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Abstract - -  Zusammenfassung 

Interval Linear Systems with Symmetric Matrices, Skew-Symmetric Matrices and Dependencies in the 
Right Hand Side. The methods of Interval Arithmetic permit to calculate guaranteed a posteriori bounds 
for the solution set of problems with interval input data. At present, these methods assume that all input 
data vary independently between their given lower and upper bounds. This paper shows for special 
interval linear systems how to handle the case where dependencies of the input data occur. 

AMS Subject Classifications: 65G10, 65H10 
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Lineare Intervallgleichungssysteme mit symmetrischen Matrizen, schief-symmetrischen Matrizen und 
Abhfingigkeiten in der rechten Seite. Die Intervallarithmetik erlaubt f/ir verschiedene Problemstellungen 
die Berechnung yon a posteriori Schranken ftir die zugeh6rige Lrsungsmenge; dabei ist stets voraus- 
gesetzt, dab alle Eingabedaten unabh/ingig voneinander zwischen vorgegebenen unteren und oberen 
Schranken variieren. Diese Ver/Sffentlichung behandelt Methoden ffir spezielle lineare Intervallsysteme, 
die Abh~ingigkeiten der Eingabedaten mit berficksichtigen. 

1. Introduction 

In m a n y  practical applications a linear algebraic system has to be solved the 
coefficients of which are uncertain due to measurements.  Moreover ,  frequently the 
system matrix has a special structure and the coefficients of  the matrix or  the right 
hand  side may  be dependent  in some sense. For  example if the system matrix A is 
symmetric  the coefficients au~ are dependent  with a ~  = a~u. 

Interval  mathematics  is an elegant tool  for working with uncertain data, replacing 
the input  data  by real compact  intervals 

[a]  :=  [ a , ~ ]  :=  {a ~ R[_a < a < ~} (1.1) 

where a < d. The values a resp. K are called lower resp. upper bounds. DR denotes 
the set of  all real compac t  intervals. We assume that  the reader is familiar with basic 
results of  this theory (cf. [1], [2], [12], [14], [15]). 

We will use the following notations,  m([a] )  := a + 0.5"(~ - a) is the midpoint and 
d( [a ] )  :=  ~ - a is the diameter of [a].  By R" resp. R" • we denote the space of  real 
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vectors x with n components resp. the space of real n x n matrices A. DN" is the set 
of interval vectors Ix] 

Ix] := [_x, ~-3 := {x e ~"lx < x < ~}, x < ~ (1.2) 

with n components and 0~" • is the set of interval matrices 

[A] := [ A , X ]  := (A E ~"• -< A _< A}, A _< X (1.3) 

w i t h  n 2 real interval coefficients [aq]. Diameter and midpoint of interval vectors 
and interval matrices are defined componentwise. For  X _ ~" the interval hull ~ (X) 
is defined by 

~ (X)  := ("] {[w] e D~"]X ___ [w]}. (1.4) 

We use �9 E { +,  - ,  ",/} for the real arithmetic operations and interval operations; 
from the context it will always be clear whether it is an operation on reals or on 
intervals. 

A linear interval system is defined as a family of linear systems 

A x  = b (1.5) 

with A ~ [A1 E D~ "• and b ~ [b] ~ IR". Each coefficient aij E [ai~], bi E [bi] for 
i, j = 1, . . . ,  n is allowed to vary between the given lower and upper bound 
independently of the variation of the other coefficients. To "solve" this family of 
linear systems means to calculate (on a computer) an interval vector Ix] containing 
the solution set 

Z ( [ A ] , [ b ] )  := {x E ~"[Ax  = b, A ~ [A] ,b  ~ [b]}. (1.6) 

There are several methods for computing such interval vectors (cf. [4], [5], [11], 
[16], [171, [18], [211, [221). The algorithms of Rump are implemented in a 
number of commercial and non-commercial packages like ABACUS, ACRITH, 
CALCULUS, FORTRAN-SC, PASCAL-SC, TPX (of. [6], [81, [9], [10], [19], [3], 
[13], [73). 

If dependencies of the input data of [A] or [b] occur the corresponding solution 
set has to be defined according to those dependencies. In the example case of a 
symmetric matrix with uncertain data the solution set 

{x ~ ~"[Ax  = b, A ~ [A] ,b  ~ [b], A symmetric} 

is of interest. Obviously this set is contained in Z([A],  [b]) but may be very small 
compared to the latter. At present, no special algorithms are known for calculating 
sharp bounds for such solution sets with dependent interval input data (compare 
[15], chapter 3.4). 

In this paper we present algorithms computing very sharp bounds for the solution 
sets of linear systems with symmetric resp. skew-symmetric matrices with interval 
input data and dependencies in the right hand side. They are based on the inclusion 
methods of Rump ([17], [18], [20]) and permit to estimate the sharpness of the 
calculated bounds. It is shown how with the tools of Interval Mathematics depen- 
dencies in the input data can be handled. 
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2. Theory and Algorithms 

First we discuss the symmetric case. Let [A] �9 l N" • with [au~ ] = [a~,] for #, v = 1, 
. . . ,  n. Then we call the set of matrices 

{A sym} := {A �9 N"• �9 [A], A symmetric} (2.1) 

a symmetric interval m a t r i x .  {A sym} r D~ nxn is not an interval matrix in the usual 
sense. 

{A sym} __~ [A] and {A sym} -- [A] if and only if_au~ = du~ for/z, v = 1 . . . . .  n, # =A v. A 
symmetric interval matrix {A sym} and a right hand side [b] s IN" define a family of 
linear systems 

AN = b, A �9 {Asym}, b �9 [b] (2.2) 

with the corresponding solution set 

z({asym}, [b ] ) :=  {x �9 N"[Ax = b, A �9 {asym}, b �9 [b]}. (2.3) 

Obviously -r({Asym}, [b]) ___ Z'([A], [b]). 

Theorem 1. Let {A sym} be a symmetric interval matrix, R �9 ~"• ~ �9 N" and 
[b] �9 D N". 

1) Let [z] �9 ~ "  be defined by 

[zi  ] ".= ~ riu([bu] -- [auu]2u) -- ~ (riuY G + ri~2,)[a,~ ] (2.4) 
g=l  #,v=l 

#<v 

for i = 1 . . . . .  n then 

[z] = ~ ( { R ' ( b  - A2)IA �9 {Asym}, b �9 [b]}). (2.5) 

2) For [w] �9 nN" let [x], [y] �9 nl~" be defined by 

Ex] := [z] + (I - R[A])[w] (2.6) 

and 

[y] := [inf([z]) + s u p ( ( / -  R[A])[x]) ,sup([z])  + inf((I - R[a] ) [x] ) ] .  (2.7) 

I f  Ix] ~_ int([w]) then R and all A �9 {A sym} are non-singular and 

+ [y] ~ O(~'({Asym},Eb])) __ 9~ + Ix] .  (2.8) 

Remark. I denotes the n x n identity matrix and int([w]) denotes the interior 
of [w]. In (2.7) sup and infare to be understood componentwise and 

inf([z]) + s u p ( ( / -  R. [A] ) [x ] )  <_ sup([z]) + inf((I - R ' [ A ] ) [ x ] )  

is assumed. 

Proof. 

1) Let A �9 {Asym}, b �9 [b] and r i the ith row vector of R. Then the ith component 
of R(b -- A2) satisfies 
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and au~ = a~u yields 

ri(b - A~)  = ri.b u - riu a.~2~ 
,u=l .u=l 

= ~ riu(b ~ -  a u u ~ ) -  ~ r i u a ~ ,  
#=1 #, v=l 

#:Pv 

ri(b - A~)  = ~ riu(bu - auu~u) - ~ ( r i ~  v + r,v~u)auv. (2.9) 
#=I #,v=l 

#<v 

By a Theorem of Moore ([14], page 23) we get 

{ri(b - A 2 ) I A  e {A'm}, b e [b]} = [zi], i = 1 . . . .  , n 

because in (2.4) each interval variable occurs only once and to the first power. 
Hence (2.5) is valid. 

2) If A, R e ~"• 2, b ~ ~", [w] e D ff~ ~ and 

R(b  - A~2) + (I  - n A ) .  [w] ~_ int([w]) 

then from a Theorem of Rump ([18], page 59) it follows that R, A are non- 
singular and the exact solution R of A x  = b is contained in 2 + (R. (b - A~) + 
(I - R A ) .  [w]). 

Because of (2.6) 

U { R . ( b  - A2 )  + (I  - R [ A ] ) [ w ] [ A  ~ {A~ym}, b e [b]} ___ [x] 

and with [x] _~ int([w]) the application of the Theorem cited above yields the 
non-singularity o f n  and all A e {A ~ym} and O(L'({A~ym), [b])) _ 2 + [x]. 

To prove the last assertion we follow the theory developed in [201. The identity 

Yc + R(b  - A~2) = A - l b  - (I  - R A ) ( A - l b  - ~) 

yields 

,2 + {R(b  - A2)]A  e (ASym},b ~ [b]} 

_ ~F({Asym}, [b]) - {(I - R A ) ( A - l b  - :~)]A e {Asym}, b ~ [b]} 

Z({ASYm}, [b]) - (I  - R [ A ] ) ( Z ( { A s y m } ,  [b]) - 2) 

~({ASym}, [b]) - ( I  - R [ A ] ) [ x ] .  

By defining Q := { R . ( b  - AYc)]A e {Asym},b e [b]}, and A := (I  - R [ A ] ) [ x ]  

from Lemma 1 in [20] it follows that 

inf(Z({/sYm}, [b])) < 2 + inf(Q) + sup(A) 

sup(Z({ASr~}, [b])) _> ~ + sup(Q) + inf(A). 

Taking the interval hull and observing that [z] = ~(Q) yields ~ + [y] ___ 
(~Y?({A sym }, [b])). [] 
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Now the following algorithm computes interval vectors [x], [y] e ~R" and 2 ~ ~" 
satisfying (2.8). 

(1) Compute with some standard algorithm an approximation R of m([A]) and 
:= R" m([b]). Optionally improve s by a residual iteration. 

(2) Calculate [z] by formula (2.4); [C] := 1 - R" [A]; Ix] := [z]; k := 0; 
(3) repeat [w] := [x ] ' [1  - e, 1 + e] + [ - # , # ] ;  k := k + 1; 

Ix] := [z] + [c ] .  [w]; 
until [x] ~- int([w]) or k > 10. 

(4) /f Ix] ___ int([w]) then 
a) {all a e {A sym} are non-singular and ~(x({asym}, [b])) _~ # + [x]} 
b) {with [y] by (2.7) holds # + [y] ~_ ~(Z({A'Ym},[b]))} 
else {no inclusion can be computed}. 

The above algorithm is a modification of Rump's algorithm ([18], page 62) for 
symmetric interval matrices. For a practical implementation on digital computers 
some remarks should be made. The operations in step (1) are the ordinary floating- 
point operations whereas the operations in step (2) to (4a) are the floating-point 
interval operations. The computation of 2 + [y] must be implemented carefully. 
To calculate an interval vector contained in the interval hull ~(S({A~ym}, [b])) 
obviously according to (2.7) we need to compute an inner estimation of [z] and an 
outer estimation of (1 - R- [A]) [x]. The outer estimation is calculated by using the 
ordinary floating-point interval operations. The inner estimation of [z] can be 
computed by using the interval operations with inward roundings, i.e. 

[_a,d] �9 [b,b] := [ M i n { A ( a _ , b ) , A ( a * b ) , A ( ~ * b ) , A ( ~ * b ) ,  

Max{V(_a, b), V(a ,  b), V(a,_b), V(a,  b)] 

where �9 ~ { + ,  - , - , / }  and A, V denote the upward resp. downward rounding. The 
components of the vector # ~ ~" in step (3) are equal to the smallest positive 
floating-point number and a good choice of a = 0.1. 

Now we discuss the case of skew-symmetric matrices. The n • n matrix A is called 
skew-symmetr ic  if A t = - A. Let [A] e ~ ~" • with [A] t = - [A] and [aii ] = 0 for 
i = 1 . . . . .  n then we call the set of matrices 

{A ~kew} := {A e ~"• ~ [A], A skew-symmetric} (2.10) 

a skew-symmetr ic  interval matrix.  A skew-symmetric interval matrix {A ~kew} and a 
right hand side [b] z DR" define a family of linear systems 

A x  = b, A e {ASkeW}, b e [b] (2.11) 

with the corresponding solution set 

X({ASkew}, [b]) := {x ~ ~"] Ax  = b , a  ~ {A~k~w},b ~ [b]}. (2.12) 

I fA ~ {A skew} then 

ri(b - AYe) = ~ r,ub, - ~ (ri,~2 ~ - ri~Ycu)a,~. (2.13) 
t t=l  /~,v=l 

/2"<v 
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Obviously, by replacing in Theorem 1 formula (2.4) by 

[zl] = ~ r iu[bu]-  ~ ( r ~ -  r ~ ) [ a u ~ ]  (2.14) 
#=i / t , v = l  

/L'<v 

and symbol A sym by A ~kcw we analogously get a theorem and an algorithm for the 
skew-symmetric case. 

In many applications dependencies in the right hand side occur. This is for example 
the case for many models in Operations Research (product mix problems, blending 
problems, investment problems,...). To handle this case let (Jk)~=* be a partitioning 
of the index set { 1,.. . ,  n}, i.e. 

1 

Jk_~{1 . . . .  ,n}, Jk n h 2 - - - - ~  forkx r  2, U Jk={1  . . . . .  n}. 
k = l  

Let [ilk] ~ l~" for k = 1 . . . . .  1 and s ~ R" then we call the set 

{bd~ := {b e R"[bi = siflk,j = l . . . .  ,n with flk E [flk] for j ~ Jk} (2.15) 

a dependent interval vector with respect to the partitioning (Jk)X=l and the multipliers 
s ~ ~n. {bdeP} is not an interval vector in the usual sense. 

A dependent right hand side {b dep} and an interval matrix [A] define a family of 
linear systems 

A x  = b, A ~ EA], b E {b O~p} (2.16) 

with the corresponding solution set 

Z([A], {bdep}):: {X ~ ~ ' l A x  = b ,A ~ [A] ,b  ~ (hdep}} (2.17) 

Obviously s {bdeP}) _~ Z([A], [b]) if [b] is defined by [b~] = Sj[flk] for all 
j 6 J k ,  k =  l . . . . .  I. 

Theorem 2. Let {b dep} be a dependent interval vector with respect to the partitioning 
l (Jk)k=l and the multipliers s ~ ~", [A] 6 0~ "• R 6 ~"• ff 6 R", [b] 6 0~ ". 

l) Let  [z] e IR" be defined by 

for i = 1 , . . . ,  n. Then 

[z] = ~({U(b - AY)]A E [A] ,b  ~ {bd~P}) 

2) For [w] ~ 0~" define Ix], [y] ~ H~" by (2.6) and (2.7). I f  [x] ~ int([w]) then R 
and all A ~ [A] are non-singular and 

+ [y] _ O(Z([A],{bdep}))  ~_ ~ + [X] (2.19) 
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Proof. If b 6 {b dep} then 

r i (b  - AYe) = ~ riub ~ - r i (A fc )  
#=1 

Obviously the proof of theorem 3 can be finished analogously to the proof of 
theorem 1. [] 

The algorithm described for symmetric interval matrices works in this case if [z] is 
defined by formula (2.18). 

3. Numerical Examples 

We present two examples to illustrate our previous analysis. In the examples we 
use a machine with base 16 and machine unit eps := 16 -13 = 0.22... 10 -16. The 
algorithms are implemented by the programming language CALCULUS [19], an 
interactive programming environment supporting Kulisch's arithmetic [12], the 
algorithms of the ACRITH subroutine library [9], [10] and LINPACK, EISPACK. 
In the following we display the results of the above algorithms with five significant 
figures. 

In our first example the (symmetric) Hilbert matrix 

(H,,)~j := (lcm(1,...,  2n - 1))/(i + j + 1) 

of dimension n = 5 is considered (lcm: least common multiple of all denominators). 
The right hand side is given by I-b] = Hs" x with 

x = (1.00000, - 0.50000, 0.37500, - 0.31250, 0.27344). 

The coefficients of l-A] are defined by 

[ai,  i+l]  = [a i+l , i ]  := [Hi ,  i+ 1 "(1 - 3" l O - 6 ) , n i ,  i+l "(1 -l-- 3" 10-6)] ,  i = 1 . . . . .  n -- 1 

and [alj] = (Hs)~j for the other coefficients. In table 3.1 the inner and outer bounds 
+ [y], 2 + [x] of the symmetric solution set ~v'({Asym}, [b]) are displayed whereas 

in table 3.2 the inclusion vector I-u] of Z'([A], [b]) (calculated by the routine DILIN 
of ACRITH) and the diameters d([ui])/d((Y~ + [x])i) for i = 1 . . . . .  5 are displayed 

Table 3.1. Inner and outer bounds for ~F-({Asym}, [b]) 

~+[x]  

[ 0.99305, 1.00695] 
[--0.50228,-0.49772] 
[ 0.37398, 0.37602] 
[-0.31385,-0.31115] 
[ 0.27168, 0.27520] 

:~ + [y] 

[ 0.99411, 1.00589] 
[--0.50147,--0.49854] 
[ 0.37465, 0.37534] 
[--0.31329,--0.31171] 
[ 0.27219, 0.27469] 
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Table 3.2. Inclusion vector [u] of S ( [ A ] , [ b ] )  
and ratio of diameters 

[u] d([u])/d(e + Ix]) 

[ 0.83461, 1.16539] 
[-0.62788, -0.37212] 
[ 0.27037, 0.47963] 
[-0.40115,-0.22385] 
[ 0.19647, 0.35041] 

23.8 
55.9 

102.6 
65.3 
43.9 

These results show that a severe overestimation may occur if the input data of a 
symmetric interval matrix are handled independently. For example the diameter of 
the third component d ( [u 3 ] )  overestimates the diameter of the third component of 
the symmetric solution set by a factor of about 100. Moreover, the algorithm 
described in section 2 for the symmetric case delivers very sharp inner and outer 
bounds of the symmetric solution set S({Asym}, [b]). 

In the second example the matrix 

A = 

-1 .271e0 6 . 7 1 3 e - 1 - 3 . 0 9 5 e - 1  6 . 1 9 0 e - 1 ~  

--1.312e0 6 .875e -  1 - 3 . 1 2 5 e -  1 6.250e 

- - 9 . 6 8 8 e -  1 3 .124e -  2 3.126e-- 2 9.375e 

--9.496e-- 1 2.157e-- 2 3.119e-- 2 9.376e 

is considered. This matrix is well-conditioned with an approximative l~ condition 
number 2.504.10 a. We define an interval matrix [A] by 

[ail] :=  [ a i j  - -  10-5" laiy[,aii + 10-5" laiyl], i, j = l . . . . .  n 

and a dependent right hand side with partitioning and multipliers 

J~ := {1,2}, J= := {3,4}, s := (1, 1, I, l) t 

and 

Jill] = ]-f12] := [1 - 5" 10 -3 , 1 + 5-10-3] .  

In Table 3.3 the inner and outer bounds # + [y], # + [x] of the solution set 
L'([A], {bdeP}) are displayed. 

In Table 3.4 the inclusion vector [u] of27([A], [b]) (calculated by the routine DILIN 
in ACRITH) and the proportion of the diameters of [u] and ~ + [x] are given. The 
right hand side [b] is defined by [bl] = [ill] for i = 1 . . . . .  4. 

Table 3.3. Inner and outer bounds 
for L'([A], {bd~ 

+ [x ]  ~ + [ y ]  

[1.0199,1.0621] [1.0206,1.0614] 
[2.0322,2.1283] [2.0337,2.1268] 
[1.0220,1.1382] [1.0237,1.1365] 
[2.0132,2.0610] [2.0139,2.0604] 
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Table 3.4. Inclusion vector [u] ofX([A], [b]) 
and ratio of diameters 

[u] d([u])/a(~+[x]) 

[-- 1.1091 ,3.1911] 102.16 
[-3.2125 ,7.3730] 110.23 
[-5.2343 ,7.3945] 108.78 
[ 1.9678e- 1,3.8775] 77.962 

In the case of dependencies in the right hand side a severe overestimation occurs. 
Taking into consideration dependencies of the right hand side very sharp bounds 
of the corresponding solution set are calculated whereas without regarding those 
dependencies even the signs of the solution set Z([A], [b]) cannot be determined 
and the ratio of the diameters varies between 78 and 110. 
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