Sparse recovery и Compressive sensing в теории и на практике

Царев С.П.¹

¹Красноярский Математический Центр, Сибирский федеральный университет, Красноярск

Math Models and Integration Methods Seminar https://mmandim.blogspot.com/ Красноярск, 2024-10-17

• Мотивация & формализация:

- Мотивация & формализация:
 - ▶ геометрия конечномерных пространств с (не совсем) нормой;

- Мотивация & формализация:
 - геометрия конечномерных пространств с (не совсем) нормой;
 - ▶ внимание со стороны теоретической математики: работы Т.Тао, пленарные доклады ММК, премия Гаусса 2018, . . .

- Мотивация & формализация:
 - геометрия конечномерных пространств с (не совсем) нормой;
 - внимание со стороны теоретической математики:
 работы Т.Тао, пленарные доклады ММК, премия Гаусса 2018, . . .
 - применения в обработке сигналов (томография, удаление шума),

- Мотивация & формализация:
 - геометрия конечномерных пространств с (не совсем) нормой;
 - внимание со стороны теоретической математики:
 работы Т.Тао, пленарные доклады ММК, премия Гаусса 2018, . . .
 - применения в обработке сигналов (томография, удаление шума),
- Когда лучше остановиться (теоретически) решая задачу?

Простейшая линейная система с числом уравнений, *меньшим*, чем число неизвестных, при условии, что лишь *небольшое* число неизвестных — ненулевые (но неизвестно, какие!):

$$\hat{A} \cdot x = b \tag{1}$$

Простейшая линейная система с числом уравнений, *меньшим*, чем число неизвестных, при условии, что лишь *небольшое* число неизвестных — ненулевые (но неизвестно, какие!):

$$\hat{A} \cdot x = b \tag{1}$$

В практических приложениях, система должна решаться приближенно:

$$\|\hat{A} \cdot x - b\|_2 < \varepsilon \tag{2}$$

Простейшая линейная система с числом уравнений, *меньшим*, чем число неизвестных, при условии, что лишь *небольшое* число неизвестных — ненулевые (но неизвестно, какие!):

$$\hat{A} \cdot x = b \tag{1}$$

В практических приложениях, система должна решаться приближенно:

$$\|\hat{A} \cdot x - b\|_2 < \varepsilon \tag{2}$$

Метод LASSO (1990-е) предлагает минимизировать L_1 -норму искомого вектора x:

$$\left\{ egin{array}{ll} x = rg \min_x \sum_{i=1}^N |x_i|, & ext{при условии} \ \|\hat{A} \cdot x - b\|_2 < arepsilon \end{array}
ight.$$

Простейшая линейная система с числом уравнений, *меньшим*, чем число неизвестных, при условии, что лишь *небольшое* число неизвестных — ненулевые (но неизвестно, какие!):

$$\hat{A} \cdot x = b \tag{1}$$

В практических приложениях, система должна решаться приближенно:

$$\|\hat{A} \cdot x - b\|_2 < \varepsilon \tag{2}$$

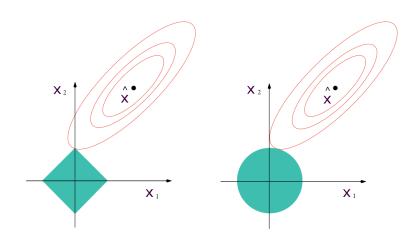
Метод LASSO (1990-е) предлагает минимизировать L_1 -норму искомого вектора x:

$$\left\{egin{array}{ll} x=rg\min_{x}\sum_{i=1}^{N}|x_{i}|, & ext{при условии} \ \|\hat{A}\cdot x-b\|_{2}$$

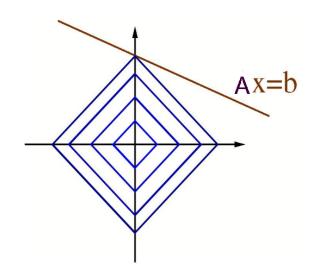
либо объединить оба условия:

$$x = \arg\min_{x} \left\{ \sum_{i=1}^{N} |x_i| + \lambda \cdot ||\hat{A} \cdot x - b||_2 \right\}$$
 (4)

Геометрическая картина (2×2) (эффект разреженности для L_1 -нормы)



Геометрическая картина (1×2) (эффект разреженности для L_1 -нормы)



Определения

Задача (P0) NP-hard!!

$$\left\{egin{array}{l} x=rg\min_x\{\|x\|_0=\#(x_k
eq0)\}, & ext{при условии} \ \hat{A}\cdot x=b \end{array}
ight.$$

Задача (Р 0ε) NP-hard !!

$$\left\{egin{array}{l} x=rg\min_x\{\|x\|_0=\#(x_k
eq0)\}, & ext{при условии} \ \|\hat{A}\cdot x-b\|_2$$

Задача (Р1)

$$\left\{egin{array}{ll} x=rg\min_{x}\{\|x\|_1=\sum_{i=1}^N|x_i|\}, & ext{при условии} \ \hat{A}\cdot x=b \end{array}
ight.$$

Задача (Р 1ε)

$$\left\{egin{array}{l} x=rg\min_{x}\{\|x\|_1=\sum_{i=1}^N|x_i|\}, & ext{при условии} \ \|\hat{A}\cdot x-b\|_2$$

Теоретические результаты: Sparse Recovery and RIP

Restricted Isometry Property of Order k [Candès, Romberg, Tao (2006)]: Let δ_k be the smallest number such that

$$(1 - \delta_k) \|x\|_2^2 \le \|\hat{A}x\|_2^2 \le (1 + \delta_k) \|x\|_2^2$$

for all k-sparse vectors $x \in \mathbb{R}^n$ where $\hat{A} = [a_1 \dots a_n] \in \mathbb{R}^{m \times n}$.

Teopeма (E.J.Candès (2008))

If $\delta_{2k} < \sqrt{2} - 1$, then for all k-sparse vectors x such that $\hat{A}x = b$, the solution of (P1) is equal to the solution of (P0).

Теоретические результаты: Approximate Recovery and RIP

Teopeмa (E.J.Candès (2008))

Suppose that the matrix \hat{A} is given and $b = \hat{A}x_0 + e$ where $||e||_2 \le \varepsilon$. If $\delta_{2k} < \sqrt{2} - 1$, then

$$||x^* - x_0||_2 \le C_0 k^{-1/2} \sigma_k(x_0)_1 + C_1 \varepsilon,$$

where x^* is the solution of (P1 ϵ) and

$$\sigma_k(x_0)_1 = \min \|x_0 - z\|_1$$

for all k-sparse z.

Почему в теоремах выбрано условие на разреженность 2k:

Теорема

Предположим, что любые 2k столбцов $m \times n$ матрицы \hat{A} линейно независимы. Тогда любой k-разреженный сигнал $x \in \mathbb{R}^n$ может быть однозначно восстановлен из $\hat{A}x$.

Почему в теоремах выбрано условие на разреженность 2k:

Теорема

Предположим, что любые 2k столбцов $m \times n$ матрицы \hat{A} линейно независимы. Тогда любой k-разреженный сигнал $x \in \mathbb{R}^n$ может быть однозначно восстановлен из $\hat{A}x$.

Следует отметить, что при решении задачи методом L_1 -регуляризации будет (почти) точно найден лишь поднабор ненулевых переменных.

Почему в теоремах выбрано условие на разреженность 2k:

Теорема

Предположим, что любые 2k столбцов $m \times n$ матрицы \hat{A} линейно независимы. Тогда любой k-разреженный сигнал $x \in \mathbb{R}^n$ может быть однозначно восстановлен из $\hat{A}x$.

Следует отметить, что при решении задачи методом L_1 -регуляризации будет (почти) точно найден лишь поднабор ненулевых переменных.

Их значения при зашумлении измерений будут, вообще говоря, несколько меньше «оптимальных» значений (эффект shrinkage, отраженный в названии метода LASSO = least absolute shrinkage and selection operator). Однако, поскольку задача отбора ненулевых переменных (selection) решается достаточно точно, можно далее использовать например, метод наименьших квадратов.

Поймите из геометрической картины, почему.

 L_2 vs L_1 в статистике: «средние» значения (dim=1)

Пусть имеется выборка $x_1, \ldots x_n$.

$$x_{average2} = \arg\min_{x^*} \left\{ \sum_{i=1}^{n} (x_i - x^*)^2 \right\}$$

 $x_{average2}$ — среднее арифметическое, неустойчива к «выбросам»

 L_2 vs L_1 в статистике: «средние» значения (dim = 1)

Пусть имеется выборка $x_1, \ldots x_n$.

$$x_{average2} = \arg\min_{x^*} \left\{ \sum_{i=1}^{n} (x_i - x^*)^2 \right\}$$

 $x_{average2}$ — среднее арифметическое, неустойчива к «выбросам»

$$x_{average1} = \arg\min_{x^*} \left\{ \sum_{i=1}^n |x_i - x^*| \right\}$$

 $x_{average1}$ — медиана (почти...), устойчива к «выбросам»

 L_2 vs L_1 в статистике: «средние» значения (dim=1)

Пусть имеется выборка $x_1, \dots x_n$.

$$x_{average2} = \arg\min_{x^*} \left\{ \sum_{i=1}^n (x_i - x^*)^2 \right\}$$

 $x_{average2}$ — среднее арифметическое, неустойчива к «выбросам»

$$x_{average1} = \arg\min_{x^*} \left\{ \sum_{i=1}^n |x_i - x^*| \right\}$$

 $x_{average1}$ — медиана (почти...), устойчива к «выбросам»

 $x_{average2}$: линейная оценка, $x_{average1}$: нелинейная.

Пример приложения Compressive sensing (томография)

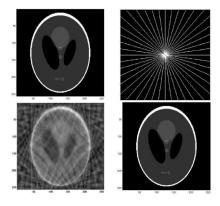


Figure 1: When Fourier coefficients of a testbed medical image known as the Logan–Shepp phantom (top left) are sampled along 22 radial lines in the frequency domain (top right), a naive, "minimal energy" reconstruction setting unobserved Fourier coefficients to 0 is marred by artifacts (bottom left). ℓ_1 -reconstruction (bottom right) is exact.

Пример приложения Compressive sensing (томография)

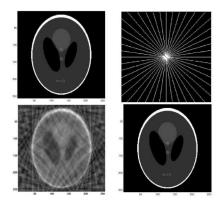


Figure 1: When Fourier coefficients of a testbed medical image known as the Logan–Shepp phantom (top left) are sampled along 22 radial lines in the frequency domain (top right), a naive, "minimal energy" reconstruction setting unobserved Fourier coefficients to 0 is marred by artifacts (bottom left). ℓ_1 -reconstruction (bottom right) is exact.

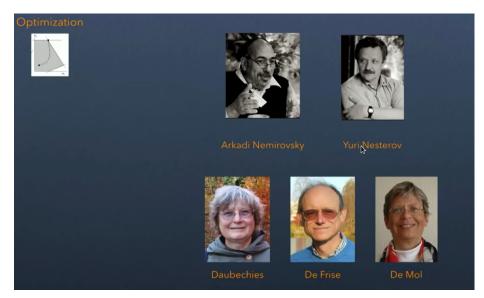
Размерность вектора данных (количество пикселей): $> 10^5 \, !!$

Лекция D.Donoho (премия Гаусса 2018)

Лекция D.Donoho (премия Гаусса 2018)

Achtung: 0

Лекция D.Donoho (премия Гаусса 2018)



Теоретическая постановка задачи (вер. 2)

Проблема построения CS-матрицы

Для неизвестного многомерного разреженного вектора x найти хорошую «матрицу измерений» $\hat{A} \in \mathbb{R}^{m \times n}$ с малым m такую, что по имеющимся «измерениям» $\hat{A}x = b$, решая разреженную задачу можно найти x.

Теоретическая постановка задачи (вер. 2)

Проблема построения CS-матрицы

Для неизвестного многомерного разреженного вектора x найти хорошую «матрицу измерений» $\hat{A} \in \mathbb{R}^{m \times n}$ с малым m такую, что по имеющимся «измерениям» $\hat{A}x = b$, решая разреженную задачу можно найти x.

Известные конструкции: случайные матрицы (!!!) дают $k \leq Cm/\log(n/m)$.

Teopeма (Candès-Romberg-Tao, 2004)

Пусть $\xi_1, \ldots, \xi_m \in \{1, \ldots, n\}$ выбраны случайно. Тогда с высокой вероятностью каждый k-разреженный сигнал $f: \{1, \ldots, n\} \to \mathbb{C}$ может быть восстановлен из $\hat{f}(\xi_1), \ldots, \hat{f}(\xi_m)$, если $m > Ck \log n$ для некоторой абсолютной константы C.

Численные эксперименты показывают, что на практике большинство k-разреженных сигналов фактически восстанавливаются примерно при m > 4k.

Теоретическая постановка задачи (вер. 2)

Пример «хорошей» случайной CS-матрицы:

Лемма (Лемма Джонсона-Линденштрауса (вер. 1))

Даны $\varepsilon \in (0,1)$, множество X из m точек в \mathbb{R}^N и целое число n, такое что $n > C \ln m/\varepsilon^2$, тогда существует линейное отображение (случайная ортогональная проекция) $\Phi : \mathbb{R}^N \to \mathbb{R}^n$ такое, что

$$(1-\varepsilon)\|u-v\|_2 \leq \|\Phi(u)-\Phi(v)\|_2 \leq (1+\varepsilon)\|u-v\|_2, \quad \forall u,v \in X.$$

Лемма (Лемма Джонсона-Линденштрауса (вер. 2))

Для любого целого числа d>0 и любых $0<\varepsilon,\delta<1/2$ существует распределение вероятностей на $k\times d$ действительных матрицах для $k=\Theta(\varepsilon^{-2}\log(1/\delta))$ такое, что для любого $x\in\mathbb{R}^d$ с $\|x\|^2=1$,

$$\mathsf{Prob}_{\mathcal{S}}[\left|\|Sx\|_{2}^{2}-1\right|>\varepsilon]<\delta.$$

Мысленный эксперимент: при заданном m попробуем максимально увеличить n, выбирая случайные векторы. Два таких столбца практически ортогональны: корреляция (= скал. произведение) мала. Редкие случайно коррелирующие столбцы отбрасываем.

Мысленный эксперимент: при заданном m попробуем максимально увеличить n, выбирая случайные векторы. Два таких столбца практически ортогональны: корреляция (= скал. произведение) мала. Редкие случайно коррелирующие столбцы отбрасываем.

С точки зрения (наивной) статистики, такой процесс наращивания n бесконечен . . . Что противоречит (наивной) геометрии: количество почти ортогональных векторов в \mathbb{R}^m конечно.

Мысленный эксперимент: при заданном m попробуем максимально увеличить n, выбирая случайные векторы. Два таких столбца практически ортогональны: корреляция (= скал. произведение) мала. Редкие случайно коррелирующие столбцы отбрасываем.

С точки зрения (наивной) статистики, такой процесс наращивания n бесконечен . . . Что противоречит (наивной) геометрии: количество почти ортогональных векторов в \mathbb{R}^m конечно.

Статистика плохо работает при *очень больших* выборках? Или есть пояснение причины этого парадокса?

Мысленный эксперимент: при заданном m попробуем максимально увеличить n, выбирая случайные векторы. Два таких столбца практически ортогональны: корреляция (= скал. произведение) мала. Редкие случайно коррелирующие столбцы отбрасываем.

С точки зрения (наивной) статистики, такой процесс наращивания n бесконечен . . . Что противоречит (наивной) геометрии: количество почти ортогональных векторов в \mathbb{R}^m конечно.

Статистика плохо работает при *очень больших* выборках? Или есть пояснение причины этого парадокса?

А насколько велико количество почти ортогональных векторов в \mathbb{R}^m ?

Мысленный эксперимент: при заданном m попробуем максимально увеличить n, выбирая случайные векторы. Два таких столбца практически ортогональны: корреляция (= скал. произведение) мала. Редкие случайно коррелирующие столбцы отбрасываем.

С точки зрения (наивной) статистики, такой процесс наращивания n бесконечен . . . Что противоречит (наивной) геометрии: количество почти ортогональных векторов в \mathbb{R}^m конечно.

Статистика плохо работает при *очень больших* выборках? Или есть пояснение причины этого парадокса?

А насколько велико количество почти ортогональных векторов в \mathbb{R}^m ? Парадоксальный недавний результат:

Количество векторов единичной длины в \mathbb{R}^m , скал. произведения которых по модулю не более заданного малого δ , экспоненциально растет при увеличении m:

Kainen, Paul C., and Věra Kůrková.

Quasiorthogonal dimension of Euclidean spaces. Applied math letters, 6(3) (1993), p. 7–10.

Обработка сигналов и изображений, сверхразрешение и т. д. (версия 3, 4, ..., N)

Актуальная проблема: *Детерминированное* построение CS-матриц: поперечники Гельфанда, . . .

Обработка сигналов и изображений, сверхразрешение и т. д. (версия $3, 4, \ldots, N$)

Актуальная проблема: *Детерминированное* построение CS-матриц: поперечники Гельфанда, . . .

«Преодоление предела Найквиста-Котельникова», сверхразрешение и повышение резкости изображений, . . .

Обработка сигналов и изображений, сверхразрешение и т. д. (версия 3, 4, ..., N)

Актуальная проблема: *Детерминированное* построение CS-матриц: поперечники Гельфанда, . . .

«Преодоление предела Найквиста-Котельникова», сверхразрешение и повышение резкости изображений, . . .

Пример: the twelve coins puzzle:

имея двенадцать монет, одна из которых фальшивая (и, следовательно, тяжелее или легче других), можно определить фальшивую монету всего за три взвешивания, взвешивая монеты в надлежащим образом выбранных партиях.

Ключевым моментом является то, что поддельные монеты — разрежены (в ряду настоящих)!

Обработка сигналов и изображений, сверхразрешение и т. д. (версия $3, 4, \ldots, N$)

Актуальная проблема: *Детерминированное* построение CS-матриц: поперечники Гельфанда, . . .

«Преодоление предела Найквиста-Котельникова», сверхразрешение и повышение резкости изображений, . . .

Пример: the twelve coins puzzle:

имея двенадцать монет, одна из которых фальшивая (и, следовательно, тяжелее или легче других), можно определить фальшивую монету всего за три взвешивания, взвешивая монеты в надлежащим образом выбранных партиях.

Ключевым моментом является то, что поддельные монеты — разрежены (в ряду настоящих)!

Как найти «хорошую матрицу взвешиваний» $(a_{ij} \in \{0,1\})$ с небольшим m и большим n. (ОТК на массовом производстве)?

Пример 2: «dual» to compressive sensing: линейное кодирование с исправлением ошибок.

Сигнал $x \in \mathbb{R}^n$ преобразуется в длинный сигнал $\hat{A} \cdot x \in \mathbb{R}^m$ (m > n) для передачи по сети с шумом. Если части переданного сигнала повреждены, полученные данные имеют вид $b = \hat{A} \cdot x + e$ для некоторого разреженного e, можно точно восстановить x во многих случаях.

Пример 2: «dual» to compressive sensing: линейное кодирование с исправлением ошибок.

Сигнал $x \in \mathbb{R}^n$ преобразуется в длинный сигнал $\hat{A} \cdot x \in \mathbb{R}^m$ (m > n) для передачи по сети с шумом. Если части переданного сигнала повреждены, полученные данные имеют вид $b = \hat{A} \cdot x + e$ для некоторого разреженного e, можно точно восстановить x во многих случаях.

E. Candes, T. Tao. Decoding by linear programming. IEEE transactions on information theory 51(12) (2005), p. 4203–4215.

Пример 2: «dual» to compressive sensing: линейное кодирование с исправлением ошибок.

Сигнал $x \in \mathbb{R}^n$ преобразуется в длинный сигнал $\hat{A} \cdot x \in \mathbb{R}^m$ (m > n) для передачи по сети с шумом. Если части переданного сигнала повреждены, полученные данные имеют вид $b = \hat{A} \cdot x + e$ для некоторого разреженного e, можно точно восстановить x во многих случаях.

E. Candes, T. Tao. Decoding by linear programming. IEEE transactions on information theory 51(12) (2005), p. 4203–4215.

Важное направление исследований:

В этом докладе до сих пор предполагалось, что искомый x_i разрежен в «стандартном» базисе. Как правило, приходится сначала *найти* базис, в котором разложение заданного (не разреженного) вектора x_i окажется разреженным. Это скорее задача машинного обучения . . .

Пример 2: «dual» to compressive sensing: линейное кодирование с исправлением ошибок.

Сигнал $x\in\mathbb{R}^n$ преобразуется в длинный сигнал $\hat{A}\cdot x\in\mathbb{R}^m$ (m>n) для передачи по сети с шумом. Если части переданного сигнала повреждены, полученные данные имеют вид $b=\hat{A}\cdot x+e$ для некоторого разреженного e, можно точно восстановить x во многих случаях.

E. Candes, T. Tao. Decoding by linear programming. IEEE transactions on information theory 51(12) (2005), p. 4203–4215.

Важное направление исследований:

В этом докладе до сих пор предполагалось, что искомый x_i разрежен в «стандартном» базисе. Как правило, приходится сначала *найти* базис, в котором разложение заданного (не разреженного) вектора x_i окажется разреженным. Это скорее задача машинного обучения . . . Другой подход: брать избыточные базисы (линейно зависимые наборы N векторов, $N > \dim$), например объединения разных базисов, возможно в которых искомый вектор разрежен.

Невыпуклые задачи (ver. N+1, N+2, ...)

Задача ($\mathsf{P}_p^{arepsilon}$), 0

$$\left\{\begin{array}{l} x = \arg\min_{x}\{\|x\|_{p} = \sum_{i=1}^{N}|x_{i}|^{p}\}, \quad \text{restricted by} \\ \|\hat{A}\cdot x - b\|_{2} < \varepsilon \end{array}\right.$$

Невыпуклые задачи (ver. N+1, N+2, ...)

Задача ($\mathsf{P}_p^{arepsilon}$), 0

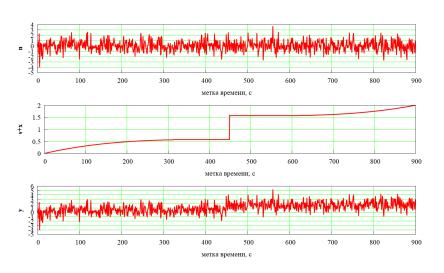
$$\left\{\begin{array}{l} x = \arg\min_{x}\{\|x\|_{p} = \sum_{i=1}^{N}|x_{i}|^{p}\}, \quad \text{restricted by} \\ \|\hat{A}\cdot x - b\|_{2} < \varepsilon \end{array}\right.$$

Задача $(\mathsf{TV}_p^{\varepsilon})$, 0 для <math>total variation (полной вариации)

$$\begin{cases} x = \arg\min_{x} \{ TV_p(x) = \sum_{i=1}^{N-1} |x(t_{i+1}) - x(t_i)|^p \}, & \text{restricted by} \\ \|\hat{A} \cdot x - b\|_2 < \varepsilon \end{cases}$$

Эта задача очень популярна при сегментации изображений, поиске и сглаживании резких границ и т. д.

Приложения: обнаружение скачков в зашумленных сигналах



• $s(t_i) = P(t_i) + x(t_i) + n(t_i)$ где $s(t_i)$ — сигнал, $P(t_i)$ — медленно меняющийся тренд в измерениях; $x(t_i)$ — кусочно-постоянная функция скачков в фазовых измерениях; $n(t_i)$ — шумовая составляющая измерений; t_i — временной ряд, соответствующий моментам времени измерений (измерения идут с одинаковым шагом по времени, однако в таком ряду могут присутствовать пропуски).

- $s(t_i) = P(t_i) + x(t_i) + n(t_i)$ где $s(t_i)$ сигнал, $P(t_i)$ медленно меняющийся тренд в измерениях; $x(t_i)$ кусочно-постоянная функция скачков в фазовых измерениях; $n(t_i)$ шумовая составляющая измерений; t_i временной ряд, соответствующий моментам времени измерений (измерения идут с одинаковым шагом по времени, однако в таком ряду могут присутствовать пропуски).
- Задача оценки кусочно-постоянной функции методом минимизации полной вариации: $TV_p(x) = \sum_{i=1}^{N-1} |x(t_{i+1}) x(t_i)|^p$

- $s(t_i) = P(t_i) + x(t_i) + n(t_i)$ где $s(t_i)$ сигнал, $P(t_i)$ медленно меняющийся тренд в измерениях; $x(t_i)$ кусочно-постоянная функция скачков в фазовых измерениях; $n(t_i)$ шумовая составляющая измерений; t_i временной ряд, соответствующий моментам времени измерений (измерения идут с одинаковым шагом по времени, однако в таком ряду могут присутствовать пропуски).
- Задача оценки кусочно-постоянной функции методом минимизации полной вариации: $TV_p(x) = \sum_{i=1}^{N-1} |x(t_{i+1}) x(t_i)|^p$

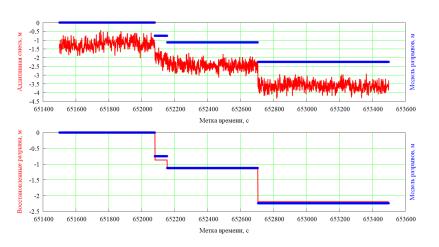
$$\begin{cases} \widehat{x} = \arg\min_{x} TV_{p}(x) \\ \min_{P} ||s - P - \widehat{x}||_{2} \le \varepsilon, \quad P = a_{0} + a_{1}t_{i} + \dots \end{cases}$$
 (5)

- $s(t_i) = P(t_i) + x(t_i) + n(t_i)$ где $s(t_i)$ сигнал, $P(t_i)$ медленно меняющийся тренд в измерениях; $x(t_i)$ кусочно-постоянная функция скачков в фазовых измерениях; $n(t_i)$ шумовая составляющая измерений; t_i временной ряд, соответствующий моментам времени измерений (измерения идут с одинаковым шагом по времени, однако в таком ряду могут присутствовать пропуски).
- Задача оценки кусочно-постоянной функции методом минимизации полной вариации: $TV_p(x) = \sum_{i=1}^{N-1} |x(t_{i+1}) x(t_i)|^p$

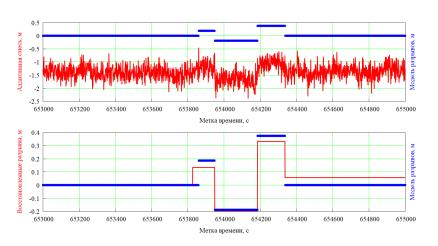
$$\begin{cases} \widehat{x} = \arg\min_{x} TV_{p}(x) \\ \min_{P} ||s - P - \widehat{x}||_{2} \le \varepsilon, \quad P = a_{0} + a_{1}t_{i} + \dots \end{cases}$$
 (5)

• Метод решения: модификация [Selesnik2012]

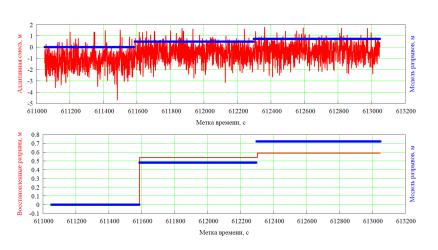
Численные эксперименты (1)



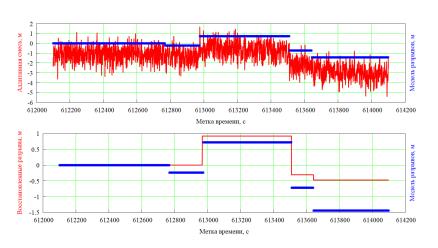
Численные эксперименты (2)



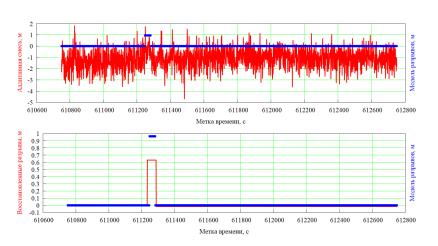
Численные эксперименты (3)



Численные эксперименты (4)



Численные эксперименты (5)



References

- Rudin LI, Osher S, Fatemi E. *Nonlinear total variation based noise removal algorithms* // Physica D: nonlinear phenomena. 1992 Nov 1;60(1-4):259-68.
- Tibshirani R. Regression shrinkage and selection via the lasso // J Royal Statistical Soc:B. 1996; v. 58, 267–288.
- Hastie, T., Tibshirani, R., Wainwright, M. Statistical learning with sparsity: The Lasso and generalizations. (2015).
- Donoho D.L. *Compressed sensing* // IEEE Trans Inform Theory, v. 52, 1289–1306. 2006.
- Candes E.J., Romberg J.K., Tao T. Stable signal recovery from incomplete and inaccurate measurements // Comm Pure Appl Math, 2006. v. 59. No. 8. 1207–1223.
- Candes EJ, Fernandez-Granda C. Super-resolution from noisy data // J Fourier Anal Appl. 2013, 1229–54

References

- Hochbaum DS. An efficient and effective tool for image segmentation, total variations and regularization // In: Int Conf on Scale Space and Variational Methods in Computer Vision 2011 (pp. 338–349)
- Polisano K, Condat L, Clausel M, Perrier V. A convex approach to superresolution and regularization of lines in images // SIAM J Imaging Sciences. 2019, 211–58.
- Selesnick I.W., Arnold S., Dantham V.R. *Polynomial smoothing of time series with additive step discontinuities* // IEEE Trans Signal Processing. 2012. v. 60, 6305–6318.
- A.C. Пустошилов, С.П. Царев Обнаружение разрывов в фазовых измерениях одночастотных навигационных приемников при различной нестабильности опорных генераторов // Ural Radio Engineering Journal. 2021. No 5(2). C. 144–161.