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Abstract. In this paper, we consider the linear interval tolerance problem, which consists of finding the
largest interval vector included in Σ∀,∃([A], [b]) = {x ∈ R

n | ∀A ∈ [A], ∃b ∈ [b], Ax = b}. We describe
two different polyhedrons that represent subsets of all possible interval vectors in Σ∀,∃([A], [b]), and we
provide a new definition of the optimality of an interval vector included in Σ∀,∃([A], [b]). Finally, we
show how the Simplex algorithm can be applied to find an optimal interval vector in Σ∀,∃([A], [b]).

1. Introduction

In this paper we propose two algorithms for handling the interval tolerance prob-
lem [4], [7]–[9], [11], [12] based on the Simplex algorithm [2], [13] used in linear
programming. The approach for combining interval linear systems and Simplex
algorithm is described in [1], [3].

The set Σ∀, ∃([A], [b]) is defined by

Σ∀, ∃([A], [b]) = {x ∈ R
n | ∀A ∈ [A], ∃b ∈ [b], Ax = b}

or, equivalently by

Σ∀, ∃([A], [b]) = {x ∈ R
n | [A]x ⊆ [b]},

the product being evaluated with interval arithmetic.
Shary [12] gives a very interesting and practical interpretation of this set. Sup-

pose that the output y of a physical system is given by y = Ax, where x is the input
of the system and A is any of the possible matrices of [A]. Then, for any input
satisfying

x ∈ [x] ⊆ Σ∀, ∃([A], [b]),

we can ensure that the output Ax will belong to the tolerable set of outputs [b],
whatever the values of A in [A] are. Following Shary [12], we use the notation
Σ∀, ∃([A], [b]) to exhibit its similarity with the united solution set

Σ∃, ∃([A], [b]) = {x ∈ R
n | ∃A ∈ [A], ∃b ∈ [b], Ax = b}
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and the controllable solution set

Σ∃, ∀([A], [b]) = {x ∈ R
n | ∀b ∈ [b], ∃A ∈ [A], Ax = b}.

Since we need the output to belong to [b] for any choice of A ∈ [A], our aim is to
find a practical subset of the set of all possible interval vectors in Σ∀, ∃([A], [b]).

In Sections 3 and 4, we describe two different polyhedrons which define such
subsets. Finally, we show (Section 5) how to define the “optimality” of an interval
vector included in Σ∀, ∃([A], [b]), and how to apply the Simplex algorithm to compute
this “optimal” interval vector.

2. Point Matrix by Interval Vector Product

We will first prove a characterization of the condition

∀x ∈ [x], Ax ∈ [b].

It is clear that no overestimation occurs when performing the product of an interval
matrix by a point vector, since each component of the matrix is used only once. This
property does not hold when considering the product of a point matrix by an interval
vector (see [10], for instance). Nevertheless, the following property holds.

LEMMA 2.1. The following assertions are equivalent:

P1: ∀x ∈ [x], Ax ∈ [b],

P2: A[x] ⊆ [b], the product being evaluated with interval arithmetic.

Proof. Assertion P2 obviously implies Assertion P1. Let us now consider [y] =
A[x]. By expanding the previous equality component-wise, it is clear that the bounds
of each component of [y] can be reached for a good choice of x ∈ [x]. Therefore P1
implies P2. ✷

Thus, it is of interest to obtain a practical characterization of A[x].
Let A+ and A− be the matrices corresponding respectively to the positive and

the negative parts of the matrix A; they are characterized by

A+ ≥ 0, A− ≥ 0, A = A+ − A−, |A| = A+ + A−.

Let [x] = [x, x], x ≤ x (all the inequalities between vectors or matrices must be
understood component-wise).

It is easy to prove that

A[x] = [−A− x + A+x, A+ x − A−x].

Therefore,

(∀x ∈ [x], Ax ∈ [b]) ⇔

{
A+x − A− x ≥ b,
A+ x − A−x ≤ b.
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By expressing [x] with the midpoint-radius format, the last equivalence can be
translated into the following form:

LEMMA 2.2. If we set

xm =
x + x

2
and xd =

x − x
2

,

then

(∀x ∈ [x], Ax ∈ [b]) ⇔

{
Axm − |A|xd ≥ b,
Axm + |A|xd ≤ b.

Let us define

S =
{(

x1

x2

)
∈ R

2n | x1 ≤ x2 and [x1, x2] ⊆ Σ∀, ∃([A], [b])
}

which describes the set of all possible interval vectors included in Σ∀, ∃([A], [b]). In
the next section, we use the characterization of the condition

(∀x ∈ [x], Ax ∈ [b])

obtained above to describe a subset of S .

3. First Characterization of a Subset of S

3.1. PRACTICAL CHARACTERIZATION OF Σ∀, ∃([A], [b])

Rohn [7] has proved the following theorem:

THEOREM 3.1. For any vector x ∈ R
n, x ∈ Σ∀, ∃([A], [b]) if and only if there exists

(x1, x2) ∈ R
n × R

n such that x = x1 − x2 and (x1, x2) satisfies the following system
of linear inequalities:

(
B

−I2n

)(
x1

x2

)
≤
(

b′
0

)
,

where

B =
(

Ac + ∆A −(Ac − ∆A)
−(Ac − ∆A) (Ac + ∆A)

)
and b′ =

(
b

−b

)
,

with [A] = [Ac − ∆A, Ac + ∆A].

This theorem gives a practical description of the solution set, which does not
involve interval sets. In the next section, we use this characterization to obtain a
subset of S .



436 OLIVER BEAUMONT AND BERNARD PHILIPPE

3.2. HOW TO OBTAIN AN INTERVAL VECTOR IN Σ∀, ∃([A], [b]) AND CONTAINING A
FIXED POINT x0

In this section, we construct a subset of the set of the interval vectors [x] satisfying
the following condition

x0 ∈ [x] ⊆ Σ∀, ∃([A], [b]),

where x0 is an a priori known element of Σ∀, ∃([A], [b]). In what follows, for any
vector x ∈ R

n, we denote by x+ and x− the vectors defined by:


x+ =
|x| + x

2
,

x− =
|x| − x

2
.

THEOREM 3.2. Notations of Theorem 3.1 are still valid.
Let

x0 ∈ Σ∀, ∃([A], [b]), b′′ = b′ − B
(

x+
0

x−0

)
,

and

S1 =
{

X | X =
(

x0 − 2x2

x0 + 2x1

)
such that

(
B + |B|
−I2n

)(
x1

x2

)
≤
(

b′′
0

)}
.

Then,

S1 ⊆ S .

Proof. Let us suppose that X =
(

x1

x2

)
∈ R

2n satisfies the following condition

(
B + |B|
−I2n

)
X ≤

(
b′′
0

)
.

We can easily check that

(
B |B|
0 −I2n

)X +
(

x+
0

x−0

)
X


 ≤

(
b′
0

)
.

Moreover,

−I2n

(
X +

(
x+

0
x−0

))
+ I2nX = −

(
x+

0
x−0

)
≤ 0

and therefore,
 B |B|

−I2n I2n

0 −I2n




X +

(
x+

0
x−0

)
X


 ≤


 b′

0
0


 .
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If we set
 Z (m) = X +

(
x+

0
x−0

)
,

Z (d) = X,

the set of inequalities defined above becomes


BZ (m) + |B|Z (d) ≤ b′,
Z (m) − Z (d) ≥ 0,

Z (d) ≥ 0.

The last two conditions prove that [Z] = [Z (m) − Z (d), Z (m) + Z (d)] is a non-negative
interval vector. Owing to Lemma 2.2,

BZ (m) + |B|Z (d) ≤ b′ ⇔ ∀z ∈ [Z], Bz ≤ b′.

Let z =
(

z1
z2

)
∈ [Z], then

(
z1
z2

)
satisfies the conditions of Theorem 3.1, since




B
(

z1

z2

)
≤ b′,

(
z1

z2

)
≥ 0

and therefore z1 − z2 belongs to Σ∀, ∃([A], [b]).

When
(

z1
z2

)
describes [Z], (z1 − z2) describes

[x+
0 − x−0 − 2x2, x+

0 − x−0 + 2x1]

and therefore,

[x0 − 2x2, x0 + 2x1] ⊆ Σ∀, ∃([A], [b]),

which achieves the proof of Theorem 3.2. ✷

4. Second Characterization of a Subset of S

In this section, we present a second approach for dealing with the interval toler-
ance problem. Rohn [7] has given a characterization of the points belonging to
Σ∀, ∃([A], [b]) analogous to the Oettli-Prager Theorem [6] for the united solution set
Σ∃, ∃.

If we set

[A] = [Ac − ∆A, Ac + ∆A]
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and

[b] = [bc − ∆b, bc + ∆b] = [b, b],

then

x ∈ Σ∀, ∃([A], [b]) ⇐⇒ |Ac x − bc| ≤ ∆b − ∆A|x|.

This formula is of practical interest because it gives a characterization of the
solution set that does not involve interval sets. It is however hard to use because of
the absolute values. In order to get rid of absolute values, we can use the following
Theorem [1].

THEOREM 4.1. If x ≤ x and if we set


αj =
|xj| − |xj|

xj − xj
and βj =

xj|xj| − xj|xj|
xj − xj

if xj �= xj,

αj = 0 and βj = xj if xj = xj,

where xj denotes the j-th component of x, then

∀x ∈ [x, x], ∀j, 1 ≤ j ≤ n, |xj| ≤ αjxj + βj.

Moreover, if we denote by β the vector whose entries are the βj’s and by Dα the
diagonal matrix whose diagonal elements are the αj’s, then

x ∈ [x, x] ⇒ |x| ≤ Dαx + β.

Therefore, if we know an enclosure of

Σ∀, ∃([A], [b]) ⊆ [x, x],

(which might be obtained for instance by computing a superset of ✷Σ∃, ∃([A], [b])
[1], [5], [10]), we can obtain the following characterization of the points of
Σ∀, ∃([A], [b]).

THEOREM 4.2. If

Σ∀, ∃([A], [b]) ⊆ [x, x],

then

Cx ≤ c ⇒ x ∈ Σ∀, ∃([A], [b]),

where

C =
(

Ac + ∆ADα
−Ac + ∆ADα

)
and c =

(
bc + ∆b − ∆Aβ

−bc + ∆b − ∆Aβ

)
.
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Proof. Let x ∈ [x, x] satisfying

Cx ≤ c,

then

|Acx − bc| ≤ ∆b − ∆A(Dαx + β).

Moreover, since x ∈ [x, x], because of Theorem 4.1,

−∆A(Dαx + β) ≤ −∆A|x|

and therefore

|Acx − b| ≤ ∆b − ∆A|x|. ✷

Since we know a characterization of a subset of Σ∀, ∃([A], [b]) by means of the
inequality

Cx ≤ c,

we can use Lemma 2.2 in order to prove the following theorem.

THEOREM 4.3. If we set

S2 =
{

y | y =
(

x(m) − x(d)

x(m) + x(d)

)
,
(

C |C|
0 −In

)(
x(m)

x(d)

)
≤
(

c
0

)}
,

where

C =
(

Ac + ∆ADα
−Ac + ∆ADα

)
and c =

(
bc + ∆b − ∆Aβ

−bc + ∆b − ∆Aβ

)
,

then

S2 ⊆ S .

In the case ∆A = 0, we can notice an analogy between the formulation of
Theorem 4.3 and the results obtained by Shary [11], [12]. In our case, we enforce
the interval vector [x(m) − x(d), x(m) + x(d)] to be a classical interval vector by
considering the extra condition x(d) ≥ 0.

5. Choice of the Optimization Problem

In Sections 3 and 4, we have obtained two characterizations (S1 and S2) of subsets of
the set of all the interval vectors included in Σ∀, ∃([A], [b]). These characterizations
are obtained by means of convex polyhedrons of R

2n. An important issue is to
define the “optimality” of an interval vector in Σ∀, ∃([A], [b]). Since we want to
apply general techniques of linear programming, we need to find a linear objective
function. Usually, the optimality of the interval vector is defined with respect to
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cmax
i

wmin
i

cost

xi − xi width

Figure 1. Representation of the cost associated to xi.

its volume, what is impossible in our context. Nevertheless, we show in the next
section how to define a linear objective function which is meaningful with respect
to practical interpretation given by Shary [12].

5.1. COST OF AN INTERVAL VECTOR

Usually, solving the interval linear tolerance problem consists of finding an interval

vector [x, x], included in Σ∀, ∃([A], [b]) and maximizing
n∏
1

(xi − xi) [5].

Nevertheless, as Shary [12] notices it, solving the interval tolerance problem
consists of finding an interval vector [x, x] such that for any value of the parameters
of [A], we altogether get the output response within the required tolerance [b].

Therefore, we can associate a cost to each variable xi. Intuitively, the narrower
the input interval [xi, xi], the more important the cost for ensuring it.

Besides, one can even imagine that for some physical reasons (measure uncer-
tainties, previous computations) it is impossible to have an input interval [xi, xi]
narrower than a given threshold wmin

i .
The cost associated to the input variable xi may therefore be defined as in

Figure 1.

5.2. CORRESPONDING CONSTRAINTS AND OPTIMIZATION FUNCTION

In this section, we show how the constraints of the simplex and the objective
function can be reformulated accordingly to the cost associated to each variable.

The condition

xi − xi ≥ wmin
i

corresponds to changing the constraints

x(d)
i ≥ 0
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into

x(d)
i ≥ 1

2
wmin

i

and the minimization of the global cost is expressed by the minimization of the
following objective function

n∑
i= 1

ƒix
(d)
i

where

ƒi = −
(

cmax
i

xi − xi − wmin
i

)
.

6. Sketch of the Algorithms

In Sections 3 and 4, we have defined S1 and S2, which describe subsets of the set
of all possible interval vectors included in Σ∀, ∃([A], [b]). Since both S1 and S2 are
convex polyhedrons, it is possible to use linear programming for computing the
optimal vector (with respect to the objective function defined in Section 5) included
in S1 or S2 and therefore in Σ∀, ∃([A], [b]).

6.1. MINIMIZATION OVER S1

In this section, we present the sketch of the algorithm to compute the optimal
interval vector included in S1 with respect to the objective function defined in
Section 5.

Algorithm 1 requires the resolution of a linear program with 5n constraints and
2n variables.

6.2. MINIMIZATION OVER S2

In this section, we present the sketch of the algorithm to compute the optimal
interval vector included in S2 with respect to the objective function defined in
Section 5.

Algorithm 2 only requires the resolution of a linear program with 3n constraints
and 2n variables.

7. Numerical Results

7.1. A FEW EXAMPLES WITH n = 2

We present numerical results for the two algorithms we have introduced. For each
case, Sol1 represents the enclosure obtained with Algorithm 1, and Sol2 the one
obtained with Algorithm 2.
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Algorithm 1. Minimization over S1.

Solve Acx0 = bc.

x+
0 :=

|x0| + x0

2
,

x−0 :=
|x0| − x0

2
,

B1 :=

(
Ac + ∆A −(Ac − ∆A)

−(Ac − ∆A) (Ac + ∆A)

)
,

b1 :=

(
b

−b

)
− B1

(
x+

0

x−0

)
,

C1 :=


 B1 + |B1|

−I2n

−2In − 2In


,

c1 :=


 b1

02n

−wmin


.

Minimize

{
n∑

i = 1

ƒi

(
y(1)

i + y(2)
i

)
, C1

(
y(1)

y(2)

)
≤ c1

}
.

Algorithm 2. Minimization over S2.

αj :=
|xj| − |xj|

xj − xj

,

βj :=
xj|xj| − xj|xj|

xj − xj

,

B2 :=

(
Ac + ∆ADα

−Ac + ∆ADα

)
,

b2 :=

(
bc + ∆b − ∆Aβ

−bc + ∆b − ∆Aβ

)
,

C2 :=

(
C |C|
0 −In

)
,

c2 :=

(
b2

−wmin

)
.

Minimize

{
n∑

i = 1

ci

(
y(2)

i − y(1)
i

)
, C2

(
y(1)

i

y(2)
i

)
≤ c2

}
.

The figures show the exact solution set. The exact solution set is obtained with
the characterization given by Rohn [7]:

x ∈ Σ∀, ∃([A], [b]) ⇐⇒ |Ac x − bc| ≤ ∆b − ∆A|x|.
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Figure 2.

This formula is of practical interest for computing the exact solution since within
each orthant, it is possible to get rid of the absolute value |x|. Therefore, within
each orthant, we obtain the characterization of the points belonging to Σ∀, ∃([A], [b])
by means of a convex polyhedron. Of course, this approach leads to a very slow
algorithm, since the number of orthants may be exponential in the size of the matrix
(2n).

The scale of the figures represents the starting enclosure (used to compute
Sol2).

7.1.1. The Solution Set Is Centered with Respect to 0 (Figure 2)

Ac =
(

3 −0.5
−0.5 3

)
, ∆A =

(
0.2 0.3
0.3 0.4

)
, bc =

(
0
0

)
and ∆b =

(
3
3

)
.

In this case, we obtain

Sol1 =
( −0.76 0.76
−0.70 0.70

)
and Sol2 =

( −0.64 0.64
−0.52 0.52

)
.

For this example, the results obtained with the first algorithm are better since the
solution set is centered with respect to 0, i.e. the worst situation for Theorem 4.1.

7.1.2. The Initial Enclosure Does Not Intersect Any Axis (Figure 3)

Ac =
(

3 −0.5
−0.5 3

)
, ∆A =

(
0.2 0.3
0.3 0.4

)
, bc =

(
7
7

)
and ∆b =

(
3
3

)
.

For this problem, we obtain

Sol1 =
(

2.35 3.25
2.60 3

)
and Sol2 =

(
2.30 3.28
2.54 3.07

)
.
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Figure 3.

Figure 4.

In this case, the initial enclosure of the solution set does not intersect any axis, and
the second algorithm enables us, to compute an optimal solution set.

7.1.3. Starting from a Large Initial Enclosure (Figure 4)

Ac =
(

3 −0.5
−0.5 3

)
, ∆A = 2

(
0.2 0.3
0.3 0.4

)
, bc =

(
0
0

)
and ∆b =

(
3
3

)
.

In this case, we obtain

Sol1 =
( −0.68 0.68
−0.58 0.58

)
and Sol2 = ∅.
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The initial enclosure of the solution set is very large, and the second algorithm does
not succeed in finding an interval vector included in Σ∀, ∃([A], [b]). This suggests
the use of Algorithm 2 as an iterative algorithm: if the solution set obtained is not
big enough, then one can start with a smaller enclosure. In any case, if the solution
set obtained is included into the starting enclosure, then it is acceptable.

7.2. NUMERICAL RESULTS FOR HIGHER DIMENSIONS

We plot the evolution of τ versus the matrix order n, where

τ =
perimeter of the interval vector obtained with Algorithm 1
perimeter of the interval vector obtained with Algorithm 2

.

The results are displayed for two different situations: In the first situation, bc, the
center of the right hand side, is 0. Therefore, the solution set is usually centered
with respect to zero, what leads to a poor enclosure of the absolute value in Algo-
rithm 2.

In the second situation bc is chosen so that the solution of Acx0 = bc is far
from zero. Therefore, the initial enclosure does not intersect any axis, what leads
to an exact enclosure of the absolute value in Algorithm 2. In this case, the solution
obtained with Algorithm 2 is optimal with respect to the objective function we have
defined in Section 5.

For the tests presented in Figure 5, we have ‖A‖ = 1, ‖∆A‖ = 10−4, ‖b‖ = 1,
and ‖∆b‖ = 10−2. It is clear that the first algorithm gives much better results in the
first situation (τ ∈ [0.65, 1]), and only slightly poorer results (τ ∈ [1, 1.0045]) in the
second one for which the second algorithm is optimal.

8. Conclusion

The two algorithms that we have proposed enable us to solve the Interval Tolerance
Problem. They are both based on the definition of a simplex in spaces of higher
dimensions. The linear objective function which has been defined for the criterion
of optimality for the sought interval appears to give an interesting definition for
the cost of a solution set. Moreover, it is of an easy use since it allows linear
programming.

The results obtained are valuable, especially for the first approach. The interest
of the second approach is to guaranty an optimal solution when the solution set
does not intersect any axis.
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