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Summary. We show how interval analysis can be used to compute the global 
minimum of a twice -continuously differentiable function of n variables over 
an n-dimensional parallelopiped with sides parallel to the coordinate axes. 
Our method provides infallible bounds on both the globally minimum value 
of the function and the point(s) at which the minimum occurs. 
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1. Introduction 

Consider the function f(x) in C 2 of n variables x I . . . .  , x,. We shall describe a 
method for computing the minimum value f *  o f f ( x )  over a box X (~ A box is 
defined to be a closed rectangular parallelopiped with sides parallel to the 
coordinate axes. We assume the number of points in X ~~ at which f(x) is 
globally minimum is finite. Our method provides infallible bounds on f *  and on 
the point(s) x* for which f(x*)=f*. That is, our algorithm produces bounds on 
x* and f *  which are always correct despite the presence of rounding errors. 
How sharp these bounds can be depends on the function f and the precision of 
the computer used. 

For a highly oscillatory function f, our algorithm could be prohibitively 
slow. Presumably this wilt always be the case for any future global optimization 
algorithm. However, our algorithm is sufficiently fast for ' reasonable '  functions. 

We assume that interval extensions (see [8]) of f and its derivatives are 
known. This is the case if every function in terms of which f and its derivatives 
are defined have known rational approximations with either uniform or rational 
error bounds for the arguments of interest. 

Since the initial box can be chosen as large as we please, our algorithm 
actually solves the unconstrained minimization problem provided it is known 
that the solution occurs in some finite region (which we enclose in the initial 
box). 
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There is a common misconception among researchers in optimization that it 
is impossible to obtain infallible bounds on x* and f *  computationally. The 
argument is that we can only sample f (x )  and a few derivatives o f f (x )  at a finite 
number of points. It is possible to interpolate a function having the necessary 
values and derivatives values at these points and still have its global minimum 
at any other arbitrary point. The fallacy of this argument is that interval analysis 
can provide bounds on a function over an entire box; that is over a continuum 
of points. It is only necessary to make the box sufficiently small in order to 
make the bounds arbitrarily sharp. This is what our algorithm does. It narrows 
the region of interest until the bound is as sharp as desired (subject to roundoff 
restrictions). 

In a previous paper [5], we gave a method of this type for the one- 
dimensional case. The method never failed to converge provided f ' (x )  and f"(x) 
had only a finite number of isolated zeros. Our method for the n-dimensional 
problem appears to always converge also; but we have not yet attempted to 
prove it. When it does converge, there is never a question that x* and f *  satisfy 
the computed bounds. 

Recently, R.E. Moore [9] published a method for computing the range of a 
rational function of n variables over a bounded region. (See also [14].) Although 
he does not note the fact, his method will serve to bound the global minimum 
value f *  of a rational function. However, our algorithm is more efficient. 
Moreover, it is designed to bound x* as well as f * .  

We suggest the reader read the previous paper [5] before the current one. 
The one-dimensional case therein serves as an easier introduction. However, the 
current paper is essentially self contained. It would be better if the reader had 
some familiarity with the rudiments of interval analysis such as can be found in 
the first three chapters of [8]. However, we shall review some of its relevant 
properties. 

Our method will find the global minimum (or minima). Because of computer 
limitations of accuracy, it may also find near-global minima such that rounding 
errors prevent determination of which is the true minimum. However, if the 
termination criteria are sufficiently stringent, our algorithm will always elim- 
inate a local minimum whose value is substantially larger than f* .  

Our algorithm is composed of four separate parts. One part uses an interval 
version of Newton's method to find stationary points. A second part eliminates 
points of X t~ where f is greater than the smallest currently known value J~ 

A third part of our algorithm tests whether f is monotonic in a sub-box X of 
X (~ If so, we delete part or all of X depending on whether X contains boundary 
points of X~~ 

A fourth part checks for convexity of f in a sub-box X of X t~ If f is not 
convex .anywhere in X, there cannot be a stationary minimum o f f  in X. 

The first part of the algorithm, if used alone, would find all stationary points 
in X(~ The second part serves to eliminate stationary points where f>f*. 
Usually they are eliminated before they are found with any great accuracy. 
Hence computational effort is not wasted using the first part to accurately find 
an unwanted stationary point. The second part also serves to eliminate bound- 
ary points of X ~~ and to find a global minimum if it occurs on the boundary. 
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The second part of the algorithm used alone would find the global minimum (or 
minima) but its asymptotic convergence is relatively slow compared to that of 
the Newton method. Hence the latter is used also. The third and fourth parts of 
the algorithm merely improve convergence. 

2. Interval Analysis 

The toot which allows us to be certain we have bounded the global minimum is 
interval analysis. We bound rounding errors by using interval arithmetic. More 
importantly, however, we use interval analysis to bound the range of a function 
over a box. 

Let g(x) be a rational function of n variables x 1 . . . .  , x,.  On a computer, we 
can evaluate g(x) for a given x by performing a sequence of arithmetic 
operations involving only addition, subtraction, multiplication, and division. 

Let X~ (i = 1 . . . .  , n) be closed intervals. If we use X~ in place of x~ and perform 
the same sequence of operations using interval arithmetic (see [8]) rather than 
ordinary real arithmetic, we obtain a closed interval g(X) containing the range 

{g(x): xieXi(i = 1 . . . . .  n)} 

of g(x) over the box X. This result will not be sharp, in general, but if outward 
rounding (see [8]) is used, then g(X) will always contain the range. The lack of 
sharpness results from other causes besides roundoff. With exact interval arith- 
metic, the lack of sharpness diappears as the widths of the intervals decrease to 
zero. 

If g(x) is not rational, we assume an algorithm is known for computing an 
interval g(X) containing the range of g(x) for x~X. Methods for deriving such 
algorithms are discussed in [8]). 

3. Taylor 's  Theorem 

We shall use interval analysis in conjunction with Taylor 's theorem in two ways. 
First, we expand f as 

f(y) = f ( x )  + (y - x)r g (x) + �89 (y - x)r H (x, y, 4)(Y - x) (3.1) 

where g(x) is the gradient o f f ( x )  and has components gi(x)=Of(x)/Ox~. The 
quantity H(x, y, ~) is the Hessian matrix to be defined presently. For reasons 
related to the use of interval analysis, we shall express it as a lower triangular 
matrix instead of a symmetric matrix so that there are fewer terms in the 
quadratic form involving H(x, y, 4). 

We define the element in position (i,j) of H(x, y, ~) as 

[02f/Ox~ for j=i( i=l , . . . ,n) ,  
hq={2O2f/dx~Oxj for j < i ( i = l , . . . , n ; j = l  .... , i - l ) ,  (3.2) 

[0 otherwise. 
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The arguments of hij depend on i and j. If  we expand f sequentially in one of its 
variables at a time, we can obtain the following results illustrating the case n = 3 

l -hi 1(~11, x2, x3) 0 0 ] 
H(x , y ,  ~)= hzl(~2x ,x2,x3)  hz2(Y1,~22, x3) 0 . 

[h31(~31, x2, x3) h3z(Yl ,  ~32, x3) h33(Yl, Y2, ~33) 

Assume x i e X  i and y~eX~ for i =  1 . . . .  , n. Then ~ij~Xj for each j =  1 . . . .  , i. For 
general n, the arguments of H~j are (Yx, -.-, Yj- 1, ~j,  xj+ 1 . . . .  , x,). Other arrange- 
ments of arguments could be obtained by reordering the indices. 

Let x be a fixed point in X. Then for any point y e X ,  

H(x,  y, ~)~H(x,  X ,  X); 
that is, for i>j ,  

hiJ(Yl . . . .  , Y i -  1, ~i.i, x2+ 1 . . . . .  x,,)Ehl.i(X1 . . . . .  X i , x j+ 1 . . . . .  x,,). 

In the sequel, we shall shorten notation and use H(~) to denote H(x,  y, ~) and 
H ( X )  to denote H(x,  X ,  X). 

The purpose of this particular Taylor expansion is to obtain real (non- 
interval) quantities for as many arguments of the elements of H ( X )  as possible. 
The standard Taylor expansion would have intervals for all arguments of all 
elements of H(X) .  This type of expansion was introduced in [3]. A more general 
approach of this kind is discussed in I-4]. 

The other Taylor expansion we shall want is of the gradient g. Each element 
gi(i= i , . . . ,  n) of g can be expanded as 

gi(Y) ----- gi(X) + (Yl -- x1) dil (t]l, x2, -", xn) + (Y2 - xz) Ji2(Y l,  1~ 2, x3 . . . . .  Xn) 

+(Y3 - x 3 )  J i3(Yl ,  Y2, rl3, x4 . . . . .  x,,)+ ... + ( y n - x n )  Jin(Yl . . . .  , Y, -  1, rl,), 

where 0.3) 

Ji2 = c~2f/c3xi c3xj (i,j = 1 . . . .  , n). 

This Jacobian matrix J and the Hessian H introduced above are, of course, 
essentially the same. However, they will be evaluated with different arguments 
depending on whether we are expanding f or g. Also, H is lower triangular while 
d is a full matrix. 

Let J(x,  y, Yl) denote the Jacobian matrix with elements J~i(Yl . . . .  , Y.i 1, ~lj, 
x j+ 1 . . . .  , x,). Then 

g(y)= g(x) + J (x, y, rl) ( y -  x). (3.4) 

If x e X  and y e X ,  then theX ~ for all i--  1, ..., n. Hence 

g(y)eg(x)  + J (x, X ,  X ) ( y -  x). (3.5) 

We shall again shorten notation and denote J(x,  y, tl) by J(t/) and J(x,  X ,  X)  by 
J(X) .  
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Note that the elements of H(X) on and below the diagonal have the same 
arguments as the corresponding elements of J(X). Thus we need only calculate 
J(X);  then H(X) follows easily. 

4. The Approximate Value of the Global Minimum 

As we proceed with our algorithm, we shall evaluate f(x) at various points in 
X (~ Let f denote the currently smallest value o f f  found so far. The very first 
step is to evaluate f at the center of X ~~ This value serves as the first one for J~ 

One part of our algorithm deletes sub-boxes of X ~~ wherein f > f  since this 
implies i n f f  > f * .  (See Sect. 7.) 

In practice we cannot generally evaluate f(x)  exactly because of rounding 
errors. Hence we do the evaluation using interval arithmetic. Suppose we obtain 
the interval i f  L, fR]. Then we know that f(x)<=fR and hence that f_<fR. Hence 
when we evaluate f(x), we update f by replacing it by fR only i f f  R is less than 
the previous value o f f  In this way, we assure that f is always an upper bound 
for f* .  

5. A Test for Convexity 

As our algorithm proceeds, we dynamically subdivide X ~~ into sub-boxes. Let X 
denote such a sub-box. We evaluate hii(X ~ . . . . .  X,) for i=  1, .. . ,  n, where hii is 
the diagonal element of the Hessian. Note that every argument of hi~ is an 
interval and hence the resulting interval contains the value of h~i(x ) for every 
xeX.  That is, if [ui, v~] denotes the computed interval h~(X 1 . . . .  , X,), then 

hii(x)E [[,l i, vii 

for all xeX.  
Suppose we find v i<0  for some value of i. Then h~i(x)<0 for every xeX.  

Hence there is no point in X at which the real (non-interval) Hessian is positive 
definite. Hence f is not convex and cannot have a minimum which is a 
stationary point in X. Hence we can delete all of X except for any boundary 
points of X ~~ which might lie in X. 

When we evaluate h~(Xt . . . . .  X,), we may find that the left endpoint u i>0  
for all i=  1, . . . ,  n. When this occurs, we know from inclusion monotonicity (see 
[8]) that we will find each u~>0 for any sub-box of X. Hence we could save 
some computational effort by noting when a box is a sub-box of one for which 
u i > 0 for all i = 1 . . . . .  n. We would skip this test for such a box. 

Note that an element h~ with arguments (X1 . . . . .  X,) is not obtained when 
we compute H(X) since the diagonal elements of H(X) have arguments different 
from (X~, ... ,  X,) except for the element in position (n, n). Hence our test for 
convexity requires recalculation of the diagonal of the Hessian. 

6. The Interval Newton Method 

For  each sub-box X of X (~ that our algorithm generates, we can apply an 
interval Newton method to the gradient g. Such methods seek the zeros of g and 
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hence the stationary points off .  Such a method produces from X a new box or 
boxes N(X). Any points in X not in N(X) cannot contain a zero o fg  and can be 
discarded unless they are boundary points of X (~ 

These methods, in effect, solve (3.5) for points y where g(y)=0. The first such 
method was derived by Moore [8]. Variants of Moore's method can be found in 
[3, 8, 12, 13]. The most efficient variant is described below. Krawczyk's method 
[8] is a suitable alternative to the method in [6]. Discussions of Krawczyk's 
method can be found in [10] and [11]. 

We now give a brief synopsis of our method. We wish to solve the set of 
equations 

g(x) + J(~) (y-x) -  0 (6.1) 

for the set of points y obtained by letting ~ range over X. We shall find a subset 
Y of X containing this set. 

Let Jc be the matrix whose element in position (i,j) is the midpoint of the 
corresponding interval element J~j(X) of the Jacobian J(X). Let B be an 
approximate inverse of Jc. As pointed out in [3], a useful first step in solving for 
Y is to multiply (6.1) by B giving 

Bg(x) + BJ(~.)(y- x) = 0. (6.2) 

Note that the product BJ(~) approximates the identity matrix. However it may 
be a very poor approximation when X is a large box. 

We 'solve' (6.2) by a process similar to a single sweep of the Gauss-Seidel 
method. Write 

BJ(X)=L+D+U 

where L, D, and U are the lower triangular, diagonal, and upper triangular part 
of BJ(X), respectively. The interval matrix 

D- 1 =diag [1/D 11, 1/D22 . . . . .  1/D,,] (6.3) 

contains the inverse of every matrix in D. The box Y'solving' (6.2) is obtained as 

Y = x ~ D-  ~ [B g (x) + L ( Y -  x) + U (X - x)]. (6.4) 

When obtaining the component Y~ of Y, the components Y1, ..., Y~-1 appearing 
in the right member of this equation have already been obtained. 

This formulation presupposes that the intervals D~ (i=1 . . . . .  n) do not 
contain zero. When X is a small box, BJ(X) is closely approximated by the 
identity matrix and hence D is also. However, for X large, it is possible to have 
0eD u for one or more values of i. This case is easily handled. We simply use an 
extended interval arithmetic which allows division by an interval containing 
zero. A detailed discussion of this new method will be published elsewhere. 

Note that we cannot allow the Newton procedure to delete boundary points 
of X ~~ since the global minimum need not be a stationary point if it occurs on 
the boundary. We discuss this point further in Sect. 10. 
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If we were to use this Newton method only, we would in general find 
stationary points of f which were not minima. Moreover, we would find local 
minima which were not global minima. To avoid this, we use an additional 
procedure to delete points where f exceeds the smallest known value ~ This 
procedure is described in the next section. 

In some applications, it may be desirable to find all the stationary points o f f  
in a given box. This can be done using the Newton method alone or in 
conjunction with the monotonicity check of Sect. 9. If, in addition, the convexity 
check of Sect. 5 were used, all stationary points except maximum would be 
found. 

7. Bounding f 

We now consider how to delete points y~X where we know f ( y ) > f  and hence 
where f (y )  is not a global minimum. We retain the complementary set which is a 
sub-box (or sub-boxes) Y c X wherein f (y )  may be <j~ 

As pointed out in [5], if we only wish to bound f *  and not x*, we can delete 
points where 

f ( y ) > f  - e  I (7.1) 

for some e 1 >0.  We can allow e 1 to be nonzero only if we do not need to know 
the point(s) x* at which f is globally minimum. 

We want to retain points where (7.1) is not satisfied. From (3.1), this is the 
case for points y if 

f(x) + ( y -  x) T g(x) + �89 (y - x) r H({)(y - x) < f -  el 

because the left member  equals f(y). Denote 

E = f - f ( x ) - e  1. 
Then 

~r g(x) + �89 H(~) ~ < E (7.2) 

where ~ = y - x .  We shall use this relation to reduce X in one dimension at a 
time to yield the sub-box(es) Y resulting from deleting points where f ( y )> f -~1 .  

We shall illustrate the process for the case n = 2. The higher dimensional case 
follows in the same way. For n = 2, (7.2) becomes 

~191(x)d-~Y292(x)-~�89 hll(~)~-~l~Y2h21(~)-F~Y2 h22(~)J~E. (7.3) 

We first wish to reduce X in the xl-direction. Thus we solve this relation for 
acceptable values of Yl. After collecting terms in y~, we replace Y2 by X 2. In the 
higher dimensional case we would also replace Yi by Xi for all i =  3 . . . .  , n. We 
also replace ~ by X (since ~eX). We obtain 

~1[gl(x)+�89189 hll(X)+ X292(x)+�89163 h22(X)-E~O (7.4) 

where X 2 = X 2 - x 2 .  
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We solve this quadra t ic  for the interval or intervals of  points Yl as described 
below. Call  the resulting set Z s. Since we are only interested in points  with 
yleX~, we compute  the desired set Ys as I11 = X a  c~Z~. 

For  the sake of argument ,  suppose  II1 is a single interval. We can then try to 
reduce X 2 the same way we (hopefully) reduced X1 to get Ys. We  again rewrite 
(7.3). This t ime we replace Yl by Y~ and (as before) ~ by X. We could obtain 
bet ter  results by replacing ~ by II1 rather  than X 1 but this would require re- 
evaluat ion of the elements of H. We obtain  

.v2 [g2(x) +�89 J~s h2 ~ (X)] +~Y2' -z h22(X) + f's gl (x) +�89 f '?  hls(X)-E<O= (7.5) 

where 91 = IIi - x l .  
If  the solution set Y2 is strictly conta ined in X 2, we could replace X 2 by Y2 

in (7.4) and solve for a new Y1- We have not tried to do this in practice. Instead, 
we start  over  with the box Y in place of X as soon as we have tried to reduce 
each X i to Y~ (i = 1 . . . .  , n). No te  this means  we re-evaluate  H(X). 

We now consider how to solve the quadra t ic  equat ion (7.4) or (7.5). These 
have the general form 

A + Bt + Ct2 <O (7.6) 

where A, B, and C are intervals and we seek values of t satisfying this inequality. 
Deno te  C =  [c 1, c2] and let c be an arbi t rary  point  in C. Similarly, let asA 

and beB be arbi t rary.  Suppose t is such that  (7.6) is violated;  that  is Q( t )>0 ,  
where 

Q(t)=a+bt +ct 2. 

If  this is true for c=c~, then it is true for all c6C. Hence  if we wish to find the 
complemen ta ry  values of  t where (7.6) might  hold we need only consider 

A + Bt  +c 1 t2~0.  (7.7) 

If c~ =0 ,  this relation is linear and the solution set T is as follows: Deno te  A 
= [as, a2] and B = [bl ,  b2]. Then  the set of  solut ion points  t is 

T =  

[-al /b2,  ~ ]  if a 1 _<0, b 2 < 0  , 

[ -a l /bs ,  ~ ]  if as>O, bs <O, b2 <O, 
[ - ~ ,  ~ ]  if as<O, bl<O<b2, 
[ - ~ , - a a / b z ] w [ - a l / b s , ~  ] if ax>O, bl<O<b2, 
[ - ~ ,  -a l /b l ]  if a s < 0 ,  b s > 0 ,  

[-- ~ ,  -ax/b2] if a I >0 ,  b s >0 ,  b 2 > 0  , 

empty  set if a s >0 ,  b 1 =b 2 =0 .  

i. Thus a l though T may  Recall  tha t  we will intersect T with X i for some value of 
be unbounded,  the intersection is bounded.  

If c1:# 0, the quadra t ic  (7.6) may  have no solut ion or it may  have a solut ion 
set T composed  of  either one or two intervals. In the lat ter  case, the intervals 
m a y  be semi-infinite. However ,  after intersecting T with Xi, the result is finite. 
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Denote  

Ql(t)=a+bt + q  t 2 

where aeA, bEB, and c 1 is the left endpoint  of C. We shall delete points t where 
Qa ( t )>0  for all a~A and beB. Thus we retain a set T of points where Ql(t)=<0, 
as desired. But we also retain (in T) points where, for fixed t, Q a ( t ) > 0  for some 
aeA and beB and Qa(t)<O for other aEA and beB. This same criterion was 
used to obtain T when c a =0 .  This assures that we shall always retain points in 
Xi where f(x) is a minimum. 

Denote  

qa(t)={aa+b2t+clt2 if t < 0 ,  

a,+bat+cat  2 if t > 0  
and 

qe(t)={a2+btt+Cat2 if t=<0, 
a2+b2t+cit  2 if t>=0. 

Then we can write the interval quadrat ic  as 

Q1 (t) = [aa, a2] q- [b I, be] t + C 1 t 2 
= [q, (t), q2 (t)]. 

Thus  for any finite t, qa(t) is a lower bound  for Qa(t) and q2(t) is an upper bound 
for Ql(t) for any aeA and any beB. 

For  a given value of t, if q l ( t )>0 ,  then 0 1 ( 0 > 0  for all aeA and beB. Hence 
we need only to solve the real quadrat ic  equation qa ( t )=0  in order to determine 
intervals wherein, without  question, Q1 ( t )> 0. This is a straightforward problem. 

The function qa(t) is cont inuous but its derivative is discontinuous at the 
origin when b1=t = b 2 which will generally be the case in practice. Hence we must 
consider the cases t < 0 and t => 0 separately. 

If c a >0 ,  the curve qa(t) is convex for t=<0 and convex for t=>0. Consider  the 
case t=<0. If  q~(t) has real roots, then Q a ( t ) > 0  outside these roots, provided 
t <0 .  Hence, we retain the interval between these roots. We need only examine 
the discriminant of  q~ (t) to determine whether the roots are real or not. Hence it 
is a simple procedure to determine which part  (if any) of  the half  line t <= 0 can be 
deleted. The same procedure can be used for t >_0. 

For  c a <0 ,  qa(t) is concave for t__<0 and for t>=0. In this case we can delete 
the interval (if any) between the roots  of q~(t) in each half line. The set T is the 
complement  of  this interval. It is composed of  two semi-infinite intervals. 

In determining T for either the case c 1 < 0  or  in the case c I >0 ,  it is necessary 
to know whether the discriminant of  qa (t) is non-negative or  not. Denote  

A a =b2-4al  ca, A2=b2-4aa C 1. 

These are the discriminants of  qa (t) when t >__ 0 and t _-< 0, respectively. 
When  we compute  A a or A2, we shall make rounding errors. Thus  we should 

compute  them using interval ari thmetic to bound  these errors. When comput ing  
A i = ( i =  1, 2), suppose we obtain the interval 

A[=[A],Aff] ( i=1 ,  2). 
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We use the appropriate endpoint of A~ or A~2 to determine T which assures that 
we never delete a point t where Q~(t) could be non-positive. Thus we use the 
endpoint of A~ or A~ which yields the larger set T. 

When we compute the roots of ql(t), we shall make rounding errors. Hence 
we compute them using interval arithmetic and again use the endpoints which 
yield the larger set T to assure we do not delete a point in X~ where f is a 
minimum. 

For  i=  1 and 2, denote 

and 
R + = ( - b ~  +_A1/2)/(2Cl) 

S + = 2a( - b i 4- A~/2). 

Note that R~ + = S/- and R i- = S~ +. As is well known, the rounding error is less if 
we compute a root in the form R~ + rather than in the form S 7 when b i <0.  The 
converse is true when bi > 0. Similarly, the rounding error is less when using R~- 
rather than S~ + when bi>0.  Hence we compute the roots of q~(t) as R~ + and S~ 
when b i<0  and as R~- and S~- when bi>0. 

Note that computing R~ or S~ involves taking the square root of the 
interval A[. In exact arithmetic this would bc the real quantity Ai. We would 
never be computing roots of q~(t) when A~ was negative. Hence if we find that 
the computed result A[ contains zero, we can replace it by its non-negative part. 
Thus we will never try to take the square root of an interval containing negative 
numbers. 

Given any interval 1, let I L and I R denote its left and right endpoint, 
respectively. We use this notation below. Using the above prescriptions on how 
to compute the set T, we obtain the following results: 

For b~ __>0 and c I >0, 

[0 (the empty set) 
T =  ~[(R;) L, ($2) R] 

[[(R~)L, (Si-)R] 

For  b2<0  and c1>0, 

T = [ E ( S ~ ) ,  (R~-) n] 

S+L [ [ ( 2 ) , ( R ~ )  R] 

For b 1 <0=<b 2 and c 1 >0, 

r 
[(R2)L, (S~-)R] 

T =  [(S~-) L, (R~-) R] 

[(R; )L, (S ~- )R] u [(S +)g, (R ~- )R] 
E(R y )L, (R ~-)R] 

if A2R <0, 

if a l > 0  and A~>0, 

if a~ <0. 

(7.8) 

if A~<0, 

if a l > 0  and A~>0, 

if a 1 <0. 

(7.9) 

if max(A~, A2g)<O, 

if [bl[<b 2 and min(A~, A2g)__<O 
=<max (A~, A2R), 

if [blI>b 2 and min(AIR, A2R)_--<O (7.10) 
____max (A~, A2R), 

if a l > O  and min(A~,A2R)>O 

if a 1 <0. 
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For b~>0  and c~<0, 

[ -  o0, (s2)R]w[(R~) L, oO] if a 1 >0,  
T= [--oo,(s~)R]w[R~)L, oo] if a~ <O<A L, 

[--oe,  oo] if AL<0. 

For b z < 0  and c1<0, 

{ [--oe,(Rf)g]w[(S-~) L, ~ ]  if a l > 0 ,  

T= [--oQ,(R~)R]~[(S~)L, oO] if al <O<A~, 
[ - - ~ ,  oe] if AL<0. 

For b l < 0 < b  2 and c 1 <0, 

T=~E--oo,(S[)R]m[(S~{)L,].[ o0] if a l>O,  

o0, o0] if a 1<0. 

(7.11) 

(7.12) 

(7.13) 

can be empty, a single interval, or two intervals. We now consider the logistics 
of handling these cases. 

The quadratic inequality to be solved for Z~ will have quadratic term 
1"2hii(X ) so the interval C in (7.6) is �89 ) and the left endpoint is c] i) gY~ 
= [�89 L. If c(/)>0 the solution set is a single interval. But if c]~ it is two 
semi-infinite intervals and it may be that Y~ will be two intervals. This would 
complicate the process of finding Yi+ 1,-..,  Y,. Thus we proceed as follows. 

Let 11 denote the set of indices i for which c]~)>0 and I z denote the set of 
indices i for which c]i~<0. We first find Y~ for each i~11. We then begin to find Y~ 
for ieI 2. L e t j e I  2 be such that Y~ is composed of two intervals, say y)l) and y)2). 
Then Xj is the smallest interval containing both y)l~ and y)2). When finding Y~ 
for the remaining values of i, we use Xj in place of Yj. 

After finding all Y~ for i = t . . . .  , n, we wish to use the fact that we can delete 
the interval, say Yf, between y)n  and y)2). We would like to do this for all the 
values of j for which Y~ was two intervals. However, it could be that this 
occurred for all the indices j = 1, ..., n. After deleting the interior interval yjc in 
each dimension, the resulting set would be composed of 2" boxes. For  large n, 
this is too many boxes to handle separately. Hence we delete only a few (one, 
two, or three) of the' largest of the intervals Yr. We then process each of the new 
boxes separately. 

Note that if c1>0,  then A 2 c a n  be negative only if a l > 0 .  Hence the 
condition A z <0  implies a 1 > 0. This, and similar cases, has been used to shorten 
the conditional statements in the above expressions for T. 

We have seen that the solution of the quadratic inequalities such as (7.4) or 
(7.5) can be an interval Z i or two semi-infinite intervals, say ZI 1) and Z~ z). The 
desired solution set Y~ is obtained by intersection with Xi. In the former case, Y~ 
= X~ c~ Z~ can be empty or a single interval. In the latter case, 
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We would like to prevent the generation of long, narrow boxes. Thus a good 
choice of which yjc to delete is the one(s) corresponding to the component  for 
which the smallest interval containing both Y~(1) and YS 2) is largest. However, we 
have chosen to delete the largest interval Yr. 

Let us call the process we have described in this section the quadratic method. 
We can combine the quadratic method with the Newton method. It is desirable 
to do this as we now explain. 

If the left endpoint of Hu(X ) is negative, then the quadratic method can give 
rise to two new intervals y m and Yi (2) in place of X i. When trying to improve 
Xi+ 1 (say), it is impractical to use y(1) and y(2) separately and we use X i, 
instead. Thus the improvement of Xi is of no help when trying to improve Xi+ 1, 
etc. Similarly, when applying the Newton step, if Ju(X) contains zero as an 
interior point, we can obtain two subintervals in place of X~. Again, we cannot 
conveniently use this fact in the remaining part of the Newton step. 

We would like to do those steps first which are of help in subsequent steps. 
Hence the following sequence is suggested. First try to improve X~ by the 
quadratic method for each value of i=  1 . . . .  , n for which the left endpoint of 
H,(X)  is positive. Then apply the interval Newton method to the (old or new) 
components  for which O6BJu(X ) (i = 1, ..., n). Next use the quadratic method for 
those components for which the left endpoint of Hii(X ) is non-positive. Finally, 
complete the Newton step for those components with O~BJu(X ). 

At each stage of either method, when trying to improve the i-th component  
of the box, we use the currently best interval for the other components. This 
may be the smallest interval containing two disjoint intervals in some cases. In 
fact it would be possible for the quadratic method and the Newton method to 
each delete disjoint sub-intervals for a given component.  This would give rise to 
three sub-intervals to be retained. However, it seems better to simplify this case 
and only delete the larger of the two sub-intervals. 

When both methods are completed, we may have several components 
divided into two sub-intervals. If so, we find the one for which the largest 
interior sub-interval has been deleted. We replace all the others by the smallest 
sub-interval containing the two disjoint parts. We then divide the remaining 
part  of the current box into two sub-boxes by deleting the sub-interval for the 
component  in question. We could do this for more than one component,  but 
each deletion would double the number  of boxes. It seems better to keep the 
number  of boxes small. 

8. Choice of el 

Suppose we want to bound the value f *  of the global minimum to within a 
tolerance ~1 but we do not care w h e r e f  takes on this value. Then, as pointed out 
in Sect. 7, we can delete points y where 

f(y)>f-~l.  (8.t) 

Once we have found a point )~ where f(~2)=f is such that f - f * < = e l ,  our 
algorithm will eventually delete all of X <~ if we use (8.1). However, ~ may be far 
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from the point x* where f is globally minimal. When all of X (~ is deleted, we 
will know that 

f -  e 1 =<f* __<f 

Choosing el > 0  will speed up our algorithm. However, if we wish to obtain 
good bounds on x*, we must choose el =0.  We then terminate our algorithm 
when the remaining set of points is sufficiently small. See Sect. 13 for a 
termination procedure. 

9. Monotonicity 

Another step in our algorithm makes use of the monotonicity off .  Suppose, for 
example, the i-th component  gi(x) of the gradient is non-negative for all x e X .  
Then the smallest value of f ( x )  for x e X  must occur for xg equal to the left 
endpoint of X i. 

To make use of a fact such as this, we evaluate gg(X 1 . . . . .  X,). The resulting 
interval, which we denote by [a i, cog], contains g/(x) for all x e X .  Denote X i 
=Ix/L, xiR]. If a i>O, f ( x  ) is smallest (in X) for x i = x  ~. Hence we can delete all of 
X except the points with xg=x~. If ag>O,f(x) cannot have a stationary point in 
X. Hence we can delete all of X unless the boundary at x i = x  ~ contains 
boundary points of the initial box X (~ Similar results occur if co i __< 0 or if cog < 0. 

We evaluate gg(X~ . . . . .  Xn) for i = 1 . . . .  , n and reduce the dimensionality of X 
for any value of i for which crg__>0 or cog<0. Of course, we delete all of X, if 
possible. 

It is possible that we can reduce X in every dimension in this way. If so, only 
a single point, say 2, remains. In this case, we evaluate f(2).  I f f ( 2 ) > ~  we can 
eliminate ~ and hence all of X is deleted by the process. Iff(k)_<_f, we reset f 
equal to f(2).  In this latter case, X is again deleted; but we store 2 for future 
reference. 

I0. Boundary Points 

The process just described in Sect. 9 can sometimes eliminate points of the 
boundary of X (~ which lie in X. Suppose that for some X, we find 
gj(X 1 . . . .  , X , ) > 0  for some j =  1 . . . . .  n. Then we can delete all of X except for 
any boundary points of X (~ occurring at x i =  x~. Any other boundary points of 
X ~~ which are in X are thus deleted. 

The quadratic method of Sect. 7 deletes any point x w h e r e f ( x ) > f  whether x 
lies on the boundary of X ~~ or not. However, the Newton method of Sect. 6 and 
the procedure in Sect. 5 (which considers convexity) cannot delete any boundary 
points of X (~ 

Suppose we apply a step of the Newton method to a box X and obtain a new 
box X'  contained in x .  A simple way to proceed is to retain the smallest box 
containing both X'  and all boundary points of X (~ which are in X. This will 



260 E. Hansen 

generally save points of X outside X'  thus reducing the efficiency of the 
procedure. In fact, it may be that the smallest box containing the boundary 
points of X ~~ which are in X is X itself. If  this were the case, we would bypass 
the Newton step for the box X. This approach would rely upon the methods of 
Sects. 7 and 9 to delete boundary points of X (~ 

This same idea can be used for the method of Sect. 5. I f f  is not convex in X, 
we can simply replace X by the smallest (perhaps degenerate) box, say X, 
containing the boundary points of X (~ which lie in X. In this case, either )( = X 
or else X is a degenerate box of dimension less than that of X. 

Suppose we are given a box X. For this approach, if ) ( =  X, we do not apply 
either the Newton method or the convexity test. We could use the Newton 
method in this case also or we might bypass its use whenever X contains 
boundary points of X (~ 

A more straightforward procedure is to simply express the boundary of X (~ 
as 2n separate (degenerate) boxes of dimension n - 1 .  The interior of X (~ can 
then be treated as a box wherein the global minimum must be a stationary 
point. However, the (n-1)-dimensional  faces of X (~ have (n-2)-dimensional  
boundaries which must, in turn, be separated from the interiors, and so on. 
Finally the vertices of X (~ would have to be separated. These vertices alone are 
2" points. Even for moderate  values of n, this separation process produces too 
many (degenerate) boxes. Thus it is better, in general, not to try to separate the 
boundaries from X (~ 

These two approaches represent extreme cases. Intermediate methods might 
be used wherein the boundaries of X (~ in a given box X are separated off under 
special circumstances. 

It should, perhaps, be pointed out that the Newton method can delete 
boundary points of X (~ under certain circumstances. Suppose our algorithm has 
produced a degenerate box X which is all or part  of a face of X (~ In this 
degenerate ( n -  1)-dimensional box, the Newton method can delete points which 
are not in the (n-2)-dimensional  boundary of the face of X ~~ Such deleted 
points are, of course, on the boundary of X (~ 

In some examples, we shall know a priori that the global minimum is a 
stationary point. In this case we are free to delete boundary points by any of our 
procedures. 

11. The List of Boxes 

When we begin our algorithm, we shall have a single box X (~ We apply the 
four procedures described in Sects. 5, 6, 7, and 9 to this box. It is possible that 
none of these procedures can delete any of X (~ If so, we divide X ~~ in half in a 
direction of its maximum width. We put one of these new boxes in a list L to be 
processed and work on the other. These and subsequent boxes may also have to 
be subdivided, thus adding to the list L of boxes yet to be processed. If boundary 
points are handled appropriately, the four procedures described in Sects. 5, 6, 7 
and 9 can each produce more than one new sub-box; and all but one are added 
to the list. Thus the number  of boxes in the list tends to grow initially. 
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Eventually, however, the boxes become small and often a box is entirely 
eliminated. Thus the number of boxes in the list eventually decreases to one, or 
just a few, or to none at all when e 1 is chosen to be nonzero. 

12. Subdividing a Box 

In the initial stages of our algorithm, we shall be applying it to large boxes. For 
example, we begin by applying it to the entire initial box X (~ Thus it could be 
that, for a given box X, none of the procedures described in Sects. 5, 6, 7, and 9 
can delete any of X. When this occurs, we wish to subdivide X. 

We could subdivide each component  X~ of X into two parts. But this would 
give rise to 2" sub-boxes. To prevent generation of too many sub-boxes, we shall 
divide only one component  in half. It is best to subdivide the largest component  
X~ to prevent generation of a long, narrow box. 

Suppose we divide X~=[x~, x~] in half giving two new boxes X'  and X" 
whose i-th components are X'  i = [x L, Xi] and X'  i' = [)Z i, xR], respectively, where 97 i 
=(xL+xR)/2.  The boxes X' and X" have a boundary in common at x i = ~  i. I f f  
had a global minimum on this common boundary, we would subsequently find 
it twice. This is unlikely to be the case. To avoid having the same points in two 
boxes, we could define one of them in terms of a half open interval. Thus we 

r xL could define X i -  [ i, xi). 
It is simpler to always use closed intervals. The extra work of keeping track 

of whether an interval contains a given endpoint is probably not worth the 
effort. In practice, we have elected to avoid this problem. Thus we have always 
used closed intervals only. In general, this does not cause the algorithm to find a 
given global minimum more than once. 

13. Termination 

If we have chosen e l>0 ,  we can continue our algorithm until X (~ is entirely 
eliminated. As pointed out in Sect. 8, we then have f *  bounded to within a error 
el. In this case, we do not obtain a bound on x*. 

If e l = 0 ,  we cannot eliminate all of X ~~ since we always retain a box or 
boxes containing the point(s) x* where f ( x * ) = f * .  As pointed out above, we 
might also retain a box or boxes whe re in f  has a value very near f *  but no value 
equal to f* .  

Suppose that at some stage in our algorithm, the list L contains s boxes. 
Denote these boxes by X (1), , X (s). Let X~. ~ denote the interval defining the j - th  
component  (dimension) of X ii'). Let w(X~i); denote the width of the interval X~ i) 
and let 

w i = max [w(X~~ 
1 <=j<=n 

That  is, w~ is the maximum dimension of X "). 
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We could continue processing boxes in the list L by our algorithm until 

i wi<e (13.1) 
i = 1  

for some ,~2>0. This is provided 5 2 is chosen large enough that the prescribed 
precision is attainable using (say) single precision arithmetic. However, it is 
more convenient computationally to require only that 

w i < e2 (13.2) 

for each i =  1 . . . .  , s. If  e 1 >0,  we set e 2 = 0  for convenience. 
Thus whenever a new box X ") is obtained by our algorithm we can check 

whether (13.2) is satisfied. If so, we no longer apply our algorithm to X (i~ (except 
as discussed below). If X ") contains a point x* wh6re f is a global minimum, 
then the location of x* is bounded. In fact, if x ") is the center of X {~) and (13.2) 
holds for X ~~ then 

Ix}')-x~'E__<~2/2 ( / =  1 . . . .  , n). 

Let s denote the number  of boxes remaining and denote the boxes by X (~) (i 
= 1 . . . . .  s). As a final step, we want to assure that f *  is bounded sufficiently 
sharply. We do this as follows. 

For  each i=  1 . . . .  , s we evaluate f(X"));  that is we evaluate f with interval 
arguments X~ i) (j = 1 . . . . .  n). The result, say [Fi L, F~] contains the range of f for 
all x e X  ~), but will not be sharp, in general. However, if e 2 was chosen to be 
small, the interval result should be 'close to sharp '  since e 2 is an upper bound on 
the largest dimension of any box X(i); and the smaller X (1) is, the sharper 
[F~ L, F~] is. (See 1-8].) Therefore, it is generally not necessary to use special 
procedures to sharpen the computed interval. 

Since [Fi L, F/R] contains the range o f f ( x )  for all x e X  Ci), we have 

Fi L < f (x) < Fi R 

for any x s X  "). Denote 
_f= min Fi L 

l < _ i < s  

Then 
f < f (x) 

for any x in any of the boxes X (1) ( /=  1, . . . ,s). Therefore, since any global 
minimum must occur at a point x* lying in one of the .boxes X (1), we have 
f < f * .  But also f *  < f  (as discussed above) and hence 

f < f * < f  (13.3) 

We thus have bounds on f* .  However, they may not be sharp enough since 
our specified requirement is to bound f *  to within, say, ~0; and it may be that f 
- f > e  0. If this is the case, we shall improve our bounds. To do this, we find a 
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value j for which f =fi L. We apply our main algorithm to X (J). This will increase 
fjL, in general. It might also decrease 3~ For exact interval arithmetic, this must 
decrease f - - f jL  since X ~J) will be reduced in size (even if it is merely subdivided). 
Repeating this step for each j such that f=fjL, we must decrease f - f  (at least, 
if exact interval arithmetic is used) and hence eventually have 

f - - f  "(/30 

so that f *  is bounded to sufficient accuracy since (13.3) holds. 
Because of rounding errors, we cannot reduce f - f  arbitrarily, in practice. 

Hence we assume eo is chosen commensurate with achievable accuracy using 
(say) single precision arithmetic. 

We also require that 

for each box X ") (i = 1 . . . . .  s). For convenience, we can choose e 3 = eo to reduce 
the number of quantities to be specified. Note that F~L<f since otherwise 
f(x) >f  for all x~X (i) in which case X (i) can be deleted. Hence 

F/R ~-~ f-~- e3 ~f-~- ~;0 "~/33 < f *  + ~o + g3 

for every i =  t . . . .  , s. That is, every remaining box contains a point x at which 
f(x) differs from f *  by no more than eo+e3. 

14. The Steps of the Algorithm 

We now describe the steps involved in our algorithm. Initially, the list L of 
boxes to be processed consists of a single box X (~ In general, divide the list L 
into the list L 1 of intervals X (~ satisfying the condition wi < e2 (see (13.2)) and a 
list L 2 which do not satisfy this condition. 

We assume we have evaluated f at the center of X (~ and thus obtained an 
initial value for )~ The subsequent steps are to be done in the following order 
except as indicated by branching: 

(1) Of the boxes in L2, choose one which has been in L 2 longest. Call it X. If 
L 2 is empty, go to step (11) if e l > 0 .  If L 2 is empty and e l = 0  choose a box 
which has been in L1 longest and go to step 2. If both L 1 and L 2 are empty, 
print the b o u n d s f - ~ l  a n d f  on f *  and stop. 

(2) Check for monotonicity. Evaluate g(X) as described in Sect. 9. For i 
=1 . . . .  , n, if gi(X)>O (<0)  and the boundary of X at xi=x L ( = x  R) does not 
contain a boundary point of X (~ delete X and go to step (1). Otherwise, if 

X L g~(X)>0 (_-<0), replace Xi= [ i, x~] by [x~, x L] ,Lfl-XRi, XR3~J," Rename the result X 
again. 

(3) Test for non-convexity as in Sect. 5. Let X'  denote the smallest box in X 
containing all the boundary points of X ~~ which lie in X. If X' -- X go to step 4. 
Otherwise, evaluate h,(X~ . . . . .  X.) for i=1 ,  ..., n. If the resulting interval is 
strictly negative for any value of i, replace X by X'. If X '  is empty, go to step 1. 
If X'  is not empty, put it in the list L and go to step 1. 
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(4) Begin use of the quadratic method of Sect. 7. For  those values of i 
=1 . . . . .  n for which the left endpoint of Hii(X) is non-negative, solve the 
quadratic for the interval Y~ to replace X i. Rename the result X i. 

(5) Begin use of the Newton method. For those values of i=  i, ..., n for 
which Oq~[BJ(X)]u, solve for the new interval to replace X~. Rename the result 
X~. For a given value of i, omit this step if a reduction of X i will delete 
boundary points of X (~ from the box X. 

(6) Complete the quadratic method. For  those values of i not used in step 4, 
solve the quadratic for Y~. If Y~ is a single interval, replace X~ by Yi, renaming it 
X i. Otherwise save Y~ for use in step 8. 

(7) Complete the Nowton method. For  those values of i not used in step 5, 
solve for the new set (say) Yj. For a given value of i, omit this step if a reduction 
of X i will delete boundary points of X C~ from the box X. If Y/ is a single 
interval, replace Xi by Y/, renaming it X~. 

(8) Combine the results from the quadratic and Newton methods for those 
components X i for which both methods divided X~ into two sub-intervals. That 
is, find the intersection Y/' of Y~ from step 6 and Y~' from step 7. If Yj' is 
composed of three intervals, replace it by either Y~ or Y/, whichever has the 
smallest intersection with X i. Of all the Y~", save the one (or two or three) which 
deletes the largest subinterval of X i. That is, save that Y/' whose complement in 
X i is largest. Let j be its index. For  all relevant values of i ~j ,  replace Y~" by X~, 
that is, ignore the fact that part of X i could be deleted. 

(9) If Yj' exists; that is, if at least one interval Xj was divided into two sub- 
intervals, say YS ') and i1(2), subdivide the box X into two sub-boxes. These sub- 
boxes will have the same components X~ as X except one will have j-th 
component yj(1) and the other will have j-th component YS 2~. If no such Yj' 
exists, we may wish to subdivide the current box. Let X denote the box chosen 
in step 1 and let X" denote the current box resulting from applying steps 2 
through 8 to X. If the improvement of X" over X is so small that (say) 

w(X") >0.75 w(X), 

then divide X" in half in its greatest dimension. 
(10) Evaluate f at the center of the box or boxes resulting after step9. 

Update f as described in Sect. 4. Put the box(es) in the list L and go to step 1. 
(11) Evaluate f ( X  ~~ for each remaining box X ~) in L. Denote the result by 

[F~ L, FIR]. If FiR--FL>~o for any value of i, use X (') for X and go to step 4. If FiR 
--Fi L < eo for all i =  1 . . . . .  s, find 

f =  rain F~. 
l<=i<_s 

Then print the bounds f and f on f*  and stop. 
For e I >0, these steps bound f*  to within an error e,. If e, =0, they found f* 

to within eo; they bound x* to within ea; and they assure that for any point x in 
any final box, f(x) exceeds f*  by no more than e o + e 3. 

In this step, we sometimes branch to step 4. Note that we could go to step 2, 
but it is unlikely that either step 2 or step 3 will be helpful. This is because we 
expect each box remaining at this stage to contain a minimum. 
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15. A Numerical Example 

We now illustrate the steps of our algorithm. We shall consider the so-called 
three hump camel function. 

f (x)=2x~_ l.O5x~ + ~x 16 _ x l  x2 + x 2 (15.1) 

which has three minima and two saddle points. The gradient g(x) has com- 
ponents 

gl (x)= 4 x l -  4.2 x~ + x ~ - x  2, 

g 2 ( x ) = 2 X 2 - - X l .  (15.2) 

The interval Jacobian J(X) (see Sect. 3) has elements 

J I ~ ( X ) = 4 -  12 .6X2+5X 4, 

J 1 2 ( X ) = J 2 t ( X )  = - 1, 
Jzz(X)=2.  (15.3) 

As described in [41, a better formulation for J(X) could be derived which 
would give smaller intervals, in general. However, we shall use the simpler form 
given here. 

Suppose that the box we choose in step 1 has first component X 1 =[1,  1.11. 
In step 2 we find that, whatever X 2 is, 

hll(X1, X2)= [ -  5.196, -2 .55] .  

Since this is strictly negative, we know that f does not have a minimum in the 
interval X1 for any value of x 2. Hence if X does not contain a boundary point of 
X ~~ we can delete all of X. 

Now suppose the box chosen in step l has components X 1 = [2, 3] and X 2 
= [0, 1]. We find 

h~  (X1, X2)= [ -  29.4, 358.6], hz2(X ~, X2)= 2. 

Since neither interval is negative, we cannot say that f is not convex in X. 
Hence we go to step 3. 

In step 3, we evaluate g(X) obtaining 

gl(X) = [ -  74.4, 221.4], g2(X) = [ -  3, 01. 

We see that g2(x) is non-positive for all x e X  and hence f is smallest in X for 
X2=I.  Thus we can replace X by the degenerate box X' with components 
X' 1 = [2, 31 and X 2 = [1, 11. 

If the box X had components X1 = [0, l]  and X 2 = [2, 3], we would have 
obtained 

g l (X) - [ -  7.2, 33, g2 (X) = [3, 63. 

In this case g2(x) is strictly positive and we can eliminate all of X unless the 
boundary of X at x 2 =2  contains a boundary point of X w). Suppose X~~ [0, 1] 
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and X~~ 3]. Then X (~ has boundary points at x 2 = 2  for x~ = 0  and 1. We 
could thus delete all of X except the points (0, 2) and (1,2). This is simple to do 
in this two-dimensional problem. In higher dimensions, it might be simpler to 
retain the entire boundary at x 2 = 2. 

Now suppose that X is given by X~ = X 2 = [ 0  , 1]. Then g l (X)=  [ - 5 . 2 ,  5] and 
g 2 ( X ) = [ - 1 ,  2] so that we do not have monotonicity. Therefore, we do step 4 
which involves the quadratic method of Section 7. 

For this box, we obtain 

Hll(X)=JlI(X)=[-8.6,9], H21(X)=2J21(X)=-2, H22(X)=J22(X)=2. 

The center of the box is at x=(0.5, 0.5). We wish to evaluate f(x) and g(x). We 
cannot obtain f(x) exactly using finite precision decimal arithmetic. Let us use 
five significant decimal digits and evaluate f(x) using interval arithmetic to 
bound rounding errors. Thus we replace the coefficient 1/6 by [0.16666, 0.16667] 
and obtain 

f(x) = [0.43697, 0.43699]. 

We also obtain 
[[1.0062, 1.0063]] 

g(x) = t 0.5 J" 

Suppose we have previously obtained f = 0 . 2  and that we choose e~ =0.  To 
do step 4, we wish to solve (7.2) for points yeX where we know that f(y)>f 
does not hold and hence f(y) < f might hold. If we first tried to solve for Y1, we 
would rewrite (7.2) in the form (7.4). However, the left endpoint of Hx~(X) is less 
than zero. Hence, solving (7.4) would give rise to two semi-infinite intervals. 
Therefore, we defer this operation until step 6 and first solve for Y2 which will be 
a single interval since the "left endpoint" of Hz2(X ) is positive. 

We solve for Y2 using (7.5). As we have not yet solved for Y1, we use X I in its 
place. Substituting into (7.5), we obtain 

[ -  1.2412, 1.9652] + [0, 1] Y2 +~2 <0. 

From Eq. (7.8), the solution set is 

Hence 

and 

2 2 = [ -  1.7212, 1.1141]. 

Z2 =x2 ']- Z2 = [ -  1.2212, 1.6141] 

Y 2 - ~ - Z 2 u s X 2 . = X 2  . 

Thus we have not deleted any of X 2. 
Next we do step 5 which applies that part of the Newton method which 

generates a single interval. The interval Jacobian is 
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The center of this interval matrix is 

whose inverse is (approximately) 

[ -3 .3333  
B = I_- 1.6667 
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- 1.6667 ] 

-0.33333J" 

For simplicity of exposition, we shall compute BJ(X)  explicitly. We obtain 
from (6.2) (with ~ replaced by X), 

[ [ [ -4 .1877, -4 .1872]q  I-[-28.334,30.334] -0.0001-1 
-1.844, - 1.8436]] + I_[- 14.668, 14.668] [1, 1.0001]J ( y - x ) = 0 .  (15.4) 

We try to improve X z first rather than X 1 because [BJ(X)]11 contains zero 
while [BJ(X)]z  z does not. Thus the first equation of (15.4) gives rise to two new 
intervals while the second equation does not. 

The second equation is 

[ -  1.844, - 1.8436] + [ -  14.668, 14.668] (X 1 - x l ) +  [1, 1.0001] (Y2 - x 2 ) = 0  

where we have replaced Yl by X1. Solving for Y2, we obtain the interval 

Z 2 = [ -4 .9904,  8.678]. 

The intersection Y z = Z 2 ~ X z  equals X 2 so again no improvement has been 
made. 

Step 6 prescribes that we use the quadratic method to try to improve those 
components of X not solved for in step 4. We solve (7.5) for points Yl where 
f ( y ) < f  We would use Y2 in place of X2; but they are equal. Substituting into 
(7.5), we obtain 

[0.08697, 0.83699] + [0.5062, 1.5063] Yl + [ - 4 . 3 ,  4.5] ~ <0. 

Using equation (7.11), we find that this quadratic has the solution set 

Z1 = [ -  oo, -0.10093] ~ [0.42555, oo]. 

Thus 

Z 1 =21  + x  1 = [ -  oo, 0.39907] w [0.92555, oo] 

and 

Y~ = Z~ w X 1 = [0, 0.39907] u [0.92555, 1] 

note we have eliminated a subinterval of length 0.52648 from X 1. 
In step 7, we use the Newton method to try to improve X~. We solve the first 

equation of (15.4), 

[ -  4.1877, - 4.1872] + [ - 28.334, 30,334] (y ~ - x ~)-  0.000t (X z - xz) = O, 
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where we have now replaced I12 by X 2. Solving for Yl, we obtain the two semi- 
infinite intervals 

Z~3)= [ -  o% 0.35223], Z~()= [0.63803, oo]. 

Their intersections with X 1 are (say) y~3) and y(4) where 

u [0, 0.35223], Y1 (4) = [0.63803, 1]. 

We wish to combine the results obtained using the quadratic method and the 
Newton method. Thus we retain the intersection of 

Y(I)w Y1 (2) and Yt3)w Y1 ~4) 

which is 
[0, 0.35223] t~ [0.92555, 1]. 

We have deleted a substantial portion of the original box X. The remaining 
points compose the two boxes 

0.35223]] [[0.92555, 
[[0'[0,1 ] ] and [ [0,1] 1]]. 

In subsequent steps, our method would be applied separately to each of these 
boxes. 

16. Computational Results 

We now describe some computational results obtained using the algorithm 
described above. The computations were done on the Amdahl 470V/6-II com- 
puter. In each case, we assumed it was known that the global minimum occurred 
in the interior of the initial box. This speeds up the algorithm since boundary 
points need not get special treatment. 

This is consistent with the fact that we are really considering the uncon- 
strained case. We intend to treat the constrained case in a later paper. 

We give results for only one example which typifies the problems in two and 
three dimensions which we have used. The example is the three hump camel 
function given by (15.1). 

This function has its global minimum at the origin. It has two local minima 
at approximately [+1.75, +0.87] and two saddle points at approximately 
[_+1.07, _+0.535]. Our initial box was defined by X l = X 2 = [ - 2 , 4  ] which 
contains all these points. We chose e 1 =0  and e 0 =t32 =•3 = 10-4. 

We find that after eight steps of our algorithm, we have six sub-boxes in our 
list. In the next step a sub-box is entirely eliminated and after the fifteenth step, 
only one sub-box remains but its width exceeds e2. After an additional step, we 
obtain final box 

X =  [ [_2 .91x10_v ,  3.56 x10_6]] .  
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Here and in the following, we record results to only three decimals. This box 
satisfies the error criterion requiring its width to be less than %. Evaluating f at 
the center of this box, we obtain f =  1.12 x 10- lO 

As prescribed in step 11, we evaluate f (X)  and obtain [ -  1.24 x 10-11, 7.57 
x 10-1~ Thus _f = - 1.24 x 10 - 1 1  and 

f*~[_f, f ]  = [ -  1.24 x 10 -11, 1.12 x 10-lo] .  

Since f - f <  %, we have f *  bounded to the prescribed tolerance. If we approxi- 
mate f *  by 

(f+f)/2=4.98 x 10- 11, 

then we know that the error is at most 6.22 x i0 11 in magnitude. 
If we approximate x* by the center (3.27 x 10 -6, 1.63 x 10-6), then we know 

that the error in x* is less than 3.85 x 10 .6  and the error in x* is less than t.93 
x 10 -6. 

We have obtained x* to far more accuracy than required because of the 
rapid rate of convergence of the interval Newton method used. The bound on 
f *  is much better than required simply because a given error bound on x* 
automatically yields a much better bound on f * .  

We also used this example with an initial box of width 2 x 106. This case 
required 46 steps to run to completion. This illustrates that if we use a very large 
box to assure containment of x*, the computing time need not increase 
drastically. 

17. Conclusion 

We have presented an algorithm for solving the unconstrained minimization 
problem assuming we have an initial box which is known to contain the 
minimum. 

It would certainly be possible to construct a highly oscillatory function for 
which our algorithm would be prohibitively slow. However, it has converged 
adequately rapidly for the test problems on which we have tried it. (See Sect. 16.) 

We have assumed f (x)eC 2. The global minimization problem can also be 
solved for f(x)EC 1. In this case, the Newton method cannot be used. The 
quadratic method can be replaced by a corresponding linear method in which 
we find points y at which f ( y ) < ~  This is done by noting that i f x~X and y~X, 
then 

f(y) = f ( x )  + ( y -  x) T g(~) 

for some ( e X .  Thus we can solve for the approximate points y from 

f (x) + (y-  x) T g(X) < 

For  the problems of low dimension on which we have used this method, it was 
less efficient then the quadratic method described in Sect. 7. We do not know the 
relative efficiencies for large n. 

It is possible to solve the global optimization case when f(x) is only 
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c o n t i n u o u s  bu t  n o t  d i f ferent iable .  H o w e v e r ,  ou r  a l g o r i t h m  is ve ry  slow. It  en ta i l s  
a d i f ferent  a p p r o a c h  tha t  we  h o p e  to  desc r ibe  in a n o t h e r  paper .  

T h e  n o n l i n e a r  c o n s t r a i n e d  o p t i m i z a t i o n  p r o b l e m  can  also be  so lved  by 

in t e rva l  m e t h o d s .  A n  e x t e n s i o n  o f  o u r  a l g o r i t h m  is r equ i red .  O u r  expe r i ence  in 
this  case is for h a n d  ca l cu l a t i ons  only.  A diff icul ty exists (current ly)  w h e n  it is 

diff icul t  to  find a p o i n t  in the  n e i g h b o r h o o d  of  x* which  is w i t h o u t  ques t ion ,  
feasible.  

O n e  o f  the  v i r tues  o f  in t e rva l  a r i t h m e t i c  is t ha t  it is usua l ly  poss ib le  to  

f o r m u l a t e  an  i t e ra t ive  a l g o r i t h m  in such  a w a y  tha t  it s tops  a u t o m a t i c a l l y  w h e n  
the  best  poss ib le  resul t  has  been  o b t a i n e d  for  the  f in i te  p rec i s ion  a r i t h m e t i c  used. 
W e  p lan  to  do  this  for o u r  a l g o r i t h m  and  thus  p r e c l u d e  the  need  for  speci fy ing 

t30' gl, ~2, a n d  e 3. 
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