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8 Ordinary Differential Equations 

1. Introduction 
LET there be given a system of n ordinary differential equations of 
first order 

Y' = f ( 4 ~ )  
with the initial condition 

y(t,) = s; s E Rn 

so that the solution of (1) and (2) is 

y"(t; ta, 8) (3) 
for t >, ta. Usually a numerical approximation for y"(t; t,, s) is sought. 
If interval methods are used, condition (2) can be generalized. Instead 
of a point s E Rn, a set Wa c Rn can be used so that the result is a set 
of solutions. This set of solutions will be denoted by 

W(t) = (2: Z = y"(t; t,, s), S E Wa) (4) 
so that F(ta) = W,. 

When using interval arithmetic it is advantageous if Wa can be 
described by an interval vector or by a product of an interval vector 
and a point matrix. Intervals will be denoted by the symbol J , so that 
LcJ is an interval and LwJ is an interval vector. 

Using Taylor series, Moore [l] obtains very good results in the numeri- 
cal integration of ordinary differential equations. This chapter describes 
a new numerical process that can be realized in several different ways. 
We will call it 'Three-Process Method' or 3PM. 

2. The 3PM process 
Assume we are given a system (1) or n ordinary differential equations 

and a set of initial values W,* at the time t,. Our problem is to construct 
a set W$* so that W$* 2 W,*, (5) 

w,* = W*(t,), (6) 

and w*(t) = {x:x = y"(t;t,,s), s E W:) (7) 
where t, = ta+h, h > 0. (8) 

The step length can be determined by process (I) given below. 
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Three procedures will be described for solving the problem. The 
procedures are defined by three sub-problems that must be solved. 
There are many numerical realizations for each procedure so that i t  is 
possible to find a large number of combined realizations for the whole 
3PM. 

2.1. Process ( I )  

Assume we are given an initial time value t ,  and an initial set W z  
a t  the time t,. Also given is an integer k 2 0. 

Our problem is to determine a step length h > 0 and an interval 
polynomial with vector coefficients 

k 

['(tpta)J = 2 [pvJ (t-ta) 
v=o 

(9) 

so that for all t  E [t,, tb], 
(r'(t-ta)J 2 W*(t). (10) 

Here tb is determined by (8) and w*( t )  by (7) .  I n  most cases i t  is sufficient 
to  construct (f'J for k = 0. 

2.2. Process (11) 

Assume that a t  the time t ,  there is given an initial point rz with 
VZI, E WZI,. The dot over a variable denotes that the variable is a single 
value and not a set. Our problem is to  find a set V$* with 

v;* 2 V $  (11) 

where V$ = g(tb; t,, r:). (12) 

Obviously process (11) contains the ordinary problem of numerical 
integration, starting with a single initial point. For the performance of 
process (11), the result of process (I) must be used. 

2.3. Process ( I I I )  

Assume there is given a decomposition of W z  as the sum of the point 
VZI, and a set Uz so that  

w,*~V:+u,*, O E U ~ .  (13) 

Our problem is to  find a set U,** with the property 

up2 Ub* (14) 

where U$ = Wg- r:. (15) 

The set Ug can be interpreted as the image of the perturbations Uz of 
Vz if integration is performed from t ,  to t,. For process (111) the result 
of process ( I )  must be used. 
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2.4. Composition of processes (I) ,  (II) ,  and (III) 

By composition of processes (I), (11), and (111) the whole 3PM can be 
constructed in a simple way. This is illustrated in diagram (16) (p. 94). 

From (16) it can be seen that 3PM is a one-step method. It differs from 
other integration methods in the separation of the integration into the 
two processes (11) and (111). 

Some realizations of (I), (11), and (111) will now be considered. 

3.1. Realization of process (I) 

Moore ([I], p. 131 et seq.) gives a realization of process (I) for k = 0. 
This realization works very well. A realization for k > 0 can be found 
by using the Picard-Lindelof iteration. 

There may exist an interval vector [WE) with the property 

W z s  [wXJ .  
By using Moore's method for k = 0, an interval polynomial of degree 
k = 0 can be obtained with 

i&(t-ta)J = 1 ~ 0 J  (17) 
so that, for tb = t,+h (h > 01, 

W* (t) s [PO J (18) 
for all t E [t,, tb]. The Picard-Lindelof iteration now leads to 

1 

J : = [wZJ + J if (ta +T, iPv(~) J ) J a~ (19) 
0 

forv=O, 1 , 2  ,.... 
In (19) fJ  is a representation for f in interval arithmetic operations. 

By using interval polynomials for the integration (19), it is easy to get 
[PV+,j. But it is necessary to have the ability to limit the degree of 
[PV+, J . This can be done by vergroberung. After each step, v + v+ 1, 
and the degree of [Pv+,J can be reduced to v+ 1. In this way-after 
k steps using (19)-we obtain [PJ = [$J , where 

W( t )  G [P(t-ta) J (20) 

for all t E [ta,tb]. In practice it is sufficient to have the result (17) for 
k = 0. Only the cases k = 1 or k = 2 may also be of practical interest. 

3.2. Realization of process (11) 

For the realization of process (11), only a point-integration need be 
done, so that nearly all one-step integration methods are available if the 
remainder can be written down. The simplest realization is given by 
the Taylor series (see Moore [l]). 
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Given 

Process ( I )  r-- '- l  

A point i,* must be chosen within 
[ w ~ J .  Then iX is a realization of p,*. 
The Taylor series through terms of 
second order now has the form 

(vPJ : = gZ+h(f(ta,i,*)J + 

where V r  is realized by 

v;* = [vg*] . ( 2 2 )  

Now it is true that 

Vg E [vg*J (23) 

because in the remainder of ( 2 1 )  the 
whole set of solutions F*(t) is included 
in (&Lo, hl) J . I Process (11) I 

3.3 Realization of process ( I I I )  

Process (111) I 
Result for t b  I 

Preparation of the next 
integration step 

It is very important to have a good 
realization of process (111). Only then is 
it possible to get small bounds for the 
error propagation. By linearization of 
the given differential equation in the 
neighbourhood of y"(t;t,, V:) and by 
using the theory of matricants a realiza- 
tion can be found. The interval vector 

[C:J : = (w,*J -.i)Z (24) 
is a description of UZ. Interval functions 
[lijJ must be obtained which contain 
the functional matrix of f for each 
element so that 

L(tY Y )  = Pij(tY Y)1Y (25) 

( l i j ( tyy)J 3 l+j ( tY~)  forts < t < tb. 

(27) 
Let [pOJ be the result of process (I) 

for k = 0. Then 



8.3 ORDINARY DIFFERENTIAL EQUATIONS 95 

must be computed. Now [yJ contains all matrices L with arguments in 
the set W*(t) for t E [t,, tb]. Hence it follows by the theory of matricants 
that for " h v  

[QJ : = f+ 2 -( V! ~ Y J  
v = l  

[ C r J  : = [QJ [C;J 

so that for the interval vector [CYJ , the relation 

[Cg*J z U,* (31) 

holds. The machine calculation of [QJ can be done by interval arith- 
metic without difficulty. 

If [Q J contains a geometric rotation, the result (ziz*J may not be 
very good. Moore discusses this difficulty in his book [I]. At Bonn we 
have evaluated a special method for carrying out a mapping that is 
better than (30). It is assumed that U,* = Wz-r; has the following 
representation : 

LC;] z2"a[eaJ z U,*, 

The product pa ',leaJ is defined in the sense of the 'united extension' 
. . 

(see Moore [I]) : 

Process (I) can be realized independently of this representation by 
using lw,*J . Also [Q J can be computed in the old way. Only the 
mapping (30) must be obtained in a more complicated way: 

IQJ  sol+ l Q z J  3 01 E IQJ , 
~,Ih,r%+ ITJ, (34) 

[TJ leaJ + l Q z J  p a  leaJ leJ.  
Then [QJ (Ta LeaJ 1 ~ ' b  I&J  + I'J = (35) 

and p b  (eaJ + [eJ 2 u,*- (36) 

Now the set Uz* is not described by an interval vector. This implies 
that the following change should be made in (16): 

Wg* = V p + U z * c  (vSJ +pb + (eJ. (37) 

By separation of v p  in the form 

[v$*J 5 6::+ [vgzj (6;; E (vg*J ), (38) 

the relation w$*~+Tb*+% [BaJ + l e l J  (39) 

holds with l e l l  2 leJ  -I- (vg:J . (40) 
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By performing the operations indicated in (39) it is possible to get 
a description of Wg* in the form (33). If [SJ z T C ~  then 

' b  leaJ + [elJ s i b (  leaJ + (BJ  LelJ 1, (41) 

l e b J  LfiJ lelJ + LeaJ 3 (42) 
so that Wg* c df$+Pb (ObJ (43) 

and (43) is of the form (33). For starting the next integration step all 
variables must be given a new notation: 

'* - '** va: - V l b ,  

Pa: = i b ,  (44) 

[eaJ : = lob] 
[ w ~ J  ?Pa [BaJ + V ~ Z  W;. 

By this more complicated method, very good results can be obtained. 
By a small modification it is possible to also get 'inside' interval vectors 
[eal with the property that the set so described is contained in the set 
of all solutions. 

4. Examples 
To illustrate the preceding analysis, we consider two problems we 

have solved by the methods described. Our first example is the astro- 
nomical three-body problem. The differential equations used as the test 
problem were those for the three-dimensional problem sun4upiter-8th 
moon of Jupiter. This problem was integrated (see Kriickeberg [4]) by 
Taylor series of order three with h = 1/16 for 1600 steps (= 100 days) 
by 3PM. The results are 

[y,) = [- 1.2852300740, 1.2852300703], 

[y,] = [0.8599642591, 0.85996426691, 

[y,J = [0.30140620~, 0.30140620@], 

[ y ; )  = [0.9963448543, 0.99634486061, - 
[ y i j  = [0-5962818.&, 0.59628190671, 

[y& = [-0.6042486288, -0.6042486228]. 

For our second example, we consider the integration of y" = -y. 
This very simple example is very interesting from the following point 
of view. The initial set is rotated through an angle 5 = 2~ as the time 
variable runs from t to  t+2n. It is difficult to find small bounds for the 
error propagation (see Moore [l]). Without any special technique, the 
bounds can be overestimated by a factor of about 500 for each rotation. 
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Moore has reduced this factor to about 16. Using the technique described 
above, it is possible to perform 12340 integration steps with h = r / l O  
and, after 617 rotations, get the following 'inside' and 'outside' interval 
vectors for the mapping of the starting 'window7 (BoJ : 

The results were computed using single word length in an interval version 
of Fortran, called Fortran-i, wherein Fortran expressions are automati- - 

tally interpreted as interval arithmetic expressions. 
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