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Abstract - -  Zusammenfassung 

E-Methods for Fixed Point Equations f(x)= x. This paper provides newly implemented [11], [13] and 
widely applicable methods for computing inclusion (i. e. a containing interval) (Einschliel3ung) of the 
solution of a fixed point equationf(x) = x as well as automatic verification the existence (Existenz) and 
uniqueness (Eindeutigkeit) of the solution. These methods make essential use of a new computer 
arithmetic defined by semimorphisms as developed in [7] and [8]. We call such methods E-Methods in 
correspondance to the three German words. A priori estimations such as a bound for a Lipschitz 
constant etc. are not required by the new algorithm. So the algorithm including the a posteriori proof of 
existence and uniqueness of the fixed point is programmable on computers for linear as well as for non- 
linear problems. This is a key feature of our results. The computations produced by E-methods deliver 
answers the components of which have accuracy better than 10 - ' + 1 (where t denotes the mantissa length 
employed in the computer). 
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E-Methoden f'ur Fixpunktgleiehungen f(x)=x.  Es werden neuartige sehr allgemeine Methoden 
vorgestellt, die sowohl eine Einschliel3ung der L6sung yon Fixpunktgleichungen f (x)=x als auch 
automatisch die Existenz und gegebenenfalls Eindeutigkeit der L6sung nachweisen. Diese Methoden 
machen wesentlichen Gebrauch yon neuen Rechnerarithmetiken, die charakterisiert sind wie in [2], [7] 
und [8] entwickelt. Wir nennen solche Methoden E.-Methoden in /Ubereinstimmung mit den drei 
Anfangsbuchstaben. A-priori-Abschiitzungen wie z. B. fiir Schranken yon Lipschitzkonstanten sind 
nicht mehr notwendig. Daher ist es in eleganter Weise m6glich, Algorithmen zu implementieren, die 
einen automatischen Existenz- und Eindeutigkeitsnachweis ftir den Fixpunkt yon linearen und 
nichtlinearen Fixpunktgleichungen erm6glichen. Die mit E-Methoden berechneten L6sungen haben 
i.a. eine relative Genauigkeit, die besser als 10- ,+1 ist (wobei t die Mantissenl~nge des verwendeten 
Rechners bezeichnet). 

1. I n t r o d u c t i o n  

In  [5],  [10]  a n d  [11]  m e t h o d s  a re  in t roduced ,  wh ich  p r o v i d e  an  inc lus ion  (i.e. a 
c o n t a i n i n g  in terva l )  of  the  fixed p o i n t  of  an  equa t ion .  T h e  m e t h o d s  de r ived  in [5] a re  

typ ica l ly  gene ra l i za t ions  of  those  i n t r o d u c e d  by  M o o r e  in [9].  T h e  resul ts  p r e sen t ed  

here  b o t h  genera l i ze  a n d  s impl i fy  the  m e t h o d s  g iven  in [5],  [9]  a n d  [10]. 

T h e  fo l lowing  i t e r a t ion  o p e r a t o r  i n t r o d u c e d  in [6] 

K ( X ) :  = s  �9 g(2)+ { E - R  �9 g' (X)} �9 (X - x 3  (1) 
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is used in [9]. Here 2 e  ~", g 'N'--* Rne (~) and X ~ Rn denotes an n-dimensionai 
interval vector and E the n x n identity matrix. In [91 R is required to be a reM non- 
singular matrix and ~?eX. Under these conditions the existence of a solution of 
g (2)= 0 in X is derived from the property K (X)___ X. We will show that i t  is not 
necessary to assume R to be non-singular and that s can be chosen arbitrarily (not 
necessarily ~ X ) .  The somewhat more stingent condition K ( X ) & X  (which is 
almost always satisfied on the computer) is sufficient to show that R is non-singular 
and that g (x)= 0 has exactly one solution 2 ~ X. 

2. Theoretical Preliminaries 

Definition 1 : Let M s and M 2 be closed subsets of the locally convex topoiogical 
space JCL We define the strict inclusion relation as follows 

M ,  & M  2 :-*~M 1 ~A;/2 ; (2) 

i.e., M 1 lies in the interior ~r of M 2. 

An improved form of some fundamental results of [53 and [10] is given in the 
following theorem. 

Theorem 2: Let f : Y--+//r be a continous mapping and F : ~jJl  ~ J J l  an arbitrary 
mapping of the power set ~dr  into itself such that 

x~ Y ~ f ( x ) e F ( Y ) .  (3) 

Let Y be convex and compact. I f  
F(Y)& Y, (4) 

then there exists a fixed point 22 o f f  with 

22~F(Y)~ Y. (5) 
Moreover 

or3 

22e n F'09, (6) 
i = O  

and Q(.f, Y)& Y for the set of fixed points 

Q (f, Y):= {x ~ Y[ f ( x ) =  x} (7) 

of f in Y. Therefore Q (f, Y) ~ ~ Y= O. 

Proof: From (3) and (4) it follows immediately that f maps the convex and compact 
subset Y of the locally convex space Jr itself. According to the fixed point 
theorem of Schauder-Tychonoff f has at least one fixed point 22 ~ I/. With 
22 ~ Y= F~ we have by induction 

e Fk(Y) ~ 2 =f (2 )  E F (Fk(Y)) = F k+l (Y). 

The proof of (7) derives from (3) and (4) since for all x s Q (f, I1) & Y we have 

xE Y ~  x = f ( x ) e f ( Y ) &  Y. [] 
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Theorem 3: Let f be an affine operator on the topoligical vector-space J//[. Then 
under the hypotheses of Theorem 2, f has exactly one fixed point 92 ~ X. 

Proof: According to Theorem 2 there exist a fixed point :2 ~ Y. So the linear operator 
g (0: = f ( t  + 2) - (t + 92) has the fixed point g (0) = 0. Suppose 0 is not the only element 
of the kernel of g, i.e. ker (g) + {0}. Then, the ker (g) is a linear subspace of dimension 
greater than 0. But 92 ~ Y implies 0 ~ Y -  92, and so ker (g) ~ ( Y -  ~) + 0- On the other 
hand for every s ~ ker (g) c~ ( Y -  92) the equation 

0 = g (s) = f ( s  + 92) - (s - 2) 

holds. Thus an ~ ~ ker (g) ~ ( Y -  92) would exist with y = ~ + x e ? Ybeing a fixed point 
of f and an element of Q (f, Y). This contradicts (7) in Theorem 2. 

[] 

Remark 4: Let g, g~, 92 be linear operators on the finite-dimensional vectorspace 
JZ and let g = gl o g2. Then 

ker (g)= {0} ~ ker (gl)= {0} A ker (g2)= {0}. 

Theorem 5: Let J/[ be finite dimensional normed complex space. For arbitrary but 
fixed Y ~ ~ JA ~, y ~ Jg, let the operator F : ~ dr ~ J/[ of Theorem 2 have the following 
decomposition: 

F ( Y)= f (y') + 2,(f ,7,y) ( Y -  y-). 

Here the set 2,  is an element of the powerset of the set of linear operators over .~. 
Then under the hypotheses of Theorem 2 (in particular if 

F (Y) = f ( •  + 2,(•, zr) ( Y -  Y') & Y (8) 

for a convex and compact YeddO)  we have: 

The spectral radius of every le 2,  is less than unity: 

l e s ~ p (1) < 1, abbreviated by p (2') < 1. (9) 

I f  there exists a 4 f  c_ 2,(f,f,y) with the property 

A f ( x ) - f ( y ) e Y l ( x - y ) ,  
x,y~Y 

then f has exactly one fixed point in Y. 

Proof: 

ad (9): Consider the affine operator 

h(x):=f(y ' )+l(x-y ' ) :  J g o J g  

for an arbitrary linear operator t e 2,(I, ~zr)- Then 

h (x) =f(y') + l(x - Y3 ef(y3 + 2,(y, 7, r)(x - Y3 = F ({x}), 
and due to (8) 

h(Y)c_F(Y)& Y. (11) 

Thus according to Theorem 2 h has a fixed point 2 = 92 (/) e Y. These observations are 
expressed by the following two equations 

3 Computing 28/1 
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= h (~) = f @ )  + t (~ - y~) 
i12) 

h( Y)=f(y~)+ l( Y -  y')& Y. 

Substituting U: = Y - y  and - 9 = 2 - y ~  U yields 

O(y-)- y+ I(-9) =-9 
f ( y ) - ~ + t ( v ) ~  v. (13) 

Taking  the difference of the furmulas in (13) we get 

t ( U - ) ) = l ( C ) - l ( ~ ) &  U - ) ,  

and with the substitution V: = U- -9 ,  

0~l(v)~  v. (t4) 

Thus V contains a ne ighbourhood  of 0. If  1-= 0 then p (1) = 0 < 1. Let  l ~ 0 and  let v E V 
be an arb i t ra ry  eigenvector of I which corresponding eigenvalue 2 s C, Let 

f f~ :={qSeCl~b ,v~V} a n d l e t  [qS*[:=maxlr 
4er 

with qs*e 4. Since V is compac t  (t4) yields 

2. C0* v)= l(4" v)s v~a v. 

Hence there exists an open neighbourhood of  2 (o* v which lies in V~? V. Thus a real 
scalar a > 1 exists such that  

~. (2 r v)e O V. 

By definition a it qS* ~ cb, and by definition of q~* I aL-[ 2[. ] qS* l = [ o- 2 qS* i<[ qS* 1. 
Therefore [ o- [. 12 [ < 1, 121 < 1 so that  finally p (1) < 1. Since t e s was chosen 
arbitrarily, we conclude that  

p (23: = {p (01 l~ s < 1. 

The uniqueness of the fixed point  2 (/) e Y (for a fixed l) of h was not  used in the 
preceding proof. For  a fixed point  y of h we have with p (Se) < 1 : 

0 = h (~) - 2 =f(-9) - 2 + l(2 - Y3 
and 

O = h (y) - y =  f (fi) - y + l (y -.}~. 

Subtract ing these two formulas yields 

5c- y = l  (Sc- y). 
Thus 2 - y  is an eigenvector of ! corresponding to the eigenvatue 2 =  1, This 
contradicts  p (s < 1 and therefore ~ = y. 

ad (10): According to (8) and Theorem 2 there exists at  least one fixed point  9 o f f  in 
Y. Supposing f to have two distinct fixed points  a, b e Y with a-+ b leads to 

a - b = f ( a )  - f ( b )  e aug " (a - b). 

Thus a linear opera tor  l ~ oU exists with 

a - b = l ( a - b ) .  
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Thus a - b  is an eigenvector with corresponding eigenvalue 2 = 1 contradicting 

p(1)< p(Jg)< p ( ~ ) < l .  [] 

The uniqueness property has different applications for the contexts of Theorem 3 
and Theorem 5, respectively. 

Corollary 5: The conclusions of Theorem5 remain valid for real normed vector 
spaces ~ of finite dimension. 

Proof: We can argue as in the proof of Theorem 5 except that we have to prove 
p ( ~ ) <  1 again since (8) is valid only in a real vector space. 

Substituting W: = U - ~, V: = W +  i W(i = l / -  1) and regarding 0 ~ l (IV) & W, we get 

I ( V ) = I ( W + i V V ) = I ( W ) + i l ( W ) &  W + i W =  V 
i.e. 

O~l(V)& V. 

So (14) holds in the complex vector space Jg+  i X  and the proof concludes as 
before. [] 

Remark 7: The set of linear operators 5f(f,z,x ~ in Theorem5 need not be the 
complex of Jacobian matrices 

f '  (X):= {(f[ (xil .. . .  ,xi,,)) [ xlj6 Xi; i , j= 1(1) n}. 

However, in practice one takes L~ = ~ (f, 2, X ) : - f '  (X) or ~e = 2~ (f, X) _ f '  (X) to 
be able to verify condition (10). In this case F becomes 

F (X): = / ( ~  + f '  (X) �9 ( X -  2), 
where 

f ' ( X ) : = { ( f ' ( x ) ) [ x ~ X }  and 2 e X .  

This property is some kind of "mean value inclusion", since every continously 
differentiable function f satisfies such a condition for convex X e N~, .  

Note that even from the property (8) (which is easy to verify) we can deduce the 
interesting and important fact (9) about the spectral radius. From this in turn and in 
particular for the operator (I), we can deduce that the matrix R as well as every 
matrix G e 9' (X) is non-singular. 

Applying Theorem 5 and Corollary 6 permits the computation of inclusions for the 
eigenvalues and eigenvectors of a matrix (see [11]) as well as the verification of 
existence and uniqueness of the solution of boundary value problems in the small. 
Development of the corresponding E-method is deferred for future work. 

For simplicity in the following, we restrict ourselves to systems of linear equations. 
This causes no loss of generality, since locally systems of non-linear equations have 
the same behavour as linear systems and can be treated similarly. 

3* 
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3, Application to Systems of Linear Equations 

In the following I N" denotes the space of n-dimensional interval vectors, R is some 
fixed but arbitrary n x n-matrix and A a real n x n-matrix, b, x, 2, 2, y e ~" are real 
vectors. E is the n x n identity matrix and X, Ye I ~" are interval vectors. 

In [-5] and [11] solving the linear system A x  = b proceed s by employing the formulas 

f (y) = y + R . (b - A y) (15) 
for f and 

F X ) =  2 + R ( b -  AY)+ { E -  RA}  . ( X -  x') (!6) 

for F (the latter being a special form of(l)). Here in contrast to [6] and [9] 2e  ~" ; 
arbitrarily chosen (cf. [11]). Applying Theorem 3, Remark 4 and Theorem 5 yields 
the following. 

Theorem 8: Talcing F as in (16) suppose that 

F(IO& Y (17) 

holds for some Y E I  ~ .  Then the following statements are valid: 

The matrices A and R are non-singular, there exists exactly one 
solution 2cc ~" of A x = b ,  moreover 2~ Y. (i8) 

Furthermore 2 e F i (Y), 0_<- i E N. (19) 

The spectral radius ofE - R A is less than unity: p (E - R A) < 1. I.20) 
Proof: 

ad (18): From Theorem 3 and Remark 4 we deduce that the linear mappings 

g ( t ) : = - R ( b - A ( t + 2 ) ) = R A t  and g l ( s ) : = R . s  and g2(r ) :=A.r  

are regular. 

ad (19): See Theorem 1, (7) in [5]. 

ad (20): Since f ' =  E - R A  is constant the assertion follows from Theorem 5~ 

Remark 9: Note that the approximations 2 and R are not restricted in any way. In 
particular R is not assumed to be non-singular and Y need not be an e!ement of X. 

For the algorithmic application of Theorem 8 the function F in (16) has to be 
computed by interval arithmetic. This means that all operations + ,  - , .  have to be 
evaluated by following the rules of interval arithmetic (see [1], [7] and [8]). In 
particular for the matrix-matrix-products and matrix-vector-products which occur, 
the so-called Bohlender-algorithm (or an equivalent) for computing precisely 
rounded scalar products should be used (see [2]). 

Let F denote the function F computed by interval arithmetic. Then clearly 
F (X) ~_/~ (X) for every X e I N". Therefore, if an interval Y can be found (on a digital 
computer) such that, F(Y)& Y we have 

F ( Y ) c  ff ( Y)& Y. 
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This means that (17) holds and the assertions of Theorem 8 are true. 

Using Theorem 8 the algorithm proposed in [10] can be improved and simplified. 
Moreover proving the non-singularity of a matrix or the positive definiteness of 
symmetric matrix (cf. [11]) is made possible. These proofs are performed "numeri- 
cally" on a computer; in the first case without computing or approximating the 
determinant and in the latter case without computing eigenvalues. 

For  application of (16) to a system of non-linear equations, A may be a convex 
interval including the complex of Jacobian matrices over the interval X and R may 
be an approximate inverse of the Jacobian Matrix at the point s 

4. Algorithm and Numerical Examples 

Having discussed the algorithm which furnishes an interval containing the solution 
of a system of linear equations, there remains the question of specifying its details, 
This we now proceed to do. The proper inclusion & for interval vectors X, Ye I ~" 
may be programmed as follows: 

n 

X& Y:<:~A {) .X>2YAvX<vY},  
i = l  

where 2 and v denote the left and right bounds of intervals, resp. 

In the algorithm B i denotes the i-th row of the matrix B. Further we define an e- 
inflation of an interval as follows. 

~ I + 2e.d(I) for d(I)+O 
I e l R ~ I ~  +t/] for d( I )=0 .  

Here r/ is the smallest positive floating-point number on the computer being 
employed. For interval vectors the definition is to be understood componentwise, e- 
inflation which is employed in step 5 of the algorithm is responsible for securing the 
convergence of the interval-iteration. In practice, 0.1 turned out to be a good value 
for e (that is a 20% inflation of the diameter of the intervals). In almost all cases one 
interval iteration in step 5 was required with the choice of e=0,1. Moreover the 
including interval which was obtained was not overly wide. 

In the following algorithm the mappings [] : N"~N", ~ : I  N"-~I N~, resp. denote 
the roundings of the exact result to the nearest representable element resp. the 
smallest including interval of the appropriate date type of the computer (see [8]). 
Similarly, [N :~"x~"~{R" ,  <~ : I~"x t~ - -+t~"  for , { + , - , . , / }  denotes the 
rounded image of the exact result of the operation �9 to the nearest representable 
element resp. the smallest including interval of the appropriate data type (see [8]). 

1. Compute R,~A -1 approximately (e.g. using a floating-point Gaussian 
algorithm). 

2. Compute B: = ~ ( E - R .  A) using interval arithmetic. 
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3. x ~  
repeat k : = k + l ; x k + l = x k [ ~ R ~ [ ~ ( b - A x  k) 
until ]Xk+l--Xkl/lxkt>>=lO--k/2 or 

l x k + l _ x k l / [ x k [ < 1 0 1 - ' ;  * 
The last iterate x k+ 1 is named Y; r: = k + !;  
yO = R .  []  ( b - A ~ ) ;  k: = - 1 ; 
repeat k : = k + l ;  y k + l = y k E ] R U 1 D ( b - A Y - A y  k) 
until [yk+l- -y t ' l /Jyk l>lO-k/2  or 

l y k+l - ykl/ l  yk[ <102- '  ; 

The last iterate yk + ~ is named f ;  r: = r + k + 1 ; 

4, Compute Y ~  
using interval arithmetic; k:-- - 1 ;  

5. repeat k : = k + l ;  yk+l. yk: . =  = g k o g ,  

for i: = 1 to n do Y~. + 1..= ~ (Zi + B, yk) 
until y k + l & y k  or { k > 2 ; 2 5 . r - 1 } = : b o o l ;  
if bool then stop: ** 

6. The !ast iterate yg+l is named Y. 
Now the non-singularity both of the matrices A and R has been verified by 
the new algorithm. 
Therefore there exists one and only one solution 2 of Ax  =b and we have 

~ ( x + g +  B. 

For the precision and quality of the algorithm precise computation of the residues in 
the rows 9 and 13 from the top play a very important r61e. For instance, the i-th 
component of ( b - A 2 - A x ; ' )  is computed as a scalar product of length 2 n + 1" 

(b~, - &, - Ai). (1, ~, yg). 

We stress that the steps 4, 5, and 6 contain improvements over the algorithm in [ 10]o 
Instead of approximating and providing an including interval for the residue Y, an 
including interval is obtained for the relative residue Y: = Y -  17. This improvement 
is possible only if precise scalar products are used. A precise scalar product may be 
programmed by using Bohlender's algorithm or by using a long accumulator (cf. 
[2]). 

The present procedure is usable on any digital computer provided that the precise 
scalar product (and therefore interval operations +,  - ,  .) are available. 

To be perfectly clear we once more underscore the statement that "'R and A are not 
singular" is a direct consequence of Theorem 8. 

We say that the non-singularity of R and A have been verified a posteriori and with 
this therefore the existence and uniqueness of the solution ~ of A x  = b as welt as the 
inclusion 2 E 2 +  17+ Yare assured. We call such methods E-methods. Theorem 8 can 

* t is the mantissa length employed in the computer. 

** Stopping in step 5 means that either A or R are singular or the accuracy being employed is not 
sufficient to solve the problem. 
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be applied because with the automatic error control of interval arithmetic and by 
Remark9 of the previous chapter the hypothesis (17) has been proved to be 
(mathematically) valid by the algorithm. 

The following table displays results corresponding to ill-conditioned systems of 
linear equations. 

matrix degree ~ iterations II E - RA {A~e~} .... 
A n q in slep 5 

Hilbert 
Pascal 

Pascal* 

S 
Pascal' 20 

21 
22 
23 
24 
25 
26 
50 

100 

10-4 
10-5 
10-4 
10-5 
10 -3 200 

1.7 
0.14 
1.2 
0.11 
3.5 
1,6 
11 
5.1 
210 
300 
670 

2100 
280000 

0.15 
12 
0.56 
2.3 
0.49 

IIx cond(A)~ 

1.31o9 
2.51o7 
3.7~o 8 
4.0,o 7 
6.0io 8 
6.01o9 
6.61o 18 
5.01o 18 
1.41o 20 
1.41o 20 
6.11020 
2.31021 
8.21o 22 

91o6 
91o 7 
31o7 
31o8 
6to7 

71o-17 
21o-18 
81o-17 
21o-18 
11o-18 
610-15 
2to -6  
710-5 
11o -6  
11o -6  
11o-6 
2to --6 
21o-5 
1~o-18 
610-i7 
t io- !8  
51o-17 
81o-17 

In the first column from left to right the type, degree and for the matrices Tthe  value 
of q is shown. Here the Hflbert-matrices are defined by 

the Pascal-matrices by 

the Pascal*-matrices by 

and the matrix S by 

s =(s~j) 

The matrices T are given by 

H=(hl j )  with h ~ f = ( i + j - 1 )  -1, 

P'=P=(Pij) with Pij:=(i~J), 

P*=(p~j*) with p~j,:=(~+~-l) 

with s~j- 
.+j- l) .  n. (~:~) i-1 

i+j--1  

T = ( 2 - q . U = ( t i j  ) with t l j = l - q . u i j  , 

for fixed q and some random numbers ulj chosen in the interval [0, 1]. All matrices 
except the Pascal'-matrices have been computed exactly (the coefficients of the 
Hilbert matrices were transformed into integers by multiplication of the associated 
linear system by a suitably large integer). The Pascal'-matrices were computed in 
double-precision floating point arithmetic and rounded. The right hand side of all 
systems was taken to be the vector (1 . . . .  ,1). 
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In the second column the number of interval iterations in step 5 is displayed, in the 
third column the norm/I E -  RAII (which is an estimation of the spectral radius) and 
in the fourth column the approximate condition number of A. In the fifth column the 
maximum relative error of the inclusion vector is shown. This error is defined as 
follows. 

d(X) 
0 ~ . X e I  O~ = ~  {Are~}max: = max = 

x,y~x min [ x[-" 
x~X 

Note, that the maximum relative error of all components is taken, i.e., every 
component of the result vector is included with a maximum relative error as 
displayed. The results were obtained ins single-precision (that is with 8 ~ 2 decimal 
digit mantissa on the UNIVAC 1108 of the computing center of the University of 
Karlsruhe) using the precise scalar product of [2]. Double precision arithmetic is 
used only in the last addition 24-)74- Y to be able to show the high accuracy of the 
results. Double precision accuracy without the precise scalar product was employed 
for the system corresponding to the Pascal'-matrices. In these cases the relatively 
weak accuracy of the results is obvious from the most right column of the table. 
Apart from those extreme cases at least 15 decimal digits can be guaranteed by 
computing in single-precision accuracy, i.e. 8 t/2 decimal digits (almost independent 
of condition number and order of the matrix). In particular systems were treated, 
were the a priori estimation of the spectral radius is greater than unity and where the 
construction of a priori bounds (e.g. using Banach's Fixed Point Theoremt is not 
possible. 

The formula (1) occurs in [6] and is used in [12]. However. until now on!y 
approximate inverses R could be used for which a spectral estimation 
q:=p  ( E - R A )  with q < 1 were known a priori. This necessary a priori estimation 
can be omitted. The proof of the non-singularity of matrices A and R is now 
performed automatically and intrinsically lcf. fifth column in the tablej. 

The algorithm is usable for systems with interval entries instead of real (point) 
systems. The final statement of the algorithm should read for every matrix 
A ~ d ~ I M ,  • the matrices R and every matrix A ~ d are not singular and for every 
A e d and every b e d the linear system A x = b has one and only one solution A 2 = b 
and 2e)?+)7+ Y holds". 

The algorithm is programmed in FORTRAN and is both single and double 
precision accuracy (for point and interval systems, resp.). The algorithms are 
installed in the program library of the UNIVAC 1108 of the University of Karlsruhe 
and are widely used. 

Using a precise scalar product (with Bohlender's algorithm or with a long 
accumulator) should by no means be interpreted as calculating with higher 
accuracy. Only at one specific point in the algorithm, namely calculation of the 
residue, is the procedure used for producing a single precision (precisely rounded) 
result. Performing the final addition )?+)7+ Y in double precision (which may be 
carried out by employing the precise scalar product) makes the higher accuracy 
achieved available to the user. 
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5. Computing Time 

The computing time e reguired to compute an approximation 2 of the solution of an 
n-th order system using the Gaussian algorithm with r residual iterations is (modulo 
linear terms) 

= n3/3  + 2 r n 2. 

The computing time fi of the algorithm described in section 4 where step 5 is excuted 
s times is (modulo linear terms) 

fi=2n3 +n2(3r +4s+4)<_6c~ + n 2 ( - 9 r  +4s+4). 

In both procedures yield approximations (resp. inclusions) of comparable accuracy, 
the relative increase in cost a is 

- 9 r + 4 s + 4  
a: = c~/fl_-<6 q 

n/3 + 2 r 

Since in our algorithm s < (9 r -  4)/r holds universally, this last inequality may be 
expressed as o" = 6 - 0 (~). Therefore, the computing time for the inclusion-algorithm 
is at most six times the computing time of a typical approximate algorithm. This 
estimate is independent of the order of the linear system. 

One appraisal of this factor of six may be obtained by considering the following. 
Suppose that in order to get "a feeling" about the error of an approximation, a 
problem is first solved in single precision accuracy and then solved once more in 
double precision. This double procedure which produces no error estimation 
requires five times the computing time of the basic (single precision) algorithm. 
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