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conversions. Output conversions for more than eight moduli can 
be handled with more than one chip and external binary adders. 
The same technique may be applied to handle output conver- 
sion when a larger output resolution is desired. Two (or more) 
chips can be used to form partial sums. which are then added 
off-chip. 

The architecture can be slightly modified if one wishes to do 
QRNS processing. although the details of the modification are 
beyond the scope of the present discussion. The modifications 
are minimal (and arc necessary only to input conversion) but 
the! do increasc the 1 /0  burden on the chip. The converter 
without this modification can be used with QRNS if one is 
willing to provide a modulo multiply-and-accumulate for each 
RNS channel, and if one is willing to accommodate the neces- 
s a c  input connections on the RNS processors performing the 
RNS-to-QRNS conversion. 

IV. CONCLUSION 

A simple systolic architecture has been developed which per- 
mits both input and output conversion to be performed using 
the same hardware. The architecture is extremely powerful, as 
both the number of moduli and their values can be chosen 
arbitrarily (up to the capacity of the hardware design) and 
programmed into the converter. Another advantage of the de- 
sign is that it is not a bottleneck for the RNS system, since its 
throughput is the same as the individual RNS channels. A chip 
designed in 1.25pm CMOS allows up to eight 6-bit moduli in 
the RNS. This design should provide an off-the-shelf solution 
for most RNS conversion requirements. 
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Application of Interval Analysis for Circuit Design 

D. M. W. LEENAERTS 

Abstract --In top-down circuit design, a principle task is to partition 
and map design constraints on a normal operating range of a collection 
of sub-blocks. This problem is propagated through each hierarchical 
level until the solutions for all levels are found. This top-down parame- 
ter assignment and instantiation of sub-blocks may eventually break 
down at some level due to an unrealizable circuit. Then the process has 
to be restarted a number of times before a realizable partition can be 
produced. In this paper, an application of interval analysis in the design 
environment is presented to assure in advance that this process will 
always yield a solution. The presented methodology and corresponding 
algorithm can be used in such hierarchical design strategies. At each 
hierarchical level, the solution space, if nonempty, is valid for all lower 
levels and is in agreement with decisions taken earlier in the hierarchy. 
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I. INTRODUCTION 
In complex engineering design tasks, such as analog IC de- 

sign, the circuit can be decomposed into smaller sub-blocks, 
which are considered to behave almost independently of each 
other. Each sub-block can be described by a set of underdeter- 
mined equations in some of the circuit parameters and circuit 
voltages and currents. Due to design constraints for normal 
circuit operation, some or all of these unknowns may only be 
chosen within specific domains. The problem is then to solve the 
equations of each sub-block in such a way that a solution exists 
when the sub-blocks are interconnected, leaving a maximum 
amount of freedom for the set of design parameters. A method- 
ology to find such a solution is to use interval arithmetic [1]-[6]. 

For each parameter of a sub-block, a default and an actual 
domain-i.e., an interval-is defined. The default domain is 
based on designer's experience or design Constraints. One can, 
for instance, think of minimum and maximum dimension of 
transistors in a certain technology or minimum and maximum 
allowable power dissipation of a sub-block, etc. A valid parame- 
ter is a value within the range of the actual domain. Synthesis is 
performed by a partitioning of the design constraints together 
with a partitioning of the circuit into smaller blocks at each 
hierarchical level. 

Now, at each level the description of the domains of the 
parameters must be used to find the solution space for matching 
the design constraints with the chosen sub-blocks. The solution 
space actually yields new parameter domains, Le., the new 
actual domains for each parkmeter. The advantage of this tech- 
nique is that the solution space at each level does not conflict 
with the solution space at higher levels. Decisions made earlier 
at higher levels remain valid. The design process goes hierarchi- 
cal downwards until the solution space for the lowest level, the 
basic building blocks, is found. 

Then, bottom-up, the solution space at higher levels is assem- 
bled using the description of the solution at the lowest levels. At 
the top design level, actual values can be chosen in the pro- 
duced solution spa$e, automatically resulting in valid parameter 
values for the lower blocks in agreement with the design con- 
straints at all levels of the hierarchy. 

A design problem for which interval techniques can be used is 
the design of an op-amp. To simplify the problem consider only 
the gain of a three state op-amp as a design constraint. At the 
highest design level the gain could be partitioned over these 
stages in several ways. One level lower, there is a possibility that 
the decision made earlier is unrealizable. For instance, to design 
the first stage for the given gain may be impossible, whereas a 
higher gain in the design of the last stage could be easy. So, at 
the top level a wrong partition of the design constraint has taken 
place. To circumvent this problem, consider the interval in 
which the gain may exist. Now, at the top level, try to find the 
solution space of partitioning the gain over the three stages, 
given the domain of the amplification used by each stage. If a 
solution exists, one level lower a maximum of freedom for the 
design parameters can be used to design the stages, in agree- 
ment with the top level. Above, the interval methodology is used 
to find the solution space using a decomposition (top-down) 
strategy with the information for partitioning collected by a 
bottom-up construction. 

At each hierarchical level, using the description of the solu- 
tion space of the level above and the model description of this 
level, a set of equations, with domains for the variables, can be 
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formulated. So, all levels can use the same strategy to solve this 
set of equations, described in an algorithm. 

Here a methodology will be presented to find the parametric 
solution of a set of linear equations with bounded variables. In 
Section 11, an explanation of the solution strategy will be given. 
In Section 111, some examples to demonstrate the application of 
the algorithm in circuit design are given. Finally, some conclu- 
sions are drawn in Section IV. 

11. THEORY 

To use interval techniques, model descriptions for the blocks 
have to be defined at each hierarchical level, in which the circuit 
can be partitioned. 

In the case of linear sub-blocks, the problem is to find all the 
solutions x of n equations with rn variables (rn > n),  

where b, = (bi1,. . . , b;,) (i = 1 , .  . . , c), and pi is a non-negative 
parameter. The set of (b , ;  . ., bJT describes the corners of the 
convex solution space. 

The procedure, written in pseudopascal, is given below 

procedure Tschernikow; 
begin stop := 0; r := 1;  

create start tableau; 
while ( r  < = n )  and (stop = 0) do 

begin choose column j from T2 
if no j then stop := 1 

eke calculate S ( k ) ;  
calculate S(kl, k 2 ) ;  
create new tableau; 
r : = r + l  

end; 
Ax= b with XES,  ( 1 )  end; 

where S, represents the domains for all elements of x. The 
solution for this problem can be derived from an algorithm from 
Tschernikow [7], who presented an algorithm to find the solu- 
tion space of a set of k linear equations of p variables, 

( 2 )  Cu = 0 with Vi U ,  > 0. 

The solution space describes all non-negative solutions of (2 ) .  
Because the presented interval algorithm is based on the 
Tschernikow technique, a detailed explanation to solve ( 2 )  is 
outlined below. The algorithm starts to define a start tableau for 
( 2 )  

where T: is a unit matrix and T: is composed by placing a row 
of ( 2 )  as a column in (3). For every row i ( i =  l; . . ,p),  define 
S ( i )  as the collection of columns of T: with zeros in row i. 
Define S ( i , , i , )  for every combination ( i l , i2)  (zl,i2 = 1 ; .  . , p )  as 
the collection of columns of Ti  with zeros in both i, and i,. A 
column of T i ,  say column j ,  is chosen at random with at least 
one nonzero element. From the collection S(il,i,), only the 
subset with opposite sign in column j ,  called $ ( i , , i 2 ) ,  is impor- 
tant. A new table, T 2 ,  can now be composed by first placing the 
rows from TI with a zero in column j into T 2 .  Next, search for 
the pairs ( i l , i2 ) ,  for which S ( i )  3 $(il, i,) ( i  # i,, i f i 2 ) ,  and 
place any linear combination of row i, and i, such that a zero in 
column j is created in T 2 .  

In the same way, a new table TI can be composed from table 

This process ends when there are one or more strict positive 
or strict negative columns in Ti (in which case there is no 
solution) or there are only zeros in Ti.  In the latter case the 
table is given by 

TI-’ 

b , ,  . . .  

b,, . . .  

To use the algorithm of Tschernikow, (1) must be transformed 
into an equivalent representation of (2 ) .  In (l), only the parame- 
ter x , ,  which is not in agreement with x i  > 0, according to U ,  > 0 
in (2) ,  must be redefined. When x ,  is negative, only the substitu- 
tion U ,  = - x ,  is necessary. 

However, if x ,  is bounded, then use a substitution variable, 
say U,, such that U ,  is bounded between zero and a positive 
value, E, E [0, U , ] .  To get the restriction U ,  > 0, use a new vari- 
able to describe the bound of U ,  in an extra equation, 

H 

I? VI 

0. 
L t  0 

u , + u I - q = O  withu,,u,>O. (6) 

Define a slack-variable, say U ,  ( U ,  = l ) ,  and multiply it with the 
constant in (6 ) .  This gives the linear equation 

u , + u I - ~ u , = O  with u I , u , , u c > O .  (7) 

The total algorithm to solve prablems according to (1) can 
now be defined. First transform the problem into a problem like 
(21, using the substitution in ( 6 )  and (7). Then solve the set of 
equations using Tschernikow and redescribe the solution space 
in the variables in which the problem was defined. 

To demonstrate the technique to solve a given problem like 
(11,  define 

e 

X I  - x 2  + 2 x 3  + x ,  = - 4  

- 2 x 1 - x 2 + x , - x , = - 1 0  

x , E [ 0 , 2 ] ,  x , E [ 1 , 4 l , X 3 E [ - 3 , - 1 1 ,  X , E [ - 8 , 5 ] .  (8) 

To reformulate (8) to a form equal to (21, first define 
u1 = X I  

u2  = x 2  - 1  

u 3  = - x3 - 1  

U ,  = x 4  + 8  (9) 

to get lower bounds for u l ,  u2 ,  u 3 ,  and U ,  equal to zero, 

U ,  - u2 - 2 u 3  + u4 - 7 =  0 

- 2 ~ , - ~ , - ~ 3 - ~ , + 1 6 = 0  

u ,E[0 ,2 l ,U ,E[0 ,31 ,~3E[0 ,21 ,U ,E[0 ,131 .  ( 1 0 )  

with the non-negative solution 
C 

U = c P,b, 
r = l  

Now, to get the restriction V, U ;  > 0, use new variables to 
describe the upper bounds of U , ,  u 2 ,  u3,  and u4 in some extra 
equations. For u 1  this equation is 

U ,  + u5 - 2  = 0 with u1 >, 0, us  > 0. ( 1 1 )  
(5) 
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Define a slack-variable, say u9 with u9 = 1, and multiply it with 
all the constants in (10) and (11). This gives the set of equations 

U ,  - U,-2u3+ u4 - 7 ~ ~ ~ 0  
- 2 u , - U ,  - u 3 - u 4  + 16uy = 0 

U1 + U 5  - 2 u 9 = 0  

U 3  + U 7  - 2 u 9 = 0  

U 2  "6 - 3 ~ ~ ~ 0  

U 4  + us - 13uy = 0 (12) 

with v. U ;  > 0. This set of equations is in agreement with the 
Tschernikow set and can be solved. 

Tableau T ' ,  according to (3), is now described by 

and u4. According to (5), the solution of (12) is then given as 

l j = p z [ 3 i ' ] + p 3 [  25/2 16i3]+.[ 19/2 

(16) 

with Vf pi > 0. 

fact that u9 = 1 gives 
The solution space of the slack-variable uy from (16) and the 

u9= PI + P2 + P3 + P4 = 1. (17) 
Relation (17) can be used to reformulate (16) into the solution 

1 0 0 0 0 0 0 0 0  
0 1 0 0 0 0 0 0 0  
0 0 1 0 0 0 0 0 0  
0 0 0 1 0 0 0 0 0  
0 0 0 0 1 0 0 0 0  
0 0 0 0 0 1 0 0 0  
0 0 0 0 0 0 1 0 0  
0 0 0 0 0 0 0 1 0  

-0  0 0 0 0 0 0 0 1 

1 - 2  1 0  0 0 
- 1 - 1  0 1 0  0 
- 2 - 1 0 0 1  0 

1 - 1  0 0 0 1 
0 0 1 0 0  0 
0 0 0 1 0  0 
0 0 0 0 1  0 
0 0 0 0 0  1 

-7 16 -2 -3 -2 -13 

Taking the first column of T i ,  the collection S( i )  is described as of (12) as 

~ ( i )  = { j = 1; . . ,9, j + il(co1umn j of T ; ) } ,  v;=] ;.., 9 .  2 

For instance S ( 3 )  = {l, 2,4,. . . ,9). The sets (1,2), (1,3), (1,9), [;;]=PI[ l!l+pZ[ '+]+p3[ 1:3]+p4[ 'i2] 
25/2 26/3 19/2 (4,2), (4,3), and (4,9) have opposite signs in the chosen column. 

It is easy to verify that for these sets, S( i )  3 s(il, i2) (i + i l ,  i + i2) 
is valid, so that T 2  is given by P'  + P2 + P3 + P4 = 1, Vf Pf 0. (18) 

i 

0 0 0 0 1 0 0 0 0  
0 0 0 0 0 1 0 0 0  
0 0 0 0 0 0 1 0 0  
0 0 0 0 0 0 0 1 0  
1 1 0 0 0 0 0 0 0  
2 0 1 0 0 0 0 0 0  
7 0 0 0 0 0 0 0 1  
0 1 0 1 0 0 0 0 0  
0 0 1 2 0 0 0 0 0  

-0  0 0 7 0 0 0 0 1 

0 0 . 1  0 0 0 
0 0 0 1 0  0 
0 0 0 0 1  0 
0 0 0 0 0  1 
0 - 3  1 1  0 0 
0 - 5  2 0 1 0 
0 2 5 -3 -2  -13 
0 - 2  0 1 0  1 
0 - 3  0 0 1 2 
0 9 -2 -3 -2 6 

After six loops, the algorithm stops with an end tableau like (41, Using the substitution relation (9), the solution of (8) is found as 

2 3 1/3 26/3 0 0 5/3 13/3 1 0 ' 

1 2  1/2 2 19/2 0 5/2 0 7/2 I 1 0 1  

(15) 

Due to the fact that the variables us,  u6,  U,, and us were only 
used to describe the bounds of u l ,  u 2 ,  uj, and u,;they are not 
important by consideration of the solution space for U', u 2 ,  u3, 

Equation (19) describes the full solution space of (8). To verify 
the correctness of (19), the vectors (19)--i.e., the corners of the 
solution space-can be substituted in (8). 

The algorithm, outlined above, will be demonstrated for some 
applications in the following section. 
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c - 1  

c kl - _ _  

T -____ 
'k  ' I  (xk-k)(k+l-x,) 

Fig. 1 .  Realization of impedance Z, .  

111. APPLICATIONS OF THE INTERVAL ALGORITHM 

To demonstrate that the presented technique can be used to 

In the first example, an impedance Z = Z l  + Z2 + Z, is con- 
solve different design problems, two applications are given. 

sidered. representing a series connection of three impedances 

x, + s 
( k  + s ) (3+  k + s) ' 

z, = k E {1,2,3}. (20) 

Each of the impedances Z, is composed of resistors and capaci- 
tors only (see Fig. l).From circuit theory it  is known that for 
non-negative C,, and R,,, it is required that k Q x ,  Q 3 +  k .  

The goal is to find solutions for 5,  such that 

arg(Z(s)}(,=,, = -45" and arg{Z(s))l ,=,j= -60". (21) 

This results in the following set of equations: 

0 . 2 0 1 8 ~ ~  + 0 . 0 6 9 6 ~ ~  + 0 . 0 1 5 5 ~ ~  = 1 

0 . 1 3 3 0 ~ ~  +0.0971x2 +0.0636x3 = 1 

with 1 < x1 < 4 

2 < X 2 Q 5  

3 Q x g  Q 6. 

Calculation of the solution space, using the 
procedure, yields 

3.922 

4.468 

(22) 

above outlined 

with p1 + p 2  = 1 and VI p ,  > 0. 
According to (23), several configurations are possible. Choos- 

ing p1 = p ,  = 0.5 gives the configuration of Fig. 2(a), and p1 = 1, 
p z  = 0 leads to the realization of Fig. 2(b). 

The second application is the design of a two-stage op-amp 
for dc biasing. To calculate the dc behavior linear equations 
appear to be sufficiently accurate. 

C'sing a bottom-up strategy, the design process is to decom- 
pose the op-amp in a first and a second stage, to design them 
independently. and to connect the stages together to find an 
o\erall solution for the dc operation point of the op-amp. Using 
the intenal algorithm to solve this problem, the designer is free 
to make a parameter choice at the highest design level, in 
agreement with the design of the two stages. The parameters for 
each stage are the bias current, the dc input/output voltage, 
and the dissipation. A possible linear description of the first 

2 8 4 3 n  1569f i  

-ID 0 - i D  l8 lF  
0 IF 

(b) 
Fig. 2. Realization of (20) with (a) p1 = p 2  = 0.5 and with (b) p 1  = l , p 2  = 0. 

(a) 

V i -  

Fig. 3. Design of a two stage op-amp (Vdd = - V', = 5 V, 6, = - V,p = 1 V, 
SI = (W/L),, S, = ( W / L ) 2 ) .  (a) First stage. (b) Second stage. 

stage, according to Fig. 3(a), could be given by 

Vu, (V) E [2.5,3.8] 

= ('dd + IKSI)~I PI (mW) E [0,0.1] (24) 

and for the second stage, a simple source-follower, 

Ru = ( d m - )  = 20 k R I 2  (PA)  E [ 10,100] 

v, (VI E ~ 4 1  (25) 

according to Fig. 3(b). 
From the highest design level, the domains for the parameters 

are given. The solution space for the unknowns in the first stage 
as produced by the interval algorithm is given by 

2 

with k , = l ,  V, k, 3 0 .  (26) 
i = l  
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, i b v u 2  
‘diss 

Fig. 4. Interconnection of two stages (Pdlss (mW) E [O,  1.81). 

In the same way, the second stage yields 

4 

with q , = l  a n d 7  q , > O .  (27) 
I = ,  

At the lowest level, the solution spaces for the two stages, 
which are independent of each other, are now found. The 
design process goes one hierarchical level upwards. At this level 
the stages are interconnected, which means Vu, = (see Fig. 4). 
Also at this level, a new design constraint, the total dissipation 
PdlSs, is added to the system. Pdlss is valid within a domain, Pdlss 
(mW) E [O, 1.81. 

Using the interconnection relations V;,l = v and Pdlss = Pi + 
P,, as well the restrictions k ,  + k ,  = q ,  + qz + q3 + q4 = 1, pro- 
duces a new set: 

I 

At this stage the full solution space is described. From these 
values using optimization criteria for Vu and Pdi5s, the sizes of 
the transistors could be determined. For instance, if the de- 
signer wants Vu = 0 V, r2 must be equal to l. The sub-blocks are 
defined using (261, (27), (29) and (30). The first stage is designed 
with Vudc = 3 V, I ,  = 10 pA, and Pi = 0.1 mW, and the second 
stage with Y = 3  V, I,=lOO p A  and P 2 = l  mW. All the 
parameters take values within their design constraints. Using 
(24) and (25), the values for S, and S, are found. Simulations 
with SPICE prove the usefulness of linear equations for such a 
design problem. 

Normally the equations describing the dc behavior of an 
op-amp are nonlinear. To deal with the nonlinear problem 
solution techniques for interval arithmetic in nonlinear equa- 
tions are under development. 

IV. CONCLUSION 

The presented interval technique can be used in the design 
environment to partition and map design constraints on a nor- 
mal operating range of a collection of sub-blocks. This tech- 
nique is valid only for linear equations. 

Using a top-down strategy, the first advantage is that the 
solution space, if i t  exists, does not conflict with the solution 
space at higher levels and so decisions made earlier remain 
valid. At each level there is a maximum amount of freedom for 
the set of design parameters. The second advantage of this 

according to (1). 

of this set is given by 
Using the outlined procedure in Section 11, the solution space 

6 

( k i  9 k 2 ,  41, q 2  3 q 3 ,  q 4 ,  pdisz) = 
I=, 

with r ,  + r ,  + r3 + r, + r5 + r6 = 1, VI r, 2 0 

and a ,  = (1,0,0.9,0.1,0,0,1020) 

a, = (0,1,0.5,0.5,0,0,1100) 

a 3  = (1,0,0.9,0,0.1,0,930) 

a, = (0, 1 ,0.5,0,0.5,0,650) 

a, = (1,0,0.89,0,0,0.12,920) 

ah = (0,1,0.44,0,0,0.56,600). (29) 

When Vu, and PdISs are defined as the new output variables for 
the sub-block on this level, they follow from 

with 

r ,  + r ,  + r3 + r, + r, + r6 = 1, VL r, 2 0. (30) 

technique is the implementation in an algorithm. At each hier- 
archical design level the same problem exists, which means that 
the same algorithm can be used at each level. This makes the 
implementation of the interval technique within the design 
process easier. 
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