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Introduction to New Parallel Computer Arithmetics 
Grounded on Factorizations of Operands 

Oleg A. Finko 

Abstract. New arithmetics (F-arithmetics) doing the parallel process of mul-
tiplying and division is offered. The development of this arithmetics can give 
a scoring in accuracy of representation of numbers. However because of dif-
ficulty of execution of the operation of addition and code conversion F-
arithmetics is classed as specialized arithmetics. 

1   Introduction 

Because of necessity of execution of intensive arithmetic calculations for the tasks 
of a digital signal processing, criptography, neural-like networks, interest to 
logarihtmic and residue number systems considerably has increased [1]—[4]. Re-
cently computer arithmetics has received further development as double-dase num-
ber systems [5].  

In [6] [7] parallel computer arithmetics grounded on the theorem of a number 
theory about uniqueness of decomposition of numbers on simple factors was of-
fered. The factorization of operands allows completely to make by the parallel op-
eration of multiplying and division of integers.   

2   Representation of the positive integer numbers 

We use the known items of information from a number theory (Sieve of Eratosthe-
nes) that in an interval 

NpN
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There can be only one prime number 
i
p , included in structure of canonical de-

composition of an integer N : 
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where K

321
,, ppp  – simple factors K5,3,2 . 

The generalization (1) gives 
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K  – simple factors from (2),  

t  — number of an interval  ( )1log
2

≥≥ tN .  

With registration (3) structure of number N  is possible to present as: 
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 ],] baπ  — function of Chebishev (amount of prime numbers exist-

ing in an interval ],] ba ); t  — maximum quantity of simple factors which are in-

cluded in decomposition N  in an interval ],] ba .  

If not to take into account numbers of intervals, for which 0],] =baπ , the de-

composition N  can be presented: 
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where r  — rank of F-arithmetics, ij ≤ . As sequence of prime numbers 

jpp ,,,2 2 K
 is known, representation of number N  is possible to write as: 
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The main parameters (5) are selected for 
max

1 NN ≤≤ . 

Example 1. Let 12
8

max
−=N . The application (3) will give the following out-

comes: 

1) { } ;255251,,19,17255 ≤< K  

2) { } ;25513,11,7255
3

≤<  

3) { } ;2555255
34

≤<  



4) { } ;255255 45
≤∅<  

5) { } ;2553255
56

≤<  

6) { } ;255255
67

≤∅<  

7) { } .2552255
78

≤<  

The example of representation of numbers 231 … 255 with the help (5) at 1=r  

is figured in the table 1. The absent factors )1(

1χ
p  (that is 1

)1(

1

=

χ
p ) are conditionally 

designated in zero. As the a matter of convenience zero terms are not eliminated.  

Table 1. Example of representation of numbers 231 … 255 in F-arithmetics for 

12
8

max
−=N . 

N 
)1(

1
χ
p  

6α  5α  4α  3α  2α  1α  

231   1 1  1  
232 29      3 
233 233       
234  1    2 1 
235 47    1   
236 59      2 
237 79     1  
238 17   1   1 
239 239       
240     1 1 4 
241 241       
242   2    1 
243      5  
244 61      2 
245    2 1   
246 41     1 1 
247 19 1      
248 31      3 
249 83     1  
250     3  1 
251 251       
252    1  2 2 
253 23  1     
254 127      1 
255 17    1 1  

 



Example 2. Let 12
16

max
−=N . The application (3) will give the following out-

comes: 

1) { };,,263,257 K  9) { };∅  

2) { };251,,43,41 K  10) { };3  

3) { };37,,19,17 K  11) { };∅  

4) { };13,11  12) { };∅  

5) { };7  13) { };∅  

6) { };5  14) { };∅  

7) { };∅  15) { }.2  

8) { };∅    

3   Execution of arithmetic operations 

As the representation (5) is created on the basis of a factorization of numbers, the 
operations of integer multiplying and division are most conveniently fulfilled. Rules 
of execution of multiplying:  
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In the item 2 the functions of the "mathematician" environment are used [8]. For 
1=t   
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where the character ⊕  the operation of addition module 2. 

4    Conclusion 

Thus obtained arithmetics can be classed as parallel arithmetics. The independ-
ence of processing of small bit digits of F-representation specifies convenience of 
usage of tabulared devices. Disadvantages of F-arithmetics is the difficulty of exe-



cution of the operation of addition and code conversion. However for large 
max

N  it 

is possible to use a polynomial number system with the large basis 1
max

+= Nq : 
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where { }.1,0∈
i
a  The generalization of F-arithmetics on area problem-oriented 

arithmetics and codes is given in [9].  
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