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Conjugate directions method for solving interval linear
systems ∗

A.H. Bentbib

Faculté des Sciences et Techniques–Guéliz, Département de Mathématiques et Informatique,
Université Cadi Ayyad de Marrakech, BP 618, Marrakech, Morocco

We propose the interval version of the conjugate directions method, to solve the problem
of linear systems, with symmetric and positive definite interval matrix A, and a right-hand
side interval vector b.
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1. Introduction

It is well known that in the formulae of the Gaussian algorithm, the Jacobi and
Gauss–Seidel iterations can be used to bound the set S of solutions of linear systems
for which the coefficient matrices and the right-hand sides are varying within given
intervals [3,6,7], given by

S =
{
x ∈ Rn | ∃Ã ∈ A, ∃b̃ ∈ b: Ãx = b̃

}
.

Much work has been done to compute an enclosure interval vector of the set S, see,
for example, [5,7–10,12,13].

We are interested here in solving the symmetric interval linear systems Ax = b,
where A is an (n,n) symmetric interval matrix (i.e., Ai,j = Aj,i), and b is an interval
vector. The set of symmetric solutions of such problems is given by

Ssym =
{
x ∈ Rn | ∃Ã ∈ A, ÃT = Ã, ∃b̃ ∈ b: Ãx = b̃

}
.

The formulae of the Cholesky method can be used to solve the symmetric interval
linear systems [1,2]. The purpose of the present paper is to apply the well-known
conjugate directions method to compute an enclosure interval vector of Ssym. When
the interval matrix A is not symmetric, we set B = ATA, where B is a symmetric
interval matrix. Consider the interval linear system Ax = b, for which the set of
solutions is given by

S =
{
x ∈ Rn | ∃Ã ∈ A, ∃b̃ ∈ b: Ãx = b̃

}
.
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Consider now the symmetric interval linear system Bx = c, where c = ATb. The set
of symmetric solutions is

Ssym =
{
x ∈ Rn | ∃B̃ ∈ B, B̃ T = B̃, ∃c̃ ∈ c: B̃x = c̃

}
.

Proposition 1.1. We have the following inclusion:

S ⊆ Ssym.

Proof.

x ∈ S =⇒ ∃Ã ∈ A, ∃b̃ ∈ b: Ãx = b̃ =⇒ ∃Ã ∈ A, ∃b̃ ∈ b: ÃTÃx = ÃT b̃

=⇒ ∃B̃ ∈ B, B̃ T = B̃, ∃c̃ ∈ c: B̃x = c̃ =⇒ x ∈ Ssym. �

2. Notations

By IR, we denote the set of real compact intervals

[α,β] = {x ∈ R | α 6 x 6 β}, for α 6 β; α,β ∈ R.
IRn×m is the set of (n,m) interval matrices A, whose elements Ai,j belong to IR. If
m = 1, IRn×1 is denoted by IRn, and it represents the set of vectors with n interval
components. For an interval I = [α,β] ∈ IR, we denote by

Ǐ =
α+ β

2
: the midpoint of I ,

ρ(I) =
β − α

2
: the radius of I.

For A ∈ IRn×m, Ǎ is the real (n,m) matrix whose elements Ǎij are midpoints
of corresponding elements Aij of A. ρ(A) is the positive real (n,m) matrix whose
elements ρ(A)i,j are radii of corresponding elements Aij of A.

3. Operations

If ∗ is one of the symbols +, −, ·, /, we define arithmetic operations on intervals
by

[α,β] ∗ [γ, δ] = {x ∗ y | α 6 x 6 β, γ 6 y 6 δ}
except that we do not define [α,β]/[γ, δ] if 0 ∈ [γ, δ]. [α,β] ∗ [γ, δ] is a real compact
interval, and it is equal to[

min{α ∗ γ, α ∗ δ, β ∗ γ, β ∗ δ}, max{α ∗ γ, α ∗ δ, β ∗ γ, β ∗ δ}
]
.

For A,B ∈ IRn×m, C = A ± B, is the (n,m) interval matrix whose elements are
Ci,j = Ai,j ± Bi,j . If B ∈ IRm×s, C = A · B, is the (n, s) interval matrix whose
elements are

Ci,j =
m∑
k=1

Ai,k ·Bk,j.
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If V ∈ IRm, W = A · V is the interval vector, whose components are given by

Wi =
m∑
k=1

Ai,k · Vk.

W = [α,β] · V is the interval vector with components Wi = [α,β] · Vi. If 0 /∈ [α,β],

V

[α,β]
=

1
[α,β]

· V.

4. Independence, norm and orthogonality in IRn

Definition 4.1. A set of interval vectors I = {U1,U2, . . . ,Up} of IRn is said to be
linearly independent if each set of real vectors {u1,u2, . . . ,up}, with ui ∈ Ui, for
i = 1, . . . , p, is linearly independent in Rn.

Proposition 4.2. A set of interval vectors I = {U1,U2, . . . ,Up} of IRn is linearly
independent if and only if

0 ∈ α1U1 + α2U2 + · · · + αpUp ⇒ α1 = α2 = · · · = αp = 0.

Proof. Suppose that the set I = {U1,U2, . . . ,Up} of IRn is linearly independent. Let
α1,α2, . . . ,αp ∈ R, such that

0 ∈ α1U1 + α2U2 + · · ·+ αpUp.

Then, there exists at least one set of real vectors {u1,u2, . . . ,up}, ui ∈ Ui, i =
1, . . . , p, which verify

α1u1 + α2u2 + · · ·+ αpup = 0.

This implies α1 = α2 = · · · = αp = 0. Now, if α1u1 + α2u2 + · · · + αpup = 0, then
0 ∈ α1U1 + α2U2 + · · · + αpUp, which implies α1 = α2 = · · · = αp = 0. Thus, all
sets {u1,u2, . . . ,up}, ui ∈ Ui, of real vectors are linearly independent. This means
I = {U1,U2, . . . ,Up} is linearly independent. �

Example 4.3. Sets of interval vectors

I1 =

{(
[1, 2]
[0, 0]

)
,

(
[0, 0]
[1, 2]

)}
and I2 =

{(
[1, 2]

[9, 10]

)
,

(
[1, 1]
[1, 2]

)}
of IR2 are linearly independent.

Let V be an interval vector belonging to IRn. The norm of V is designated by
‖V ‖, and computed as

‖V ‖ =
n∑
k=1

V 2
k ,
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where, for X ∈ IR, X2 = {x2 | x ∈ X} and, if X > 0 (that is, ∀x ∈ X, x > 0),√
X = {

√
x | x ∈ X}. The square of the norm of V is given by

‖V ‖2 =
n∑
k=1

V 2
k .

Let now A be a symmetric positive definite interval (n,n) matrix, i.e., Ai,j = Aj,i and
for all real matrices Ã belonging to A, Ã is positive definite (for details, see [11]).
The norm of V associated with A, denoted by ‖V ‖A, is computed as

‖V ‖A =

√√√√ n∑
k=1

(
Ak,k · V 2

k

)
+ 2 ·

n−1∑
k=1

(
Vk ·

n∑
j=k+1

Ak,j · Vj

)
,

‖V ‖2
A =

n∑
k=1

(
Ak,k · V 2

k

)
+ 2 ·

n−1∑
k=1

(
Vk ·

n∑
j=k+1

Ak,j · Vj

)
.

‖V ‖2
A contains all ṽ T · (Ã · ṽ ), where ṽ ∈ V , and Ã is a symmetric real matrix

belonging to A. Because of phenomenon of dependence of interval arithmetic, we
have ‖V ‖2

A ⊆ V T · (A · V ).

Definition 4.4. Let A be a symmetric positive definite interval (n,n) matrix. A set
of interval vectors {P1,P2, . . . ,Pm} of IRn is said to be A-orthogonal if for each
symmetric real matrix Ã ∈ A and each real vector p̃1 ∈ P1, there exists a set of
real vectors {p̃2, . . . , p̃m}, p̃j ∈ Pj , j = 2, . . . ,m, such that p̃T

i · (Ã · p̃j) = 0, for
1 6 i 6= j 6 m.

Such an A-orthogonal set of interval vectors can be found by

P1 = e1,

P2 = e2 −
P T

1 · (A · e2)

‖P1‖2
A

· P1,

...

Pm = em −
m−1∑
k=1

P T
k · (A · em)

‖Pk‖2
A

· Pk,

where ei is the real vector with one in the ith component, and zero otherwise. To
compute Pk+1, we must have 0 /∈ ‖Pk‖A.
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5. Steepest descent in interval arithmetic

Let A ∈ IRn×n be a symmetric positive definite (s.p.d.) interval matrix, i.e., each
real matrix Ã ∈ A is positive definite [11], b ∈ IRn an interval vector. We consider
the formal minimization problem

min

{
Φ(x) =

1
2
xT · (A · x)− xT · b

}
,

which by definition means the minimization of all functions

φÃ,̃b (x) =
1
2
xT ·

(
Ã · x

)
− xT · b̃,

where Ã is a real s.p.d. matrix which belongs to A, and b̃ is real vector varying in the
interval vector b. It is well known that the minimum value of φÃ,̃b (x) is achieved by
setting x̃ = Ã−1 · b̃ [4]. Let Σ be the set{

x̃ ∈ Rn | ∃Ã ∈ A, Ã s.p.d., ∃b̃ ∈ b: φÃ,̃b

(
x̃
)

= minφÃ,̃b (x)
}

,

then it is obvious that Σ = Ssym. Thus, solving the interval minimization problems and
the symmetric, positive definite interval linear systems are equivalent. The method of
steepest descent consists in minimizing each functional φÃ,̃b, at a current point x, in
the direction of the negative gradient

−∇φÃ,̃b (x) = b̃− Ã · x.

We call r̃ = b̃− Ã · x the residual of x associated with Ã s.p.d. ∈ A and b̃ ∈ b. If the
residual r̃ is nonzero, then

α̃ =
r̃ T · r̃

r̃ T · (Ã · r̃ )

minimizes φÃ,̃b(x+ α · r̃ ). This gives the algorithm

X0 = 0, R0 = b
for k = 1, 2, . . .

if 0 /∈ Rk−1, then αk−1 = ‖Rk−1‖2/‖Rk−1‖2
A

Xk = Xk−1 + αk−1 ·Rk−1
Rk = b−A ·Xk

If 0 /∈ Rk−1, then all residuals r̃k−1 = b̃− Ã · x̃k−1, where Ã s.p.d. ∈ A, b̃ ∈ b
and x̃k−1 ∈ Xk−1, are nonzero.

α̃k−1 =
r̃ T
k−1 · r̃k−1

r̃ T
k−1 · (Ã · r̃k−1)

is in the interval αk−1 =
‖Rk−1‖2

‖Rk−1‖2
A

,

thus x̃k = x̃k−1 + α̃k−1 · r̃k−1 ∈ Xk. Unfortunately, this algorithm fails when the
interval residual vector Rk−1 contains zero, which is possible when Xk−1 contains at
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least one solution x̃ for a given minimization problem associated with one real s.p.d.
matrix Ã ∈ A and one real vector b̃ ∈ b.

6. A-conjugate direction method in interval arithmetic

To avoid the problem of the interval steepest descent method, when the resid-
ual contains zero, we consider the successive minimization of Φ along a set of
A-orthogonal interval vector directions {P1,P2, . . . ,Pn} of IRn. Thus, we obtain
the following algorithm:

X0 = 0, R0 = b
for k = 1, . . . ,n
αk−1 = (P T

k · b)/‖Pk‖2
A

Xk = Xk−1 + αk−1 · Pk
Rk = b−A ·Xk

Proposition 6.5. At each step k of the algorithm given above, ρ(b) 6 ρ(Rk), so the
radius of the interval P T

k · b is less than the radius of P T
k ·Rk−1.

Proof. The proof is based on a simple remark: for I ,J ∈ IR we have ρ(I ± J) =
ρ(I) + ρ(J) 6 ρ(I). �

Theorem 6.6. Let {P1,P2, . . . ,Pn} be a set of A-orthogonal interval vector directions
of IRn that verify 0 /∈ Pk, for k = 1, . . . ,n. The interval vector sequences Xk

constructed by the algorithm given above verify Σ ⊆ Xn.

Proof. Let Ã be a real s.p.d. matrix belonging to A, b̃ a real vector which belongs
to b. There exists a set of real vectors {p̃1, . . . , p̃n}, p̃k ∈ Pk, k = 1, . . . ,n, such that
p̃T
i · (Ã · p̃j) = 0, for 1 6 i 6= j 6 n. The real vector sequences x̃k given by

x̃0 = 0, r̃0 = b̃
for k = 1, . . . ,n

α̃k−1 =
p̃T
k · r̃k−1

p̃T
k · (Ã · p̃k)

=
p̃T
k · b̃

p̃T
k · (Ã · p̃k)

x̃k = x̃k−1 + α̃k−1 · p̃k
r̃k = b̃− Ã · x̃k

verify x̃k ∈ Xk, for k = 1, . . . ,n. The real vector x̃n minimizes φÃ,̃b (x). From the
equality

p̃T
k · r̃k−1

p̃T
k · (Ã · p̃k)

=
p̃T
k · b̃

p̃T
k · (Ã · p̃k)

and by proposition 6.5, in order to construct αk−1 = (P T
k ·Rk−1)/‖Pk‖2

A, it will be
better to take αk−1 = (P T

k · b)/‖Pk‖2
A. �
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Example 6.7.

A =

[1.9900, 2.0100] [0.4900, 0.5100] [0.3333, 0.3333]
[0.4900, 0.5100] [1.3233, 1.3433] [0.2400, 0.2600]
[0.3333, 0.3333] [0.2400, 0.2600] [1.1900, 1.2100]

 .

b is given by

b̌ = Ǎ ·

1
1
1

 and %(b) =

1
1
1

 , b =

[1.8333, 3.8333]
[1.0833, 3.0833]
[0.7833, 2.7833]

 .

By using the algorithm given in section 4, we give a set of A-orthogonal interval
directions:P1 =

1
0
0

 , P2 =

[−0.2563, −0.2438]
1
0

 , P3 =

[−0.1376, −0.1266]
[−0.1499, −0.1263]

1

 .

Denote by XCD and XCh, the interval solution given, respectively, by interval conjugate
directions and interval Cholesky method. We have the following results:

XCD =

[ 0.0456, 1.9318]
[−0.2443, 2.2385]
[−0.1862, 2.1804]

 and XCh =

[−0.0318, 2.0288]
[−0.2503, 2.2449]
[−0.2293, 2.2274]

 .

Σ denotes the set of solutions of the interval linear system A ·x = b. By the numerical
results given above, we have Σ ⊆ XCD ⊆ XCh.
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