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1 IntroductionThe solution of initial value problems for ordinary di�erential equations hasproceeded to the stage where one can not only compute approximate solutionsautomatically, but also give (approximate) accuracy estimates based on localcontrol of truncation error versus roundo� error. But due to the diversityof behaviour of dynamical systems, this local error control can be unreliablewhen a certain global accuracy need to be achieved.There are methods for rigorous error control going back to Moore [11]which are based on interval arithmetic (see [12] for a modern treatment ofinterval analysis). However, Moore observed that naive methods can leadto severe overestimation even on simple problems, due to so-called wrapping(cf. [13]). The current best rigorous code, due to Lohner [9] takes measuresagainst wrapping. It has no automatic step size control, but techniques ofEijgenraam [3] allow to control the step size adaptively. However, bothLohner's and Eijgenraam's methods use initial bounds related to explicitODE methods like Euler's, and thus have severe step size restrictions for sti�systems.In this paper, we� relate local errors and global errors, using one-sided Lipschitz condi-tions (Theorem 2.8);� survey the properties of logarithmic norms, needed for explicit workwith the one-sided Lipschitz condition;� prove a new existence theorem (Theorem 3.5) giving conditions underwhich an initial value problem has a solution which remains close (in aquantitatively speci�ed sense) to a given approximation;� give explicitly a set of su�cient conditions veri�able by computer (usinginterval arithmetic), and show that for uniformly dissipative problems,these conditions give global bounds for all times, with a global error ofthe approximation;� indicate an adaptive strategy for the automatic enclosure of solutionsof general initial value problems, with the property that no step sizerestrictions are expected for sti� problems.2



2 Logarithmic normsIn this section we review and extend the known properties of logarithmicnorms. Some of the results discussed here are not needed for the remainingsections, but are included for the sake of completeness.Logarithmic norms were introduced by Dahlquist [2] and Lozinskij [10].They are extensively used in the book by Coppel [1] (in particular, pp. 3, 41,59) and the article by Str�om [17], where further properties and referencesmay be found.Let V be a Banach space and de�ne, for u; v 2 V , u 6= 0,�h(u; v) := ku+ hvk � kukhkuk : (1)2.1. Proposition. For h > 0, �h(u; v) is monotone increasing in h andbounded from below by �kvk=kuk; hence the limit�(u; v) := lim suph!+0 �h(u; v) = limh!+0�h(u; v) = infh>0�h(u; v) (2)exists.Proof. By the triangle inequality, ���ku+ hvk � kuk��� � khvk and, for h � k,�h(u; v)� �k(u; v) = kh�1u+ vk+ (k�1 � h�1)kuk � kk�1u+ vkkuk � 0: 2�(u; v) is called the logarithmic derivative of the vector norm k�k; cf. Remark2.4 below. We �rst note some simple properties:2.2. Proposition.(i) We have ku+ hvk � kuk(1 + h�(u; v)); (3)and, for h! 0, ku+ hvk = kuk(1 + h�(u; v)) + o(h):3



(ii) We have �(u; u) = 1 for u 6= 0; (4)�(u; v) � kv + sukkuk � s for s � 0; (5)�(�u; v) = 1��(u; v); �(u; �v) = ��(u; v) for � > 0; (6)j�(u; v)� �(u; w)j � kv � wkkuk : (7)Proof. All statements are straightforward consequences of (1) after takinglimits; for (5) use s = 1=h. 2Central for the application of logarithmic norms is the following result, againa direct consequence of the de�nition.2.3. Proposition. The forward derivative@+f(t) := limh!+0 f(t+ h)� f(t)h (8)of the norm of a di�erentiable vector function x is given by@+kx(t)k = �(x(t); _x(t)) kx(t)k: (9)In (9), the 2-sided derivative exists i� �(x;� _x) = ��(x; _x). 22.4. Remark. If N : V ! IR+ given by N(u) := kuk is Frechet-di�erentiable at u, it follows that�(u; v) = N 0(u)vN(u) = (logN(u))0v:
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2.5. Examples.(i) For the norm kxk2 = qhxjxi in a Hilbert space with inner producth� j �i we have �2(u; v) = Rehujvikuk2 ;and the norm k � k2 is smooth for x 6= 0.(ii) For the norm kxk1 in V = IRn we have�1(u; v) = max f(sgn ui)vi j i with juij = kuk1g ;and the norm kxk1 is smooth if x has a unique absolutely largestcomponent. 2The usefulness of logarithmic norms can be seen from the following stabilitytheorem.2.6. Theorem. Assume the one-sided Lipschitz condition�(x� y; F (t; x)� F (t; y)) � �F (t) for all x; y 2 IRn (10)and let�(s; t) := tZs �F (�)d�; [= (t� s)�F in the autonomous case.] (11)Then, for any two solutions x1, x2 of_x(t) = F (t; x(t)); (12)the di�erence r(s; t) := e��(s;t)kx1(t)� x2(t)kis monotone decreasing in t.Proof. By (9) and (8), @+kx1(t)� x2(t)k � �F (t) � kx1(t)� x2(t)k;@+r(s; t) = ��F (t)r(s; t) + e��(s;t) @+kx1(t)� x2(t)k � 0: 25



2.7. Corollary. For t > s, for any two solutions x1; x2 of (11),kx1(t)� x2(t)k � e�(s;t)kx1(s)� x2(s)k: (13)As a consequence we can deduce the following result on local error propaga-tion, which appears to be new.2.8. Theorem. Assume the one-sided Lipschitz condition (10). Let 0 =t0 < t1 < � � � be a grid such thatti+1Zti �F (t)dt � � < 0 for each i: (14)For a solution x(t) of (12), consider an approximating grid function xi,i = 0; 1; : : : whose local error (per step) satis�eskxi(ti+1)� xi+1k � r; i = 0; 1; : : : (15)where xi(t) is the solution of (12) with xi(ti) = xi, thenkx(ti)� xik � max�kx(0)� x0k; r1� e�� : (16)Proof. Let �i := kx(ti)� xik , then, for i = 0; 1; : : :�i+1 � kx(ti+1)� xi(ti+1)k+ kxi(ti+1)� xi+1k � e� � �i + r by (13){(15):This implies, since � < 0,�i � �0ei� + r1� ei�1� e� = ��0 � r1� e�� ei� + r1� e� � max��0; r1� e�� : 22.9. Remarks. (i) If fxig is generated by a one-step methodxi+1 := xi + hiFnum(hi; ti; xi); hi = ti+1 � ti; (17)the local error bound r of (15) is a bound for �i + hi�i where �i is the localroundo� error (per step) and �i is the local discretization error.(ii) In principle, one could use this for global error control by providingestimates for � and r at each step.(iii) Note that 11� e� = �1� + 12 � �12 +O(�2).6



Working with �(u; v) directly is sometimes cumbersome, and can be simpli-�ed using bounds in terms of logarithmic matrix norms. For a linear mappingA 2 Lin(V ) of V into itself (a n�n -matrix if V = IRn), we de�ne its normkAk := supu6=0 kAuk=kuk (18)and its logarithmic norm�(A) := lim suph!+0 (kI + hAk � 1) =h: (19)Note that both kAk and �(A) may be in�nite if dimV =1, but we alwayshave, from the triangle inequality,�(A) � kAk; �(A+B) � �(A) + �(B): (20)Clearly, (18) implies kAuk � kAk kuk; (21)and from (2), (19) we �nd the inequality�(u;Au) � �(A); (22)and hence by (7) the important bound2.10. Proposition.�(u; v) � �(A) + kv � Auk=kuk if u 6= 0: (23)With an appropriate choice of A, this formula yields computable bounds for�(u; v) which are su�ciently good for the applications in Section 4.In the �nite-dimensional case (22) is sharp, i.e., we have�(A) = supu6=0 �(u;Au): (24)The logarithmic norm is related to the spectral abscissa�(A) := sup fRe� j � 2 SpecAg = limh!0 �(I + hA)� 1h ; (25)7



which satis�es �(A) � �(A) � kAk: (26)In general, �2(A) = �(Asym) = supf� j � 2 SpecAsymg;where Asym := 12(A+ A�);and for n� n-matrices,�1(A) = maxfReAii +Xk 6=i jAikj j i = 1; : : : ng:In particular, �2(A) � �() �I � Asym positive semide�nite: (27)We have �(A) = �(A)� if k � k is monotone and A is diagonal, or� if k � k = k � k1 and A is quasimonotone, i.e. its o�-diagonal entries arenonnegative, or� if k � k = k � k2 and A is normal (and in particular if A is self-adjoint).Further properties of �(A) are�(�A) = ��(A) if � > 0; (28)�(A+ �I) = �(A) + Re�: (29)2.11. Proposition. The following inequalities hold:keAtk � e�(A)t (30)k(sI � A)�1k � (Re s� �)�1 if �(A) � � < Re s (31)k(I � A)�1(I + A)k2 � 8<: 1 if �(A) � 01+�1�� if �(A) � �; � 2 (0; 1): (32)�2(A)� �(A) � q12(trA�A� j trA2j) (33)8



Proof. For (30): For _x(t) = Ax(t), we obtain �F = �(A) in (10). Withx1(0) = x0; x2(0) = 0, we have from (13), with s = 0,kx1(t)� x2(t)k = keAtx0k � e�(A)tkx0kwhich implies (30).For (31): Let B = (sI � A)�1 so that (sI � A)B = I givingj1 + hsj kBk = kB + hsBk = k(I + hA)B + hIk � kI + hAk kBk+ h;1kBk + kI + hAk � 1h � j1 + hsj � 1h :In the limit h! 0, we �nd kBk�1+�(A) � Re s. With �(A) � � < Re s, wemay conclude kBk � (Re s� �)�1. For (32) and (33), see Str�om [17] 22.12. Remark. (32) does not hold for k � k1 in place of k � k2; e.g., ifA = 0@ �2 20 0 1A, then �1(A) = 0, but (I �A)�1(I +A) = 13 0@ �1 40 3 1A hasnorm 53 > 1. Im particular, this implies that the following result of Haireret al. [6] does not generalize to k � k1.2.13. Theorem.(i) Suppose R(z) is analytic in Re z < 0, continuous on Re z = 0. IfjRzj � 1 for all z 2 C with Re z � 0then �2(A) � 0) kR(A)k2 � 1(ii) Suppose R(z) is analytic in Re z < �, continuous on Re z = �. ThenkR(A)k2 � 'R(�2(a)) where 'R(�) := sup fjR(z)j j Re z � �g :
9



This theorem can be re�ned further; see Schmitt [15].For practical applications to rigorous enclosures, it is important to be able tocalculate strict bounds for logarithmic norms using approximate arithmeticonly.Using a guess �0 for �2(A), one can compute a rigorous bound for �2(A) asfollows.Calculate an approximate modi�ed Cholesky factorization�0I � Asym � LLT � E (34)with diagonal E � 0 (using, e.g., the algorithm of Schnabel and Eskow[16]), and observe that (20) and (27) imply for arbitrary L�2(A) � �0 + k�0I � Asym � LLTk2 : (35)The norm term bounds rounding errors and truncation errors in the modi�edCholesky factorization. In this special case where Asym is nearly diagonal,su�ciently good bounds are already obtained by using (35) with L = 0 and�0 = minAii.With the use of interval arithmetic and kBk2 � kBkF = ptrBBT , a rigorousupper bound for (35) can be found. If the initial guess was good, then E � 0in (34) and the correction term in (35) will be small. If the correction termis large, one can repeat the process with an improved �0, obtained, e.g., by afew Lanczos iterations with Asym. For a related technique to bound smallestsingular values of matrices see Rump [14].3 A semilocal existence theoremIn this section we use di�erential inequalities and Peano's existence theoremfor solutions of initial value problems to deduce veri�able conditions that thesolution of an initial value problem exists and remains in a prescribed tubefor some calculable time interval. We begin with an auxiliary result whichestablishes a su�cient condition that a function remains � 0.3.1. Lemma. Let f : [ t; �t ] ! IR be a continuous function. If there areconstants ; � 2 IR, � > 0, such that, for t 2 [ t; �t [, the implication0 � f(t) � � ) limh!+0 f(t+ h)� f(t)h � f(t) (1)10



holds, then f(t) � 0 ) f(t) � 0 for all t 2 [ t; �t ]: (2)Proof. For given � 2 (0; �=(e�t � et)) , let T be the set of t 2 [ t; �t ] wheref(t) � �(et � et): (3)Note that (3) implies f(t) � � for t 2 T . We will show that T = [ t; �t ] iff(t) � 0, independently of �; hence �! 0 will yield (2).a) Take t 2 T , t < �t, and assume f(t) � 0. By (1), for every � > 0, there isa positive �h � �t� t such thatf(t+ h) � (1 + h)f(t) + �0h for h 2 [0; �h]:We choose �0 = �et and �nd, with 1 + h � eh and (3),f(t+ h) � eh�(et � et) + �eth= �(e(t+h) � et)� �et(eh � 1� h)� �(e(t+h) � et)Thus t+ h 2 T for h 2 [0; �h].b) Now assume f(t) < 0 at t < �t, t 2 T . By continuity, there is a positive�h � �t� t such that f(t+ h) � 0 and t+ h 2 T for h 2 [0; �h].For f(t) � 0, there is a maximal t� such that [ t; t�] � T since T is closed.By a) and b), t� = �t. 23.2. Remarks. (i) Instead of constant , we may assume  = _�(t) where� : [ t; �t ] ! IR is continuously di�erentiable. The proof works, with treplaced by �(t) and similar changes. But this extended form seems not tobe more useful.(ii) One cannot put � = 0 in (1). A counterexample is: t = �1; �t = +1,f(t) = t3.The following comparison theorem is a generalization of the well-knownGronwall inequality (see e.g. [7]). 11



3.3. Theorem. For s > 0, let u : [0; s]! V (a Banach space), ' : [0; s]!IR+ = fx 2 IR j x > 0g be continuously di�erentiable functions. For �xed� > 0, let t� be the in�mum of all t 2 [0; s] where the following two relationsare simultaneously satis�ed:'(t) � ku(t)k � '(t) + � (4)_'(t) � � (u(t); _u(t)) '(t); (5)but if (4) and (5) are incompatible, let t� = s. Thenku(0)k � '(0) ) ku(t)k � '(t) for all t 2 [0; t�]: (6)Proof. The function f : [0; s]! IR de�ned byf(t) := ku(t)k � '(t) (7)is continuous. Hence the set T := ft 2 [0; t�] j 0 � f(t) � �g is either empty(in which case there is nothing to prove) or compact. In this case,supt2T k _u(t)k <1; inft2T ku(t)k � inft2T '(t) > 0 (8)so that we can de�ne (cf. (2.5)) := supt2T �(u(t); _u(t)) � supt2T k _u(t)k=ku(t)k <1: (9)Take t 2 T , t < t�, so that, by the construction of t�, (5) cannot hold because(4) holds: _'(t) > � (u(t); _u(t)) '(t): (10)For h > 0 and t+ h 2 T we haveku(t+ h)k = ku(t) + h _u(t)k+ o(h)= (1 + h� (u(t); _u(t))) ku(t)k+ o(h)= (1 + h� (u(t); _u(t))) f(t) + (1 + h� (u(t); _u(t)))'(t) + o(h)� (1 + h)f(t) + '(t) + h _'(t) + o(h)by (2.3),(7), (9) and (10), so thatf(t+ h) = ku(t+ h)k � '(t+ h) � (1 + h)f(t) + o(h) :Hence (1) holds for t = 0, �t = t� and (6) follows from (2) by the Lemma. 212



3.4. Remark. Clearly, t� is a decreasing function of �, hence the conclusion(6) is strongest for � ! 0. It would be interesting to show that t0 = sup�>0 t�;then we could put � = 0 in (4). However, at present I cannot exclude thepossibility that t0 > sup�>0 t�.We shall now apply the comparison theorem (Theorem 3.3) to give aconstructive existence test for a solution of the initial value problemF (t; x(t); _x(t)) = 0 with x(t0) = x0; _x(t0) = z0: (11)Here F is a mapping from 
 � IR � V � V into V where 
 � D � E,D � IR� V , E � V , and the initial values satisfyF (t0; x0; z0) = 0; (t0; x0) 2 intD; z0 2 intE: (12)Explicit ordinary di�erential equations are obtained as the special caseF (t; x; z) = F0(t; x)� z ; (13)however, it will be useful to consider the implicit form (11) since thesolution of (11) for _x may complicate the expression and lead to additionaloverestimations.Actually, (11), a di�erential-algebraic equation (DAE), includes much moregeneral situations than (13). We will consider only DAEs of index zero:For each triple (t0; x0; z0) satisfying (12) there are neighborhoods U � Dof (t0; x0) and U 0 � E of z0 such that, for every (t; x) 2 U , the equationF (t; x; z) = 0 has a unique solution z 2 U 0 and z depends continuously on(t; x).By the local implicit function theorem, F has index zero in D � E if it iscontinuous in D�E, continuously di�erentiable with respect to z, and if thepartial derivative Fz(t; x; z) has a bounded inverse for (t; x; z) 2 D � E. Inparticular, F has index zero ifF (t; x; z) = F0(t; x)�G(t; x)z; (14)with continuous F0 : D0 ! V and G : D0 ! Lin(V ), and if G(t; x) has abounded inverse for (t; x) 2 D0. Clearly, this covers the case (13) of explicitODEs with continuous F0. 13



The index zero property may be tested, either by symbolic computation orby numeric computation with intervals.In the following, we aim to construct, for a solution x(t) of (11), enclosuresof the form kS�1(x(t0 + h)� p(h))k � '(h) for 0 � h � �h: (15)Here,� p(h) is a \known" approximation of an \unknown" solution x(t0 + h)which a priori need not even be known to exist,� S is an invertible linear mapping 2 Lin(V ) which, for k � k = k � k2,de�nes the axes of an error ellipsoid.� ' is a \simple" positive function (constant, linear, exponential) whichbounds the error.The comparison theorem may be used to prove the following su�cientconditions for a bound (15), with a time-dependent linear mapping S(h).3.5. Theorem. Let s > 0, D � IR � V closed, E � V compact, D � E �
 � IR� V � V , and suppose that F : 
! V has index zero in D � E.Let p : [0; s] ! V , S : [0; s] ! Lin(V ), ' : [0; s] ! IR+ be continuouslydi�erentiable and S(h) invertible for h 2 [0; s] . Let h� be the in�mum of allh 2 [0; s] for which there exist u; v 2 V such thatF �t0 + h; p(h) + S(h)u; _p(h) + _S(h)u+ S(h)v� = 0; (16)�t0 + h; p(h) + S(h)u; _p(h) + _S(h)u+ S(h)v� 2 @(D � E); (17)kuk � '(h): (18)For �xed � > 0, let h� be the in�mum of all h 2 [0; h�] for which there existu; v 2 V such that the following relations are simultaneously satis�ed: (16)and (t0 + h; p(h) + S(h)u; _p(h) + _S(h)u+ S(h)v) 2 D � E (19)'(h) � kuk � '(h) + � (20)_'(h) � �(u; v)'(h): (21)14



If (12) holds and kS(0)�1(x0 � p(0))k � '(0) (22)then any continuously di�erentiable solution x : [t0; t0 + �h] ! V of theinitial value problem (11) with �h 2 ]0; h�] can be extended to a continuouslydi�erentiable solution x : [t0; t0 + h�]! V which satis�es(t; x(t)) 2 D; _x(t) 2 E for t 2 [t0; t0 + h�] (23)kS(h)�1(x(t0 + h)� p(h))k � '(h) for h 2 [0; h�]: (24)3.6. Remarks. (i) h � h�, de�ned by (16){(18), keeps the solution awayfrom the boundary of D � E whereas h � h�, de�ned by (16) and (19){(21)keeps the solution within (24).(ii) If D = [ t;1)� V , E = V , then h� = s since (17) is never satis�ed.Proof. Consider the solution x : [t0; t0 + �h ] ! V of (11) of the Theorem,�h 2 [0; h�].(i) At �rst we show that (23), (24) hold for t 2 [t0; t0 + �h]:Let h0 � �h be maximal such that (23), (24) hold for t 2 [t0; t0 + h0], withh0 � 0 by (12) and (22); suppose h0 < �h. For 0 � h � �h , letu := u(h) := S(h)�1 (x(t0 + h)� p(h)) ; v := v(h) = _u(h): (25)Then, for t := t0 + h,x(t) = p(h) + S(h)u; _x(t) = _p(h) + _S(h)u+ S(h)v;so that (16) holds.If (t; x(t); _x(t)) 2 @(D � E) for some h 2 [0; h0], then (17) holds and (18)follows from (24). Thus h � h� contradicting h� � h� � �h > h0 � h .Therefore (t; x(t); _x(t)) 2 Int(D � E) for all h 2 [0; h0] (26)and (23) and hence (19) holds for h 2 [0; h00], h00 2 (h0; �h ] su�cently close toh0.Now we apply the comparison theorem (Theorem 3.3) with h in place of t:(20) and (21) correspond to (4)and (5) (cf. (25)), hence (6) asserts that (22)15



implies (24) for h � min(�h; h�) = �h. Thus h0 has not been maximal andh0 = �h.(ii) Now we show that the solution may be extended to t0 + h�:Suppose �h < h�, then the argument above (26) yields (�t; x(�t); _x(�t)) 2Int(D � E) for �t = t0 + �h. Since F has index 0 there are neighborhoodsU � D of (�t; x(�t)) and U 0 � E of _x(�t) such that, for (t; x) 2 U , the equationF (t; x; z) = 0 has a unique solution z = z(t; x) 2 U 0 depending continuouslyon (t; x).By Peano's theorem, our original solution x of (11) in [t0; t0 + �h] may besomewhat further extended by the solution of _x0(t) = z(t; x(t)) which alsosatis�es (11). Let t� be the supremum of all t0 � t0 + h� such that x(t) canbe extended to t�, and assume t� < t0 + h�.Then we choose an increasing sequence tl ! t� and extend each solution xlin [t0; tl] to a solution xl+1 in [t0; tl+1]. Thus x(t) := xl(t) for t 2 [ tl; tl+1),l = 0; 1; : : :, is a solution in [ t0; t�). Since _x(t) 2 E, � := sup k _x(t)k is �niteand x(t) is Lipschitz continuous. This implies that x(tl) is a Cauchy sequencewhose limit, used as x(t�), extends x continuously to [t0; t�].Since E is compact, f _x(tl)g has a convergent subsequence with limit z� 2 Ewhich satis�es F (t�; x(t�); z�) = 0, and z� = limt!t� _x(t) since F has index 0.Thus x(t) is a continuously di�erentiable solution of (11) in [t0; t�] and canbe further extended by the previous arguments. Hence t� = t0 + h� . 24 Bounds for initial value problemsIn this section we show how logarithmic norms can be used to obtain global,rigorous and realistic enclosures for a class of ordinary di�erential equationscontaining those satisfying a uniform dissipation condition. This is done byrewriting Theorem 3.5 in a form more amenable to computer calculation.In particular, the global optimization problem for the determination of h�in Theorem 3.5 can be avoided if we do not insist on �nding the optimalh�. Suboptimal lower bounds may be obtained by global linearization usingarithmetic on sets (e.g., interval arithmetic). We use the following notation:Let a; b 2 V , A;B 2 Lin(V ), f : Lin(V )! IR; [A] denotes a \set of A's", [a]16



a \set of a's" etc. Thenf([A]) := ff(A) j A 2 [A]g � IR[A] + [B] := fA+B j A 2 [A]; B 2 [B]g � Lin(V )[A] � [B] := fA �B j A 2 [A]; B 2 [B]g � Lin(V )[A]I [B] := fA�1B j A 2 [A]; B 2 [B]g � Lin(V )[A]I [b] := fA�1b j A 2 [A]; b 2 [b]g � V[A] � [b] := fA � b j A 2 [A]; b 2 [b]g � Vetc.Such sets are introduced to control the rounding errors and the nonlinearities.Therefore, we may use \supersets" of the speci�ed sets (i.e. sets includingthem) in an obvious fashion where necessary or convenient. In particular,we may use interval arithmetic (see e.g. Neumaier [12]) to calculate boxescontaining these sets.As in the previous section we consider the initial value problemF (t; x(t); _x(t)) = 0 with x(t0) = x0; _x(t0) = z0; (1)where the initial values satisfyF (t0; x0; z0) = 0; (t0; x0) 2 intD; z0 2 intE; (2)and we consider enclosures of the formkS(h)�1(x(t0 + h)� p(h))k � '(h) for 0 � h � �h: (3)For the sake of simplicity, the following theorem is formulated only for thecase where F is de�ned for all x, z, so that h@ = s by Remark 3.6(ii). Themethod extends to the general case but leads to a very messy formulation.The transformation of Theorem 3.5 to computable form is based on lin-earization of the problem function (2) in a neighborhood of the approximatesolution. Instead of truncating the Taylor series we maintain rigor by usingthe mean value theorem for the linearization. Thus we get an exact linearexpression for F { or rather a preconditioned form CF , cf. (5) {, howeverwith coe�cients which depend on unknown intermediate points. These co-e�cients can be enclosed rigorously by intervals, using interval arithmetic.17



With this linear formulation, one can simplify the condition of Theorem3.5 by using properties of the logarithmic norm (in particular, Proposition2.10). This reduces computations to �nding rigorous upper bounds for someinterval expressions (namely (6) { (9) below) and a simple check on theclosure condition.We shall �rst give a general version of the linearization (Theorem 4.1) andthen a constructively computable version (Proposition 4.3). Then we show(Corollary 4.5) that under suitable conditions, bounds can be obtained overarbitrarily long time intervals. An example how these results are applied isgiven in Example 4.11, after a discussion of natural choices for the variousquantities occuring in the conditions guaranteeing the bounds.4.1. Theorem. Let dim(V ) < 1. Let !; s > 0, D = [t0; t0 + s] � V , andsuppose that F : D � V ! U has index 0 in D � V . Let p : [0; s] ! Vand S : [0; s] ! Lin(V ) be continuously di�erentiable, S(h) invertible forh 2 [0; s].Suppose that there are sets [a]; [b] � V , [A]; [B] � Lin(V ) such that, foru; v 2 V with kuk < ! (4)and h 2 [0; s]C(h)�F �t0 + h; p(h) + S(h)u; _p(h) + _S(h)u+ S(h)v� = a+bh+Bu�Av (5)for suitable a 2 [a], b 2 [b], A 2 [A], B 2 [B], and C : [0; s]! Lin(V ).Suppose further that all A 2 [A] are invertible, and de�ne real constants �,�, �,  such that � �[A]I [B]� � � (6)kS(0)�1(x0 � p(0))k � � (7)k[A]I [a]k+ �� � � (8)k[A]I [b]k + �� �  (9)and the function ' : [0; s]! IR+ with'(h) := � + �h+ h2 exp2(�h) (10)18



where exp2(�) := 8<: (e� � 1� �)=� 2 for � 6= 0;12 for � = 0: (11)If (2) and the closure condition'(h) < ! for h 2 [0; �h]; 0 < �h � s; (12)hold, then there exists a continuously di�erentiable solution x : [t0; t0+�h]! Vof (1) which satis�es (3).4.2. Remark. ! of (4) is an a priori estimate of the (transformed) error ofp(h). C is a preconditioner for the implicit formulation (1) of the di�erentialsystem. The regularity assumption for [A] is a strengthening of the index 0hypothesis. In (6), (8), (9), it would su�ce to use [A�1B], [A�1a] and [A�1b]respectively.Proof. Without loss of generality, we restrict ourselves to the compact setD = [t0; t0 + s]�D0 where D0 is a compact set containing all p(h) + S(h)ufor h 2 [0; s], kuk � ! in its interior. Since F has index 0, F (t; x; z) = 0 has,for each (t; x) 2 D one solution z depending continuously on (t; x); thereforethe range of z(t; x) is in the interior of a bounded set E (compact becausedim(V ) <1). Thus D and E have the properties required in Theorem 3.5.For su�ciently small � > 0, let'�(h) := � + (� + �)h+ ( + ��)h2 exp2(�h) (13)and take � = �(�) > 0 so small that'�(h) + � � ! for h 2 [0; �h]; (14)this is possible because of (12). After some computation we �nd that_'�(h) = �'�(h) + (� � ��) + ( � ��)h+ �: (15)We wish to apply the semilocal existence theorem (Theorem 3.5) with '� inplace of ' and �h � h� (and h� = s, see above). Assume �h > h�, i.e. thereexists an h < �h such that (3.16) and (3.19{21) are simultaneously satis�edfor some u; v 2 V . 19



By (3.20) and (14), (4) is satis�ed; hence by (3.16) and (5), we have0 = a+ bh +Bu� Av, i.e.v = A�1(a + bh) + A�1Bu;with suitable a 2 [a], b 2 [b], A 2 [A], B 2 [B]. By Proposition 2.10, thisimplies �(u; v) � �(A�1B) + kA�1(a+ bh)k=kukand by (3.20) and (3.21), with ' replaced by '�, we get_'�(h) � �(u; v)'�(h) � �(A�1B)'�(h) + kA�1(a + bh)k:By (6), (8), (9), this implies_'�(h) � �'�(h) + (� � ��) + ( � ��)hwhich is a contradiction to (15). Hence �h � h�.Since (3.22) is a consequence of (7) and (13), the assumptions of Theorem3.5 are valid, and there exists a solution x(t) of (1) satisfying (3), with '�in place of ', for h 2 [0; �h]. With � ! 0, the conclusion of the theorem isobtained. 2Theorem 4.1 can be applied constructively once it is known how to �ndreasonable enclosures for a, b, A, B in (5). We now consider this problemfor the most important special caseF (t; x; z) = F0(t; x)�Gz; (16)G 2 Lin(V ) invertible with bounded inverse. (More general situations withkF (t; x; z) � F (t; x; 0)k � (t; x)kzk can be treated in a similar but messierway.)For simplicity we shall force b = 0; this simpli�es the formulae a little withoutdegrading the enclosure much.4.3. Proposition. Suppose[t] = [t0; t0 + s]; (17)[x] � fp(h) + S(h)u j h 2 [0; s]; kuk � !g; (18)20



[H] � closed convex hull of (C � @F0@x (t; x) ���� t 2 [t]; x 2 [x]) ; (19)[a] � fCF0(t0 + h; p(h))� (CG) _p(h) j h 2 [0; s]g (20)[A] � f(CG)S(h) j h 2 [0; s]g (21)[B] � nH � S(h)� (CG) _S(h) ��� h 2 [0; s]; H 2 [H]o ; (22)then (5) holds with a 2 [a], b = 0, A 2 [A], B 2 [B]. Moreover, (9) issatis�ed with  = ��, and (10) simpli�es to'(h) = � + �h exp1(�h) (23)where exp1(�) := 8<: (e� � 1)=� for � 6= 0;1 for � = 0: (24)Proof. By the mean value theorem,C � F0 (t0 + h; p(h) + S(h)u) = C � F0 (t0 + h; p(h)) +H � S(h)u; (25)where H = C � 1Z0 @F0@x (t0 + h; p(h) + �S(h)u) d� 2 [H]:Thus,C � F (t0 + h; p(h) + S(h)u; _p(h) + _S(h)u+ S(h)v)= C � F0(t0 + h; p(h) +H � S(h)u� (CG)( _p(h) + _S(h)u+ S(h)v)= C � (F0(t0 + h; p(h))�G _p(h)) + (H � S(h)� (CG) _S(h))u� (CG)S(h)v;which is (5) with the asserted enclosures. (23) is straightforward. 24.4. Remarks. (i) A sharper enclosure of the form (25) can be obtained byusing slopes (Krawczyk & Neumaier [8]); this saves some computationale�ort and reduces the radius of [H] by roughly a factor of 2.(ii) Care must be taken to get a realistic enclosure of the preconditionedresidual (20) since this generally involves substantial cancellation. It isimportant to use a centered form or a boundary value form (cf. Neumaier21



[12]) for the full expression in (20), perhaps together with some splitting ofthe interval over which h ranges.(iii) In the enclosure of [a], [A], and [B], the products CG and CF 00([t]; [x])(cf.(19)) should be explicitly computed (enclosed to cover round-o�) toreduce overestimation. (It is di�cult to exploit any sparsity structure presentsince C is generally dense.)We �nally show that the quality of the attained bounds must be quite goodfor dissipative systems since we can deduce from Theorem 4.1 the following.4.5. Corollary. Let F : [0; �t] � IRn ! IRn, let S 2 IRn�n be invertible, andlet p : [0; �t ]! IRn be an approximate solution of the initial value problem_x(t) = F (t; x(t)); x(0) = x0; (26)in the sense that kS�1(x0 � p(0))k � � (27)kS�1(F (t; p(t))� _p(t))k � � for t 2 [0; �t ]: (28)If � S�1@F@x (t; x)S! � � for t 2 [0; �t ]; x 2 IRn; (29)then (26) has a solution x : [0; �t ]! IRn satisfyingkS�1(x(t)� p(t))k � �e�t + �t exp1(�t) for t 2 [0; �t ]: (30)Proof. In Proposition 4.3 we put t0 = 0, S(h) = S, C = S�1, G = I,[a] := fr 2 IRn j krk � �g, [H] = nS�1 @F@x (t; x) j t 2 [0; �t ]; x 2 IRno, [A] := I,[B] = fHS j H 2 [H]g; from (7), (8) we obtain � = � and � = � + �� . Wechoose s and ! so large that (12) holds for any speci�ed �h. Then, by (23),'(t) = � + �t exp1(�t) = �e�t + �t exp1(�t)and the result follows from Theorem 4.1. 2
22



In particular, if we can globally bound S�1 @F@x (t; x) then we may obtain aglobal bound on the error of an approximate solution for all times, and thisbound (30) is proportional to the residual error multiplied by an exponentialterm. Moreover, this term decays when the di�erential equation (26) satis�esthe uniform dissipation conditionsupt2]0;�t ]; x2IRn � S�1@F@x (t; x)S! < 0: (31)Together with the freedom of choosing the approximate solution to highaccuracy, this allows the construction of rigorous and realistic error boundsfor uniformly dissipative systems.Selection of parametersNow that we have computable expressions for all quantities required inTheorem 4.1 we discuss the selection of the various quantities which we canchoose freely.4.6. Choice of. ! and s:! must be chosen such that (12) can be satis�ed for large �h. In view of theform (23) of ', we certainly need ! > �, and this is already su�cient toguarantee a positive step. For negative �, (23) implies '(h) � � + �= j�j;since � from (8) will typically be small (note that [a] and � are residuals),! = � +min(�; �0) with a small �0 > 0 seems to be a good choice.s should be chosen such that �h � s. The special form (23) of ' allows theexplicit determination of the smallest zero h0 of '(h)� !:h0 := 8>><>>: +1 for � � 0(! � �)=� for � > 0; � = 01� log(1 + �(! � �)=�) for � > 0; � 6= 0: (32)(On the computer, +1 must be replaced by a large machine number.) Ifh0 � s or h0 � s then s should be replaced by ph0s and the calculationrepeated. If h0 is close to s (say within a factor 2), we accept s and put�h = min(h0; s). In this way, a good step is obtained.23



4.7. Choice of. C:The preconditioning matrix C mainly serves to reduce [A] to a diagonallydominant matrix; thus the choice C � (GS(0))�1 is natural. It is su�cientto compute an approximate inverse. With a diagonally dominant [A], theenclosure of the expressions [A]I [� � �] presents no problems, e.g. with intervalGauss elimination.4.8. Choice of. S(h):With our crude enclosure [H] of the partial derivative of F0, there is nopoint in keeping S variable. (A linear S might be useful if [H] is split into[H0] + [H1]h.) Thus we take S(h) = S constant. Then (22) amounts to[B] � HS, and since [A] � (CG)S we �nd [A]I [B] � S�1(CG)�1HS. Thismatrix determines � in (6) and hence the magnitude of the exponential partin (23).Since � occurs in the exponent of the bound (23), it is essential to get a goodand preferable negative bound for �([A]I [B]); the best choice of S woulddiagonalize the matrix (CG)�1H. Thus we approximately solve the lineareigenvalue problem (cf. (19))H0x = �Gx for H0 := @F0@x (t0; p(0)) (33)and choose for the columns of S the real and imaginary parts of a full set ofeigenvectors. If G�1H0 is nearly defective, one should instead choose linearlyindependent basis vectors from low dimensional subspaces. It is essential thatS is well-conditioned (i.e. that the invariant subspaces used are \su�cientlydisjoint") since otherwise the initial error � in (7) gets magni�ed too much.Then, with C � (GS)�1, [A] � (CG)S, [B] � HS (cf. (ii) above and (21),(22)) one forms [A]I [B] =: [M ] by Krawczyk's method or interval Gausselimination. With a \thin" [H] (with zero radii) and exact calculation,one would have a thin block-diagonal matrix [M ] with diagonal blocks(�) or 0@ Re� Im��Im� Re� 1A; so, in practice, [M ]sym will be nearly diagonal�2([M ]) = �2([M ]sym) can be found by (2.35) from an approximate Choleskydecomposition of �I � �M where �M := mid[M ] or, simpler, from (2.35) withL = 0 and �0 = min (Sni=1[M ]ii). 24



4.9. Choice of. p(h):A piecewise polynomial approximation of the solution is available from aNordsieck method, or constructible from Runge-Kutta information. Alter-natively, one may interpolate the discrete approximate solution obtained byany good numerical method. Rational interpolation is advisable.4.10. Choice of. norm:The 2-norm is useful since it allows an elegant computation of the logarithmicnorm and takes account of imaginary parts automatically. However, it leadsto an overestimation factor of � pn in the enclosure of an ellipsoid by a boxneeded to compute the bounds (18) and (19). A way out would be the useof ellipsoid arithmetic (Guderley & Keller [5], Neumaier [13]).A better alternative may be the use of a mixed (2;1)-norm: If x =(x1; : : : ; xk)T is the partition � into blocks de�ned by the separable realinvariant subspaces of (33), we can de�nekxk� := maxi=1(1)k kxik2 (34)and �nd ��(M) � maxi=1(1)k0@�2(Mii) +Xj 6=i kMijk21A (35)where M is analogously partitioned into submatrices Mij. Now, the ellipsoid{ box transformation is needed on small blocks only, typically of size � 2.If the resulting bound (3) is not good enough, one may try to reduce s; �h, or toimprove the approximation p(h) (if (20) is large) by defect correction. Sinceone has an approximate eigensystem, one can do the defect correction with anexplicit method on the transformed variables y(h) := S�1 (x(t0 + h)� p(h)).4.11. Example. Consider the simple second order initial value problemm�q + c _q + kq = f(t);q(0) = q0; _q(0) = _q0;with m; c; k > 0. For m << k and c2 << mk there are rapid, slowlydecaying oscillations typical for a singularly perturbed problem, which forcesthe established enclosure methods to take tiny steps only.25



Suppose that we have an approximate solution Q(t) with residualr(t) := f(t)�m �Q(t)� c _Q(t)� kQ(t)bounded by jr(t)j � " for t 2 [0; T ] ;jq0 �Q(0)j � "0; j _q0 � _Q(0)j � "1 :If we introduce x =  q_q! ; p(t) =  Q(t)_Q(t)! ; p =  q0_q0!we can write the system asm _x = � 0 m�k �c� x +  0f(t)! =: F0(t; x)which is of the form (16) with G = mI. The matrix (33) becomesH0 = � 0 m�k �c� ;and has eigenvectors (1; �)T corresponding to the eigenvalues � = � � i!,solutions of m�2 + c�+ k = 0. Here� = � c2m ; ! = 1mqmk � c2=4 ;c = �2m�; k = m(!2 + �2):The choice recommended in 4.8 and 4.7 givesS = � 1 0� ! � ; C = (GS)�1 = 1m! � ! 0�� 1� :After some calculation, the parameters in Proposition 4.3 (for the Euclideannorm) are seen to beH = CH0 = 1! � 0 !��2 � !2 � � ; A = I ;26



B = HS = � � !�! � � ; Bsym = �� 00 �� ;�(AIB) = �(B) = �max(Bsym) = �CF0 � CG _p = C(F0 �G _p) = C� 0r(t)� = 1m!� 0r(t)� ;[a] = (0; "m! [�1; 1])T :The box for x is irrelevant since the problem is here linear, and therefore(unlike in nonlinear problems), the bound ! in (4) and (12) { not to beconfused with the frequency ! in the present example { can be chosenarbitrary large. Thus the closure condition (12) becomes trivial, and theconstraints in (7) and (8) can be satis�ed withkS�1(x0 � p(0))k =  1! � ! 0�� 1� q0 �Q(0)_q0 � _Q(0)!� vuut"20 +  "1 + j�j"0! !2 =: � ;� = k[a]k+ �� = "m! + �� ;and we �nd for all t 2 [0; T ] the boundkS�1(x(t)� p(t))k � '(t) = � + �t exp1(�t) = �e�t + 2"!c(1� e�t) :Since � < 0, this gives a realistic long time error of asymptotically 2"!c ,independent of the time interval used for the error estimation. (Of course,this illustrative linear example does not tell the full story: For su�cientlylarge problems, \mixing" due to strongly changing eigensystems may causemuch overestimation, which is hard to avoid.)5 Adaptive enclosureFor dissipative systems Corollary 4.5 shows that everything goes well. Fornon-dissipative systems one may have to apply the enclosure repeatedly overshorter time steps. In the course of several steps, one may try to keepparameters constant (e.g. C, S, �M) and to adapt others in a simpler way27



(e.g., s = 1:5hold) to save work. It is important to realize that the compositionof several enclosures must be done with care in order to avoid an excessivewrapping e�ect (see e.g. Neumaier [13] and references there). However, thetheorem may be considered as a �rst step towards the construction of largestep methods for the rigorous enclosure of solutions to arbitrary systems ofordinary di�erential equations. This would remove di�culties of the methodsof Eijgenraam [3] and Lohner [9], which, especially for sti� systems, areoften forced to take very small step sizes.An adaptive algorithm would roughly consist of the following steps (initially,i = 0; �0 = x0):(i) Use a spectral factorization of Fx(ti; �i) to �nd a transformation matrixS, and wrap the ellipsoid enclosing x(ti) by one of the form (7) with x(ti) inplace of x0.(ii) Approximate the solution in [ti; ti + h] by a piecewise rational function,x(ti + h) � p(h) for h � h:(To get higher accuracy, the step size of the approximation may well besmaller than h.)(iii) enclose fp(h) j 0 � h � hg by an interval vector [p] using a piecewiseboundary value form (Neumaier [12], if necessary with extra subdivisions,and calculate [xj] = [pj] + [�!; !]�j;where �j is the 2-norm of the jth row of S. This implements (18).(iv) Calculate the remaining quantities of Proposition 4.3, and �nd thesmallest positive solution h of the equation'(h) = !:This veri�es existence of a solution with (3) and ti in place of t0.(v) Set ti+1 = ti+h; �i+1 = p(h): Replace i by i+1, �nd a suitable value forthe new h and continue with step (i).Of course, this still leaves many details open, which will be discussed in asubsequent paper. 28
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