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INTRODUCTION

Many applications come up against inaccuracies in
the initial data. In the context of control theory, this
problem is very topical. In particular, most of the prob-
lems of investigating features of dynamic systems
under an interval of uncertainty of parameters remain to
be unsolved.

In this paper, we consider a nonlinear dynamic sys-
tem with a nonlinearity of the sector type [1, 2] and
parameters given in the form of intervals [3]. Unfortu-
nately, the number of publications devoted to this line
of investigation is very small. Among them, paper [4] is
worth noting, in which the authors consider a discrete
case where a linear part is given as a family of polyno-
mials. In [4], robust modifications of frequency criteria
of absolute stability under uncertainty in the linear part
of the system were obtained. In contrast to [4], in this
paper, the system is considered in a state space. It is
known that the problem of investigating the stability of
a dynamic system in the state space even in a linear case
is 

 

NP

 

-hard [5]. In this connection, to investigate the
absolute stability of a dynamic system with a nonlinear-
ity of the sector type and interval parameters assigned
in the state space, an approach that uses the direct
Lyapunov method and requires small computational
costs is proposed.

1. STATEMENT OF THE PROBLEM

Assume that a disturbed motion of a dynamic sys-
tem is described in the state space in the form of the fol-
lowing differential equation with parameters that were
given inaccurately:
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are known. The parametric uncertainty in system (1.1)
is represented by the unknown fixed matrix 
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ues from the given interval matrix and vector with
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fixed matrix and a vector. As applied to matrices and
vectors, the operation of taking the absolute value 
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has a component-wise meaning. Also, it is assumed that
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not contain zero. The function ϕ(σ) is continuously dif-
ferentiable, ϕ : R  R such that constraints of the sec-
tor type are valid (a function graph is located in the sec-
tor between the straight lines ϕ = 0 and ϕ = µσ, µ ∈ R,
µ > 0). These constraints can be represented as follows:

(1.2)

where σ ≠ 0, while, for σ = 0, it is necessary that the
condition ϕ(0) = 0 be satisfied. The value of σ ∈ R is
found by the expression

where r ∈ Rn is an assigned numerical n-by-1 vector.

Double inequality (1.2) can be rewritten in the form
of a single inequality. Taking into account the expres-
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sion for σ, we have

(1.3)

The left-hand side of inequality (1.3) is a quadratic
form of the variables x and ϕ, which describes a nonlin-
ear constraint on x and ϕ.

For any combinations of fixed values of the matrix
∆A ∈ [–∆A, ∆A] and the vector ∆b ∈ [–∆b, ∆b], differen-
tial equation (1.1) satisfies the existence and unique-
ness conditions for any initial condition x0 ∈ Rn. In view
of the properties of the function ϕ, for the initial condi-
tion x0 = 0, we have the trivial solution x(t, t0, x0) = x(t,
t0, 0) = x(t) ≡ 0, which is an equilibrium position of sys-
tem (1.1).

The problem consists in finding conditions, under
which the equilibrium position x(t) ≡ 0 of system (1.1)
is absolutely stable with various combinations of values
of the matrix ∆A from the given interval matrix [–∆A,
∆A] and the vector ∆b from the given interval vector
[−∆b, ∆b].

2. BASIC RESULT

Assume that a pair of interval matrices ([Ac – ∆A,
Ac + ∆A], [bc – ∆b, bc + ∆b]) is stabilized; i.e., for any
∆A ∈ [–∆A, ∆A] and ∆b ∈ [–∆b, ∆b], the pair (Ac + ∆A, bc +
∆b) is stabilized.

The stated problem is solved using the direct
Lyapunov method by choosing a Lyapunov function as
a quadratic form

(2.1)

Here, H ∈ Rn × n, H = HT � 0 is a symmetric positive def-
inite matrix determined from the Lyapunov equation

(2.2)

where G11 ∈ Rn × n, G11 =  � 0 is a symmetric posi-
tive definite matrix, and I is the identity nth matrix of
order n.

In what follows, we shall use the quadratic equation

(2.3)

for τ ∈ R, where

while G12 ∈ Rn and G22 ∈ R are some n-by-1 vector and
scalar such that the matrix G ∈ R(n + 1) × (n + 1), which can

µσ ϕ–( )ϕ µϕrT x ϕ2– F x ϕ,( ) 0.≥= =

V x( ) xT Hx.=

Ac
T H HAc I+ + G11,–=

G11
T

ατ2 βτ γ+ + 0=

α µ
2
---⎝ ⎠

⎛ ⎞
2

rTr,=

β µrT Hbc G12+( ) 1,–=

γ bc
T HHbc G12

T 2Hbc G12+( ) G22,+ +=

be represented in the block form,

is symmetric positive definite.

We generate the block matrices Dc, ∆D,  ∈
R(n + 1) × (n + 1)

where

(2.4)

Introduce the set of vectors z ∈ Rn + 1

(2.5)

Using (2.5), we introduce the matrices  ∈
R(n + 1) × (n + 1) described for each z ∈ Z as follows:

Introduce the notation ρ(•) and λ(•) for the spectral
radius and the minimum eigenvalue of a real quadratic
symmetric matrix, respectively.

The absolute-stability conditions of the investigated
system are given by the following theorem.

Theorem. Assume that, for the assigned matrices
Ac, ∆A ∈ Rn × n, vectors bc, ∆b, r ∈ Rn, positive scalar µ ∈
R, and a symmetric positive definite matrix G ∈
R(n + 1) × (n + 1), the following conditions are satisfied:

(1) Lyapunov equation (2.2) has a symmetric posi-
tive definite solution H ∈ Rn × n, H = HT � 0;

(2) quadratic equation (2.3) has a real nonnegative
root;

G
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⎜ ⎟
⎛ ⎞

,= =
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τµ
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⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,=

∆D
∆A

T H H ∆A+ H ∆b

∆b
T H 0⎝ ⎠

⎜ ⎟
⎜ ⎟
⎛ ⎞

,=

G̃
G11 I+ G12 h+

G21 hT+ G22 hTh+⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

,=

h Hbc
τµ
2

------r G12+ +⎝ ⎠
⎛ ⎞ .–=

Z z Rn 1+ z zi( ) zi 1– 1,{ },∈,=∈{=

i 1 2 … n 1+, , ,= }.

G̃z

G̃z( )ij

G̃ij– ∆D( )ij, if ziz j+ +1=

G̃ij– ∆D( )ij, if ziz j– 1.–=⎩
⎨
⎧

=



214

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL      Vol. 45      No. 2      2006

IVLEV

(3) one of the following conditions is satisfied:

(a) ρ(∆D) < λ( ) and (b) the matrices  for any z ∈ Z
are negative definite.

Then, the equilibrium position x(t) ≡ 0 of investi-
gated system (1.1) is absolutely stable for a chosen
class of nonlinearities.

Proof. Introduce the notation A = Ac + ∆A and b =
bc + ∆b for ∆A ∈ [–∆A, ∆A] and ∆b ∈ [–∆b, ∆b] Compute
the first-order derivative in time of function (2.1) in the
motion trajectories of investigated system (1.1)

Show that when the conditions of the theorem are satis-
fied, the found derivative is negative on motion trajec-
tories of the investigated system in the part of the Rn-
by-R space; this part is formed by constraints of sector
type (1.3). For this purpose, we use the S-procedure [6],
which makes it possible to obtain the S-form for τ ≥ 0

We make simple transforms

G̃ G̃z

V x( ) 1.1( ) xT Hx xT Hx   +=

=  Ax bϕ+( )T Hx xT H Ax bϕ+( ).+

• • •

S x ϕ,( ) V x( ) τF x ϕ,( )+ xT AT H HA+( )x   = =
•

+
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2
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⎛ ⎞ xϕ xT τµ

2
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xT ϕ⎝ ⎠
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⎜ ⎟
⎜ ⎟
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x
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⎛ ⎞
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and estimate of the obtained S-form from above:

The first term in the right-hand side is a quadratic form
of the variables x and ϕ. Let us show that this quadratic
form is negative definite. From (2.3), we have

(2.6)

Taking into account (2.4), we reduce equality (2.6) to
the form

(2.7)

Using (2.4), (2.7), and Lyapunov equation (2.2), we
obtain

Now, we show that, when one of the conditions (3a)
or (3b) of the theorem is satisfied, the S-form is a nega-
tive definite quadratic form for any ∆A ∈ [–∆A, ∆A] and
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∆b ∈ [–∆b, ∆b]. Assume that condition (3a) is satisfied;
then, we have

Suppose that condition (3b) of the theorem is satisfied;
then, we have

By the condition of the theorem, we have

Hence, the S-form is negative definite for any ∆A ∈
[–∆A, ∆A] and ∆b ∈ [–∆b, ∆b]. Taking into account con-
dition (2) of the theorem, the first-order derivative in
time of Lyapunov function (2.1) is negative on motion
trajectories of the investigated system for any ∆A ∈
[−∆A, ∆A] and ∆b ∈ [–∆b, ∆b] in the part of the Rn-by-R
space; here, this part is formed by constraints of sector
type (1.3). Then, the equilibrium position x(t) ≡ 0 of the
investigated system is absolutely stable for any values
of ∆A ∈ [–∆A, ∆A] and ∆b ∈ [–∆b, ∆b]. The theorem is
proved.

3. NUMERICAL EXAMPLE

Consider system (1.1) for n = 3 and for the following
numerical data:
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, z Z .∈
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0, x 0, ϕ 0, z∀ Z .∈≠ ≠<

Ac

3.5–   2.1   1.5–

1.0   3.5–   2.1

0.0   1.1   1.8–⎝ ⎠
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⎜ ⎟
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,= =

We investigate the absolute stability of this system
using the proved theorem. For the symmetric positive
definite matrix

we have

Here, the matrix G11 coincides with the identity third-
order matrix G11 = I and is a symmetric positive definite
matrix. The solution of Lyapunov equation (2.2) for the
given numerical matrices, up to the third decimal posi-
tion, has the form

In this case, the matrix H is symmetric positive definite
(its eigenvalues are λ1(H) = 0.176, λ2(H) = 0.443, and
λ3(H) = 1.170). Hence, the first condition of the theo-
rem is satisfied. To check the second condition, we
compute the coefficients

For these numerical coefficients, quadratic equation
(2.3) has two real positive solutions, namely, τ1 = 4.433
and τ2 = 46.299. The second condition of the theorem is
also satisfied. It remains to check one of conditions (3a)
or (3b). We take τ = τ1 = 4.433 and check condition
(3a). For this purpose, we compute the matrices

∆A

0.5   0.1   0.5

0.5   0.5   0.1

0.0   0.1   0.2⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,  ∆b

0.1

0.0

0.1⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

, µ 0.15.= = =

G

1.0   0.0   0.0   0.5

0.0   1.0   0.0   0.0

0.0   0.0   1.0   0.0

0.5   0.0   0.0   3.0⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

G11 = 
1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

, G12 = 
0.5

0.0

0.0⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

, G22 = 3.0.

H
0.337   0.181   0.045

0.181   0.509   0.364

0.045   0.364   0.943⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

.=

α 0.017, β 0.856, γ– 3.464.= = =

∆D

0.518   0.473   0.400   0.038

0.473   0.618   0.495   0.055

0.400   0.495   0.495   0.099

0.038   0.055   0.099   0.000⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,=
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The eigenvalues of the matrix ∆D are λ1(∆D) = –0.029,
λ2(∆D) = 0.066, λ3(∆D) = 0.124, and λ4(∆D) = 1.470.

Analogously, for the matrix , we have the following
characteristic values:

λ1( ) = 1.737, λ2( ) = 2.000, λ3( ) = 2.000, and

λ4( ) = 4.696. As can be seen from these results,

ρ(∆D) = λ4(∆D) = 1.470 < λ( ) = λ1( ) = 1.737; i.e.,
condition (3a) of the theorem is satisfied. Thus, all con-
ditions of the theorem are satisfied, and, on the basis of
the statement of the theorem, we conclude that the
investigated system is absolutely stable.

CONCLUSIONS
The proposed approach based on the direct

Lyapunov method makes it possible to investigate the
absolute stability of a dynamic system with a nonlinear-

ity of the sector type and interval parameters given in
the state space; note that this approach requires small
computational costs. This approach is also applicable to
investigating the stability of dynamic systems in the
state space with interval parameters and nonlinearities
of other types.
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