Topics in
 Interval Analysis

EDITED BY
E. HANSEN

OXFORD
AT THE CLARENDON PRESS
1969

325

Oxford University Press, Ely House, London W. 1 glasgow new yore toronto melbourne welundoton Cape town salisbury ibadan nairobi lusaka adds baba bombay calcutta madras karachi lahore dacia KOALA LUMPER SINGAPORE HONG KONG TOKYO

(C) OXford University press 1969

PRINTED IN GREAT BRITAIN

Contents

PART 1
 ALGEBRAIC PROBLEMS

1. Introduction to algebraic problems 3 RAMON E. MOORE
2. Triplex-Algol and its applications 10
KARL NICKEL
3. Zeros of polynomials and other topics 25
KARL NICKEL
4. On linear algebraic equations with interval coefficients 35 ELDON HANSEN
5. On the estimation of significance 47
jean meinguet
PART 2
CONTINUOUS PROBLEMS
6. Introduction to continuous problems 67
RAMON E. MOORE
7. On solving two-point boundary-value problems using interval arithmetic 74
ELDON HANSEN
8. Ordinary differential equations 91
F. KRÜCKEBERG
9. Partial differential equations 98
F. KRÜCKEBERG

9 - Partial Differential Equations

1. Introduction

Interval arithmetic can be used in problems in partial differential equations. But today it seems to be difficult to give a general description of the possibilities. To give some impressions two different examples are selected.

2. Example I

Schröder [6] has studied error estimation for a certain boundary-value problem. The equation has the form

$$
\begin{gather*}
-\Delta u+f(x, u)=0 \quad \text { on } G \\
u=\gamma(x) \quad \text { on } \Gamma . \tag{1}
\end{gather*}
$$

Let ϕ be an approximation for the solution u and define the defect function $d(\phi)$ such that

$$
\begin{align*}
d(\phi) & =\Delta y-f(x, y), \quad x \in G \\
\phi & =\phi(x, y), \quad x, y \in G \tag{2}
\end{align*}
$$

The problem now is to find small bounds for $d(\phi)$ within G in practical cases; here $d(\phi)$ can be a very complicated expression. In the given example we have
with

$$
\begin{gather*}
d(x, y)=d(\phi)=\Delta \phi+\exp \{\phi(x, y)-P(x, y)\} \tag{3}\\
G: x \in[-1,+1] ; y \in[-1,+1] \\
\phi(x, y)=\phi_{0}(x, y)+\phi_{1}(x, y) \tag{4}
\end{gather*}
$$

and

$$
\begin{gather*}
H(x)=h(x)+h(-x) \tag{6}\\
h(x)=2(1+x) \ln \left\{4+(1+x)^{2}\right\}+\left\{4-(1+x)^{2}\right\} \arctan \{0 \cdot 5(1+x)\}-\pi \tag{7}\\
\phi_{1}(x, y)=\left(1-x^{2}\right)\left(1-y^{2}\right) \sum_{i=1}^{6} b_{i} f_{i}(x, y) \tag{8}
\end{gather*}
$$

and

$$
\begin{align*}
& f_{1}=1 \\
& f_{2}=x^{2}+y^{2} \\
& f_{3}=x^{4}+y^{4} \\
& f_{4}=x^{2} y^{2} \tag{9}\\
& f_{5}=x^{6}+y^{6} \\
& f_{6}=x^{4} y^{2}+x^{2} y^{4}
\end{align*}
$$

$$
b_{1}=5.6176774 \times 10^{-2}
$$

$$
b_{2}=-2.0087935 \times 10^{-2}
$$

$$
b_{3}=6 \cdot 2069297 \times 10^{-4}
$$

$$
b_{4}=1 \cdot 1764105 \times 10^{-2}
$$

$$
b_{5}=-5 \cdot 7364814 \times 10^{-4}
$$

$$
b_{6}=-2 \cdot 4416037 \times 10^{-3}
$$

and
$P(x, y)=\frac{1}{\pi}\left(P_{1}+P_{2}+P_{3}+P_{4}\right)$,

$$
\begin{gather*}
P_{1}=q(x, y), \quad P_{2}=q(-y, x) \\
P_{3}=q(-x,-y), \tag{10}\\
P_{4}=q(y,-x) \\
q(x, y)=(1+x)(1+y) \ln \left\{(1+x)^{2}+(1+y)^{2}\right\}+ \\
+\left\{(1+x)^{2}-(1+y)^{2}\right\} \arctan \{(1+y) /(1+x)\}
\end{gather*}
$$

It is very easy to compute $d(x, y)$ for a special list of values x_{i}, y_{i}. But it seems to be impossible to construct uniform bounds for $d(x, y)$. Interval arithmetic is a successful instrument here. The functions P, ϕ, and $\Delta \phi$ can be described by interval polynomials in two variables in the form
for

$$
s \in[0, h] ; \quad t \in[0, h] ; \quad s_{0}, t_{0} \in G .
$$

This is possible if interval polynomial representations of $\ln (z)$, $\arctan (z)$ are known and arithmetic operations with interval polynomials can be performed. It is important that the degree of the resulting interval polynomials can be reduced and bounded by Vergröberung. Now from $\left\lfloor Q_{a}\right\rfloor,\left\lfloor Q_{b}\right\rfloor$, and $\left\{Q_{c}\right\rfloor$ new interval polynomials can be constructed so that

$$
\begin{equation*}
d\left(x_{0}+s, y_{0}+t\right) \in\left\lfloor B_{0}\right\rfloor+\left\lfloor B_{1}\right\rfloor s+\left\lfloor B_{2}\right\rfloor t \tag{12}
\end{equation*}
$$

and the bounds of $d\left(x_{0}+s, y_{0}+t\right)$ in the sub-square $\left[x_{0}, x_{0}+h\right],\left[y_{0}, y_{0}+h\right]$ are

$$
\begin{equation*}
\left\lfloor B_{0}+\min \left(0,\left\lfloor B_{1} h\right)+\min \left(0,\left\lfloor B_{2} h\right) \leqslant d \leqslant B_{0}\right\rfloor+B_{1}\right\rfloor h+B_{2}\right\rfloor h . \tag{13}
\end{equation*}
$$

By dividing G into about 100,1000 , or 10000 sub-squares and performing this interval-estimation, more or less close bounds for d can be constructed uniformly in G.

According to Schröder [6] more estimations are necessary (see p. 158, equation (4.6) of [6]) for determination of an error-constant α. This

$$
\begin{align*}
& P\left(x_{0}+s, y_{0}+t\right) \in\left\lfloor a_{0}^{*}\right\rfloor+\left\lfloor a_{1}^{*}\right\rfloor s+\left\lfloor a_{2}\right\rfloor t=\left\lfloor Q_{a}\right\rfloor, \\
& \phi\left(x_{0}+s, y_{0}+t\right) \in\left\lfloor b_{0}^{*}\right\rfloor+\left\lfloor b_{1}^{*}\right\rfloor s+\left\lfloor b_{2}\right\rfloor t=\left\lfloor Q_{b}\right\rfloor, \tag{11}\\
& \Delta \phi\left(x_{0}+s, y_{0}+t\right) \in\left\lfloor c_{0}^{*}\right\rfloor+\left\lfloor c_{1}^{*}\right\rfloor s+\left\lfloor c_{2}\right\rfloor t=\left\langle Q_{c}\right\rfloor,
\end{align*}
$$

problem was also solved by interval arithmetic. The so-constructed value $\alpha^{*}=1.0471266 \times 10^{-3}$ is only a little larger than the value $\alpha=1.0577 \times 10^{-3}$ which was computed using only a finite set of points x_{i}, y_{i} within G. Now it is easy to get correct bounds for u. The interval computations in this problem were performed by Wauschkuhn [7].

From a theoretical point of view it is of interest to use not only interval polynomials for defect estimation. The polynomials can be generalized to certain classes of functions with a range of values within a half-ordered space (see Krückeberg [3]).

3. Example II

In some cases it is possible to construct directly the operator for solving a given partial differential equation. If the problem has the form

$$
\begin{gather*}
\frac{\partial u(t, x)}{\partial t}=A(t) \frac{\partial u(t, x)}{\partial x}+B(t) u(t, x)+c(t) \\
u(0, x)=\phi(x), \quad u \in R^{n} \tag{14}
\end{gather*}
$$

and if the special example is

$$
\begin{gather*}
\frac{\partial^{2} u}{\partial t^{2}}=t^{2} \frac{\partial^{2} u}{\partial x^{2}}+|t| \frac{\partial u_{0}}{\partial x}+t^{3} \sin t \\
u(0, x)=x^{2}-x+1 \tag{15}\\
\frac{\partial u}{\partial t}(0, x)=1-x
\end{gather*}
$$

the solving operator can be written in general form

$$
\begin{gather*}
u(t, x)=\Omega(B, t)\{\Omega(C, t)[\phi]+\Omega(-B, t) c\} \\
C(t)=\Omega(-B, t) A(t) \Omega(B, t) \tag{16}
\end{gather*}
$$

By performing (16) for (15) using Formac the following result can be obtained:

$$
\begin{align*}
u(t, x)= & x^{2}-x+1+t\left(1-x^{2}\right)+(2 x-1) \frac{|t| t^{2}}{3!}+\frac{t^{4}}{6}-\frac{x|t| t^{3}}{6}- \\
& -\frac{t^{5}}{10}+\frac{t^{6}}{10.9}-\frac{t^{7}}{9.7 .4}+t\left(18-t^{2}\right) \sin t+6\left(4-t^{2}\right) \cos t-24 \tag{17}
\end{align*}
$$

(see V. Scharf [5]). But the coefficients in (17) are computed in Formac with rounding errors. By using interval arithmetic in combination with Formac it is possible to get correct bounds for the coefficients. In this way upper and lower bounds for the solution u can be constructed.

It seems to be a very successful procedure to combine a system like Formac with the ideas of interval analysis. Furthermore, in this way 'inside' intervals can be constructed.

REFERENCES

1. Moore, R. E. Interval analysis. Prentice-Hall, New Jersey (1966).
2. Nickel, K. Über die Notwendigkeit einer Fehlerschranken-Arithmetik für Rechenautomaten. Num. Math. 9 (1) 69-79 (1966).
3. Krückeberg, F. Defekterfassung bei gewöhnlichen und partiellen Differentialgleichungen. Vortrag Oberwolfach im Juni 1966, Band 9. Birkhäuser-Verlag, Basel (ISNM) (1968).
4. Kulisch, U. and Apostolatos, N. Approximation der erweiterten Intervallarithmetik durch die einfache Maschinenintervallarithmetik. Computing 2 (3) 181-94 (1967).
5. Scharf, V. Ein Verfahren zur Lösung des Cauchy-Problems für lineare Systeme von partiellen Differentialgleichungen. Dissertation, Bonn, 1966.
6. Schröder, J. Operator-Ungleichungen und ihre numerische Anwendung bei Randwertaufgaben. Num. Math. 9, 149-62 (1966).
7. Wauschkuhn, U. Methoden der Intervall-Analysis zur gleichmäßigen Erfassung des Wertebereiches von Funktionen in einer und mehreren Veränderlichen. Diplom-Arbeit, Bonn (1967).
