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Abstract - -  Zusammenfassung 

On Global Optimization Using Interval Arithmetic. A method for finding all global minimizers of a 
real-valued objective function of several variables is presented. For this purpose a problem-oriented type 
of number is used: the set of real compact intervals. The range of the objective function over a rectangular 
set is estimated by natural interval extension of a suitable modelling function. An algorithm for 
interpolation and approximation in multidimensional spaces is developed. This optimization method 
can be applied successfully to conventionally, e.g. with real arithmetic, programmed functions. 
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Uber giobale Optimierung mittels IntervaHarithmetik. Vorgestellt wird eine Methode zttrn Auffinden aller 
globalen Minimierer einer reellwertigen Zielfunktion mehrerer Veriinderlicher. Dabei wird ein 
problemorientierter Zahlentyp verwendet: der Bereich der reellen kompakten IntervaUe. Der 
Wertebereich der Zielfunktion fiber einem rechteckigen Gebiet wird durch natiirliche Inter- 
vallerweiterung einer geeigneten Modellfunktion abgesch~itzt. Es wird ein Algorithmus zur Interpolation 
und Approximation in mehrdimensionalen R~iumen entwickelt. Diese Optimierungsmethode kaun auf 
herkrmmliche, das heiBt mit reeller Arithmetik programmierte, Funktionen erfolgreich angewendet 
werden. 

I. Introduction 

C o m p u t e r  s imula t ions  have become  a convenien t  tool  for the design of  complex  
systems in var ious  fields. Since capabi l i t ies  of  m o d e r n  c o m p u t e r  systems are  
increas ing rapidly ,  the mode l l ing  techniques  become more  complex,  too. The  de- 
s igner  no t  only  wants  to s imulate  a single device bu t  also de ma nds  an op t ima l  result.  
This  in ten t ion  requires  a sys temat ic  va r i a t ion  of all var iables  used in the object ive 
funct ion s imula t ing  the real  wor ld  system. In  the fol lowing we are  t rea t ing minimiza-  
t ion p rob lems ,  which means  tha t  the var ia t ions  have to p roduce  decreas ing values 
of  the object ive function.  These  var ia t ions  can be done  m a n u a l l y  [10] or  by  an  
a u t o m a t i c  min imiza t ion  p rocedure  [7]. M a n u a l  op t imiza t ion  assumes a th rough-  
out  knowledge  of  the  behav iou r  of  the object ive function.  Nevertheless ,  in cases of 
two or  more  var iables  this m e t h o d  wou ld  genera l ly  p roduce  unsa t i s fac tory  results. 
Therefore,  m a n y  a u t o m a t i c  min imiza t ion  a lgor i thms  have been deve loped  which 
tend  to be s table  and  fast [5]. These  so-cal led local me thods  p roceed  descending  
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from a starting point to a single end point by using classical algorithms like gradient 
methods, Newton methods, etc. The end point--the local minimizer--is to be 
reached using a minimum number of function evaluations considering the high 
computational expenses for each intermediate system calculation. The disadvantage 
of local minimization, however, is the uncertainty whether there are other local 
minimizers which have been missed due to an unfavourable choice of the starting 
point. 

Global minimization, on the other hand, means the common tradition to isolate all 
global minimizers. Nevertheless, the investigation of additional (local) minimizers 
is neglected although they can be of interest in the treatment of real world problems, 
e.g. if the technical realization of a suitable system corresponding to a local mini- 
mizer can be carried out with less effort. The importance of global optimization, 
however, has not been accepted commonly. One reason is probably the so-called 
'curse of dimensionality'. The few existing global methods require a huge amount 
of computer memory and computer time which is increasing extremely with the 
number of dimensions of the configuration space. A second reason is that these 
methods cannot guarantee the reliable solution of the global problem. Since the 
whole area of interest has to be checked for local minimizers, most of the determin- 
istic methods, such as dynamic programming [21-1, use a mesh whose nodes repre- 
sent points in the variable space. Depending on the coarseness of this mesh, global 
minimizers can be lost. The same holds for stochastic algorithms like Monte-Carlo- 
methods, even those which are combined with local deterministic procedures, since 
they are limited by the finite number of random searches. 

The method presented in this article avoids these defects by using a problem 
oriented kind of number: the real compact intervals. The reader is assumed to be 
familiar with the principles of the corresponding interval mathematics. The concept 
of interval inclusion functions and the fundamental principle of interval mathemat- 
ics will be sufficient for a throughout understanding of the global minimization 
method. 

The original algorithm of E. R. Hansen E8], I-9] only has been applied to analytical 
objective functions such as polynomials and rational functions. In fact, objective 
functions used for modelling chemical, physical or technical systems cannot be 
stated in such simple terms but are represented by large computer programs using 
real arithmetic. Porting these programs to interval arithmetic is still very cumber- 
some since tools like interval pre-compilers [22] are not commonly available, yet. 

Therefore, an algorithm for the treatment of arbitrary real valued objective 
functions has been developed. Due to the applied approximation method, how- 
ever, the absolute reliability of Hansen's method to enclose all global minimizers 
is lost. Nevertheless, this seems to be no drawback in the treatment of smooth 
objective functions where the approximation error can be kept very small. This has 
been shown in the successful application of our method to the global optimization 
of an electron optical device [14], [15]. 
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2. Basic Concepts of Interval Mathematics 

Interval mathematics still is a growing branch of pure and applied mathematics. 
The foundations have been carried out by Ramon E. Moore  [12], [13]. The original 
intention was the treatment of rounding errors in digital computers. Besides this 
so-called 'machine interval arithmetic' many other interval-based applications have 
been developed. Nevertheless, interval mathematics is not commonly known, yet. 

The following sections will give a short summary of the terminology used in this 
paper. The notat ion is that of the two standard books on interval analysis cited 
above and of Alefeld/Herzberger [1]: 

The symbol I denotes the set of real compact  intervals A =  [a~,a2] = 
{a c ~]a~ < a < a2} containing a subset of the real numbers ~ between the lower 
bound a 1 = A and the upper bound a 2 = A.  In the following text both notations 
for interval bounds will be used, if appropriate. For  example, an interval vector 
A = (A~, . . . ,A , )  T E P denotes a rectangular region A~ x .-. x A, in the n-dimen- 
sional space R" and the notation A i = [Ai,.4i] for its i-th component  avoids the 
introduction of additional indices. The real numbers r - [r, r] will be called degener- 
ated or point intervals and therefore can be considered a subset of B. The components 
of point vector quantities are denoted by corresponding lower case greek letters 
in cases where ambiguities with samples {xl} may occur, for example x = 
(~1 . . . .  , ~,)TE ~". To distinguish point matrices from interval numbers A - Z  the 
notation d - ~ e  of Alefeld/Herzberger [1] is used. 

2.1 Interval Metrics 

Two intervals A, B E ~ are equal if, and only i fa  I = b 1 and a 2 = b 2 holds. The center 
of an interval is denoted by mid(A) := (al + a2)/2. The center of an interval vector 
is a real vector and is calculated by application of the mid-function to every compo- 
nent: mid(A):= (mid(A1) . . . . .  mid(A,)) r. The positive number  span(A):= a2 -- al 
is called the span of A. span(A) : -  maxT= ~ {span(A/)} defines the span of an interval 
vector as its longest side. The distance between two intervals A, B is determined 
by dist(A, B) := max(la~ - b~ l, la  2 - -  b2[  ). This definition satisfies the axioms of a 
topological distance function and implies the norm function ]A] := dis t (A,0)= 
max(]al[,[a2[). It  can be shown that, according to this distance function, I is a 
complete set, that means every Cauchy sequence converges in D. 

2.2 Interval Arithmetic 

rhe  following arithmetic rules only work with interval boundaries and can be 
implemented easily in a digital computer: 

A + B = [al  + bl,  a2 + b23  

A -- B = [a 1 - -  b2 ,  a 2 - -  h i ]  
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A B  = [min(al bl, al b2, a2 bl, a2 b2), max(a1 b 1, a 1 bz, azbl ,  a2b2) ] 

A/B  = [al ,az][1/b2 ,  l /b l ]  , O ~ B .  

From these interval operations there follows the so-called inclusion principle of 
interval arithmetic: C ~ A/x D _ B ~ C o D _ A o B, where o denotes the arith- 
metic operations { + ,  - ,  , , /} from above. Note, that there are no general inverse 
elements according to these operations. Moreover, there is only a so-called 
subdistributive law A(B  + C) ~_ A B  + A C  in ~. 

2,3 Interval Analysis 

The main tool for the treatment of optimization problems using interval arithmetic 
is the concept of inclusion functions. Let f be a real valued function over an interval 

F 

F*(X)  := [min (f(x)), max (f(x))/be the range of f over X. An interval X and 
I x E X  x e X  d 

function F then is called an inclusion function for f if F*(A) ~_ F(A) holds for any 
A E X. An example where the range of a functon can be given exactly is the 
polynomial f ( x )  = x - x z with F*(X)  = �88 - (X  - �89 Other examples are elemen- 
tary functions like sin, log, etc., whose monotonicity intervals are known exactly. 
Their range over an interval X consequently would be denoted by SIN(X), LOG(X), 
etc. Implementations of such elementary interval functions can be found in a 
few programming languages like FORTRAN-SC [11] or Triplex-Algol-60 [3]. 
Nevertheless, it is generally impossible to calculate F* analytically or numerically 
for a given function f.  Therefore, one is very interested in good approximations F of 
F*. The inclusion principle of interval arithmetic allows the straightforward con- 
struction of such inclusion functions and is called the fundamental principle o f  
interval mathematics: 

The natural interval extension o f f  to X is defined as that expression F(X)  which is 
obtained from the expression f ( x )  by replacing each occurrence of the variable x 
by the interval X, the arithmetic operators { +,  - , . , / }  of ~ by their counterparts 
of l, respectively, and each elementary function by its range over X. Due to the 
inclusion principle of the interval operators, F is an inchision function for f.  

Natural interval extensions are not unique, but depend on the way how the expres- 
sion for f is written down. The reason is that intervals X occurring more than once 
in F are treated independently by the interval operators { + ,  - , . , / } .  For  the previ- 
ous example f ( x )  = x - x 2, F I ( X  ) := X(1 - X) and F2(X) := X - X X  are valid 
natural interval extensions with F*(X)  ~_ F I ( X  ) ~ Fz(X)  for any X E ~. 

Functions of several variables can be treated analogously, leading to interval 
functions over rectangular regions X. 

3. Global Optimization by Interval Mathematics 

In the following sections the global optimization problem is stated in a manner that 
makes it suitable for a treatment with interval analytical methods. One of these 



On Global Optimization Using Interval Arithmetic 323 

methods is Hansen's algorithm, which tends to be very simple and, nevertheless, 
very powerful for the safeguarded inclusion of all global minimizers of the objective 
function. 

3.1 The Bound-Constrained Global Minimization Problem 

Let X ~ P be an interval vector and f be a real valued functon over X which is a 
rectangular box in ~" and is supposed to contain all feasible points x = (~t . . . .  , ~,)T 
of the minimization problem. 

The point x, is called a local minimizer of f if f(xz) < f (x)  holds for any positive 
number ~ with Hxz - x]l < e and x e X. 

On the other hand, x o is called a 91obal minimizer o f f  i f f(xo) <_ f (x)  holds for any 
x ~ X .  

One-sided constraints have to be mapped into a bounded form by a inverse 
coordinate transformation like, for example, ~i > 0 ~ 1/[Xi, os] = [0, 1/Xi] taking 
account of possible resulting singularities f(O) in the objective function, of course. 

Non-linear constraints of the form c(x) = 0, c ~ Nm, however, have to be treated by 
the mean of so-called penalty functions which are to be incorporated into the 
objective function. For  example, f (x)  ~ f (x)  + p(x) = f (x)  + ~=1  c2(x) �9 

3.2 Hansen's AIoorithm 

The following global minimization method was originally described by Eldon R. 
Hansen in [9] and [8]. It represents an interval-based bisection algorithm and is 
predestinated to treat minimization problems as those of the previous section. It is 
presumed that an interval inclusion function F for the objective function f and an 
initial box B are provided. This box is splitted repeatedly into so-called subboxes 
Xt  where the inclusion function is evaluated: F: := F(X:). The range of the objective 
function f over each subbox is thus determined with 100~ reliability, due to the 
fundamental principle of interval mathematics: f (x)  ~ Ft for any x ~ X~. Moreover, 
f is calculated in the center of each subbox: fr := f(mid(Xt)  ). These data are stored 
chronologically in the 'list of boxes': 5r := { (X~, F~, ft)[~ = 1 . . . . .  L}. This list origi- 
nally is of length L = 1 and contains merely the initial box X1 = B. Note that the 
index E denotes the ordering of the boxes XE in the list ~q~ while the index i is used 
to indicate its i-th interval component Xi. 

The bisection takes place at the longest side of the first element X:  and produces 
two subboxes which are added as new elements (XL+:,FL+I,fL+:) and 
(XL+2, FL+2,fL+2 ) at the end of the list ~ .  The value fo := minr162 is considered 
an approximation for the global minimum of f.  The list is shortened and renum- 
bered by application of following rules: 
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1. Cancelling the splitted box: 
The intersected box X 1 is cancelled because its subboxes XL+I and XL+ 2 with 
X 1 = XL+ 1 w XL+ 2 are used in the further process. 

2. Midpoint test: 
Each box Xt  with Ft > fo is cancelled because then f(x)  > fa holds for any x e Xt 
due to the inclusion property of F. 

For  piecewise differentiable functions, a remarkable acceleration of convergence 
can be achieved by applying the so-called 'monotonicity test': Let G be a inclusion 
function for the gradient g := Vf. Let further X be a box from .2 ~ with G~(X) > 0 
for some coordinate index i. Since G i includes the range of 91 over X, f is strictly 
increasing along the i-th coordinate direction. Now, the following distinctions have 
to be made: 

1. [_B, < Xi ]elimination: 

The i-th lower bound of X lies inside the initial box B. For  this reason, in X there 
cannot be any minimizer o f f .  The subbox X is discarded from the list ~ .  

2. [ _B~ = X~ ] Degeneration: 

The subbox X has a common surface together with the initial box B. This surface 
possibly contains a global minimizer of f. Therefore, X is being 'degenerated' 
with respect to the i-th coordinate direction: X = (X~ . . . .  ,X~ . . . .  ,X,) ~ X = 
(X~,... ,_Bi,.. . ,X,). After recalculating the values of F and f,  the degenerated 
subbox replaces the original element in 5(. 

The case G~ < 0 is treated analogously, using the upper bound B~. 

The algorithm can be characterized by the two kinds of steps bisection and elimina- 
tion. The bisection steps cause a continuous expansion of the list but the elimination 
steps possibly would shorten it, provided that the midpoint test or the monotonicity 
test are successful. Nevertheless, in the case of a constant function f = c, the list is 
always expanding since f contains an infinite number of global minimizers and no 
subboxes would ever be discarded. On the other hand, a pathological function like 
f(x) := sin(l/x) contains a countable but infinite number of global minimizers in 
every open interval (0, e] with e > 0. The algorithm tries to include all these mini- 
mizers. Therefore, the list grows continuously, although many subboxes would be 
discarded, too. 

The procedure is stopped if at least one of the following conditions holds: 

1. The length L of the list s162 exceeds a maximum number. 
2. The number of function evaluations f~ exceeds an upper bound. 
3. A function value f0 was reached, which is smaller than a lower bound fm~." 
4. A minimum span is reached by every box in 5r 

The advantages of this global minimization method can be summarized as follows: 

1. After the procedure has stopped, the list of boxes contains every global minimizer 
with absolute reliability. 
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2. The required computer  memory  is adjusted automatically to the topology of the 
objective function. There is no need to cover the initial box with a fine grid or 
numerous random points since in D it represents already a single point. 

3. Discontinous functions can be treated, too. For  functions which are at least 
piecewise differentiable, the convergence speed of the method is increasing re- 
markably due to the monotonicity test. 

4. For  functions which are at least twice piecewise differentiable, second order 
information could provide further acceleration of convergence by investigation 
of the intervall Hessian matrix. However, this has not been carried out by the 
author, yet. 

5. A box to be eliminated after the midpoint test but failing the monotonicity test 
tends to contain local minimizers. If the upper bound of the objective function 
in this box is sufficiently small and the corresponding systems are well suited for 
a technical realization, the box can be stored and investigated by a local 
optimization method, afterwards. 

3.3 Numerical  Example  

The so-called ' three-hump-camel-back function' 

1 6 f :  ~2 __+ ~ ,  x = (r -- 1.05{ 4 + ~{1 -- {~{2 + {Z z 

has two saddle points xs ~ ( _  1:07, +0.54) r and three local minimizers x , ,  z ,~ 
( _ 1.78, + 0.87) T, x3 = (0, 0) r. In the box B = ([ - 2, + 2], [ - 2, + 2]) r the difference 
between the local minima f (x l ,z )  = 0.30 and the global minimum f(x3) = 0 is 
merely 3~o. Natural  interval extensions of this function and its gradient are: 

1 6 F ( X )  = 2X 2 -- 1.05X 4 + ~X~ -- X I X  z + X 2 

G(X)  = (4X~ -- 4.2X 3 + X~ - X2, 2X2 - X1) r .  

Figure 1 shows the application of Hansen's m e thod  to this function. After 2000 
bisection steps the list only contains the 4 subboxes 

([0,2.38 x 10-7],[0,2.38 • 10-7]) T, 

([--1.19 • 10-7,0],[0,2.38 x 10-7]) r ,  

( [ - 2 . 3 8  x 1 0 - 7 , 0 ] , [ - 2 . 3 8  • 10-7,0]) r ,  

([0,2.38 x 1 0 - 7 ] , [ - 2 . 3 8  x 10-7 ,0 ] )  T. 

The lowest function value fo = 5.86 • 10 -14 was calculated in the center of the 
second box. Note  that of Hansen's  techniques, only the midpoint  test and the 
monotonicity test have been applied and that convergence could be accelerated 
significantly by using second order information, e.g. by calculating the interval 
Hessian matrix, too. 
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Figure 1. Hansen 's  method for global minimization applied to the so-called ' three-hump camel-back 
function'. The global minimizer x = (0,0) T was included after 2000 bisections in the box X o = 

( [ - 1 . 1 9  x 10-7,0],[0, +2.38 x 10 v])r 

4. Construction of Interval Inclusion Functions by Multinomial Fitting 

The main disadvantage of Hansen's method is the need of an interval inclusion 
function F for the objective function f. There are two ways of obtaining such an 
inclusion function. If a computer language like, for example, FORTRAN-SC [11] 
is available, the data type INTERVAL, the interval operators { +,  - ,  *,/} and most 
of the elementary interval functions like SIN, LOG, etc. are provided. The computer 
program for the objective function f then can be written down using interval 
arithmetic and the natural interval extension of f is done automatically by the 
compiler. This process can be compared with the arithmetic of complex numbers 
in standard FORTRAN-77, where the data type COMPLEX is already supported 
and the programmer does not have to deal with the different meanings of the 
operators { + ,  - ,  x , /}  in R and C. 

Unfortunately, computer languages supporting interval mathematics are not 
wide-spread, yet. Therefore, pre-compilers have been developed which replace 
each occurrence of the real arithmetic operators and elementary functions in 
every expression containing pre-declared interval data by SUBROUTINE and 
FUNCTION calls to their interval arithmetic counterparts, respectively. The 
output is generated in a standard computer language, such as FORTRAN-77 by 
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the AUGMENT pre-compiler [22]. Nevertheless, the programs produced in this 
manner, become much longer and therefore much slower than the original code. 
Besides, like the programming languages including interval extensions, such 
pre-compilers merely are available on a few computers. 

For this reason, an interval-based modelling technique will be developed in the 
following sections, which supplies an approximation of an interval inclusion 
function for f and which can be applied to conventionally, i.e. in real arithmetic, 
programmed objective functions, too. 

4.1 The Choice of the Modelling Function 

Choosing an appropriate modelling function, the following points have to be taken 
in account: 

1. Of the modelling function the ability to approximate a wide variety of objective 
functions is requested. This implies a sufficient complexity of the modelling 
function which ensures its capability to handle singularities or steep areas of the 
objective function. Although the application of problem-oriented modelling 
functions seems to be more efficient, this cannot be done automatically, however. 
The same holds for the corresponding interval extensions which had to be carried 
out every time a new modelling function is to be chosen. 

2. The modelling function has to be piecewise differentiable if Hansen's 
monotonicity test is to be applied. 

3. The coefficients representing the degrees of freedom of the modelling function 
must not become too numerous in higher dimensions. Note that this demand 
limits the complexity of the modelling function requested in 1. 

4. The interval extension of the modelling functon is required to be a close 
approximation to its range of values. 

A heuristic approach to such a modelling function which satisfies closely the 
requests from above has been established by fitting affine quadratic forms q(x) := 
x r(sIx  + b)+ c (being discussed in the following section) to a sample of 
transformed objective function data arsinh(f(x)). 

The following considerations led tho this special choice: 

1. The complete multiquadratic form q(x) uses merely = (n + 1)(n + 2)/2 

degrees of freedom in n linearly independent dimensions an it is able to approxi- 
mate either objective functions with regions of the saddle type or the bassin type. 
The interval extension q(x) --* Q(X) can be carried out very efficiently; as will be 
shown later. 

2. Objective functions where a steepness more than linear occurs cannot be approx- 
imated by quadrics in a satisfactory way, however. Therefore,the objective func- 
tion is transformed by the bijective nonlinear transformation f (x)  ~ arsinh(f(x)) 
which takes account of exponentially growing functions, too. The interval exten- 
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sion of the modelling function sinh(q(x))~ SINH(Q(X)) also can be done 
straight forward. 

It must be emphasized that using this method the absolute reability of isolating all 
global minimizers is lost, in contrast to Hansen's original method. Since the interval 
extension of the objective function is not carried out directly but versus the model- 
ling function, the approximation error is interval extended, too. However, this lack 
may be overcome partly by the following method for estimating the quality of the 
approximation. 

Due to the definition of an interval inclusion function the modelling function had 
to satisfy the following conditions: 

1. Inclusion principle: 
f ( x )  ~ SINH(Q(X)) and 
Vf (x )  ~ ITQ(X) COSH(Q(X)) for any x ~ X. 

2. Inclusion isotonicity: 
SINH(Q(A)) _ SINH(Q(X)) and 
VQ(A)  COSH(Q(A)) _ 17Q(X) COSH(Q(X)) for any A _c X. 

According to the construction of the modelling function as natural interval exten- 
sion, the first condition is sufficient but the second one is only a necessary condition. 
Since the error E ( X ) : =  [ m i n x ~ x ( f ( x )  - q ( x ) ) , m a x x ~ x ( f ( x )  - q(x))] is generally 
non known, the inclusion property cannot be guaranteed. The inclusion isotonicity 
can, however, be checked by the following method: In every bisection step the ranges 
Fe and Ge over the subboxes X~, { = L + 1, L + 2 are compared with those of the 
original splitted box X 1. If Fe g; F 1 or Gt N G1 it follows that the approximation 
of the objective function is not sufficiently accurate in this region. Such subboxes 
are suspended from the midpoint test and the monotonicity test, respectively, and 
therefore are preserved from a premature elimination or degeneration. The same 
holds for subboxes including the lowest function value fo, so far. 

In the next sections we will discuss the details of the approximation such as the 
choice of the sample points, their unisolv.ence property, the transformation of 
sample data points and a suitable interval extension of the affine multiquadratic 
form. 

4.2 Interpolat ion with Af f ine  Mul t iquadrat ic  Forms 

If c ~ ~, b ~ ~" and d ~ Mf(n x n) is an upper triangular matrix, then q: ~" ~ R, 
x = (41 . . . . .  ~,)T~--~q(x) := xT ( sJX  + b ) +  c is called an aff ine or complete multi- 

quadratic form. The m = = (n + 1)(n + 2)/2 multinomials q~k(X) := 
n 

~Xl(k),~2(k) ,~ ~h 21(k) + 22(k) < 2 for any k = 1, m are linearly independent. 
i ( k )  "~j(k)  . . . . . . . . . .  , 

The interpolation problem q(Xk) := Yk, k = 1 . . . . .  m is solved by the coefficient vector 
d = (61 . . . . .  6,,) T = (c, (ill . . . . .  fl,,)T, 6,, +2 . . . . .  6,,) T ~ E" of the linear equation system 



On Global Optimization Using Interval Arithmetic 329 

X 6 X4 

X 1 273 

Figure 2. Example for the unisolvence property of the quadratic form in ~2 for a set of sample points 
x = (~1, r r�9 The points x 2 and x s of the unisolvent set {o} are exchanged via the curves x25 and xs2. 
There are configurations {o, o} where the solution of the interpolation problem yl = x{~Cxl + brxi + c 

is not unique. Here, all sample points lie on the diagonals 4x = ~2 and ix = 1 - ~z 

q ~ l ( x , , )  . . .  r  

This system of  equa t ions  is cal led unisolvent  if and  only if the general ized G r a m  
de t e rminan t  does  no t  vanish: 

det(qh(xk)) = 

q~,.(xl) 

�9 -- (pl  (Xm) 

".. : # 0 .  

�9 .. qlm(Xm) 
In  the  case of  the  affine mu l t i quad ra t i c  form such mul t i so lvent  sets are the real  
va lued  so lu t ions  of  q(x) = 0 which define hyper-surfaces  in •". F igure  2 shows an  
unisolvent  set of  the quad ra t i c  form in R 2. The  po in ts  2 and  5 can be exchanged 
p roduc ing  the in te rmedia te  set { ( ~ l , ( 2 ) r l ~ l = ~ 2 v ~ l = l - ~ 2 }  which is 
mul t isolvent .  F o r  example ,  toge ther  with the quad ra t i c  form q l ( x ) =  

xT(a;  1 a22/a12~X -1- (f11'f12)Tx + c there is an infinite number of solutions q2(x) = 

r (  r cq2 ) x + ( ~ l l + f l  _ r , r _ ~ t i + f l 2 ) r x + c f o r a n y r ~ [ R ,  
X 0 ~22  + ~ l l  --  r 

4.3 Transformation of the Objective Function 

F o r  object ive funct ions  of  o rde r  O(x) > 2 a p p r o x i m a t i o n s  by  affine mu l t i quad ra t i c  
forms would  p roduce  unsa t i s fac tory  approx ima t ions .  F igure  4 shows this behav iou r  
for the  power  funct ion f ( x )  = x 7. The in terval  extens ion of  q would  predic t  a 
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mis leading  min imizer  in the n e i g h b o u r h o o d  of  x = 1. In  this region the 
m ono ton i c i t y  test of  Hansen ' s  m e t h o d  would  always fail and  the m i d p o i n t  test 
would  d iscard  the area  no t  till many  bisec t ion  steps have been car r ied  out. 

W i t h o u t  in t roduc ing  add i t i ona l  degrees of  f reedom in the mode l l ing  funct ion or  a 
non- l inear  least-squares-f i t ,  this lack can be overcome by the app l i ca t ion  of  the 
bijective t r ans fo rma t ion  sinh o q: ~" --.,- ~, x ~ sinh(q(x)). 

The  coefficients of  the mu l t i quad ra t i c  form q a l low a wide var ie ty  of funct ions to 
be fitted. Three  typical  examples  are shown in Fig. 3. F o r  this sake,  the inverse 
t r ans fo rma t ion  37 = ars inh(y)  = ln(y  + x /1  + y2) is appl ied  to the or iginal  d a t a  
poin ts  y = f ( x )  of the object ive function.  The  mul t iquadra t i c  form q then is fi t ted to 
these t r ans fo rmed  d a t a  using Shepard ' s  m e t h o d  descr ibed in one of  the next  sections. 
The power  funct ion f ( x )  = x 7 of Fig. 4 is obvious ly  bet ter  a p p r o x i m a t e d  and  the 
mono ton ic i t y  is correc t ly  r ep roduced  within a wide region.  

5 [  ~ I , s . , ~ , ~ . "  [ i I 

t ," - ;  

. 1 " , , ' - , , /  ,, \ 

~" ~ -  b=O, b=-l, c=2 [ 
"~ ] . . . .  a=2, b=-4, c=2 ~ \ 

[ . . . . .  a=-l,  b=3, c=O 
. ~  I [ i i -5 

Figure 3. Plots of the function sinh(ax 2 + bx + c) with three different coefficient sets (a, b, c). Point 
symmetric functions (solid line) as well as axial symmetric functions (dashed lines) can be fitted 
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Figure 4. Approximation with quadratic form and hyperbolic sine. The power function x 7 is interpolated 
between the sample points x 1 = 0.5, x 2 = 1.5 and x3 = 2. The monotonicity is not reproduced correctly 
by the quadratic form ql(x) = a l x  2 + b l x  + el. An interpolation of the data arsinh(x~), i = 1, 2, 3, with 

qz(x) = a2x 2 + b2x + c2, however, leeds to a better result 
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4.4 The Choice of  the Sample Points 

The set of abscissas {Xk} for the interpolation problem has to be unisolvent and 
equally spaced in the interval vector X. In this section, a method for regular 
distributions of sample points in several dimensions is presented. For  simplification, 
the interval vector X is normalized to the unit cube K := [0, 1] x -.. x [0, 1] which 
can always be done by an affine coordinate transformation and vice versa. A 
placement of the sample points only on the corners of K is not the best solution 
because the number  of corners 2" exceeds the number  of sample points 
(n + l)(n + 2)/2 needed for interpolation by affine multiquadratic forms in 
dimensions n > 3. Besides, the total volume of K is not covered regularly by this 
strategy. The task of covering a multidimensional volume 'regularly' has been 
investigated by many  authors with mostly different intentions such as numerical 
integration by Monte-Carlo techniques or global optimization problems. A mea- 
sure for such a regular distribution of m points {xl . . . . .  Xm} in the unit hypercube 
is the so-called discrepancy function 

~ ( x l  . . . .  ,Xm) := max ]m-lu(xl  . . . .  ,x , , ;x)  -- v(x)l 
x e K  

where u(x~ , . . . , x , , ; x )  denotes the number  of k e {1 . . . .  ,m} with 0 ___ x k < x = 
(41 . . . . .  4,) r (componentwise), and v(x) = 4142... 4, denotes the volume of the box 
[0, x]. There is no finite distribution {xk} with ~ ( x l  . . . . .  Xm) < O(m -1 In "-1 m) [16]. 
For  example, the hypercubic grid in K e N" which is defined by the coordinate 
sections 4,. = i/(k + 1), i = 1, . . . ,  k with k e N and which contains m = k" mesh points 
has the discrepancy ~o, ia(xl , . . . ,xm) = 1/(k + 1) = (m 1/" + 1) -1 ,.~ m -1/" i fm >> 1. A 
random point distribution of these m points, on the other hand, has a discrepancy 
@r,,d(Xl,. . . ,  X,,) of order m - m  which is smaller than Noria in dimensions n > 3 [20]. 

Distributions which have even less discrepancy are the so-called LP~-sequences of 
I. M. Sobol [18], [19]. They can be defined as follows: 

1. V e K is called a binary interval vector if V i = [J~,Jl + 1] 2-~' with 2 i e N and 
0 < Ji < 2~ - 1 holds for any of its components. 

2. A countable set ~, consisting of 2 v points in K is called a P~-mesh for v, z E N 
with v _> z + 1 if every binary interval vector in K of volume I-IT=t 2-~' = 2~-v 
contains exactly 2 ' points of ~. 

3. A mesh (Xk) with k E N is called a LP,-sequence if every partial mesh (x~) with 
j2  ~ < ~ < ( j  + 1)2LL a e N and at least 2 ~+a elements defines a P~-mesh. 

The LP~-sequences have the following remarkable properties: 

~Le~(Xl, . . . ,X,,)  = (9(m -1 ln" m) for any m ~ N, 

~Le~(Xl, . . . ,X,,)  = (9(m -11n "-1 m) if m = 2 ~, v ~ N. 

The projection o fa  LP~-sequence o fa  hypercube K e N" onto one of its lateral faces 
K E N"-x is a LP~-sequence, too. 

A LP~-sequence represents a series of P~-meshes due to its definition. This is shown 
in Fig. 5 for a LPo-sequence in N2. The obvious mirror  symmetry according to 
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Figure 5. LPo-sequence by Sobol in ~2. Only the first 32 elements are presented. Points on the nodes 
belong to the right upper mesh. The sequences {o} and {o} consisting of the points 1-16 and 17-32 build 
a Po-mesh each of its own, i.e. in every mesh of volume 1/16 there is exactly one point of the two meshes, 

respectively. Both Po-meshes build a Pl-mesh together 

the diagonal x 1 = x 2 makes clear the difference between these so-called 'quasi 
random numbers' and pseudo random numbers. 

The construction of LP~-sequences is very a extensive task and therefore is not 
presented in this publication. The interested reader is referred to the original papers 
of Sobol [18] and [19]. An algorithm suitable for digital computers has been 
described by Antonov and Saleev [-2] and its implementation in FORTRAN-77 can 
be found in [4]. 

4.5 Approximation of  Irregularly Spaced Data with Shepard's Method 

Although the LP~-sequences of Sobol provide unisolvent sets for the described 
interpolation method, this unisolvence property may not be maintained during the 
bisection steps of Hansen's method where new sample points are generated 
continuously. Restoring the unisolvence property for a multisolvent set requires 
complex strategies, i.e. the replacement of one or more sample points by more 
distant ones. In higher dimensions this procedure can be very tedious and time 
consuming. Therefore the strict interpolation is carried out only in the initial box 
K using the unisolvent Sobol set. Afterwards, the objective function is approximated 
by a linear least-squares-fit: ~ff=l Wk II fk -- qkl[ 2 = rain, where fk and qk denote the 
values of the objective function and the multiquadratic form at the sample point Xk, 
respectively. After Shepard [17] a suitable weight function in the box X is defined 

by x = min(X) and W k = 1 - x xk[Ip , where Llx[] v := I~il p is an 

arbitrary p-norm with p >__ 1, and d = maxk= 1 ..... ~t I Ix  - x k l l ~  is the radius of the 
smallest sphere containing all M sample points, el, e2 ~ N \0 are arbitrary exponents 
for the present. Since at least one sample point lies on the surface of the sphere, 
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where w - 0, the number M has to be chosen M > m = (n + 1)(n + 2)/2. The other 
parameters have been set as follows: 

1. [ M = m +  l = ( n  z + 3 n + 4 ) / 2 [  

If the according set of sample points is multisolvent, this number is increased 
step-by-step. 

2. 

Ifxll~ = max~=l ...... Ix~l (maximum-norm). This norm can be calculated consid- 
erably faster than the Euclidian norm I1-Jr2. Between the two norms the relation 
I[111oo < Ilxl12 < ~/nlJxll| holds. A disadvantage of the maximum-norm, how- 
ever, is the lack of its invariance according to rotations of the coordinate system. 

3 . ] e l = 2 ,  e2---1 ] 

Considering the small number of sample points needed for the multiquadratic 
fitting, by choosing these values for e 1 and e 2 the weights do not decrease to 
much for increasing distances of sample points. 

The sample points themselves are chosen by calculating and storing the distance 
d~ = l[xi - xj[o~ from the current boxes midpoint x for every point produced by 
Hansen's optimization method, so far. Afterwards, these distances are sorted by 
increasing order and only the first M elements are used for the approximation 
technique described above. Therefore, not only the midpoint x of the current box, 
but also midpoints of adjacent boxes are used. In the beginning of the algorithm 
even far-away boxes have to be considered, since the initialization procedure only 
provides the minimum number m = (n + 1)(n + 2)/2 of sample points necessary for 
the Lagrange interpolation method. Note that due to this strategy, the procedure 
starts using very few information for forming the modelling function. This fact bares 
an additional incertainty of loosing some minimizers, however. Nevertheless, during 
the optimization progress, the amount of sample points and therefore the reliability 
of the modelling function is increasing dynamically. 

4.6 Interval Extension of the Modelling Function 

For the approximation of an interval inclusion function of F a suitable interval 
extension Q of the multiquadratic form q has to be chosen. Q is required to be a 
close representation of the range Q* over the box X: dist(Q(X), Q*(X)) = rain for 
any X e K. For this reason, a multiple occurrence of the coordinate intervals X, has 
to be avoided. Therefore, the natural interval extension X r d X  + b r X  + c is not 
the best solution. Taking advantage of the relation X ~ K =~ X~ = X~Xi for any 
i = 1,.. . ,  n and the subdistributive law in 9, Hornet's method is a suitable represen- 
tation of Q: 
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Figure 6. Inclusion of the three-hump-camel-back function by quadratic interval functions. The global 
minimizer x = (0, 0) r is included in the box Xg = ( [ -  1.22, + 1.22], [ -  1.22, + 1.22]) r x 10 -4 after 2000 

bisection steps 

The hyperbolic sine is strictly increasing in R and therefore S INH(Q)=  
[sinh(ql),sinh(q2) ]. The hyperbolic cosine, on the other hand, has to be distin- 
guished in R+ and ~_: 

~ [cosh(qi),cosh(q2)] if Q > 0 

COSH(Q) = j[cosh(q2),cosh(ql)  ] if Q < 0 
/ 
([min(cosh(ql),eosh(q2)),max(cosh(ql),cosh(q2))] if Q ~ 0 

The i-th component of the interval gradient is calculated as 

(VSINH(Q(X)))i=( b+ k=i ~ (aik + aki)Xk) COSH(Q(X))" 

The method has been applied to the three-hump-camel-back function again and the 
bisection process is shown in Fig. 6. 

5. Results 

Our optimization method has been applied successfully to a practical example 
which has already been treated by local methods [6], [10]. The task was to reduce 
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the diameter of a electron beam spot in an lithography device consisting of four 
magnetic lenses. The sytem was modelled by 19 parameters defining the geometries, 
positions and currents of the lenses together whith the mask and wafer position. 
Further details of the modelling technique can be found in [14] and [15]. 

The optimization algorithm has been programmed in FORTRAN-77 an runs on a 
vector computer Convex-220 of our local computer centre. It took about 150 
CPU-hours and 10000 function calls to isolate the global minimizer with sufficient 
accuracy. The according minimum leads to remarkably better system properties 
compared with the results of the local methods of [6] and [10]. In [14] and [15] a 
more detailed discussion of the results is given. 

6. Conclusion 

In contrast to Monte-Carlo methods or deterministic algorithms like dynamic 
programming, in the present state of the art Hansen's method seems to be the only 
reliable tool for the safeguarded inclusion of all global minimizers of a real valued 
objective function in a rectangular region of the parameter space. In every stage of 
the minimization process the solution is included in the union of subboxes cal- 
culated, so far. The algorithm is well suited for the implementation on a digital 
computer since memory requirements are very small due to the representation of 
large parameter regions as single points in the interval vector space P. 

The modelling of the objective function by complete multiquadratic interval 
functions allows the application of the optimization method to conventionally (that 
means in real arithmetic) programmed system simulations. The method, however, 
is still very time consuming owing to both, the numerous system calculations and 
the subsequent modelling process which requires an extensive sorting procedure 
and the solution of a linear system of equations in many dimensions. The main 
disadvantage is the loss of the safeguarded inclusion property of the modelling 
interval function since the approximation error cannot be estimated with certainty. 
Nevertheless, this drawback seems to be of less importance if non-singular, i.e. 
smooth objective functions are investigated, and the inclusion isotonicity test 
represents a sufficient mean to avoid the elimination of regions possibly containing 
global minimizers. High-level programming languages supporting interval arith- 
metic, on the other hand, allow the construction of genuine inclusion functions and 
enable the application of Hansen's method with none of the restrictions mentioned 
above. 

Since interval mathematics is a powerful tool not only for the treatment of global 
optimization problems but also for the automatical control of round-off errors in 
daily numerical calculations, the propagation of interval arithmetic as well as its 
software based implementations and the development of hardware based realiza- 
tions, similar to the modern vector processors, has to be forced along. On the other 
hand, our investigation has shown that even without such advantageous tools the 
global optimization of realistic and highly complex systems has become feasible. 
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