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Abstract. In many application areas, it is important to detect outliers. The traditional engineering
approach to outlier detection is that we start with some “normal” values x1 ,…, xn, compute the sample
average E, the sample standard variation σ, and then mark a value x as an outlier if x is outside the
k0-sigma interval [E − k0 ⋅ σ, E + k0 ⋅ σ] (for some pre-selected parameter k0). In real life, we often
have only interval ranges [xi, xi] for the normal values x1 ,…, xn. In this case, we only have intervals
of possible values for the bounds E − k0 ⋅ σ and E + k0 ⋅ σ. We can therefore identify outliers as values
that are outside all k0-sigma intervals.

Once we identify a value as an outlier for a fixed k0, it is also desirable to find out to what degree
this value is an outlier, i.e., what is the largest value k0 for which this value is an outlier.

In this paper, we analyze the computational complexity of these outlier detection problems,
provide efficient algorithms that solve some of these problems (under reasonable conditions), and list
related open problems.

1. Introduction

Outlier detection is important. In many application areas, it is important to detect
outliers, i.e., unusual, abnormal values. In medicine, unusual values may indicate
disease (see, e.g., [8], [20], [21]); in geophysics, abnormal values may indicate a
mineral deposit or an erroneous measurement result (see, e.g., [6], [12], [16], [19]);
in structural integrity testing, abnormal values may indicate faults in a structure
(see, e.g., [3], [7], [8], [13], [14], [20]–[22]), etc.

The traditional engineering approach to outlier detection (see, e.g., [2], [15],
[18]) is as follows:

• First, we collect measurement results x1,…, xn corresponding to normal
situations.
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• Then, we compute the sample average E
def
= x1 + · · · + xn

n of these normal values
and the (sample) standard deviation σ =

√
V, where

V
def
=

(x1 − E)2 + · · · + (xn − E)2

n
.

• Finally, a new measurement result x is classified as an outlier if it is outside the
interval [L,U] (i.e., if either x < L or x > U), where L

def
= E−k0 ⋅σ, U

def
= E+k0 ⋅σ,

and k0 > 1 is some pre-selected value (most frequently, k0 = 2, 3, or 6).

Outlier detection under interval uncertainty. In some practical situations, we
only have intervals xi = [xi, xi] of possible values of xi. This happens, for example, if
instead of observing the actual value xi of the random variable, we observe the value
x̃i measured by an instrument with a known upper bound ∆i on the measurement
error; then, the actual (unknown) value is within the interval xi = [x̃i − ∆i, x̃i + ∆i].
For different values xi ∈ xi, we get different bounds L and U. Possible values of L
form an interval—we will denote it by L def

= [L, L]; possible values of U form an
interval U = [U,U].

How do we now detect outliers? There are two possible approaches to this
question: we can detect possible outliers and we can detect guaranteed outliers:

• A value x is a possible outlier if it is located outside one of the possible k0-sigma
intervals [L,U] (but is may be inside some other possible interval [L,U]).

• A value x is a guaranteed outlier if it is located outside all possible k0-sigma
intervals [L,U].

Which approach is more reasonable depends on a possible situation:

• If our main objective is not to miss an outlier, e.g., in structural integrity tests,
when we do not want to risk launching a spaceship with a faulty part, it is
reasonable to look for possible outliers.

• If we want to make sure that the value x is an outlier, e.g., if we are planning a
surgery and we want to make sure that there is a micro-calcification before we
start cutting the patient, then we would rather look for guaranteed outliers.

The two approaches can be described in terms of the endpoints of the intervals L
and U.

A value x guaranteed to be normal—i.e., it is not a possible outlier—if x belongs
to the intersection of all possible intervals [L,U]; the intersection corresponds to the
case when L is the largest and U is the smallest, i.e., this intersection is the interval
[L,U]. So, if x > U or x < L, then x is a possible outlier, else it is guaranteed to be
a normal value.

If a value x is inside one of the possible intervals [L,U], then it can still be
normal; the only case when we are sure that the value x is an outlier is when x is
outside all possible intervals [L,U], i.e., is the value x does not belong to the union
of all possible intervals [L,U] of normal values; this union is equal to the interval
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[L,U]. So, if x > U or x < L, then x is a guaranteed outlier, else it can be a normal
value.

In real life, the situation may be slightly more complicated because, as we have
mentioned, measurements often come with interval inaccuracy; so, instead of the
exact value x of the measured quantity, we get an interval x = [x, x] of possible
values of this quantity.

In this case, we have a slightly more complex criterion for outlier detection:

• The actual (unknown) value of the measured quantity is a possible outlier if some
value x from the interval [x, x] is a possible outlier, i.e., is outside the intersection
[L,U]; thus, the value is a possible outlier if one of the two inequalities hold:
x < L or U < x.

• The actual (unknown) value of the measured quantity is guaranteed to be an
outlier if all possible values x from the interval [x, x] are guaranteed to be
outliers (i.e., are outside the union [L,U]); thus, the value is a guaranteed outlier
if one of the two inequalities hold: x < L or U < x.

Thus:

• To detect possible outliers, we must be able to compute the values L and U.

• To detect guaranteed outliers, we must be able to compute the values L and U.

In this paper, we consider the problem of computing these bounds.
Once we identify a value as an outlier for a fixed k0, it is also desirable to find

out to what degree this value is an outlier, i.e., what is the largest value k0 for which
this value is an outlier. In this paper, we analyze the algorithmic solvability and
computational complexity of this problem as well.

Some of the results from this paper have been announced in [10], [11].

What was known before. As we discussed in the introduction, to detect outliers
under interval uncertainty, we must be able to compute the range L = [L, L] of
possible values of L = E − k0 ⋅ σ and the range U = [U,U] of possible values of
U = E + k0 ⋅ σ.

In [4], [5], we have shown how to compute the intervals E = [E,E] and [σ, σ] of
possible values for E and σ. In principle, we can use the general ideas of interval
computations to combine these intervals and conclude, e.g., that U always belongs
to the interval E + k0 ⋅ [σ, σ]. However, as often happens in interval computations,
the resulting interval for L is wider than the actual range—wider because the values
E and σ are computed based on the same inputs x1,…, xn and cannot, therefore,
change independently.

As an example that we may lose precision by combining intervals for E and σ,
let us consider the case when x1 = x2 = [0, 1] and k0 = 2. In this case, the range E
of E = (x1 + x2) / 2 is equal to [0, 1], where the largest value 1 is attained only if
x1 = x2 = 1. For the variance, we have V = ((x1 −E)2 +(x2 −E)2) /2 = (x1 −x2)2 /4;
so, the range V of V is [0, 0.25] and, correspondingly, the range for σ =

√
V is

[0, 0.5]. The largest value σ = 0.5 is only attained in two cases: when x1 = 0 and
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x2 = 1, and when x1 = 1 and x2 = 0. When we simply combine the intervals, we
conclude that U ∈ [0, 1] + 2 ⋅ [0, 0.5] = [0, 2]. However, it is easy to see that U
cannot be equal to 2:

• The only way for U to be equal to 2 is when both E and σ attain their largest
values: E = 1 and σ = 0.5.

• However, the only pair on which the mean E attains its largest value 1 is
x1 = x2 = 1, and for this pair, σ = 0.

So, the actual range of U must be narrower than the result [0, 2] of combining
intervals for E and σ.

We mark a value x as an outlier if it is outside the interval [L,U]. Thus, if, instead
of the actual ranges for L and U, we use wider intervals, we may miss some outliers.
It is therefore important to compute the exact ranges for L and U. In this paper, we
show how to compute these exact ranges.

2. Detecting Possible Outliers

To find possible outliers, we must know the values U and L. In this section, we
design feasible algorithms for computing the exact lower bound U of the function
U and the exact upper bound L of the function L. Specifically, our algorithms are
quadratic-time, i.e., require O(n2) computational steps (arithmetic operations or
comparisons) for n interval data points xi = [xi, xi].

The algorithms AU for computing U and AL for computing L are as follows:

• In both algorithms, first, we sort all 2n values xi, xi into a sequence
x(1) ≤ x(2) ≤ · · · ≤ x(2n); take x(0) = −∞ and x(2n+1) = +∞. Thus, the real line is
divided into 2n + 1 zones (x(0), x(1)], [x(1), x(2)],…, [x(2n−1), x(2n)], [x(2n), x(2n+1)).

• For each of these zones [x(k), x(k +1)], k = 0, 1,…, 2n, we compute the values

ek
def
=

∑
i : xi ≥ x(k+1)

xi +
∑

j : xj ≤x(k)

xj,

mk
def
=

∑
i : xi ≥ x(k+1)

(xi)
2 +

∑
j : xj ≤ x(k)

(xj)
2,

and nk = the total number of such i’s and j’s. Then, we solve the quadratic
equation

Ak − Bk ⋅ µ + Ck ⋅ µ 2 = 0,

where

Ak
def
= e2

k ⋅ (1 + α2) − α2 ⋅ mk ⋅ n,

Bk
def
= 2 ⋅ ek ⋅

(
(1 + α2) ⋅ nk − α2 ⋅ n

)
, α def

= 1 / k0,

Ck
def
= nk ⋅

(
(1 + α2) ⋅ nk − α2 ⋅ n

)
.
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For computing U, we select only those solutions for which µ ⋅ nk ≤ ek and
µ ∈ [x(k), x(k +1)]; for computing L, we select only those solutions for which
µ ⋅ nk ≥ ek and µ ∈ [x(k), x(k +1)]. For each selected solution, we compute the
values of

Ek =
ek

n
+

n − nk

n
⋅ µ, Mk =

mk

n
+

n − nk

n
⋅ µ 2,

Uk = Ek + k0 ⋅
√

Mk − (Ek)2 or Lk = Ek − k0 ⋅
√

Mk − (Ek)2.

• Finally, if we are computing U, we return the smallest of the values Uk; if we
are computing L, we return the smallest of the values Lk.

THEOREM 2.1. The algorithms AU and AL always compute U and L in quadratic
time.

(For readers’ convenience, all the proofs are placed in the special Proofs section).

3. In General, Detecting Guaranteed Outliers is NP-Hard

As we have mentioned in Section 1, to be able to detect guaranteed outliers, we must
be able to compute the values L and U. In general, this is an NP-hard problem.

THEOREM 3.1. For every k0 > 1, computing the upper endpoint U of the interval
[U,U] of possible values of U = E + k0 ⋅ σ is NP-hard.

THEOREM 3.2. For every k0 > 1, computing the lower endpoint L of the interval
[L, L] of possible values of L = E − k0 ⋅ σ is NP-hard.

Comments.

• For interval data, the NP-hardness of computing the upper bound for σ was
proven in [4], [5]. A general overview of NP-hardness of computational problems
in interval context is given in [9].

• The proof of Theorem 4.1 shows that the decision problems related to the compu-
tation of L and U are NP-complete. Therefore, NP-hardness of the computational
problems does not mean that the problems are located somewhere higher in the
polynomial hierarchy.

4. How Can We Actually Detect Guaranteed Outliers?

How can we actually compute these values? First, we will show that if
1 + (1 / k0)2 < n (which is true, e.g., if k0 > 1 and n ≥ 2), then the maximum
of U (correspondingly, the minimum of L) is always attained at some combination
of endpoints of the intervals xi; thus, in principle, to determine the values U and L,
it is sufficient to try all 2n combinations of values xi and xi:



64 VLADIK KREINOVICH ET AL.

THEOREM 4.1. If 1 + (1 / k0)2 < n, then the maximum of the function U and the
minimum of the function L on the box x1 × · · · × xn are attained at its vertices, i.e.,
when for every i, either xi = xi or xi = xi.

NP-hard means, crudely speaking, that there are no general ways for solving all
particular cases of this problem (i.e., computing U and L) in reasonable time.

However, we show that there are algorithms for computing U and L for many
reasonable situations. Namely, we propose efficient algorithms that compute U and
L for the case when all the interval midpoints (“measured values”) x̃i

def
= (xi + xi) / 2

are definitely different from each other, in the sense that the “narrowed” intervals[
x̃i − 1 + α2

n
⋅ ∆i, x̃i +

1 + α2

n
⋅ ∆i

]
,

where α = 1 / k0 and ∆i
def
= (xi − xi) / 2 is the interval’s half-width—do not intersect

with each other.

The algorithms AU and AL are as follows:

• In both algorithms, first, we sort all 2n endpoints of the narrowed intervals

x̃i − 1 + α2

n ⋅ ∆i and x̃i + 1 + α2

n ⋅ ∆i into a sequence x(1) ≤ x(2) ≤ · · · ≤ x(2n).
This enables us to divide the real line into 2n + 1 zones [x(i), x(i+1)], where we

denoted x(0)
def
= −∞ and x(2n+1)

def
= +∞.

• For each of zones [x(i), x(i+1)], we do the following: for each j from 1 to n, we
pick the following value of xj:

− if x(i+1) < x̃j − 1 + α2

n ⋅ ∆j, then we pick xj = xj;

− if x(i+1) > x̃j + 1 + α2

n ⋅ ∆j, then we pick xj = xj;

− for all other j, we consider both possible values xj = xj and xj = xj.

As a result, we get one or several sequences of xj for each zone.

• To compute U, for each of the sequences xj, we check whether, for the selected
values x1,…, xn, the value of E − α ⋅ σ is indeed within the corresponding zone,
and if it is, compute the value U = E + k0 ⋅ σ. Finally, we return the largest of
the computed values U as U.

• To compute L, for each of the sequences xj, we check whether, for the selected
values x1,…, xn, the value of E + α ⋅ σ is indeed within the corresponding zone,
and if it is, compute the value L = E − k0 ⋅ σ. Finally, we return the smallest of
the computed values L as L.

THEOREM 4.2. Let 1 / n + 1 / k2
0 < 1. The algorithms AU and AL compute U

and L in quadratic time for all the cases in which the “narrowed” intervals do not
intersect with each other.
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These algorithms also work when, for some fixed C, no more than C “narrowed”
intervals can have a common point:

THEOREM 4.3. Let 1 + (1 / k0)2 < n. For every positive integer C, the algorithms
AU and AL compute U and L in quadratic time for all the cases in which no more
than C “narrowed” intervals can have a common point.

For each zone, we can determine the values of all optimal xi—except for the
case when the zone intersects with the corresponding narrowed interval. Since we
consider the case when no more than C narrowed intervals can have a common point,
we have no more than C undecided values xi. Trying all possible combinations of
lower and upper endpoints for C different values i requires 2C steps. Thus, the
corresponding computation times are quadratic in n but grow exponentially with C.
So, when C grows, this algorithm requires more and more computation time. It is
worth mentioning that the examples on which we prove NP-hardness (see proof of
Theorem 3.1) correspond to the case when n / 2 out of n narrowed intervals have a
common point.

5. Computing Degree of Outlier-Ness

Formulation of the problem. As we mentioned in the Introduction, once we
identify a value x as an outlier for a fixed k0, it is also desirable to find out to what
degree this value is an outlier, i.e., what is the largest value k0 for which this value
x is outside the corresponding k0-sigma interval [E − k0 ⋅ σ, E + k0 ⋅ σ].

If we know the exact values of the measurement results x1,…, xn, then we can
compute the exact values of E and σ and thus, determine this “degree of outlier-
ness” as the ratio r

def
= |x−E| / σ. If we only know the intervals xi of possible values

of xi, then different values xi ∈ xi may lead to different values of this ratio. In this
situation, it is desirable to know the interval of possible values of r.

Simplification of the problem. In order to compute this interval, let us first reduce
the problem of computing this interval to a simpler problem. This reduction will be
done in three steps.

• First, it turns out that the value of r does not change if, instead of the original
variables xi with values from intervals xi, we consider new variables x′i

def
= xi − x

and a new value x′ = 0. Indeed, in this case, E ′ = E − x hence E ′ − x′ = E − x,
and the standard deviation σ does not change if we simply shift all the values xi.
Thus, without losing generality, we can assume that x = 0, and we are therefore
interested in the ratio |E| / σ.

• Second, the lower bound of the ratio r is attained when the reverse ratio 1 / r =
σ / |E| is the largest, and vice versa. Thus, to find the interval of possible values
for |E| / σ, it is necessary and sufficient to find the interval of possible values
of σ / |E|. Computing this interval is, in its turn, equivalent to computing the
interval for the square V / E2 of the reverse ratio 1 / r.
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• Finally, since V = M − E2, where M
def
=

x2
1 + · · · + x2

n

n
is the second moment, we

have V /E2 = M /E2 − 1, so computing the sharp bounds for V /E2 is equivalent
to computing the sharp bounds for the ratio R

def
= M / E2.

In this section, we will describe how to compute the sharp bounds R and R for
the ratio R; based on these sharp bounds, we can compute the desired sharp bounds
on k0.

Computing R: algorithm. The algorithm AR for computing R is as follows. If all
the original intervals have a common point, then we take R

def
= 1. Otherwise, we do

the following:

• First, we sort all 2n values xi, xi into a sequence x(1) ≤ x(2) ≤ · · · ≤ x(2n); take
x(0) = −∞ and x(2n+1) = +∞. Thus, the real line is divided into 2n + 1 zones
(x(0), x(1)], [x(1), x(2)],…, [x(2n−1), x(2n)], [x(2n), x(2n+1)).

• For each of these zones [x(k), x(k +1)], k = 0, 1,…, 2n, we compute the values

ek
def
=

∑
i : xi ≥ x(k+1)

xi +
∑

j : xj ≤x(k)

xj,

mk
def
=

∑
i : xi ≥ x(k+1)

(xi)
2 +

∑
j : xj ≤ x(k)

(xj)
2,

and nk = the total number of such i’s and j’s. Then, we find λk
def
= mk / ek. If

λk ∈ [x(k), x(k +1)], then we compute

Ek =
ek

n
+

n − nk

n
⋅ λk, Mk =

mk

n
+

n − nk

n
⋅ λ 2

k ,

and Rk
def
= Mk / E2

k .

• Finally, we return the smallest of the values Rk as R.

THEOREM 5.1. The algorithm AR always computes R in quadratic time.

Computing R. In principle, we can have R = +∞—e.g., if 0 ∈ [E,E]. If 0 �∈ [E,E]—
e.g., if E > 0—then we can guarantee that R < +∞. In this case, we can bound R
by the ratio M / E2.

When R < n, the maximum R is always attained at the endpoints:

THEOREM 5.2. When R < n, the maximum R of the function R = M / E2 on the
box x1 ×…× xn is attained at one of its vertices, i.e., when for every i, either xi = xi
or xi = xi.

In this case, we are able to efficiently compute R if the “narrowed” intervals
[x−i , x+

i ] have few intersections, where:

x−i
def
=

x̃i

1 +
∆i

E ⋅ n

; x+
i

def
=

x̃i

1 − ∆i

E ⋅ n

, (5.1)
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and E
def
=

x1 + · · · + xn

n
, where x̃i

def
= (xi + xi) / 2 and ∆i

def
= (xi − xi) / 2.

The corresponding algorithm AR is as follows:

• First, we sort all 2n values xi, xi into a sequence x(1) ≤ x(2) ≤ · · · ≤ x(2n), take
x(0) = −∞ and x(2n+1) = +∞, and thus divide the real line into 2n + 1 zones
(x(0), x(1)], [x(1), x(2)],…, [x(2n−1), x(2n)], [x(2n), x(2n+1)).

• For each of these zones [x(k), x(k +1)], k = 0, 1,…, 2n, and for each variable xi,
we take:

− xi = xi if x+
i ≤ x(k);

− xi = xi if x−i ≥ x(k +1);

− both values xi = xi and xi = xi otherwise.

For each of these combinations, we compute E, M, and λ = M / E, and check if
λ is within the zone; if it is, we compute Rk = M / E2.

The largest of these computed values Rk is the desired upper endpoint R.

THEOREM 5.3. For every positive integer C, the algorithm AR computes R in
quadratic time for all the cases in which R < n and no more than C “narrowed”
intervals can have a common point.

6. Conclusions

In many application areas, it is important to detect outliers. Traditional engineering
approach to outlier detection is that we start with some “normal” values x1,…, xn,
compute the sample average E, the sample standard variation σ, and then mark a
value x as an outlier if x is outside the k0-sigma interval [E − k0 ⋅ σ, E + k0 ⋅ σ] (for
some pre-selected parameter k0).

In real life, we often have only interval ranges xi = [xi, xi] for the normal values
x1,…, xn. For different values xi ∈ xi, we get different values of L

def
= E − k0 ⋅ σ

and U
def
= E + k0 ⋅ σ—and thus, different k0-sigma intervals [L,U]. We can therefore

identify guaranteed outliers as values that are outside all k0-sigma intervals, and
possible outliers as values that are outside some k0-sigma intervals. To detect
guaranteed and possible outliers, we must therefore be able to compute the range
L = [L, L] of possible values of L and the range U = [U,U] of possible values
of U.

In our previous papers [4], [5], we have shown how to compute the intervals
E = [E,E] and [σ, σ] of possible values for E and σ. In principle, we can combine
these intervals and conclude, e.g., that L always belongs to the interval E−k0 ⋅[σ, σ].
However, the resulting interval for L is wider than the actual range—wider because
the values E and σ are computed based on the same inputs x1,…, xn and are,
therefore, not independent from each other.

If, instead of the actual ranges for L and U, we use wider intervals, we may miss
some outliers. It is therefore important to compute the exact ranges for L and U.
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In this paper, we showed that computing these ranges is, in general, NP-hard,
and we provided efficient algorithms that compute these ranges under reasonable
conditions.

Once a value is identified as an outlier for a fixed k0, we also show how to find
out to what degree this value is an outlier, i.e., what is the largest value k0 for which
this value is an outlier.

7. Proofs

Proof of Theorem 2.1. We will only prove the result for U; for L, the proof is
practically identical.

Our proof is based on the fact that the minimum of a differentiable function of xi

on an interval [xi, xi] is attained either inside this interval or at one of the endpoints.

If the minimum is attained inside, the derivative
∂U
∂xi

is equal to 0; if it is attained

at xi = xi, then
∂U
∂xi

≥ 0; finally, if it is attained at xi = xi, then
∂U
∂xi

≤ 0. For our

function,

∂U
∂xi

=
1
n

+ k0 ⋅
xi − E
σ ⋅ n

;

thus,
∂U
∂xi

= 0 if and only if xi = µ def
= E − α ⋅ σ; similarly, the non-positiveness

and non-negativeness of the derivative can be described by comparing xi with µ.
Thus:

• either xi ∈ (xi, xi) and xi = µ,

• or xi = xi and xi = xi ≥ µ,

• or xi = xi and xi = xi ≤ µ.

Hence, if we know how the value µ is located with respect to all the intervals [xi, xi],
we can find the optimal values of xi:

• if xi ≤ µ, then minimum cannot be attained inside or at the lower endpoint, so
it is attained when xi = xi;

• if µ ≤ xi, then, similarly, the minimum is attained when xi = xi;

• if xi < µ < xi, then the minimum is attained when xi = µ.

Hence, to find the minimum, we will analyze how the endpoints xi and xi divide the
real line, and consider all the resulting zones.

Let the corresponding zone [x(k), x(k +1)] be fixed. For the i’s for which µ �∈ (xi, xi),
the values xi that correspond to the minimal sample variance are uniquely deter-
mined by the above formulas.

For the i’s for which µ ∈ (xi, xi), the selected value xi should be equal to the same
value µ. To determine this µ, we will use the fact that, by definition, µ = E − α ⋅ σ,
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where E and σ are computed by using the same value of µ. This equation is
equivalent to E − µ ≥ 0 and α2 ⋅ σ2 = (µ − E)2. Substituting the above values
of xi into the formula for the mean E and for the standard deviation σ, we get the
quadratic equation for µ which is described in the algorithm. So, for each zone, we
can uniquely determine the values xi that may correspond to a minimum of U.

For the actual minimum, the value µ is inside one of these zone, so the smallest
of the values Uk is indeed the desired minimum.

In this algorithm, sorting requires O(n ⋅ log(n)) steps (see, e.g., [1]), and the rest
of the algorithm requires linear time (O(n)) for each of 2n + 1 zones, i.e., the total
quadratic time. �

Proof of Theorem 3.1. Since U = E + k0 ⋅ σ = k0 ⋅ J, where J
def
= σ + α ⋅ E and

α = 1 / k0, we have U = k0 ⋅ J, where J is the upper endpoint of the interval of
possible values of J. Thus, to prove that computing U is NP-hard, it is sufficient to
prove that computing J is NP-hard.

To prove that the problem of computing J is NP-hard, we will prove that the
known NP-hard subset problem P0 can be reduced to it in polynomial time. In the
subset problem, given m positive integers s1,…, sm, we must check whether there

exist signs ηi ∈ {−1,+1} for which the signed sum
m∑

i= 1
ηi ⋅ si equals 0.

We will show that this problem can be reduced to the problem of computing J in
polynomial time, i.e., that to every instance (s1,…, sm) of the problem P0, we can
put into correspondence such an instance of the J-computing problem that based
on its solution, we can easily check whether the desired signs exist.

For that, we compute three auxiliary values

S
def
=

1
m
⋅

m∑
i= 1

s2
i ; N

def
= α ⋅

√
2S

1 − α2 ; J0
def
= (1 + α2) ⋅

√
S

2 ⋅ (1 − α2)
;

since k0 > 1, we have α < 1, so these definitions make sense. Then, we take
n = 2 ⋅ m, [xi, xi] = [−si, si] for i = 1, 2,…,m, and [xi, xi] = [N,N] for
i = m + 1,…, 2 ⋅ m. We want to show that for the corresponding problem, we
always have J ≤ J0, and J = J0 if and only if there exist signs ηi for which∑
ηi ⋅ si = 0.
Let us first prove that J ≤ J0. Since J is the upper endpoint of the interval

of possible values of J, this inequality is equivalent to proving that J ≤ J0 for
all possible values J—i.e., for the values J corresponding to all possible values
xi ∈ xi.

Indeed, it is known that V = M−E2, where M
def
= (1/n)⋅

n∑
i= 1

x2
i is the sample second

moment; therefore, J =
√

M − E2 + α ⋅ E. This expression for J can be viewed as
a scalar (dot) product a→ ⋅ b

→
of two 2-D vectors a→

def
= (1, α) and b

→ def
= (

√
M − E2,E).

It is well known that for arbitrary vectors a→ and b
→

, we have a→ ⋅ b
→ ≤ ‖a→‖ ⋅ ‖b

→‖. In
our case, ‖a

→‖ =
√

1 + α2 and ‖b
→‖ =

√
M, hence J ≤

√
1 + α2 ⋅

√
M.
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Since |xi| ≤ si for i ≤ m and xi = N for i > m, we conclude that

M ≤ 1
2 ⋅ m

⋅
m∑

i= 1

x2
i +

1
2 ⋅m

⋅
2 ⋅ m∑

i= m+1

x2
i =

1
2
⋅ S +

1
2
⋅ N 2;

therefore, J ≤
√

1 + α2 ⋅
√

(S + N 2) / 2. Substituting the expression that defines N
into this formula, we conclude that J ≤ J0.

To complete our proof, we will show that if J = J0, then xi = ηi ⋅ si for i ≤ m,

and
m∑

i= 1
xi =

m∑
i= 1

ηi ⋅ si = 0. Let us first prove that xi = ±si. Indeed:

• we know that J = J0 and that J0 =
√

1 + α2 ⋅
√

(S + N 2) / 2, so J =
√

1 + α2 ⋅√
(S + N 2) / 2;

• we have proved that in general, J ≤
√

1 + α2 ⋅
√

M ≤
√

1 + α2 ⋅
√

(S + N 2) / 2.

Therefore, J =
√

1 + α2 ⋅
√

(S + N 2) / 2 =
√

1 + α2 ⋅
√

M, hence M = (S + N 2) / 2. If
|xj| < sj for some j ≤ m, then, from the fact that |xi| ≤ si for all i ≤ m and xi = N
for all i > m, we conclude that M < (S + N 2) / 2. Thus, for every i from 1 to m, we
have |xi| = si, hence xi = ηi ⋅ si for some ηi ∈ {−1, 1}.

Let us now show that a
def
= 1

m ⋅
m∑

i= 1
xi = 0. Indeed, since xi = N for i > m, we

have

E =
1

2 ⋅ m
⋅

m∑
i= 1

xi +
1

2 ⋅ m
⋅

2 ⋅ m∑
i= m+1

xi =
1
2
⋅ a +

1
2
⋅ N;

therefore, to prove that a = 0, it is sufficient to prove that E = N / 2. The value of E
can deduced from the following:

• we have just shown that in our case, J =
√

1 + α2 ⋅
√

M, where M = (S + N 2) / 2,
and

• we know that in general, J = a→ ⋅ b
→ ≤ ‖a→‖ ⋅ ‖b

→‖ =
√

1 + α2 ⋅
√

M, where the
vectors a→ and b

→
are defined above.

Therefore, in this case, a→ ⋅ b
→

= ‖a→‖ ⋅ ‖b
→‖, and hence, the vectors a→ = (1, α) and

b
→

= (
√

M − E2,E) are parallel (proportional) to each other, i.e.,
√

M − E2 /1 = E /α
hence E = α ⋅

√
M − E2. From this equality, we conclude that E > 0 and, squaring

both sides, that E2 = α2 ⋅ (M − E2) hence (1 + α2) ⋅ E2 = α2 ⋅M = α2 ⋅ (S + N 2) / 2
and E2 = α2 ⋅ (S + N 2) / (2 ⋅ (1 + α2)). Substituting the expression that defines N
into this formula, we conclude that E2 = N 2 / 4, so, since E > 0, we conclude that
E = N / 2—and therefore, that a = 0. �

Proof of Theorem 3.2. This proof is similar to the proof of Theorem 3.1, with the
only difference that we consider J = σ − α ⋅ E and we take xi = −N for i > m. �

Proof of Theorem 4.1. We will only prove the result for U; for L, the proof is
practically identical.
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When a function U attains its largest possible value at the value xi inside the

interval [xi, xi], then at this inside point,
∂U
∂xi

= 0 and
∂ 2U
∂x2

i
≤ 0. For our function

U, we have
∂U
∂xi

=
1
n

+ k0 ⋅
xi − E
σ ⋅ n

,

∂ 2U
∂x2

i
=

k0

σ3 ⋅ n
⋅

((
1 − 1

n

)
⋅ σ2 − 1

n
⋅ (xi − E)2

)
.

Since
∂U
∂xi

= 0, we have xi − E = −α ⋅ σ, hence

∂ 2Ui

∂x2
i

=
k0

σ3 ⋅ n
⋅

((
1 − 1

n

)
− α2

n

)
⋅ σ2.

Since we assumed that 1 + (1 / k0)2 = 1 + α2 < n, we conclude that
1 − (1 / n) − (α2 / n) > 0, so the second derivative is positive and therefore,
we cannot have a maximum in an internal point. �

Proof of Theorems 4.2–4.3. Similarly to the case of the previous two theorems,
we will only provide the result for U; for L, the proof is, in effect, the same.

Let us first prove that the algorithm described in Section 4 is indeed correct.
Since 1 + (1 / k0)2 < n, we can use Theorem 4.1 and conclude that the maximum of
the function U is attained when for every i, either xi = xi or xi = xi. For each i, we
will consider both these cases.

If the maximum is attained for xi = xi, this means, in particular, that if we keep
all the other values xj the same (x′j = xj) but replace xi by x′i = xi = xi − 2 ⋅ ∆i, then
the value U will decrease. We will denote the values of E, U, etc., that correspond
to (x1,…, xi−1, x′i, xi+1,…, xn), by E ′, U ′, etc. In these terms, the desired inequality
takes the form U ≥ U ′, where U = E + k0 ⋅ σ and U ′ = E ′ + k0 ⋅ σ ′. We can represent
this inequality as k0 ⋅ σ ≥ (E ′ − E) + k0 ⋅ σ ′, hence either (E ′ − E) + k0 ⋅ σ ′ ≤ 0, or
k2

0 ⋅ σ
2 ≥ (E ′ − E)2 + k2

0 ⋅ (σ′)
2 + 2(E − E ′) ⋅ k0 ⋅ σ ′. In the second case, we move

the terms linear in σ′ to one side of the inequality and square both sides again. As a
result, we get an inequality that only contains variances V = σ2 = M−E2 (where M
is the sample second moment) and V ′ = (σ′)2 = M ′ − (E ′)2 and no longer contains
square roots.

For our choice of x′i, we have E ′ = E − (2 ⋅ ∆i) / n and

M ′ = M − 4 ⋅ ∆i ⋅ xi

n
+

4 ⋅ ∆2
i

n
.

Substituting these expressions into the above-described inequality and simplifying
the resulting algebraic expression, we conclude that

x̃i + ∆i ⋅
1 + α2

n
≥ E − α ⋅ σ.
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Similarly, if the maximum is attained for xi = xi, this means, in particular, that if
we keep all the other values xj the same but replace xi by x′i = xi = xi + 2 ⋅ ∆i, then
the value U will decrease. This property leads to the inequality

x̃i − ∆i ⋅
1 + α2

n
≤ E − α ⋅ σ.

So:

• If xi = xi, then E − α ⋅ σ ≤ x̃i + ∆i ⋅ 1 + α2

n .

• If xi = xi, then E − α ⋅ σ ≥ x̃i − ∆i ⋅ 1 + α2

n .

Therefore, if we know the value of E − α ⋅ σ, then:

• If x̃i + ∆i ⋅ 1 + α2

n < E − α ⋅ σ, then we cannot have xi = xi hence xi = xi.

• Similarly, if x̃i − ∆i ⋅ 1 + α2

n > E − α ⋅ σ, then we cannot have xi = xi hence
xi = xi.

The only case when we do not know what value to choose is the case when

x̃i − ∆i ⋅
1 + α2

n
≤ E − α ⋅ σ ≤ x̃i + ∆i ⋅

1 + α2

n
,

i.e., when the value E − α ⋅ σ belongs to the i-th narrowed interval; in this case,
we can, in principle, have both xi = xi and xi = xi. Thus, the algorithm is indeed
correct.

Let us prove that this algorithm requires quadratic time. Indeed, once we know
where E is with respect to the endpoints of all narrowed intervals, we can determine
the values of all optimal xi—except for those that are within this narrowed interval.
Since we consider the case when no more than C narrowed intervals can have a
common point, we have no more than C undecided values xi. Trying all possible
combinations of lower and upper endpoints for these ≤ C values requires ≤ 2C

steps. For each zone and for each of these combinations, we need a linear time
(O(n)) to compute U. Thus, for each zone, we need O(2C ⋅ n) computational steps.
There are O(n) zones, so the overall number of steps is O(2C ⋅ n2). Since C is a
constant, the overall number of steps is thus O(n2). �

Proof of Theorem 5.1. Let us first consider the case when all the intervals intersect.
We know that the variance V = M − E2 is always non-negative; therefore, M ≥ E2

and R ≥ 1; hence R ≥ 1. If all the intervals have a common point, it is possible that
all the values xi are equal to this common point; in this case, V = 0 hence R = 1.
Thus, in this case, R = 1.

Let us now consider the case when the intersection of n intervals is empty. For
this case, the proof is similar to the proof of Theorem 2.1. Indeed, the minimum
of a differentiable function of xi on an interval [xi, xi] is attained either inside this
interval or at one of the endpoints. If the minimum is attained inside, the derivative
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∂R
∂xi

is equal to 0; if it is attained at xi = xi, then
∂R
∂xi

≥ 0; finally, if it is attained at

xi = xi, then
∂R
∂xi

≤ 0. For our function,

∂R
∂xi

=
2

n ⋅ E3 ⋅ (E ⋅ xi − M);

thus,
∂R
∂xi

= 0 if and only if xi = λ def
= M /E; similarly, the non-positiveness and non-

negativeness of the derivative can be described by comparing xi with λ . Thus:

• either xi ∈ (xi, xi) and xi = λ ,

• or xi = xi and xi = xi ≥ λ ,

• or xi = xi and xi = xi ≤ λ .

The proof continues just like for Theorem 2.1. �

Proof of Theorem 5.2. This proof is similar to the proof of Theorem 4.1. When
a function R = M / E2 attains its largest possible value R at the value xi inside the

interval [xi, xi], then at this inside point,
∂R
∂xi

= 0 and
∂ 2R
∂x2

i
≤ 0. For our function R,

we have

∂R
∂xi

=
2

n ⋅ E3 ⋅ (E ⋅ xi − M),

∂ 2R
∂x2

i
=

2
n ⋅ E4 ⋅

[(
E − xi

n

)
⋅ E − 2(E ⋅ xi − M) ⋅

1
n

]
.

Since
∂R
∂xi

= 0, we have xi = M / E, hence

∂ 2Ri

∂x2
i

=
2

n ⋅ E2

(
1 − xi

n ⋅ E

)
=

2
n ⋅ E2

(
1 − M

n ⋅ E2

)
=

2
n ⋅ E2

(
1 − R

n

)
.

Since we assumed that R < n, we conclude that the second derivative is positive
and therefore, we cannot have a maximum in an internal point. �

Proof of Theorem 5.3. This proof is similar to the proof of Theorems 4.2–4.3.
Let us first prove that the algorithm described in Section 5 is indeed correct. Since
R, we can use Theorem 5.2 and conclude that the maximum of the function R is
attained when for every i, either xi = xi or xi = xi. For each i, we will consider both
these cases.

If the maximum is attained for xi = xi, this means, in particular, that if we keep
all the other values xj the same (x′j = xj) but replace xi by x′i = xi = xi−2 ⋅∆i, then the
value R = M /E2 will decrease. We will denote the values of E and M that correspond
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to (x1,…, xi−1, x′i, xi+1,…, xn), by E ′, and M ′. In these terms, the desired inequality
takes the form M / E2 ≥ M ′ / (E ′)2, i.e., equivalently, M ⋅ (E ′)2 ≥ M ′ ⋅ E2.

In the proof of Theorems 4.2–4.3, we had expressions for E ′ and M ′. Substituting
these expressions into the above inequality and simplifying the resulting algebraic
expression, we conclude that

x̃i ≤ λ ⋅
(

1 +
∆i

E ⋅ n

)
,

where λ def
= M / E.

Similarly, if the maximum is attained for xi = xi, we have

x̃i ≥ λ ⋅
(

1 − ∆i

E ⋅ n

)
.

Therefore, if we know the value of λ = M / E, then:

• If
x̃i

1 +
∆i

E ⋅ n

> λ , then we cannot have xi = xi hence xi = xi.

• If
x̃i

1 − ∆i

E ⋅ n

< λ , then we cannot have xi = xi hence xi = xi.

Similarly to the proof of Theorems 4.2–4.3, we can now conclude that the algorithm
from Section 5 is correct and that this algorithm requires quadratic time. �
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