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Robust estimation, or robust filtering, for uncertain 
linear systems has been investigated under different 
conditions in the last two decades (see, for instance, 
[8, 91 and the references therein). In particular, robust 
Kalman filtering with respect to uncertain linear 
systems is still an active research topic that attracts 
increasing interest, on which several approaches have 
been proposed: using H,-criteria 14, 12, 14, 16, 171, 
set-valued estimations [5, 6, 111, and interval systems 
analysis [7, 13, 15, 181. 

It is well known that optimal estimates are given 
by a conditional expectation of the unknown random 
variable (or random vector), under the condition 
that the data to be used were given [2]. The standard 
Kalman filtering scheme was derived directly from 
this statistical criterion, and is hence optimal in the 
sense that it exactly (not approximately) satisfies the 
criterion, and so provides a precise linear, unbiased 
and minimum-error-variance estimate at each recursive 
step throughout the filtering process. However, to 
the best of our knowledge, the aforementioned 
approaches to robust filtering essentially suggest 
approximate estimations, such as the best 
solution in the worst case, and do not provide 
theoretically optimal estimations (in the 
statistical sense of conditional expectation) for 
each linear system existing within the uncertain 
bounds. Besides, these approaches have more or less 
lost the fundamental characteristic of the standard 
Kalman filter (SKF) that satisfies the familiar 
statistical conditions and criteria. 

Kalman filtering algorithm based on interval 
conditional expectation for interval linear systems, 
for which the classical algorithm is no longer 
applicable. The new interval Kalman filtering scheme 
has the same structure as the classical algorithm, 
using no additional analysis or computation from 
such as H"-mathematics. The interval Kalman 
filtering algorithm thus preserves both the statistical 
optimality and the recursive computational scheme 
of the SKE 

In Section 11, we first review and introduce some 
fundamental interval analysis and the notion of 
interval expectation in statistics, which are necessary 
for the development of the new algorithm in the 
sequel. Then, the interval Kalman filter (IKF) is 
derived in Section 111, with brief but sufficient 
mathematical justification. A suboptimal IKF is 
suggested in Section IV, for the purpose of real-time 
implementation and applications. Finally, computer 
simulations are shown in Section V, to compare the 
new algorithm with the classical Kalman filtering 
scheme and some other existing robust Kalman 
filtering methods. 

In this work we develop an exact and optimal 
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I I. PRELIM1 NARl ES 

In this section, we first review and develop some 
preliminary results on interval arithmetic and interval 
analysis that are needed throughout the paper. Most 
of these preliminary results can be found in [l, lo], 
perhaps in different formats. 

A. Interval Mathematics 

Let SI and S2 be real intervals in 3 = (-oc),m) 
and f : 5'1 - S2 be an arbitrarily, ordinary one-variable 
real-valued (i.e., point-to-point) function. Denote by 
&, and Csz the families of all subintervals of ,SI 
and S2, respectively. The interval-to-interval function 
f~ : Cs, -+ Csz defined by 

is called the united extension of the point-to-point 
function f on SI. Obviously, the range is 

X€X 

which is the union of all the subintervals of S2 that 
contain a singleton f(x) for some x E X .  

united extension f~ : Cs, ---f Cs, has the following 
property: 

It follows immediately from definition that the 

X , Y E ~  and X C Y  * F I ( X ) C ~ I ( Y ) .  
$1 

In general, an interval-to-interval function F of 
n-variables XI, .  . . , X, is said to have the inclusion 
monotonic property if 

& CU; 'd i =1, ..., n 

=+ F(X1, * .  .,Xn) c F(Yi,. . .,Yn). 

Clearly, all the united extensions have the inclusion 
monotonic property. 

Since interval arithmetic functions are united 
extensions of the real arithmetic functions: addition, 
subtraction, multiplication, and division (+, -, ., /), 
interval arithmetic is inclusion monotonic: 

Xl sY1 and X2cY2 

together imply 

a) XI  + X2 C Y1 + Y2 
b) X I - X ~ C Y ~ - Y ~  

c) XI .x2 E Y1 .Y2 

d) XilXz G K/Y2, 
provided that the operations are well defined. 

finction for simplicity. IntervaZ vectors and interval 
An interval-to-interval function is called an interval 

matrices are similarly defined. An interval function 
is said to be rational, and so is called a rational 
interval function, if its values are defined by a finite 
sequence of interval arithmetic operations. Examples 
of rational interval functions include X + Y2 + Z 3  and 
(x' + Y ~ ) / z ,  etc., for intervab X ,  Y ,  and Z ,  where in 
the latter 0 q! 2. 

ordered relation 
functions are inclusion monotonic. This can be verified 
by a finite mathematical induction. Note, however, 
that not all the interval functions have the inclusion 
monotonic property. 

real-valued function, and let XI,. . . ,X, be real 
intervals. An interval function I; = F(X1,. . . ,Xn)  is 
said to be an interval extension of f if 

It follows from the transitivity of the partially 
that all the rational interval 

Next, let f = f (XI,. . . , x,) be an ordinary n-variable 

F(x1,. . .A) = f ( X 1 , .  . .,x,), 
V x i € X i ,  i = l ,  ..., n. 

Note also that not all the interval extensions have the 
inclusion monotonic property. 

The following fundamental result is well known [l]. 

THEOREM A If F is an inclusion monotonic interval 
extension off, then the united extension fI off satisjties 

fI(X1,. . . ,Xn) G F(X1,. . . ,&). 

Since rational interval functions are inclusion 
monotonic, we have the following result. 

COROLLARY B If F is a rational interval function and 
is an interval extension off, then 

This corollary can provide us with a means of 
finite evaluation of upper and lower bounds on the 
value-range of an ordinary rational function over an 
n-dimensional rectangle in %,. 

B. Interval Expectation 

Now, let f(x) be an ordinary function defined on 
a real interval X ,  such that it satisfies the ordinary 
Lipschitz condition 

If@) - f ( Y > l  I Llx  - Y I 
for some constant L, independent of x,y E X .  Then 
the united extension fl of f is said to be a Lipschin 
interval extension of f over X .  

Let C ( X )  be a class of functions defined on X 
that are most commonly used in computation, such 
as the lour arithmetic functions (+, -, ., 1) and the 
elementary type of functions like exp{.}, In(.), 6, etc. 
We only use some of such commonly used functions 
throughout this work. Let N be a positive integer and 
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subdivide an interval [a,b] C X into N subintervals 
1 1  = [Xl,xl]i ,  . . . ,XN = [ X N , ~ N ] ,  such that 

- __ - 
a = X i  < X i  =X2<  X2 = . . .  =XN < X N  = h. 

Moreover, for any f E C ( X ) ,  let F be an inclusion 
monotonic and Lipschitz interval extension off  
defined on all Xi, i = 1,. . . , N .  Using the notation 

respect to another real interval Y of real-valued 
random variables, the conditional interval expectation 

CIS 

Note that if we recursively define 

where s k  = Sk(F; [a,b]), then { Y k }  is a nested 
sequence of intervals that converges to the exact value 
of the integral Jab f ( t )  d t .  

here has the property that F ( x )  is a real number for 
any real number x E Ti?. However, for other inclusion 
monotonic interval functions that are not Lipschitz, 
the corresponding function F ( x )  may have interval 
coefficients even if x is a real number. 

we have the following particularly important concept, 
which is crucial to this research. 

Let X be a real interval of real-valued random 
variables in interest, and 

Note also that a Lipschitz interval extension F used 

Using the interval mathematics introduced above, 

be an ordinary Gaussian density function with known 
px and ax > 0. Then f(x)  has a Lipschitz interval 
extension, so that the interval expectation 

and the interval variance 

X E X  

are both well defined, based on the definite integral 
defined above with a -+ -00 and b -+ 00. Also, with 

~ 
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X E X  

and the conditional variance 

are both well defined, based on the same reasoning 
and the well-defined interval division operation (note 
that zero is not contained in the denominator for a 
Gaussian density interval function), where 

a:y = a$ = E { X Y }  - E { X } E { Y )  

Indeed, it is well known [3] that 

and 

Thus, we have actually verified that all these 
quantities are well-defined rational interval functions, 
and so Corollary B can be applied to them. 

Ill. INTERVAL KALMAN FILTER 

In this section, we develop the new IKF for linear 

We start with the linear, discrete-time, 
discrete-time interval systems. 

time-varying, nominal dynamic-observation system 



where Xk E Xn and y k  E ?Rm are state and output 
vectors, respectively, with a Gaussian initial state xo 
of known mean E(xo} and covariance Po = V{xo},  
A k  E Xnxn, B k  E XnXp, and c k  E X m X n  are known 
constant matrices, and { & }  and ( q k }  are mutually 
independent zero-mean Gaussian noise sequences, 
with known covariance matrices { Q k }  and { R k } ,  
respectively, which are all independent of the initial 
state, namely, 

E { < k , < Z }  = QkSkl, E { q k , q l }  = R k b k l  

E{&,r)z} = E { < k , X o }  = E { r ) k , X o }  = 0 

forallk,Z=0,1,2 ,..., where& = l i f k = l a n d = O  
otherwise. 

then the Kalman filter for the ordinary system (1) is 
well known, which gives the optimal estimates {a,}  of 
the unknown state vectors ( X k }  using the observation 
data { Y k }  in a very efficient recursive fashion. The 
optimal estimates are uniquely determined by the 
conditional expectations [2] 

If all the constant matrices { A k , B k , C k }  are certain, 

J k  = E { X k  I Y O , . . . , Y k - l ) .  (2) 
Moreover, the Kalman filtering algorithm provides 
a recursive scheme for real-time computation of the 
optimal estimates (2) .  

1 )  Standard Kalman Filter. 
Main Process: 

Ro = E{xo} (given) 

.tk = A k - 1 R k - l  + G k [ Y k  - C k A k - l R k - l ] ,  

k = 1,2, ... . 
Coprocess: 

PO = V { X O }  (given) 
T 

M k - 1  = A k - 1 P k - l A L - i  4- B k - 1 Q k - 1 B k - i  

G k  = M k - 1 c l [ c k M k - l c l  + & ] - I  

p k  = [I - GkCk]Mk-l[l- G k C k I T  -I- G k R k G l  

k = 42, ... . 
Given this background, we are now in a position 

to discuss the following interval system, obtained from 
system (1) with perturbations in its system matrices: 

(3) 
X k i l  = A i X k  + B L t k ,  { Y ~ = C ; X ~ + V ~ ,  k = 0 , 1 , 2  ,... 

where the interval matrices 

Ai = A k  + A A k  = [ A k  - l A A k I , A k  + I A A k I ]  

BL = B k  -I- A B k  = [ B k  - l A B k I , B k  4- IABkI] 

ci = c k  -e A c k  = [ c k  - l A c k I , c k  -k l a c k / ]  

k = O,B,2  ,..., in Which A A k  E XnXn, A B k  E ? R n x p  
and A C k  E ? R m x n  are unknown but bounded Constant 

perturbation matrices with the componentwise upper 
bound denoted by I .I, and the other notation and 
conditions (including the noises) are the same as those 
defined in system (1). 

We show that the optimal estimates for this interval 
system (2) are given by the interval conditional 
expectations: 

Rk = E { X k  I Y O , * * . , Y k - l } ,  x k  E X k  (4a) 

for some intervals { X k }  to be determined later, or 
simply put, 

k k  = E { &  Iyo ,..., Y k - l } ,  k = 1 , 2  ,... . (4b) 

We derive an IKF from (4a) or (4b), for the 
optimal estimates of the unknown interval state vectors 
of the system, under the same statistical assumptions 
as that for the ordinary system (1). 

expectation introduced in Section IIB and the standard 
interval arithmetic operations for interval matrices, the 
following interval conditional expectation vectors and 
covariance matrices (as a matrix-version of the results 
obtained by the end of Section 11) are well defined: 

We first note that according to the interval 

E { X  I Y E Y }  = E W  + R x y [ R y y l - l R y x [ Y  - E{Y}l 

V{X I Y E Y )  = V { X }  - Rxy[R , , l - l~ ,*  

(5 )  

(6) 

and 

where R,, = V { y y T }  > 0, R,, = RTy, and 

R,, = V{xyT I y E Y } ,  x E X .  

Therefore, the interval conditional expectations (4) 
are well defined for the interval system (3) and hence 
are readily to use. Based on these results, we can now 
establish the following new algorithm. 

2)  Interval Kalman Filter. 
Main Process: 

2; = E { x ; }  (given) 

2L = Af-lRL-l + GL[yL - CLAf-1Ri-1], 

k = 1,2, ... . 
Coprocess: 

P,' = ~ { x g l }  (given) 

ML-1 = AL-lpi-l[AL-l]T + B ; - ~ Q ~ - I [ B L - ~ ] ~  

GL = M,'_,[C,'IT[[Ckl]Mkr-,[CLIT Rk1-I  

p: = [I - GiCL]ML'_1[I - G k c k ]  I I T  

+ [ G L ] R k [ G L I T  k = 1,2, ... . 
Since all the interval arithmetic and conditional 

expectation and covariance have been well defined 
for matrices (and hence vectors and numbers), the 
above IJSF algorithm can be verified by imitating the 
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derivation of the SKF on a step-by-step basis [2] ,  and 
so its proof is omitted. 

It should be noted that by theory this IKF 
algorithm is optimal for the interval system (3), in 
the same sense as the SKF, namely, in the statistical 
sense of the conditional expectation (4), since no 
approximation has been used in its derivation. The 
filtering result produced by the IKF is a sequence of 
interval estimates { k k }  (see (4b)) that contains all 
possible optimal estimates { & }  of the state vectors 
{ x k }  that the interval system (3)  may generate. Hence, 
the filtering result produced by the IKF is generally 
conservative and expanding rapidly, as expected. 

It should also be remarked that just like the 
random vector (observation data) Y k  in the SKF 
scheme, the interval data vector y: shown in the 
IKF above is an uncertain interval vector before 
its realization (i.e., before the data actually being 
obtained), but is an ordinary constant vector after 
it has been realized and obtained. This should avoid 
possible confusion in implementing the new IKF 
algorithm. 

that similar to the SKF where the matrix inversion in 
the algorithm may have the singularity problem and 
is generally time consuming, in the IKF scheme the 
interval matrix inversion (although well defined) may 
also have the singularity problem (if it contains zero 
in some interval entries), which often times causes 
divergence in implementations. A general analysis of 
this convergence issue is rather difficult, even for the 
SKF, as is well known, and so not investigated here. 

Some efficient computational schemes for the 
interval matrix inversion needed by the IKF are 
available in the literature, including the Hansen 
algorithm [l] and the iteration method for matrix 
inverse inclusion [I]. A suboptimal IKF scheme 
for real-time implementation of the optimal IKF 
is suggested in the next section, which replaces 
the interval matrix inversion by an ordinary matrix 
inversion, using the worst case matrix inversion instead 
of the optimal interval matrix inversion. 

Regarding the computation of the IKF, we remark 

IV. SUBOPTIMAL INTERVAL MALMAN FILTER 

To improve the computational efficiency, different 
approximations are quite possible. In this section, 
we suggest a suboptimal interval Kalman filtering 
scheme, by replacing its interval matrix inversion with 
its worst case inversion, while keeping everything else 
unchanged. 

Let 

CL = c k  + Ack and ML-1 = Mk-1 f AM,-, 

where c k  = center point of C; and &-I = center 
point of ML- I are the nominal values of the interval 

matrices, as defined in (3). Write 

[[Ck]Mk-l[CkIT f Rk1- l  

= [ [ c k  f ACk][Mk--l -t AMk-i ] [ck  f AckIT f Rk1- l  

= [CkMk-lc; f A&]-' 

where 

= ck~kfk-,[Ac,]' f c k [ a M k - ~ ] c L  

+ ck[AMk-l][Ack]' 
[Ack]Mk-ic: i- [ack]Mk-i[aCk]T 

+ [A c k  ] [ AMk - 1 ] ck' 
+ [Ack][aMk- l][Ack]T + Rk. 

Finally, in the IKF, replace ARk by its upper bound 
matrix, denoted by IARkI, which consists of all the 
upper bounds of the interval elements of A&. 
Namely, denoting 

ARk = [[-rk(i,j),rk(i,j)]] 
with rk (i,  j )  2 0, we let 

laRk/ = [rk(i,j)]. (7) 

We should note that this lARk/ is a regular 
(noninterval matrix), so that when we use the regular 
inverse matrix [Ckhfk-IC: + la~kll-' to replace 
the interval matrix inverse [[CL]M,'_,[CL]T + R k ] - l ,  

the matrix inversion becomes much easier. More 
importantly, we should note that when the perturbation 
matrix ACk = 0 in (7), meaning that the measurement 
equation in system (1) or (3) is as accurate as the SKF 
model, then we have / A &  = R k .  However, any of 
such approximations will lose some possible solutions 
of the optimal filtering, which we should be aware of 
in applications. 

Thus, using the replacement of A& by 1, we 
arrive at the following suboptimal IKF scheme. 

3 )  Suboptimal Interval Kalman Filter. 
Main Process: 

.ti = ~ { x , ' }  (given) 

k = 1,2, ... . 

I I CIA' RI  2; = AL-1iL-l + G k b k  - k k-1 k-11, 

Coprocess: 

P; = V ( X ~ ]  (given) 
Mk-l I A ~ - l ~ ~ - ~ [ A ~ - ~ ] T  6 BL-lQk-l[BL-l]T 

GL = M ~ - l [ c , ' ] T [ c k M k - l c ~  + 1ARkll-l 
Pi = [ I  - GLCi]Mkl_l [ I  - Gkck] I I T  

+ [Gi]Rk[G:]' k = 1,2, ... . 
We finally remark that the worst case matrix 

/A&/ given in (7) contains the largest possible 
perturbations and is in some sense the "best" matrix 

254 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 33, NO. 1 JANUARY 1997 



that yields a numerically stable inverse. Another 
possible approximation is, if Ack is small, to simply 

For this model, using the IKF described in Section 
111, we have 

use lARkI fi: Rk (see (7)). For some specific systems 
such as the radar tracking system to be discussed and 
simulated in the next section, special techniques are 
also possible to improve the speed and/or accuracy of a 
suboptimal interval filtering. 

V. COMPUTER SIMULATIONS AND COMPARISONS 

In this section, we show some computer simulations 
with two different types of comparisons: a comparison 
of the IKF with the SKF for a simplified radar tracking 
system; a comparison of the IKF with some other 
existing comparable methods for the same examples 
that those approaches used. 

A. Comparison with Standard Kalman Filter 

To simplify the presentation, we only show a very 
simple, well-known tracking system [2, 31 of the form 

r i  h'i 

where basic assumptions are as stated in system (l), 
with 

h' = [h - Ah,h + Ah] = [0.01- 0.001,0.01+ 0.0011 

= [0.009,0.011] 

in which the modeling error Ah was taken to be 10% 
of the nominal value of h = 0.01, and the given data 
are 

q 0 0.1 0.0 
= [o ,I = [o.o 0.11' 

R k  = r = 0.1. 

In the derivation of this algorithm, when we have 
interval division of the type X'/X' where X' does 
not contain zero, we first examine its corresponding 
regular (noninterval) functions and operations to 
obtain n/x = 1, and then return to the interval setting. 
Thus, the interval division X'/X' will not actually 
be encountered. Symbolically, we may directly write 
x'/x' = 1 for an interval X' not containing zero in 
the interval setting, which is indeed a convention in 
interval calculations. 

Moreover, we note that the matrices Mi-l and PL 
are both symmetrical, so that Mi-l(O, 1) = Mkl_l(l,O) 
and Pi-l(O,l) = PL-l(l,O). 

Consequently, we obtain 

I. [r($-1,1+ h%-l,P) + ~ k - l ( o , o ) Y k l / ~ ~ - l ( o , o )  

L , z  + Gi&Jk - %L,l - h%-1,2) [3 = [ 
The simulation results for of this IKF versus the 
SKF, where the latter uses the nominal value of h', are 
shown in Figs. 1 and 2. From the figures we can see 
that the IKF does give the upper and lower boundaries 
of the SKF estimated curve. As the iterations continue, 
the two boundaries are expanding, due to the nature of 
the given interval systems. 

B. Comparisons with Some Other Methods 

In this subsection, we briefly discuss comparisons 
of our IKF algorithm with two existing, comparable 
approaches [15, 181, using the same examples that 
were used therein. There are some other approaches 
as mentioned in the Introduction. However, since 
the conditions and assumptions are very different, 
a comparison with any of those methods is indeed 
impossible. 

1) Comparison with Method of [18]: The 
approach given in [18] can only be applied to 
time-invariant systems. To compare with the example 
studied in [NI, we use our notation and rewrite their 
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‘I 2 ;.x 
1 

0 I 

0 50 100 150 200 250 300 350 

- i , ,  by SKF. 

_ _ _ _  lowcr bound of i, , by O K F .  

..... upper bound of 2, , by OIKF. 

Fig. 1. Siiiiulation results for iiiodel (8): optimal IKF algorithm. 
- 2 k , l  by sm, - - - - lower bound Of 2 k , ~  by OIm, 

..._. upper bound of fk , J  by OIKE 

20 - 

15 - 

10 - 

5 -  

0 
0 100 200 300 400 500 600 700 800 900 

- i,, by SKF. 

_ _ _ -  lower b u n d  of i, , by SIKF. 
. . . . . uppc bound of i, , by SIKF 

Fig. 2. Siiiidation results for model (8): suboptimal IKF 
algorithm. - by SKF, - - - - Power bound of & J  by 

SIKF, - - - - - upper bound of fk , l  by SIKE 

example as 

-0.1 0.2 

[-0.1,0.1] [-0.15,0.15] 
*A= [ 

0 [-0.25,0.25] 

In it is allowed that the noise covariance matrices 
Q and R have perturbations AQ and AR, respectivelyy. 
For this example, 

R 1, AR = [-0.9,1.1]. 

Then, according to the (first) method that they derived, 
the following Riccati equation has to be solved for a 

60 

50 I 

-50 ‘ 
0 20 40 60 BO 100 

- i , ,  by SKF. 

_ _ _  lower bound of i, ~ by OIKF. 

- . . . . u p p r  bound of  i, by OIKF. 

Fig. 3. Simulation results for model of [ls]: - 2k,2 by sm, 
_ _ _ _  lower bound of kk,2 by OIKF, - - - - - upper bound of 

2k,2 by OIW. 

positive definite solution: 

S = Q + A [ S  - SCT[CSCT + R]-’CS]AT 

which, for this example, is 

11.9081 -0.4602 

-0.4602 10.1570 

~ 

256 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 33, NO. 1 JANUARY 1997 

The mean square estimation error according to 
the method of [18] is given, after solving for other two 
Riccati equations, by 

By using our optimal IKF and suboptimal IKF 
algorithms derived in this work, also compared with 
the SKF scheme, using the same model and the same 
data described above, we obtained the filtering results 
as shown in Figs. 3 and 4 (where, to save space only 
the second components of i h  are shown). It is clear 
that the results are consistent with that shown in 
Figs. 1 and 2, since both the optimal and suboptimal 
IKF algorithms gave the upper and lower boundaries 
for the estimations. The upper and lower estimation 
error bounds we obtained for the suboptimal IKF are 

which are very close to, indeed slightly better than, 
that obtained in [I81 shown above. The corresponding 
result we obtained using the optimal IKF i s  

4.5 5 lim E{ [xk - 2kIT [xk - 2 k ] }  5 79.579 
k i  00 

which includes all possible optimal solution bounds. 
Here, we should remark that our algorithm is 

applicable to time-varying systems as well. Besides, 
since the statistics such as the white Gaussian 
properties of the noises have been assumed, which is 



I '  I 
20 

15 

10 

5 

0 

-5 

100 

50 

0 

-50 

-10 -100 

-15 -150 

-20 I I '  I I 
0 20 40 60 80 100 

- ie2 by S W ,  

_ _ _ _  lower bound of 2, by SIW. 

..... upper bound of i, by SlKF 

Fig. 4. Siiiiulation results for model of [18]: - &,z by SKF, 
- - - -  lower bound Of Pk,2 by SIW, - - - - - upper bound Of Rk,2 

by SIKE 

the same as the SKF requirement. We believe that it 
is more reasonable not to further consider the noise 
covariance perturbations ( AQk} and { ARk). 

model considered in [15] is closer to our model, where 
time-varying model variations { AAk] and { ACk} 
are allowed. The example discussed in [15] is slightly 
modified as follows: 

2) Comparison with Method of 1151: The system 

0 -05 0 
A = [I 1' ] ' A A =  [ O  

C = [-lo0 101, AC = 0, B E I 

and the noises are zero-mean white Gaussian with 
unity covariance. 

According to [Is], we first need to write 

for a matrix Fk satisfying F: Fk 5 I, where HI,  &, 
and E are known constant matrices of appropriate 
dimensions. Then, according to 1151, for any fixed small 
U > 0 there is a sufficiently small E > 0 such that the 
Riccati equation (for this example) 

ATPA - P + A T P ( I  - P)- 'PA +€(ET,!? + VI) = 0 

has a stabilizing solution P, and the upper bound M 
for the estimation errors is defined by 

Applying the optimal IKF, the lower and upper bounds 
for M were obtained as 13.94890, 4.537961 in our 
simulation. 

and suboptimal IKF algorithm versus the robust 
filtering scheme of [15] for this example in Fig. 5, 
where the behavior of the IJSF filtering curves is 
consistent with the examples shown above. 

We finally show the filtering results of the optimal 

150 c 1 

-2w I I 
0 20 40 M) 80 100 

__ i*,* by ''robust Kalman filler''. 

_ _ _ _  Iowuec bound of i, , by OIW. 

..... upper bound of i, , by OIKF. 

Fig. 5. Simulation results for model of [15]: ~ &,z by 
"robust Kalman filter," - - - - lower bound of .?k,Z by OIW, 

- - - - - upper bound of .?k,2 by OIKE 

VI. CONCLUSIONS 

The classical Kalman filtering technique has been 
extended to interval linear systems with the same 
statistical assumptions on noise in this work, for which 
the classical algorithm is no longer applicable. The 
new interval Kalman filtering scheme has the same 
optimality and recursive structure as the classical 
Kalman filtering algorithm, using no additional analysis 
or computation from such as H" -mathematics. A 
suboptimal IKF has also been suggested for the 
purpose of real-time implementation. Computer 
simulations have shown that the new interval Kalman 
filtering algorithm is consistent with the classical 
Kalman filtering scheme, and is also consistent with 
(or better than) some existing robust Kalman filtering 
methods. 
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