get smaller and the various pieces become monotonic, the interval
computations yield tighter results. Products are similar to sums, but with several
cases. There are several technicalities that make the implementation of an interval

1http://is.dal.ca/~jdpinter/

84 Chapter 4. Think Globally, Act Locally

arithmetic system tedious and difficult to get perfectly correct: one critical point
is that one must always round outwards. But Mathematica has interval arithmetic
built-in, and there are packages available for other languages, such as IntpakX2 for
Maple, Intlab3 for Matlab, and the public-domain smath library4 for C. Thus one
can use a variety of environments to design algorithms that, assuming the interval
arithmetic and the ordinary arithmetic are implemented properly, will give digits
that are verified to be correct. For the algorithms we present here, we will assume
that a comprehensive interval package is available.

One simple application of these ideas is to the estimation exercise used in §4.1
to ascertain that the square R contains the global minimum. The interval output
of f applied to the half-plane −∞ < x � −1 is [−3.223,∞], and the same is true if
the input region — the half-plane — is rotated 90◦, 180◦, or 270◦ around the origin.
This means that in these four regions — the complement of R — the function is
greater than −3.23, and so the regions can be ignored. Here is how to do this in
Mathematica, which has interval arithmetic implemented for elementary functions.

A Mathematica session.

f�Interval���,�1.��,Interval���,���

Interval���3.223591543636455,���

Now we can design an algorithm to solve Problem 4 as follows (this approach
is based on the solution of the Wolfram Research team, the only team to use interval
methods on this problem, and is one of the basic algorithms of interval arithmetic;
see [Han92, Chap. 9] and [Kea96, §5.1]). We start with R and the knowledge that
the minimum is less than −3.24. We then repeatedly subdivide R, retaining only
those subrectangles T that have a chance of containing the global minimum. That
is determined by checking the following three conditions. Throughout the interval
discussion we use the notation h[T] to refer to an enclosing interval for {h(t) : t ∈ T}.

(a) f [T] is an interval whose left end is less than or equal to the current upper
bound on the absolute minimum.

(b) fx[T] is an interval whose left end is negative and right end is positive.

(c) fy[T] is an interval whose left end is negative and right end is positive.

For (a), we have to keep track of the current upper bound. It is natural to
try condition (a) by itself; such a simple approach will get one quickly into the
region of the lowest minimum, but the number of intervals then blows up because
the flat nature of the function near the minimum makes it hard to get sufficiently
tight enclosing intervals for the f -values to discard them. The other two conditions
arise from the fact that the minimum occurs at a critical point, and leads to an
algorithm that is more aggressive in discarding intervals. Conditions (b) and (c)
are easy to implement (the partial derivatives are similar to f in complexity) and

2http://www.mapleapps.com/powertools/interval/Interval.shtml
3http://www.ti3.tu-harburg.de/~rump/intlab/
4http://interval.sourceforge.net/interval/C/smathlib/README.html

4.3. Interval Arithmetic 85

the subdivision process then converges quickly to the answer for the problem at
hand. While a finer subdivision might sometimes be appropriate, simply dividing
each rectangles into four congruent subrectangles is adequate.

In the implementation we must be careful, as it is important to always improve
the current upper bound as soon as that is possible. In the algorithm that follows,
this improvement is done for the entire round of same-sized rectangles when a1

is updated. The algorithm is given here for the plane, but nothing new is needed
to apply it to n-space; later in this section we will present a more sophisticated
algorithm for use in all dimensions.

Algorithm 4.2. Using Intervals to Minimize a Function in a Rectangle.

Assumptions: An interval arithmetic implementation that works for f , fx, and fy

is available.

Inputs: R, the starting rectangle;
f(x, y), a continuously differentiable function on R;
ε, a bound on the absolute error for the final approximation to the lowest

f -value on R;
b, an upper bound on the lowest f -value on R, obtained perhaps by a pre-

liminary search;
imax, a bound on the number of subdivisions.

Output: Interval approximations to the location of the minimum and the f -value
there, the latter being an interval of size less than ε (or a warning that the maximum
number of subdivisions has been reached). If the global minimum occurs more than
once, then more than one solution will be returned.

Notation: R is a set of rectangles that might contain the global minimum; a0 and
a1 are lower and upper bounds, respectively, on the f -value sought, and an interior
rectangle is one that lies in the interior of R.

Step 1: Initialize: Let R = {R}, i = 0; a0 = −∞, a1 = b.
Step 2: The main loop:

While a1 − a0 > ε and i < imax:
Let i = i+ 1;
Let R = the set of all rectangles that arise by uniformly dividing each

rectangle in R into 4 rectangles;
Let a1 = min(a1,minT∈R(f [T]));
Check size: Delete from R any rectangle T for which the left end of

f [T] is not less than a1;
Check the gradient: Delete from R any interior rectangle T for which

fx[T] does not contain 0 or fy[T] does not contain 0;
Let a0 = minT∈R(f [T]).

Step 3: Return the centers of the rectangles in R and of the f -interval for the
rectangles in R.

86 Chapter 4. Think Globally, Act Locally

Appendix C.5.3 contains a bare-bones implementation in Mathematica, in the
simplest form necessary to determine 10 digits of the minimum (both the checking
of the number of subdivisions and the distinction involving interior squares are
suppressed). Appendix C.4.3 also has code that does the same thing using the Intlab
package for Matlab. Moreover, there are self-contained packages available that are
devoted to the use of interval algorithms in global optimization; two prominent
ones are COCONUT5 and GlobSol6, both of which solve this problem with no
difficulty. The Mathematica version of the algorithm takes under two seconds to
solve Problem 4 completely as follows.

A Mathematica session.

LowestCriticalPoint�f�x,y�,�x,�1,1�,�y,�1,1�,�3.24,10�9�

		�3.306868647912808, �3.3068686470376663
,

		�0.024403079696639973, 0.21061242715950385

A more comprehensive routine, with many bells and whistles, is available
at the web page for this book. That program includes an option for monitoring
the progress of the algorithm (including the generation of graphics showing the
candidate rectangles) and for getting high accuracy. A run with the tolerance ε set
to 10−12 takes only a few seconds (all timings in this chapter are on a Macintosh G4
laptop with a one GHz CPU) and uses 47 subdivision rounds (iterations of the main
While loop). The total number of rectangles examined is 1372; the total number of
interval function evaluations is 2210, and the numbers of candidate rectangles after
each subdivision step are:

4, 16, 64, 240, 440, 232, 136, 48, 24, 12, 12, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4

Thus we see that at the third and later subdivisions, some subrectangles were dis-
carded, and after 11 rounds only a single rectangle remained: it was then subdi-
vided 35 times to obtain more accuracy. The interval returned by this computation
is −3.3068749

56, which determines 12 digits of the answer (its midpoint is correct to
16 digits). Figure 4.5 shows the candidate rectangles at the end of each of the first
12 subdivision steps.

As with the random search of Algorithm 4.1, an obvious way to improve
this basic algorithm is to switch to a rootfinder on the gradient once one has the
minimum narrowed down to a small region. But there are many other ways to
improve and extend this basic interval subdivision process and we shall discuss
those later in §4.5 and §4.6.

4.4 Calculus
A natural idea for this problem is to use the most elementary ideas of calculus and
try to find all the critical points — the roots of fx = fy = 0 — in the rectangle R;

5http://www.mat.univie.ac.at/~neum/glopt/coconut/branch.html
6http://www.mscs.mu.edu/~globsol/

4.4. Calculus 87

Bound � �3.24 Bound � �3.24 Bound � �3.24 Bound � �3.2757

Bound � �3.24 Bound � �3.24 Bound � �3.24 Bound � �3.24

Bound � �3.24 Bound � �3.24 Bound � �3.24 Bound � �3.24

Figure 4.5. The first 12 iterations of the interval subdivision algorithm.
After 47 rounds, 12 digits of the answer are known.

then the smallest f -value among them is the global minimum. While this is not the
most efficient way to attack an optimization problem — most of the critical points
are irrelevant, and the interval method of Algorithm 4.2 is more efficient at focusing
on a region of interest — we present it here because it works, and it is a good general
method for finding the zeros of a pair of functions in a rectangle. Moreover, if the
objective function were one for which an interval implementation was not easily
available, then the method of this section would be a useful alternative.

The partial derivatives are simple enough, but finding all the zeros of two
nonlinear functions in a rectangle is a nontrivial matter (see the quote starting this
chapter). Yet it can be done for the problem at hand by a very simple method
(§4.6 will address the issue of verifying correctness of the list of critical points). The
main idea, if one is seeking the roots of f = g = 0, is to generate a plot of the
zero-set of f and use the data in the plot to help find the zero [SW97]. If a good
contour-generating program is available, one can use it to approximate the zero-set
of f and then one can design an algorithm to find all zeros in a rectangle as follows.

Algorithm 4.3. Using Contours to Approximate the Roots of f = g = 0.

Assumptions: The availability of a contour-drawing program that allows access to
the points of the curves.

88 Chapter 4. Think Globally, Act Locally

Inputs: f and g, continuous functions from R2 to R;
R, the rectangular domain of interest;
r, the grid-resolution of the contour plot that will be used in step 1.

Output: Numerical approximations to each pair (x, y) that is a root of f = g = 0
and lies in R.

Notation: s will contain points that serve as seeds to a root-finder.

Step 1: Generate the curves corresponding to f = 0. This is most easily done by
a contour plot, set to compute just the zero-level curves, and using
r for the resolution in each dimension.

Step 2: For each contour curve, evaluate g on the points that approximate the
curve; whenever there is a sign change, put the point just scanned
into s.

Step 3: For each point in s, use Newton’s method (or a secant method in the
case of nondifferentiable functions) to determine a root. Discard
the root if it lies outside R.

Step 4: If the number of roots differs from the number of seeds, restart the
algorithm with a finer resolution.

Step 5: Return the roots.

The use of a contour routine was given in step 1 because that is quite simple
and is adequate to the task at hand. However, there are more geometric (and faster)
methods to compute an approximation to a contour curve that could be used. Such
path-following algorithms have seen use in the study of bifurcation of differential
equations. See [DKK91] and references therein to the AUTO program.

Implementing Algorithm 4.3 is quite simple provided one can get access to the
data approximating the curves f(x, y) = 0. One might leave step 4 for a manual
check, as opposed to making it part of the program. Figure 4.6, which includes the
zero-sets for both functions, shows the result for fx and fy on a small section of
the plane, where a resolution of 450 was used (this refers to the grid size used by
the contour algorithm); five seconds were required to compute all 290 roots. The
close-up on the right shows that the resolution was good enough to catch all the
intersections.

To solve the problem over all of the square R = [−1, 1]2 it makes sense to
work on subsquares to avoid the memory consumption of a very finely resolved
contour plot. Therefore we break R into 64 subsquares, compute all the critical
points in each, and keep track of the one that gives the smallest value of f . Doing
this takes under a minute and yields 2720 critical points. The one of interest is near
(−0.02, 0.21), where the f -value is near −3.3, the answer to the question. Newton’s
method can then be used to quickly obtain the function value at this critical point
to more digits.

Manual examination of the contour plots on the subsquares to confirm that the
resolution setting is adequate is not an efficient method for checking the results. A

4.4. Calculus 89

�0.2 0 0.2 0.4

0

0.2

0.4

0.12 0.16 0.2

0.02

0.04

0.06

0.08

Figure 4.6. A view of 290 solutions to fx = 0 (vertical curves) and fy = 0
(horizontal), where f(x, y) is the objective function of Problem 4. The black point
is the location of the global minimum. The close-up shows that the resolution was
adequate for these curves.

better way to gain confidence in the answer is to run the search multiple times, with
increasing resolution, checking for stability; results of such work are in Table 4.1.
While even the lowest resolution was enough to find the global minimum, quite
high resolution is needed to catch all 2720 critical points in S. Note how, in some
cases, 2720 seeds were found but they did not lead to the intended roots, and only
2719 roots were found. The high resolution needed to get 2720 roots (160× 160 on
each of 64 small squares) justifies the use of the subsquare approach. It is also a
simple matter to use the second-derivative test to classify the critical points: 667
are maxima, 693 are minima, and 1360 are saddle points.

Note that the number of extrema (693 + 667) coincides with the number of
saddles (1360). In some sense this is a coincidence, as it fails for, say, a rectangle that
contains but a single critical point; it fails also for the rectangle [−0.999, 0.999]2,
which has 692 + 667 extrema and 1357 saddles. Yet this phenomenon is related to
the interesting subject known as Morse theory, which provides formulas for

number of maxima + number of minima − number of saddles

on a closed surface, such as a sphere or torus. These formulas are related to the
Euler characteristic, and, on a torus, this number equals 0 [Mil63]. So let’s make
our function toroidal by taking f on R = [−1, 1]2 and reflecting the function in each
of the four sides, and continuing this reflection process throughout the plane. This
gives us a function — call it g — that is doubly periodic on the whole plane, with a
fundamental region that is [−1, 3]2; thus g can be viewed as a function on a torus.
Each critical point of f in R generates four copies of itself for g. But we have the
complication that we have introduced new critical points on the boundary.

90 Chapter 4. Think Globally, Act Locally

Table 4.1. A resolution of 160× 160 on each of 64 subsquares is needed to
find all 2720 critical points in [−1, 1]2.

Resolution Number of Seeds Number of Roots

20 2642 2286

40 2700 2699

60 2716 2712

80 2714 2711

100 2718 2716

120 2720 2719

140 2720 2719

160 2720 2720

180 2720 2720

200 2720 2719

220 2720 2720

240 2720 2720

260 2720 2719

280 2720 2720

300 2720 2720

320 2720 2720

340 2720 2720

360 2720 2720

380 2720 2720

400 2720 2720

To understand the boundary, consider marching along the four edges of R
and looking at each one-dimensional extremum: there will be the same number of
maxima as minima (we assume none occurs at a corner, and no inflection points
occur). Moreover, because of the symmetry of the reflection, each such maximum
will be either a saddle or a maximum for g, and each minimum will be either a
minimum or a saddle for g. If we can enumerate all these occurrences, then we can
use the toroidal formula for g to deduce the situation for f in R. But a couple
of surprising things happen because of the nature of f(x, y). First, fx is positive
on the left and right edges of R and fy is positive on the top and negative on the
bottom. This means that all the maxima on the left edge become saddles and all the
minima stay minima, with similar results holding for the other edges. We also need
to know the numbers of extrema on the border. These are easily computed and turn
out to be: top, 24 maxima, 24 minima; bottom, same; left, 29 maxima, 30 minima;
right: same. These facts about f combine to show that the toroidal fomula applies
verbatim to f restricted to R, thus explaining the coincidence. More important, this
analysis relies only on a one-dimensional computation and so provides supporting

4.4. Calculus 91

evidence that the counts obtained by the contour method (693, 667, and 1360) are
correct.

Figure 4.7 shows another example that arose from a system of differential
equations [Col95]. Finding the equilibrium points of the autonomous system

x′ = 2y cos
(
y2
)
cos(2x) − cos y, y′ = 2 sin(y2) sin(2x) − sinx,

is the same as finding all zeros of the right-hand sides. A contour resolution of 60
is sufficient, and the computation of all 73 zeros takes under a second.

�Π 0 Π

�4

�2

0

2

Figure 4.7. This complicated example of simultaneous equations has 73
solutions in the rectangle shown.

The total amount of programming needed to implement algorithm 3 is mod-
est, provided one has a good way of accessing the data in the contour plot. In
Mathematica, Cases[ContourPlot[***], Line,∞] does the job.

A Mathematica session. The following is complete code for generating the zeros
for the example in Figure 4.7. For a complete routine there are, as always, other
issues to deal with: one should eliminate duplicates in the final result, since it is
possible that different seeds will converge to the same zero.

g1�x ,y � �� 2 y Cos�y2� Cos�2 x� � Cos�y�

g2�x ,y � �� 2 Sin�y2�Sin�2x� � Sin�x�

�a,b,c,d� � ��3.45, 3.45, �4,3�

92 Chapter 4. Think Globally, Act Locally

contourdata � Map�First,Cases�Graphics�

ContourPlot�g1�x,y�,�x,a,b�,�y,c,d�,Contours � �0�,PlotPoints � 60��,

Line,��

seeds �

Flatten�

Map�

#�1 � Flatten�Position�Rest�ss � Sign�Apply�g2,#,2��� � Rest�RotateRight�ss��,
�1���&,contourdata�,1�

roots �

Select�Map��x,y�/.FindRoot��g1�x,y� �� 0,g2�x,y� �� 0�,�x,#�1��,�y,#�2���&,
seeds�,a < #�1� < b � c < #�2� < d&�

Length�roots�
73

This technique also applies to finding all zeros of a complex function f(z) in a
rectangle by just applying the method to the system Ref = Imf = 0. The contour
technique can fail badly if the zero-curves for f and g are tangent to each other
(multiple zeros), since the approximations to the contours probably fail to have
the necessary crossings. The technique is also limited to the plane. In §4.6 we will
discuss a slower but more reliable method that addresses both of these problems.

4.5 Newton’s Method for Intervals
The interval algorithm of §4.3 solves the problem nicely, but we can improve Al-
gorithm 4.2 in several ways. Extensions of the algorithm so that it is faster and
applies to functions in higher dimensions is an active area of research. Here we will
only outline two ideas, one easy, one subtle, that can be used to improve it. The
first, which might be called opportunistic evaluation, is quite simple: right after the
subdivision, evaluate the objective function at the rectangle centers. This pointwise
functional evaluation might pick up a value that can be used to improve the current
best. Then the new current best is used in the size-checking step. This might not
lead to great improvement in cases where we start with a good approximation to
the answer (such as the −3.24 we had found), but if such an approximation is not
available, these extra evaluations will help.

The second improvement relies on a root-finding algorithm called the interval
Newton method, a beautiful and important idea originated by R. E. Moore in
1966 [Moo66]. We will use the term boxes for intervals in Rn. The starting point
is the Newton operator on boxes, defined as follows. Suppose F : Rn → Rn is
continuously differentiable; then for a box X in n-space, N(X) is defined to be
m−J−1 ·F (m), where m is the center of X and J is the interval Jacobian F ′[X] =
(∂Fi/∂xj [X])ij . Here J−1 is obtained by the standard arithmetic interval operations
that arise in the computation of a matrix inverse. If n = 1, then N(X) is simply
m − F (m)/F ′[X], where m is the midpoint of X; note that N(X) = [−∞,∞] if
0 ∈ F ′[X]. This definition leads to several important properties that can be used
to design an algorithm to find roots. Here are the main points in the case of one
dimension, which is much simpler than the general case.

4.5. Newton’s Method for Intervals 93

Theorem 4.1. Suppose F : R → R is a continuously differentiable function, and
X = [a, b] is a finite interval. Then:

(a) If r is a zero of F in X, then r lies in N(X).

(b) If N(X) ⊆ X then F has a zero in N(X).

(c) If N(X) ⊆ X then F has at most one zero in X.

Proof. (a) If F ′(r) = 0, then N(X) = [−∞,∞]; otherwise, the mean-value theorem
yields c ∈ X so that F (r) − F (m) = F ′(c)(r − m), and this implies that r =
m− F (m)/F ′(c) ∈ N(X).

(b) The hypothesis implies that F ′(x) �= 0 onX. Then the mean-value theorem
yields values ci in X so that m − F (m)/F ′(c1) − a = −F (a)/F ′(c1) and b − (m −
F (m)/F ′(c2)) = F (b)/F ′(c2); because N(X) ⊆ [a, b], the product of the left sides
is positive. But F ′(c1) and F ′(c2) have the same sign, and so the product F (a)F (b)
must be negative and F therefore has a zero in [a, b].

(c) If there were two zeros, then the derivative would vanish between them,
causing N(X) to become infinite.

This theorem is very powerful since one can use it to design a simple subdi-
vision algorithm to find zeros. Just subdivide the given interval into subintervals
and check, for each subinterval, whether the Newton condition — N(X) ⊆ X —
holds. If it does, then we know from (c) that there is one and only one zero in X.
If it fails in the form N(X) ∩ X = ∅, that is also good, for (a) tells us that there
are no zeros in X. If neither situation applies, subdivide and try again. When the
Newton condition does hold, we can just iterate the N operator. If we are close
enough to the zero, the algorithm converges (see [Kea96, Thm. 1.14]), and in fact
will converge quadratically, as does the traditional Newton root-finding method.
But some bad things that can happen: we might not be close enough for conver-
gence (the exact condition for this depends on, among other things, the tightness
of the interval approximation J to the inverse of F ′); or there are zeros for which
the Newton condition will never hold. Think of the process as a queue: intervals
are removed from the queue while, sometimes, their subdivisions are added to the
queue, or the interval is added to a list of answers. If the queue becomes empty, we
are done. If a max-iteration counter is exceeded and the queue is not empty, then
there are some unresolved intervals. This will happen with multiple roots, such as
occurs with x2 = 0; for in such cases N(X) = [−∞,∞].

For an application of the interval Newton method to a one-dimensional root-
finding problem that arises in Problem 8 of the SIAM 100-Digit Challenge, see
§8.3.2.

In higher dimensions, parts (a) and (c) remain true, but one must use a varia-
tion of the Newton operator to get (b), which is important to guarantee that a zero
exists. One approach is by a preconditioning matrix (see [Neu90, Thm. 5.1.7]). An-
other approach, which we shall follow here, uses the Krawczyk operator. For more
information on this important variation to Newton’s method, see [Kea96, Neu90].

94 Chapter 4. Think Globally, Act Locally

Let F , m, and J be as defined for the Newton operator. Consider P (x) = x−Y F (x),
where Y is some type of approximation to J−1, the interval matrix that is F ′[X]−1.
Two natural choices for Y are: F ′(m)−1, or the inverse of the matrix of midpoints
of the intervals in the matrix J . The latter is faster, since J has to be computed
anyway, and that is what we shall use. Then the Krawczyk operator is defined to be
K(X) = m−Y F (m) + (I −Y J)(X −m), where I is the n×n identity matrix (the
numeric part of this computation should be done in an interval environment, with
m replaced by a small interval around m). To understand the rationale behind the
K operator, first recall the mean-value theorem. For a continuously differentiable
F : Rn → Rn, the mean-value theorem takes the following form: Given x and y in a
box X, there are points c1, c2, . . . , cn ∈ X so that F (y) − F (x) = (∇Fi(ci))(y − x),
where (∇Fi(ci)) denotes an n× n matrix with i indexing the rows.

Now K(X) can be viewed as a “mean value extension” of P in the following
sense: if P ′[X] is an interval enclosure of P ′ on X, the mean-value theorem implies
that the box Q = P (m) + P ′[X](X −m) contains P (X), which here denotes the
exact image, {P (x) : x ∈ X}. But because P ′(x) = I−Y F ′(x), we may take I−Y J
to be the enclosure. Then Q becomes precisely K(X) and we have proved that
K(X) contains P (X). This smooths out the n-dimensional theory nicely as follows.

Theorem 4.2. Suppose F : Rn → Rn is a continuously differentiable function, X
is a finite box in Rn, J = F ′[X] is a componentwise interval enclosure, and Y is
the inverse of the matrix of midpoints of the intervals in J ; Y is assumed to be
nonsingular. Let K be the corresponding Krawczyk operator. Then:

(a) If r is a root of F = 0 in X, then r lies in K(X).

(b) If K(X) ⊆ X then F has a zero in K(X).

(c) If K(X) ⊂ X then F has at most one zero in X.

Proof. (a) K(X) contains P (X), and so P (r) ∈ K(X). But P (r) = r−Y F (r) = r.
(b) Since P (X) ⊆ K(X) ⊆ X, P is a contraction mapping, and so the Brouwer

fixed-point theorem for continuous functions implies that P has a fixed point in X,
which means that F has a zero in X.

(c). This one is subtle. Suppose x and y are distinct roots of F = 0 in X.
Then the mean-value theorem tells us that F (x)−F (y) = (∇Fi(ci))(x−y) for some
points ci ∈ X. It follows that the matrix is singular, and therefore J contains a
singular matrix. However, it is not immediately obvious that this contradicts the
Krawczyk condition. Yet it does. For a complete proof, see [Neu90, Thm 5.1.8], and
note the hypothesis of strict containment here.

This theorem immediately gives a local root-finding algorithm, one that will
come into play in §4.6. If the Krawczyk condition — K(X) ⊂ X — holds, then we
know there is one and only one root in X, and that that root lies in K(X). Simply
iterate K. When we have a small enough interval, we know the root to the desired
accuracy.

4.5. Newton’s Method for Intervals 95

Here is how root-finding can help in optimization. Once we have the problem
reduced to a single box, as happens after 11 subdivisions in the problem at hand,
we can check the Krawczyk condition. If it holds, we can use the Newton–Krawczyk
iteration to zoom into the unique critical point in the box, and that will give us
the answer more quickly than repeated subdivisions (analogous to the advantage
Newton’s method provides over bisection in one dimension). For the problem at
hand and a tolerance of 10−6 for the location of the minimum, using this idea (but
not opportunistic evaluation) gives a speedup of about 10%.

To be precise, add the following step to the interval method of Algorithm 4.2,
right after the gradient check:

If R contains only one rectangle X, compute K(X).

If K(X) ∩ X = ∅, then there is no critical point, and the minimum is
on the border; do nothing.

If K(X) ⊂ X, then iterate the K operator starting with K(X) until the
desired tolerance is reached.

Use the last rectangle to set a0 and a1(the loop will then terminate).

A Mathematica session. An implementation of this extension is available at the
web page for this book. Here is how that code would be used to get 100 digits of
the answer, using interval arithmetic throughout. The switch to root-finding occurs
after the 12th round, and then convergence is very fast. The output shown is the
center of an interval of length less than 10−102.

IntervalMinimize�f�x,y�,�x,�1,1�,�y,�1,1�,�3.24,

AccuracyGoal � 102,WorkingPrecision � 110�
�3.30686864747523728007611377089851565716648236147628821750129308550

309199837888295035825488075283499186193

The use of interval methods in global optimization is a well-developed area,
with techniques that go well beyond the brief introduction given here (see [Han92,
Kea96]; Hansen reports success on a wide variety of problems, including a 10-
dimensional one). Nevertheless, the fact that the very simplest ideas give a verified
answer to Problem 4 in a few seconds and with only a few lines of code shows how
powerful these ideas are. And it is noteworthy that interval analysis has played an
important role in diverse areas of modern mathematics. For example, W. Tucker won
the Moore prize for his recent work using interval analysis to prove that the Lorenz
equations really do have a strange attractor; this solved one of Steven Smale’s Prob-
lems for the 21st Century (see [Tuc02]); Hales and Ferguson [FH98] used interval
methods in their resolution of the Kepler conjecture on sphere-packing, and Lanford
[Lan82] used intervals to prove the existence of a universal limit — the Feigenbaum
constant — in certain sequences of bifurcations.

The most important points of the interval approach to Problem 4 are:

• The algorithm is very general and will find the lowest critical point in the
rectangle (provided interval arithmetic is available in a form that applies to
the objective function and its partial derivatives).

96 Chapter 4. Think Globally, Act Locally

• The results are verifiably correct if one uses intervals throughout.

• Getting the results to very high precision is not a problem.

• Having an interval root-finding method can lead to improvements in the op-
timization algorithm.

• And most important: The interval algorithm is a reasonable way to solve the
problem whether or not one wants proved results. In short, interval thinking
yields both a good algorithm and proved results.

• The basic ideas apply to functions of more variables, but life becomes more
difficult in higher dimensions. See [Han92, Kea96] for discussions of various
enhancements that can be used to improve the basic algorithm (one example:
using the Hessian to eliminate n-dimensional intervals on which the function
is not concave up).

4.6 A Validation Method for Roots
The pessimistic quote at the start of this chapter leads to the question: How can
we be certain that the collection of 2720 critical points found in §4.4 is correct and
complete? There are several ways to do this. One can use intervals to design a root-
finding algorithm and check that it finds the same set of critical points. That can
be done by a simple subdivision process where we keep only rectangles that have a
chance of containing a zero, and constantly check and use the Krawczyk condition,
K(X) ⊂ X. Here is a formal description.

Algorithm 4.4. Using Intervals to Find the Zeros of F : Rn → Rn in a Box.

Assumptions: Interval arithmetic is available for F .

Inputs: F , a continuously differentiable function from Rn to Rn;
R, the box in which we want all zeros of F ;
ε, an upper bound on the absolute error of the zero in terms of Euclidean

distance;
mtol, a tolerance for combining boxes;
imax, a bound on the number of subdivision steps.

Output: A set of intervals with each one trapping a zero, and a set of intervals that
are unresolved (these might contain none or one or more zeros).

Notation: For an n-dimensional box X, let m be the center of X and let M be a
small box containing m. Then K(X) = M −Y F [M]+ (I−Y J)(X−M) where J is
the Jacobian interval matrix F ′[X], and Y is the inverse of the matrix obtained from
J by replacing each box by its center. “Subdividing a box” here means dividing it
into 2n pieces by bisecting each side. “Combining” a set of boxes means replacing
any two that have nonempty intersection with the smallest box that contains them

4.6. A Validation Method for Roots 97

both, and repeating the process until no intersections remain. The Krawczyk con-
dition for a box X is K(X) ⊂ X.

Step 1: Initialize: Let R =
{
R
}
, i = 0, a = ∅.

Step 2: The main loop:
While R �= ∅ and i < imax:

Let i = i+ 1;
Let R be the set of all boxes that arise by uniformly dividing each

box in R into 2nboxes;
If all boxes in R have their maximum side-dimension less than mtol,

let R be the result of combining boxes in R until no further
combining is possible;

For each X ∈ R compute K(X), the Krawczyk image of X:
if K(X) ∩X = ∅, delete X from R;
if K(X) ⊂ X,

iterate K starting from K(X) until the tolerance (the size
of the box, or the size of its F -image) is as desired;

add the resulting box to a and delete X from R.
Step 3: Return a and R, the latter being the unresolved boxes.

The combining step using mtol in the main loop requires some explanation.
If a zero is near the edge of a box, then it can happen that the subdivision and
Krawczyk contraction process will never succeed in isolating it. This can happen
even in one dimension if the initial interval is [−1, 1] and the zero is at 0, for
then the subdivision process will produce two intervals with a very small overlap,
thus placing the zero very near the edge. The combining step checks whether all
remaining boxes are so small that we ought to have isolated the zeros (the merging
tolerance is provided by the user); the fact that we have not done so (R is not
empty) means that it would be wise to combine small boxes into larger ones. This
will likely place the zero nearer the center of a box (but not at the exact center!),
and the iterative process then succeeds. Of course, there is the chance of an infinite
loop here. Thus it would be reasonable to run this algorithm first with mtol = 0 so
that no combining takes place. If it fails to validate, it can be tried with a setting
of, say, mtol = 10−6.

For zeros x of F at which F ′(x) is singular, the Krawczyk condition is never
satisfied, and the algorithm does not find those zeros. However, they are not lost,
as they will be trapped within the unresolved intervals that are returned, and the
user could investigate those further to try to determine if a zero lives in them.

Algorithm 4.4 succeeds in obtaining all 2720 zeros (in 8 minutes). It is an
important technique, especially in higher dimensions, where we might not have
another way to get at the roots (see [Kea96]). But in cases where we think we
already have the zeros, we should use an interval algorithm for validation; this is a
central theme in the field of interval analysis: it is often more appropriate to use
traditional numerical algorithms and heuristics to get results that are believed to
be complete, and then use interval analysis to validate the results.

98 Chapter 4. Think Globally, Act Locally

Here is a second approach, where we use interval analysis as a validation tool.
It is a two-step approach based on the theorem about the Krawczyk operator in
§4.5, and it works well for the problem at hand. Suppose the set of approximate
zeros is r and has size m. First we check that each zero in r is roughly correct: for
each zero, let X be a small box centered at the zero and check that the Krawczyk
condition K(X) ⊂ X holds; this technique is called ε-inflation (originally due to
Rump; see [Rum98] and references therein). Once this is done, we know that r
contains approximations to a set of m true zeros. Then move to verify completeness
by carrying out a subdivision process on the given domain, doing two things only
with each box that shows up: if interval arithmetic or the Krawczyk operator shows
that the enclosure for the F -values on the box does not contain the zero vector, it
is discarded; and if the Krawczyk containment holds, so that the box does contain
a zero, then it is again discarded, but a running count is incremented by one. Boxes
that remain are subdivided. When no boxes remain, we know that the count equals
the number of zeros. If this count equals m, we know the set r was indeed a complete
set of approximations to the zeros. Here is a formal description.

Algorithm 4.5. Using Intervals to Validate a Set of Zeros.

Assumptions: Interval arithmetic is available for F and its partial derivatives.

Inputs: F , a continuously differentiable function from Rn to Rn;
R, the box that is the validation domain;
r, a list, believed to be complete and correct, of the set of zeros of F in R;
ε, an upper bound of the absolute error on the zero in terms of Euclidean

distance;
mtol, a tolerance for combining boxes.

Output: True, if the true zeros in R coincide with the points in r, with the absolute
error in each case less than ε; False otherwise

Notation: As in Algorithm 4.4.

Step 1: ε-inflation:
For each point in r,

let X be the surrounding box of side-length 2ε
/√

n;
check that the Krawczyk condition holds for each X.
If there is any failure, stop and return False.

Step 2: Initialize the subdivision process. Let R = {R}; c = 0.
Step 3: The main loop:

While R �= ∅:
Let R be the set of boxes obtained by subdividing each box in R;
Delete from R any box for which the F -interval does not straddle 0;

4.6. A Validation Method for Roots 99

Delete from R any box X for which the Krawczyk condition holds,
increase c by 1 for every such box;

Delete from R any box X for which K(X) ∩X = ∅;
If all boxes in R have their maximum side-dimension less than mtol,

let R be the result of combining boxes in R
until no further combining is possible.

Step 4: If c = the number of points in r, return True, otherwise False.

For the gradient of the function f of Problem 4, the contour method locates
the 2720 zeros in 30 seconds. The validation method then takes 30 seconds to check
that the zeros are correct, and another 5.5 minutes to verify that the set is complete.
While the speedup over the method of using intervals from the beginning to find
all the zeros is modest, the validation method is a more elegant algorithm and
illustrates the important idea that, when possible, one should put off the interval
work to the last stage of a computational project.

Algorithms 4.4 and 4.5 can be combined into a single algorithm that finds
and validates the zeros. The key observation is that there is no need to iterate the
Krawczyk operator when one can just use the traditional Newton method.

Algorithm 4.6. Using Intervals to Find and Validate a Set of Zeros.

Assumptions: Interval arithmetic is available for F and its partial derivatives.

Inputs: F , a continuously differentiable function from Rn to Rn;
R, the box that is the validation domain;
ε, an upper bound on the absolute error of the zeros in terms of Euclidean

distance;
mtol, a tolerance for combining boxes.

Output: Validated approximations to the zeros, with the absolute error in each case
less than ε.

Notation: As before, with s being a set of rough approximations to the zeros, and
r the set of final approximations.

Step 1: Let s = ∅; follow steps 1 and 2 of Algorithm 4.4, except that
when K(X) ⊂ Xadd the center of X to s.

Step 2: Apply Newton’s method to each point in s, putting the result in r.
Step 3: Use ε-inflation as in step 1 of Algorithm 4.5 to verify that r is a complete

set of zeros to the desired tolerance.
Step 4: Return r.

Algorithm 4.6 finds and validates all the critical points to the challenge prob-
lem in 5.5 minutes, a 9% time savings over the combination of Algorithms 4.3 and
4.5. The material at the web page for this book includes the Mathematica programs

100 Chapter 4. Think Globally, Act Locally

ValidateRoots and FindAndValidateRoots.

4.7 Harder Problems
What sort of problem could have been asked instead of Problem 4 that would have
been a little, or a lot, harder? There certainly would have been additional difficulties
if there were more dimensions or if the objective function did not have interval
arithmetic easily available. Indeed, the optimization needed to solve Problem 5 is
exactly of this sort (4 dimensions, complicated objective), and that is quite a difficult
problem for general-purpose minimization algorithms. Yet another sort of problem
would arise if the objective function had not a single minimum, but a continuous
set, such as a line or a plane (see [Han92]; there are some examples there). But
let us look only at the dimension issue for a moment. Here is a slight variation of
Problem 4, but in three dimensions: What is the global minimum of

g(x, y, z) = esin(50x) + sin(60ey) sin(60z) + sin(70 sinx) cos(10z)+

sin sin(80y) − sin(10(x+ z)) + (x2 + y2 + z2)/4 ?

The methods of this chapter work well on this problem, except the techniques that
tried to find all the critical points in a box: there are probably over 100,000 such
points. An approach that combines various methods to advantage would proceed as
follows:

1. Use the genetic minimization routine with 200 points per generation and a
scale factor of 0.9 to discover that g gets as small as −3.327. Differential
evolution works too.

2. Use traditional root-finding (Newton) on the gradient to get the more accurate
value of −3.32834 (or hundreds of digits if desired).

3. Use interval arithmetic as in §4.3 to then prove that the global minimum is
inside the cube [−0.77, 0.77]3.

4. Use the basic interval algorithm of §4.3, with upper bound −3.328 and Krawczyk
iteration taking over after 11 rounds, to prove that the minimum is −3.32834,
and occurs near (−0.15, 0.29,−0.28). This takes almost a minute, and the
total number of boxes examined is 9408.

A Mathematica session.

g�x , y ,z � �� �Sin�50 x� � Sin�60 �y� Sin�60 z� � Sin�70 Sin�x�� Cos�10 z��

Sin�Sin�80 y�� � Sin�10 �x � z	� �
1
4
�x2 � y2 � z2	

IntervalMinimize�g�x,y,z�,�x,�0.77,0.77�,�y,�0.77,0.77�,

�z,�0.77,0.77�,�3.328�

4.8. Summary 101

�Interval���3.328338345663281,�3.328338345663262��,

��x � Interval���0.1580368204689058,�0.1580368204689057��,

y � Interval��0.2910230486091526,0.2910230486091528��,

z � Interval���0.2892977987325703,�0.2892977987325701�����

So for at least one complicated example, the algorithm works well in three
dimensions. If the dimension is increased in such a way that the number of local
minima grows with the the space (that is, exponentially), one would expect a slow-
down in the algorithm, though it will be sensitive to the location of the minima and
still might work well.

As a final example, we mention that the Krawczyk validation method given at
the end of §4.6 can solve the related problem of finding the critical points of g(x, y, z).
Because there are many critical points we work in a small box only ([0, 0.1] ×
[0, 0.05] × [0, 0.1]) and show some of them, together with the three surfaces gx = 0,
gy = 0, gz = 0, in Figure 4.8. There are six zeros in this box.

Figure 4.8. A very small portion — within [0, 0.1] × [0, 0.05] × [0, 0.1] —
of the three surfaces gx = 0, gy = 0, gz = 0 whose intersections form the critical
points of g, with the roots obtained by the interval method shown as small cubes.

4.8 Summary
Interval arithmetic is powerful and can obtain certifiably correct answers to opti-
mization and root-finding problems. The technique is useful not only as a validation
tool, but also as a complete algorithm. For many problems it makes sense to use
other techniques first, and then use interval arithmetic to validate the results, if
that is desired. Random search methods, especially evolutionary algorithms, can
be very efficient at getting approximate results. The contour approach is somewhat
specialized, but it too is very efficient at solving this, and other, two-dimensional
problems.

102 Chapter 4. Think Globally, Act Locally

