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A b s t r a c t -  Zusammenfassung 

Interval Analytic Treatment of Convex Programming Problems. A nonlinear convex programming 
problem is solved by methods of interval arithmetic which take into account the input errors and 
the round-off errors. The problem is reduced to the solution of a nonlinear parameter dependent 
system of equations. Moreover error estimations are developed for special problems with uniformly 
convex cost functions. 

Intervallanalytische Behandlung konvexer Optimierungsaufgaben. Es wird ein nichtlineares konvexes 
Optimiertmgsproblem mit Hilfe der Intervallarithmetik gel6st, wobei die Eingangs- und Rundungs- 
fehler beriicksichtigt werden. Dieses Problem wird zuriickgefithrt auf die L6sung eines parameter- 
abh~ingigen nichtlinearen Gleichungssystems. AuBerdem werden Fehlerabschatzungen for spezielle 
Probleme mit stark konvexen Zielfunktionen angegeben., 

1. Introduction 

Till now linear programming problems are handled by methods of interval 
analysis by Machost [18], Krawczyk [15], and Beeck I-5, 6]. Beeck gives a summary 
of the state-of-the-art in [6] and shows that the use of interval analysis for the 
treatment of linear programming problems has been successful. Nonlinear program- 
ming problems have been investigated by Dussel [9], Robinson 1-24], Mancini and 
McCormick [19], Oelschliigel and StiBe [22, 23]. 

Data errors were considered in [22, 23] for the special case of quadratic pro- 
gramming problems. Therefore we want to consider a general convex program- 
ming problem with errors in data. We assume that the reader is well versed in 
interval analysis. A complete discussion can be found in Alefeld, Herzberger [1]. 

2. The Problem 

Consider the nonlinear programming problem of the form 

(a, b l , . . . ,  bt) = f  (~2 (a, b l , . . . ,  bz); a) = min f (x ;a), a e [ a ] e  V m (I (R)) 
x 

subject to 
#i (x; bi) < O, b i ~ [bi] ~ Vk, (I (R)), i = 1, ..., 1 

x_>O, 
(1) 
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where a, bl, . . . ,b l are vectors of parameters. The elements of [a] and [b i ]  , 

i = 1, ..., l are tolerance intervals, in which the parameters vary independently. 

[a], [bl],  ..., [bl] are interval vectors. 

All functions are assumed to have the following properties for any 

a �9 [a], bi �9 [bi], i=  1 , . . . ,  l. 

f :  R" ~ R l, f e C 1 (R"), f strictly convex in R", 

gi : R" ~ R i, gi �9 CI (R"), gi convex in R", i = 1, ..., I. 

Furthermore all functions are to be continuously differentiable to all parameters. 
These derivations and f are continuous in R" x [bi], i = 1, ..., n, R" x [a]. 

We get the problem (1) from 

subject to 
2 = f ( 2 ) =  m i n f  (x) 

gi (x) < 0, i = 1, 2, ..., l 

X_>0, 

where we have replaced data with errors by parameters. 

To formulate the numerical problem, we introduce two sets. 

Def'mition 1: 
X : =  {fc (a, bl,  . . . ,  bz)/a e [a], b i e [bi], i=  1 , . . . ,  1} , 

Z :  = {~ (a, b i , . . . ,  bl)/a �9 [a], b i �9 [bi] , i =  1 , . . . ,  t}. 

Def'mition 2: Denote the constraint set by 

P (bi, ..., bt): = {x/9 ~ (x; bi)<_O , x>_O, i=  1, .. . ,  l}. 

If 2 :p 0, then we want to find including sets for 2 and 2 by the methods of 
interval analysis. 

The question is now about the following interval vectors. 

a) Compute an overhull Ix] �9 V, (I (R)) of 2 ,  i.e. Ix] _ 2 .  

b) Compute the interval hull Ix]  n �9 V, (I(R)) ,  i.e. [ x ] n ~ _ 2  and d (X~)=min!,  
i=1,  ..., n. 
(d ([_a, a]) = fi-_a means the width of [_a, fi] .) 

c) Compute an interior estimation [x] �9 V, (I (R)) of 2 ,  i.e. [x] _ 2 .  

d) Compute a maximal interior estimation Ix] �9 V , ( I  (R)), i.e. [ x ] ~ _ 2  and 

I~Id  (Xi) = max ! 
i=1 

e) Compute the same intervals for the unidimensional set 2. 

To compute some of these vectors we must know elementary properties of the 
sets 2 and 2. The sets should not be neither compact nor connected. But we can 
guarantee under certain conditions these properties. 
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Theorem 1 : I f  the optimal-value map 

~ : ([a] T, [bl] T, . . . ,  [bl]r)rc_R "+Z, k'__, R ' 

is continuous, then Z. ~ I (R). 

I f  the optimal-point map 
~ : ([a] T, [bl] T, ..., [bz]r)T~R "§ ~'--*R" 

is continuous, then ~ is compact, connected and Z �9 I (R). 

Proof: The continuous image of a compact and connected set is compact and 
connected. 

The analysis of parametric programming and sensitivity in nonlinear program- 
ming is important for the investigation of continuity of the maps ~ and ~. (See 
also [7, 8, 10, 12, 13, 14, 16].) We shall now consider the important special case 
of definite quadratic programming problems: 

f (x; a) = �89 x T C x .-1- pr X ---- min ! C �9 [C], p �9 [p] 
subject to 

A x < b, A �9 [A], b �9 [b] (2) 

(C is positive definite and symmetric, [C] is a symmetric interval matrix). 

A1 and b as with the conditions Alx<_bl  and We can part A as A2 b2 

A 2 x_< b 2. Furthermore we denote the constraint set by P (A, b):= {x /Ax  <_ b}. 

Theorem 2: 
(i) /5 (A, b), A e [A], b �9 [b] is nonempty. 

(ii) I f  there exists an ~t E [A], /~ e [b] such that ~t~. x = ~  2 for all x � 9  (fl, ~), 
then we assume the following condition for all matrices from an t-region 1 of 71 2 
rank (A2)=rank (A2). 

I f  the conditions (0 and (ii) are satisfied, then the set X is compact, connected and 
Z �9 I (R) for the special case of definite quadratic programming problems (2). 

If there exists an interior point (Slaterpoint) for any P (A, b), A e [A], be  [b], 
then the conditions of Theorem 2 are trivially satisfied. Theorem 2 can be 
immediately proved with the stability theorem of Daniel [8]. 

We consider now the general problem (1), where the following theorem holds. 

Theorem 3: I f  there exists an interior point (Slaterpoint) for any P(bl, ...,bz), 
bl E [bl], ..., ble [bl] and if there exists a compact set Y with P(b 1, ..., bz)~_ Y, 
b 1 e [bl], ..., b I �9 [bz] , then X is compact, connected and 2 �9 I (R). 

This theorem is a special case of a general theorem of Bruns [7]. Under the 
conditions of Theorem 3, we get 2 �9 I (R) also from a theorem of Krabs [14]. 

1 {A2/A2~[A2],  ][ A2_~2 [l_<s, ~>0}. 
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For  the special case of quadrat ic  p rogramming  problems the assumptions of 
Theorem 2 are not  so strict as the assumptions of Theorem 3. If we consider the 
numerical  problems a)--e) ,  then we want to compute  the interval hull of 2 and 

at first, which means, we have to compute  the vectors inf 2 ,  sup J? and the real 
numbers  inf Z, sup Z. 

We shall discuss possibilities to find Z H. Seeking [x] n of 2 is a very difficult 
problem and in the general form (1) is at present unsolved. 

We consider the index sets I1={1, . . . , / -} ,  /2 = {7+1, ..., l}, I = { 1 , . . . , l }  with 
11 ~ 12=1. 

Theorem 4: I f  the following conditions hold: 

(i) 

(ii) 

(iii) 

Then: 

1. all problems f (x; a ) = m i n !  a e I-a] subject to 

x e P (bl, ..., b/), b i e [bi], i e I 

have the unique optimal solution ~, 

2. if f (x; a) is isoton in the vector a, then follows 

inf Z = 2  (a, _bl, ..., bz,/?T+ 1,..-,/~/) = rain f ( x ;  a_) 
X 

f (x; a) is either isoton or antiton in the vector a in [a] for x > 0, 

g/(x;  b/) are isoton in the vector b i in [bl] for x>O, i e  11, gi (x; bi) are antiton 
in the vector bi in [bi] for x > O, i e I2, 

P (bt , . . . ,  bx, b-x+ 1, . . . ,  b l) =/= (k and P (b_l,..., b_x, bT+ 1, . . . ,  b/) is compact 2. 

subject to 

(3) 

x e P (hi, . . . ,  -bT, ~//+ 1, " " ,  ~ l ) ,  

sup 2 = ~ (fi, hi,  ..., ~T, -bT+ t, .-', -bl) = min f (x; a) (4) 
X 

subject to 
x e P (~ l , - . . ,  ~T, hi+ l, . . . ,  _b3, 

3. if f (x; a) is antiton in the vector a, then similar formulas are obtained. 

Without  going in details we remark only that  Theorem 4 is a generalization of a 
theorem of Vajda [26] for the case of linear programming problems. If we 
require in addit ion to Theorem 4 the existence of a Slaterpoint  of P(/~I,-.., bT, 
-bT+ 1, ..., -hi), then we get moreover  2 e I (R). 

Remark: If we would permit, that  the parameters  do not  independent ly  vary in 
the tolerance intervals, for instance if a = bl = b2 = . . . =  b,, then the statement of 
Theorem 4 holds only if all functions f ( x ; a ) ,  gl (x;a), ..., gt (x ; a) are either 
isoton or ant i ton in a simultaneously. 

The problems (3) and (4) differ from (1) and have the decisive advantage, that  
they are not  parametric.  But it is a disadvantage, that we are unable to construct  

2 If [b] e V, (I (R)), then is b = inf b, ~ = sup b. 
bE[b] be[b] 
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bounds for _~ from the optimal solution of (3) and (4). The assumption of isotony, 
antitony, respectively, is satisfied for wide classes of programming problems, for 
instance, for linear and quadratic problems. 

3. Bounds for X and 

We assume throughout  this paper that  the conditions of Theorem 3 are satisfied. 
For  any a e [a], b/e  [bi] , i e I 2 is optimal solution of (1) if and only if there 
exists ~ e R' ,  f ie R ~, ~ e R / such that  

V~ f (2; a) + [V~ g (x; b)]. fi - b = 0 3 a e [a], b i ~ [bi], i ~ I 

g ( ~ ; b ) + ~ = 0  

fi~'wi =0 i= l , . . . , 1  (5) 
~2j. ~j = 0  j = l , . . . , n  

s  

(5) are the Kuhn-Tucker  conditions (K-T-C) for the optimal solution of problem 
(1). 

Denote  (5) by 
h (y; a, bl, ..., bz) = 0, y_>0 and y r = ( x r ,  V T, U T, wT). 

Fur thermore  we assume throughout  this paper that  the solution ~ of (5) is 
unique for any a ~ [a], bi ~ [bi], i ~ I. 

The solution set of (5) is 

Y1 : = {~/h (~; a, b 1,  " " ,  bl) = 0, ~ ~ 0, a ~ [a], b i ~ [bi], i e I}. 

We want to bound I71 by an interval vector, but by the methods of interval analysis 
it is only possible to bound the set 

Y2 := {~/h (~; a, bl, ..., bl)=O , a ~ [a], b/ ~ [bl], i ~ l } ,  

or only a part of Y2, respectively, by an interval vector [y], because for 
a ~ [a], bi ~ [b/J, i ~ I the solution of h (y; a, bl, ..., b/) = 0 is not necessarily unique. 

We assume that  the interval vector I-y] contains a solution of h(y;a, bl,. . . ,bz)=O 
for any a 6 [a], b i ~ [b/], i ~ I. 

Theorem 5: I f  the conditions 

[((0 ~ X/)/x (inf V~ > 0)) v ((inf X / >  0)/x (0 ~ V~))] 4 

/x [((0 6 U j)/x (inf Wj > 0)) v ((inf Uj > 0)/~ (0 ~ Wj))] 

i=1 ,  2, . . . ,n  

j = l ,  2 . . . . .  l 

are satisfied, then [y] is an overhull of  ]11. 

3 Vx g (x; b)= (V~ 9z (x; b 1), V~ g2 (x; b2) ..... V~ gz (x; bl)). 
" [x]=(XA Iv] =(V~), [u]=(U,), [w]=(~). 
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Proof :  Assume for instance (0 �9 Xi)  A (inf V i > 0) for some i �9 {1, 2, ..., n}. 

Because there exists a solution in [y] for a �9 [a], b i �9 [bi], i �9 I and according to 
the complementary slackness x i �9 v i = 0, i = 1, 2, ..., n, is 2i = 0 and b~ > 0 for some 
i �9 { 1, 2, ..., n} and for all a e [a], b~ �9 [b~], i �9 I. The other cases can be proved in 
an analogous way. 

The assumptions of Theorem 5 imply the strict complementary slackness with 
the same set of variables for all a e [a], b i ~ [bi], i �9 I. 

For fixed ~ �9 [a], bi �9 [bi], i �9 I we denote the unique solution of the K-T-C by Y. 
We define the sets of variables: 

K:={y i / f~ i>O,  i=  1, 2, ..., 2 (n+ l)} 

K :  = {yi/~i=O, i=  1, 2, ..., 2 (n+ l)}. 

Definition 3: The programming problem (1) is called complementarily stable 
with respect to the variable set K (or/() ,  if the conditions are satisfied. 

(i) card (K) = card (K) 5, 

(ii) the set K (or / ( )  is independent from the selection of a ~ [a], b i �9 [bi] , i �9 I. 

This idea is a generalization of basis stable linear programming problems. 
(See Beeck [6].) 

If the conditions of Theorem 5 are satisfied, then the programming problem (1) 
is complementarily stable. We can find estimations for 2 only for complemen- 
tar!lY stable programming problems by using the K-T-C. 

The partition of (1) in two problems stated in Theorem 4 is independent from 
this fact. 

Denote by YK a vector with components in K. If we compute an interval vector 
fullfilling the assumptions of Theorem 5, then we have to bound the solution set of 
a high dimensional nonlinear parameter-depending system of equations with 
the dimension 2 (n + l). But the assumptions of Theorem 5 mean, that strictly 
(n +/) variables are exactly zero and so we can diminish the computational 
expense, if we know the set K (or K) of variables. 

In practice we propose the following procedure. We arbitrarily choose fixed 
�9 [a], bi�9 [ ' b i ]  , i ~ I, in order to solve the K-T-C directly. If not possible, we con- 

sider the problem 

f (x; ~) = min! (6) 
subject to 

gi (x; bl)_<O, i � 9  

x _ 0 .  

We can find a solution of (6) by conventional numerical methods of nonlinear 
programming. Therefore we get a solution ~ of K-T-C or a solution )2 of (6). If we 
can only compute 2 of (6), then it is possible to compute ~9 using 2. It is generally 

5 By card (.) we denote the number of elements of the set. 
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impossible to compute ~ exactly. Using ~ we determine the set K (or K), but this 
set can differ from the actual K (or/~). In the equation h (y; a, bl, ..., b~)=0 we 
put in for all variables exactly zero with Yi �9 K and we obtain therefore the 
function vector 

h (YK; a, bl, ..., bl). 
We consider the solution set 

IrK: = {.VK/]i (YK; a, b l , . . . ,  bl)=0 , ~ r > 0 ,  a �9 [a], bi �9 [bi], i � 9  I}.  

Assumed, [y]~ is an interval vector, which contains solutions YK satisfying the 

equation h (YK; a, bl, ..., bl)= 0 

for any a �9 [a], bl �9 [bi], i �9 I. 

Then we have the following theorem. 

Theorem 6: I f  Y_r >- O, then follows [Y]r ~- IrK. 

I f  y_i ~ > O, then (1) is a complementarily stable programming problem. 

If the conditions of Theorem 6 are satisfied, then the x part of [Y]K with the 
values of variables contained in K, is an overhull of 3?. That means, we have 
solved the numerical problem a). 

Remark 1 : By computers the interval vector [y]K has to be computed by methods 
of interval arithmetic. Therefore it is also possible to take into account automati- 
cally the round-off errors. In the following part we do not consider the solution 
methods of system of nonlinear equations. We only remark, every parameter has 
to occur only once. (See also [1].) But the K-T-C do not realize this assumption. 
Therefore we can get with interval analytic methods only an overhull of 3?. 

Remark 2: If we compute [Y]K instead of [y], then we have a decisive advantage. 
The dimension 2 (n + l) of the system which is to be solved, is reduced to n + I. 
Therefore the numerical expense could be reduced dramatically. On the other 
hand we must know, that for the class of definite quadratic programming 
problems the nonlinear system of equations is reduced to a linear system of equa- 
tions with data errors. In contrast to nonlinear systems these systems can be 
solved "easily". Furthermore we can get very good estimations of 3?, if some 
assumptions are satisfied. (See [3], [4].) 

Remark 3: There are three reasons, because of which the condition of Theorem 6 
might not be valid. 

1. The problem (1) was not complementary stable. 

2. The designation of the set K (or / ( )  was not correct. 

3. The intervalarithmetic estimation had yield a pessimistic overestimation [Y]K 
of YK. 

From the vector [Y]K we can get an interval vector Ix] __3?. Then follows 
2 _ Z with 

Z : = F ( [ x ] ;  I-a]) 6 
and Z is an overhull of 2. 

6 We assume that there exists a natural interval extension F off. 
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Often Z is a pessimistic overestimation of Z. 

If the conditions of Theorem 4 are satisfied, then the numerical problems b) and d) 
are solved. In practice the problems (3) and (4) can be solved simultaneously, 
where [x]l contains the optimal solution :2 1 of (3) and [x]2 contains the optimal 
solution 92 2 of (4). It is to compute 

Z 1 : = F  ([X]l ; a), Z z : = F  (Ix]2 ; a), 2 : =  [inf Z1, sup Z2].  

Generally is 2 not so pessimistic as Z. 

Theorem 7" I f  sup Z 1 _<infZ2, then 

Z: = [sup ZI, inf Z2] 

is an interior estimation of Z, i.e. Z ~_ 2. 

Special nonlinear programming problems have been considered in [9, 19, 23] 
without using K-T-C. We will now consider a special problem also without 
using the K-T-C. 

Def'mition4: A function f ( x ; a )  with continuous gradient will be called an 
uniformly convex function in a convex set G, if the condition 

[Vxf(x;  a ) - V ~ f  (y; a)] r (x-y)>_c (a) [[ x - y  1]2 7 

c ( a ) > O , x , y ~ G  
is satisfied. 

We consider the following programming problem: 

f (x; a) = rain! a e [ a ] e  V m (1 (R)) 
subject to 

A x = b, A + [A] + Mr, . (I (R)) (7) 

h e [b] e V z (I (R)). 

Denote the constraint set by P* (A, b): = {x/A x = b}. 

We assume that P* (A, b) is nonempty for any A e [A], b e [b] and that for any 
a e [a] f is a uniformly convex function in the convex set G with P*(A, b)~_ G, 
A ~ [A-I, b ~ [b]. 

Furthermore we assume that f (x; a) has a Lipschitz continuous gradient 

H V x f ( x ; a ) - V ~ f ( Y ; a ) l l < - L ( a )  II x - y  H, 

x, y ~ H, H defined by the convex hull of all projection finite lines from a point 
e R" to any constraint set P* (A, b), A ~ [A], b e [b]. 

We will need the following assumptions: 

e r =  (1, 1, ..., 1), 

M = i n f c ( a ) > 0 ,  L = s u p L ( a ) < + o c ,  
aE[a] ae[a] 

See also G6pfert Ell]. 
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A (I, n) with l<  n and rank (A)=/  for all A e [A], Y,~ [ 4 .  j r ] - 1  for a special 
,4 e [A-l, 92 e R n computed on a computer is an approximate solution of problem (7), 

i 

[aT] = [A] .  92 - [b] 

[R] = E -  Y([A] �9 [A]T). 

With the above properties we get the 

T h e o r e m  8: If II ER] tl < 18 and 

II IN] T II. l[ Y II 
q =  1-[ I  [R] II 

then we obtain 
2_c [92-0 .  e; 92+Q e]. 

Proof: Let 92 0 be the projection from 92 to P* (A, b). Then the inequality 

(92 0 -92) r �9 V~ f (2; a )>0  

holds. From the definition of the uniform convexity (Definition 4), we have 

< 1 .  
112o-~ 11- M II Vxf(20;a)ll. 

An estimation of the distance II 2 - 2 0 ]l completes the proof. 

(8) 

C o n c l u s i o n  1: With 
1 

Q = ~ .  II Vx F (2; [a]) II 

we obtain estimations of 3? for the following problems 

f (x; a) = min ! a e [a] (9) 
subject to 

x e G ,  

where G is a closed convex set and the relation :2 ~ G is satisfied. Furthermore 
we do not need a Lipschitz continuous gradient. 

Conc lus ion  2: 
f (x ; a)= �89 xr C x + pr x, C e [ C], pc[p] 

(C-symmetric and positive definite) is uniformly convex in R". Then c (a)= ~,c is 
the smallest eigenvalue of C and therefore M = inf 2 c. 

Ce[Cl 

Trivially we obtain L = L! [C] If- 

In this special case we can easily compute bounds for M. 

II [R] II = s u p  II R ]1, II Id7 II = s u p  II d II, 
Re[R] dE[d] 

15 Computing 24/2--3 

tl. ll-norm of column sums or Euclidian norm. 
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Either we use a theorem of Gerschgorin [25] or we have 

1 -II [R] 11 
M >_ , if II JR] II < 1, (10) 

tl Y LI 

where Y~ C - 1 for a special C e [C] and [R] = E -  Y [C]. 

By considering the special case of quadratic programming problems of problem 
(9) and with the inequality (10) we obtain 

[I Y II. II [ c ] .  :~ + [p] II 
e = 1 - I I  [R]  tl ' (11) 

(11) is a well-known estimation (see Krawczyk [151) for linear interval systems. 

Under certain assumptions the estimation declared by Theorem 8 yields a pessi- 
mistic overestimation. Our goal then is to improve the bounds by iterative 
methods. 

Conclusion 3: The special problem of (9) 

�89 x r C x + pr x = min! C ~ [C], p s [p ]  (12) 
subject to 

x e Ix] e V, (I (R)) 

can be solved by an iterative method developed by Oelschl~igel-SiiBe [23]. 

With the help of this method we can solve problems of the form 

�89 x T C x + pr X = min C s [C] ,  p s [p] 
subject to x > 0. 

These problems occur in various publications, for instance of Hildreth and 
d'Esopo [17]. 

But it is difficult to determine a start region [x] ~ with [x]~ 2 .  If s = 0, then we 
obtain with 

1 II Y It' II [P] It 
= ~ "  II IN] II, e = 1 -  I[ [ e l  II ' 

respectively, and 

the start region 
tl IN]  I[ < 1 

[x ]~  Q.e]. 

4. Numerical Example 

Our calculations were done using sixteen decimal digit interval arithmetic on the 
R 21 computer (at the research centre TH Leuna-Merseburg). We have used the 
programming language PL/1. 

To find an interval vector [x] containing the solution set of a nonlinear system, 
we have applied the well-known interval version of Newton's method to para- 
meter depending systems of equations. (See also [1], [20], [21].) 
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Example: 

subject to 
f (x; a)=x 2 - a  x I - x 2 = m i n !  a e [1.99, 2.001] 

b 1 x 2 + b  2 x 2 - 6 _ < 0 ,  b 1 ~ [1.99, 2.001] 

xl, x2 >O, b2 ~ [2.999, 3.01]. 

We obtain the parameter  depending K-T-C: 

2 x l - a + u l  . 2 b i x  1 - v  1=0 

- l + u  1 . 2b  2 X2--V2"-~-O 
b l x ~ + b 2 x ~ - 6 + w l  = 0  

U 1 W 1 = 0 

x 1 V 1 = 0  

X 2 /3 2 = 0 ,  X,U, / ) , w ~ O .  

In contrast to the original problem we have various occurrences of the para- 
meters. 

We have obtained the following approximate  solution ~ by some noninterval 
method: 

2 1 = 0 . 8 ,  X 2 = 1 . 2 6 ,  i l l = 0 . 1 3 ,  # 1 = 0 ,  v l = 0 ,  /~2=0 .  

We determine the sets K, K, respectively. 

K : =  {xl, x2, ul}, K : =  {wl, vl,/32}. 

Therefore we can obtain the reduced system: 

2 x  a + 2 b l x l u , - a = O  

2 b 2 x 2 x 3 - 1 =0  
b 1 x 2 + b 2 x 2 - 6 = 0  

a e [1.99, 2.001] 

b 1 ~ [1.99, 2.001] 

b 2 E [2.999, 3.01]. 

At first we have determined a start region. Five interval Newton operations 
were performed. 

~1 e [0.7861180160926976, 0.7927157709884446] 

~22 e [1.254973946581317, 1.261428015992586] 

fi, e [0.1316239598278200, 0.1329037678477008] 

Fur thermore the interval 

Z = [ -  2.229671631247111, - 2.190949600000112] 
was computed. 

Therefore the original problem is complementari ly stable. Trivially the assump- 
tions of the Theorems 3 and 4 are satisfied, where the function f is antiton in a 
and the function g is isoton in b. 

Applying the Theorem 4, we can solve the problems: 

inf 2 = x 2 - 2.001 x 1 - x2 = min ! 
subject to 

15" 
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1.99 x~2 + 2.999 x 2 2 - 6 < 0 ,  x > 0 ,  

sup 2 = xl  2 - 1.99 x l  - x2 = min! 
subject to 2.001 x 2 + 3.01 x22 - 6 < 0, x > 0. 

We have computed both solutions with eight significant digits. 

inf 2 e [ - 2.216275400000011, - 2.216273800010003] 

sup 2 �9 [ - 2.204382000002101, - 2.204380400002110] 
The interval 

[ infZ1,  sup Z 2 ] = [ - 2 . 2 1 6 2 7 5 4 0 0 0 0 0 0 1 1  , -2 .204380400002110]  

is a better estimation of  2 than Z. 

Since the assumptions of Theorem 7 are satisfied, we have 

Z* = [ - 2.216273800010003, - 2.004382000002101] ___ 2 ,  

i.e. Z* is an interior estimation of 2 .  
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