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1 About the package

Necessary software is MATLAB R©.

The package implements the boundary intervals method [1].
Author of IntLinInc2D and the boundary intervals method is Irene A. Sharaya

(Institute of Computational Technologies SB RAS, Novosibirsk).

The package IntLinInc2D is free software. Its source codes are open.
Date of the first release is January 14, 2013.

The latest release is available from http://interval.ict.nsc.ru/Programing

and http://interval.ict.nsc.ru/sharaya .
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2 Purpose

The package IntLinInc2D is intended to visualize various solution sets for

interval and point (i.e., noninterval) systems of relations. These systems and
solution sets are listed below.

Interval systems:

1) the set of formal solutions for the interval inclusion

Cx ⊆ d (1)

in Kaucher arithmetic, where
C = [C,C] ∈ KR

m×2 is an interval matrix with given endpoints C and C;
x ∈ R

2 is a real vector of unknowns;

d = [d, d] ∈ KR
m
is an interval vector with given endpoints d and d;

m ∈ N is a natural (positive integer) number;

KR = {[z, z] | z, z ∈ R} is the set of Kaucher intervals (in contrast to
the set of classical intervals IR = {[z, z] | z, z ∈ R, z ≤ z},

the requirement z ≤ z is absent for Kaucher intervals);

KR = {[z, z] | z, z ∈ R} is the set of Kaucher intervals over the extended

real axis R = R ∪ {−∞,∞};
multiplication C by x is standard for Kaucher arithmetic;

the inclusion “⊆” is defined by inequalities Cx ≥ d and Cx ≤ d, which

are understood componentwise, Cx and Cx are the left and right

endpoints of the interval vector Cx = [Cx,Cx] respectively;

2) all possible AE-solution sets for the interval system of equations

Ax = b, A ∈ IR
m×2, b ∈ IR

m, m ∈ N; (2)

3) all possible quantifier solution sets for the interval system of inequalities

Ax ≥ b, A ∈ IR
m×2, b ∈ IR

m, m ∈ N, (3)

or

Ax ≤ b, A ∈ IR
m×2, b ∈ IR

m, m ∈ N; (4)
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4) various quantifier solution sets for the interval mixed system of linear
equations and inequalities

Ax σ b, A ∈ IR
m×2, b ∈ IR

m, σ ∈ {=,≥,≤}m, m ∈ N; (5)

specifically, we mean all those solutions for which quantifier description has

AE-order of quantifiers for rows with the relation “=”.

Point systems:

1) the solution set for the system

Ax+ B|x| ≥ c, A, B ∈ R
m×2, c ∈ R

m, m ∈ N; (6)

2) the solution set for the system

|Ax− c| ≤ B|x|+ d, A,B ∈ R
m×2, c, d ∈ R

m, m ∈ N; (7)

3) the solution set for the mixed system of linear equations, inequalities and

two-sided inequalities















A(1)x= b(1), A(1) ∈ R
m1×2, b(1) ∈ R

m1, m1 ∈ N ∪ {0},

b(2) ≤A(2)x, A(2) ∈ R
m2×2, b(2) ∈ R

m2, m2 ∈ N ∪ {0},
A(3)x≤ b(3), A(3) ∈ R

m3×2, b(3) ∈ R
m3, m2 ∈ N ∪ {0},

b(4) ≤A(4)x≤ b(5), A(4) ∈ R
m4×2, b(4), b(5) ∈ R

m4, m4 ∈ N ∪ {0},

(8)

with m1 +m2 +m3 +m4 > 0.

In [2], it is shown that each solution set listed above can be represented as the

set of formal solutions to the inclusion (1). Therefore, the visualization of this
set play a key role in the package, which is reflected in the title IntLinInc2D,
i. e. Interval Linear Inclusion. The last letters 2D mean that the dimension of

the unknowns is 2 (x ∈ R
2).

Remark. The package IntLinInc2D is aimed at illustrating simple exam-
ples (in publications, education, etc.), so it works most correctly when the initial

data are integers and lie in the range [−102, 102].
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3 Structure

The main function of the package is Cxind2D. It is designed to visualize the set

of formal solutions for the inclusion (1).

The functions used in the main one are
BoundaryIntervals, Intervals2Path,

ClearRows, NonRepeatRows,

CutBox, OrientationPoints,

DrawingBox, SSinW.

The package contains auxiliary functions for the problems equivalent to (1).
The choice of the auxiliary function depends on which of the systems (2)–(7) is

to be processed and, for interval systems, on the solution type. The names of
the auxiliary functions reflect this dependency.

The names of the auxiliary functions for the interval systems

solution type
system

weak tolerable controllable strong quantifier

(2) Ax = b EqnWeak2D EqnTol2D EqnCtl2D EqnStrong2D EqnAEss2D

(3) Ax ≥ b GeqWeak2D GeqTol2D GeqCtl2D GeqStrong2D GeqQtr2D

(4) Ax ≤ b LeqWeak2D LeqTol2D LeqCtl2D LeqStrong2D LeqQtr2D

(5) Ax σ b MixWeak2D MixTol2D MixCtl2D MixStrong2D MixQtr2D

The solution types from the table above, except the quantifier type, will be

defined in this manual. A complete set of definitions is in [2], and it generalizes
the terminology from [3, 4]. Note that the auxiliary functions EqnAEss2D and

MixQtr2D are designed only for such quantifier solutions which have AE-order
of quantifiers in rows with the relation “=”.

For point systems, there are two auxiliary functions: the function Abs12D

is intended for the system (6) with one absolute value operation, the function

Abs22D is designed for the system (7) which contains two such operations.

Arguments of the main and auxiliary functions are described in comments
within their bodies. To see these descriptions in MATLAB command window,

use command help, for example,

>> help EqnWeak2D
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4 Notation in figures

By pok (piece in orthant k), we denote the intersection of the solution set with

the k-th orthant, k = 1, 2, 3, 4. Then

✉ is a vertex of pok (orientation point),

is an edge of pok,

is interior of pok for certain k.

Dotted lines are coordinate axes passing from the origin of coordinates.
Abscissa axis corresponds to the variable x1, ordinate axis corresponds to the

variable x2.

The package chooses the drawing area in such a way that
1) all the orientation points are visible,

2) bounded solution set lies in the interior of the drawing area, in contrast
to unbounded solution set that has points on the border of the drawing area.

For instance:

segment ray straight line

polytope polyhedron
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5 Examples

5.1 The set of formal solutions for the interval inclusion Cx ⊆ d

A vector x ∈ R
2 is said to be a formal solution for (1) if multiplying C by x

in Kaucher interval arithmetic produces such an interval vector Cx that the

inequalities Cx ≥ d and Cx ≤ d hold.

Example. To see the set of formal solutions for the inclusion

(

1 0
[1,−1] [1, 3]

)

x ⊆

(

[−3, 3]
[2, 3]

)

.

How to use the package? In this example, we have for (1):

C =

(

1 0

1 1

)

, C =

(

1 0

−1 3

)

, d =

(

−3

2

)

, d =

(

3

3

)

.

We input this data sequentially and call the main function Cxind2D:

>> uC=[ 1 0 ; 1 1 ];

>> oC=[ 1 0 ; -1 3 ];

>> ud=[ -3 ; 2 ];

>> od=[ 3 ; 3 ];

>> [V,P1,P2,P3,P4]=Cxind2D(uC,oC,ud,od)

The output is

Number of orientation points = 10

V =

2.00 3.00 0.75 3.00 -3.00 -0.75 -3.00 -2.00 -3.0000 3.0000

0 2.00 1.25 0 0 1.25 2.00 0 -0.3333 -0.3333

P1 =

2.0000 0

0.7500 1.2500

3.0000 2.0000

3.0000 0

2.0000 0
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P2 =

-3.0000 0

-3.0000 2.0000

-0.7500 1.2500

-2.0000 0

-3.0000 0

P3 =

-3.0000 -0.3333

-3.0000 0

-2.0000 0

-3.0000 -0.3333

P4 =

3.0000 -0.3333

2.0000 0

3.0000 0

3.0000 -0.3333

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

3

In the above, V is the matrix of orientation points. It consists of vertices of

intersections of the solution set with orthants. Pk is a closed clockwise path
around the piece pok of the solution set in the k-th orthant.

Note. If we change the command

>> [V,P1,P2,P3,P4]=Cxind2D(uC,oC,ud,od)

by

>> [V]=Cxind2D(uC,oC,ud,od)

then Pk will not be displayed. If we use

>> Cxind2D(uC,oC,ud,od);

then we will receive figure and number of orientation points only. (In MATLAB,
semicolon after a command suppresses displaying output arguments.)

Application of output arguments and semicolons in all the auxiliary functions

is similar to the above. For brevity, we use short calls of the auxiliary functions
(with semicolon) in the rest of examples, so that the outputs contain only figures

and messages about numbers of orientation points.
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5.2 AE-solution sets for the interval system of equations Ax = b

We turn to visualization of AE-solution sets for the interval system of linear

equations (2).

5.2.1 United solution set (= set of weak solutions)

A vector x is called a weak solution for (2), if

(∃A ∈ A) (∃b ∈ b) (Ax = b).

In other words, a weak solution is a solution to a point system Ax = b for some
A ∈ A and b ∈ b. The weak solution set consists of solution sets to all point

systems, therefore it is also referred to as united solution set.

Example. To see the united solution set for the system

(

[−1, 1] [−1, 1]

−1 [−1, 1]

)

x =

(

1

[−2, 2]

)

.

How to use the package? In this case, the specific data for (2) are

A =

(

−1 −1
−1 −1

)

, A =

(

1 1
−1 1

)

, b =

(

1
−2

)

, b =

(

1
2

)

.

We input them sequentially and call the auxiliary function EqnWeak2D:

>> infA=[ -1 -1 ; -1 -1 ];

>> supA=[ 1 1 ; -1 1 ];

>> infb=[ 1 ; -2 ];

>> supb=[ 1 ; 2 ];

>> EqnWeak2D(infA,supA,infb,supb);

−3 −2 −1 0 1 2 3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

On output, we have

Number of orientation points = 6
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5.2.2 Tolerable solution set

A vector x is called a tolerable solution for the system (2), if

(∀A ∈ A) (∃b ∈ b) (Ax = b).

Example. To see the tolerable solution set for the system

(

[−1, 1] [−1, 1]
)

x =
(

[−1, 1]
)

.

How to use the package? This example corresponds to the following specific

data for the interval system (2):

A =
(

−1 −1
)

, A =
(

1 1
)

, b =
(

−1
)

, b =
(

1
)

.

After inputting them sequentially and calling the auxiliary function EqnTol2D

>> infA=[ -1 -1 ];

>> supA=[ 1 1 ];

>> infb=[ -1 ];

>> supb=[ 1 ];

>> EqnTol2D(infA,supA,infb,supb);

we get

Number of orientation points = 5

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
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5.2.3 Controllable solution set

A vector x is called a controllable solution for the system (2), if

(∀b ∈ b) (∃A ∈ A) (Ax = b).

Example. To see the controllable solution set for the system

(

[−1, 1] [−1, 1]
)

x =
(

[−1, 1]
)

.

How to use the package? The specific data for the interval equation (2) are

A =
(

−1 −1
)

, A =
(

1 1
)

, b =
(

−1
)

, b =
(

1
)

.

We input them sequentially and call the auxiliary function EqnCtl2D:

>> infA=[ -1 -1 ];

>> supA=[ 1 1 ];

>> infb=[ -1 ];

>> supb=[ 1 ];

>> EqnCtl2D(infA,supA,infb,supb);

The output is

Number of orientation points = 4

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5
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5.2.4 Strong solution set

A vector x is called a strong solution for the system (2), if

(∀A ∈ A) (∀b ∈ b) (Ax = b).

It is clear from the definition, that the strong solution set for (2) is empty

in most cases. But sometimes it is not empty, for example:

• if A = 0 and b = 0, then the strong solution set is the entire plane;

• if A has exactly one zero column and b = 0, then the strong solution set

coincides with a coordinate axis;

• if A = A is a point matrix and b = b is a point vector and the point system
Ax = b is solvable, then the strong solution set for the interval system

Ax = b coincides with the solution set for the point system Ax = b.

Example. To see the strong solution set for the system

(

1 [3, 4]
2 5

)

x =

(

1
2

)

.

How to use the package? Here the specific data for the system (2) are:

A =

(

1 3

2 5

)

, A =

(

1 4

2 5

)

, b =

(

1

2

)

, b =

(

1

2

)

.

Inputting them sequentially and calling the auxiliary function EqnStrong2D

>> infA=[ 1 3 ; 2 5 ];

>> supA=[ 1 4 ; 2 5 ];

>> infb=[ 1 ; 2 ];

>> supb=[ 1 ; 2 ];

>> EqnStrong2D(infA,supA,infb,supb);

0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

produce

Number of orientation points = 1
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5.2.5 Arbitrary AE-solution set

AE-solutions for the interval system of equations (2) were defined in [3].

Example. Let the system (2) take the form
(

[−1, 1] [−1, 1]

[−2, 2] [−2, 2]

)

x =

(

[−1, 1]

[−2, 2]

)

.

We want to see the following AE-solution set

{x ∈ R
2 | (∀A11 ∈ A11)(∀A12 ∈ A12)(∀b2 ∈ b2)

(∃A21 ∈ A21)(∃A22 ∈ A22)(∃b1 ∈ b1) (Ax = b)}.

How to use the package? This example specifies the data for (2) as follows

A =

(

−1 −1
−2 −2

)

, A =

(

1 1
2 2

)

, b =

(

−1
−2

)

, b =

(

1
2

)

,

Aq =

(

∀ ∀
∃ ∃

)

, bq =

(

∃
∀

)

.

Let us input this information and call the auxiliary function EqnAEss2D:

>> infA=[ -1 -1 ; -2 -2 ];

>> supA=[ 1 1 ; 2 2 ];

>> infb=[ -1 ; -2 ];

>> supb=[ 1 ; 2 ];

>> Aq=[ ’A’ ’A’ ; ’E’ ’E’ ];

>> bq=[ ’E’ ; ’A’ ];

>> EqnAEss2D(infA,supA,Aq,infb,supb,bq);

We get:

Number of orientation points = 4

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
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5.3 Quantifier solution sets for interval systems of linear inequalities
(Ax ≥ b or Ax ≤ b)

We will consider the inequality Ax ≥ b in Sections 5.3.1 and 5.3.2 and touch

on the opposite inequality Ax ≤ b in Section 5.3.3. For the interval systems of
linear inequalities, quantifier solutions and their main types are defined in [2].

5.3.1 Main types of quantifier solutions for the system Ax ≥ b

For the interval system of linear inequalities (3), we call a vector x

a weak solution, if (∃A ∈ A) (∃b ∈ b) (Ax ≥ b),

a tolerable solution, if (∀A ∈ A) (∃b ∈ b) (Ax ≥ b),
a controllable solution, if (∀b ∈ b) (∃A ∈ A) (Ax ≥ b),

a strong solution, if (∀A ∈ A) (∀b ∈ b) (Ax ≥ b).

We regard these solution types as main types of quantifier solutions for the
interval system of linear inequalities Ax ≥ b.

Example. To see the main types of the quantifier solution sets for the interval
inequality

(

[1, 2] [1, 2]
)

x ≥
(

[−1, 1]
)

.

How to use the package? In this case, the specific data for (3) are

A =
(

1 1
)

, A =
(

2 2
)

, b =
(

−1
)

, b =
(

1
)

.

We input them sequentially:

>> infA=[ 1 1 ];

>> supA=[ 2 2 ];

>> infb=[ -1 ];

>> supb=[ 1 ];

Then, for every main type of the quantifier solution, we call an auxiliary
function according to the following table

solution type function

weak GeqWeak2D

tolerable GeqTol2D

controllable GeqCtl2D

strong GeqStrong2D
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The output is

weak solution set
>> GeqWeak2D(infA,supA,infb,supb);

Number of orientation points = 3

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

tolerable solution set
>> GeqTol2D(infA,supA,infb,supb);

Number of orientation points = 3

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

controllable solution set

>> GeqCtl2D(infA,supA,infb,supb);

Number of orientation points = 2

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

strong solution set

>> GeqStrong2D(infA,supA,infb,supb);

Number of orientation points = 2

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
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5.3.2 Arbitrary quantifier solution set for the system Ax ≥ b

Now let us turn to visualization of quantifier solution sets for the system of

linear inequalities (3) with arbitrary collection and order of quantifiers.

Example. To see the set

{x ∈ R
2 | (∃a1 ∈ [1, 2]) (∀a2 ∈ [1, 2]) (∀b ∈ [−1, 1]) (a1x1 + a2x2 ≥ b)}.

How to use the package? Reformulating the problem, we need to see the
solution set of the interval-quantifier inequality

(

[1, 2]∃ [1, 2]∀
)

x ≥
(

[−1, 1]∀
)

.

In this example, we have for (3):

A =
(

1 1
)

, A =
(

2 2
)

, Aq =
(

∃ ∀
)

, b =
(

−1
)

, b =
(

1
)

, bq =
(

∀
)

.

Inputting the data and calling the auxiliary function GeqQtr2D

>> infA=[ 1 1 ];

>> supA=[ 2 2 ];

>> Aq=[’E’ ’A’];

>> infb=[ -1 ];

>> supb=[ 1 ];

>> bq=[’A’];

>> GeqQtr2D(infA,supA,Aq,infb,supb,bq);

we get

Number of orientation points = 2

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Note. The main types of the quantifier solution sets can be processed in the

same way.
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5.3.3 Quantifier solution sets for the system Ax ≤ b

The main types of the quantifier solutions for the interval inequality Ax ≤ b

are defined analogously to the opposite inequality Ax ≥ b. The definitions
differ only in the inequality sign of the point system: Ax ≤ b instead of Ax ≥ b.

If we want to use the package IntLinInc2D for the inequality Ax ≤ b, we

must follow the instructions for the opposite inequality Ax ≥ b, but change the
prefix Geq (greater or equal) for Leq (little or equal) in the names of auxiliary

functions.

If neccesary, one can look at the examples from Sections 5.3.1 and 5.3.2
for the opposite inequalities. These examples have balanced right-hand side b

(b = −b). Therefore, if we change the inequality sign, the solution set rotates
around the origin of coordinates by 180◦.
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5.4 Quantifier solution sets for the interval system of relations Ax σ b

The interval system of relations (5) consists of the interval equations and in-

equalities of the form Ai:x = bi, Ai:x ≥ bi and Ai:x ≤ bi. The presence of
all three types of the relations is not obligatory. The interval system of equa-

tions (2) and interval systems (3) and (4) of inequalities are particular cases of
the relations system (5). The quantifier solution and main types of quantifier
solutions for the system Ax σ b are defined in [2].

5.4.1 Main types of quantifier solutions

We introduce main types of quantifier solutions for the interval mixed system

of linear relations (5) by analogy with the interval system of linear equations
(or inequalities). A vector x ∈ R

n will be referred to as

a weak solution, if (∃A ∈ A) (∃b ∈ b) (Ax σ b),
a tolerable solution, if (∀A ∈ A) (∃b ∈ b) (Ax σ b),

a controllable solution, if (∀b ∈ b) (∃A ∈ A) (Ax σ b),
a strong solution, if (∀A ∈ A) (∀b ∈ b) (Ax σ b).

Example. To see the main types of the quantifier solution sets for the interval
system of relations





[−1, 1] [−1, 1]

[−1, 1] 0
0 [−1, 1]



 x





=

≤
≥









[−3, 3]

[−2, 2]
[−2, 2]



 . (9)

How to use the package? The example has the following specific data for (5):

A =





−1 −1
−1 0

0 −1



 , A =





1 1
1 0

0 1



 , b =





−3
−2

−2



 , b =





3
2

2



 , σ =





=
≤

≥



 .

We input them typing

>> infA=[-1 -1; -1 0; 0 -1];

>> supA=[ 1 1; 1 0; 0 1];

>> infb=[-3; -2; -2];

>> supb=[ 3; 2; 2];

>> relations=[’=’; ’<’; ’>’];
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Running the corresponding auxiliary functions of the package, we obtain:

weak solution set

>> MixWeak2D(infA,supA,infb,supb,relations);

Number of orientation points = 1

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

toleralbe solution set

>> MixTol2D(infA,supA,infb,supb,relations);

Number of orientation points = 13

−3 −2 −1 0 1 2 3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

controllable solution set

>> MixCtl2D(infA,supA,infb,supb,relations);

Number of orientation points = 4

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3 strong solution set
>> MixStrong2D(infA,supA,infb,supb,relations);

Solution set is empty

(it does not have boundary intervals)
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5.4.2 Quantifier solution set

We turn to the quantifier solution sets for the interval system of relations (5)

in the case when the set of quantifiers is arbitrary while their order satisfies
the following condition: for the relations with the equality sign, all the prefixes

with the universal quantifier “∀” (if such prefixes present in the description of
the solution) precede those with the existential quantifiers “∃” (if any).

Example. To see the set of all x ∈ R
2 satisfying the condition

(

(

∀ b1 ∈ [−3, 3]
) (

∀A11 ∈ [−1, 1]
) (

∃A12 ∈ [−1, 1]
) (

A11x1 + A12x2 = b1
)

)

&
(

(

∃ b2 ∈ [−2, 2]
) (

∀A21 ∈ [−1, 1]
) (

A21x1 ≤ b2
)

)

&
(

(

∃ b3 ∈ [−2, 2]
) (

∃A32 ∈ [−1, 1]
) (

A32x2 ≥ b3
)

)

.

How to use the package? The problem is reduced to visualization of quan-
tifier solution set for the interval linear system (9). The above requirement on

the order of quantifiers is fulfilled. The system has point elements (A22 and
A31) so it allows freedom in the choice of quantifiers for these elements. Let
us fix quantifiers choice selecting matrix and vector of quantifiers respectively

as Aq =





∀ ∃
∀ ∃
∀ ∃



 , bq =





∀
∃
∃



. Inputting the data and calling the function

MixQtr2D

>> infA=[-1 -1; -1 0; 0 -1];

>> supA=[ 1 1; 1 0; 0 1];

>> infb=[-3; -2; -2];

>> supb=[ 3; 2; 2];

>> relations=[’=’; ’<’; ’>’];

>> Aq=[ ’A’ ’E’; ’A’ ’E’; ’A’ ’E’]

>> bq=[’A’;’E’;’E’]

>> MixQtr2D(infA,supA,Aq,infb,supb,bq,relations);

produce

Number of orientation points = 6

−3 −2 −1 0 1 2

−8

−6

−4

−2

0

2

4

6

8
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5.5 Solution sets for point systems of relations

5.5.1 Solution set for the system Ax+B|x| ≥ c

Example. To see the solution set for the system (6), where

A =

(

0 0

−1 0

)

, B =

(

0.5 0.5

0 1

)

, c =

(

1

0

)

.

How to use the package?

We input the data sequentially and run the auxiliary function Abs12D

>> A=[ 0 0 ; -1 0 ];

>> B=[ .5 .5 ; 0 1 ];

>> c=[ 1 ; 0 ];

>> V=Abs12D(A,B,c)

The output is

Number of orientation points = 5

V =

1 0 -2 0 1

1 2 0 -2 -1

−3 −2 −1 0 1 2

−3

−2

−1

0

1

2

3
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5.5.2 Solution set for the system |Ax− c| ≤ B|x|+ d

Example. To see the solution set for the system (7) whith

A =





0 0

−2 0
0 −2



 , B =





1 1

0 1
1 0



 , c =





1

0
0



 , d =





0

2
2



 .

How to use the package?

We input the data and call the function Abs22D:

>> A=[ 0 0 ; -2 0 ; 0 -2 ];

>> B=[ 1 1 ; 0 1 ; 1 0 ];

>> c=[ 1 ; 0 ; 0 ];

>> d=[ 0 ; 2 ; 2 ];

>> Abs22D(A,B,c,d);

The output is

Number of orientation points = 8

−3 −2 −1 0 1 2 3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
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5.6 Solution set for a mixed system of equations and inequalities

The point system (8) is a particular case of the interval inclusion (1) with the

following correspondence between their rows:

if the i-th row of
the point system is

then the corresponding row Ci:x ⊆ di

has C i: = Ci: = Ai: and

Ai:x = bi di = di = bi

bi ≤ Ai:x di = bi, di = ∞

Ai:x ≤ bi di = −∞, di = bi

ui ≤ Ai:x ≤ vi di = −ui, di = vi

Example. To see the solution set for the system

{

x1 − x2 = 0,
x2 ≤ 1.

How to use the package? We have following concrete data for (1):

C = C =

(

1 −1
0 1

)

, d =

(

0
−∞

)

, d =

(

0
1

)

.

After inputting these data and calling the main function Cxind2D,

>> uC=[ 1 -1 ; 0 1 ];

>> oC=uC;

>> ud=[ 0 ; -Inf ];

>> od=[ 0 ; 1 ];

>> Cxind2D(uC,oC,ud,od);

we get

Number of orientation points = 2

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
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6 How to install and operate

1. Download the file

http://interval.ict.nsc.ru/Programing/MCodes/IntLinInc2D.zip

2. Unpack it into a separate directory.

3. Set MATLAB path to this directory.

4. In the MATLAB command window, input data for systems (1)–(8) and
call the functions of the package as shown in the examples of this manual.
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