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Abstract - -  Zusammenfassung 

An Interval Computational Method for Approximating Controllability Sets. An interval computational 
method is proposed by means of which the null-controllability set of autonomous nonlinear systems can 
be approximated. 

AMS Subject Classifications: Primary: 93B05, Secondary: 65G10 

Key words: Controllability set, interval mathematics 

Ein Intervallverfahren zur Approximation von Steuerbarkeitsbereichen. Es wird eine Intervallmethode 
vorgeschlagen, mit deren Hilfe der Null-Steuerbarkeitsbereich von autonomen nichtlinearen Systemen 
approximiert werden kann. 

1. Introduction 

Controllability problems are undoubtedly of great practical importance in control 
theory. That also includes the determination of the appropriate controllability sets 
(CS). Approximations are here inevitable because the exact computation of these 
ranges is complicated and linked up to great difficulties especially for nonlinear 
systems. The references in this direction (see [1 ] - [7 ] )  contain almost only theo- 
retical aspects. The aim of this paper is to show a way for the numerical realization 
of such me thods  demonstrated at the variant proposed in [6]. Therefore, it is 
described once more in Section 2. Then the numerical realization of essential parts 
of that method will be shown in the following two sections. The results achieved by 
it will be illustrated by examples given in Section 5. 

2. Controllability and Controllability Sets 

Consider the nonlinear autonomous system 

Yc(t) = f ( x ( t ) ,  u( t ) ) ,  t ~ [0, ~ ) ,  (2.1) 

where f: X x U ~ g~n is continuous, X _ •", 0 E int(X), U _ R m, m _< n and U is 
compact. We consider as admissible controls piecewise continuous functions u: 



36 P. Burgrneier et al. 

[0, or) ~ U and assume further that for each admissible control under a given initial 
condition x(0) = x ~ �9 N" the system (2.1) has a unique solution x(t) = x(t; O, x ~ u), 
t_>O. 

Definition 1: (2.1) is called null-controllable from x ~ �9 X iff there exist a time 
T > 0 and an admissible control u: [-0, T]  ~ U such that x( T; O, x~ u) = 0. The set 
of all these points x ~ �9 X from which (2.1) is null-controllable is called the null- 
controllability set 0-CS of system (2.1). A system is said to be local null-controllable 
iff 0 �9 int(O-CS). [ ]  

The method for estimating the 0-CS of system (2.1) from the inside and the outside 
proposed in [6] is based on the use of LYAPUNOV-functions which are functions 
of the following kind: 

Definition 2: A function V is called LYAPUNOV-function iff 

(a) V: ~n ~ ~ is continuous and in R"\{O} continuous differentiable; 
(b) V(x) > 0 for x ~ 0 and V(O) = O; 
(c) D(c):= {x �9 N"[ V(x) < c} (2.2) 

is bounded for all e �9 R+ := {z �9 R[z > 0}. 

Let 54 be the set of all LYAPUNOV-functions. [] 

We remark that the condition (c) holds if limllxll_.~o V(x) = o% where [[. [J is the 
Euclidian norm in ~" (see [8]). Besides, we consider such c e R+ for which D(e) c_ X, 
where X, of course, in practical computations is bounded, too. 

Moreover, the following notations are used: 

i=x --~xi Jitx" u) = , f(x,  u) , (2.3) 

M := t x  e X min W(x,u) < O}, (2.4) 
L t uev 

E := {x E X min W(x,u) = O} , (2.5) 
u E U  

B ( E , q ) : = { x � 9  inf I lx -y [ I  < @ ,  (2.6) 
yEE 

D(e, e):= D(c)\S(e), (2.7) 

s(~) := {x �9 ~"1 ltxtt < ~}, (2.8) 

G(c, E, ~, tl) := O(c, 8) n B(E, tl) (2.9) 

and finally 

d(c) := {x e N"[ V(x) = c}. (2.10) 

As a possible access for estimating the 0-CS of autonomous nonlinear systems from 
the inside and the outside, the following theorems are proved in [6]: 
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Theorem 1: Suppose for for a local null-controllable system (2.1) that there are a 
number c ~ ~+, a L YAPUNOV-function V ~ ~ and a continuous differentiable func- 
tion F: X ~ • such that the following conditions hold: 

(i) rain. ~ v W(x, u) <_ 0 for all x E D(c) ~_ X (in other words, D(c) ~_ M); 
(ii) for each e ~ ~+ there exist numbers tl, ( ~ ~+ and a partition of G(c, E, e, tl) into 

G 1 and G 2 with positive distance such that for each ~ ~ G(c, E, e, q) there is a ~ ~ U 
satisfying the inequalities 

W(~, ~) <_ 0 and 

/ ~ , f ( ~ , g ) )  > ~  for 2-e G 1 

( x ~ , f ( f f , ~ ) ) < - ~  for~-~ G2. 

Then the O-CS of system (2.1) contains the set D(c). [] 

Theorem 2: I f  there are c ~ g~+ and V ~ s such that W(x, u) > 0 for all (x, u) 
d(c) x U, then no point of the set R"\  D(c) belongs to the O-CS of system (2.1). []  

In [-6, 7], examples demonstrate the applicability of these theorems but at the same 
time they also show the problems to verify the appropriate conditions. Especially, 
the computation of the ranges M and D(c) ~_ M involves considerable difficulties 
already for simple nonlinear systems. 

Knowing E, a function F often can be chosen in a simple way, so that the condition 
(ii) which at first sight appears much more complicated is not so difficult to verify. 
Furthermore, in general it does not influence the largeness of the approximations 
such that in the following we only look at the computation of the ranges M and 
D(c) as well. 

3. An Interval Method to Compute Enclosures of M 

In order to determine 

M = {x  ~ X min W(x,u) < O} , 
u e U  

numerical methods are suitable working with sets. Such sets should be simply 
representable and it should be possible that arithmetical operations and determina- 
tion of values of more complicated expressions are computable without difficulties. 
Therefore, closed intervals are used as such sets. 

An n-dimensional dosed interval Y _ ~" is represented by 

\[Y.,Y.]  
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where y~ _< Yl . . . . .  Y, < Y,, and Yis the set of all such y = (Yi,--., Y,) e R" satisfying 
Yi < Y, < Y, for each i = l(1)n. On this manner the infinite set Yis given by 2n real 
numbers yl ,  . . . ,  y,. The arithmetical operations + ,  - ,  , / are defined for one- 
dimensional intervals Y = [,y,y], Z = [Z,~] in such a way that 

Y . Z = { y . z l y e Y ,  z e Z } ,  �9 ~ { + , - , - , / }  

holds. Then the endpoints of Y .  Z are given in a simple manner by the endpoints 
of Y and Z, and this remains valid also if the operations will be extended to vectors 
and matrices (see [9]). 

In an analogous manner the domain of the standard functions x / - ,  sin, cos . . . .  
can be extended such that for each function f ,  its extension f~ and each interval 
Z _c dom ( f )  the following relations hold (I(R): set of all closed intervals of real 
numbers): 

f:(Z) e I(R) (3.1) 

{f(z)lz e Z} c fz(Z) (3.2) 

z ~ dom( f )  ~ {f(z)} = f1([z, z]). (3.3) 

As an example let be f(zl,z2):= zl(1 - zz). Then it can be set up f:(Z1,Z2):= 
Z~ (1 -Z2) ,  and the properties (3.1), (3.2), (3.3) hold with equality under (3.2). Setting 
Z~ = [ -  1, 2] and Z2 = [,0, 3], we get 

{f(zl,z2)lz ~ ~ Zl,z2 e Z2} = [ - -1 ,2](1  -- [-0,3])= [ - -1 ,2 ]  I---Z, 1] = [ - -4 ,2 ] .  

In general under (3.2) only " _ "  is valid, and an interval function f t  having the 
properties (3.1), (3.2) and (3.3) is called an interval extension of f .  The property (3.2) 
remains valid if during the computation of the value of f1(Z) always outwardly 
directed rounding will be done. In [-9] several possibilities are given to get interval 
extensions f t  of real functions f.  

The interval extensions fx used in this paper are stated without difficulties in such 
a way that 

Y,Z e dom(f~) ^ Y c_ Z ~  f,(Y) c_ fi(Z) (3.4) 

(inclusion isotony of f:) holds too. 

Now we return to the essential request of this section, namely to compute the above 
M. For  the sake of simplicity we directly assume without loss of generality that 
X ~ I(R)" and U e I(~)". Because of the continuity of W the set M can also be 
described in the following manner: 

M = {xeX l~u (ue  U/x W(x,u) < 0)}. (3.5) 

To enclose M in the algorithm below, partitions of U into subintervals U u) will be 
used in order to be able to decide from subintervals X (~ of X whether 

X (~ _ M (3.6) 
o r  

X (~ n M = ~ (3.7) 

hold or whether nothing can be said about the correctness of (3.6) and (3.7), 
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respectively. (3.6) resp. (3.7) can be confirmed by the strength of (3.2) in the following 
manner: let (u(J))j~Q be a family of subintervals of U with 

U v J)= v, (3.8) 
jeQ 

X ") any subinterval of X and let W~ be an inclusion isotone interval extension of W 
then 

3j(j ~ Q ^ Wi(X ~~ U ~j)) _< 0) ~ X ~i) _~ m ;  (3.9) 

Vj(j ~ Q ~ W1(X ~i), U ~j)) > O) ~ x e) c~ m = ~ .  (3.10) 

If neither of the two premises stated in (3.9) resp. (3.10) hold, i.e., if for each j ~ Q 
the right hand endpoint r( WI(X (~ U~J))) of W~(X "), U ~J) ) is greater than zero and there 
is a j ~ Q such that the left hand endpoint l(Wt(X ~~ UtJ))) of W~(X (~ U ~ is smaller 
or equal than zero, then one has to try by means of finer partitions of U and possibly 
o fX  ") to verify (3.6) resp. (3.7). On the strength of(3.4) the inequality W~(X "), U) < 0 
is correct at most for such subintervals D of U, for which U ___ U ~ and I(W~(X ~~ 
u~J))) < 0 for any j. Consequently for a further investigation to X ") only such U (j) 
should be subdivided. But in order to limit the organizational expense we compute 
enclosures of M by means of the following algorithm: 

It will be built up four lists 3~, ~,  3 and 1I, where the lists 3E, ~) and 3 contain only 
subintervals of X and the list 1~ is always a splitting of U into subintervals U ~j). At 
the beginning 3~ only contains X and 11 only U, ~ and 3 are empty. The variables 
P, Q, R, S will have as values the actual numbers of members of 3~, 11, ~ and 3,  
respectively, so that at the beginning P = Q = 1 and R = S = 0. Moreover, let/5, 
Q, R and S be defined as maximum values of P, Q, R and S, respectively. Let the 
elements of 3E, 11, ~) and 3 be numbered from X ~1) to X ~e), U ~1) to U ~Q), y~l) to y~R) 
and Z ~) to Z ts), respectively. The list 3 contains only such subintervals X t~ of X for 
which X ~~ _~ M is proven and analogously r only such X t~) with X I~ c~ M = ~ (the 
list ~ will be used at first time in the next section). 

After the above-mentioned initialization the algorithm may work as follows: 

while P <_/5 and Q <_ Q and R <_ R and S <_ S do 
begin i := 1; 
repeat H := 0; j := 1; 

repeat if r(W~(X ~0, Uti))) < 0 then 
begin S := S + 1; Z ~s) := Xti); 3~ := 3s 3 := 3 w {z~S)}; 

if P = 1 then STOP else 
begin X ~~ := Xte); P := P -- 1; j := 1; H := 0 end 

end else 
begin ifl(l/Vt(X ~~ Ut3))) > 0 then H := H + 1; j := j + 1 end 
until j > Q; 
if H = Q then 
begin R := R + 1; Y~) := X~~ ~) := ~ w {y~m}; ~ := 3~\{X~0}; 

if P = 1 then STOP 
else begin X ~~ := X~P); P := P - 1 end 

end else i := i + 1; 
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until i > P; 
subdivide some of the X (~ ~ 3s U (j) e Vl and replace X (i) resp. 
U u) by subintervals; 
renew the values of P and Q 
end. 

The variable H counts for each fixed i s { 1 . . . .  , P} the number  of those U t/) satisfy- 
ing l(W~(X ~~ u(J))) > 0. If and only if H = Q it is proven that X (~ c~ M = ~ ,  and 
X (0 will be taken over from the list 3s to the list ~J. 

There are several strategies to get splittings (partitions) of the X r176 and U r respec- 
tively. For  instance, one can bisect those X ~~ resp. U (i) which have maximum span, 
or one bisects some or each of the X (0 resp. U (j) completely getting 2" resp. 2 m 
subintervals. The span of Y E I(~)" is given by 

span Y:=  max Yi - Yi. (3.11) 
l < i ~ n  

If the algorithm will be broken up at any time then always 

S S P 

U Z(i) c_ M c_ U Z(i) w ~ X (0 (3.12) 
i=1 i=1 i=1 

for the actual lists 3s and 3. If one of the STOP's  will be reached then the list 3s is 
empty and 

S 

M = ~ Z (i). (3.13) 
i=l 

Under very general assumptions concerning W and WI it can be proved that as a 
result of splitting the elements of 3s and 11 finer and finer the set M will be enclosed 
by (3.12) as close as one wishes. Such an assumption says that for each interval 
Yc_X 

if span Y -~ 0 then span WI(Y ) ~ O. (3.14) 

If 

then for each x e X 

4. Computing the Set D(c) 

-c := in f {V(x) lx  e X \ M }  (4.1) 

V(x) N c =~ x ~ M ,  (4.2) 

and for each cl > c there are elements x e ~ " \ M  satisfying 

c < V(x )  < c l .  

By the following algorithm we want to compute an interval [a2,b2]  with span 
[a2, b2] < e and c e [-a2, b2], where e > 0 is given. It  will be used that for the lists 
t and ~ computed in Section 3 
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R P R 

U yti) c_ X \ M  c_ U xti) u U yti) (4.3) 
i=1 i=1 i=1 

the boundary points of M excepted. 

We assume max{P, R} > 1 (in the other case we must replace X by a larger interval). 

Now the algorithm will be given where UP is a subroutine enclosing the minimum 
of V on Y into an interval [a l ,  b l ]  satisfying bl  - a l  < e. 

if P > 1 then 
begin b2 := r(V/(Xtl))); a2 := b2; 

for i := 1 to P do 
if b2 > l(Vi(Xa))) then 

begin Y := X(i); UP; a2 :-- min{al ,  a2}; 
b2 := min{bl,  b2} 

end 
end else 
begin b2 := r(V~(Y(1))); a2 := b2 end; 
if R >_ 1 then 

for i := 1 to R do 
if b2 > l(Ft(Y ti)) then 
begin Y:--- y0); UP; a2 := min{al ,  a2}; 

b2 := min{bl,  b2} 
end; 

write a2, b 2. 

After termination of the algorithm it is c ~ [a2, b2] and b2 - a2 < e. Therefore for 
c := a2 

{x e Xl V(x) <_ c} ~_ M. (4.4) 
Algorithm UP: 

k : -  1 ; j : =  1 ;W (1):= Y; 
repeat bisect W tl) in one coordinate direction j into the subintervals Y1, Y2; 

W ") := Y~; k := k + 1; W (k) :=  Y2; 
a 1 := min l_< l_<k l(V/(Wtt))); b 1 := min l_<L_k r(V/(WV))); 
remove all those W u) from the list ~[B, for which I(VI(WU))) > bl holds; give k 
its new value; 
arrange the remaining W (j) monotone increasing with respect to the I(V~(WtJ))); 
if j < n then j := j + 1 else j := 1; 

until b i - a 1 < e. 

Here, a list ~l~ will be built up of actual length k, where immediately such W t~ will 
be removed from ~B on which V cannot take its minimum value. All those W ti) will 
be partitioned which are earliest candidates for V taking its minimum value of W t~ 

After computation of c finally an algorithm will be given to compute the set 

D(c) := {x e MI V(x) < c}. (4.5) 

It will be used that 
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S 

U Z(/) --- M (4.6) 
i=1  

and intervals will be searched under the Z (0 or as subintervals of them such that the 
maximum value of V and Z (~ is smaller or equal than c. Each found interval will be 
taken into a list ~ which is at first empty and whose actual length is given by the 
value of k. At each stage of the computat ion the enclosure 

k k S 

Q) W (~ ~_ D(c) c_ ~) W(i~ ~ U Z(~ (4.7) 
i=1  i=1  i=1  

holds. 

The algorithm: 

k : =  0 ; l : =  0; T : =  S; 
for  i := 1 to S do 

/fl(VI(Z(1))) > c then 
begin Z (~ := Z(S); S := S - 1; t := 1 + 1 end 
else 
/fr(Vi(Z(~ < c then 

begin k := k + 1; W (k) := Z(~ Z (~ := z(S); 
S := S -  1 end; 

i f l  + k = T then STOP else 
begin arrange Z (1), . . . ,  Z (s) in such a way that 

span Z (1) > ... _> spanZ(S); 
(t) repeat bisect Z in coordinate direction of maximum width and name the two 

subintervals by Xt  and Xz; Z (1) := X1; S := S + 1; Z (s) := X2; 
arrange Z ~) . . . .  , Z (s) in such a way that span Z (1) .>__ ... > span z(S); 
/fr(V1(Z~ < c then 
begin k := k + 1; W (k) := Z~ 

for  i := 1 to S - 1 do Z (~ := Z(~+~); 
S := S -  1 end; 

until s p a n Z  (t) < e 
end. 

If during the computat ion the STOP will be reached then 

k 

O(c) = U W(O" 
i=1  

Since the list ~ will be used only once, namely in order to compute e, it is not 
necessary to built it up explicitly. One can compute recursively the minimum value 
of V on the intervals Y"). 

5. Examples 

In [6, 7] five second order examples are considered. Some of them were to demon- 
strate the applicability of the proved theorems without carrying out the approxi- 
mations in detail. 
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For examples developed from whose we shall illustrate the above described com- 
putational method whereby the first linear system is computed in order to compare 
the achieved result with those in [6]. 

Example 1: 
Consider the system 

sq( t )  = x2( t )  

:~2(t) = - x l ( t )  + x2(t) + u(t) 

with U = [ -  1, 1]. Using a LYAPUNOV-function V of the form 

V(x) = x~ + x~ 

we obtain 

W(x, u) = X2(X 2 "}- U). 

(5.]) 

x2 

x={-1.2,1.2]~[-1.2, 7.2] 

: [ I : { x e X l r n i n  W(x ,u )  > O} M 
ueU 

N N : O(c)  : { x e X I m i n  W(x ,u)  = O} 
ueU > 

Figure 1 
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The interval extensions V~ and W~ used in this and the following examples are 
obtained in such a way that real variables in V and W are interpreted as variables 
for intervals. 

The appropriate ranges M and D(c) are shown in Fig. 1. They agree with those in 
[6] which are determined analytically. In the same paper it is also shown that the 
condition (ii) of Theorem 1 is satisfied. 

Example 2: 
A nonlinear system derived from Example 2 in [6] is the following: 

~l(t) = 2xl(t) + u(t) 
(5.2) 

~2(t) = x2(t)[1 + exp(xl(t)x2(t))] + u(t) 

where again U = [ -  1, 1]. 

The LYAPUNOV-function V with 

V(x) = 0.5(x2/4 + x~/9) 

leads to the sets in Fig. 2. Here, one can see that no range D(c) ~_ M is determined 
for a sensible number c. Simultaneously it becomes clear that on the other hand the 

 ii!ii!iiiiiiiiiiiiiiiiiliiiiiiii!ilili!i!iiiiiiiiiiiiiii  

x =[-.8,.8]~[-.%.8] 

Figure 2 
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assumptions of Theorem 2 are verifyable numerically using the algorithm elabo- 
rated in Section 4 with appropriate modifications. 

Example 3: 
Finally we consider another nonlinear system 

:~1 (t) = x 1 (t) exp(x2(t)) + u(t) 
~2(t)  = x~(t) (5.3) 

with U = [ -  1, 1]. 

It is derived from Example 2 in [7] where the validity of the appropriate assump- 
tions of the theorem are proved without determination of the controllability set in 
detail. 

Choosing this time a function V of the form 

V ( x )  = z 3 d r  + 0.Sx~ = 0.25x~ + 0.Sx~ 

we obtain the sets M and D(c) in Fig. 3. 

~-~iii!~iiiiiiiili~!i!iiiiiiiiiilil iiiii!il iiiiiiii!iiii iiiiiiiiiiiiiiiiiiiiiliiiiiiiiiii!iiiiiii~iiii 
_--~!ii!H~!i~i~iiii~]~i~ii!iii~i[~i~ii~i~iiii~iiii~iiiiii~iiii~iiiii~ii~i~!~i~i~i~i~!i~ii~ 

~i iii i i! ii i l i! iii iii ii iiii!iiiiii iiiiiiii! 
~J!iJiiiLHiiiiiiiiili,ii~i!iiiiiiiiii!!iiiiiiiiiiiii!!ii!iiiiiiiiiiiiiiiii! 

X=[-L2, 1.2]x[-l.2, 1.2] 

Figure 3 
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