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1 Introduction
Suppose that we are given a linear system

Ax=b, (1.1)
where A is a nonsingular matrix from R"*” and x and b are from R" In
order to compute the solution x of (1.1) iteratively, O’Leary and White [13]
proposed multisplitting methods which are based on several splittings of the
matrix A. More precisely, in [13] a multisplitting of A is defined as a collection
of triples (M;, N;, E\), k=1, ..., K, such that for all k the matrices M,, N, E,

are from IR"*", M, is nonsingular, A =M,—N,, and E, is a diagonal matrix
K
with nonnegative entries satisfying ). E,=I (n x n-identity matrix). The corre-
k=1
sponding multisplitting method to solve (1.1) is given by the iteration

K
"= 3% Ey™t m=0,1,..., (1.2)
k=1

where
M, y™*=Nx"+b, k=1,...,K.



256 A. Frommer and G. Mayer

This multisplitting method has a natural parallelism, since the calculations of
y™* for various k are independent and may therefore be performed in parallel.
Moreover, the i-th component of y™* needs not be computed if the correspond-
ing diagonal entry of E, is zero. This may result in considerable savings of
computational time. We refer to [13] for details. Convergence results for method
(1.2) were first given in [13]. Later, Neumann and Plemmons [12] obtained
more qualitative results for one of the cases considered in [13].

Now let IR” and IR"*" denote the set of real interval vectors and of real
n X n-interval matrices, respectively. Let [A]eIR"*", [b]eIR" and consider the
problem of determining the set

S={xeR"|Ax=Db forsome Ae[A4], be[b]}. (1.3)

Problems of this kind arise for example if the entries of A and b in (1.1) are
not known exactly or in methods for enclosing the solution of a nonlinear
system of equations (cf. [2], Chap. 19). Generally, the set S is not an interval
vector and it is a very difficult task to calculate S exactly. Therefore, one usually
only tries to get an interval vector [x] containing S.

In the present paper we propose and analyze a multisplitting technique to
calculate an interval vector [x] containing S. We suppose that the reader is
familiar with the elementary rules of real interval arithmetic as described in
[2], e.g. In addition, we use the notation [y]=IGA([B], [c])e]R" to denote
the interval vector [y] resulting from the interval Gaussian algorithm (cf. [2])
applied to [BjeIR"*" and to the “right hand side” [c]eIR"

Definition 1. Let [4]eIR"*" be nonsingular (ie. each matrix AeR"*" with
Ae[A] is nonsingular). Then the collection of triples {[M];, [N]i, Ei)s
k=1, ..., K, with [M],, [N],eIR"*" is called an interval multisplitting of [A4]
if the following three conditions hold:

i) ([A]J={M}i—[N]fork=1,. K
ii) For k=1, ..., K the interval Gaussian algorithm is feasible when applied
to the matrix [M], and any “right hand side” [c]eIR".

iii) For k=1, ..., K the matrices E, are diagonal matrices with nonnegative
K

entries such that ) E,=1I.
k=1
The corresponding interval multisplitting method to enclose the set S given
by (1.3) is defined by the iteration

K
[xI"*'= ¥ EDI™,  m=0,1,..., (14)

k=1
where
™ =IGA(MT;, [NL[x]"+[b]), k=L,...K. O

As method (1.2) the interval multisplitting method (1.4) has a natural parallelism,
since the computations of [y]™* for various k are independent. Again, a compo-
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nent of [y]™* needs not be computed if the corresponding diagonal entry of
E, is zero.

In our paper we will give sufficient conditions on the interval multisplitting
([M], [Nk, E) which guarantee the convergence of method (1.4). These condi-
tions also yield a new convergence theorem for the “classical” multisplitting
method (1.2). If method (1.4) is convergent it will turn out that its limit [x]*
contains the set S defined by (1.3). We will investigate how close [x]* is to
S and we will derive inequalities which may be interpreted as information on
the speed of convergence of interval multisplitting methods.

All these results are contained in Sect. 3, whereas Sect. 2 is devoted to the
introduction of notation. In Sect. 4 we report some numerical experiments.

2 Notation

We write interval quantities in square brackets, matrices in capital letters, vectors
and scalars in small letters. Without further reference we use the notation x =(x;),
A=(a;;) for elements of R" and R"*", respectively. By [4, A], ([al;), ([a:;, a;;])
we mean the same interval matrix [A], and we use a similar notation for interval
vectors and intervals. Point intervals, i.e. degenerate intervals [c, ¢], can be identi-
fied with the element which they contain; therefore we write ¢ instead of [c, c].
Point vectors and point matrices are written in an analogous way. Examples
are the zero vector ([0, 0])=0 and the identity matrix [I, I1=1.

For intervals [a], [b] we define the width, the absolute value and the distance
by d[a]:=a—a, |[a]|-=max{|al,]a|} and gq([a], [b]):=max {Ja—b], |a—b|}, re-
spectively. For interval vectors and interval matrices these quantities are defined
entrywise, e.g., |[A][:=(|[a];;]) for [4]eIR"*"; |[[A]] is a nonnegative real
n X n-matrix where nonnegativity refers to the usual entrywise defined partial
ordering < with which we equip R” and R"*". We extend this partial ordering
to IIR"*" by setting

[4]<[B}:<»A<BAAZB.
We write x>0 if x is a positive vector, i.e. if all its components are positive,
and similarly 4> 0 for positive matrices.

As in [16] a nonsingular matrix AeR"*" is called M-matrix if a;;<0 for
i+j and if A"'20. An nx n-interval matrix [A4] is termed M-matrix (cf. [3])
if each element Ae[ 4] is an M-matrix. It is called nonsingular (cf. Definition 1),
if this is true for each of its elements A. We sometimes will use the comparison
matrix {[A])> =(c;;)eIR"*" of [4] which is defined by

__{inf{|al|aelal,} if i=j
Cij.—{_l[a]tjl if i)

We call [4]eIR"*" an H-matrix if {[4]) is an M-matrix [10, 4]. Generalizing
a definition of Schneider [14] we use the term M-splitting for the representation
[A]=[M]—[N]eIR"*"if [M] is an M-matrix and if [N]=0.
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Let p(A) denote the spectral radius of a real nx n-matrix 4. A function
f: IR"— IIR" is called P-contraction if there exists a nonnegative contraction
matrix PelR™"™" such that p(P)<1 and

g(f([xD. (DD = Pa(fx]. [v]D)

for all [x], [yleIR". For a P-contraction f it is known [2, 8] that it has a
unique fixed point [x]*elR" and that the sequences {[x]™} defined by the
iterative method

" t=1([x]™, m=0,1,..., 2.1

are convergent to [x]* for any starting vector [x]°eIR". Furthermore p(P)
is an upper bound for the R;-factor R,((2.1), [x]*) of (2.1) which is defined
asin [2] by

R (2.1), [x]*):=sup{ lim sup llg([x]" [x]*)l X" e %) (22)

(J*1l any vector norm of R”; & set of all sequences constructed by (2.1) and
converging to [x]*).

3 Results

We start this section by a fundamental theorem presenting a class of interval
matrices [A] and splittings [M],—[N], for which the feasibility of method
{1.4) can be guaranteed.

Theorem 1. Let ([M],, [N, E), k=1, ..., K, be an interval multisplitting of
[A]eIR™ " with [M], being H-matrices. Define A,={[M71,>—|[NIl
k=1, ..., K, and let the solution set S be defined as in (1.3). If there is a positive
vector xeIR" such that A, x>0 for all k, then the following assertions hold:

a) For any starting vector [x]°eIR" method (1.4) is feasible. Each sequence
of iterates constructed by (1.4) converges to a common limit [ x]*.

b) Method (1.4) is inclusion isotone, i.e., if [x]°<[y]° then [x]"<[y]", m
=0,1,....

¢} Sc[x]° implies S=[x]™, m=0, 1, ....
d) S<[x]*
K
e) R,((1.4), [xX]*<p(P)<1, where P== Y E.{[M1>"'|[N)|. O (3.1)

k=1

To prove Theorem 1 we need the following auxiliary result.
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Lemma 1. Let [b]eIR” [M], [N]eIR"*", [M] H-matrix. Let the function f:
IR"— IR" be defined by

, f(xXD=IGA([M], [N][x]+[b]).
Then
g(f DS OW=AMD  HINTq((x]. [yD  for any [x].[y]leIR" (3.2)

Proof of Lemma 1. Since [M] is an H-matrix, f([x]) is defined for any [x]eIR"
(cf. [2]). Formula (3.2) can now easily be proved using Schwandt’s representation
of the interval Gaussian algorithm [15, 1] and by applying Lemma 2¢ of [6]
with the index set P=0 and with [N][x]+[b] instead of [b]. []

Proof of Theorem 1

a), e) Since [M], are H-matrices the feasibility of (1.4) is guaranteed for
any starting vector [x]°eIR" (cf. [2]).
We show that

K
FxD= ), Exgillx]) (3.3)
k=

with
g&([xD)=IGA(IM],, NI [x]+[P]), k=1,....K, (34

is a P-contraction.
By the usual rules for the distance g (see [2], e.g.) and by Lemma 1 one
gets

K

a(f (DS Y Evalgl[x]), sy = Pa(lx], [v])
1

k=

with P >0 defined in (3.1). Now

Px:(l— i Ek<[M]k>_1Zk>x<x,

k=1

K
since A, x>0 and Y E,=I. Therefore

k=1

P
X:

1, i=1,....n

and Exercise 2 in [16, p. 47] guarantees p(P)< 1. Hence f is a P-contraction
with contraction matrix P. This proves a) and e).

b) Follows as usually from the inclusion monotonicity of interval arithmetic.
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c),d) Let x*eS<[x]™ There exist Ae[A], be[b] such that Ax*=5b. Choose
M, e[M],, N,e[N], satisfying M,—N,=A, k=1, ..., K. Then x*=M, (N, x*
+b), k=1, ..., K, implies

K
x*= 3 E. M (Nox* +b)ef (x*)< f([x]")=[x]""".

k=1

This proves c), and d) follows from c) by starting with [x]°=S and by taking
the imit m —»o0. [J

If [M7,—[NT, is an M-splitting of [4] we have <{[M1,> =M., [[Nl|=N,,
A,=A. Suppose 47'=0 and let e:=(1,1, ..., 1)"eR". Then x:=4 'e>0 and
Ax=e>0.

Similarly, if A:=inf{4,|k=1, ..., K} (the infimum applied entrywise) has a
nonnegative inverse, then 4,(4 " 'e)>0,k=1,..., K.

Thus Theorem 1 implies the following two corollaries.

Corollary 1. Let ([M],, [N1i, EW), k=1, ..., K, be~ an interval multisplitting of
[AleIR™*" with [M], being H-matrices. Define A, as in Theorem 1 and let A
=inf{A,|k=1, ..., K}. If A~ 20 then the assertions of Theorem 1 hold. []

Corollary 2. Let ([M],, [N, Ey), k=1, ..., K, be an interval multisplitting of

[A]JeIR™*™" Let (M), — [N, k=1, ..., K, be M-splittings of [A] and let A~* 20

(e.g., [A] M-matrix). Then the assertions of Theorem1 hold with
K

P=3 EM;'N. [

k=1

We remark that in the point case — ie., if A=4 and b=>b — the matrices
[M], and [ N], must necessarily be point matrices since

0=d[A]=d[M], +d[N],.

Starting the iteration (1.4) by a point vector x° results in the classical multisplit-
ting method (1.2) because IGA(M,Nx+b)=M '(Nx+b), if M, NcR"*"
x, belR™. Thus Theorem 1 and Corollary 1 contain new criteria for the conver-
gence of (1.2). In this case the matrices in Corollary 2 reduce to a special class
of matrices treated in [13, Theorem 1a].

In our next two theorems we take a closer look to the quality of the enclosure
[x]* of the solution set S. In particular, we show that for a situation similar
to that of Corollary 2 the limit [x]* of (1.4) is at least as good as the worst
enclosure obtained by the iterative methods

[x]"* 1 =IGA(M]s, [INLIx]"+[b]), m=0,1,... (ke{l,...,K}). (3.5

Theorem 2. Let ([M],, [N, Eu), k=1, ..., K, be an interval multisplitting of
[A]eIR"™" Let [M], [N]eIR"*" and let the following three conditions hold:

(1) [A4] is an M-matrix.

(i) [M]—[N]and [M],— [N, k=1, ..., K, are M-splittings of [A].
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() [M12[MY and d[M]=d[M],, k=1,...,K or - equivalently -
[NI1s[N]cand d[N]=d[N];, k=1, ..., K.

Then the limit [x1* of (1.4) is contained in the limit [X]* of the iterative method
R ' =IGA([M], [NI[£]"+[b]), m=0,1,.... (3.6)

Proof. The equivalence in (ii) follows at once by M—N=4=M,—~N,, M—N
=A=M,—N,and d[M]+d[N]=d[A]=d[M),+d[N],.

Let f, g, be defined as in (3.3), (3.4). Let [x]¥ be the limit of (3.5) which
exists by the assumptions of the theorem. (Use Corollary 2, e.g., with K=1.)
Satz 10 in [7] guarantees [x]¥<[X]*, its proof shows [R]*2g.([£]%),
k=1, ..., K. Therefore

K K
SN =Y Ecal[]1M s 3 E[2]*=[X]*
k=1 k=1
Hence starting (1.4) with [x]°=[%]* yields to [x]* =[X]*, and iteratively we
get [x]"<[X]* m=0, 1,.... Taking the limit m —»co finally results in [x]*<
x1*. O
Choosing [M]=[A4], [N]=0 method (3.6) reduces to the ordinary interval
Gaussian algorithm, the iteration in (3.6) being superfluous, of course. In this
case condition (iii) of Theorem 2 holds automatically when (i) and (ii) are fulfilled.
Thus for M-matrices [A] and M-splittings [M],—[N], the interval vector
IGA([A], [b]) always contains the limit [ x]* of (1.4).
The following corollary is an immediate consequence of Theorem 2.

Corollary 3. Let the assumptions of Theorem 2 hold with [M]1={M],,, [N]
=[N, for some ko€{1, ..., K}. Then the limit [x]* of (1.4) is contained in the
limit [x]¥ of (3.5). O

While Theorem 2 does not relate [x]* to the solution set S directly, our
next theorem lists conditions which guarantee the best enclosure being possible.
Theorem 3. Let ([M],, [N, E.), k=1, ..., K, be ar interval multisplitting of
[A]eIR"*" and let the following three conditions hold:

(i) [A] is an M-matrix.

(i) [IM],—[N1s, k=1, ..., K, are M-splittings of [A].

(iti) [M], is a lower triangular matrix or a point matrix for k=1, ..., K.

Then the limit [x]* of (1.4) is the interval hull [x]1" of the solution set S,
ie [x]*=[x]¥:=[infS, supS].

Proof. The assumptions of the theorem guarantee that the limits [x]¥ of (3.5)
are equal to [x]¥ [7, 11]. Using the notation of (3.3) and (3.4) one therefore
gets

K K
Fx1N= Y Ecg((x1M) =) E[x]"=[x]"
k=1 k=1

Since the fixed point [x]* of f is unique (Theorem 1) the theorem is proved. [
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Unfortunately, Theorem 3 can become false if [M], does not fulfill condition
(iii). This can be seen using K=1; see Sect. 4 or [8, §4]. Nevertheless one can
show that [x]* yields the hull of S if [b] has a special form.

Theorem 4. Let the assumptions of Theorem 3 hold replacing (iii) by
(iif) [p1=0 or [b]<0 or Oe[b].
Then the limit [x)* of (1.4) is the interval hull of the solution set S.
Proof. Let f, g, be defined as in (3.3), (3.4).

Assuming [b]=0 and setting [y]:=[4 " 'b, 47 'b]=0 one gets [N],[v]
+[b]=0. This yields to

gy =IM; " (Ney+b), M " (N.y+D)]
by a result of Barth and Nuding [3]. Hence
gy =[M; {(My—A) A" 'b+b}, My " {M,—~ A A" b+ b}]1=[y],

and Theorem 4 follows for 0<[b] with [x]*:=[y]=[x]".
The remaining two cases can be proved analogously using [x]*:=[47'5,
A~ 'b] and [x]*:=4"'[b], respectively. []

Our final results concern the rate of convergence of method (1.4) compared
with that of standard methods (3.6) based on M-splittings. (Among these stan-
dard methods are the Jacobi- and the GauB-Seidel iterative process, e.g.) As
in many other iterative methods in interval analysis the R;-factor of (1.4) is
rarely known explicitly and one has to undertake enormous efforts to calculate
it exactly (see [9], e.g). Therefore one often contents oneself with an upper
bound. For method (1.4) applied to M-matrices [A] and M-splittings [M],
—[N7]; we will use the contraction matrix

K
PzzEkMk_lA—lk

k=1

of Corollary 2 as a measure for the rate of convergence. We will give conditions
which guarantee that p(P) is not greater than the bound p(M~'N) for the
R,-factor of the standard methods (3.6).

Theorem 5. Let ((M1,, [N, Ev), k=1, ..., K, be an interval multisplitting of
[A]eIR™™ " Let [M], [N]1eIR"*" and let the following three conditions hold.
(1) [A]is an M-matrix.
(i) [M]—[N1and [M},—[N. k=1, ..., K, are M-splittings of [A].
(ili) M, <M or — equivalently - NN, k=1, ..., K.

K
Then p(P)<p(M~'N) where P:==Y E,M;'N,.

k=1
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Proof. The equivalence in (iii) follows by an argument analogous to that in
Theorem 2. Let e:=(1, 1, ..., )"eR", >0, N,:=N +¢eee”. Since M — N is a regu-
lar splitting of the M-matrix A we have p(M 'N)<1 (cf. [16]), and by the
continuity of p the inequality p,:=p(M ™' N)<1 holds for all sufficiently small
£>0. By construction M ™! N, is positive, therefore the Theorem of Perron and
Frobenius guarantees a positive eigenvector x, associated with the eigenvalue
p.>0. Now M~ ' N, x,=p, x, implies

p:Mx,=N,x,>0 and Ax,2(M—N)x,=(1—p)Mx,>0. (3.7

Taking M, £ M into account one gets M~ ' <M, ! and

X
> ExMy ka_ZEkMk (M, — A)x,

0<Px,=
k=1
K K

=X Z E.M;'Ax.<x, Z (MTUAX, £ p,x,.
P s (3.7)

P . . . .
Hence 0§£L)‘§ .» i=1, ..., n, which implies p(P)<p, by Exercise 2 in [16,
)

Xe)i
p. 47]. Taking the limit ¢ - 0 proves the assertion. []

We remark that in the point case Theorem 5 generalizes Theorem 3.1 in
[12].

Our final corollary sharpens the result of Theorem 5 by replacing the upper
bounds on the R;-factors by these factors themselves. To formulate it we define
the index set S; 4 by

Jj€S 4 <>thereexists anindex ie {1, ..., n} such thatd[a]; >0
Obviously the elements of S, mark those columns of [ 4] which contain at
least one nondegenerate interval entry.

Corollary 4. Let — in addition to the assumptions of Theorem 5 — the following
conditions be fulfilled :

(i) A is irreducible.
(i) [M] is a lower triangular matrix.
(i) (47 'b), <0 for all indices s€S 4 or (A7 ' b), 20 for all indices teS 4.

Then R, ((1.4), [x]*) <R, ((3.6), [£]*)

Proof. By a result in [9] the assumptions guarantee p(M ~' N)=R,((3.6), [X]*)
and the assertion follows by Theorem 5 and by Theorem le). [

We end this section by a remark concerning the degenerate multisplitting
case K =1. In this case method (1.4) reduces to the standard method

[xI™* =IGA(M],, [NL D"+ [b],  m=0,1,....

Thus most of our results are generalizations of theorems in [7-9].
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4 Example

Let [4]=([al,;) be a symmetric 24 x 24-interval matrix having five non-zero
diagonals. Let the non-zero off-diagonal entries of [A] be given by

[—1,0] if j=i+8 or i=j+8
i
—2-——, —1] if j=i+1
[“]ij= [ 6

6

[Az—J—, ~1] if i=j+1
and the diagonal entries [a];; =[a;;, a;;1 by

24 l
a;=2+ ) (—a;), a;=a;+—.

2 6
J
j*i

Let the “right hand side” [b]eIIR?* be given by

[b],={[_3’ —11 if 1<ig11

[1, 3] if 12<i<24.

In the sequel we will describe several interval multisplittings ([M1,, [Nk, Ex),
k=1, ..., K, for [4], by writing down the matrices [M], and E,. The matrices
[N], are then defined in a unique manner by the equation [A]=[M],—[N];.
All of the considered splittings [A]=[M]1,—[N]; are M-splittings of the M-
matrix [A]. This can easily be seen from the fact that if Be[A] or Be[M],,
the matrix B has the sign pattern of an M-matrix and is strictly diagonally
dominant with positive diagonal entries (see Chap. 6 of [4]).

a) Let K=5. For k=1, ..., 5 the matrix [M]; is given entrywise by
if i=j or 4(k—1)+1=5i,j<4(k—1)+8
else.

[a]t j
Ey={,
For k=2, 3, 4 the matrix E, is given by

(E {3 if 4k—1)+1=Zi<4(k—1)+8
W= 0 else,

whereas the matrices E, and E; are given by

1 if 15i<4
(E);=53 if 5<i<8
0 else,

1 if 21<5ig24
(Es)i=1% i 17=i<20
0 else.
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This muiltisplitting is based on an overlapping block scheme for the matrix
[ A] consisting of the five diagonal blocks given by

{[al;,|4k—1)+1<ij<4k—1)+8}, k=1,...,5

It is important to notice that for this interval multisplitting the computation
of [x]™*! according to (1.4) requires rather few work: When calculating [y]™*
=IGA([M],, [N],.[xT"+[b]) we actually need only the 8 components of [y]™*
for which (E,);; is non-zero. This in turn is equivalent to applying the interval
Gaussian algorithm to a smaller system of size 8 x 8 consisting of the correspond-
ing diagonal block of [ M],. Moreover, this diagonal block is tridiagonal. Thus,
as in the point case, considerable additional savings are possible if the interval
Gaussian algorithm is implemented appropriately.

b) Let K=5.For k=1, ..., S take

a; if i=jor 4k—D+15i,js4k—1)+8
0 else,

([M]k)l,={

and define the matrices E,, k=1, ..., K, as in a).

This multisplitting allows the same savings in computational work as in
a).

¢) Let K=5.For k=1, ..., 5 choose

agy={Le BT 4k—1)+1<j<i<dk~1)+8

else.

The matrices E,, k=1, ..., 5, are given as in a).

For this multisplitting the matrices [ M ], are bidiagonal and lower triangular.
This means that the result of the interval Gaussian algorithm may now be
obtained very simply by successive straightforward computation of the compo-
nents of [y]™F (see Satz 3 in [7]).

d) Let K=1and

[al, if 15j<i<24
0 else,

([ML),-,:{

E, =1. This is the usual interval version of the Gaul}-Seidel method (see [2]).
e) Let K=1 and

[a);; i 1=Zi=j<24
0 else,

([M]l)i,:{

E =1 This is the usual interval version of the Jacobi method (see [2]).
f) Let K=1 and [M]=[A4], E, =I. This (trivial) multisplitting is no longer
an iterative method. It merely produces the result IGA([A]], [b]).

Our numerical experiments were performed on a serial personal computer
kws EB 68/20 using the MC 68020 micro-processor. The programming language



266 A Frommer and G. Mayer

Table 1
a b c d e f
m 31 115 67 57 106 -
X% —0.4965 -03986 —0.3986 —0.3986 —03986 —0.5177

was PASCAL-SC (see [5]). PASCAL-SC is an extension of PASCAL which
allows in particular an easy handling of interval operations including directed
roundings. For all multisplittings a)-f) the starting vector was the zero vector.
We stopped the iteration when the inequalities

IxP— xS 10700
and

B FP B

held simultaneously for all i=1, ..., 24. The first row of Table 1 reports the
number m of iterations necessary to fulfill our stopping criterion. These numbers
yield information on the quality of the corresponding interval multisplitting.
In particular, comparing these numbers for a) and c) with ¢) may be regarded
as an illustration of Theorem 5.

The second row of Table 1 reports the value of x7%, rounded to four digits,
where m is the number of necessary iterations. The values for x%, vary with
the interval multisplittings used, illustrating Theorems 2 and 3. The value of
x7, was 0.7736 for all multisplittings.

The multisplittings b)—e) converge to the same fixed point which is the inter-
val hull of the solution set S defined in (1.3) {see Theorem 3). The multisplitting
c¢) merits particular attention: It requires only slightly more iterations than the
GauB-Seidel method d), but in contrast to d) it has a natural parallelism. The
computation of [x]™*! according to (1.4) breaks up into 5 parallel subtasks
for computing [y]™* and as was pointed out earlier, these subtasks are lower
triangular bidiagonal systems of size 8 x 8. One step of the GauB-Seidel method
d), however, is equivalent to solving a lower triangular system of size 24 having
3 non-zero diagonals.
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