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Abstract. This is a continuation of our previous results (Y. Watanabe, N. Yamamoto, T. Nakao, and
T. Nishida, “A Numerical Verification of Nontrivial Solutions for the Heat Convection Problem,” to
appear in the Journal of Mathematical Fluid Mechanics). In that work, the authors considered two-
dimensional Rayleigh-Bénard convection and proposed an approach to prove existence of steady-state
solutions based on an infinite dimensional fixed-point theorem using a Newton-like operator with
spectral approximation and constructive error estimates. We numerically verified several exact non-
trivial solutions which correspond to solutions bifurcating from the trivial solution. This paper shows
more detailed results of verification for given Prandtl and Rayleigh numbers. In particular, we found
a new and interesting solution branch which was not obtained in the previous study, and it should
enable us to present important information to clarify the global bifurcation structure. All numerical
examples discussed are take into account of the effects of rounding errors in the floating point
computations.

1. The Rayleigh-Bénard Problems

We consider a plane horizontal layer (see Figure 1) of an incompressible viscous
fluid heated from below. At the lower boundary z = 0 the layer of fluid is main-
tained at temperature T + δT , and the temperature of the upper boundary (z = h)
is T .
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Figure 1. Fluid layer model.

As is well known, assuming the velocity vanishes in the y-direction, the
two-dimensional (x-z) heat convection model can be described as the following
Oberbeck-Boussinesq approximations [1], [3]:



ut + uux + wuz = −px / ρ0 + ν∆u,
wt + uwx + wwz = −(pz + gρ) / ρ0 + ν∆w,

ux + wz = 0,
θt + uθx + wθz = κ∆θ.

(1.1)

Here,

u, w : velocity in x and z, respectively,

p : pressure,

θ : temperature,

ρ : fluid density,

ρ0 : density at temperature T + δT ,

ν : kinematic viscosity,

g : gravitational acceleration,

κ : coefficient of thermal diffusivity,

∗ξ := ∂ / ∂ξ (ξ = x, z, t),
∆ := ∂ 2 / ∂x2 + ∂ 2 / ∂z2,

and ρ is assumed to be represented by

ρ − ρ0 = −ρ0α(θ − T − δT),

where α is the coefficient of thermal expansion.
The Oberbeck-Boussinesq equations (1.1) have the following stationary solu-

tion:

u∗ = 0, w∗ = 0, θ ∗ = T + δT − δT
h

z, p∗ = p0 − gρ0

(
z +

αδT
2h

z2
)

,
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where p0 is a constant. By setting

û := u, ŵ := w, θ̂ := θ ∗ − θ, p̂ := p∗ − p,

we obtain the transformed equations:


ût + ûûx + ŵûz = p̂x / ρ0 + ν∆û,
ŵt + ûŵx + ŵŵz = p̂z / ρ0 − gαθ̂ + ν∆ŵ,

ûx + ŵz = 0,
θ̂ t + δTŵ / h + ûθ̂x + ŵθ̂z = κ∆θ̂.

(1.2)

By further transforming to dimensionless variables:

t → κ t, u → û / κ , w → ŵ / κ , θ → θ̂h / δT , p → p̂ / (ρ0κ 2)

of (1.2), we have the dimensionless equations:


ut + uux + wuz = px + P∆u,
wt + uwx + wwz = pz − PR θ + P∆w,

ux + wz = 0,
θt + w + uθx + wθz = ∆θ.

(1.3)

Here

R :=
δTαg
κνh

Rayleigh number

and

P :=
ν
κ

Prandtl number.

2. Fixed-Point Formulation of Problem

In this section, we describe the problem as a fixed point equation of a compact
map on the appropriate function space. Since we only consider the steady-state
solutions, ut, wt, and θt vanish in (1.3). Also assume that all fluid motion is confined
to the rectangular region Ω := {0 < x < 2π /a, 0 < z < π} for a given wave number
a > 0.

Let us impose a periodic boundary condition (period 2π / a) in the horizontal
direction, stress-free boundary conditions (uz = w = 0) for the velocity field and
Dirichlet boundary conditions (θ = 0) for the temperature field on the surfaces
z = 0, π, respectively.

Furthermore, we assume the following evenness and oddness conditions:

u(x, z) = −u(−x, z), w(x, z) = w(−x, z), θ(x, z) = θ(−x, z).
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We use the stream function Ψ satisfying

u = −Ψz, w = Ψx

so that ux + wz = 0. By some simple calculations in (1.3) after setting Θ :=
√
PRθ,

we obtain{
P∆2Ψ =

√
PRΘx − Ψz∆Ψx + Ψx∆Ψz,

−∆Θ = −
√
PRΨx + ΨzΘx − ΨxΘz.

(2.1)

From the boundary conditions, the functions Ψ and Θ can be assumed to have
the following representations:

Ψ =
∞∑

m= 1

∞∑
n= 1

Amn sin(amx) sin(nz),

Θ =
∞∑

m= 0

∞∑
n= 1

Bmn cos(amx) sin(nz).

(2.2)

We now define the following function spaces for integers k ≥ 0:

Xk :=

{
Ψ =

∞∑
m= 1

∞∑
n= 1

Amn sin(amx) sin(nz) | Amn ∈ R,

∞∑
m= 1

∞∑
n= 1

(
(am)2k + n2k)A2

mn < ∞
}

,

Y k :=

{
Θ =

∞∑
m= 0

∞∑
n= 1

Bmn cos(amx) sin(nz) | Bmn ∈ R,

∞∑
m= 0

∞∑
n= 1

(
(am)2k + n2k)B2

mn < ∞
}

.

To get our enclosure of the exact solutions for problem (2.1), we need some
appropriate finite dimensional subspaces. For M1, N1, M2 ≥ 1 and N2 ≥ 0, we
set N := (M1, N1, M2, N2) and define the finite dimensional approximate subspaces
by

S(1)
N =

{
ΨN =

M1∑
m= 1

N1∑
n= 1

Âmn sin(amx) sin(nz) | Âmn ∈ R

}
,

S(2)
N =

{
ΘN =

M2∑
m= 0

N2∑
n= 1

B̂mn cos(amx) sin(nz) | B̂mn ∈ R

}
,

SN = S(1)
N × S(2)

N .

Denote an approximate solution of (2.1) by ûN := (Ψ̂N , Θ̂N) ∈ SN .
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We now set{
ƒ1(Ψ, Θ) :=

√
PRΘx − Ψz∆Ψx + Ψx∆Ψz,

ƒ2(Ψ, Θ) := −
√
PRΨx + ΨzΘx − ΨxΘz,

where

Ψ = Ψ̂N + w(1), Θ = Θ̂N + w(2).

Then (2.1) is rewritten as the problem with respect to (w(1), w(2)) ∈ X4 × Y 2

satisfying{
P∆2w(1) = ƒ1(Ψ̂N + w(1), Θ̂N + w(2)) −P∆2Ψ̂N ,

−∆w(2) = ƒ2(Ψ̂N + w(1), Θ̂N + w(2)) + ∆Θ̂N ,
(2.3)

which is the so-called a residual equation. Setting

w = (w(1), w(2)),
h1(w) = ƒ1(Ψ̂N + w(1), Θ̂N + w(2)) −P∆2Ψ̂N ,
h2(w) = ƒ2(Ψ̂N + w(1), Θ̂N + w(2)) + ∆Θ̂N ,
h(w) =

(
h1(w), h2(w)

)
,

by virtue of the Sobolev embedding theorem and the definition of ƒ1 and ƒ2, h is a
bounded continuous map from X3 × Y 1 to X0 × Y 0. Moreover, it is easily shown
that for all (g1, g2) ∈ X0 × Y 0, the linear problem:{

∆2Ψ̄ = g1,
−∆Θ̄ = g2

(2.4)

has a unique solution (Ψ̄, Θ̄) ∈ X4 × Y 2. We denote this mapping by Ψ̄ = (∆2)−1g1

and Θ̄ = (−∆)−1g2, so the operator

K :=
(
P−1(∆2)−1, (−∆)−1) : X0 × Y 0 → X3 × Y 1

is a compact map (because of the compactness of the imbedding X4 ↪→ X3 and
Y 2 ↪→ Y 1 and the boundedness of (∆2)−1 : X0 → X4, (−∆)−1 : Y 0 → Y 2). Thus,
(2.3) is rewritten as a fixed-point equation:

w = Fw (2.5)

for the compact operator F := K ◦ h on X3 × Y 1. Therefore, by the Schauder fixed-
point theorem, if we find a nonempty, closed, bounded and convex set W ⊂ X3 × Y 1,
satisfying

FW ⊂ W (2.6)

then there exists a solution of (2.5) in W . The set W in (2.6) is called a candidate
set of solutions.
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3. Constructive Error Estimates and Computable Verification Condition

To obtain the set W satisfying (2.6), we need a projection into SN and its constructive
a priori error estimates.

For Ψ ∈ X3 and Θ ∈ Y 1, let us define projections P(1)
N Ψ ∈ S(1)

N and P(2)
N Θ ∈ S(2)

N
by 


(
∆(P(1)

N Ψ − Ψ), ∆v(1)
N

)
L2 = 0 ∀v(1)

N ∈ S(1)
N ,(

∇(P(2)
N Θ − Θ), ∇v(2)

N

)
L2 = 0 ∀v(2)

N ∈ S(2)
N .

(3.1)

Now we denote the L2-inner product and the L2-norm on Ω by (⋅, ⋅)L2 and ‖ ⋅‖L2 ,
respectively, and also define the H1

0 -norm: ‖∇u‖L2 and the Hk-norm: ‖u‖Hk on Ω by
‖∇u‖2

L2 = ‖ux‖2
L2 + ‖uz‖2

L2 and ‖u‖2
Hk =

∑
i, j∈N, i+j≤ k

‖∂ i+ju / ∂ ix∂ jz‖2
L2 , respectively.

The norms in Xk and Y k are defined naturally by the Hk-norm on Ω.
For each (g1, g2) ∈ X0 × Y 0, let (ψ, θ) ∈ X4 × Y 2 be the solution of (2.4), and let

(P(1)
N ψ, P(2)

N θ) ∈ SN be finite dimensional approximations defined by (3.1). Then,
we have constructive a priori error estimates of the form:

‖ψ − P(1)
N ψ‖Hk ≤ C1, k‖g1‖L2 and ‖θ − P(2)

N θ‖Hk ≤ C2, k‖g2‖L2 . (3.2)

Here the Ci, k are numerically estimated, e.g., such as

C1, 1 ≤ max
{

1
(a2 + (N1 + 1)2)2 ,

1
(a2(M1 + 1)2 + 1)2

}
;

see [9] for details.
We now reformulate the verification condition (2.6) by applying the Newton-like

method for nonlinear elliptic problems proposed by the author [6], [7]. Defining
the projection from X3 × Y 1 into SN by

PN = (P(1)
N , P(2)

N ),

the fixed-point problem w = Fw can be decomposed into finite dimensional and
infinite dimensional parts as follows:{

PNw = PNFw,
(I − PN)w = (I − PN)Fw,

(3.3)

where I is the identity map on X3 × Y 1. We assume that the restriction of the
operator I − PNKƒ′(ûN) : X3 × Y 1 −→ SN to SN has an inverse

[I − PNKƒ′(ûN)]−1
N : SN −→ SN , (3.4)

where ƒ′(ûN) denotes the Fréchet derivative of ƒ := (ƒ1, ƒ2) at the approximate
solution ûN which coincides with h′(0). Then, we define the operator NN : X3 × Y 1

−→ SN by

NNw = PNw − [I − PNKƒ′(ûN)]−1
N PN(I − F)w
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Figure 2. The isotherm of the temperature: stationary solution.

and the compact map T : X3 × Y 1 −→ X3 × Y 1 by

Tw = NNw + (I − PN)Fw.

Since w = Fw ⇔ w = Tw, we have a computable verification condition of the
form:

TW ⊂ W , (3.5)

where, usually, the candidate set W is taken to be as

W = WN ⊕ W∗

with WN ⊂ SN and W∗ ⊂ SN
⊥. Therefore, (3.5) is equivalently rewritten as{

NNW ⊂ WN ,
(I − PN)FW ⊂ W∗.

(3.6)

We omit the detailed verification procedures based upon this criterion (see, e.g.,
[6], [7], [9], etc.).

4. Numerical Results

We have successfully verified several kinds of bifurcating solutions which actually
exist on the different bifurcation branches. With results rather complicated bifur-
cation structure can be clarified for our problem, even though only solutions on
relatively simple branches were enclosed in [9].

4.1. THE TRIVIAL SOLUTION

It is clear that the problem (2.1) has a trivial solution Ψ = Θ = 0 for all P and

R. Figure 2 shows the isotherm of the temperature T + δT − δT
h

z when T = 0 and

δT = 5.
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Â11 ≈ 15.37 Â11 ≈ −15.37

Figure 3. The velocity field of the first bifurcated solution.

It is known that for small R the fluid conducts heat diffusively, and at a critial
point RC, heat is transported through the fluid by convection. It has been shown by
Joseph [4] that (1.3) has a unique trivial solution for R < RC. However, the global
structure of bifurcated solutions after the critical Rayleigh point RC has not been
known theoretically.

4.2. FIRST AND SECOND BIFURCATED SOLUTIONS FROM THE TRIVIAL
SOLUTION

In our preceding paper [9], we already verified for several nontrivial solutions
corresponding to primary and secondary bifurcating solution branches. Namely,
for the case that a = 1 /

√
2 and P = 10, the first solution branch appears after the

critical Rayleigh number RC = 6.75.
We obtained two non-trivial approximate solutions for various Rayleigh numbers

R of the form:

Ψ̂N =
M1∑

m= 1

N1∑
n= 1

Âmn sin(amx) sin(nz),

Θ̂N =
M2∑

m= 0

N2∑
n= 1

B̂mn cos(amx) sin(nz)

for some M1, M2, N1, and N2 by the Fourier-Galerkin method combined with
Newton-Raphson iteration. Figure 3 shows the velocity field (−(Ψ̂N)z, (Ψ̂N)x) at
R = 50, P = 10, M1 = N1 = M2 = N2 = 10, respectively. We illustrate the
particular value of coefficients, under the figures, which has the maximum absolute
value in {Âmn} and {B̂mn}, respectively.

Figure 4 shows the isotherm of the temperature

θ ∗ = δT(1 − z / π − Θ /
√
RPπ) + T

when T = 0, δT = 5.
For Rayleigh numbers greater than

R =
(a2m2 + n2)3

a2m2 = 13.5 (m = 2, n = 1, a = 1 /
√

2),
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R = 7

R = 10

R = 20

R = 30

R = 40

R = 50

R = 60

Figure 4. The isotherm of the temperature for the first bifurcated solution.

we obtained two non-trivial approximate solutions which are thought to be sec-
ondary bifurcating solutions from the trivial solution. Figure 5 and Figure 6 show
the velocity field at R = 50, P = 10, M1 = N1 = M2 = N2 = 10 and the isotherm of
the temperature, respectively.
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Â21 ≈ −7.026 Â21 ≈ 7.026

Figure 5. The velocity field of the secondary bifurcated solution.

R = 14

R = 20

R = 30

R = 40

R = 50

R = 60

Figure 6. The isotherm of the temperature for the secondary bifurcated solution.

4.3. THIRD BIFURCATED SOLUTIONS FROM THE TRIVIAL SOLUTION

For Rayleigh numbers greater than

R =
(a2m2 + n2)3

a2m2 = 1331 / 36 (m = 3, n = 1, a = 1 /
√

2),
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Â31 ≈ −2.029 Â31 ≈ 2.029

Figure 7. The velocity field of the tertiary bifurcated solution.

R = 37

R = 40

R = 50

R = 60

Figure 8. The isotherm of the temperature for the tertiary bifurcated solution.

we obtained two non-trivial approximate solutions which are thought to be tertiary
bifurcating solutions from the trivial solution. Figure 7 and Figure 8 show the
velocity field at R = 50, P = 10, M1 = N1 = M2 = N2 = 10 and the isotherm of the
temperature, respectively.

4.4. ANOTHER NON-TRIVIAL SOLUTIONS

We also calculated four different non-trivial approximate solutions after R = 32.5.
According to those computational results, we expect the existence of another bifur-
cation curve bifurcating from the secondary bifurcation branch (cf. Figure 11). For
example, we observed the phenomena as shown in Figure 9 and Figure 10 when
R = 50, P = 10, M1 = N1 = M2 = N2 = 10. Actually we could verify such solution
branches.
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Figure 9. The velocity field of the other non-trivial solutions.

R = 33

R = 35

R = 40

R = 50

R = 60

Figure 10. The isotherm of the temperature for the other non-trivial solutions.

4.5. VERIFICATION RESULTS

As a whole, we succeeded in verifying the exact solutions of (2.1) correspond-
ing to the approximate solutions shown in Figure 11. The vertical axis shows
the absolute value of the coefficient of the approximate solution: Θ̂N =
M2∑

m= 0

N2∑
n= 1

B̂mn sin(amx) sin(nz). Each dot implies that the verification procedure result-

ed in success.
In particular, for the case R = 60, P = 10 with N := M1 = M2 = N1 = N2,

we could enclose 10 different solutions whose error bounds are shown in Table 1.
In the table, half of the solutions could have been obtained from symmetry prop-
erties of the problem. It might also be possible to show pitchfork type bifurcation
structure by drawing the diagram appropriately. In Table 1, there exists a solution
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−→R / RC

Figure 11. The bifurcation structure.

Table 1. Verification results; R = 60, P = 10.

No. N ‖Ψ̂N‖L2 ‖Θ̂N‖L2 ‖W(1)
N ‖L∞ ‖W(2)

N ‖L∞ ‖W(1)
∗ ‖L∞ ‖W(2)

∗ ‖L∞

1 45 17.44 34.89 1.40×10−9 3.12×10−11 2.46×10−11 1.26×10−7

2 45 17.44 34.89 1.40×10−9 3.12×10−11 2.46×10−11 1.26×10−7

3 30 8.14 30.57 2.35×10−6 2.56×10−8 7.75×10−8 1.35×10−4

4 30 8.14 30.57 2.35×10−6 2.56×10−8 7.75×10−8 1.35×10−4

5 50 9.62 29.43 9.75×10−9 8.77×10−10 6.96×10−11 5.21×10−7

6 50 9.62 29.43 9.75×10−9 8.77×10−10 6.96×10−11 5.21×10−7

7 50 9.62 29.43 9.75×10−9 8.77×10−10 6.96×10−11 5.21×10−7

8 50 9.62 29.43 9.75×10−9 8.77×10−10 6.96×10−11 5.21×10−7

9 20 2.84 19.49 3.40×10−5 9.56×10−7 1.75×10−6 1.10×10−3

10 20 2.84 19.49 3.40×10−5 9.56×10−7 1.75×10−6 1.10×10−3

(Ψ, Θ) ∈ X3 × Y 1 of (2.1) in:

Ψ ∈ Ψ̂N + W (1)
N + W (1)

∗ ,

Θ ∈ Θ̂N + W (2)
N + W (2)

∗ .

Remark 4.1. In Figure 11, each dot shows the corresponding solution is verified in a
mathematically rigorous sense. Therefore, it also implies that we have established
a computer assisted proof in the analysis of our heat convection problem. However,
from our verification results we cannot at present determine whether the verified
solutions are really bifurcated or simply isolated solutions. This question should be
solved in our future work.
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We used the following software for the verified numerical computations: Fortran
90 library INTLIB_90 coded by Kearfott [5] with DIGITAL Fortran V5.4–1283
on Compaq Alpha Server GS320 (Alpha 21264 731 MHz; Tru64 UNIX V5.1).

The authors are very grateful to Professor Kearfott for his kind implementation
and release of this useful software package.
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