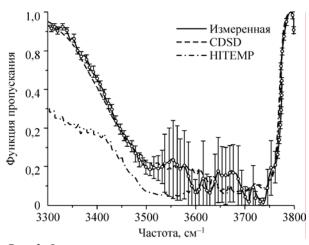
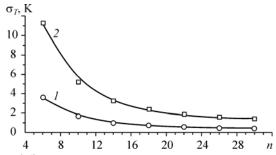

СОЗДАНИЕ ИНФОРМАЦИОННОЙ СИСТЕМЫ ПО СПЕКТРАЛЬНЫМ СВОЙСТВАМ ГОРЯЧИХ ГАЗОВ, ЗАДЕЙСТВОВАННЫХ В ТЕХНОЛОГИЯХ, ОСНОВАННЫХ НА ПРОЦЕССЕ ГОРЕНИЯ. ПРОЕКТ № 187


Координаторы: д-р физ.-мат. наук Перевалов В. И., д-р физ.-мат. наук Толочко Н. К. **Исполнители:** ИОА СО РАН, ИТА НАН РБ

Разработана первая версия Интернет-доступной информационно-вычислительной системы «Спектральные свойства горячих газов, задействованных в технологиях, основанных на процессе горения» (рис. 1). Система доступна внешним пользователям по адресу: http://spechot.iao.ru.

Проведено глобальное моделирование высокотемпературных спектров высокого разрешения молекул CO_2 , H_2O , N_2O , C_2H_2 , CO и NO. На основе этого моделирования сгенерированы и инкорпорированы в разрабатываемую информационную систему банки параметров спектральных линий высокотемпературных спектров для молекул CO₂ (CDSD) и H₂O. В ближайшем будущем будут генерированы банки данных для молекул N₂O, C₂H₂, CO и NO. Качество спектроскопической информации, содержащейся в нашем банке данных CDSD, демонстрируется рис. 2, на котором дано сравнение функции пропускания углекислого газа, рассчитанной на основе нашего банка данных и на основе банка данных НІТЕМР, с экспериментальной функцией пропускания, полученной Модестом и Бхарадважом.



Puc. 1. Карта запроса информации.Fig. 1. Request form.

Puc. 2. Функция пропускания углекислого газа в районе 3300— $3800~{\rm cm}^{-1}$ для температуры $1550~{\rm K}$, давления 1 атм. и трассы длиной 40 см.

Fig. 2. Transmissivity of the carbon dioxide in the 3300—3800 cm⁻¹ spectral region for the temperature 1550 K, pressure 1 atmosphere, and pathway 40 cm.

Puc.~3.~ Зависимость погрешности определения температуры σ_T от количества зондирующих линий для стабилизированного по частоте диагностического CO_2 -лазера (I) и для CO_2 -лазера без частотной стабилизации с $\Delta \mathrm{v} = 30~\mathrm{MF}\,\mathrm{u}$ (смесь CO_2 : $\mathrm{N}_2,~P_{\mathrm{смесu}} = 750~\mathrm{Topp},~p_{\mathrm{CO}_2} = 10~\mathrm{Topp},~T = 293~\mathrm{K})$ (2).

Fig. 3. Dependence of the uncertainty σ_T of the temperature determination on the number of analytic lines: (1) for the frequency stabilized diagnostic CO₂ laser and (2) for the nonstabilized CO₂ laser with the frequency uncertainty $\Delta v = 30$ MHz (mixture CO₂: N₂, $P_{\rm mix} = 750$ Torr, $p_{\rm CO_2} = 10$ Torr, T = 293 K).

На численных модельных экспериментах отработана методика решения обратной задачи оптического газоанализа. В ближайшем будущем эта методика будет включена в разрабатываемую информационную систему в качестве

одной из опций. На рис. 3 дана зависимость погрешности определения температуры σ_T в рамках разработанной методики от числа зондирующих линий диагностического CO_2 -лазера.

Основные публикации

- 1. Wang L., Perevalov V. I., Tashkun S. A. et al. Absorption spectra of $^{12}C^{16}O_2$ and $^{13}C^{16}O_2$ near 1.05 μ m// J. Mol. Spectrosc. 2005. V. 233, N 2. P. 297—300.
- 2. Wang L., Perevalov V. I., Tashkun S. A. et al. Absolute line intensities of $^{13}C^{16}O_2$ in the 4200—8500 cm $^{-1}$ region// Ibid. 2005. V. 234, N 1. P. 84—92.
- 3. Vander Auwera J., Claveu C., Teffo J.-L. et al. Absolute line intensities of ¹³C¹⁶O₂ in the 3090—3920 cm⁻¹ region// Ibid. 2005. V. 235, N 1.
- 4. Лободенко Е. И., Быков А. Д. Изотопический эффект в спектрах линейных молекул типа XY_2 ($D_{\infty h}$)// Изв. РАН. Оптика атмосферы и океана. 2004. Т. 17, № 11. С. 944—947.