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Application of Interval Analysis 
Techniques to Linear Systems: 
Part 11-The Interval Matrix 

Exponential Function 
EDWARD P. OPPENHEIMER, MEMBER, IEEE, AND ANTHONY N. MICHEL, FELLOW, IEEE 

Abstract-In Part I of the present three-part paper [3] we established 
new results for continuous and rational interval functions which are of 
interest in their own right. In the present paper we use these results to 
study interval matrix exponential functions and to devise a method of 
constructing augmented partial sums which approximate interval matrix 
exponential functions as closely as desired. In the third part of this 
three-part paper we will use the above results to generate an algorithm 
which enables us to obtain estimates of bounds for the set of all solutions 
of initial-value problems of linear systems of autonomous first-order 
ordinary differential equations that linearly depend on a parameter belong- 
ing to an interval. 

The motivation for the present work includes many interesting applica- 
tions. We cite here as examples the tolerance problem in electric circuits, 
optimal control problems with large tolerances on a parameter (where the 
usual sensitivity analysis methods fail), and the like. 

I. INTRODUCTION 
N A companion paper [3] we established new results I for continuous and rational interval functions. In the 

present paper we use these results to study interval ex- 
ponential functions and to develop an algorithm whch will 
enable us to obtain reasonably sharp estimates for the 
range of interval matrix exponential functions of an inter- 
val (parameter) variable. Since this algorithm will be im- 
plemented on a finite wordlength digital computer, it is 
necessary to incorporate machine bounding arithmetic. 

The results of the present paper as well as those given in 
[3] will be used in Part 111 [16] to study linear initial-value 
problems which are endowed with a parameter belonging 
to an interval (e.g., a parameter with a specified tolerance). 

The results of this paper are presented in the following 
manner. 

In Sections I11 and IV we consider “scalar” and matrix 
interval exponential functions, respectively. These func- 
tions are represented by infinite power series and their 
properties are studied in terms of rational functions (using 
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the results of [3]) obtained from truncations of these 
infinite series. 

To determine optimal estimates of error bounds for the 
truncated series representation of the interval matrix ex- 
ponential function, we establish appropriate results deal- 
ing with Householder norms. This is accomplished in 
Section V. 

The conservativeness of interval arithmetic operations 
can be reduced by considering the nested form for interval 
polynomials and the centered form for interval arithmetic 
representations. These notions are introduced in Section 
VI. In this section we also discuss briefly machine bound- 
ing arithmetic in digital computers. 

Finally, Section VI1 presents an algorithm for the com- 
putation of the interval matrix exponential function which 
yields prespecified error bounds. This algorithm incorpo- 
rates: machine bounding arithmetic; the perturbation 
parameter interval partitioning philosophy of theorem 14M 
and proposition 13M established in [3]; the nested and 
centered form techniques; and an optimal Householder 
norm. 

11. NOTATION 
In the subsequent sections, we will make use of the 

notation established in the first part of the present three- 
part paper [3]. This notation will not be restated here. 

111. AN INTERVAL EXPONENTIAL FUNCTION 
COMPUTATION TECHNIQUE 

In this section we present a technique by means of 
which the interval exponential function may be approxi- 
mated by an “augmented” truncated series representation 
that set theoretically includes the infinite series result, with 
prescribed relative error bounds for the interval result 
endpoints. 

Let { f , }  denote the sequence of rational interval func- 
tions defined by 

J J  
f n ( J > &  7, J A [ c , d ] E 6  (1) 

,=o J .  

where, for simplicity, j !  denotes the degenerate interval 

0098-4094/88/1000-1230$01.00 01988 IEEE 



OPPENHEIMER A N D  MICHEL: INTERVAL ANALYSIS TECHNIQUES: PART I1 1231 

[j!, j!] and where the zeroth power of any interval is 
assumed to be the degenerate interval [l,  11. Now for any n 
and k,  

P ( f n ( J ) , f n + k ( J ) )  < P ( f n ( J ) , f n + l ( J ) ) +  ' * '  

+ P ( f n  + k -  1( ), f n  + k ( )). 
Let + = [O,O]. From the definition of the metric p (see 
[3, eq. (4)] and the interval arithmetic operation of ad- 
dition (see [3,  eq. ( l ) ]  it follows that 

Similarly, it is obvious .that 

Following Moore [l], we define the magnitude of J = [ c, d ]  
by 1 JI = p(+, J )  max(lc1, JdI). Then 

P ( . 6 n ( J ) , f n + k ( J ) )  
1 Jl"+' I Jln+k <-+ e - .  +- 

(n  +I)! ( n  + k ) !  

I J I  + IJlk-' 
( n + k ) . - ( n + 2 )  

.-[l+-+ I JI"+' I J l  . . .  +(s)k-l] 
(n+ l ) !  n + 2  

1-12) 

< ( n  +I)! 
1 

1- - 
( n ' 2 2 )  

where it is assumed that n is sufficiently large so that 

- (1. 
n + 2  
IJI 

Thus 

But this relation can be made independent of J in the 
sense that J E FI, FI is compact and for every J E YI, 
IJI < 111. Thus for any c > 0 it is possible to select N 
sufficiently large so that for every J E Y ~  and for all 
n,m>", 

(see [2 ,  p. 3841) to note that 

n! i (;, "fi i 
is a monotonically nonincreasing positive sequence with 
limit equal to one. Thus 

and therefore 

1 
= lim = 0. 

N - m  

($)Nm 
Therefore, by selecting N sufficiently large, we obtain 

VINt1 1 
I .  < €.  

( n  +I)! 

It now follows that { f,} is a Cauchy sequence in the 
complete metric space { 9, p }  (see [3, proposition 51) and 
as such it will converge to an element of 9. Let us denote 
this element by 

a2 J J  

f ( J ) A  ~ 4 : ' .  

Note that { f,,} is a Cauchy sequence of rational interval 
functions and by proposition 11 [3] it follows that 

f ( J ) A e - ' 3 f ( J ) A  U f ( [x ,x] )=  U e x  
X E J  X G J  

since f([x, XI) A ex. 
For the present, assume that the interval arithmetic 

operations can be exactly computed in the reals (i.e., on an 
"infinite-decimal" machine) and that it is desired to de- 
termine an interval result which will contain the value of 
the interval function 

within some predetermined relative error. Let the interval 
function be defined by 

f ( J )  $ e J =  [ f " ( J > , f " ( J ) ]  ' 

and let the computable truncated interval series be defined 
by 

n J j  

f A J )  A c 5= [ f , " ( J ) , f , " ( J > I .  
i = o  . 

Let the remainder of the interval series be defined by 
O3 J' 

r , ( J )  A -=  [mk(J) ,mt(J)] .  
i = f l + l  I !  To obtain the above inequality, we use Stirling's formula 
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It has been shown previously that there exists an upper 
bound on the metric measure of how closely the truncated 
series approximates the actual function, 

IJI 
4 7, provided that - < 1. (2) 

Since the truncated series is computable, assume by ap- 
propriate programming techniques that it is possible to 
satisfy the relation 

n + 2  

Ir,(J) I4 max(l~,"(J) ILlr3J) I )  
~7Q10-p.min(lf,L(~)I,IfnR(J)~) (3)  

where P is a positive integer, so that 

combining the above two inequalities, we obtain 

f"(J)  2 f , " ( J ) - 7 2 f , " ( J ) - 1 0 - p l f , " ( J )  1 .  
Taking the negative of t h s  inequality and adding f L ( J ) ,  
we obtain 

0 < f L ( J )  - [ f , " ( J >  - 71 

f f"( J )  - [ f,"( J )  - 10 f,L( J ) I] . 

O<lf"(J)-[f,"(J)-.II 

Now f"( J )  - [ f,"( J )  - 71 is the error in the approximation 
endpoint [ f , " ( J ) -  71 and it is bounded above, since 

I f L ( J ) - f , " ( J )  I+lo-plf,"(J) I. 
Assuming 

then 

Therefore, 

In a similar manner, we can show that 

Thus by selecting n sufficiently iarge, so that the condi- 
tions IJI/( n + 2) < 1 and 

n + 2  
are satisfied, and denoting 

lo-' 
e A 2-  

1 - lo-' 
we obtain the estimate 

J'  
[ 1 - c , 1 + c ] . e J 3  - + [ - - , 7 ] 3 e J 3  U e'. 

Recall that 0 < fL( J )  - [ f,"( J )  - 71 and 0 f [ f,"( J )  + 71 - 
f R ( J ) .  Then ( 5 )  and (6) above imply that 

1-0 I !  x € J  

f Y J )  - 4fL(J)I < f , " ( J >  - 7 

f , " ( J ) +  - < f R ( J > + e l f R ( J ) I  
which provides that 

[I - c,1 + e ] .  e J  2 ( f,( J )  + [ - -,TI). 
In other words, by including a sufficient number of 

terms in the truncated computable series (1) so that the 
algorithmic inequality (3) is satisfied, it is possible to 
augment t h s  truncated series result so that the augmented 
interval result bounds the actual interval exponential func- 
tion and does so withm the specified relative endpoint 
error bounds ( 5 )  and (6). 

It should be remarked at this point that nothing has 
been said to indicate how well e approximates the corre- 
sponding united extension, U, E J e x .  Proposition 1 3  in the 
first part of the present three part paper [3] and Theorem 
14 in [3] indicate the direction which will be followed in 
improving this approximation and the corresponding aug- 
mented result approximating e '. 

IV. AN INTERVAL MATRIX EXPONENTIAL 
FUNCTION COMPUTATION TECHNIQUE 

In the present section we extend the interval exponential 
function approximation technique of Section I11 to the 
matrix counterpart. To this end, we let { F k }  denote the 
sequence of rational interval matrix functions defined by 

where 
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A( J )  is the rational interval matrix function defined by by the properties of the matrix norm. Also, 

A ( J ) & 4 , + J A 2 ,  J E T I  IIG-'IA(J)lGII, Aa(O, A ( J ) ) .  (14 )  

we have 4 0 ,  A " ( J ) )  < [a(O, 4 4 1 1  * (15)  

where A,, A ,  E 7"' are constant interval matrices. (Refer 
to (10)  in [ 3 ]  for the definition of T"'.) For any k and I ,  

Combining (12)-(14), we obtain 

a ( F k ( J ) ,  F k + / ( J ) )  < u ( F k ( J ) ?  F k + l ( J ) ) +  * * *  

+ u ( F k + / - l ( J ) ,  F k + / ( J ) ) *  

(Refer to [3 ,  eq. (11)] for the definition of the metric a.) 
Let 0 denote the interval matrix where each element is a 
degenerate zero interval. From the definitions of the metric 
U and the interval arithmetic operation of addition, it 
follows then that 

( Fk ( ') 9 Fk+ I ( )) 

It is apparent that 

(Recall that rn! represents the degenerate interval [m!, rn!] 
and assume that the zeroth power of any interval matrix is 
the degenerate interval identity matrix in the above expres- 
sion.) Also, we claim that 

u ( O , A " ( J ) )  < [ a ( O , A ( J ) ) l r n .  
To see this, we first define the real matrix IBI from the 
interval matrix B E Yf12 by 

I ((max { Ibf;l, lb;l})). (9) 

Let G 2 diag(u,), where U denotes the fixed positive real 
vector used in the definition of the metric U (see [ 3 ,  eq. 
(l l)]) .  From the properties of interval arithmetic oper- 
ations and from (9) we have 

IA"(J) 16 MJ) 1". (10) 
Note that G-'IA"(J)IG andG-'IA(J)I"G are real n X n 
matrices. For the real n X n matrix C = ( (c l , ) ) ,  define the 
matrix norm IlCll, by 

IlCll, A max CIC,,I. (11) 

From (9) and (10) and the definition of the metric U, we 
have 

a(0, A " ( J ) )  A a(0, IA"(J)I) < a(0, IA(J ) I") .  (12)  

But 

a(0, IA(J)I") llG-'l~(J)lmGIlm 

G - 'I A ( J 1 I m)GI I m 

= IIG-'I~(J)I(l)GG-'I~(J)I(2)G . . 

6 (llG-ll~(J)lGllm) rn (13)  

whch was the claim to be proved. 
For convenience, we define 

x 4 a(0, A ( J ) ) .  

Combining (8) and (15), we obtain 

1.7 ( Fk (..'I 7 Fk+ I ( 1) 
. x k + l  x k + l  

<-+ +- 
( k + l ) !  ( k + l ) !  

x k + l  x XI-  1 
- -&+=+ ...  + ( k  + 2 )  .. . ( k  + I )  
< - ( l + - +  x k + l  x . . .  + 

( k  + 1)! k + 2 

=-. 
( k + l ) !  1 -  ( k : 2 )  - 

\k+l 1 

provided that X / ( k + 2 ) < 1 .  But  JET^ and ~ J ~ < ~ I ~  
and hence IA(J)I<  l A ( I ) J  in the sense that for each 
i ,  j ,  la,,(J)I < laij(Ol. Then 

A L J a ( O , A ( J ) )  < x 4 u ( o , A ( I ) )  

and x is independent of J .  For arbitrary c > 0 it is obvious 
then that there exists N such that 

T N + 1  1 

\ N + 2 )  

for all J E T , ,  for all k > N  and for all 1 = 1 , 2 ; . .  . 
Recalling the definition of the metric l defined on the 
metric space 9"' (see (12) in [3] ) ,  we obtain 

l( Fk , Fk+, )  < 7 < C ,  k >, N ,  1 = 1 , 2 ,  * . * . 
It follows that { F k }  is a Cauchy sequence in the complete 
metric space { S"', l}, that { F k }  + F E { Fnz, l} and 
that 

Moreover, from proposition 11M in [ 3 ] ,  it follows that for 
any J E Yr, 

F ( J )  A : ' ( J ) ~ F ( J )  A U ~ ( [ x , x ] )  A U eA([x,xl) .  
X G J  X E J  
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Proceeding, as in the case of the scalar interval exponen- 
tial function, we assume for the time being that the inter- 

mal machine. Let the actual interval matrix exponential 
function be represented as 

f,:( J ) ,  we obtain 

val arithmetic operations are calculated on an infinite-deci- 0 < L:( J )  - (r,",J> - ?T) 

< f,f( J )  - ( f , tk(J)  - Io-plf , :k(J)  I). (234 
F ( J )  A ( ( f Z J ( J ) ) )  ( ( [ f 1 5 ( J ) 9 f , ; ( J ) ] ) )  (174 

Hence, the error in the approximation endpoint 
and let the computable truncated interval matrix series 
F k ( J )  be defined by (7). Define the remainder of the 
interval matrix infinite series by 

< If'?( J ) - f,"( J 1 I + 10 - J 1 I. (23b) From the previous arguments then, there exists an upper 
bound on the metric measure U of how closely the trun- 
cated series approximates the actual function, Assuming 

A (18) and using (23b), then <-.-- x k + l  1 
x 

1-- ( k + l ) !  

k + 2  1 f 1 f ( J ) - (  L"(J ) -  ?T) 1 
provided that X /( k + 2) < 1. 

Yn 
F;rom the definition of the metric (T defined on the set lL:( J )  I 

If',"< J 1 - f'fJ J 1 I + 10 - plL:k( J ) I 
I If':< J 1 - f,fJJ) I - ICk( J 1 I I 

(see (11) in [3]), we see that 

< 

If,$< J 1 - J 1 I 

< U(O, R k ( J ) )  < 7. (19) 

possible by appropriate programming techniques to satisfy 
Assume then that for the computable truncated series, it is 

- 

the relation 

Also, for each i, j ,  

f i j ( ~ )  ' L ' j k ( J ) +  r i j k ( J )  

and, therefore, 

By (20) and (21), 
(20) IL?(J)- f ik(J)I  A I . i fk(J)I  <lo-pl&:(J)l. (25) 

Combining (24) and (25) we obtain 

and this holds for each i, j .  
In a similar manner it can be shown that for each i ,  j ,  

f,f(J) " f , f k ( J ) + r , L k ( J )  2f,f(J)-lr,:k(J)l. (22) 

Combining (21) and (22), we obtain I( f , ; k ( J ) + ~ 7 ) - f , ; ( J ) l / l L ; ( J ) l < 2 (  -). 

f , f ( J )  > f , t p ) - (  ? )T> , f , f~ ( J ) -1o -p I f , f~ ( J ) l  (27) 

As in the case of scalar exponential interval functions, by 
selecting k sufficiently large so that for all i, j the condi- and taking the negative of this inequality and adding 
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tions A / ( k  +2) < 1  and 

1 
A 

l - -  
k + 2  

Recall also that a matrix norm is said to be consistent with 
a given vector norm if for everyA and x it is true that 

IlAxll IlAll llxll 
and subordinate to the vector norm in the case where the 
matrix norms are consistent and for every A there exists an 

A ~ .rc lo -Pmin( l f , :~ (J ) i , I f ,~ (J ) i )  X + O  such that 

uJ IlAxll = IlAll IIXII. 
are satisfied, then for In particular, it can be shown that the matrix norms )l.lll, 

11.  1 1 2 ,  and 11. 11, are subordinate to their corresponding 
vector norms. 

The subsequent two vector norms were studied by 
Householder ( [ 5 ,  pp. 9-16] [6, pp. 9, lo]). Let we obtain 

IJxII,= IIG-l~llm where G A diag( g,), g, > 0. (28) 
i = o  i !  x € J  Since the )I.Ilrn matrix norm is subordinate to the vector 

+ -J e4J)  I, U e 4 [ x , x l )  
k A ' ( J )  

[ I - - E , I + - E ] ~ ~ ( ~ ) I ,  - 

where 

In other words, by including a sufficient number of 
terms in the truncated computable series (7) so that the 
algorithmic inequality (20) is satisfied, it is possible to 
augment this truncated series so that the interval result 
bounds the actual interval matrix exponential function 

and does so within the specified relative endpoint 
error bounds (26) and (27). 

As in the scalar case, nothing has been said regarding 
how well e A ( J )  approximates the corresponding united 
extension U ,  E J e A [ X . X ] .  Both proposition 13M and theorem 
14M in [3] indicate the direction which will be followed in 
improving this approximation and the corresponding aug- 
mented result approximating e A ( J ) .  

V. ESTIMATES OF ERROR BOUNDS FOR THE TRUNCATED 
SERIES REPRESENTATION OF THE EXPONENTIAL 

MATRIX FUNCTION 
In the present section we obtain sharp bounds for the 

errors created by truncating the series representation for 
eAr  (where A is a real n X n matrix and t 2 0) by making 
use of Householder matrix norms. In Section VI1 we will 
apply the results of the present section to interval matrix 
exponential functions. 

Now recall that the following norms of vectors in R" 
induce the corresponding norms on matrices in R n X n  (see 
e.g., [4]): for x E R", x T =  (x1;  -, x,,), A = ( ( u , ~ ) ) ,  

(a) if I I X I I ~  A C I X , I ,  then IIAlll A max C lalJI ; 

(b) if IIx1I2 A ( z l x ; )  , then llAlla = A1ca where 

A,, denotes the largest eigenvalue of A% ; and 

n 

1 - 1  J ( 1 1 1  

n 1/2 

norm, it follows readily that 

Also, let 

~ ~ x ~ ~ u , ~ ~ ~ H x ~ ~ l  where H=diag(h,) ,  h , > 0 .  (30) 
Again, since the l l . l l l  matrix norm is subordinate to the 
vector norm, it follows readily that 

~ ~ A ~ ~ U f =  - 1 h I l a I J l  ' (31) 
J {:,,:I } 

Next, recall that a real matrix B = ( (b lJ ) ) ,  b,, 0, is called 
irreducible in the sense of Frobenius ([7, p. SO]) if it is not 
possible to split the index set { i; a ,  n }  into two nonvoid 
disjoint sets a and p such that b,, = 0 for all i E a, j E p. 
Recall also that for any real matnx A = ( ( a ,  J ) ) ,  the matrix 
IAI = ((lalJl))  is called the abmatrix of A ( [ 5 ,  p. 91). Fur- 
thermore, recall that the Frobenius theorem on the spectral 
properties of irreducible nonnegative matrices ([7, p. 531) 
states that for such a matrix there is a simple real positive 
eigenvalue r which is greater than or equal to the modulus 
of every other characteristic value and that the correspond- 
ing eigenvector w has strictly positive components. It is 
interesting to note that if this irreducible matrix is (A( ,  the 
Frobenius theorem proof develops the characterization 
([7, p. 651) r = llAll, in (29) with G = diag(w,). Recall also 
that the modulus of the largest characteristic value of a 
matrix is called the spectral radius. For any real matrix A ,  
the infimum of the set of values of the matrix norms on A 
induced by the family of all vector norms on R" is the 
spectral radius and in this sense then, for an irreducible 
matrix [AI, the Householder matrix norm with G = diag(w,) 
produces the optimally infimum value, the spectral radius 
of IAl (see [8, p. 2491). When IAl is irreducible, [SI ad- 
ditionally characterizes the subfamily of vector norms and 
induced matrix norms on A for which this Householder 
matrix norm yields an optimally infimum value. This family 
includes the I).Ilrn and ll.lll vector norms. 

It must be remarked that the class of nonnegative real 
matrices IAl for which either llAll, or llAll,. yields an 
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infimum value is larger than the set of irreducible matrices 
and necessary and sufficient conditions characterizing this 
additional set of matrices are stated precisely in [7, p. 771. 

The consequence of the above remark is that llAll,. may 
be defined while llAll, is not (or the converse). For exam- 

0 1  
ple, 

A = [  -; -00.4 s] 
results in g ,  = 0 while AT yields h ,  > 0, i = 1,2,3 and thus 
llAll,. = 0.2+ m, the spectral radius of IAl and lATI. 

It is apparent from the definition of 1 1 -  I l l  and 1 ) .  I l m  that 
for any i, j ,  lulJl < llAilY when y denotes 1 or 00. It turns 
out that this relationship is also true when y = 2. This 
claim is verified as follows. The real symmetric matrix 
B A  A% is normal and, therefore, has at least one eigen- 
value A, such that 

lhtl 2 m=lb,,l 
1 .  J 

(see e.g., [9, p. 1611). But A% is nonnegative definite and 
thus all of its eigenvalues are real and nonnegative. Now 
for any i, j ,  

lblll A c a21 ’ a;, 
1 k ; l  1 

and therefore, using the definition of (1. (I2, it follows that 

llAllz’ lA111’2 ’ I ‘ I J I  

which was the claim to be proved. In the case of the two 
Householder matrix norms, we have 

gJ hl 

g,  hJ 
-1 ‘ IJ I  Q l l A l l U  and -1‘lJl‘ l l A l l U r *  (32) 

Let us now turn to the numerical computation of the 
real matrix exponential 

Let 
k Aiti 

M 4  (( m . . ) ) A  ‘ J  - and 
j = o  I !  

m Ait’ 
R A  ( ( r j j ) )  A - 

i = k + l  

where it is assumed that llAll, and llAll,. exist. In a 
manner similar to the numerical scheme described previ- 
ously for computation of the interval matrix exponential, 
letting y denote 1, 2 or 00 for any i, j ,  we obtain 

k + 2  
provided that 

In the case of the Householder matrix norms ( r  denotes 
the same calculation with the norms replaced ap- 
propriately in (33)), for any i, j we have 

(34) 

Then, if for each i, j 

h .  
1rjjl < Lr,. <lO-PlmjJl (35) 

hl 

the error in any term of the truncated matrix series M 
approximating Q ( t )  4 eAt  is less than 10-Plm,jl. (This 
relationship can always be satisfied by increasing k suffi- 
ciently, as previously shown.) 

Hopefully, the effect of using the “optimally infimum” 
Householder matrix norm in the computation of r is to 
obtain a sharper result for this bound, thereby minimizing 
the number of terms in the series that is required to yield 
an approximation which is accurate to within a given 
decimal. 

The “optimal” Householder matrix norms require of 
course the computation of the maximal eigenvalue and a 
corresponding eigenvector of I A I. However, these compu- 
tations are readily available (e.g., in the fast double-preci- 
sion EISPAC routine.) 

Table I gives results for the two examples, 

(36) ‘1 0 1 
A = [  0 0 

-0.75 -2.75 -3 

1 I----- - - f r - 0.05 -6.0 ! I 
i 0 o i  

1.0 0 0 13.0 

-10-3 -0.15 I _ _ _ _ _ _ _  

1 0  1 . 0 0 0 1  

The abmatrix IAl is irreducible while the abmatrix IBI is 
reducible. (The spectral radii and the norms ) ) . ) I 2  and II-II, 
were computed using the double-precision EISPAC routine 
whle the remaining computations were evaluated on a 
12-digit calculator.) 

In Table I it should be noted that for matrix A with 
k = 8 and t = 0.1, the 

1.051973 . ru = A W .  ru (38) m,? ( E} “ = 0.07362408 

bound is an order of magnitude sharper than the rm bound 
obtained in [lo,  pp. 104-1071 but more conservative than 
the r2 and r1 bounds. However, given 
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TABLE I 
NUMERICAL RESULTS FOR THE COMPUTATION OF 7 IN THE Two EXAMPLES 

(36) AND (37), WITH VARIOUS MATRIX NORMS 

IIAll,t - 
Spectral k + 2  
Radius k = 8  

of A = 1.500000 t = 0.1 7” Ir,,l d 
l l4L 6.500000 6.5X10-2 6.104436 X l o - *  rm 
IIAlIl 4.- 4.0X10-2 7.524985X10-’0 71 

IIA1I2 4.253694 4.253694X10-’ 1.312234X10-9 72 
llAll,, 3.780003 3.780003 X lo-’  4.512331 X lo-’’ W.r, = 

6.447407 x 10-~  

IIBll,t - 
Spectral k + 2  
Radius k = 20 

of B = 0.1921954 r = 0.1* 

11% 14.0 6.363636 X 2.448501 X lo-’’ Tm 

IlBlll 13.0 5.909091 x 5.139476 x lo-’’ 71 

11B112 13.03841 5.926550 X 5.468980 X 10- ’’ 77 

907.58886 

1.588150 
= 4.634085 X 

11B11, 0.1921954 3.494462 X lo-’  8.108984X 

*t = 4.0 vice 0.1 in the case of 11B11,. 

since llAll, Q IIAlly, where y denotes 1, 2 or CO, by selecting 
k sufficiently large, for each i ,  j it is always possible to 
satisfy 

Ir. ‘ I  .I Q Wr, < r,,. 

This can be seen by observing that for k sufficiently large, 
it is always possible to satisfy 

1-- 1-- 
k + 2  k + 2  

In the case of IIAIIJIIAII,, > 1, k 
For matrix B given by equation (37), Table I points up 

the importance in selecting an optimal matrix norm in 
computing the bound 7 .  With a fixed maximal number of 
terms in the truncated series approximating the fundamen- 
tal matrix @( t = 4.0), the optimal matrix norm bound ru is 
several orders of magnitude sharper than the other results 
for the same series approximating @ ( t  =1.0). It should be 
noted, however, that as t increases, some or all of the ]mi , [  
elements may be decreasing and, therefore, 

Iri,l Q WT, glO-PlmiIl  

may be more difficult to satisfy for all i ,  j ,  even though r, 
is decreasing with increasing k.  (This would certainly be 
true in the case where @ ( t )  represents the state transition 
matrix for a system where all the eigenvalues of A have 
negative real parts.) 

VI. REDUCTION OF CONSERVATIVENESS FOR 
INTERVAL ARITHMETIC OPERATIONS 

In the present section we introduce the nested form for 
interval polynomials and the centered form for interval 
arithmetic representations. These concepts will enable us 
in the next section (along with the results of Section V) to 
reduce the conservativeness of the interval arithmetic oper- 

47 yields W. ru < rl. 

ations used in the computation of interval matrix exponen- 
tial functions. In th s  section we also briefly discuss ma- 
chine bounding arithmetic in digital computers. This type of 
arithmetic (which gave rise to the introduction of interval 
analysis in the first place) will be used to implement our 
algorithms on a digital computer (to compute interval 
matrix exponential functions and to solve linear (interval) 
initial-value problems) in order to obtain true estimates of 
interval bounds. 

1) The subdistributivity property of interval arithmetic 
(see [3]) points to the utilization of the nested form for 
interval polynomials. To be more specific, consider the 
interval polynomial (a rational interval function) with in- 
terval coefficients Ai E 7, i = 0,1,. . . , n and interval vari- 
able J E TI. The nested form of the polynomial yields an 
interval result contained in and frequently “narrower” 
than that produced using the sum of powers, 

( . * * ( A J S  A“_$+  . . . + A#+ A ,  

C A,J” + * * + A I J +  A , .  (40) 

(This same property obviously holds for interval matrix 
polynomials. The term “narrower” is used in the sense that 
Moore [ l ,  p. 71 defines the width of an interval as w ( J )  
w([c ,  d ] )  d - c >, 0.) The nested form of computations 
also is reasonable from the computer programmer’s point 
of view of improving the speed of an algorithm by mini- 
mizing the number of calculations required to obtain a 
result or from the numerical analyst’s attempt to minimize 
the accumulation of local rounding errors [ l l ,  pp. 51, 3021 
by the same technique. This is in effect a reduction in the 
number of occurrences of the interval variable. 

As a specific example, consider the rational function (of 
a real variable) 

x x - 2  2 2 
-=-+- = 1 + -  
x - 2  x - 2  x - 2  x - 2 ’  
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TABLE I1 
SUMMARY OF RESULTS FOR VARIOUS INTERVAL ARITHMETIC REPRESENTATIONS 

O F ~ ( X ) = X - X ’ ,  x ~ ~ = [ ( 1 / 2 ) - r , ( 1 / 2 ) + r l  

Computational 
technique Represen tation 

Interval 
result 

United exten- 
sion (exact 
range of values) 

Centered form 

Nested form 

Sum of powers 
form 

“Mean-value” 
form* 

J(1- J )  3 j ( J )  

J -  J 2 3 j ( J )  

1 4 + (1 - 2( 5 + ( J - ;)[”I])) 

.( J - f )  3 j ( J )  

[ - r2, :] 

[ I -  r 2 ,  ] 
[ ( ; - .)’, ( $ + .)’I 

- + r2  
4 4  

[ : - r2, ( + r 1 2 ]  

[ f - 2 r  - r2, - + 2 r  - r2 

[a  - 2 r  - r 2 , ( :  + r ) ’ ]  

4 

*This result is simply included for completeness of the example by Moore and since the mean-value form will not be used 
further, its derivation will not be included here [l, p. 471. 

The corresponding interval function results are 

and 

which also points out that in the special case where the 
interval variable occurs only once, the interval function 
and the united extension yield the same interval result. 

2) The centered form is another method of selecting a 
rational interval expression which may produce a less 
conservative interval result which contains the correspond- 
ing united extension interval result [l, p. 421. 

Suppose it is desired to calculate the range of the 
rational function of a real variable f ( x )  = x - x 2  for x E J 
4 [(1/2)- r,(1/2)+ r ] ,  r > 0. If c denotes the center or 
midpoint of the interval J ,  the real function representation 
desired for the centered form is f ( x )  = f( c )  + g(x - c) .  
Obviously, g(x - c )  = - (x  - (1/2))2 and the centered 
form of the interval arithmetic representation is (1/4)- 
( J  - (1/2))2, where for simplicity of notation it will be the 
practice to denote the degenerate intervals by the reals. 

It should be clear that the centered form is an interval 
arithmetic representation in which the result is computed 
in terms of the value of the original function at the interval 
center plus an interval arithmetic computation which is a 
function of an interval variable that is symmetric and 
centered at zero. 

Table I1 lists the results of the above example for the 
various interval representations. The table shows that for r 
small the mean-value form gives a result which is less 
conservative than the nested form but more conservative 
than the centered form. 

Moore [l, p. 451 conjectures from the various centered 
form examples studied (letting f, denote the centered form 
representation of f) that 

W ( f , ( J ) )  Q w(f(J>)+ @ ( w 2 ( J ) )  (41) 
where O ( h )  denotes the usual “order of h” notation (i.e., 
ICo(h)/hJ has a finite upper bound for all h when JhJ is less 
than some positive constant). 

3) The interval arithmetic operations (see [3]) are accu- 
rately defined insofar as computation in the reals are 
concerned. Suppose, however, for purposes of dmussion, 
that a hypothetical decimal computer can retain only one 
digit after each computation and that an interval result for 
the square of 0.899 is required. The machine representable 
interval [0.8, 0.91 contains t h s  number and the square of 
this interval is [0.64, 0.811. But this would be represented 
on the one-digt machne as [0.6, 0.81, assuming that trun- 
cation of the excess interval endpoint result digits occurs. 
Obviously the exact result, 0.808201, is not contained in 
the resulting machine interval. 

This simplified analogy begins with part of the original 
phlosophy leading to the topic of interval analysis (the 
inability of a finite wordlength machine to exactly repre- 
sent the real numbers) and it additionally points to the 
requirement for a machine bounding arithmetic to success- 
fully accomplish the numerical interval arithmetic oper- 
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ations. (This certainly is expected since the best that any 
finite wordlength computer can do is to represent a 
bounded subset of the rational real numbers.) 

The implementations of numerical bounding interval 
arithmetic are largely machine dependent and will not be 
discussed here. Examples of specific computer programs 
which were used by the present investigators may be found 
in [12]-[20]. 

4) The computational techniques which we will subse- 
quently employ (in the next section and in [16]) combine 
the centered form representations, subdivision of the inter- 
val (see [3,  propositions 13 and 13M and theorems 14 and 
14M in [3]) and the nested form computations discussed 
above. Furthermore, all of our computer programs incor- 
porate numerical bounding interval arithmetic. 

VII. NESTED CENTERED FORM COMPUTATIONS FOR 
THE INTERVAL FUNDAMENTAL MATRIX 

The purpose of the present section is to reformulate the 
interval matrix exponential computation techmque by im- 
plementing: (1) the perturbation parameter interval parti- 
tioning philosophy of theorem 14M and proposition 13M 
(see [3]); (2)  the nested and centered form techniques; and 
(3) the optimal Householder matrix norm. Items (1) and 
(2 )  enable us to reduce the conservativeness of the interval 
arithmetic evaluations while item (3) gives us sharper 
estimates of error bounds for the truncated series represen- 
tation of the interval matrix exponential function. 

In this sense then, we return to the computational scheme 
previously developed in Section IV which begins with (7). 

Suppose that A A ( ( [ a h ,  a t ] ) )  is the computer represen- 
tation of the input “interval” matrix and T is the degener- 
ate interval T = [ t ,  t ] .  Using the bounding interval arith- 
metic with 

For convenience in notation and programming, using 
the bounding interval arithmetic recursively, compute the 
interval matrices for i = 2; -, K and p = 0; . -, i 

1 ,  p = o  ( z , p = l , . . . , l }  

(45) 
Algebraically expanding (44), substituting (45) and re- 
arranging, obtain 

I +  ( G ,  + 8 G z ) T +  ( G ,  + eG4 + 0 2 G 5 ) T 2  + . . . 

and then 
K 

(46b) 
Now subdivide the perturbation parameter interval 0 = 

[ - 1 , 1 ]  into M “equal” width subintervals (using single- 
precision arithmetic), 

Represent each subinterval in the centered interval arith- 
metic form (computing with single-precision arithmetic), 

2 i - M - 1  2 i - M - 1  ~ 

= [ C i ,  C , ]  
I C [  M ’ M 1 e. P 

compute the interval matrices and 
q, 2 [ - w,, w,], where w, = m a {  c, - ek,er - c , } .  (48) 

G I P  ( (  7)) 66 + 6; and GZP (( v)). (42)  N~~~ that 

(As will subsequently be seen in the interval computation e, = e,,+ v,. (49) 

(42) for G,, in order to accommodate a “signed” interval 
matrix element dependence on the perturbation parameter, 
a t  < ah is allowed for the input “interval” matrix A .  
Here, a t ,  a t ,  and t are single-precision floating-point 
machine numbers.) Then 

Then (46b) assumes the form 

P 

K 

I +  c G I ( I + l ) T 1 +  

A,, c G ,  + 8G2,  where 8 = [ - 1,11 (43) 

where 
where the binomial coefficients are defined by 

(51) 
(( [min( ah ,  a t  1 , m a  ( a h ? a t ] ) ) *  CP P P! 

Now let the Cauchy sequence of rational interval matrix ’ j ! ( p - j ) ! .  

(When the computations for the binomial coefficients are 
actually programmed, it is simpler and more accurate to wv c i !  (44) obtain these interval representations recursively complet- 
ing Pascal’s triangle [ll, p. 531.) 

functions { Fk( e ) }  be defined by 

( G ,  + BG2)’T’ 

r = O  
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Using bounding interval arithmetic computations, de- 
fine the interval matrices 

BK+l’ ( (G[ K(:+l)]T+G[ ( K l i , x ] i T  

+ 0 . 1  +Gl 

K 

cI+ c G /( /+l)  T’ 
/ = 1  [TI 

and 

T + I  

K 

p = l ; - * , K .  (52b) 

Using (52a) and (52b), (50) may be rewritten as 
K K P 

B K + l +  BK+l-pe(+ BK+l -p  c,”e[-Jqj’ (53) 
p = l  p =1 J =1 

Rearranging the last term of (53) in powers of ql ,  obtain 
K K  

BK+l-pC/Pe(-Jq: (54) 
J=1 p =  J 

Using the nested computations, define the interval matrices 

EK+l A ( .  * .  ( BlBIc+ B2)dIc+ . + BK)dlc+ BK+l 
K 

B K + l +  c BK+l-pe{ (554 
p = l  

and 

+ . . + B ~ - ~ c , J + ~ )  
K 

+ BK-~+lCj/  BK+l-pC,”e[-J, 
P = J  

~ = 1 , . - - ,  K. (55b) 

Then using (55a) and (55b), equation (53) may be rewritten 
in nested form as 

(” ‘ (E1qt+E, )q l+  ”.  +EK)q,+EK+l 
K 

E K + l +  EK+l-,q)lJ. (56) 
J-1 

This is the centered form interval expression for FK(0,) in 
(44). EK+l is the nested expression for the interval center 
result &(19,<) and ( - ‘ (Elql + E2)q,  + . . . + EK)q l  is the 
nested expression for the balance of the centered form, 
explicitly in terms of the “zero-symmetric” interval vari- 
able q, = 13, - f3,< and indirectly in terms of the interval 

center variable O,, (see (55b)). Denote the centered interval 
form of FK(B) given in (44) by 

&(eCc+7,)  2 ( . * . ( ~ 1 ? 1 , + ~ 2 ) ~ , +  +EK)v,+EK+~.  
(57) 

From the definition of the united extension in Propositions 
6M and 9M and the relation (49), obviously 

F,<e,> c W,<+ 17,). ( 5 8 )  

For all of the numerical initial-value examples which we 
tried (some of which are given in [16]), bounding interval 
arithmetic computations have demonstrated that 

F K ( e i c f ? I t )  FK(e,). (59) 

Letting the remainder associated with FK(e , )  in (44) be 
denoted by 

and letting the remainder term associated with FK(e,,+ q,) 
in (57) be denoted by 

RK(e1<+qi)’ ( ( f / rnK(o lc+qz) ) )  (61) 

R K ( e t c + q ~ )  c R K ( e r ) .  (62) 

assume also that 

(In view of the nature of the remainder terms involved for 
increasing K and the less conservative interval results 
produced by the centered form (see (59)), this is a reason- 
able assumption.) Then for each I and m ( 1 . 1  denotes the 
“magnitude” of an interval), 

l ~ / r n K ( ~ i c + ~ i )  l ~ l r / r n ~ ( ~ i ) l .  (63) 

( ( I g/ml + 0, g/m, I)) 

Assume that 

I G I +  01~2 I 
allows the optimal Householder matrix norm )I.II given in 
(29). Then if 

A, II(lGl+ W 2 I )  1Iu IlG-’IGl+ 4G21GlIm 

<< ll(lGl+ W 2 I )  Ily (64) 

where y indicates 1, 2 or 00 and G diag(gp), gp > 0, 
p =I,. . . , n, applying the definition of the metric U on the 
set Yn2 (see [3, eqs. (10) and (ll)], and applying (18), 
(34), and (63) for each 1 and m, 

K + 2  

assuming A , / ( K  +2) <1. (In (64), the symbol cc is in- 
tended to indicate that for any I and m, (g,/grn)rur < ry,, 
where y indicates the 1, 2, or 00 matrix norm use in (65).) 
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Turn now to the computational relationship which is 
equivalent to (20) for a hexadecimal machine, 

where (P + 1) is one of the integers { 1,. . . ,6} which indi- 
cates the number of the single-precision hexadecimal frac- 
tion digit to which the final interval result endpoints are 
required to be accurate when approximating the infinite 
series. (Relationshps (59), (62), and (65) are implicitly 
used in obtaining (66).) 

In the actual implementation of the numerical scheme 
for the calculation of the matrix exponential, if (66) is 
satisfied for all I and m for the preselected integer P and 
the initial selection of K ,  then the final interval matrix 
result 

(67) 

(68) 

will contain the centered form infinite series result for 
e(Gi + ( ~ , c + ~ O G ~ ) ~ .  

(This assumes the neglecting of possible additional accu- 
mulation of bounding errors which would result in the 
continuing calculation.) Furthermore, the relative interval 
endpoint error bounds are given by (26) and (27), except 
that the bounds here are computed with respect to the 
hexadecimal base 16. 

In general, (66) will not always be satisfied for each I 
and m. The following discussion describes such occur- 
rences and the programming techniques employed. 

The most obvious case where (66) will never be satisfied 
occurs when the pth row of the original A matrix (and 
consequently the same rows of the GI and G2 matrices) 
consists of degenerate zero interval elements. Then 

(A similar case occurs with respect to the pth column.) In 
this case, a logical test will indicate interval result degener- 
acy and the corresponding setting of 

will yield the correct result for 

Initially, for the preselected algorithm “accuracy” (input 
integer P), it may happen that the estimated starting value 
of K is not sufficiently large to satisfy (66) for all I and m. 
For this reason, an automatic increase in the value of K 
must be programmed into the routine. However, it must be 
pointed out that computer storage limits place a final 

constraint on this technique. (In the algorithm which we 
used a limiting value of K = 20 for 5 X 5 interval matrices 
results in a 46 kbyte array for G,, . . . , G,, . . . , G(20)(23),2 = 

If the minimum of the two values on the right-hand side 
of (66) does not satisfy the relation but the maximum does, 
this is termed a “ single-fault’’ and computational experi- 
ence has demonstrated that K + 1 usually results in clear- 
ing the single-fault. If additionally the maximum does not 
satisfy the relation, t h s  is termed a “double-fault’’ and it 
may be necessary to “run-up” K beyond K + 1. 

Since situations may obviously occur where there is a 
great disparity between elements of 

(3230.) 

some predetermined input judgment should be pro- 
grammed into the routine so that there will be a preset 
limit number for the two types of faults which are allowed. 
This “fault acceptance” will not contradict the set contain- 
ment of (68) by (67) but the relative error bounds given by 
relations (26) and (27) will no longer be valid. T h s  has 
been incorporated into our algorithm. 

This completes the development and discussion of the 
reformulated interval matrix exponential computation 
technique. To summarize, this technique uses the concepts 
of subdivision of the parameter interval and the centered 
form representations for the resulting parameter subinter- 
vals, the centered and nested form matrix interval arith- 
metic computations, bounding of the interval matrix func- 
tion metric employing the optimally infimum Householder 
matrix norm (for irreducible nonnegative real matrices) 
and interval augmenting of the computable truncated in- 
terval matrix series for set containment of the interval 
matrix infinite series form of the interval matrix exponen- 
tial with prescribed relative error bounds. 

The linear interval integration technique described 
briefly following theorem 14M in [3], which will subse- 
quently be implemented in [16] in the solution of initial- 
value problems, requires the computation of interval 
fundamental matrices for each partition subinterval. In 
this sense then, the above technique provides the necessary 
computation method. 

VIII. CONCLUDING REMARKS 
In the previous sections we introduced and studied 

“scalar” and matrix interval exponential functions. These 
functions are represented as infinite power series and their 
properties were studied in terms of rational functions 
obtained from truncations. To determine optimal estimates 
of error bounds for the truncated series representation of 
the exponential matrix function, we established ap- 
propriate results dealing with Householder norms. In order 
to reduce the conservativeness for interval arithmetic oper- 
ations, we considered the nested form for interval poly- 
nomials and the centered form for interval arithmetic 
representations. We also discussed briefly machine bound- 
ing arithmetic in digital computers. Finally, we presented 
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an algorithm for the computation of the interval matrix 
exponential function which yields prespecified error 
bounds. This algorithm incorporates: machine bounding 
arithmetic; the perturbation parameter interval partition- 
ing philosophy of theorems 14M and proposition 13M in 
[3]; the nested and centered form techniques; ’ and the 
optimal Householder norm. 

In [16] we will use the results of [3] and of the present 
paper to study initial-value problems. 

[41 
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