A Class of Interval-Newton-Operators

R. Krawczyk, Clausthal-Zellerfeld

Received March 26, 1984; revised July 17, 1985

Abstract - Zusammenfassung

A Class of Interval-Newton-Operators. A class of interval-Newton-operators N_{a} will be discussed. One of them, \hat{N}, is optimal in the manner that $\hat{N}(X) \subseteq N_{a}(X)$. With the help of such an interval operator we can give an existence theorem for the solution x^{*} of the equation $g(x)=0$.

AMS Subject Classifications: $65 \mathrm{H} 10,65 \mathrm{G} 10$.
Key words: Systems of equations, interval operators.
Eine Klasse von Intervall-Newton-Operatoren. Eine Klasse von Intervalloperatoren N_{a} wird diskutiert. Einer von ihnen $-\hat{N}$ - ist optimal in dem Sinne, daß $\hat{N}(X) \subseteq N_{a}(X)$ gilt. Mit Hilfe eines solchen Intervalloperators kann die Existenz einer Lösung x^{*} einer Gleichung $g(x)=0$ bewiesen werden.

1. Introduction

There are several interval-Newton-operators which are of the form

$$
\begin{equation*}
N(X):=x-S(X) g(x) \tag{1}
\end{equation*}
$$

where $x \in X$, and $S(X)$ is a sublinear mapping for fixed X; hence $N(X)=x^{*}$ if $x=x^{*}$ is a zero of the equation $g(x)=0$. For example: $S(X) g(x):=I G A(L(X), g(x))$, where IGA denotes the interval Gauss algorithm and $L(X)$ is a regular Lipschitz matrix of g or an interval extension of the derivative $g^{\prime}(x)$. In most cases, $x=\tilde{x}$ is the midpoint of X. Instead of the interval Gauss algorithm, we can determine $r:=|e-a L|$, where a is a regular real matrix. If the spectral radius of r is less than 1 , then $q:=r(e-r)^{-1}$ exists and is a nonnegative matrix. Moreover,

$$
\begin{equation*}
N(X):=\tilde{x}-[e-q, e+q](a g(\tilde{x})) \tag{2}
\end{equation*}
$$

is an interval-Newton-operator which depends on the matrix a. For $a:=(\operatorname{mid} L)^{-1}$ the method was introduced in [4].

In this paper we will show that the choice of $a=(\operatorname{mid} L)^{-1}$ is optimal in that the image interval is contained in all intervals being produced by interval operators (2) with an arbitrary regular matrix a.

In [2] Alefeld has given some existence theorems for the solution of the equation $g(x)=0$. These theorems are based upon the condition $N(X) \subseteq X$ and they are stated for several interval-Newton-operators N. However in all these cases it is assumed that $L(X)$ is a continuous function. We also give an existence theorem for the interval-Newton-operators (2) without the assumption of continuity of $L(X)$.

Remark about notation: We use the same notation as in [7]; but for convenience of the reader, some notations are repeated. Small Latin letters denote real values and capital letters denote sets, intervals and maps. We denote the set of n-dimensional interval vectors and $n \times n$-interval matrices by $\mathbb{\mathbb { R }} \mathbb{R}^{n}$ and $\mathbb{\mathbb { R }} \mathbb{R}^{n \times n}$, respectively, use $\operatorname{mid} X=(\underline{x}+\bar{x}) / 2, \operatorname{mid} A=(\underline{a}+\bar{a}) / 2$ for the midpoints, $\operatorname{rad} X=(\bar{x}-\underline{x}) / 2$, $\operatorname{rad} A=(\bar{a}-\underline{a}) / 2$ for the radius of $X \in \mathbb{\mathbb { R } ^ { n }}$ and $A \in \mathbb{\mathbb { R } ^ { n \times n }}$, respectively.

Moreover, we set $\mathbb{D}:=\left\{X \in \mathbb{\mathbb { R } ^ { n } | X \subseteq D \} \text { . The unit matrix is written as e. } \sigma (a) , ~ (a)}\right.$ denotes the spectral radius of $a \in \mathbb{R}^{n \times n}$.
For a discussion of interval arithmetic we refer to Alefeld/Herzberger [1].

2. A Class of Interval-Newton-Operators

Let $g: D \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a real function which satisfies an interval Lipschitz condition

$$
\begin{equation*}
g\left(x_{1}\right)-g\left(x_{2}\right) \in L\left(x_{1}-x_{2}\right) \text { for all } x_{1}, x_{2} \in X \tag{3}
\end{equation*}
$$

where $X \in \| D$ and L is a regular interval matrix.
Let $S: \rrbracket \mathbb{R}^{n} \rightarrow \mathbb{\mathbb { R }} \mathbb{R}^{n}$ be a sublinear mapping (see Neumaier [8]) with the property

$$
\begin{equation*}
l^{-1} z \in S z \text { for } l \in L \text { and } z \in \mathbb{R}^{n} \tag{4}
\end{equation*}
$$

Then we call

$$
\begin{equation*}
N(X):=\tilde{x}-S g(\tilde{x}) \text { with } \tilde{x}=\operatorname{mid}(X) \tag{5}
\end{equation*}
$$

an interval-Newton-operator of g.
Remark: Generally, L and S depend on X, but in the following we consider a fixed interval X; therefore the argument X will be deleted.
(3) and (4) immediately yield

$$
\begin{equation*}
g\left(x^{*}\right)=0 \wedge x^{*} \in X \Rightarrow x^{*} \in N(X), \tag{6}
\end{equation*}
$$

because $g\left(x^{*}\right)-g(\tilde{x})=l\left(x^{*}-\tilde{x}\right)$ implies

$$
x^{*}=\tilde{x}-l^{-1} g(\tilde{x}) \in \tilde{x}-S g(\tilde{x}) .
$$

Let $a \in \mathbb{R}^{n \times n}$ be a regular matrix. Then we define

$$
\begin{equation*}
r_{a}:=|e-a L| \tag{7}
\end{equation*}
$$

and assume that

$$
\begin{equation*}
\sigma\left(r_{a}\right)<1 ; \tag{8}
\end{equation*}
$$

hence the matrix

$$
\begin{equation*}
q_{a}:=r_{a}\left(e-r_{a}\right)^{-1} \tag{9}
\end{equation*}
$$

exists and is a nonnegative matrix.

The sublinear mapping

$$
\begin{equation*}
S_{a} z:=\left[e-q_{a}, e+q_{a}\right](a z) \tag{10}
\end{equation*}
$$

fulfills the condition (4) for each $a \in \mathbb{R}^{n \times n}$ for which the assumption (8) is true. Indeed $b:=e-a l$ and $l \in L$ imply $b \in e-a L$ and $|b| \leqq|e-a L|=r_{a}$. On the other hand $b=e-a l$ implies that $l^{-1} z=(e-b)^{-1}(a z)$, and since

$$
(e-b)^{-1} \in\left[e-q_{a}, e+q_{a}\right](\operatorname{see}(4.17) \text { in [6]) }
$$

we have $l^{-1} z \in\left[e-q_{a}, e+q_{a}\right](a z)$.
Hence

$$
\begin{equation*}
N_{a}(X):=\tilde{x}-S_{a} g(\tilde{x}) \tag{11}
\end{equation*}
$$

where S_{a} is defined by (10), defines a class of interval-Newton-operators.

3. The Optimal Interval-Newton-Operator of the Class (11)

The question is how to choose the matrix a. Before we give an answer we formulate a
Lemma: If $r_{a}:=|e-a L|, \hat{r}:=|e-\hat{a} L|$ with $\hat{a}:=(\operatorname{mid} L)^{-1}, \sigma(\hat{r})<1$ and $\sigma\left(r_{a}\right)<1$ then the following statements are true:

$$
\begin{align*}
& \text { 1. } \quad \sigma(\hat{r}) \leqq \sigma\left(r_{a}\right) \tag{12}\\
& \text { 2. }|(a-\hat{a}) z| \leqq\left(r_{a}-\hat{r}\right)(e-\hat{r})^{-1}|\hat{a} z| \tag{13}\\
& \text { 3. }|\hat{a} z| \leqq(e-\hat{r})\left(e-r_{a}\right)^{-1}|a z| \text { with } z \in \mathbb{R}^{n} . \tag{14}
\end{align*}
$$

Proof:

1. (12) was proved by Neumaier (see Theorem 6 in [8]). ($\hat{a} L$ is an H-matrix since $\sigma(\hat{r})<1$.)
2. We use the abbreviation $\tilde{l}=\operatorname{mid} L$ and put

$$
\begin{equation*}
b:=a \tilde{l}-e \tag{15}
\end{equation*}
$$

Then the relation

$$
\begin{equation*}
r_{a}=|e-a L|=|a| \operatorname{rad} L+|b| \tag{16}
\end{equation*}
$$

holds (see (31) in [3]), which implies

$$
\begin{equation*}
\hat{r}=|\hat{a}| \operatorname{rad} L \tag{17}
\end{equation*}
$$

From (15) follows

$$
\begin{equation*}
b \hat{a}=a-\hat{a} \tag{18}
\end{equation*}
$$

By inserting the inequality $|a| \geqq|\hat{a}|-|b||\hat{a}|$ into (16) we obtain from (17)

$$
|b| \leqq r_{a}-\hat{r}+|b| \hat{r}
$$

and (12)

$$
\begin{equation*}
|b| \leqq\left(r_{a}-\hat{r}\right)(e-\hat{r})^{-1} \tag{19}
\end{equation*}
$$

(18) and (19) yield (13).
3. Because of $\sigma(|b|) \leqq \sigma\left(r_{a}\right)<1$, (18) yields

$$
|\hat{a} z| \leqq\left|(e+b)^{-1}\right||a z| \leqq(e-|b|)^{-1}|a z| .
$$

By inserting (19) into this inequality we get

$$
\begin{aligned}
|\hat{a} z| & \leqq\left(e-\left(r_{a}-\hat{r}\right)(e-\hat{r})^{-1}\right)^{-1}|a z| \\
& =(e-\hat{r})\left(e-r_{a}\right)^{-1}|a z| .
\end{aligned}
$$

We next give an answer to the question: "how to choose a ?" by using the
Theorem 1: If $\hat{a}:=(\operatorname{mid} L)^{-1}, \hat{r}:=|e-\hat{a} L|, \hat{q}:=\hat{r}(e-\hat{r})^{-1}$ and

$$
\begin{equation*}
\hat{N}(X):=\tilde{x}-[e-\hat{q}, e+\hat{q}](\hat{a} g(\tilde{x})) \tag{20}
\end{equation*}
$$

then

$$
\begin{equation*}
\hat{N}(X) \subseteq N_{a}(X) \tag{21}
\end{equation*}
$$

for each a satisfying the condition (8).
Proof: It follows by the definition of radius and midpoint and the formulae (6.4), (6.5) in [7] as well as by the lemma

$$
\begin{aligned}
\mid \operatorname{mid} & N_{a}(X)-\operatorname{mid} \hat{N}(X)|=|(a-\hat{a}) g(\tilde{x})| \\
& \leqq\left(r_{a}-\hat{r}\right)(e-\hat{r})^{-1}|\hat{a} g(\tilde{x})| \\
& \leqq r_{a}(e-\hat{r})^{-1}(e-\hat{r})\left(e-r_{a}\right)^{-1}|a g(\tilde{x})|-\hat{r}(e-\hat{r})^{-1}|\hat{a} g(\tilde{x})| \\
& =q_{a}|a g(\tilde{x})|-\hat{q}|\hat{a} g(\tilde{x})| \\
& =\operatorname{rad} N_{a}(X)-\operatorname{rad} \hat{N}(X) .
\end{aligned}
$$

This relation is equivalent to $\hat{N}(X) \subseteq N_{a}(X)$ (see (2.12) in [7]).

4. Existence Theorem

Theorem 2: If $N_{a}(X) \subseteq X$ then there exists an $x^{*} \in X$ with $g\left(x^{*}\right)=0$.
Proof: By Theorem 1 it is sufficient to prove the existence of x^{*} in the case that $\hat{N}(X) \subseteq X$ for $N_{a}(X) \subseteq X$ implies $\hat{N}(X) \subseteq X$.
If $\hat{N}(X) \subseteq X$ then by (2.12) and (6.4) in [7] we obtain

$$
|\hat{a} g(\tilde{x})| \leqq \operatorname{rad} X-\operatorname{rad} \hat{N}(X)=\operatorname{rad} X-\hat{q}|\hat{a} g(\tilde{x})|,
$$

and it follows from $e+\hat{q}=(e-\hat{r})^{-1}$ that

$$
(e-\hat{r})^{-1}|\hat{a} g(\tilde{x})| \leqq \operatorname{rad} X
$$

Now we define $Y \subseteq X$ by mid $Y:=\tilde{x}$ and

$$
\begin{equation*}
\operatorname{rad} Y=(e-\hat{r})^{-1}|\hat{a} g(\tilde{x})| \leqq \operatorname{rad} X . \tag{22}
\end{equation*}
$$

Then

$$
|\hat{a} g(\tilde{x})|=(e-\hat{r})^{-1}|\hat{a} g(\tilde{x})|-\hat{q}|\hat{a} g(\tilde{x})|=\operatorname{rad} Y-\operatorname{rad} \hat{N}(X),
$$

i.e. by (2.12) in [7], $\widehat{N}(X) \subseteq Y$.

On the other hand it follows from (20) by (22), (17) and $e-\hat{a} L=[-\hat{r}, \hat{r}]$

$$
\begin{aligned}
\hat{N}(X) & =\tilde{x}-\hat{a} g(\tilde{x})+[-\hat{r}, \hat{r}] \operatorname{rad} Y \\
& =\tilde{x}-\hat{a} g(\tilde{x})+(e-\hat{a} L)(Y-\tilde{x}) \subseteq Y .
\end{aligned}
$$

$e-\hat{a} L$ is an interval Lipschitz matrix of the function $f(x):=x-\hat{a} g(x)$, i.e.

$$
f(x)-f(\tilde{x}) \in(e-\hat{a} L)(x-\tilde{x}) \subseteq(e-\hat{a} L)(Y-\tilde{x}) \text { if } x \in Y
$$

Therefore, $f(x) \in \widehat{N}(X) \subseteq Y$ for all $x \in Y$, and by Brouwer's fixpoint theorem there exists a fixpoint $x^{*} \in Y \subseteq X$ which is a zero of $g(x)$ because \hat{a} is regular.
Remark: Theorem 2 is a consequence of the fact that $\hat{N}(X)$ is an interval extension of f on the intersection $X \cap Y$. This is a result of Section 7 in [5].

Acknowledgement

I thank Mr. Neumaier for his advice and the improvements.

References

[1] Alefeld, G., Herzberger, J.: Einführung in die Intervallrechnung. Bibl. Inst., Mannheim, 1974.
[2] Alefeld, G.: Intervallanalytische Methoden bei nichtlinearen Gleichungen. Jahrbuch Überblicke Math., 63-78 (1979).
[3] Krawczyk, R.: Interval extensions and interval iterations. Comp. 24, 119-129 (1980).
[4] Krawczyk, R.: Zur Konvergenz iterierter Mengen. Freiburger Intervall-Berichte 80/3, 1 - 33 (1980).
[5] Krawczyk, R.: Zentrische Formen und Intervalloperatoren. Freiburger Intervall-Berichte 82/1, 1-30 (1982).
[6] Krawczyk, R., Neumaier, A.: An improved interval-Newton-operator. Freiburger IntervallBerichte 84/4, 1-26 (1984).
[7] Krawczyk, R.: Conditionally isotone interval operators. Freiburger Intervall-Berichte 84/5, 21-36 (1984).
[8] Neumaier, A. : New Techniques for the analysis of linear interval equations. Linear Algebra Appl. 58, 273-325 (1984).

Prof. Dr. R. Krawczyk
Bohlweg 2
D-3392 Clausthal-Zellerfeld
Federal Republic of Germany

[^0]
[^0]: Verleger: Springer-Verlag KG, Mölkerbastei 5, A-1010 Wien. - Herausgeber: Prof. Dr. Hans J. Stetter, Institut für Angewandte und Numerische Mathematik der Technischen Universität Wien, Wiedner Hauptstraße 6-10, A-1040 Wien. - Redaktion: Wiedner Hauptstraße 6-10, A-1040 Wien. - Hersteller: Satz Austro-Filmsatz Richard Gerin, Zirkusgasse 13, A-1020 Wien, Druck Paul Gerin, Zirkusgasse 13, A-1021 Wien. - Verlagsort: Wien. Herstellungsort: Wien. - Printed in Austria.

