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Abstract --In the present three-part paper we utilize interval analysis 
techniques to devise an algorithm which enables us to obtain estimates of 
bounds for the set of all solutions of initial-value problems of linear 
systems of autonomous first-order ordinary differential equations that 
linearly depend on a parameter belonging to an interval. Our results are of 
interest in many types of applications. We cite here as examples the 
tolerance problem in electric circuits (where components such as resistors, 
capacitors, etc., have tolerances associated with them), optimal control 
problems with large tolerances on a parameter (where sensitivity analysis 
methods fail), and the like. 

In the first part of the present three-part paper we establish new results 
for continuous and rational interval functions which are of interest in their 
own right and which may find future applications. These results are used in 
the secondpart of the present three-part paper to study interval matrix 
exponential functions and to devise a method of constructing augmented 
partial sums which approximate interval matrix exponential functions as 
closely as desired. We apply the results of the first two parts of the present 
three-part paper in the third part to develop the algorithm mentioned at the 
outset (using machine bounding arithmetic to obtain true estimates of 
bounds). We demonstrate the applicability of our results by considering 
three specific examples: an RLC circuit, an instrument servo-mechanism, 
and the design of a minimum plant sensitivity optimal regulator. 

I. INTRODUCTION 

N THE present paper and in two companion papers I [l], [2], we utilize interval analysis techniques to obtain 
estimates of bounds for the set of all solutions of initial- 
value problems of linear systems of autonomous first-order 
ordinary differential equations that linearly depend on a 
parameter belonging to an interval. The motivation for 
studying this problem includes many interesting applica- 
tions. We cite here as examples the tolerance problem in 
electric circuits (where components such as resistors, 
capacitors, etc., have tolerances associated with them), 
optimal control problems with large tolerances on a 
parameter (where sensitivity analysis methods fail), and 
the like. 

In the sequel, when refemng to the “present three-part 
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paper,” we will actually have in mind three papers (Part I, 
which is the present paper; Part 11, which refers to [l]; and 
Part 111, which refers to [2])  while when spealung of the 
“present paper,” we will have in mind the subject paper on 
hand. 

A. Summary of Results 
In Part I of the present three-part paper we establish 

new results for continuous and rational interval functions 
whch are of interest in their own right and which may find 
additional useful applications elsewhere. In doing so, we 
construct a complete metric space, (9, p), of continuous 
interval functions of an interval variable whch includes 
the C ( [ a ,  b] )  real function space and the united exten- 
sions of its member functions f defined by f ( [ a ,  b ] )  
U, E ,=, b l f ( [ ~ ,  X I )  ( [ a ,  b ]  denotes the interval determined 
by a Q x Q b and [ a ,  a ]  denotes the degenerate interval 
determined by a Q x Q a) .  We show that the rational inter- 
val functions belong to t h s  space and exlubit the inclusion 
property f ( [ a ,  b ] )  3 !([a,  b]). Defining a partition of 
the interval I =  [ a , b ]  by I: A [ a ( n  - i +1)+ b ( i - l ) ,  
( n  - i)a + i b ] / n ,  i = 1,. . 0 ,  n ,  we establish the convergence 
result f ( Z )  3 lim,,.+mU~=l f(1:) =!(I).  (That is, the con- 
vergence result (Theorem 14) states that by using a suffi- 
ciently fine partition of I and by computing the union of 
the interval function over the partition sub-intervals, it is 
possible to approximate the exact range of the interval 
function for x E J ,  f( .I), as closely as desired.) Next, we 
extend the above results to continuous and rational inter- 
val matrix functions of an interval variable, including a 
convergence result for interval matrix functions of an inter- 
val variable (Theorem 14M) similar to Theorem 14 above. 

In Part I I  of the present three-part paper (i.e., in [l]), we 
show that the sequence of partial sums obtained from the 
infinite series representation of the interval exponential 
function is a Cauchy sequence whch converges to a mem- 
ber function of the complete metric space of continuous 
interval functions of an interval variable, (g, p), intro- 
duced in this paper. We devise a technique to compute an 
approximation g” of the interval exponential function 
g ( [ a ,  b])  4 exp([a, b] )  which, for B > 0, provides the error 
inclusive property [l - B ,  1 + € 1 .  g ( [ a ,  b ] )  3 g([a, b ] )  3 
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g([ a ,  b ] )  1 E([ a ,  b] )  ( S  is an augmented k th-order partial 
sum for the exponential function g and 6 depends on the 
size of k ) .  Finally, we apply the convergence result of 
Part I (Theorem 14) to reduce conservativeness when ob- 
taining estimates for g by the above results. Next, we 
extend the above development to continuous interval ma- 
trix functions of an interval variable (including the appli- 
cation of the convergence result of Part I (Theorem 14M)). 
In addition, in order to obtain optimal estimates of error 
bounds for the augmented truncated series representation 
of the interval matrix exponential function (augmented 
partial sum), we make use of Householder norms. Also, to 
reduce the inherent conservativeness of interval arithmetic 
operations, we utilize the nested form for interval poly- 
nomials and the centered form for interval arithmetic 
representations in computing partial sums for the interval 
matrix exponential. Finally, in order to obtain true esti- 
mates from our algorithmic results, we employ machine 
bounding arithmetic in computing partial sums for the 
interval matrix exponential. 

In Part 111 of the present three-part paper (i.e., in [2]) ,  
we consider initial-value problems of the form i = ( G ,  + 
8G,)x,  x ( 0 )  =xo, 8 E [ -1 .0,1.0] ,  where x E R”, i = 

d x / d t , x o  denotes an initial condition (a given interval 
vector), and G ,  and G ,  denote real n X n matrices. Using 
the partition 6, = [( - M + 2( i - l ) ) / M ,  ( - M + 2 i ) / M ] ,  i 
= 1,. . -, M ,  we generate for the above initial-value prob- 
lem M subproblems given by i = ( G ,  + 8G,)x,  x(0) = xo, 
8 E Oi, i = 1 , .  . . , M. We use the results of Part I and Part 
I1 to establish an algorithm which enables us to obtain 
bounds at any desired point in time t for the interval 
solutions for the above M subproblems. The interval solu- 
tion for the (entire) initial-value problem given above is 
then obtained by taking the union over the subproblem 
interval solutions, producing interval bounds or envelopes 
for the set of all solutions associated with the interval 
vector initial condition xo and the perturbation parameter 
6 ,  including the effects of algorithmic computer truncation 
or rounding errors. We demonstrate the applicability of 
our results by considering three specific examples: an RLC 
circuit, an instrument servo-mechanism, and the design of 
a minimum plant sensitivity optimal regulator. 

B. Background Material and Related Results 
The general mathematical tools employed in the present 

three part paper are rather modest: they include some 
algebra (see, e.g., [ 3 ] ,  [4]) ,  some basic results from metric 
spaces (see, e.g., [5, chap. 51, [6 ] )  and some background in 
ordinary differential equations (see, e.g., [7]) .  

In [SI and [9] ,  Moore applies interval techniques to 
initial-value problems of nonlinear ordinary differential 
equations to determine numerical error inclusive bounds 
for solution trajectories; he does not consider trajectory 
bounds which also include the effects of a perturbation 
parameter in the differential equations. We emphasize that 
whereas our results are certainly related to existing works 
on interval analysis (see, e.g., [SI-[15], as well as the 

extensive bibliographies gven in these references), as stated 
earlier, to the best of our knowledge, the results of the 
present three-part paper have not been reported elsewhere 
in form, scope, or generality. 

C. Outline of the Present Paper 
The present paper (i.e., Part I of the present three part 

paper) consists of seven sections. In Section 11, we estab- 
lish some basic notation and we note that interval arith- 
metic is not endowed with a rich algebraic structure. In 
Section 111, we introduce some additional essential nota- 
tion and we introduce a metric space as our appropriate 
mathematical setting. In Section IV, we explore some 
pertinent properties of continuous interval functions while 
in Section V we examine properties of rational interval 
functions. In Section VI, we extend the results of Sec- 
tions 111-V to matrix interval functions. Finally, the 
present paper is concluded with pertinent comments in 
Section VII. 

11. ALGEBRAIC STRUCTURE 
Let 7 denote the set of all intervals [ a ,  b ] ,  a ,  b E R ,  

a Q b. When a = b, then we call I = [ a ,  a ]  a “degenerate” 
interval. On Y we define the interval arithmetic oper- 
ations +, -;, / b y  

[ a , b ] + [ c , d ]  = [ a + c , b + d ]  

[ U ,  b ]  - [c, d ]  = [ U  - d ,  b - C ]  

[ a ,  b ]  . [ c, d ] = [min ( a c ,  a d ,  bc, b d )  ,max ( a c ,  a d ,  bc, b d ) ]  

[ a ,  b ] / [  c ,  d ]  = [ a ,  b ] [ l / d , l / c ]  provided that 0 4 [ c,  d ] .  
( 1 )  

Interval addition and multiplication are each associative 
and commutative operations and the intervals [ O , O ]  and 
[l, 11 are their respective identity elements. However, if an 
interval has distinct endpoints, its inverse with respect to 
+ or . does not exist. 

The mathematical systems { 7, + } and { 7, + } are com- 
mutative semigroups with identities but fail as groups. 
Hence, the mathematical system { 7, +, e }  will fail as a 
ring. Indeed, . is not distributive with respect to + and 
thus { Y, + , . } fails as a ring for a second reason. On the 
other hand, if I ,  J ,  K E 7, then 

I . ( J +  K )  c I . J +  I . K  2 I J +  J K  (2) 
which is called the “subdistributivity property” of interval 
arithmetic. Also, if * denotes any one of the operations 
defined above, if I ,  J ,  K ,  L E Y and if I c K and J c L,  
then 

I * J c K * L  ( 3 )  
provided that in the case of /, 0 4 L. This property of 
interval arithmetic is called monotonic inclusion. 

Since { 7, + } is not an Abelian group, interval arith- 
metic does not yield the structure of a linear space. How- 
ever, using the set inclusion relation, it is possible to 
partially order Y and by defining binary interval oper- 
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ations of meet and join (which conceptually parallel the 
inf and sup, respectively) it is possible to satisfy the 
structure of a lattice. 

111. TOPOLOGICAL STRUCTURE: METRIC SPACES 
From above it is clear that the interval arithmetic oper- 

ations do not give rise to a particularly rich algebraic 
structure. Things are a little better for topological struc- 
ture. The workable abstract mathematical setting which we 
will employ is that of metric space. To the best of the 
authors’ knowledge, the theoretical functional analysis de- 
velopment presented in this paper as a generalization and 
extension of the concepts introduced in [8], [9] (without the 
burden of advanced topological concepts), does not appear 
in the literature [lo]-[15]. 

Let X =  R 2  and let D, denote the infinity metric de- 
fined on X .  Thus if x = ( x , ,  x , ) ,  y = (y, ,  y 2 )  then 

D , ( x ,  Y )  = m=(lx,- Yll? 1x2 - Y21). 

The space { X ,  D,} is complete. 
Proposition 1: Let X,  be the subset of X defined by 

X I  = { x E X: x1 Q x , } .  Then {XI, D,} is a complete met- 
ric subspace of { X ,  0,). 

Proof: X ,  is the half plane above and including the 
line x1 = x , .  Let the local neighborhoods of a point x o  E X 
be the open spheres defined by 

S ( x , , r ) =  { x E X :  D m ( x , x o ) < r } ,  r E R ,  r > O .  

The complement of X,, X t ,  is open in X in the topology 
induced by the metric space { X ,  D,},  since for every point 
x E X;,  there exists an c > 0 such that S ( x ,  r )  c Xf .  There- 
fore, X,, the complement of X;, is closed in this topology 
and hence, { X,, D,} is a complete subspace of { X ,  D,} .  

Proposition 2: For each Z = [ a ,  b],  J = [ c ,  d ]  in T, de- 
fine p by 

p ( l , J )  =max( )a -c ( , (b -d l ) .  (4) 

The space { 7, p }  is a complete metric space. 
Proof: p is clearly a metric on Y. Let f be the 

mapping f :  .7 + X, defined by f ( [ a ,  b])  = (a,  b). Then 
for each I ,  J E .7, D , ( j ( Z ) ,  f(J)) = p ( Z ,  J )  and f is an 
isometry. Since { .7, p }  is isometric to the complete space 
{ X,, D, } ,  it is complete. H 

Proposition 3: Let X ,  c X ,  be defined by X ,  = { x E X,: 
a f x1  Q x2 < b, a ,  b E R 1 } .  Then { X,, D,} is a complete 
and compact metric subspace of { X,, D,} and { X ,  D,} 

Proof: Since X ,  c X,  c X = R2 and X ,  is closed and 
bounded in X and X ,  in the topology induced by { X ,  D,} 
it is compact by the Bore1 theorem. But since { X ,  D,} is 
complete and X ,  is a closed set of X ,  { X,, D,} is also 
complete. W 

Proposition 4: Let Z = [ a ,  b] E .7 and let 

YI= { J E T :  J C Z } .  ( 5 )  

Then { .YI, p }  is a complete and compact metric subspace 
of {.7, P I .  

x2 / 

Fig. 1. Isometric representation of .Y and 9, 

Proof: Since T, c S, { SI, p } is a subspace of { Y, p } .  
Using the isometry defined in Proposition 2, it follows that 
{TI, p }  is also complete and compact since it is isometric 
to the complete and compact metric space { X,, D,} of 
Proposition 3. H 

Remark 1: a) Since the isometry f of Proposition 2 
provides a convenient geometric interpretation for Y and 
YT in the plane X =  R2 ,  this conveyance can be used to 
illustrate the various concepts involved and the notation 
for the elements of Y will be used directly on the plane. 
The symbol will occasionally be used to emphasize an 
isometric correspondence. Fig. 1 gives the isometric repre- 
sentation of T and YI where Z = [ a ,  b]  E Y. 

b) The real line R ,  when considered as the metric space 
{ R ,  d } ,  where d(a, b )  = (a  - b(, a, b E R, is isometrically 
embedded in { Y, p } under the mapping g: R + S de- 
fined by g( a )  = [ a ,  a ] ,  an isometry because p( g( a) ,  g( b) )  
= d(  a, b). In Fig. 1, the line x1 = x 2  is the isometric image 
of the real line under fg and the degenerate intervals of Y 
under f .  

c) Fig. 2(a) and (b) respectively, illustrate interval ad- 
dition and subtraction as geometric “ vector additions” in 
{ X,, D,}. The negative of the element J E Y provides an 
insight into the fact that, with respect to the operation of 
interval addition, the inverse of an element of F exists if 
and only if the element is “on the line” x1 = x 2  (i.e., if the 
element is one of the degenerate intervals of S). 

d) Fig. 2(c) gives the geometric interpretation of the 
interval multiplication l . J  4 IJ as the unique element of 
Y such that tZ  c ZJ for every t E J and sZ 0 IJ if s E J .  
For brevity in notation in the interval multiplication, t I ,  
the degenerate interval [ t ,  t ]  has been indicated here simply 
by t. H 

IV. CONTINUOUS INTERVAL FUNCTIONS 

I 

We now address continuous interval functions. Specifi- 
cally, let 9 = { f l  f :  SI + 7, f is continuous on S,}. 
If f ,  g E g, let 

P ( f d )  = SUP { P ( f ( J ) , d J ) ) ) .  ( 6 )  
J E 7, 

Then p is a metric on 9 (assume f ,  g, h E 9) since 
(0 by the symmetry of P ,  P(f ,  g )  = P(g, f); 
(ii) since p ( J ,  K )  = 0 if and only if J =  K ,  ~ ( f ,  g) = 0 if 

and only if f( J )  = g( J )  for every J E 7, and then f = g; 
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x=xlu x; 
x 1 ( - 3 )  I+J f / 

/ Proposition 5: The metric space { 9, p }  is complete. 
Proof: Let { f n }  be an arbitrary Cauchy sequence in 

{ 9, p } .  This means that for any c > 0, there exists an 
N O ( € )  such that if n,  m > No(€) ,  then 

p ( f n ( J ) , f m ( J ) )  < ~ ( f n , f r n )  < e  for all J E ? .  

In particular then, for fixed J, E YI, { !,,(.I,)} is a Cauchy 
sequence in { Y, p }. Since { F, p }  is complete (Proposi- 
tion 2), there exists an element f(J,) E Y such that 
p (  f,( J , ) ,  f( J,)) + 0 as n + 00. Applying the same argu- 
ment for each J E TI, obtain the function definition 

f q J ) ,  J E q. 
x2 I, Jn 4, I-JE 3 

N e e :  3 i s  the 
"reflection" of J 
"about the l i n e "  P ( f , ( J ) ? f ( J ) )  c for each J E Yr. 
x1=-x2 in  X1 in  the 
sense that if  J= [:i;ii ,+hen -J= 

Since for n,m>N,(c), p ( f , , ( J ) ,  f , (J))  < c  for each 
J E TI, letting m -+ 00, it follows that 

Since N ( c )  is independent of J ,  it is therefore true that the 
sequence { f,,} converges uniformly to f on TI. 

By the triangle inequality, for any J ,  Jo E YI and for 
any n, 

x1 

P ( f ( J ) , f ( J o ) )  < P ( f ( J ) ? f , , ( J ) )  

+ P ( f,, ( J ), ffl ( Jo ) 1 + p ( ffl ( Jo 1 f( Jo ) I .  

/ * Note that t I c I J  for 
every teJ .  . 

( 4  

Fig. 2. (a) Isometric representation of interval addition. (b) Isometric 
representation of interval subtraction. (c) Isometric representation of 
interval multiplica. 

and 
(iii) by the triangle inequality for p ,  

SUP { P ( f ( J ) Y  g ( J ) ) )  
J E Yl 

By the uniform convergence of the sequence { f,}, the first 
and third terms can be made less than ~ / 3  by choosing n 
sufficiently large. But since each f,, is continuous on 7, 
and YI is compact, each f,, is also uniformly continuous 
on TI and, therefore, there is a 6 = 6 ( r )  such that if 
p ( J ,  JJ < 6(e) ,  then p ( f , , ( J , ) ,  f , , ( J ) )  < c/3. Hence, 
p(  f ( J ) ,  f ( J , ) )  < c.  This means that f is continuous at Jo 
and since Jo is arbitrary, it follows that f E 9. Thus 
{ 9, p }  is complete. W 

Remark 2: a) Since TI and F include the degenerate 
intervals, embedded in 9 are the continuous real func- 
tions. Consequently, embedded in { 9 , p }  is the metric 
space of continuous real functions C[a, b ]  with sup metric 

b) Since each f E 9 is continuous, since { Y,, p }  and 
{ F, p }  are metric spaces and TI is compact, then each 
f E 9 is uniformly continuous on YI. W 

Remark 3: a) For any f E { 9, p } ,  J E q, define the 
real values of f"( .) and f R (  .) by 

d , f ,  g E C [ a ,  bl, d ( f ,  g )  = sUPt+,b]lf(t)- g(t) l .  

f(J> = [ f " ( J ) , f " ( J ) l .  (7) 

f ( J )  U f ( [ x , x l ) .  ( 8 )  

b) For any f E { 9, p } ,  J E YI, define the united exten- 
sion off by 

x € J  

< SUP { P ( f ( J ) ,  h ( J ) ) )  c) The above terminology in item b is used by Moore 
[8, p. 181. He refers the reader to a definitive article on 
fixed point theorems for multivalued functions [16, p. 5521. 
Although thn article has its foundations in the more 
advanced topological concepts of Peano spaces (c.f. com- 
pact Hansdorff spaces in [17]), it still does not precisely 
include our case considered herein. As will be seen. this 

J E Yl 

+ SUP { P ( h ( K ) ? g ( K ) ) )  
K E 4  

and, thus p ( f ,  g )  

functions. 

P(f, h ) +  P(h9 g).  
Thus { F, p }  is a metric space of continuous interval 
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matter takes on meaning at a considerably less abstract 
level of discussion. 

d) In the following, it will be the practice to omit the 
terminology "united extension of f" and simply assume 
the correspondence f, f and { f, }, { f, }. The following 
proposition gives significance to t h s  definition in terms of 
the metric space adopted here. 

Proposition 6: For arbitrary f E { 9, p }  and J E YI, 

f(J) U f ( [ x , x l )  = c P ( J ) , q ( J ) I  €9- (9) 
x € J  

where 

p ( J )  = jgfJf"([.,xl) and q ( J )  = supfR([x ,x1) .  
X E  J 

Proof: Clearly U, E J f ( [ x ,  x]) c [ p (  J ) ,  q( J)] ,  since for 
every x E J ,  it is true that p ( J )  < f L ( [ x ,  XI) < f R ( [ x ,  x]) 
< q ( J ) .  Since f is continuous on YI and YI is compact, 
J E 6 and S {[x, x]: x E J }  c &, the values 

inf f " ( t )  A p ( J )  
l € S  I € S  

and supfR( t )  A 4 ( J )  

are each attained and [ p ( J ) , q ( J ) ]  €7. Thus it is true 
that 

U f ( [ x , x ] )  3 (~(J),q(J)},thetwopoints. 
x € J  

It is then sufficient to show that every interior point of 
[ p ( J ) ,  4 ( J ) ]  is contained in U X E J f ( [ x ,  x]). But th s  must 
be true since f is continuous on YI and the subset S is 
connected (note U, E ,t = J ) .  Thus 

U f ( [ x , x I )  3 [ p ( J ) , q ( J ) ]  
x € J  

and since the set inclusion relation holds both ways, 
equality is obtained. 

Proposition 7: For arbitrary f E { 9, p }, f c  { F, p } . 
Proo) For continuity of f on 6, it is necessary and 

sufficient to show that for each J E q ,  each sequence 
( J , }  E q, { J,} + J ,  it always follows that { f ( J , ) }  + 

Suppose that for some J E YI, { J,)  E YI, with { J,} + 

J ,  it occurs that { f( J,) - } f (  J ) .  By Proposition 6, this 
means that { [ p (  J,), q( J,)} + [ p (  J ) ,  4( J)] .  The sets S A 
{[x,x]: X E J }  and S,A {[x,x]: XEJ ,} ,  n=1,2;..  are 
each individually connected subsets of the compact set YI. 
But f is continuous on YI and also on its subsets and by 
the compactness of YI, the inf and sup of fL([x,x])  and 
f R ( [ x ,  XI), respectively, are attained for each set S and $. 
Thus { [ p (  J,), 4( J,)]} + [ p (  J ) ,  q( J ) ]  must mean that there 
are some points [ y ,  y ]  wluch do not belong to both S and 
the S,'s, for an infinite number of the n 's. But since 

U t = J  and U t=J , ,  n=1,2;. 
I € S  I € 7" 

t h s  implies that { J,} + J ,  which is a contradiction. Hence 
{ f( J,)} + f( J )  and this is true for every J E z, { J , }  E 

q, whenever { J,} + J .  Thus f is continuous on q and 
belongs to { F, p } .  Since f is arbitrary, the above is true 
for every f. 

f ( J > .  

V. RATIONAL INTERVAL FUNCTIONS 
An interval function will be called a rational interval 

function if it is defined and can be expressed as a rational 
interval arithmetic expression in the interval variable and a 
finite set of constant coefficient intervals. 

Proposition 8: The rational interval functions belong to 

Proof: Let Y = Yl x Y2 where Yl = Y2 = Y (i.e., the 
Cartesian product space .7 X Y).  Denote the elements of 
Y by the 2-tuple ( I ,  J ) ,  I E Yl, J E Y2. Then for 
( I ,  J ) ,  ( K ,  L )  E Y,  induce the metric 

{ 9 3 P } .  

P y ( ( L  J ) , ( K  L ) )  = max { P ( L  K ) ,  P ( J >  L ) )  

where p is defined as before on 7. The completeness of 
{ Y,p,} as a metric space follows directly from the com- 
pleteness of { 7, p } .  

It is obvious that the interval arithmetic operations 
defined earlier are mappings h:  Y -+ .7 defined by 
A ( (  I ,  J ) )  = I * J and for arbitrary ( I ,  J )  E Y ,  if { ( I , ,  J , )}  
+ ( I ,  J ) ,  then { I ,  * J,} + I *  J in { 7 , p } .  (Remark: If * 
indicates division and 0 belongs to any of the intervals in 
the set { J .  J,,, n = 1,2, . . . } c 7, the operation is not de- 
fined and will, therefore, be considered as an exception. 
Since it is assumed that the rational interval function is 
defined, t h s  precludes the occurrence of such an excep- 
tion.) Therefore, the interval arithmetic operations are 
continuous. 

Since the rational interval functions may at most consist 
of a finite number of interval arithmetic operations, by 
repeated use of the continuity of the composition of the 
continuous interval arithmetic operations, the rational in- 
terval functions are continuous and hence belong to 
{ 9 , p } .  

Proposition 9: For any rational interval function f E 

{ F, p }  and arbitrary J E YI, 

f(J> 3 f ( J )  U f ( h  4). 
x E J 

Proof: The result is inherently obvious from the 
monotonic inclusion property of the interval arithmetic 
operations and the definition of the rational interval func- 
tion. Since a finite number of these operations is involved 
and since for every x E J ,  [x, x]  c J ,  [x, x]  E Y,, then 

To prove that equality may not be achieved, it is suffi- 
cient to demonstrate that the set inclusion may not go the 
other direction. Let J = [ - 1/2,1], f (  J )  = J' = J . J .  Then 

f ( J >  = f ( [ X >  XI). 

f ( J )  =f([-1/2,11) = [ -1 /2J I  C f ( J )  

=f([-1/2,1]) = [0.1]. 

Corollary 10: For any rational interval function f E 
{ 9, p }  and arbitrary J E FI, if K E YI, and J 3 K ,  then 

Proof: By Proposition 9, f ( K )  3 f ( K ) .  For the defi- 
nition of the rational interval function and the monotonic 
inclusion property of interval arithmetic it follows that 
f (  J )  3 f( K ). Equality may be precluded by demonstrat- 

f ( J > ' f ( K )  3m. 



1134 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. 35, NO. 9 ,  SEPTEMBER 1988 

ing that for J = [ - 1/2,1] K = [ - 1/4,1] and f( J)  = 

J 2  = J * J ,  f(J) = f([-1/2, I]) = [-1/2,1] C f ( K )  = 

Proposition 10: Let { f,} + f be an arbitrary Cauchy 
sequence in { 9, p } .  Then { f,} is a Cauchy sequence in 
{ F, p 1 converging uniformly to f E { 9, p 1. 

Proof: Since { f,} is a Cauchy sequence, given E > 0, 
there exists N ( c )  such that for all n ,  m >, N ( c ) ,  p(f,, f,) < 
c.  But 

f([ - 1/4,11) = [ - 1/4,11. 

p ( f n , f r n )  = SUP { P ( f n ( J ) , f m ( J ) ) }  < E *  
J E Y, 

Hence, for any J E Yl, whenever n ,  m >, N ( c ) ,  

P ( f n  ( J 1 , f m  ( J 1) < 
Now each f, is a continuous function in { 9, p }  (Proposi- 
tion 7). For each J E Yl and for each n,  

f , ( J )  = U f ( [x ,xI )  = [ p , ( J ) , q n ( J ) l  
x E J  

Since {[x, X I :  x E J }  c TI, then for every element [x, x ]  
of this set (by virtue of p(f,, f,) < c), it is true that 

P ( f n  ( [ X ,  x 1 ) 3 f m  ( [x,  x 1 ) 
= m a (  Ifn'.([x~xI)-fmL([x~xI) 1 9  

I f , R ~ ~ ~ ~ ~ l ~ - f , R ~ ~ ~ ~ ~ I ~ I )  < c .  

Thus with respect to the set {[x, XI:  x E J }  and for any 
J E q, the pairs of real numbers { fk([x, XI), f;([x, XI)} 
and { fF([x, XI), f:([x, XI)} are individually never sep- 
arated by a distance greater than c. Thus it must be that 
p ( f , ( J ) , f , ( J ) )  < c for anyJ  E q whenever n ,  m >, N ( c ) .  
Therefore, { f,} is a Cauchy sequence in { 9, p }  and since 
the space is complete, this sequence converges to an ele- 
ment of the space. (Note that this convergence is true 
pointwise for every J E  TI and that the sequence also 
converges uniformly.) Denote this element and suppose 
that g 4 f .  Then for at least one c , > O ,  one J € Y 1 ,  
and any N I >  0, for an infinite number of n >, Nl 
p ( f , ( J ) ,  f(J)) > c1 and this occurs as { f,} + f uniformly 
on TI. But for c l > O ,  there exists an N2(c1) such that 
if n ,  rn >, N2(cl), then p(f,, f,) < c1. Thus letting 
m + CO, p(f,? f )  < c1. But this implies that for each J E 
q, p ( f , ( J ) ,  f(J)) < cl and t h s  is a contradiction. Hence, 
it must be that is arbitrarily close to f and, therefore, 
g = f .  

Proposition 11: Let { f,} + f  be an arbitrary Cauchy 
sequence of rational interval functions in { 9 , p } .  Then 
for each J E q, f( J )  2 f (  J ) .  

Proof: By Proposition 10, { f,} is a Cauchy sequence 
in { 9, p } which converges uniformly to f E { 9, p }. By 
Proposition 9, for each J E Yl and for each n ,  f , ( J )  2 
f,( J). For any J E 6, in the notation of Proposition 6, let 

f ( J )  = [ P n ( J ) , q , ( J > 1 ,  f(J) = [ P ( J ) d J ) l .  

By Proposition 9 then, for every n ,  

f W >  < P n ( J >  < q , ( J )  < f , " ( J ) .  

Suppose f(J) df(J).  Then either p ( J )  < f L ( J ) ,  f R ( J )  
< q ( J )  or both occur. Suppose p ( J )  < f L ( J ) .  Then in 
fact there is an c > 0 such that p (  J) + 3c = f"( J ) .  But the 
sequences { p , ( J ) }  and { f:(J)} are each convergent se- 
quences in the reals since the sequences { f,} and { f , }  are 
Cauchy sequences in { g, p } and for each n ,  f ,"(J)  =S 
p,( J) and thus the contrary assumption above cannot 
occur and f( J )  6 p (  J). Similarly q( J) < fR( J )  and both 
of these relations hold for each J E .TI. Thus f( J )  3 f( J )  
for every J E Yr. w 

Corollary 11: If { f,} + f is an arbitrary Cauchy se- 
quence of rational interval functions in { F , p }  then for 
each J E Yl, if K E YI, and J 3 K ,  

f(J> V ( K )  > f ( K ) .  

Proof: The proof follows readily: f ( K )  3 f( K )  by 
Proposition 11 and employing Corollary 9, we argue in a 
manner similar to the proof of Proposition 11. W 

Proposition 12: Let f E { 9, p }  have the property that 
for any J E 6, f( J )  3 f( J ) .  Let J = [ d,, d ,+ ,] and J ,  = 
[ d , ,  d,+l] E TI, d, < dl+l, i =1;. ., n .  Then 

6 f(4) 3 f ( J >  and 6 f ( 4 )  E 7. 
1 = 1  r = l  

Proof: By assumption, 

6 f(J,> ' 6 f(4) = 6 ( U f b ,  X I $  

6 ( U f ( [ x A ) j  = U f ( [ X , X l )  =f(J>. 

r=l I = I  r = 1  X€.J ,  

But f E { 9, p }  and therefore 

r = 1  X € . J ,  X G J  

Also, since f(J,) E Y and f(J,) 3 f(J,) E Y, i =1;. ., n 
and 

J ( J )  = I; f(J,> E 7 
I  =1 

then obviously U:= J,) E Y. 
Proposition 13: Let { fk} + f be any Cauchy sequence 

of rational interval functions in { 9, p } .  For any J E Yl, 
let J = [ d , , d , + , ]  and J , = [ d r , d , + , ] ~ Y l ,  d , ~ d , + ~ ,  i =  
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1,. . ., n. Then Thus f , ( J )  has been selected so that 

and t h s  relation converges to the relation that there is a number N ( c )  such that if n 2 N ( c ) ,  then 

By Proposition 12 then, For by the uniform continuity of f on Yl, it is possible to 
select N ( E )  so that if n > N ( E ) ,  J has been partitioned 
into 4"'s such that for each 1 and for every x E J,", f k ( J )  3 i j f k ( 4 )  I4,,(J). k = 1 , 2 , . . .  

r = l  d - c  
P (  J 1 " , [ x ,  X I )  < - < 8 ( 4  

P (f( 4 9 ,  f ( b >  X 3 ) )  < f . 

N E )  and this is true for any J E Y1 and any n in the assumed 
method of partitioning of J .  

By Corollary 11, for each i = 1; . ., n ,  since J 2 4 ,  f(J) 
3 f( 4 )  2 f( 4). By Proposition 12 again, 

and this implies that for each I and every x E J,", 

f(J> ' ij f ( 4 )  3 f ( J > .  . 
We are now in a position to state and prove one of the 
principal results of t h s  paper. 

rational interval functions in { 9, p } .  For any J E .7[, let 

But the immediate consequence of this produces the sec- 
ond part of the claim, 1 = 1  

Theorem 14: Let { fk} + f be any Cauchy sequence of 1 = 1  

Since 
J = [c, d ]  and 

n 

( n  - i + 1) c + ( i  - 1) d ( n  - i )  c + id 

n 
i = l ; . . , n ;  n = 1 , 2 ; . .  

J," = 

Then 
n 

n 

f(J) = lim U mn> =m. for every t E g( f( J ) ,  E ) ,  complete the claim obtaining 
n ' m  

i(J) =u:=,f(4") =m. Proof: Since for any J E YI and for any n ,  Proposi- 
tion 13 provides that Thus it is always possible to select n sufficiently large so 

that no matter how small the number E > 0, 

is withn c of f( J )  
n 

U f( 4")  
I =1 it is obvious that 

n and t h s  is possible for each J E Yr. . 
f(J> = lim U f ( 4 " )  > f J ( J > .  

For arbitrary E , 0, denote the closed 
S ( ~ < J > ,  E )  = { K  E Y :  p ( f ( ~ ) ,  K )  < E } .  Let 

f , ( J ) =  ( K E F ( f ( J ) , c ) :  closely as desired. 

Remark 4: In other words, Theorem 14 implies that by 
using a sufficiently large number in the specified partition 
of J and computing the union of the interval function over 
the partition subintervals, it is possible to approximate the 
exact range of the interval function for x E J ,  f ( J ) ,  as 

n - m  1 - 1  

in by 

t c K for every t E S( f( J ) ,  E )  } . 
This is a unique element in .7, since S( f( J ) ,  E )  is a closed 
and bounded collection of closed intervals in .7 and as 
such, each of its members must be a subset of some 
maximal closed interval which belongs to the collection, 
namely, f,( J ) .  

VI. MATRIX INTERVAL FUNCTIONS 
We now extend the results presented thus far to matrix- 

valued interval functions. In the following, we identify the 
generalized results by the same corresponding number 
designations for propositions, corollaries, etc., except that 
the letter M will be appended to indicate the matrix case. 
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Define Let 

,7"'= {set of all n X n matrices where each of its F"'= { F J F :  q -+ 7 n 2 ,  F is continuous on q } 
n 2  elements belong to S}. (10) If F,G, H E gn2, let 

Denote elements of Sn2 by the matrix notation 

Let A ,  B ,  C E F"' 
vector 

and let U be a fixed positive real 

U =  (ul,u2,-..,un) E Rn,ui>O, i = l , . - . , n .  

Define 

where p is the metric of { S, p } .  Then U is a metric and 
{ F", a 1 is a metric space, since 

(i) by the symmetry of p ,  o(A, B )  = a( B, A )  
(ii) since p ( a .  . 7  bij )  = 0 if and only if a i j  = b,j, a(A, B )  

(iii) by the triangle property for p ,  we have 

I !  
= 0 if and only if A = B,  and 

a ( A ,  B )  <a@, B ) + o ( C ,  B ) .  

More will be said about the fixed real vector U in part 2 of 
the present three part paper (i.e., in [l]). 

Proposition 2M: The metric space { Fn2, U }  is complete. 
Proof: Let { A k }  be an arbitrary Cauchy sequence in 

{ Yn2,u}. Since U is a fixed positive vector, define the 
fixed constant 

S ( F , G )  = SUP { a ( F ( J ) , G ( J ) ) ) .  (12) 
J E Y, 

(i) by the symmetry of U, {( F, G )  = { (G ,  F ) ,  
(ii) since a( F( J ) ,  G(  J ) )  = 0 if and only if F( J )  = G ( J ) ,  

Then { is a metric, since 

{( F ,  G )  = 0 if and only if F = G ,  and 

(iii) 

SUP { 4 7  G ( J  >) 1 
J E Yl 

Q sup { o ( F ( J ) ,  H ( J ) ) +  a ( H ( J ) , G ( J ) ) }  

Q SUP { o ( F ( J ) ,  H ( J ) ) )  

J E Yl 

J E 9[ 

+ SUP { a ( ~ ( K ) , G ( K ) ) )  
K E Yl 

that is, S( F, G )  Q I( F, H )  + [( H ,  G ) .  Therefore, { F"', { } 
is the metric space of continuous interval matrix functions. 

Proposition 5M: The metric space (Sn2, I} is complete. . 
Proposition 6M: For arbitrary F E 9"' and J E 6, 
F ( J )  A U F ( [ x , x l )  = ( ( [ P l , ( J ) 4 , ( J ) ] ) )  E T " '  

X E J  

where for each i ,  j 

O<Q=min{;}<l .  F ( J )  = ( ( [ f l ; ( J ) $ ( J ) ] $  

i r ui J = l  I 
1 ,  J 

P J J )  = inf f , f ( [ X >  X I )  

4 , , ( J )  = suPf,;([X,Xl). . For the Cauchy sequence { A k  }, given any E > 0 and letting x E J  

cl  = Qc7 there exists an N ( E , )  such that for all k ,  I >, N(c1), and 

a(A, ,  A , )  = max - c U j P ( a r j p  al,J < E l .  X S J  

Proposition F E 

Proposition 8M: The rational interval matrix functions 

Proposition 9M: For any rational interval matrix func- 

7M: For arbitrary F E { Snz, [}, 
{FQ}. . But then for each i ,  j and for all k ,  12 N(c1), 

belong to { Sn2, S } .  . 
tion and 

'i 

U ;  
-P ( a;j , )  < €1 and P (  a;jk> aij ,)  < E .  

Since E > 0 is arbitrary, for each i ,  j ,  { aijk } is a Cauchy 
sequence in { F7 p }  and since that metric space is com- 

E { F n 2 ,  .I E 6 
F ( J ) 2 F ( J ) A  U F ( [ x , x ] ) .  . 

plete, x E J  

{a;,,, } + a i j  E Y. 

Thus 

Corollary 9M: For any rational interval matrix function 
F E { Y"', [ }  and arbitrary J E 6, if K E 6 and J 3 K ,  
then 

{ A k }  + A E Y . " '  

and therefore { Fn2, U }  is complete since { A k }  is an 
arbitrary Cauchy sequence in { Sn2, U}.  

Remark 5: The subsequent interval matrix function re- 
sults can be proved in a manner similar to the preceding 
"scalar" cases. Accordingly, the proofs of the remaining 
results will not be given here. 

F ( J )  3 F ( K )  3 F ( K ) .  

Proposition IOM: Let { F k }  + F be an arbitrary Cauchy 
sequence in { Fn2, S } .  Then { Fk}  is a Cauchy sequence in 
{ Fn2, { }  converging uniformly to F E { Snz, {}.  

Proposition I I M :  Let { F k }  + F be an arbitrary Cauchy 
sequence of rational interval matrix functions in { Fn', 1). 
Then for each J E Yr, F ( J )  3 F ( J ) .  . 
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Corollary I I M :  If { F k }  + F is an arbitrary Cauchy 
sequence of rational interval matrix functions in { ~ n * ,  11, 
then for each J E Yl, if K E Yl and J 3 K ,  

F ( J ) ~ F ( K ) ~ F ( K ) .  
Proposition 12M: Let F E { %”*, { }  have the property 

that for any J E q, F ( J )  3 F ( J ) .  Let J =  [d,, d,,,] and 
J ,  [ d , ,  d I t l ]  E Yl, d ,  G d,+,, i =1; .  ., m. Then 

m m, ... 
U F ( J , )  3 F ( J )  and U F ( J , )  ~7.”~. 

I =1 I =1 

Proposition 13M: Let { F k }  - F be any Cauchy se- 
quence of rational interval matrix functions in { s‘*, [ >. 
For a n y J  E Yf, let J =  [d,, d,+J and J, = [d , ,  d ,+ l ]  E YI, 
d ,  < d,+,, i =1; .  ., m. Then 

m 

r = l  

and t h s  relation converges to the relation 
m 

F ( J ) 3  U F ( J , ) 3 F ( J ) .  
I =1 

Theorem 14M: Let { F k }  + F be any Cauchy sequence 
of rational interval matrix functions in { %“*, [}.  For any 
J E 6, let J I [c, d ]  and 

( m  - i + l ) c + ( i - l ) d  ( m - i ) c + i d  
m m 

J,” A 

Then 

Remark 6: Since the partial sums in the interval infinite 
matrix series representation of the interval matrix ex- 
ponential function define a sequence of rational interval 
matrix functions, if thls sequence is Cauchy, Theorem 14M 
provides a convergence philosophy for evaluating an inter- 
val fundamental matrix which element-wise contains the 
actual closed interval range of values for the perturbed 
fundamental matrix for all values of the perturbation 
parameter and does so as closely as desired. 

Whle  interval post-multiplication of this interval funda- 
mental matrix by the interval vector initial condition in the 
linear homogeneous initial-value problem (described by 
ordinary differential equations) will certainly produce an 
interval vector solution bound or envelope for the set of all 
solutions associated with the parameter variation, it is not 
difficult to understand that this result will be unduly 
conservative. 

This inconvenience may be recognized by observing that 
in forming the interval fundamental matrix, the union over 
the partition subintervals in Theorem 14M (or Proposition 
13M) is elementwise independent and, therefore, the parti- 
tion subinterval “signature” is lost within and between 
elements. Consequently, a less conservative interval vector 
bound solution for the set of all solutions associated with 

the perturbation parameter will be obtained if the union is 
performed before this “signature” is lost by tahng the 
union over the interval vector solution bounds obtained 
for each partition subinterval. This in fact will be the 
technique that is used in the linear interval integration 
algorithm (in [l] and [2]) and since the interval vector 
initial condition is fixed, Theorem 14M provides the neces- 
sary convergence in this technique as well. 

VII. CONCLUDING REMARKS 
In the previous sections we first established some essen- 

tial notation, we noted that the algebraic structure de- 
termined by the interval arithmetic operations is not par- 
ticularly rich and we considered metric space as the 
appropriate setting for our work. Next, we studied con- 
tinuous interval functions in general and rational interval 
functions in particular. In studying interval functions we 
considered the “scalar” interval functions and matrix in- 
terval functions. Although our primary goal was to estab- 
lish Theorems 14 and 14M, we believe that all of the 
results of Sections IIILVI are of interest in their own right. 

In part 2 of the present three-part paper (i.e., in [l]) ,  we 
employ Theorems 14 and 14M in studying “scalar” and 
matrix exponential interval functions, respectively. In part 
3 of the present three-part paper (i.e., in [2]), we employ 
these results to study linear initial-value problems. As 
applications we consider worst-case studies of specific 
examples involving an RLC circuit. a servomechanism and 
an optimal regulator problem. 
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