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Abstract

This paper considers the robust stability problem for linear continuous-time descriptor systems with interval system
matrices. We first derive some necessary conditions for the considered interval descriptor system to be regular, impulse-free
and stable. Then, under some constraints, a necessary and sufficient condition is given by using the Kronecker product
and p-analysis. (© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Descriptor systems present a much wider class of systems than normal systems [2,10,13]. Recently, the
robust stability problem for descriptor systems has been addressed (see [3,6,9,11] and the references therein).
However, these presented results are mainly on descriptor systems with 4-matrix having uncertainties. If
the derivative matrix E is perturbed, the problem is quite involved, due to the change of the rank of E,
and this problem is seldom studied. In [4], Hu et al. study the robust stability for descriptor systems with
E-matrix being subject to unstructured perturbations. In [5], the considered uncertainty of E-matrix is of the
unidirectional nature.

For standard state-space systems, studies on the stability for system matrix A4 being interval have been
done (see [12,14] and the references therein). For descriptor systems, the robust stability problem with system
matrix 4 being interval was considered in [8,7], and necessary and sufficient conditions were derived using
different methods.

In practice, the structure and behavior of a descriptor system are directly related to the derivative matrix
E, so it is meaningful to study uncertain descriptor systems with the matrix £ under possible perturbations.
Motivated by these observations, we will focus in this paper on the robust stability problem for structured
uncertain descriptor systems with the system matrices £ and 4 being subjected to interval perturbations. By
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using the technique of structured singular value and Kronecker product, we give partial solutions for the robust
stability. This paper is organized as follows. In Section 2, some existing results together with preliminaries
are presented. The main results are given in Section 3. This paper is concluded in Section 4.

2. Problem statement and preliminaries

For given n x n matrices 4™ = [a}] and 4™ = [a}/] with a]} <a}],
matrix, i.e., the set of all matrices 4 = [a;;] satisfying aj; <ajj Saﬁ‘;’, iL,j=1,...,n. We will use uys(M) to
denote the structured singular value of M with respect to the set of all allowable 4. (See [1,15] for mixed
u-analysis.)

Consider the following uncertain linear continuous-time descriptor system

we use [A",AM] to denote the interval

Ex(t) = Ax(1), (1)

where E € [E™,EM] and 4 € [4™,AM] are interval matrices.

For a descriptor system (E,A4), if det(aE — A) # 0 for some o € C, then it is called regular, in which case
the existence and uniqueness of the solution of the system will be guaranteed. If degdet(s£ — A) =rank E,
then it is called impulse-free. Otherwise, it will possess impulsive modes, which are undesirable in system
control. If all the poles of det(sE — A) lie in the open left-half complex plane, then it is said to be stable.

The following lemmas are useful in the development.

Lemma 2.1. Let I, and A be n x n identity matrix and m x | matrix, respectively. Then we have

rank[l, ® 4 A ® I,,] < 2nl, (2)

where ® denotes the Kronecker product.

Proof. Let the columns of 4 be a; =[ay; ---am]’, i=1,2,...,1. If ¢; =0, then rank[/, ® a; a; ® I,] =0. If
a; # 0, without loss of generality, assume that a;; # 0. We have

[ a; aliln
a axily
rank[/, ® a; a; ® I,] = rank
L a; ami]n
B O alil,,
—1
—aya,; a; a; axl,
= rank
L —amidy; Qi a; Amily
[0 ayil,
0 a azil,
= rank
L 0 a; amiln

< 2n.
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Thus, rank[l, ® 4 A ® I,]< Zf:l rank[/, ® a; a; ® I,] < 2nl. This completes the proof. [
Lemma 2.2 ([11]). Let E, A € R"™" and degdet(sE — A) =rank E. If for any two eigenvalues Ay and Ay of
the pair (E,A), there holds 1, + A, # 0, then
dimnull(E ® 4 + 4 ® E) = (n — rank E)? 3)
where null(-) denotes the nullity of (-).

Lemma 2.2 implies the following result.

Lemma 2.3. Let E,A € R"™" and rank E = r. If the pair (E,A) is regular, impulse-free and stable, then
rank(E ® A+ A ® E) =2nr — 1. 4)

Proof. Note that the stability of the pair (£,4) implies that for any two eigenvalues A; and 2, of the pair
(E,A), there holds A; + A, # 0. Since dim(E ® 4 + A4 ® E) = n?, the result follows immediately from Lemma
22. O

3. Robust stability

For system (1), Let
— Y E"+ EM), [E"EM]=E,+[E",E"] (5)
and
= 1" 4 A"y, A" AM] = Ay + (A", A1), (6)

Here, we use N + [N",N™] to denote that each matrix in [N",N¥] is added with N. It is obvious
that N 4+ [N”",NM] =[N 4+ N™ N + NM] is still an interval matrix. Then, every entry of the matrix in
[Em EM] and [4 " A_M] is either zero or perturbed with the symmetric interval [l(e’” - M ,2(eM —e¢j;)] and
[ s(af; — a ,2(a,j —ajj)l, respectlvely Denote ¢ and p the number of perturbed entrles of E (and thus of
[E", fo D and A (and thus of [4" A 1), respectively. For each perturbed entry in ith row and jth column of
[Em,EM] and [A A ], define the matrix E,j and A,j by

0 0 0 0

S Rnxn, A_lj l(aM a™ S Rnxn' (7)

s(ey —eff 3(a; —aj

0 0 0 0

Then each of the above matrices contains only one nonzero entry. Label these matrices from E; to £, and
from 4, to A,, respectively. Then we have

q
[E".EM)=Eo+ Y wE, -1<wu<l, i=1,...q, (8)

p
[A" A=Ay + > pid;, —1<B;<1, j=1,....p. 9)

Suppose r =rank Ey. Then there exist two nonsingular matrices P and Q such that
I, 0

A =
=Ey. 10
00 0 (10)

PEyQ = [
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Define
ED gl
= A 11 £12 .
Ei:PEiQ: E(l) E(l) , 1= 1;25---a% (11)
21 F22
_ AU) A(f)
A 11 “12 .
Aj:PAjQ:[ L j=0,1,...,p. (12)
A5y Ay,

With the transformation matrices P and Q, system (1) is restricted equivalent [13] to the following uncertain
system:

q P
<EO +y ocl-E,) i()y= Ao+ Bid; | x(t), (13)
i=1

j=1

where —1<o; <1 and —1<f;<1. So, to solve our problem, it suffices to study the robust stability of system
(13). The following result provides some necessary conditions for system (13) to be regular, impulse-free and
stable.

Theorem 3.1. If system (13) is regular, impulse-free and stable for all —1<o; <1 and —1<p; <1, then all
the following statements are true:

(i) E;’z) =0 forali=12,...,q.

(i) If ESY) # 0, then E\) = 0. (If E\) # 0, then E{) =0.)

1 () _
" ER =0
21

(iii) If ES) # 0 and EY) # 0, then ES)[EY) EY)1=0, and [

E®
E

Proof. (i) Suppose for some &, Eg;) # 0. We prove in the following that system (13) is not regular,
impulse-free and stable for all i=1,2,...,q.

Note that for all i =1,2,...,q, we have rank E;=1. Since Egg) # 0, it is easy to see that there exist two
nonsingular matrices P, and Oy such that

0,
PyEoQr = Ey, PyE Ok = 1 , (14)
On—r—l
where 0, € R"™*" is a zero matrix. Let
- Ar+1 X
PrAoQr = , (15)
X A —r—1

where A, € RUTDX0+ D and 4, , | € RO—=Dxt=r=1 By setting o; =0 (i # k) and B; =0, system (13)
is restricted equivalent to the system

I. 0 0 y
, X

0 o 0 l ! ] . (16)
X An—r—l

0 0 On—r—l

Three cases may occur.

Case 1: If A,_,_ is singular, then system (16) is not impulse-free for all —1 <oy <1. Thus, system (13)
and hence system (1) is not regular, impulse-free and stable for all —1 <o; <1.

Case 2: If det(PyAyQOy) = 0, then it is obvious that system (16) is not stable for all —1 <oy <1. Thus,
system (13) and hence system (1) is not regular, impulse-free and stable for all —1<o; <1.
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Case 3: If A,_,_, is nonsingular and det(P;A4yQy) # 0, then the characteristic polynomial of system (16)
is given by
I, 0
Ar+1 X
pol(A,ap)=det| A | O oy 0 -
X Anfrfl
0 0 O,,,r,1

&k

I,
=det(4,,—,_ )det ( l 0

) I (1 e (P Q0)

= oy det(dy— 1) - 4 (1) det(PrAo ). (17)

It is easy to see that, for some o; € [— 1,1]/{0}, the signs of oy det(4,_,_1) and (—1)*'det(P;4oQs) can be

opposite by selecting o > 0 or o < 0. From polynomial stability theory, pol(/,a;)=0 has a root in the right

complex half plane, which implies that system (16) is not stable for all —1 <oy <1. Thus, system (13) and

hence system (1) is not regular, impulse-free and stable for all —1<Co; <1. This completes the proof of (i).
(i1) Since E %) =0, and rank £, = 1, then E;’l) # 0 implies EYZ) = 0. The dual case follows similarly.

(iii) With (i) and (ii) in hand, if Eg’l) # 0 and E%’z) # 0, noticing that rank £; =rank £, = =1, we see that there
exist two matrices 7; and Tx with appropriate dimensions such that E%’l) =T, LE;’R and Eﬁ) :Egjz) Tg. Then, by
performing row transformation to E;’l) and column transformation to E}’Z), we can easily find two nonsingular

matrices
b _[rom i o I 0
L= an i =
ij 0o I j Te I
such that
_ _ _ 0, 0 _ . EY
PyEQ; = Eo, P EQ; = PykE; = 20 . PyE; Qi =E;Qy o (18)
21
Suppose that ES)E') # 0. Let
L 0 I, —oEY
T, = () and T;= I
— o ED 1 0 I

Using a method similar to that of (i) (the only difference is that T}P,:,-A_OQUTJ- is related to o; and o;. But
this does not affect the proof when «; and «; are sufficiently small), it can be proved that the system
(TiPiy(Eo + ouE; + 0,E;)QyT;, TiPijAoQ;T;) is not impulse-free and stable for all —1<ou <1 (k = i,j).
This is a contradiction. So, it must hold Egl)Eg) = 0. Noticing that

Eyy

rank [E](’i) El(é)] = rank @)
£y

:1,

we have
NP ER o
EDEY ED1=0 and i EY =o.
21

This completes the proof. [J
It is seen from (i) and (ii) in the above theorem that either
- E\)
[ES) ESN1=0 or l 12)1 =0

holds. In this paper, we consider a special case, for which we will give a necessary and sufficient condition
for the robust stability. The special case is based on Assumption 1.
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Assumption 1.

()
12

() )y _
[E5] E5;1=0 and £
2

=0 foralli=1,2,...,q.

The following lemma will be useful to achieve our main result.

Lemma 3.1. Suppose (Eo, Ao) is regular, impulse-free and stable, and rank(Eo+Z?:l wE;) = r. Then system
(13) is regular, impulse-free and stable for all —1<o; <1 and —1<; <1 if and only if

q P P q
rank <Eo + Z OtiEi> ® [ 4o+ Z ﬁjA_j + [ 4o + Z ﬁjA_j 02y (E_o + Z OCiE_i>
i=1 i=1

Jj=1 j=1
=2nr — r? (19)
holds for all —1<o; <1 and —1<B;<1.

Proof. The necessity follows easily from Lemma 2.3. For sufficiency, we prove by contradiction. Suppose
that system (13) is not regular, impulse-free and stable for all —1<o; <1 and —1<f;<1. Denote

q
O {Eo +Y ks

i=1

p

- lsaisl}, A(B)= A'o+Z[>’jA'j —1<p<1
=1

We consider two cases:

Case 1: There exist E(a) € &(a) and A(f) € /(f) such that (E(a),A(f)) is not regular or not impulse-free.
For this case, let two nonsingular matrices 77 and 7, render

. 0 Ay A
TE()T, = lo O] , TAP)T, = [A y ] . (20)
3 4

Then, A4 is not of full rank. By setting rank 44 = w, we can easily find two nonsingular matrices 75 and Ty
such that

. A4 0 Ay
o] , LBTAPRTT,=| 0 I, 0 |. (21)
Ap 0 0

r

T3T1E(OC)T2T4 = [O

Hence, we have the following rank equalities:

rank (E(a) ® A(B) + A(B) ® E(a))

=rank (I3 E()2T4) @ (T TAB) 2 Ts) + (T AB) T2 1) @ (T3THE(0) T2 T4 )

(A1 @L+1®4 L ®[04»] [04n]®1 0]
I, O
I ® 1 0 0
=rank A3 0
0 I, 0
® 1, 0 ®1, 0
A3z 00
i 0 0 o 0]

< 72 & 2rw + rank [, @ Ay Axp ® 1],
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where the second equality can be referred to [6]. From Lemma 2.1, we obtain

rank (E(a) @ A(p) + A(P) @ E(x)) < r? + 2rw + 2r(n — r — w)

= 2nr — rt.

This is a contradiction.

Case 2: System (13) is impulse-free (thus regular) for all —1<¢; <1 and —1<f;<1. But for some matrix
E(a) € () and A(B) € A(B), (E(a),A(f)) is not stable. By assumption, (13) is impulse-free for all
—1<o;<1, —1<B;<1 and rank (Eo + >, a;E;) = r, hence the roots of det(s(Ey + > wE) — (dy +
Z;;'):I BjA_j)) is continuous with respect to o; and f5;,. Noting that (Eo, Ay) is impulse-free and stable, there

must exist some o’s and f7’s satisfying —1<o; <1 and —1<p; <1, or say E. = Eqg + Y. ofE; and

A, = Ay + Zle ﬂij_ ;, such that (E,,A4,) have imaginary eigenvalues, say *wj for some w € R. Now, let
two nonsingular matrices 7} and 7, render

. 0 A, 0
TE. T, = 0o ol T1A.T, = 0 I (22)

with +wj being eigenvalues of 4,. Thus, 0 is an eigenvalue of 4, 4, =4, @I, + I, ® A,, that is,
rank (4, ® 4,) < r*. (23)
Then, we check that
rank (E, ® A, + 4. Q E,)
=rank (T} @ T) )(E+« @ Ay + A, Q E )T @ T»))

=rank ((T]E*Tz) ® (T]A*Tz) + (T]A*Tz) ® (T]E*Tz))

A, QL +1. A4, 0 0
=rank 0 Ly—22 0
0 0 0

<r*+ Qnr —2*)=2nr — 1* (24)

which is also a contradiction. This completes the proof. [J
We are now in a position to give the main result.
Theorem 3.2. Suppose that Assumption 1 holds and (Ey,Ay) is regular, impulse-free and stable. Then,

rank (Eo + > wE;)) = r and system (13) is regular, impulse-free and stable for all —1<o; <1 and
—1<B,;<1 if and only if any of the following holds:

(1) ua(H) < 1, (25)

(2) pi(H) <1, (26)
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where H € R(q+2p)(2nr—r2)><(q+2p)(2nr—r2) and H € R(p+2q)(2nr—r2)><(p+2q)(2nr—r2) are as fOHOWSI

(FHY - FRHy' FiHy' —Hy o - FiH)!
—1 —1 —1 —1
FyH, e FoH, FyH, —Hp - FyH,
e GH," - GHy' GH! 0 - GHy!
- —1 —1 —1 —1
H, o H, H, 0 - H,
—1 —1 —1 —1
G,Hy' - G,Hy'" G,H, 0 - G,H,
—1 —1 —1 —1
| H, - H, H, 0 . H,
[GiHy' -+ GH;' GH,' -H, - GH'
—1 1 — —1
G, H, G, H, G,Hy' —H, G, H,
| FiHo FHy'  FHy! 0 FiH; !
- —1 1 —1 —1
H, H, H, 0 H,
-1 — —1 —1
F,H, F,H, F,H, 0 F,H,
-1 — —1 —1
A H, H, H,
with
AVenL+1L049 L) 49 el
Hy = I ®4Y LedY) 0 ,
AV @1, 0 AVl
AV EQ+EY 0l E)odY 4D o5
F; = EN @49 EY) @49 0 . =12,
(0) (i) (0) (@)
Ay ® Eyy 0 Ay ® Eyy
AV oL+ 1,04 Lod) 4Dol
G = I @45 Ledl o |, j=L2...p
A @1, 0 APl
AP B+ E o BN wdl ADwE]
]—Iij: E(1)®A(J) E(1)®A(1) 0 , i = 1,”

) & gD ) & gD
A3 ® EY 0 A3Y ® EY

*Hlp ]
_qu
, (27)
— ql b
_qu
0
, (28)
7q)

g, j=1,...,p

and A € R@+2p)2nr—r 2yX(q+2 p)2nr—r?) and A € Rp+29)2nr—r 2y (p+2q)(2nr—r?) are as follows:

4= diag{all(anfrz)’ [RER) an(anfrZ)a .81[2(2nr7r2): SERR) ﬁpIZ(anfrz)}’

4= diag{ﬁll(anfrzﬁ [EEE) ﬁp1(2nr7r2)r a1[2(2nr7r2)s ERE) anZ(anfrz)}'
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Proof. Since (£, Ay) is regular, impulse-free and stable, from Lemma 2.3, we have
rank(EO X A_() + A_o ®Eo) = ranng =2nr — 1”2

i.e., Hy is invertible. Under Assumption 1, rank (E_‘O + Z?Zl oc,-El-)<r. From the proof of Lemma 3.1 (or, refer
to [6]), we see that rank (B® C +C ® B) <2nrank B — (rank B)? for any n x n matrices B and C. Thus, if (19)
holds, there must hold rank (Eq+ Y% , o;£;)=r. By using Lemma 3.1, we have that, rank (Eq+ Y%, o,E;) =7
and system (13) is regular, impulse-free and stable for all —1<o; <1 and —1<f;<1 if and only if (19)
holds for all —1<o; <1 and —1<f; <1, which is equivalent to

q P P
rank | Ho+ > oiFi+ Y BGi +i2a;ﬁ]—Hi,— =2nr —r? (29)
i=1 j=1

i=1 j=I

holds for all —1<o; <1 and —1<f;<1. Note that (29) holds

q P 9P
& det Ho+za[Fi+ZﬁjGi+Zzaiﬁj1_Iij #0
i=1 Jj=1

i=1 j=1

_Fl -
Fq
q q (;1
< det H()+ OC]] O(q[ ﬁl[ ﬂIZcxiH,»l ﬁp[ ﬁpZuiHip It 7é0
i=1 i=1
Gy
L I .
_Fl -
Fq
Gl . q q
Sdet| I+ || Hy ol -ogl Bl B> ey - Bl By > ouiHiy | | #0,
i=1 i=1
Gy
L [ -

where we have used the fact det(/ + XY) = det(/ + YX). Since

q q
ol ol B B> oHy - Bl By M,

i=1 i=1
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[ 1 0 BiHn
10 ﬁlqu
1
=[ogd -~ oyl pif O0--- B0 0] /
[1 0 —piH
10 —piH,
1
=[od -l Pl O0--- B0 0] s
the equivalence of (29) is continued as
[0 0 —BiHy 0 —B,Hi, |
00 —B1H, 0 —B,H,,
0
det| | 1+
0
0
- O -
R
Fy
Gy o,
| [ ool gl pil 0 Bl 0] £0
Gp
L I -

0 B,H, |

0 BpHyp

0 —B,H, |

0 _ﬁqup




0 0 -H,
00 —H,
0
&det| 1+
0
E
Fq
I T
I 0
Gp
L 1 -

& det(I + HA) # 0.

C. Lin et al. | Systems & Control Letters 42 (2001) 267-278

11

0 —H, |
0 —H,,
A
0
O -
0---1 014

£ 0.

271

Thus, the result in (25) follows because det(/ + HA4) # 0 for all —1<a;, f;<1 if and only if pus(H) < 1.
For (26), note that (29) is also equivalent to

q P
det H() + Z(X,‘F[ + ZﬁjG,‘ +
i=1 j=1

& det

q9 p
szxiﬁjl-lij 7’£ 0

i=1 j=1

p
Hy+ | Bd -+ Bpl ol OClZﬁjHu'“

J=1

p
agl oy Z BiHqj
j=1

G

F

£ 0.

Hence, the result in (26) follows from a procedure similar to that of (25). This completes the proof of the

theorem. I

Remark 3.1. Theorem 3.2 presents two criteria for the robust stability problem. If ¢ > p, we can choose (25)
to avoid higher-dimensional computations; otherwise, choose (26).
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4. Conclusion

This paper studies the robust stability problem for linear continuous-time interval descriptor systems. It first
derives some necessary conditions for the system to be regular, impulse-free and stable. Then, under some
constraint on the uncertainties of the derivative matrix, a necessary and sufficient condition is obtained. As for
the general case (i.e., no constraint on the derivative matrix), the problem is quite involved and still remains
open.
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