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This paper analyzes and evaluates an efficient n-dimensional global optimization algo-
rithm. It is a natural n-dimensional extension of the algorithm of Casado et al. [1]. This al-
gorithm takes advantage of all available information to estimate better bounds of the function.
Numerical comparison made on a wide set of multiextremal test functions has shown that on
average the new algorithm works faster than a traditional interval analysis global optimization
method.
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1. Introduction and notation

The problem of finding the global minimum f ∗ of a real valued n-dimensional
continuously differentiable function f : S → R, S ⊂ Rn, and the corresponding set S∗
of global minimizers is considered, i.e.:

f ∗ = f (s∗) = min
s∈S

f (s), s∗ ∈ S∗. (1)

The following notation is used. I = {X = [a, b] | a � b; a, b ∈ R} is the
set of the one-dimensional intervals. X = [x, x̄] ∈ I is a one-dimensional interval.
X = (X1, . . . , Xn) ⊆ S,Xi ∈ I, i = 1, . . . , n is an n-dimensional interval, also called
box. In is the set of the n-dimensional intervals. m(X) = (m(X1), . . . , m(Xn)) is the
midpoint of X, where m(Xi) = (x̄i + xi)/2, i = 1, . . . , n; w(X) = maxi=1,...,n w(Xi)

is the width of X, where w(Xi) = (x̄i − xi); f (X) = {f (x) | x ∈ X} is the real
range of f on X ⊆ S. F and F ′ = (F ′

1, . . . , F
′
n) are interval extensions of f and its
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derivative f ′, respectively. The inclusions f (X) ⊆ F(X) and f ′(X) ⊆ F ′(X) hold.
Fc(X, c) = F(c) + F ′(X)(X − c), with c ∈ X and f (X) ⊆ Fc(X, c), is the centered
form.

We define the projected(slice) interval, narrowing the ith dimension into a given
point X(i : p) = (X1, . . . , Xi−1, [p, p], Xi+1, . . . , Xn), p ∈ Xi . We are going to use it
mostly in three cases, projecting the interval to the left border of the ith dimension: Xl

i =
X(i : xi), to the right: Xr

i = X(i : x̄i ), and to the midpoint: Xm
i = X(i : m(Xi)). The

lower bound of f (X) is lbf (X) ∈ R satisfying lbf (X) � f (x), ∀x ∈ X, and the support
function of f (X) at the border of the interval X is sp(X) = (sp(X1), . . . , sp(Xn)), where
sp(Xi) = {sp(Xl

i), sp(Xr
i )} = {lbf (Xl

i), lbf (Xr
i )}, i = 1, . . . , n.

In those cases where the objective function f (x) is given by a formula, it is possible
to use an interval analysis B&B approach to solve problem (1) (see [7–10]). A general
interval GO (IGO) algorithm based on this approach is shown in algorithm 1.

Algorithm 1. A general interval B&B GO algorithm.
Funct IGO(S, f )

1. Set the working list L := {S} and the final list Q := {}
2. while ( L �= {} )
3. Select an interval X from L Selection rule
4. Compute lbf (X) Bounding rule
5. if X cannot be eliminated Elimination rule
6. Divide X into subintervals Xj , j = 1, . . . , r Division rule
7. if Xj satisfies the termination criterion Termination rule
8. Store Xj in Q

9. else
10. Store Xj in L

11. return Q

An overview on theory and history of the rules of this algorithm can be found, for
example, in [7]. Of course, every concrete realization of algorithm 1 depends on the
available information about the objective function f (x). In this paper it is supposed that
inclusion functions can be evaluated for f (x) and its first derivative f ′(x) on X. Thus,
the information about the objective function which can be obtained during the search is:

F(x), F (X) and F ′(X). (2)

When the information stated in (2) is available, the rules of a traditional realiza-
tion of algorithm 1 can be written more precisely. Below we describe a Multidimen-
sional Traditional Interval analysis global minimization Algorithm with Monotonicity
test (MTIAM) which is frequently used to solve the problem (1), using the information
stated in (2) (see [7]).

• Selection rule. Among all the intervals Xj stored in the working list L, select an
interval X such that F(X) = min{F(Xj): Xj ∈ L}.
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• Bounding rule. The fundamental theorem of interval arithmetic provides a natural
and rigorous way to compute an inclusion function. In the present study the inclusion
function F of the objective function f is available by the extended interval arithmetic
[5,7] (lbf (X) = F(X)).

• Elimination rule. Common elimination rules are the following:

– Midpoint test. An interval X is rejected when F(X) > f ,̃ where f ˜ is the best
known upper bound of f ∗. The value of f ˜ = [f ˜, f ˜ ] is usually updated by
evaluating F(m(X)).

– Cutoff test. When f ˜ is improved, all intervals X stored in the working and final
lists satisfying the condition F(X) > f ˜ are rejected.

– Monotonicity test. If for an interval X the condition 0 /∈ F ′(X) is fulfilled, then
this means that the interval X does not contain any minima (the box is rejected) or
the minima is on the border of the search region (the box is reduced).

• Division rule. Usually two subintervals are generated using m(X) as the subdivi-
sion point (bisection) on direction k, where k is the coordinate such that w(Xk) =
maxi=1,...,n w(Xi).

• Termination rule. A parameter ε determines the desired accuracy of the problem
solution. Therefore, intervals X with w(X) � ε, are moved to the final list Q. Other
termination criteria can be found in [10].

As can be seen from the above description, the algorithm evaluates lower bounds
for f (x) in each interval separately, without considering some valuable information
which can be obtained from other intervals. The value of F ′(X) is only used by the
monotonicity test and is not connected with the information obtained from F(m(X))

and F(X). Only the value of F(X) is used in order to obtain a lower bound for f (x)

over X, all the rest of the given information is not used for this goal. The only exchange
of information between the intervals is done through f .̃

In this paper, the general framework of a feasible extension for multidimensional
functions of the algorithm proposed by Casado et al. [1] is analyzed and evaluated. This
extension follows the ideas of Ratz [11].

This new Multidimensional Interval analysis global minimization Algorithm using
Gradient information (MIAG) is proposed to solve problem (1). It uses the information
stated in (2) as MTIAM does but, due to a more efficient usage of the search information,
it constructs support functions, which are closer to the objective function, that enable us
to obtain better lower bounds and to diminish the width of the current interval. Here-
inafter it will be shown that this new method (MIAG) has quite a promising performance
in comparison with the traditional MTIAM method.

The rest of the paper is structured as follows. In section 2 some theoretical results
explaining the construction of the support functions and lower bounds are presented
and the algorithm MIAG is described. Numerical experiments comparing performance
of MTIAM and MIAG are presented in section 3, where some conclusions are also
described.
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2. The multidimensional algorithm based on new support functions

In order to proceed with the description of the new algorithm, theoretical results are
presented which are the foundations of the new support functions and explain how the
new lower bounds of f (X) are evaluated. As Ratz has proposed in [11], we will analyze
a feasible approach which computes enclosures based on values of particular compo-
nents of the gradient vector F ′(X); i.e. this corresponds to a componentwise derivative
computation of the support functions.

Theorem 1. Let X and S be closed intervals such that X ⊆ S ⊂ Rn and let f : S → R
be a continuously differentiable function. Let us suppose that, given a point c =
(c1, . . . , cn) ∈ X, for an interval X(i : ci) ∈ X a lower bound lbf (X(i : ci)) of
f (X(i : ci)) is determined and an enclosure F ′(X) of f ′(X) is obtained. For a given
current upper bound f ˜ of f ∗, there exists a set

Xa
go = {

x ∈ X: lbf
(
X(i : ci)

) + min
{
F ′

i (X) · (xi − ci)
}

� f ˜} ⊆ X,

where all the global minimizer points of f (X), if any, are included.

Proof. For a minimizer point x∗ ∈ S∗ it applies that f (x∗) � f .̃ From [1, lemma 1]
a minimizer point x∗ ∈ X ∩ S∗ has to fulfill:

lbf
(
X(i : ci)

) + min
{
F ′

i (X) · (x∗
i − ci)

}
� f (x∗) � f ˜,

and therefore it can only be located in the set Xa
go. �

It can be derived from theorem 1 that if f ˜ < lbf (X(i : ci)) then X(i : ci) � S∗
and Xa

go = X\V , where V is given by

V =
{
x ∈ X: xi ∈

[
ci − lbf (X(i : ci)) − f ˜

F
′
i(X)

, ci − lbf (X(i : ci)) − f ˜
F ′

i (X)

]}

when 0 ∈ F ′(X). As an example, V have been depicted in figure 1 for the case c1 = Xm
1

and 0 ∈ F ′(X). If 0 /∈ F ′(X) then x∗ /∈ X.

Theorem 2. Let us consider a continuously differentiable function f : S → R, where
S is a closed interval in Rn and intervals X, Y such that X ⊆ Y ⊆ S. If for some
i ∈ {1, . . . , n}:

1. lower bounds lbf (Xl
i) and lbf (Xr

i ) of f (Xl
i) and f (Xr

i ), respectively, have been
evaluated;

2. a current upper bound f ˜ of f ∗ is such that

f ˜ � min
{
lbf

(
Xl

i

)
, lbf

(
Xr

i

)};
3. bounds Gi = F ′

i (Y ) of f ′
i (Y ) such that 0 ∈ F ′(Y ), so bounds of f ′

i (X), have been
obtained.
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Figure 1. Support function using F ′
1(X), lbf (Xl

1), lbf (Xm
1 ) and lbf (Xr

1). F ′ denotes the slope of the planes.

Then, only the interval

Xb
go =

{
x ∈ X: xi ∈

[
xi − lbf (Xl

i) − f ˜
Gi

, x̄i − lbf (Xr
i ) − f ˜
Gi

]}
(3)

can contain global minimizers and a lower bound z(X) of f (X) can be calculated as
follows:

z(X) = max
j∈{1,...,n}

{
lbf (Xl

j ) · Gj − lbf (Xr
j ) · Gj

w(Gj)
+ w(X) · Gj · Gj

w(Gj)

}
. (4)

Proof. Applying theorem 1 for X(i : ci) = Xl
i and for X(i : ci) = Xr

i , subintervals
A = Xa

go(X
l
i) and B = Xa

go(X
r
i ) of X are obtained and the interval Xb

go = A ∩ B (see
figure 1).

Proof of equation (4) can be obtained considering that X ⊆ Y , F ′(X) ⊆ F ′(Y ) = G

and applying the mean-value theorem (see [1]). �

Corollary 1. If for an interval X the inequality z(X) > f ˜ is fulfilled then it can be
derived that X does not contain any global minimizer.

Let us now return to the problem (1). We can use the information stated in (2)
during the global search. Thus, using F(X) together with the value of z(X) from (4),
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and the centered form Fc(X,m(X)), we can build a new lower bound lbzf (X) for f (X)

in the following way

lbzf (X) = max
{
F(X), z(X), Fc

(
X,m(X)

)}
. (5)

The essence of the algorithm is that for any interval W obtained from interval X

according to (3) (W = Xb
go), the current value of f ˜ is a lower bound of f at Wl

i and Wr
i ;

i.e. f ˜ � f (Wl
i ) and f ˜ � f (Wr

i ), so lbf (Wl
i ) = lbf (Wr

i ) = f ˜ are easily available
bounds.

Additionally, a lower bound of f (X(i : ci)), with c = (c1, c2, . . . , cn) ∈ X can be
obtained applying the centered form, i.e.

lbf
(
X(i : ci)

) = Fc

(
X(i : ci), c

)
. (6)

Moreover, if we have previously evaluated F(c) and F ′(X), the value of
Fc(X(i : ci), c) can be obtained without additional inclusion function evaluations.

The MIAG algorithm follows the theoretical results presented above and improves
MTIAM algorithm in the following way: by using lbzf (X) instead of F(X), which
improves the selection rule, bounding rule, midpoint test and cutoff test; by adding the
GradientTest elimination rule, based on theorem 2 and described in algorithm 3.

To obtain a better performance of GradientTest, the kth-coordinate of X with
maxi{Fc(X

m
i ,m(X))} value (line 7, algorithm 2) is bisected, generating the subboxes W 1

and W 2 (lines 8 and 9, algorithm 2). The values of sp(W 1) and sp(W 2) are established
in lines 10 to 13 of algorithm 2 to use the GradientTest, applied to the kth-coordinate of
the generated subboxes.

The MIAG algorithm, as the IGO algorithm, uses a work list (L) and a final
list (Q). In the MIAG algorithm L and Q store the following elements: ListNode(X) =
(X, lbzf (X), sp(X), F (m(X)), F ′(X)). The first element of a list can be extracted by
the function PopHead. The MonotonicityTest and CutOffTest evaluate the eliminating
rules described in section 1.

3. Numerical results and conclusions

The new algorithm MIAG has been numerically compared with the method
MTIAM on a set of forty n-dimensional test functions. This set of test functions is listed
in table 1 and has been taken from [2,6,12–14]. The reference where every function is
described (Ref) and the dimension of the function (n) are shown for all the functions.

Table 1 also shows numerical comparison between MTIAM and MIAG. If FE
presents the number of interval function evaluations, i.e., the number of F(X) evalu-
ations plus the number of interval point evaluations F(x), and GE shows the number of
interval function evaluations of the gradient F ′(X), then columns Eff 1 and Eff 2 repre-
sent FE + n · GE for algorithms MTIAM and MIAG, respectively. Column SpUp shows
the values of SpUp = Eff 1/Eff 2, providing information on the relative speedup of the
MIAG algorithm compared to the MTIAM algorithm.
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Algorithm 2. MIAG algorithm.
Funct MIAG( S, F, ε )

1. sp(S) = ({F(Sl
1), F (Sr

1)}, . . . , {F(Sl
n), F (Sr

n)})
2. Eval F(S), f ˜ = F(m(S)), F ′(S), and lbzf (S)

3. L = {ListNode(S)}
4. Q = {∅} Initiation of the final list
5. while ( L �= ∅ )
6. ListNode(X) = PopHead(L) Extract the first element of L
7. Fc(X

m
k ,m(X)) = maxi{Fc(X

m
i ,m(X))}

8. W 1 = X; W 1
k = [xk,m(Xk)]

9. W 2 = X; W 2
k = [m(Xk), x̄k]

10. sp(W 1) = sp(X)

11. sp(W 1
k ) = {sp(Xl

k), Fc(X
m
k ,m(X))}

12. sp(W 2) = sp(X)

13. sp(W 2
k ) = {Fc(X

m
k ,m(X)), sp(Xr

k)}
14. for ( i = 1, 2 )
15. GradientTest (Wi

k , F ′
k(X), sp(Wi

k), f ˜ )
16. if (w(Wi) > 0)
17. Eval F(Wi), F ′(Wi)

18. if (MonotonocityTest(F ′(Wi)) continue
19. if ( F(m(Wi)) < f ˜ ) f ˜ = F(m(Wi)); CutoffTest(L,Q)
20. if (lbzf (Wi) � f ˜ )
21. if (w(Wi) � ε) Save ListNode(Wi) in Q
22. else Save ListNode(Wi) in L
23. return Q

Algorithm 3. GradientTest algorithm.
Funct GradientTest (X, F ′(X), sp(X), f ˜)

1. if (sp(Xl) > f ˜ )
2. Y = [x − (sp(Xl) − f ˜)/F ′(X), ∞)

3. sp(Xl) = f ;̃ X = Y ∩ X

4. if (w(X) > 0 and sp(Xr) > f ˜ )
5. Y = (−∞, x̄ − (sp(Xr) − f ˜)/F ′

(X)]
6. sp(Xr) = f ;̃ X = Y ∩ X

7. return X, sp(X)

We have tested both algorithms with stopping criterion w(X) � ε = 10−8 and a
limit for the run-time equal to one hour. For most of the functions both algorithms ended
the execution, but for a set of ten functions MTIAM was not able to finish. For these
functions we show the values of ε for which both algorithms have finished execution,
however MIAG was able to provide a solution with higher precision.
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Table 1
Results of numerical comparison between MTIAM and MIAG.

Name Ref n Eff 1 Eff 2 SpUp ε

Schwefel 3.1 [12] 3 874 994 0.9 10−8

Price [4] 2 5322 5951 0.9 10−8

Levy 5 [12] 2 1587 1598 1.0 10−8

Shekel 10 [12] 4 1365 1374 1.0 10−8

Schwefel 3.7 [14] 2 1762 1772 1.0 10−8

Levy 8 [12] 3 851 857 1.0 10−8

Shekel 5 [12] 4 1339 1348 1.0 10−8

Schwefel 2.1 (Beale) [14] 2 5560 5523 1.0 10−8

Shekel 7 [12] 4 1365 1350 1.0 10−8

Levy 3 [12] 2 7116 6979 1.0 10−8

Rastrigin [13] 2 1564 1496 1.0 10−8

Schwefel 2.5 (Booth) [14] 2 488 466 1.0 10−8

Henriksen-Madsen 3 [6] 2 12204 11575 1.1 10−8

Henriksen-Madsen 4 [6] 3 63693 59870 1.1 10−8

Treccani [3] 2 2430 2227 1.1 10−8

EX1 [2] 2 488 443 1.1 10−8

Branin [12] 2 4869 4367 1.1 10−8

Chichinadze [4] 2 653 576 1.1 10−8

Griewank 2 [13] 2 1952 1642 1.2 10−8

Schwefel 1.2 [14] 4 27975 22963 1.2 10−8

Schwefel 3.2 [14] 3 3170 2484 1.3 10−8

Rosenbrock 2 [3] 2 1279 887 1.4 10−8

Ratz 4 [12] 2 7096 4772 1.5 10−8

Hartman 6 [12] 6 20996 13020 1.6 10−8

Three-Hump-Camel-Back [3] 2 3990 2138 1.9 10−8

Hartman 3 [12] 3 4463 2046 2.2 10−8

Schwefel 2.18 (Matyas) [14] 2 10944 4812 2.3 10−8

Six-Hump-Camel-Back [13] 2 6824 2638 2.6 10−8

Simplified Rosenbrock [3] 2 2386 831 2.9 10−8

Goldstein-Price [12] 2 320969 30128 10.7 10−8

Schwefel 2.14 (Powell) [12] 4 387176 595993 0.6 10−5

Schwefel 3.1p [12] 3 7854 4131 1.9 10−3

Ratz 5 [12] 3 917495 331049 2.8 10−3

Ratz 6 [12] 5 2162657 468513 4.6 10−3

Griewank 10 [13] 10 3875828 3869704 1.0 10−2

Schwefel 2.10 (Kowalik) [14] 4 673544 496155 1.4 10−2

Rosenbrock 10 [3] 10 2708380 2045727 1.3 10−2

EX2 [2] 5 1016177 256975 4.0 10−2

Ratz 7 [12] 7 245691 50229 4.9 10−2

Ratz 8 [12] 9 388997 71367 5.5 10−2

Av. val. 1.93
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It can be seen from table 1 that the value of SpUp is less than one only for three
out of 40 functions, and that in average (see the last row of table 1) MIAG is 1.93 times
faster than MTIAM (SpUp ranges at the interval [0.6, 10.7]).

As the numerical results show, the MIAG algorithm has improved the MTIAM
method with the refined use of the gradient information. The improvement is reached
by pruning the searching region exploiting the already given information. For problems
where the monotonicity test does not bring improvements, the gradient cannot help, thus
the pruneable region is negligible and it can affect the convergence of the algorithm due
to the different shape of the generated boxes. On the other hand for problems where the
gradient is shown to be informative enough (e.g., Goldstein-Price) the improvement is
surprisingly good.
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