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1 Introduct ion  

Suppose that we are given a linear system 

Ax=b,  (1.1) 

where A is a nonsingular matrix from IR "• and x and b are from IR". In 
order to compute the solution x of (1.1) iteratively, O'Leary and White [13] 
proposed multisplitting methods which are based on several sptittings of the 
matrix A. More precisely, in [13] a multisplitting of A is defined as a collection 
of triples (Mk, Nk, Ek), k = 1, ..., K, such that for all k the matrices Mk, Nk, Ek 
are from ~"• Mk is nonsingular, A = M k - N  k, and E k is a diagonal matrix 

K 
with nonnegative entries satisfying ~ Ek = I (n x n-identity matrix). The corre- 

k=l  

sponding multisplitting method to solve (1.1) is given by the iteration 

where 

K 
x , + 1 =  ~ EkY re'k, m = 0 ,  1, . . . ,  (1.2) 

k=l  

Mkym'k=Nkx'+b, k = l  . . . . .  K. 
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This multisplitting method has a natural parallelism, since the calculations of 
y,,,,k for various k are independent and may therefore be performed in parallel. 
Moreover, the i-th component  of y,,,.k needs not be computed if the correspond- 
ing diagonal entry of Ek is zero. This may result in considerable savings of 
computat ional  time. We refer to [13] for details. Convergence results for method 
(1.2) were first given in [13]. Later, Neumann and Plemmons [12] obtained 
more qualitative results for one of the cases considered in [13]. 

Now let IIR" and I~ ,  "• denote the set of real interval vectors and of real 
n x n-interval matrices, respectively. Let [A] mllR" • [b] m llR" and consider the 
problem of determining the set 

S = {xmlR' lAx = b for some Am[A], be[b]}.  (1.3) 

Problems of this kind arise for example if the entries of A and b in (1.1) are 
not known exactly or in methods for enclosing the solution of a nonlinear 
system of equations (cf. [2], Chap. 19). Generally, the set S is not an interval 
vector and it is a very difficult task to calculate S exactly. Therefore, one usually 
only tries to get an interval vector [x] containing S. 

In the present paper we propose and analyze a multisplitting technique to 
calculate an interval vector [x] containing S. We suppose that the reader is 
familiar with the elementary rules of real interval arithmetic as described in 
[23, e.g. In addition, we use the notation [y]=IGA([B],  [c ] )mI~"  to denote 
the interval vector [y] resulting from the interval Gaussian algorithm (cf. [2]) 
applied to [ B ] m l ~  "• and to the "right hand side" [c] raiN.". 

Definition 1. Let [A]mlN. "• be nonsingular (i.e. each matrix AmN, "• with 
Am[A] is nonsingular). Then the collection of triples ([M]k,[N]k, Ek), 
k = 1, ..., K, with [M]k, [N]kEIN." • is called an interval multisplitting of [A] 
if the following three conditions hold: 

i) [A] = [M]k--  [U]k for k = 1, ..., K. 

ii) For  k = 1 . . . .  , K the interval Gaussian algorithm is feasible when applied 
to the matrix [M], and any "right hand side" [c]mI~". 

iii) For k = 1 . . . . .  K the matrices E k are diagonal matrices with nonnegative 
K 

entries such that ~ E k = I. 
k ~ l  

The corresponding interval multisplitting method to enclose the set S given 
by (1.3) is defined by the iteration 

where 

K 

[ x lm+ '  = ~ Ek[y] re'k, re=O, 1, ..., (1.4) 
k = l  

[y] ' ,k=IGA([M]k,[N]k[x]m+[b]),  k = l  . . . . .  K. [ ]  

As method (1.2) the interval multisplitting method (1.4) has a natural parallelism, 
since the computat ions of [y],,,k for various k are independent. Again, a compo- 
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nent of [y],,,k needs not be computed  if the corresponding diagonal  entry of  
Ek is zero. 

In our  paper  we will give sufficient condit ions on the interval multisplit t ing 
([M]R, [N]k, Ek) which guarantee  the convergence of me thod  (1.4). These condi- 
tions also yield a new convergence theorem for the "classical"  multisplit t ing 
method  (1.2). If method  (1.4) is convergent  it will turn out  that  its limit [x]* 
contains the set S defined by (1.3). We will investigate how close Ix ]*  is to 
S and we will derive inequalities which m a y  be interpreted as informat ion on 
the speed of convergence of interval multispli t t ing methods.  

All these results are contained in Sect. 3, whereas Sect. 2 is devoted to the 
in t roduct ion of notat ion.  In Sect. 4 we repor t  some numerical  experiments.  

2 Notation 

We write interval quanti t ies in square brackets,  matr ices in capital  letters, vectors 
and scalars in small letters. Wi thout  further reference we use the nota t ion  x = (x/), 
A =(aij)  for elements of IR" and IR" • respectively. By [_A, A], ([a]o), ([_a/r, tii~]) 
we mean  the same interval matr ix  [A], and we use a similar nota t ion  for interval 
vectors and intervals. Point  intervals, i.e. degenerate  intervals [c, c], can be identi- 
fied with the element which they contain;  therefore we write c instead of [c, c]. 
Point  vectors and point  matr ices are writ ten in an analogous  way. Examples  
are the zero vector  ([0, 0 ] ) -  0 and the identity matr ix  [I ,  I ]  -= I. 

For  intervals [a] ,  [b] we define the width, the absolute  value and the distance 
by d[a]. .=~i-_a, [[a]l,=max{l_a[, t~i[} and q([a] ,  [b]),=max{[a-b_[, [a-b-I}, re- 
spectively. Fo r  interval vectors  and interval matr ices these quantit ies are defined 
entrywise, e.g., [[A][:=([[a]ijI) for [ A ] e I ~ " •  [[A][ is a nonnegat ive  real 
n x n-matr ix  where nonnegat ivi ty  refers to the usual entrywise defined part ial  
ordering < with which we equip IR" and N. "• We extend this partial  ordering 
to IIR "• by setting 

[A] < [B] :~:~ _A <_13 ̂  A <B.  

We write x > 0 if x is a positive vector, i.e. if all its componen t s  are positive, 
and similarly A > 0 for positive matrices. 

As in [16] a nonsingular  matr ix  Ae IR  "• is called M-mat r ix  if a/~N0 for 
i+j and if A - l > 0 .  An n x n-interval matr ix  [A] is te rmed M-mat r ix  (cf. [3]) 
if each element  A t  [A] is an M-matr ix .  It  is called nonsingular  (cf. Definit ion I), 
if this is true for each of its elements A. We somet imes will use the compar i son  
matr ix  ( [ A ] ) =  (cij)~N. "• of  [A] which is defined by 

finf{[a[[ae[a]i,} if i=j 
C i J : = ~  - [[a],j[ if i+j. 

We call [A] e l l l "  • an H-mat r ix  if ( [ A ] )  is an M-mat r ix  [10, 4]. General izing 
a definition of Schneider [14] we use the term M-spli t t ing for the representat ion 
[A] = [ M ] -  [ N ] e l N  "• if [ M ]  is an M-mat r ix  and if [N]  >0 .  
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Let p(A) denote the spectral radius of a real n x n-matrix A. A function 
f:  I ~ " ~  IlR" is called P-contraction if there exists a nonnegative contraction 
matrix PeIR "• such that p (P)<  1 and 

q ( f  ( [x]) , f  ([y])) <= P q([x], [y]) 

for all I-x], [y]ellR".  For a P-contraction f it is known [2, 8] that it has a 
unique fixed point [x]*el lR"  and that the sequences {Ix]"} defined by the 
iterative method 

IX] m+l = f ( [ x ] " ~ ) ,  m : 0 ,  1, ..., (2.1) 

are convergent to [x]* for any starting vector [x ]~  ". Furthermore p(P) 
is an upper bound for the Rl-factor R1((2.1), [-x]*) of (2.1) which is defined 
as in [2] by 

R1((2.1), [x]*)..=sup {limo~ sup llq([x]' ,  [x]*)ll 1/"~[ {Ix]"} erg} (2.2) 

(If'[] any vector norm of ~" ;  cg set of all sequences constructed by (2.1) and 
converging to Ix]*). 

3 Results 

We start this section by a fundamental theorem presenting a class of interval 
matrices [A] and splittings [M]k--[N]R for which the feasibility of method 
(1.4) can be guaranteed. 

Theorem 1. Let ([M]k, [N]k, Ek), k =  1 . . . .  , K, be an interval multisplitting of 
[ A ] e l N  "• with [m]k being H-matrices. Define Ak:=([m]k)--[[N]k[, 
k = 1 . . . . .  K, and let the solution set S be defined as in (1.3). I f  there is a positive 
vector x e ~ "  such that Ak x > 0 for all k, then the following assertions hold: 

a) For any starting vector [ x ] ~  method (1.4) is feasible. Each sequence 
of  iterates constructed by (1.4) converges to a common limit [x]*. 

b) Method (1.4) is inclusion isotone, i.e., if [ x ] ~  ~ then [x]"~_[y]",  m 
=0 ,1 ,  . . . .  

c) Sc_[x] ~ implies So_Ix]", m=0,  1, . . . .  

d) S _ Ix]*. 
K 

e) R1((1.4), [x]*)<p(P)< 1, where P,= ~ Ek ( [M]k )  -1 ][N]R]. []  (3.1) 
k = l  

To prove Theorem 1 we need the following auxiliary result. 



Parallel In terval  Mul t i spht tmgs  259 

Lemma 1. Let [b]e lR" ,  [M], [N]elIR "• [M] H-matrix. Let the function f: 
IN."--* IIR" be defined by 

f ( [x])  ..=IGA ([M], IN] [x] + [b]). 
Then 

q(f([x]),f([y]))<=([M])-al[N]lq([x],[y]) for any [x],[y]eI~l". (3.2) 

Proof of Lemma 1. Since [M] is an H-matrix, f ( [x])  is defined for any [x]e l~ ,"  
(cf. [2]). Formula (3.2) can now easily be proved using Schwandt's representation 
of the interval Gaussian algorithm [15, 1] and by applying Lemma 2c of [6] 
with the index set P = 0 and with [N] Ix] + [b] instead of [b]. [] 

Proof of Theorem 1 

a), e) Since [M]k are H-matrices the feasibility of (1.4) is guaranteed for 
any starting vector [ x ]~  (cf. [2]). 

We show that 

with 

K 

f ( [x ] ) ,=  ~ Ek gk([X]) (3.3) 
k = l  

gk([X]) :=IGA ([M]k, [N]k [X] + [b]), k = l  . . . . .  K, (3.4) 

is a P-contraction. 
By the usual rules for the distance q (see [2], e.g.) and by Lemma 1 one 

gets 

K 

q(f([x]),f([y])) < ~ Ek q(gk([X]), gk([y])) < P q([x], [y]) 
k = l  

with P > 0  defined in (3.1). Now 

K 

since ftkX>O and ~ Ek=I. Therefore 
k = l  

(Px)i 
- - < I ,  i=1 . . . . .  n, 

Xi 

and Exercise 2 in [16, p. 47] guarantees p(P)< 1. Hence f is a P-contraction 
with contraction matrix P. This proves a) and e). 

b) Follows as usually from the inclusion monotonicity of interval arithmetic. 
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c), d) Let x* �9 Ix]" .  There exist A �9 [A], be  [b] such that A x * =  b. Choose 
Mke[M]k ,  N~e[N]k satisfying M k - - N k = A ,  k =  1, ..., K. Then x* = M k l ( N k  x* 
+ b), k = 1 . . . . .  K, implies 

K 

x* = ~, Ek M k  1 (Nk X* + b ) �9  ~_ f ( [ x ] ' )  = [x]"  + 1. 
k = l  

This proves c), and d) follows from c) by starting with [x]~ and by taking 
the limit m --, oo. []  

If [M]k--[N]k  is an M-splitting of [A] we have ( [ M ] k ) = M k ,  I[N]kl=Nk, 
,4k=A. Suppose _A -1 > 0  and let e.-=(1,1, ..., 1)relR ~. Then x - ' = A - l e > 0  and 
A x = e > 0 .  

Similarly, if A.'=inf{Ak[k = 1 . . . . .  K} (the infimum applied entrywise) has a 
nonnegative inverse, then ,4k(,4-1e)> 0, k = 1 . . . . .  K. 

Thus Theorem 1 implies the following two corollaries. 

Corollary 1. Let ([M]k, [N]~, Ek), k =  1 . . . . .  K, be an interval multisplitting of 
[ A ] � 9  "• with [M]k being H-matrices. Define Ak as in Theorem 1 and let 
:=inf{Aklk= 1, .. . ,  K}. I f  A -  1 >0 then the assertions of Theorem 1 hold. [] 

Corollary 2. Let ([M]k, IN]k, Ek), k =  1 . . . . .  K, be an interval multisplitting of 
[A]eIIR" • Let [M]k--  IN]k, k = 1 . . . . .  K, be M-splittings of  [A] and let A - 1 >-_0 
(e.g., [A] M-matrix). Then the assertions of Theorem 1 hold with 

K 

P =  ~ EkM-~ 1Nk- [] 
k = l  

We remark that in the point case - i.e., if A = A and _b = b - -  the matrices 
[M]k and [N]k must necessarily be point matrices since 

0 = d [A3 = d [M3~ + d [N]k. 

Starting the iteration (1.4) by a point vector x ~ results in the classical multisplit- 
ting method (1.2) because IGA(M,  N x + b ) = M - l ( N x + b ) ,  if M, N � 9  "• 
x, b e R  ". Thus Theorem 1 and Corollary 1 contain new criteria for the conver- 
gence of (1.2). In this case the matrices in Corollary 2 reduce to a special class 
of matrices treated in [13, Theorem la] .  

In our next two theorems we take a closer look to the quality of the enclosure 
Ix]* of the solution set S. In particular, we show that for a situation similar 
to that of Corollary 2 the limit [x]* of (1.4) is at least as good as the worst 
enclosure obtained by the iterative methods 

[ x ] " + l = I G A ( [ M ] k , [ N ] k [ X ] ' + [ b ] ) ,  m = 0 ,  t . . . .  (ke{1 . . . . .  K}). (3.5) 

Theorem 2. Let ([M]k, IN]k, Ek), k =  1, ..., K, be an interval multisplitting of 
[A] e I ~  "• ". Let [M],  [N]  �9 IF-~ "• and let the following three conditions hold: 

(i) [A] is an M-matrix. 

(ii) [Mr] -- [N]  and [M]R -- IN]k, k = 1 . . . .  , K, are M-splittings of  [A]. 
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(iii) l -M]<[M]k  and d[M]>=dl-M]k, k = l  . . . . .  K or - equivalently - 
IN] <= [N] k and d [N] _-< d [N]k, k = I . . . . .  K. 

Then the limit [x]* of  (1.4) is contained in the limit [2]* of  the iterative method 

[2] "+1 = I G A ( [ M ] ,  [N] [2]m + [b]), m=0,  1 . . . . .  (3.6) 

Proof. The equivalence in (ii) follows at once by 1M-N = _A = M k -  Nk, M - - N  
= A = M k -- N k and d [M] + d l-N] = d [A] = d [M]k + d [NJk.  

Let f, gk be defined as in (3.3), (3.4). Let [x]~ be the limit of (3.5) which 
exists b) the assumptions of the theorem. (Use Corollary 2, e.g., with K = 1.) 
Sa t z l0  in [7] guarantees [X]k -- [2] *, its proof shows [2]*--~gk([2]*), 
k = 1 . . . .  , K. Therefore 

K K 

f([23*) = ~, Ekgk([2]*) ~ -- ~ Ek[23*=[-2]*. 
k = l  k = l  

Hence starting (1.4) with [ x ] ~  * yields to Ix] 1 c [ 2 ] * ,  and iteratively we 
get l -x]"~[2]* ,  m=0,  1, . . . .  Taking the limit m ~ o e  finally results in [x]*_~ 
[2]*. [] 

Choosing [M] = [A], [N] =0  method (3.6) reduces to the ordinary interval 
Gaussian algorithm, the iteration in (3.6) being superfluous, of course. In this 
case condition (iii) of Theorem 2 holds automatically when (i) and (ii) are fulfilled. 
Thus for M-matrices [A] and M-splittings [M]k- - [N]k  the interval vector 
IGA(I-A], [b]) always contains the limit [x]* of (1.4). 

The following corollary is an immediate consequence of Theorem 2. 

Corollary 3. Let the assumptions o f  Theorem 2 hold with l-MJ=[M]ko,  [N] 
=[N]k o for  some koe{1,  ..., K}.  Then the limit Ix]* of  (1.4) is contained in the 
limit [x]~ o of(3.5). []  

While Theorem 2 does not relate [x]* to the solution set S directly, our 
next theorem lists conditions which guarantee the best enclosure being possible. 

Theorem 3. Let ([M]k, l-N]k, Ek), k =  1 . . . . .  K ,  be an interval multisplitting o f  
[A] ~IIR n• and let the following three conditions hold: 

(i) l-A] is an M-matrix.  

(ii) l-M]k-- l-S]k, k = 1, ..., K, are M-splittings o f  l-A]. 
(iii) [M]k  is a lower triangular matrix or a point matrix for  k = 1 . . . . .  K.  

Then the limit l-x]* of  (1.4) is the interval hull Ix] n o f  the solution set S, 
i.e. Ix]* = [x] ~.-= [infS, sup S]. 

Proof. The assumptions of the theorem guarantee that the limits [x]* of (3.5) 
are equal to l-x] ~ [-7, 11]. Using the notation of (3.3) and (3.4) one therefore 
gets 

K K 

f ( [ x ] n )  = ~. Ekgk(fX]n) = ~ Ek[X]n=[X]  u. 
/ = 1  k = l  

Since the fixed point [x]* o f f  is unique (Theorem l) the theorem is proved. []  
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Unfor tunate ly ,  Theorem 3 can become false if [M]k does not  fulfill condi t ion 
(iii). This can be seen using K = 1 ; see Sect. 4 or  [8, w 4]. Nevertheless one can 
show that  Ix ]*  yields the hull of  S if [b] has a special form. 

Theorem 4. Let  the assumptions o f  Theorem 3 hold replacing (iii) by 

(iii') I-b] > 0  or [b] < 0  or 0~[b] .  

Then the limit Ix ]*  of  (1.4) is the interval hull o f  the solution set S. 

Proof  Let f, gk be defined as in (3.3), (3.4). 

Assuming  [ b ] > 0  and setting [ y ] , = [ A - l _ b , _ A - l b - ] > 0  one gets [N]k[y] 
+ [b] > 0. This yields to 

gk([y]) = [ ~ -  ~ (Uky + b), M r '  (&y + b-)] 

by a result of Bar th  and Nuding  [3]. Hence 

gk ([Y]) = 1- ~ -  I {()~k -- A) A - 1  b + b}, _Mk -~ { _Mk -- 3)  _A - '  6-t- ~ ] = [y],  

and T heo rem 4 follows for 0 <  [b] with Ix ]*  . '=[y] = [x]  it. 
The  remaining two cases can be proved  analogously  using [x]*  ,=[_A- '_b, 

A -  i b-] and Ix]*  ..=_A - 1 [b], respectively. [ ]  

Our  final results concern the rate of  convergence of me thod  (1.4) compa red  
with that  of  s tandard  methods  (3.6) based on M-splittings. (Among  these stan- 
dard  methods  are the Jacobi-  and the GauB-Seidel i terative process, e.g.) As 
in m a n y  other  i terative methods  in interval analysis the R , - fac tor  of (1.4) is 
rarely known explicitly and one has to under take  eno rmous  efforts to calculate 
it exactly (see [9], e.g.). Therefore  one often contents  oneself  with an upper  
bound.  Fo r  me thod  (1.4) applied to M-matr ices  [-A] and M-spli t t ings [M]k 

- -  [N]k we will use the cont rac t ion  matr ix  

K 

P =  ~ EkM_;INk 
k = l  

of Corol la ry  2 as a measure  for the rate of convergence.  We will give condit ions 
which guarantee  that  p(P) is not  greater  than  the bound  p(_M-~N) for the 
R , - fac to r  of  the s tandard  methods  (3.6). 

Theorem 5. Let  ([M]k,  [N]k, E,), k =  1, ..., K, be an interval multisplitting o f  
[A] e lIR "• ". Let  [M] ,  I N ]  ~ IIR "• and let the following three conditions hold. 

(i) [A] is an M-matrix.  

(ii) [ m ]  -- I N ]  and [M]k--  [N]k, k = 1, ..., K, are M-splittings o f  [A]. 

(iii) M_ k < M or - equivalently - Nk < N,  k = 1 . . . . .  K. 

K 

Then p ( P ) < p ( M - '  N) where P== ~ E k M_[ 1Nk. 
k = l  
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Proof  The equivalence in (iii) follows by an argument analogous to that in 
Theorem 2. Let e.-=(1, 1 . . . . .  1)T~R ", e>0 ,  N~,=N+e.ee  T. Since _M-~7 is a regu- 
lar splitting of the M-matrix A we have p (_M-~N)<I  (cf. [t6]), and by the 
continuity of p the inequality p~.'=p(M-~ N~)< 1 holds for all sufficiently small 

> 0. By construction _M- 1 N~ is positive, therefore the Theorem of Perron and 
Frobenius guarantees a positive eigenvector x~ associated with the eigenvalue 
p~ > 0. Now _M- 1 N~ x~ = p~, x~ implies 

p~M_ x~=N,x~>O and A_x~>(M_ -N~)x~=(1-p~)M_ x~>O. 

Taking _M k _< M into account one gets _M- ~ < M [  1 and 

(3.7) 

K K 

O<=Px~= ~ EkM_[~NkX~= ~ E k M [ ' ( M _ k - - A ) x  ~ 
k = l  k = l  

K K 

=x~- ~ E,,M~dx~<=x~- ~ E~,M-'Ax~ <= p~x~. 
k =  i k =  1 (3.7)  

Hence o < ( P x ~ ) ' < p ~ ,  i = 1 , .  n, which implies p(P)<=p~ by Exercise 2 in [16, 
- ( x A i  . . . .  

p. 47]. Taking the limit e--* 0 proves the assertion. []  

We remark that in the point case Theorem 5 generalizes Theorem 3.1 in 
[12]. 

Our final corollary sharpens the result of Theorem 5 by replacing the upper 
bounds on the Rl-factors by these factors themselves. To formulate it we define 
the index set Sia I by 

j e SEal: r there exists an index i e {1 . . . .  , n] such that d [a]o > 0. 

Obviously the elements of Sta ~ mark those columns of [A] which contain at 
least one nondegenerate interval entry. 

Corollary 4. Let - in addition to the assumptions of  Theorem 5 - the following 
conditions be fulfilled: 

(i) _A is irreducible. 

(ii) [M] is a lower triangular matrix. 

(iii) (A - 1 b_)s < 0 for  all indices s e SEA l or (_A - I b)t > 0 for  all indices t e SEa I. 

Then R1 (( 1.4), Ix] *) < R 1 ((3.6), [2] *). 

Proof  By a result in [9] the assumptions guarantee p(_M-1N)=R~((3.6), [2]*) 
and the assertion follows by Theorem 5 and by Theorem 1 e). []  

We end this section by a remark concerning the degenerate multisplitting 
case K = 1. In this case method (1.4) reduces to the standard method 

I x ]  m + l  = I G A ( [ M ] ~ ,  [N]~ [x]m+[b]) ,  m=0,  1 . . . . .  

Thus most  of our results are generalizations of theorems in [7-9]. 
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4 Example 

Let [A] =([a]o) be a symmetric 24 x 24-interval matrix having five non-zero 
diagonals. Let the non-zero off-diagonal entries of [A] be given by 

[ - 1 , 0 ]  i f j = i + 8  or i = j + 8  

[a]o= [ - 2 -  6 , - 1 ]  i f j = i + l  

[ - 2 - 6 , - 1 ]  if i = j + l  

and the diagonal entries [a ] ,  = [_q,, a , ]  by 

24 i 
a-ii = 2 +  Z (---aiJ),  g t i i = a - u + ~  �9 

j = l  
j # i  

Let the "right hand side" [b] e i~24  be given by 

D] =~f [ -3 ,  - 11 if 1_<i_<11 
([1,  3] if 12<i<24 .  

In the sequel we will describe several interval multisplittings ([M]k, IN]k, Ek), 
k = 1, ..., K, for [A], by writing down the matrices [M]k and Ek. The matrices 
[N]k are then defined in a unique manner by the equation [A] = [M]k--[N]k. 
All of the considered splittings [A] = [M]k--[N]k are M-splittings of the M- 
matrix [A]. This can easily be seen from the fact that if Be[A] or Be[M]k, 
the matrix B has the sign pattern of an M-matrix and is strictly diagonally 
dominant with positive diagonal entries (see Chap. 6 of [4]). 

a) Let K = 5. For k = 1, ..., 5 the matrix [M]k is given entrywise by 

([M]k)ij=f[a],j if i=j or 4(k-1)+l<i,j<=4(k--1)+8 
"lo else. 

For k = 2, 3, 4 the matrix Ek is given by 

(Ek)ii={~ else,if 4(k-1)+l<_i<_4(k--1)+8 

whereas the matrices E1 and E 5 are given by 

{i  if 1-<i-<4 
(El)u= if 5=<i_-<8 

else, 

i if 21 <i_<24 
(E5)ii  = if 1 7 < i < 2 0  

else. 
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This multisplitting is based on an overlapping block scheme for the matrix 
[A] consisting of the five diagonal blocks given by 

{[a]o]4(k-1)+l<=i,j<=4(k-1)+8}, k = l  . . . .  ,5. 

It is important  to notice that for this interval multisplitting the computation 
of Ix] "+ 1 according to (1.4) requires rather few work: When calculating [y],,.k 
= IGA([M]k, [N]k [X]" + [b]) we actually need only the 8 components of [y],,.k 
for which (Ek)u is non-zero. This in turn is equivalent to applying the interval 
Gaussian algorithm to a smaller system of size 8 x 8 consisting of the correspond- 
ing diagonal block of [M]k. Moreover, this diagonal block is tridiagonal. Thus, 
as in the point case, considerable additional savings are possible if the interval 
Gaussian algorithm is implemented appropriately. 

b) Let K = 5. For k = t . . . . .  5 take 

([M]k)o.=faij if i=j or 4(k-l)+l<=i,j<4(k-1)+8 
else, 

and define the matrices Lk, k = 1, ..., K, as in a). 
This multisplitting allows the same savings in computational  work as in 

a). 

c) Let K = 5. For k = 1 . . . . .  5 choose 

([M]k)ij_=f[a]o if i=j or 4(k--1)+l<__j<i<__4(k--1)+8 
else. 

The matrices Ek, k = 1 . . . . .  5, are given as in a). 
For this multisplitting the matrices [M]k a r e  bidiagonal and lower triangular. 

This means that the result of the interval Gaussian algorithm may now be 
obtained very simply by successive straightforward computat ion of the compo- 
nents of [y]m,k (see Satz 3 in [71). 

d) L e t K = l a n d  

([M]l)iJ-={~ ]'j else,if 1<j_<i_<24 

E~ = I. This is the usual interval version of the Gaul3-Seidel method (see [2]). 

e) L e t K = l a n d  

([M]l)iJ={~ a]ij else,if 1__<i=j=<24 

E 1 = I. This is the usual interval version of the Jacobi method (see [2]). 

f) Let K =  1 and [ M ] = [ A ] ,  E~ = I .  This (trivial) multisplitting is no longer 
an iterative method. I t  merely produces the result IGA([A]], [b]). 

Our numerical experiments were performed on a serial personal computer  
kws EB 68/20 using the MC 68020 micro-processor. The programming language 
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Table 1 

A Frommer and G. Mayer 

a b c d e f 

m 31 115 67 57 106 - 
_x74 -0.4965 - 0  3986 -0.3986 -0.3986 - 0  3986 -0.5177 

was PASCAL-SC (see [5]). PASCAL-SC is an extension of PASCAL which 
allows in particular an easy handling of interval operations including directed 
roundings. For all multisplittings a)-f) the starting vector was the zero vector. 
We stopped the iteration when the inequalities 

]x~"__xT- 11 < I x " -  ~ I. 10 -~0 
and 

-m-11.10-Io  1~ 7 ' -~ 7 - ' 1< 1x ,  

held simultaneously for all i=  1, ..., 24. The first row of Table 1 reports the 
number m of iterations necessary to fulfill our stopping criterion. These numbers 
yield information on the quality of the corresponding interval multisplitting. 
In particular, comparing these numbers for a) and c) with e) may be regarded 
as an illustration of Theorem 5. 

The second row of Table 1 reports the value of_x~' 4 rounded to four digits, 
where m is the number of necessary iterations. The values for _x~' 4 vary with 
the interval multisplittings used, illustrating Theorems 2 and 3. The value of 
x~'4 was 0.7736 for all multisplittings. 

The multisplittings b)-e) converge to the same fixed point which is the inter- 
val hull of the solution set S defined in (1.3) (see Theorem 3). The multisplitting 
c) merits particular attention: It requires only slightly more iterations than the 
GauB-Seidel method d), but in contrast to d) it has a natural parallelism. The 
computat ion of [x] m+t according to (1.4) breaks up into 5 parallel subtasks 
for computing [y]m.k and as was pointed out earlier, these subtasks are lower 
triangular bidiagonal systems of size 8 • 8. One step of the GauB-Seidel method 
d), however, is equivalent to solving a lower triangular system of size 24 having 
3 non-zero diagonals. 
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